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Abstract—Performing predictive modelling, such as anomaly
detection, in Big Data is a difficult task. This problem is
compounded as more and more sources of Big Data are gen-
erated from environmental sensors, logging applications, and
the Internet of Things. Further, most current techniques for
anomaly detection only consider the content of the data source,
i.e. the data itself, without concern for the context of the data.
As data becomes more complex it is increasingly important to
bias anomaly detection techniques for the context, whether it
is spatial, temporal, or semantic. The work proposed in this
paper outlines a contextual anomaly detection technique for use
in streaming sensor networks. The technique uses a well-defined
content anomaly detection algorithm for real-time point anomaly
detection. Additionally, we present a post-processing context-
aware anomaly detection algorithm based on sensor profiles,
which are groups of contextually similar sensors generated by
a multivariate clustering algorithm. Our proposed research has
been implemented and evaluated with real-world data provided
by Powersmiths, located in Brampton, Ontario, Canada.

Keywords-Big Data Analytics, Contextual Anomaly Detection,
Predictive Modelling, Multivariate Clustering

I. INTRODUCTION

Anomaly detection is the identification of abnormal events
or patterns that do not conform to expected events or patterns
[1]. Detecting anomalies are important in a wide range of
disparate fields; such as, diagnosing medical problems, bank
and insurance fraud, network intrusion, and object defects.
Generally anomaly detection algorithms are designed based on
one of three categories of learning: unsupervised, supervised,
and semi-supervised [1]. These techniques range from training
the detection algorithm using completely unlabelled data to
having a pre-formed dataset with entries labelled normal or
abnormal. A common output of these techniques is a trained
categorical classifier which receives a new data entry as the
input, and outputs a hypothesis for the data points abnormality.
One problem with standard anomaly detection approaches is
that there is little concern for the context of the data content.
For example, a sensor reading may determine that a particular
electrical box is consuming an abnormally high amount of
energy. However, when viewed in context with the location
of the sensor, current weather conditions, and time of year, it
is well within normal bounds. These types of anomalies are
commonly found in fields with spatial, sequential, or temporal
attributes that can be associated with the sensor [1].

One interesting, and growing, field where anomaly detec-
tion is prevalent is in Big sensor Data. Sensor data that
is streamed from sources such as electrical outlets, water

pipes, telecommunications, Web logs, and many other areas,
generally follows the template of large amounts of data that
is input very frequently. In all these areas it is important to
determine whether faults or defects occur. In electrical and
water sensors, this is important to determine faulty sensors,
or deliver alerts that an abnormal amount of water is being
consumed, as an example. In Web logs, anomaly detection
can be used to identify abnormal behavior, such as identify
fraud. In any of these cases, one difficulty is coping with the
velocity and volume of the data while still providing real-time
support for detection of anomalies.

An area that has not been well explored in literature is
contextual anomaly detection for sensor data. Some related
works have focused on anomaly detection in data with spatial
relationships [2], while others propose methods to define
outliers based on relational class attributes [3]. A prevalent
issue in these works is their scalability to large amounts
of data. In most cases the algorithms have increased their
complexity to overcome more naive methods, but in doing so
have limited their application scope to offline detection. This
problem is compounded as Big Data requirements are found
not only in giant corporations such as Amazon or Google,
but in more and more small companies that require storage,
retrieval, and querying over very large scale systems. As Big
Data requirements shift to the general public, it is important
to ensure that the algorithms which worked well on small
systems can scale out over distributed architectures, such as
those found in cloud hosting providers. Where an algorithm
may have excelled in its serial elision, it is now necessary to
view the algorithm in parallel; using concepts such as divide
and conquer, or MapReduce [4]. Many common anomaly
detection algorithms such as k-nearest neighbour, single class
support vector machines, and outlier-based cluster analysis are
designed for single machines [5]. A main goal of this research
is to leverage existing, well-defined, serial anomaly detection
algorithms and redefine them for use in Big Data analytics.

The research in this paper will describe a technique to
detect contextually anomalous values in streaming sensor
systems. This research is based on the notion that anoma-
lies have dimensional and contextual locality. That is, the
dimensional locality will identify those abnormalities which
are found to be structurally different based on the sensor
reading. Contextually, however, the sensors may introduce new
information which diminishes or enhances the abnormality
of the anomaly. For example, sensors may produce what
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appears to be anomalous readings at night for electrical sensor
data; however, when introduced with context such as time of
day, and building business hours, anomalous readings may be
found to be false positives. To cope with the volume and
velocity of Big Data, the technique will leverage a parallel
computing model, MapReduce. Further, the technique will use
a two-part detection scheme to ensure that point anomalies
are detected in real-time and then evaluated using contextual
clustering. The latter evaluation will be performed based on
sensor profiles which are defined by identifying sensors that
are used in similar contexts. The primary goal of this technique
is to provide a scalable way to detect, classify, and interpret
anomalies in sensor-based systems. This ensures that real-time
anomaly detection can occur. The proposed approach is novel
in its application to very large scale systems, and in particular,
its use of contextual information to reduce the rate of false
positives. Further, we posit that our work can be extended
by defining a third step based on the semantic locality of the
data, providing a further reduction in the number of anomalies
which are false positive.

The following sections of the paper are organized as fol-
lows: Section II will describe related works in the field of
anomaly detection in streaming sensor systems. Section III
will outline the approach taken by the proposed research. The
framework will be applied in a case study in Section IV.
Finally, Section V will describe concluding thoughts and ideas
for future work in this area.

II. RELATED WORK

Anomaly detection algorithms can be broadly categorized
as point anomaly detection algorithms and context-aware
anomaly detection algorithms [1]. Contextual anomalies are
found in datasets which include both contextual attributes and
behavioral attributes. For example, environmental sensors gen-
erally include the sensor reading itself, as well as spatial and
temporal information for the sensor reading. Many previous
anomaly detection algorithms in the sensoring domain focus
on using the sequential information of the reading to predict
a possible value and then comparing this value to the actual
reading. Hill and Minsker [6] propose a data-driven modelling
approach to identify point anomalies in such a way. In their
work they propose several one-step ahead predictors; i.e. based
on a sliding window of previous data, predict the new output
and compare it to the actual output. Hill and Minsker [6]
note that their work does not easily integrate several sensor
streams to help detect anomalies. This is in contrast to the
work outlined in this paper where the proposed technique
includes a contextual detection step that includes historical
information for several streams of data, and their context. In
an earlier work, Hill et al. [7] proposed an approach to use
several streams of data by employing a real-time Bayesian
anomaly detector. The Bayesian detector algorithm can be
used for single sensor streams, or multiple sensor streams.
However, their approach relies strictly on the sequential sensor
data without including context. Focusing an algorithm purely
on detection point anomalies in the sensoring domain has some

drawbacks. First, it is likely to miss important relationships
between similar sensors within the network as point anomaly
detectors work on the global view of the data. Second, it is
likely to generate a false positive anomaly when context such
as the time of day, time of year, or type of location is missing.
For example, hydro sensor readings in the winter may fluctuate
outside the acceptable anomaly identification range, but this
could be due to varying external temperatures influencing how
a building manages their heating and ventilation.

Little work has been performed in providing context-
aware anomaly detection algorithms. Srivastava and Srivastava
[8], proposed an approach to bias anomaly detectors using
functional and contextual constraints. Their work provides
meaningful anomalies in the same way as a post-processing
algorithm would, however, their approach requires an expen-
sive dimensionality reduction step to flatten the semantically
relevant data with the content data. Mahapatra et al. [9]
propose a contextual anomaly detection framework for use
in text data. Their work focuses on exploiting the semantic
nature and relationships of words, with case studies specif-
ically addressing tags and topic keywords. They had some
promising results, including a reduction in the number of false
positives identified without using contextual information. Their
approach was able to use well-defined semantic similarity
algorithms specifically for identifying relationships between
words. This is in contrast to the work proposed in this paper as
we are concerned with contextual information such as spatio-
temporal relationships between sensors. Similar to the work
proposed in this paper is their use of contextual detection as a
post-processing step. This allows the algorithm to be compared
and optimized at two distinct steps: point anomaly detection,
and contextual anomaly detection.

Miller et al. [10] discuss anomaly detection in the domain
of attributed graphs. Their work allows for contextual data to
be included within a graph structure. One interesting result
is that considering additional metadata forced the algorithm
to explore parts of the graph that were previously less em-
phasized. A drawback of Miller et al.’s [10] work is that
their full algorithm is difficult for use in real-time analytics.
To compensate, they provide an estimation of their algorithm
for use in real-time analytics, however the estimation is not
explored in detail and so it is difficult to determine its
usefulness in the real-time detection domain.

Other work has been done in computationally more ex-
pensive algorithms, such as support vector machines (SVMs)
and neural networks. In general, these algorithms require a
large amount of training time, and little testing time. In most
cases this is acceptable as models can be trained in an offline
manner, and then evaluated in real-time. One disadvantage
to using these classification-based algorithms is that many
require accurate labels for normal classes within the training
data [5]. This is difficult in scenarios such as environmental
sensor networks where there is little to no labelling for each
sensor value. Shilton et al. [11] propose a SVM approach
to multiclass classification and anomaly detection in wireless
sensor networks. Their work requires data to have known



classes to be classified into, and then those data points which
cannot be classified are considered anomalous. One issue that
the authors present is the difficulty in setting one of the
algorithm’s parameters. In particular, changing the value has
a direct impact on the rate in which the algorithm produces
false negatives, or in which the algorithm detects true pos-
itives. To reduce the effect of the computational complexity
of these algorithms, Lee et al. [12] have proposed work to
detect anomalies by leveraging Hadoop. Hadoop is an open-
source software framework that supports applications to run on
distributed machines. Their work is preliminary in nature and
mostly addresses concerns and discussion related to anomaly
detection in Big Data. Another online anomaly detection
algorithm has been proposed by Xie et al [13]. Their work
uses a histogram-based approach to detect anomalies within
hierarchical wireless sensor networks. A drawback to their
approach is their lack of consideration for multivariate data.
That is, their work focuses strictly on developing histograms
for the data content but not the context of the data. The
authors address this as future work, indicating that inclusion
of contextual data would improve the generality and detection
performance of their algorithm.

III. CONTEXTUAL ANOMALY DETECTION

The proposed technique is composed of two distinct com-
ponents: the content anomaly detector and the contextual
anomaly detector. The content anomaly detector will be dis-
cussed in Section III-A, and the contextual anomaly detector
will be discussed in Section III-B. The primary reason for
creating a separation of concerns between content and context
is in the interest of scalability for large amounts of data. The
content-based detector will be capable of processing every new
piece of data being sent to a central repository as it will use
an algorithm with a fast testing time. In contrary to this, the
context-based detector will be used in two situations: to help
determine if the anomaly detected by the content detector is
a false positive, and to randomly ensure that the sensor is not
producing wholly anomalous results. The latter reason being
that a sensor may be acting non-anomalous within its own
history of values, but not when viewed with sensors with
similar context. Section III-B will also outline the MapReduce
technique to train the sensor profiles, thus determining which
sensors are contextually similar. We define here a sensor
profile as a contextually aware representation of the sensor
as a subset of its attributes. Broadly, comparing an incoming
sensor value with the corresponding sensor profile consists of
comparing the incoming value with an average of all the sensor
values composing the corresponding sensor profile. A pictorial
representation of the sensor profile concept is illustrated in
Figure 1.

Algorithm 1 illustrates the process of the
technique from a component-level. This algorithm
corresponds with the diagram shown in Figure 2. The
UnivariateGaussianPredictor function evaluates
the sensor against historical values taken from the same
sensor. The function will calculate a prediction based on

Fig. 1: Sensor Profile

input : SensorV alue, SlidingWindow,
SensorHistory

output: Anomaly

content ←
UnivariateGaussianPredictor(SensorV alue,
SlidingWindow, SensorHistory)

if IsAnomalous (content) ‖
IsRandomContextCheck () then

profile ← GetSensorProfile (SensorV alue);
context ←
MultivariateGaussianPredictor
(SensorV alue, profile);
if IsAnomalous (context) then

return Anomaly=true;
end
else

return Anomaly=false;
end

end
else

return Anomaly=false;
end

Algorithm 1: Contextual Anomaly Detection

the previous values and compare that prediction against
the actual result. An anomaly will be flagged based on the
distance between the actual value and the discovered value.
This will be discussed in more detail in Section III-A. The
GetSensorProfile function will request the other sensors
that are contextually similar to the sensor being evaluated.
MultivariateGaussianPredictor then compares the
sensor value with a mean value from the sensors found in the
sensor profile. Again, based on the result of this evaluation,
the anomaly can be rejected as being anomalous or confirmed
as being both a content and context-based anomaly. Another
important note is the IsRandomContextCheck function
which is part of the if-statement. This will determine whether
a random, perhaps non-anomalous, sensor value be sent to
the context-based detector. The reason for this is primarily to



Fig. 2: Algorithm Overview

check whether the sensor is behaving anomalous with respect
to the sensor profile.

A. Content Anomaly Detection

Content anomaly detection, or point anomaly detection, has
been well explored in literature. In particular, the proposed
content anomaly detection technique will use a univariate
Gaussian predictor to determine point anomalies. Univariate
Gaussian predictors build a historical model of the data, and
then predict and compare new values based on the model.
The predictor will be univariate in that it will only consider
the historical sensor readings to adjust the parameters of the
model. There will be no consideration for the contextual
meta-information associated with the sensor readings. This
ensures that the predictor can classify new values quickly
while sacrificing some accuracy. Speed is the most important
characteristic for the point detector as it needs to evaluate a
high velocity and volume of data in real-time. The accuracy
shortcoming will be handled by the contextual anomaly de-
tector.

The univariate Gaussian predictor relies on defining two
parameters during the training of the algorithm, µ and σ2.
Equation (1) and Equation (2) show how these two parameters
are set, where m is the number of training values, and x(i)

is the sensor reading for training value i. An anomaly is
detected when p(x) < ε, where ε is a threshold value set during
implementation.

µ =
1

m

m∑
i=1

x(i) (1)

σ2 =
1

m

m∑
i=1

(x(i) − µ)2 (2)

p(x) =

n∏
j=1

1√
2πσ

exp− (xj − µj)
2

2σ2

=
1√
2πσ

exp− (x− µ)2

2σ2
(∵ n = 1)

(3)

B. Contextual Anomaly Detection

The contextual anomaly detector is based on two concepts:
defining the sensor profiles and assigning each sensor to one
of the sensor profiles, and evaluating the current sensor value
(declared anomalous by the content anomaly detector) against
the sensor profile’s average expected value. The sensor profiles
are defined using a multivariate clustering algorithm; the algo-
rithm is multivariate to include the sensors multidimensional
contextual metadata which may include location, building,
ownership company, time of year, time of day, and weather
phenomena. The clustering algorithm will place each sensor
within a sensor profile and then assign that profile group to
the sensor. When a sensor has been declared anomalous by
the content anomaly detector, the context anomaly detector
will determine the average expected value of the sensor group.
Then, in a similar way as in Equation 3, the context anomaly
detector will determine whether the sensor value falls within
the acceptable prediction interval.

The contextual anomaly detection algorithm will be learned
offline, using a MapReduce [4] parallelism model to more
efficiently perform on Big Data. MapReduce programs consist
of two procedures Map() and Reduce(). The Map() procedure
filters or sorts the data into manageable pieces, while the
Reduce() procedure summarizes the results of the Map()
procedures. In the contextual anomaly detection algorithm,
the Map() procedure generates small clusters for partial sets
of the sensor data. The Reduce() procedure takes the small
clusters and aggregates them together to produce the final
set of clusters. Concretely, both the Map() and Reduce()
steps in Figure 3a use a clustering algorithm to determine
cluster centroids. The Reduce() step, however, only uses the
centroids determined by the Map() procedure, thus reducing
the computational complexity exponentially.

The Map() and Reduce() steps in Figure 3b do not use a
clustering algorithm. Instead, this MapReduce step is essen-
tially re-mapping the cluster groups from the output of the first
MapReduce step. For example, each initial Map() step will
create k*number of Map() calls labels. The initial Reduce()
step determines a set of k labels. It is the job of the second
MapReduce procedure to map those k*number of Map() calls
to the k labels. The first MapReduce process will use the k-
means clustering algorithm [14]. K-means clustering aims to
partition the dataset into a set of clusters that minimize the sum



(a) Build Initial and Overall Cluster Groups (b) Re-Map Overall Groups to Initial Groups

Fig. 3: MapReduce for Determining the Cluster Groups

of squares distance between each data point, as per Equation 4.
The k-means clustering algorithm will iterate through the
following steps:

1) Randomly initiate K random clusters
2) Partition the dataset into the K random clusters, based

on Equation 4; placing items into each cluster based on
the smallest distance to the cluster

3) Re-calculate the centroids for each cluster
4) Repeat Step 2 until Step 3 does not modify cluster

centroids

min
s

k∑
i=1

∑
xj

||xj − µi||2 (4)

Once the clusters have been formed using k-means clus-
tering, we define a Gaussian predictor for the subset of
sensors which belong to each sensor profile. Then, each sensor
profile has a specific Gaussian predictor which can be used to
determine if a new sensor value is anomalous for that particular
sensor profile family. Equations 5, 6, and 7 define the mean,
sigma, and prediction function for the Gaussian predictor,
where µ ∈ Rn, Σ ∈ Rnxn. Σ refers to the covariance matrix
of the features used to define the Gaussian predictor. Also,
|Σ| refers to calculating the determinant of the covariance
matrix. The new sensor values that are passed from the content
anomaly detector are evaluated with respect to Equation 7.
The value, p(x) is compared against some threshold, ε, and is
flagged as anomalous if it is less than ε.

µ =
1

m

m∑
i=1

x(i) (5)

Σ =
1

m

m∑
i=1

(x(i) − µ)(x(i) − µ)T (6)

p(x) =
1

(2π)( n2 )|Σ|( 12 )
exp (−1

2
(x− µ)T Σ−1(x− µ)) (7)

To summarize, the context anomaly detection algorithm
proceeds as follows:

1) Offline: generate k clusters for each sensor profile using
MapReduce

2) Offline: generate k Gaussian classifiers for each sensor
profile

3) Online: evaluate corresponding Gaussian classifier when
receiving a value by the content detector

C. Complexity and Parameter Discussion

One important aspect of any anomaly detection algorithm
is its algorithmic complexity. The reason for selecting a
clustering-based technique for the contextual anomaly detector
is that it has a relatively short testing time, and a longer
training time. For the contextual anomaly detector this is
acceptable because training will happen offline and testing
will happen relatively infrequently. More important is the
content anomaly detector as the content detector test will run
on every new sensor data. A major reason for selecting a
univariate Gaussian predictor is its ability to evaluate new
values quickly. This is because it is computationally cheaper
than the multivariate counterpart.

To cope with higher computational complexity, the proposed
algorithm also exposes parallelization and data reduction in
two ways. First, the MapReduce portion uses a small set of
the data to determine initial clusters. These clusters are then
combined based on just the centroid information to produce
a new set of clusters, and their corresponding centroids.
This ensures that while the clustering algorithm may still
be computationally expensive, the data is being reduced to
log n number of Maps, thus reducing the number of tuples
evaluated by each map to log n. Similarly, the anomaly
detection evaluation uses the notion of data reduction by
only evaluating the computationally more expensive contextual
anomaly detector on a very small subset of the data. This is
based on the assumption that an anomaly is a rare occurrence.
It is difficult to concretely define this reduction; however, if
one can assume that the percentage of anomalous readings in
a dataset is 0.001%, then the contextual detector need only
consider that fraction of the initial data. The modularity of the
content detector and the context detector allows the proposed
research to be implemented in a large distributed environment.
The content detectors can independently process information



in parallel on distributed machines and only need to share
findings to the context detector when an anomaly is detected.

Another important aspect of the proposed algorithms is the
selection of some of the parameters. For example, selection
of the k in the k-means clustering algorithm will have a
large impact on the accuracy of the Gaussian predictors. The
problem of parameter selection is well-known in data mining
but a work entitled k-means++ by Arthur and Vassilvitskii [15]
attempts to overcome this issue, specifically for k-means
clustering. Therefore, the implementation of this work will
utilize the k-means++ algorithm in place of the classic k-
means algorithm. This does not change the sets of equations
listed earlier in this section. Another set of parameters that are
subject to discussion are the weights of the content anomaly
detection algorithm. In the implementation we use a similar
approach to k-means++ where the initial seeds are randomly
distributed based on the average values of the sensor data.
Additionally, the first few iterations also randomly reseed some
values.

IV. EXPERIMENTAL RESULTS

The preliminary evaluation of this work was done in
conjunction with Powersmiths, a company specializing in
providing sensor equipment to businesses to help build a sus-
tainable future. In particular, Powersmiths provides products
and services that reduce electricity waste, identify resource
use on a building’s sub-system level, manage greenhouse gas
emissions, and coordinate corporate greening initiatives. To
do this, Powersmiths uses sensor data that is pulled from the
electrical, water, and gas systems within the business. This
data is pushed to a cloud-based data storage solution where
some analysis is completed and pushed back to the consumer.
The evaluation of the proposed technique was done using their
existing system. Preliminary studies were not done in real-time
but rather trained in batch over their historical data and vali-
dated using a test dataset. To test the implementation offline,
while emulating a real-time environment, several pseudo data
streams were created and pushed to the detector at regular
intervals mirroring the real world case. The following sub-
sections will detail the implementation of the technique, and
the results.

A. Powersmiths and the Dataset

Powersmiths is one of the leaders in sustainable power
distribution products in Canada [16]. They provide energy
metering and monitoring services through their proprietary
physical devices and consumer-facing application Windows
on the World. Powersmiths technologies can be found in a
variety of business sectors; including: schools, hospitals, data
centers, and building owners. The Powersmiths vision is two-
fold: reducing electricity waste to improve the environment for
future generations, and generating electricity savings for the
customers. Currently, customers may have tens to hundreds of
sensors, each with the ability to produce sensor data on the
order of a few seconds, to several minutes. To cope with such
a high volume and velocity of data, the company is currently

expanding their Windows on the World application by porting
many of their services to the cloud. The goal is to provide
more computational resources to store and analyse their large
amounts of data. Additionally, Powersmiths provides analyti-
cal tools, including a variety of data visualizations, to inform
their consumers and help achieve the Powersmiths vision.
Powersmiths would like to extend their existing analytical
tools as they continue to service larger amounts of data; one
such tool would be contextual anomaly detection.

Powersmiths collects a wide-range of data; including: sensor
streams (as byte arrays) with temporal information, sensor
spatial information, consumer profile information (i.e. name,
location, etc), and multi-media including videos, images, and
audio. For the purposes of anomaly detection, Powersmiths
has provided a subset of their data which includes electricity
sensor streams, and their related temporal and spatial context.
A table of the data is shown in Table I, for each time input,
there are corresponding values for each of the four sensors
(labelled Sensor 1...Sensor 4) and the physical location of
the sensor (labelled Sensor 1 Location...Sensor 4 Location).
For the purposes of expanding the contextual information for
the sensors, the Time feature has been discretized into two
new features: Day of the Week and Time of Day. Time of
Day is discretized into three values: 0 representing readings
occurring outside normal, 9-5, office hours; 1 representing
values occurring during morning, 9-1, office hours; and 2
representing values occurring during afternoon, 2-5, office
hours. These features are shown below the break in Table I.
One can consider the values for Day of the Week, Time of
Day, and the set of locations as contextual information for
the sensors; while the content itself is simply the sensor
reading at the given time. The given Powersmiths dataset
includes 101,384 tuples; where 85% were used for training,
and 15% were used for testing. As mentioned earlier, the
testing dataset has been modified to simulate a real-world
streaming environment from multiple sensors. This was done
by using the time stamp and individual sensors to produce four
test datasets (one for each sensor). The simulation environment
processes concurrent sensors streaming data in every 10ms.
The authors acknowledge that a static write frequency is the
optimal case and does not wholly represent a real-world sim-
ulation; however, the results can still show how the proposed
research responds in such an environment.

Feature Domain
Time DD/MM/YYYY HH:MM
Sensor 1 0.00 - 100.00
Sensor 1 Location [a-zA-Z0-9]
Sensor 2 0.00 - 100.00
Sensor 2 Location [a-zA-Z0-9]
Sensor 3 0.00 - 100.00
Sensor 3 Location [a-zA-Z0-9]
Sensor 4 0.00 - 100.00
Sensor 4 Location [a-zA-Z0-9]
Day of the Week 0 - 7
Time of Day 0,1,2

TABLE I: Dataset and Feature Domains



B. Implementation Details and Results

The preliminary implementation for this work was com-
pleted in Java using the Weka [17] open-source data mining
library for building the clusters. The implementation was
performed over an old view of the Powersmiths dataset.
The dataset included sensor readings from the past three
years in one building. There were four sensors included in
this dataset, all measuring the electricity from power meters
located in different areas within the building. For example,
there were sensors for the two research and development
areas, existing on two floors. Also, there were sensors for the
two administrative sectors of the building. Information on the
location, as well as the sensor reading time as described in
Table I were included. The implementation was trained over
85% of the 101,384 tuples within the dataset. Consequently,
the final 15% was used to build a simulation environment
to show the algorithms efficiency when dealing with a high
velocity of data.

The initial Gaussian anomaly predictor using only content
information (i.e. the data stream itself) was built using all the
sensor values in the training dataset. This predictor is labelled
as Univariate Gaussian Predictor in Algorithm 1
and Figure 2. For the purposes of this proof of concept, the
parameters µ and σ2, from Equation (1) and Equation (2), were
determined iteratively. In further studies the authors would like
to show relative speed-ups and trade-offs in parallelizing this
step of the algorithm. Evaluating the sensor data was done in
real-time as the simulator streamed in values. Given the low
computational expense of this step, parallelization may not
provide a large performance increase.

To build the contextual anomaly detector, the initial clus-
ters and contextual anomaly detection parameters were also
determined using a batch training model. We empirically
determined that three clusters were appropriate for building
a clustering model; beyond three the clustering algorithm
saw little improvement. The cluster process is shown as
Build Clusters in Figure 2. After determining the sensor
profiles by clustering, a contextual Gaussian predictor was
built for each contextual cluster, or sensor profile as defined
in Section III. Algorithm 1 labels this as Multivariate
Gaussian Predictor. Again, for the purposes of this
proof of concept, the arrays of µ and Σ for each sensor profile
were determined iteratively. This would need to be compared
to a parallel elision as future work. For the purposes of
preliminary evaluation the authors felt it was more important to
show the benefits of the contextual detection contribution over
the performance improvements in parallelizing the parameter
selection.

The results of our work can be described in two steps. The
first step is in the algorithms ability to determine the point
anomalies in real-time. The second step is to determine which
of these anomalies are contextually anomalous, as well as
point anomalous. In Figure 4 the results of the point anomaly
detector are shown. The upper portion of the figure, shaded
in grey, shows those values which were determined to be

Fig. 4: Content Anomaly Detection

anomalous. Over the course of the simulation, 23 of the sensor
values were considered to be point anomalies. Concretely, this
means that 23 of the values were seen to be anomalous with
respect to the expected value of that particular sensor, using
only the sensor value. This means that less than 0.01% of the
values were found to be anomalous, which is reasonable for
the context of sensor streaming in a commercial building.

The second part of the results is determining which of those
23 sensor values are contextually anomalous. That is, based on
the contextual information of: sensor physical locations, sensor
reading time of day, sensor reading day of the week, and cor-
relations between other sensors; which values remain anoma-
lous? In Figure 5, a bar graph indicating the number of point
anomalies, 23, and the number of contextually insignificant
sensor values, 3. This figure outlines the reduction in the total
number of anomalies detected by removing those that were
considered contextually normal. The figure also illustrates that
13% of the potential point anomalies were cleared by the
context detection process. Concretely, the approach determined
that three of the point anomalies should not be considered
as anomalous when including contextual information such as
Time of Day, Day of the Week, and sensor spatial information.

Thus, we can say that the algorithm reduced the number of
false-positive anomalies by 3. The other benefit we see here
is that the more computationally expensive contextual detector
only needed to evaluate 23 sensor readings, instead of the tens
of thousands that are streamed to the point detector. Therefore,
as the detection algorithm scales to more volumes of data,
with higher velocities of data streams, the algorithm will
still be able to evaluate the computationally more expensive
contextual detector while still providing real-time detection.

V. CONCLUSIONS AND FUTURE WORK

The work in this paper presents a novel approach to anomaly
detection in Big Sensor Data. In particular, a contextual
anomaly detection algorithm is proposed to enhance a point
anomaly detection algorithm. To cope with the velocity and
volume of Big Data, the anomaly detection algorithm relies on
a fast, albeit less accurate, point anomaly detection algorithm



Fig. 5: Content vs. Contextual Anomalies

to find anomalies in real-time from sensor streams. These
anomalies can then be processed by a contextually aware, more
computationally expensive, anomaly detection algorithm to
determine whether the anomaly was contextually anomalous.
This approach allows the algorithm to scale to Big Data
requirements as the computationally more expensive algorithm
is only needed on a very small set of the data, i.e. the already
determined anomalies.

The authors also propose a MapReduce approach to define
the sensor profiles used in the context detector. The MapRe-
duce approach uses an iterative k-means clustering algorithm
to first determine k-clusters on a small subset of the data,
and then combine these k*number of Maps clusters into just
k-clusters, based on just the centroids from the initial Map()
operations. This approach uses a similar thought paradigm as
the anomaly detection algorithm: try to reduce the data for
computationally expensive operations.

The preliminary results of this work are promising. The
authors determined that the algorithm performs well in real-
time, based on a simulation environment using real world data
provided by Powersmiths, located in Brampton, Canada. The
algorithm is able to find point anomalies in real-time, while
also determining contextual anomalies, reducing the number
of false positives in the point anomaly detector.

There are several areas for future work that are quite
interesting. First, the dataset considered is only one type of
Big Data; that is, tall datasets. It is important to consider other
datasets, i.e. wide, which has a large number of features to
consider. The authors believe this would be even more ben-
eficial to this work as the point anomaly detector would still
only consider a single value, whereas the contextual anomaly
detector would receive an increase in ”context”. Second, the
preliminary implementation of this work did not consider the
random contextual anomaly check. One area of concern is
that the point anomaly detector may occasionally mis-label
a value as non-anomalous, where in fact it was contextually
anomalous. Finally, the authors would like to explore further
modules added to this work; for example, a semantic anomaly
detector. Some applications include a domain ontology, or a
description of the relationships between attributes. Leveraging
these existing rules could further enhance the anomaly detec-
tion abilities of the proposed algorithm.
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