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Abstract 

As part of a larger river restoration project, bed particle dispersion was tracked at pool tailouts 

where salmon spawning is known to occur in the San Juan (Pacheedaht) River, B.C. Mobility and 

pathlengths of surface and sub-surface radio-tagged particles was characterized in three reaches 

over two deployment years in relation to annual channel change, flow magnitude, bar morphology 

and particle size. Surface particle mobility was high, with results from subsurface tracers indicating 

high spatial variation of scour at both the reach and local scale. Results also suggest scour can 

occur up to depths of 0.3m at some locations, even during moderate flood events. Trapping areas 

of tracer clusters saw consistent annual deposition and can be tied to overall bar development and 

annual reach-scale channel change. Even during extreme flood events, tracer pathlengths rarely 

exceeded one riffle-pool-bar unit, further validating the role of channel morphology, along with 

flow, on particle dispersion.  

 

KEYWORDS: particle tracking, pool tailouts, particle mobility, scour and fill, channel 
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Summary for Lay Audience  

Human influences have greatly impaired the ecological health of rivers and has led to a global 

focus on improving the scientific basis for river restoration, conservation, and management 

practices. Well-informed decisions on restoration and management plans for a river should include 

knowledge of the rate at which sediment moves through the river system, also referred to as bedload 

transport. Bedload transport is of specific importance because it is fundamental to shaping river 

channels and structuring depositional features (e.g. banks and bars). This can affect flooding risks, 

in-channel flow velocity and depth, physical habitat, and the river’s response to changes in land 

use and other conditions in the watershed. The goal of this study was to investigate bedload 

transport processes near salmon spawning habitat through individual particle tracking to better 

understand the influences of channel morphology, flow, and grain size on particle dispersion. To 

achieve this,  radio-activated tracer stones were deployed along the surface and subsurface (buried) 

at three study reaches over two deployment years, on the San Juan (Pacheedaht) River, B.C., a 

large wandering gravel-bed river. In addition, annual change in channel morphology was mapped 

using aerial imagery. Results show high mobility of surface tracers at known salmon spawning 

habitat with scour (erosion) at some locations occurring up to, and probably exceeding, 0.3m depths 

even during years of moderate flood events. Individual pathlength distances of tracer particles 

rarely exceeded one riffle-pool-bar unit. Areas of high tracer deposition can be linked to bar 

development and observations of annual channel change. Overall, results indicate that deep scour 

may be a risk to salmon spawning habitat, as well as implications on the overall stability of banks 

and bars in relation to flow and sediment supply, providing key information to support ongoing 

restoration work on the San Juan River. 
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Preface  

This thesis builds on past tracer research (2015-2018) on the San Juan River and is part of a larger 

scope restoration project led by the San Juan Round Table. Grain-size distributions and tracer 

fabrication for use in this study were completed in 2015 by the BC Ministry of Forests, Lands, 

Natural Resource Operations, and Rural Development (FLNRORD) (Ryan McQueen and Tom 

Millard). Real-time kinematic (RTK) surveying was done by Griffin Fisk, a B.C. Ministry 

FLNRORD employee. The author did not participate in the October 2020 and 2021 deployment of 

tracers on the San Juan River because of feasibility reasons, and the specific locations of pool 

tailout seeding sites were chosen by B.C Ministry of FLNRORD employees (Ryan McQueen, Tom 

Millard, Jesse Schafer). The author did provide input during meetings prior to actual deployment 

on the general location of seeding sites at the three study reaches. The author participated in both 

seasons of  tracer recovery that spanned the entire month of July 2020 and 2021. All data collection, 

interpretation, and analyses were done by the author, unless otherwise stated. All figures were made 

by the author using R software. 

 

 



1 

 

 

1 Introduction 

The San Juan (Pacheedaht) River is a large wandering gravel-bed river on the southwestern coast 

of Vancouver Island, British Columbia, located on Pacheedaht territory (Pacheedaht First Nation 

Treaty Information, 2020). A report conducted by Northwest Hydraulic Consultants Ltd. (1994) 

investigating the impact of forest harvesting on channel morphology in the San Juan River found 

that an increased sediment supply to the main channel reach during the second half of the 20th 

century correlated to an increase in the total bar area and an increased channel width over this 

period. Coincident with these morphologic changes, salmon stocks in the river declined (Burt and 

Palfrey, 2011). These findings extended through the recent four-year investigation conducted by 

McQueen et al. (2021), studying individual particle tracking and topographic surveys on the San 

Juan River with particle displacement patterns reflecting downstream migration and lateral bar 

accretion. However, there is an identifiable knowledge gap, with little information on particle 

displacement patterns at different seeding locations, specifically pool tail-outs, which limits current 

understanding of the link between sediment transport processes, channel change, and physical 

salmon spawning habitat in large wandering gravel-bed rivers.         

 

Knowledge of bed sediment transport is key to understanding river channel morphology and 

change; it is the erosion (scour), transfer and deposition (fill) of individual grains of sediment that 

shape a river channel, including the depositional features (i.e. banks and bars). Importantly, 

changes in sediment transport regimes can affect morphology, flow distribution, flooding risks, 

and physical habitat. The travel distance of an individual grain from initial entrainment to final 

deposition over a specified time period (flood season or flood event) is termed the “pathlength”. 

Since the transport of bed sediment is the result of the cumulative movement of individual grains, 

tracking individual particles and examining controls on movement and pathlength distance such as 

flow and grain size have been used to gain insight on transport processes, improving estimates of 

bed sediment transport rates and developing theoretical models to explain particle dynamics and a 

river’s bedload (Ferguson and Wathen, 1998; Haschenburger, 2013). Research has led to the 

development of functional relationships for both flow strength and grain size on particle dispersion 

and average pathlength distance, with flow seen as the primary control on particle movement 

(Vasquez-Tarrio et al., 2019). However, the majority of these studies have been done either in 
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controlled flume experiments or relatively small rivers and streams, and over short timescales 

where bar development and the role of channel morphology is less evident.   

 In a flume channel with alternate bars, Pyrce and Ashmore (2003a) found that individual particle 

pathlengths coincide with the spacing of bars and that most tracers move from the upstream pool 

to the next bar downstream and so movement is constrained by, and develops, the bar morphology 

independent of hydraulic control. Pathlengths tied to the scale of  pool-bar morphology has been 

further verified by flume experiments examining braided channels (Kasprak et al., 2015; Peirce, 

2017; Middleton et al., 2019). In a recent meta-analysis, Vasquez-Tarrio et al. (2019) also found 

that the strength of correlation between stream power (flow strength) and particle pathlengths 

increase when distances are normalized by the morphological length of the channel, further 

validating the idea of morphological control. To examine this relationship, McQueen (2019) and 

McQueen et al. (2021) coupled aerial imagery and particle tracking using RFID technology seeded 

at the head of gravel bars in the San Juan River, B.C. Results showed that particle pathlengths 

rarely exceeded one riffle-pool-bar unit, even during years of higher magnitude and longer duration 

flood events, highlighting strong morphologic control. Furthermore, particle deposition and burial 

was focused along bar margins at the bend (apex) of the bar which mimicked the larger-scale 

downstream migration and lateral bar accretion observed from aerial imagery analysis. These 

results provide further validation for the need to also consider morphologic controls in addition to 

flow strength and particle size when examining the relationship between particle dispersion and 

overall channel change in large complex rivers.  

The idea that particle seeding locations may be a strong influence on particle pathlength 

distributions has been examined in flume experiments for braided rivers (Kasprak et al., 2015) but, 

less is known on particle dispersion at different seeding locations for large wandering rivers in a 

natural setting. Morphological complexity within a reach site leads to variation in erosional and 

depositional patterns. Particles seeded at different locations along the longitudinal channel will 

have unique pathlengths, depending on the morphological characteristics in the area of initial 

entrainment. Both field and flume experiments have shown that particles seeded at the bar head are 

mobilized and trapped in the subsequent bar downstream (Pyrce and Ashmore, 2003b; McQueen 

et al., 2021). However less is known about particles seeded at other sites where distance to the 

likely depositional site is different, which may influence where particles will become trapped. 
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Particle seeding locations relative to the immediate downstream depositional area (trap) will 

influence pathlength distances and may lead to misrepresentative bedload transport rate estimates, 

especially for non-uniform river channels with complex morphology (McDowell et al., 2021). It is 

imperative for tracer studies to have particles seeded at varying longitudinal locations to capture 

the full extent of sediment dynamics.   

Understanding particle mobility, and scour and fill near pool-riffle transitions, otherwise known as 

pool tail-outs, has important ecological implications as these locations are known to be preferred 

salmon spawning habitat (Baxter and Hauer, 2000; Moir and Pasternack, 2008). During winter high 

flows, salmon eggs are at risk of being eroded because of the increasing number of particles being 

mobilized, leading to both increased scour and fill and consequent decreased embryo survival rates. 

Scour and fill depends on individual particle mobility and the depth of exchange of the  active bed 

layer during flood events, with flow and grain size known to be dominant controls. Both modelling 

and field studies, primarily using scour chains (Montgomery et al., 1996; Haschenburger, 1999, 

Lapointe et al., 2000) and wiffle-ball monitors (Rennie and Millar, 2000), have been done to 

evaluate and predict scour and fill. These studies have led to the current understanding that the 

depth of the active exchange layer and thus the depth of scour and fill increases with local bed 

shear stress (flow velocity), and is ~2D90 (90th percentile of the coarsest grain size) in gravel-bed 

rivers. However, these assumptions are based on relatively small streams and rivers with simple 

morphologies (Haschenburger and Church, 1998; Haschenburger, 1999; Devries, 2002). A recent 

meta-analysis done by Vasquez-Tario et al. (2021) highlighted the role of morphology on active 

layer depths, finding that dominant macro-bedforms exert a strong control on the relationship 

between peak flows  and both depths of erosion of the active layer and particle pathlength distances, 

but empirical field evidence is lacking. Furthermore, in larger, more complex rivers, there may be 

greater spatial variation in the active layer depth where deep scour is restricted to zones of high 

velocity in the thalweg (path connecting lowest bed elevation along the channel), although this has 

yet to be shown in the field. Field studies that examine the spatial pattern and variation in particle 

mobility and scour and fill processes in large complex gravel-bed rivers are needed to better 

understand the relationship to channel morphology and the implications for salmon spawning 

habitat.  
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Therefore, this thesis is focused on the following objectives related to bed particle motion using 

the San Juan River as a case study in gravel-bed wandering channel types:  

 

1. Quantify particle mobility and scour depths in the vicinity of salmon spawning habitat 

(pool tailouts) 

2. Observe particle pathlengths at pool tailout seeding sites in relation to bar morphology 

and development 

3. Evaluate the controls of flow, grain size, and morphology on particle dispersion 

To satisfy these objectives, data was collected through tracking of buried and surface particles 

using RFID (Radio Frequency Identification) technology, along with topographic surveys and 

acquired aerial imagery from LIDAR data, over a two year period. Results of tracer mobility and 

scour depths at known salmon spawning pool tail-out locations will provide much needed 

information for ongoing restoration work in the San Juan River, with the overarching goal to 

improve and restore physical habitat conditions for salmonid species in the river.    
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2 Background 

2.1 Characteristics of Wandering Gravel-bed Rivers 

River channel classification systems are not definitive, rather they are used to identify basic 

differences between spatial patterns (i.e., river patterns, in-channel features, floodplains) and 

differences in associated fluvial processes and channel pattern development (Kondolf et al., 2016). 

This is seen in the early classification of river patterns proposed by Leopold and Wolman (1957) 

identifying a continuum from low-energy meandering to high-energy braiding and citing many 

factors affecting channel pattern such as grain size, sediment load, riparian vegetation, and channel 

dimensions (roughness, width, depth). This theory led to the present definition of wandering 

channels as a transitional type between meandering single-thread reaches and braided 

morphologies (Church, 1983; Brierley and Hickin, 1991; Buffington and Montgomery, 2013). 

Knowledge of the processes and underlying factors that control the functioning of wandering river 

channels is key to understanding and predicting morphologic response to future disturbances, 

necessary to watershed management and restoration. Furthermore, the morphology of wandering 

river channels has ecological implications, as it provides diverse physical habitat for many 

organisms (Buffington et al., 2003). Unfortunately, there is a lack of process-based understanding 

that highlights the need for empirical field evidence to provide necessary input on the functioning 

of wandering channel types (Buffington et al., 2013; Hassan et al., 2017).   

The three gravel bar reaches of interest in this study are located in the mainstem of the San Juan 

River which is classified as a wandering, or low-sinuosity, meandering channel (Church and Rice, 

2009; Buffington et al., 2013). Wandering channels are irregularly sinuous displaying 

characteristics of both meandering single-thread channels,  and low-sinuosity braided or 

anabranching channels (Neill, 1973; Church and Jones, 1982; Church, 1983). They have a complex 

channel planform with long sections diverging from a single identifiable mainstem channel into 

braiding or splitting around channel islands, with seasonal side-channels also common (Desloges 

and Church, 1987; Burge, 2005; Church, 2006). Wandering channels are typically characterized 

by a moderate channel gradient, complex bar development, and display some degree of lateral 

instability (Desloges and Church, 1987; Buffington et al., 2003).  They are distinguished by a pool-

riffle-bar macro-bedform unit, with the most common bar morphology being a lateral bar (bar 
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attached to one bank) with deposition by lateral accretion (Church and Jones, 1982; Desloges and 

Church, 1987).   

Bar development is a key indicator of river behavior, providing information on the active processes 

and sediment regime dictating channel change at the reach scale, and has been the focus of many 

studies regarding wandering rivers. This was addressed by Ham (2005) studying wandering reaches 

of the Fraser River B.C, finding a pattern of regular morphologic development over decades with 

bed sediment transport occurring as migrating unit bars (gravel sheets) with compensating erodible 

sediment providing new source material for new unit bars propagating downstream. To further 

understand bar development, Church and Rice (2009) assessed the morphology and evolution of 

bars using historic aerial imagery and topographic surveys in the lower Fraser River, B.C., a large 

wandering gravel-bed river. Findings showed that vertical growth is limited by the height at which 

the sediment can be elevated, while the lateral growth of bars is limited by the length-scale of the 

channel, resulting in the latter being the primary control on bar development. Furthermore, Church 

and Rice (2009) were able to demonstrate that unit bars, similar to braid bars, were built by multiple 

depositional and erosional events linking sediment transport dynamics to the long-term 

morphological evolution of bars. 

 Recently, sediment supply and flood activity were found to be the dominant controls on the 

morphologic evolution of braided and wandering reaches in a study by East et al. (2017) using 74 

years of aerial photographs to analyze four gravel-bed rivers in the Olympic National Park, 

Washington, USA. Significant channel widening and increased braiding on three of the four rivers 

studied were strongly linked to high magnitude winter storm activity in recent decades, whereas 

years with lower peak flows corresponded to narrowing and reduced braiding. They also found that 

channel changes were associated with changes in sediment supply, leading to aggradation and 

greater channel width and braiding.    

Chapuis et al. (2015) were the first to directly study individual particle displacement and channel 

change in a large wandering gravel-bed river using particle tracking and topographic surveys. Their 

results from the Durance River, France, showed particle displacement patterns linked to 

downstream lateral bar accretion. Although this provided primary evidence of the link between 

sediment transport processes and long-term morphologic change in large wandering rivers, the 
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study was limited to a low recurrence interval flood (4-year return period) and had low recovery of 

tracked particles.  

Research on wandering gravel bed rivers has also provided insight on the influence of bed sediment 

movement on physical habitat at the reach scale. Local variation in sediment transport rates creates 

transitional areas that are depositional zones and often associated with the formation of bars 

(lateral, mid-channel, point) and islands (Hanrahan, 2007). These transitional areas, specifically 

the area between pools and riffles (pool tail-outs) in depositional reaches, are known salmon 

spawning habitat (Montgomery et al., 1999; Moir et al., 2004; Moir and Pasternack, 2008). Projects 

on salmon habitat restoration are abundant, including attempts to restore physical processes such 

as sediment transport regimes and flow (Wohl et al., 2015) although the net benefits are unclear 

(Harrison et al., 2019). Sediment transport processes, morphologic change, and physical salmon 

spawning habitat are inherently related, yet there is a lack of field evidence to provide process-

based information necessary to watershed restoration and management, especially in large 

wandering gravel-bed rivers.  

2.1.1 The Case of the San Juan River 

A report conducted by Northwest Hydraulic Consultants Ltd. (1994) investigating the impact of 

forest harvesting on channel morphology in the San Juan River, B.C., found that an increased 

sediment supply to the main channel and tributaries during the second half of the 20th century 

correlated with an increase in the total bar area and an increased channel width over this period, 

agreeing with the literature (Church and Rice, 2009; East et al., 2017). Coincident with these 

morphologic changes, salmon stocks in the river declined (Burt and Palfrey, 2011). These findings 

extended to the recent four-year investigation conducted by McQueen et al. (2021), studying 

individual particle tracking and topographic surveys on the San Juan River with particle 

displacement patterns reflecting downstream migration and lateral bar accretion. However, there 

is an identifiable knowledge gap, with little information known on particle displacement patterns 

at different seeding locations, specifically pool tail-outs, which limits current understanding of the 

link between sediment transport processes, channel change, and physical habitat for species in large 

wandering gravel-bed rivers. 
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2.2  Bed Sediment Transport Dynamics 

Bed sediment transport is defined as the movement of sediment particles along the river bed in a 

rolling or saltating mode under the tractive force exerted by flowing water (Hicks and Gomez, 

2016). The functional relationship between flow strength and bed sediment transport regimes and 

a river’s transport capacity is well established and commonly used to calculate bed sediment 

transport rates. Knowledge of bed particle dynamics is necessary to understand and predict the 

erosional and depositional processes that develop and modify river channel morphology and 

functioning, important to river engineering and restoration. However, the processes that disperse 

sediment within a river and the factors that influence sediment supply go beyond flow strength, 

and involve substantial spatial and temporal variation in bedload transport rates. In large rivers, 

bed sediment transport can become even more complicated due to elevation and roughness 

differences associated with complex channel morphology (Hicks and Gomez, 2016; Vericat et al., 

2017).  

Traditionally, to calculate bedload transport rates for a specific river, short term sediment fluxes at 

a given cross-section are measured using in-channel samplers or traps, although these 

measurements are labour intensive and only capture rates at a very limited temporal and spatial 

scale (Lambert and Walling, 1988). To improve estimations of bedload transport rates, theoretical 

or semi-empirical predictions are used to calculate a river’s transport capacity using mean flow 

characteristics (typically bed shear stress or stream power) as well as grain size characteristics 

(Hassan et al, 2013). However, these transport equations represent conditions of uniform flow and 

relatively uniform grain size characteristics found in smaller streams and rivers. Transport rate 

measurements have also been calculated from laboratory (Einstein, 1937) and field experiments 

(Hassan, 1991) using individually marked particles in smaller streams with uniform conditions.   

For large gravel-bed rivers, characterized by non-uniform grain-size distributions and highly 

variable flow across and along the channel, that are governed by the river’s complex morphology, 

these equations are inadequate because of the underlying assumption of relatively uniform channel 

morphology and bed particle size that are representative of small streams and rivers. 

Thus, there is a need to theorize bedload transport rates based on characteristics of large gravel-

bed rivers taking into account the spatial variation in bed topography, flow and particle size typical 

of more-complex morphology. This first requires direct observational knowledge of particle 
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dispersion in relation to larger scale erosional/depositional processes that dictates a river’s 

morphology. Through individual particle tracking, the ‘morphological’ approach has been 

developed which is based on the idea that if particle pathlength distances are proportional to the 

dominant macro bedform (i.e. bar length), with knowledge of the volume of sediment displaced 

within that unit (virtual velocity), then a rough estimate of transport rates can be made (Neill, 1987; 

Ashmore and Church, 1998; Milan et al., 2002; Chapuis et al., 2015; Papangelakis and Hassan, 

2016; McQueen et al., 2021). This approach captures the spatial variation seen in large rivers with 

morphologically complex bar development that cannot be observed from bedload trapping or flume 

experiments using uniform plane-bed flow. Morphological approaches are also usefully tied to the 

spatial and temporal scale of channel geomorphology and physical habitat, rather than the 

instantaneous flow conditions of conventional trapping and bedload transport equations. Additional 

knowledge on particle entrainment and mobility (Hassan et al., 1992) and scour and fill depths 

(Haschenburger, 1999; Rennie and Millar, 2000) via individual particle tracking has also been used 

to further understand the relations between particle movement, morphologic change, and active 

layer depths. However, the morphological method relies on knowledge and prediction of particle 

dispersal seeded in different morphological units, which currently is supported by limited field 

evidence (Ashmore and Church, 1998; Mao et al., 2016).  

2.3 Particle Mobility 

The fraction of particles entrained, or mobilized, during flood events is most often referred to as 

particle mobility and is a key factor in determining bed sediment transport rates and understanding 

transport dynamics in gravel bed rivers. Early studies showed that particle mobility is governed 

mainly by  particle mass (diameter) and applied fluid force (shear stress) (Shields, 1936), and such 

studies have been validated through field and flume studies, with flow and grain size strongly 

established as primary controls on particle mobility (Hassan et al., 2017; Hassan and Bradley, 

2017). Studies suggested size-selective entrainment, with bed sediment only reaching full or 

‘equal’ mobility of all grain size classes during the highest flows, which are at or above bankfull 

(Ashworth and Ferguson, 1989; Wathen et al., 1995). This led to the idea of partial transport within 

grain-size classes, where some particles on the bed remain immobile during a transport event, and 

where a state of full mobility is seen only when all particles of a certain grain size class are 

mobilized. Partial transport is also defined relative to the bed as a whole and has been documented 
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in both laboratory and field settings. Pierce et al. (2018) used physical modelling experiments to 

observe the evolution of mobility across a range of flow velocities and found that mobility increases 

with discharge and full mobility only occurs when large areas of the bed are active at peak channel-

forming discharge. Pierce et al. (2018) also used physical modelling of braided channels to assess 

the lateral extent of bed material displacement (mobilization) also known as the morphological 

active width, and found high spatial and temporal variability as a result of complex channel 

morphology in multi-threaded channels. The results showed an average percent of active width 

ranging from 6-45% generally increasing with stream power. High spatial and temporal variability 

of the active width has also been documented for more stable, single-threaded channels 

(Haschenburger and Wilcock, 2003). Using magnetically tagged stones, Haschenburger and 

Wilcock (2003) studied partial mobility in a small stream and found that 25-50% of the bed 

remained in a state of partial mobility during a 2-year return period flood event. Furthermore, 

during a 7-year return period flood event, surface mobility was near full, indicating the persistence 

of spatial variation in partial mobility over most flow conditions.  

Many field and laboratory studies have examined the relationship of flow variables and particle 

mobility, beginning with the identification of critical threshold values of entrainment in relation to 

shear stress (Ashida and Michiue, 1972; Ashworth and Ferguson, 1989; Wong et al., 2007). 

Individual particle tracking is useful as it can provide an estimate of the discharge at which partial 

and full mobility begins and the flow conditions at which bedload may occur. Particle mobility 

from tracer data has been shown to increase with other flow variables such as peak discharge 

(Haschenburger and Wilcock, 2003; Papangelakis and Hassan, 2016; McQueen et al., 2021) and 

excess stream power (Hassan et al., 1992, Lenzi, 2004). However, in a recent meta-analysis of 

tracer data, Vasquez-Tarrio et al. (2019) found large scatter and no clear link between particle 

mobility and stream power for flow events in riffle-pool channels, suggesting other factors such as 

flow duration as well as the role of bed texture,  and shortcomings of using  channel-wide average 

flow in rivers with complex morphology at the reach scale to analyze mobility in relation to flow 

conditions. 

Complexity arises in the relationship between flow and mobility due to non-uniformity of sediment 

size mixtures in river beds. It is well established that for a given flow, mobility is similar for smaller 

particles but quickly decreases with grain size for larger particles, thus the entrainment threshold 
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for a particle is size dependent (Hassan, 1992; Ferguson and Wathen, 1998). Uncertainty in bed 

mobility is expected in channels with complex morphology, particularly, in riffle and pool channels 

and larger rivers, where bar-induced sorting processes (downstream fining of bars) create high-

heterogeneity in elevation, roughness, and surface grain size that lead to greater spatial variability 

in shear stress distributions (Lisle et al., 1991; Wilkinson et al., 2008; Venditti et al., 2012). Using 

painted particle tracking, Mao et al. (2009) studied mobility in a relatively large gravel-bed river 

and found that full mobility was frequent in main and secondary channels, however on high 

topographical bars, partial transport conditions were observed even after the largest monitored 

flood. In large wandering gravel-bed rivers such as the San Juan River, the overall relationship 

between event peak discharge, duration and the spatial variability in particle mobility is not yet 

fully understood. Results from a four-year tracer study on the San Juan River showed that particle 

mobility at bar heads at three different study reaches was relatively insensitive to increases in total 

excess flow energy, a commonly used metric that captures both duration and peak discharge 

measurements (McQueen, 2019; McQueen et al., 2021). Studying particle mobility at different 

seeding sites within the reach may improve our understanding on the complex relationship between 

particle mobility, flow, and channel morphology.  

2.3.1 Particle Mobility Near Salmon Spawning Habitat 

During baseflows, typically in the fall or late summer, salmon utilize areas of the gravel bed, 

commonly at pool tailouts to bury their eggs prior to winter flooding (Figure 1). Gravel-bed rivers 

and streams are vulnerable to large winter flood events that can lead to high mobilization of the 

bed which can directly impact salmon spawning (DeVries, 1997, Harrison et al., 2019). 

Hydrodynamic modelling has been used to assess the risk of flow during high mobilizing flood 

events, however the extent of scour is difficult to predict due to the complex spatial variability and 

interacting factors on flow strength at the local scale. May et al. (2009) studied the viability of 

salmon spawning areas using modelling and field measurements in a large regulated gravel-bed 

river and identified a zone of full mobility that was limited to a central core that expanded with 

increasing flow strength. They concluded that preferred salmon spawning sites were located in 

areas away from the thalweg (channel centre) and in close proximity to channel margins, so they 

were less likely to be at risk of mobilization and scour from high flow events. Studying mobility 

near salmon spawning habitat in a gravel bed mountain stream, McKean and Tonina (2013) also 
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found little risk to salmon survival with limited particle mobility (<20%) even during bankfull 2-

year return period flood events. In contrast, some studies have found that salmon spawning sites 

are located in zones of highest velocity, near the channel thalweg and thus are potentially at risk of 

mobilization and scour during high winter flood events (Moir et al., 2002; Hamann et al., 2014; 

Harrison et al., 2019). Although the current empirical evidence indicates that high bed mobilization 

from flood events appears to present minimal risk to salmon spawning habitat, little is known about 

large rivers subject to  extreme flood events that can result in substantial bed activity. The San Juan 

River provides the opportunity to study the risks of particle mobility on spawning viability at 

known salmon spawning habitat across multiple reaches.  

 

 

 

 

 

 

 

 

 

2.4 Particle Pathlengths 

Determining pathlengths is fundamental to understanding bedload processes because when 

combined with the quantity (volume) of material mobilized over a given time period, an estimate 

of the bedload transport rate can be made (Pyrce and Ashmore, 2003). Particle pathlengths also 

directly relate to the development of river bed topography through the net erosion and deposition 

of individually displaced particles which has important implications for both river engineering 

applications and physical habitat.   

Visual depiction of salmon spawning at pool-riffle transitions (also 

known as pool tailouts), where salmon remove gravel to create a bowl 

and bury their eggs in pockets (redds) (sourced from Lorenz and Eiler, 

1989).  

Figure 1. Depiction of salmon spawning at pool  tail-out. 
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Controls on particle pathlengths are similar to that of bed mobility and have been well studied, with 

power law relationships developed between mean pathlength distance and shear stress (Klosch and 

Habersack, 2018), peak and cumulative excess stream power (Hassan et al., 1992; Bradley, 2017; 

Haschenburger, 2013; Schneider et al., 2014) and excess flow expenditure (Haschenburger, 2013; 

Papangelakis & Hassan, 2016; McQueen et al., 2021). It is also known that particle size influences 

individual pathlength distances, with larger particles moving shorter distances. However, this 

relationship is generally weak, unless scaled to the relative size of the bed particles within the 

mixture of sizes typical of the gravel-bed  (Church and Hassan et al., 1992; Ferguson and Wathen, 

1998; Schneider et al., 2014). There are large amounts of scatter in the data attributable to the 

neglect of the possible relationship between individual pathlengths and channel morphology. Most 

pathlength distributions are positively skewed (e.g. gamma, exponential), with the majority of 

tracers moving very short distances or not moving at all (Hassan et al., 1991). However these 

distributions are only representative of low-intensity transport events, which is the dominant 

transport type seen in small plane bed streams, which are most often represented in the literature 

(Hassan and Church, 1992). At larger discharges with higher particle mobility, and over longer 

time scales, individual particle displacement is modulated by the channel morphology and thus will 

have a different path length frequency distribution, especially in channels with well-developed bars 

and more complex morphology (Ferguson et al., 2002; Haschenburger, 2013). 

The inference of individual pathlengths relating to channel morphology was first developed from 

the idea that the pathlength is equivalent to the spacing of the principal erosion and deposition sites 

(Neill, 1971; Ashmore and Church 1998). More specifically, that particle transfer is directly from 

pool to bar (Neill, 1971). Pyrce and Ashmore (2003a) conducted a re-analysis of the literature 

which confirmed that  positively skewed path lengths were associated with moderate discharge 

events in smaller more simple channels, and that in bar-dominated channels subject to high 

magnitude flood events,  pathlengths tended to have bi- or multimodal distributions. Flume 

experiments on an alternate bar channel were also conducted by Pyrce and Ashmore (2003b) and 

further validated the influence of bar morphology, showing that during high mobilizing flows, 

tracers were deposited on the first bar downstream from the upstream pool in which tracers were 

seeded. Building on this foundation, more recent flume experiments have linked individual particle 

pathlengths to the spacing of erosion and depositional sites, which is directly tied to key bar 
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development processes in  both single thread and braided channels (Pyrce and Ashmore 2005; 

Kasprak et al., 2015).  

More recently, a synthesis and re-analysis of tracer data by Vazquez-Tarrio et al. (2019) studied 

the influence of both hydraulic and morphologic controls on particle dynamics in a variety of 

channel types. Importantly, they found that the relatively weak, positive correlation between stream 

power and average travel distance was corrected, in other words the scatter was reduced, when the 

travel distance was scaled by a morphological length within each channel type (i.e spacing of 

macroscale bedforms). Channel bar width has also been an identified predictor of particle 

pathlength, as it is proportional to the longitudinal spacing of bars, further strengthening the idea 

that bar spacing exerts significant control in bar-dominated channel types (Beechie, 2001; 

Vasquez-Tarrio and Batalla, 2019). Identifying the influence of bar-spacing and morphological 

control on particle displacement contributes to the development of morphological methods for 

predicting bedload transport rates, however the majority of studies have been on relatively small, 

simpler rivers and streams such as plane-bed and step-pool channels, where the morphological 

constraints are less evident.  

The San Juan River wandering characteristics, bar-dominant channel reaches and high 

morphological complexity, allows for a direct case study on the influence of both hydraulic and 

morphological control on particle displacement in a large river subject to high intensity flow events. 

McQueen et al. (2021) conducted a four-year tracer study on the river and found that even during 

years of greater peak flows and longer duration of flow events, the pathlengths of most particles 

were restricted to one riffle-pool-bar unit. Additionally, the study was able to directly tie particle 

deposition that focused at bar margins and near the bar apex to overall bar development processes 

in the river. Although the relationship between particle pathlength dynamics and both hydraulic 

and morphological control is becoming more clear, additional knowledge gaps need to be filled. 

Due to the highly variable bed morphology in a complex channel, such as in the San Juan River, 

discrepancies may exist between transport dynamics seeded at different macro-bedform units 

(gravel bar vs. pool tail-out)  within the same gravel bar reach. Furthermore, examining particle 

dispersion at three different gravel bar reaches subject to the same high flow events provides for 

unique insight into the role of channel morphology and contributes to improvements in the 

morphological methods to estimate bedload transport rates.     
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2.5 The Active Layer Depth 

Vertical sediment mixing in gravel-bed rivers is the exchange of particles between the surface and 

subsurface through the process of scour and fill during transport events. The active layer, or active 

layer depth is the limited top-most layer of the riverbed that experiences vertical mixing (Hassan 

and Bradley, 2017; Vasquez-Tarrio et al., 2021). The active layer depth is an important parameter 

that controls the estimated bedload flux, coupled with particle pathlength distances, the active 

channel width, and fraction of the bed entrained (Haschenburger and Church, 1998; Liebault and 

Laronne, 2008). The extent of the active layer governed by the process of scour and fill is also a 

major driver for physical habitat distribution and dynamics in gravel-bed rivers (Rice et al., 2012). 

For these reasons, controls on the active-layer have been well studied with both flow magnitude 

(Hassan et al., 1992; Haschenburger and Church, 1998; Schneider et al., 2014) and grain size 

(Wilcock et al., 1996; Haschenburger and Church, 1998; Devries, 2002) being linked to active-

layer depths. It is not until recently, that channel morphology has been noted as an important 

modulating factor when examining active layer depths (Ashmore et al., 2018; Vasquez-Tarrio et 

al., 2021).  

Data from field observations has shown that the active layer depth is relatively thin and heavily 

controlled by the size of the bed grains, ranging from smaller than the surface layer equal to the 

D90 (90th percentile of grain-size) (Hassan, 1990; Haschenburger, 1999) and typically limited to 

depths equivalent to 2 times the D90 (Haschenburger and Church, 1998; Devries, 2002). There is 

also compelling evidence that burial depths increase with flow strength correlated to metrics such 

as discharge (Gottesfield et al., 2004) and peak stream power of the flow event (Mao et al., 2016), 

although some studies have found no relationship to flow parameters (DeVries 2002; Papangelakis 

and Hassan, 2016). The uncertainty in the current literature may in part be due to the lack of 

consideration of channel morphology.  

Most empirical evidence on active layer depths has been collected in small plane bed streams with 

uniform bed texture and lack any influence from macro-bedforms and complex morphological 

features.  Particle entrainment is known to be spatially variable, with variability in cross-sectional 

shear stress distributions that can influence the spatial and vertical extent of the active layer depth 

(Habersack et al., 2008). Furthermore, macro-bedforms (i.e riffle, pools, bars) can influence the 

spatial distribution of particle entrainment as well as the cross-sectional extent of mobile sediment 
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patches in morphologically-complex channels, such as single-thread wandering or multi-thread 

braided channels (Vasquez-Tarrio et al., 2021). This suggests that the current knowledge of active 

layer dynamics, may not hold true for larger rivers with high morphological complexity. The idea 

that morphology may play a more dominant role in larger rivers motivated the term ‘morphological 

active layer’ which describes the bed sediment layer mobilized during transport events related to 

large-scale channel forming processes such as channel avulsion, bend and confluence scour, bar 

migration and overall channel pattern reconfiguration (Leduc et al., 2015). In theory, particles that 

make up the active layer are responsible for these morphological processes over longer time-scales 

and thus should in turn be in some way controlled by the maximum vertical extent of the macroform 

features in the channel.  

In a recent meta-analysis by Vasquez-Tarrio et al. (2021), they found that dominant channel 

macroforms modulated the relationship between flow strength and active-layer depths, with major 

differences between different channel morphology types, which suggests a morphological 

influence on active layer depths. Burial data from the four-year tracer study on the San Juan River 

by McQueen et al. (2021) support the findings of Vasquez-Tarrio et al. (2021), with tracer burial 

being tied to patterns of bar-scale topographic change. Importantly, McQueen et al. (2021) also 

found that active layer depths from tracer burial data exceed the maximum grain exchange depth 

of  2D90  that is suggested throughout the literature and commonly used in bedload transport 

modelling.  

With increasing capabilities of tracer data collection in large rivers from advancements in 

technology, empirical evidence of the processes of scour and fill and active layer depths in relation 

to channel morphology is needed. In the case of the San Juan River, and for many other rivers 

around the world, scour and fill also has direct implications on the quality of physical salmonid 

spawning habitat and is a major constraint when considering factors involved in large-scale river 

restoration programs.  

2.5.1 Scour Implications at Salmon Spawning Habitat 

During low flows, typically in the fall or late summer, salmon utilize areas of the gravel-bed for 

spawning, commonly at pool tail-outs, to bury their eggs prior to winter flooding (Figure 1). High 

flows producing bed mobilizing events may lead to scour depths of the bed beyond the depths of 
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egg burial, putting salmon populations at risk (Montgomery et al., 1996).  Devries (1997) 

conducted a comprehensive review of egg burial depth data which included primary egg burial 

depth criterion on the five Pacific salmonid species found in the San Juan River. Results suggest 

egg burial depths for these species may range from 10 – 50cm below the streambed surface, 

however high variability due to a number of factors such as sampling methods, and spawning 

behaviour, was identified as a limitation to the data. 

 Scour chain monitors have been a common technique to study scour depths near salmonid 

spawning sites in many streams and rivers (Rennie and Millar, 2000; May et al., 2009; Dusterhoff 

et al., 2017; Meredith et al., 2018). The cross-sectional and longitudinal spatio-temporal variability 

of scour depths attributable to entrainment potential and shear stress values has been well studied 

in the literature (Rennie and Millar, 2000; May et al., 2009; Meredith et al., 2018) with some areas 

of the channel experiencing no bed activity, while other areas undergo maximum scour depths that 

can extend to values as high as 8 times the surface layer (Haschenburger, 1999).  

At the local scale, Rennie and Millar (2000) found no spatial autocorrelation in scour depths at 

closely spaced (~1m) scour chains in a small gravel-bed creek in B.C, which they attributed to 

variable bed roughness and topography. Interestingly, at the same magnitude of shear stress, 

Meredith et al. (2018) measured 4cm differences in scour depths along a longitudinal gradient in a 

mountain river in Utah, U.S.A. In a recent study, Dusterhoff et al. (2017) found that maximum 

scour depths in salmonid spawning habitat was negatively correlated with flow shear stress and 

potentially more controlled by coarse particle exposure to flow. Furthermore, many studies have 

shown that scour depths can vary even during years of similar peak flow events, from the influence 

of flood duration (Shellberg et al., 2010; Meredith et al., 2018). The vast majority of these studies 

have not found substantial scour depths in areas of salmon spawning habitat, at channel margins 

where much shallower scour depths occur compared to channel centreline (thalweg) depths 

(Montgomery et al., 1996; Rennie and Millar, 2000; May et al., 2009; Meredith et al., 2018) 

however, scour depths in large rivers with complex cross-sectional morphology has not been well-

studied.  

The role of morphology and bed texture has been  largely responsible for the difficulty in predicting 

scour and fill processes, even at an extremely localized scale (Cienciala and Hassan, 2013). There 

is an evident gap of empirical evidence on scour depths for large salmon-rearing rivers that are 
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subject to intense winter flood events, that overlap with incubating salmonid eggs buried in the 

subsurface, with the potential of entire cross-sections to be at risk of deep scour. Moreover, the 

complex relationship between channel morphology, and salmon spawning habitat, indicates a need 

for further understanding of the contributing factors on the processes of scour and fill in large 

gravel-bed rivers. The utilization of tracer particles at varying burial depths coupled with surface 

tracer deployment at highly-mobilized pool-tailout areas in the San Juan River can provide 

empirical insight on the role of bed morphology in relation to bed mobility and scour. 

2.6 Particle Tracking Techniques 

Earlier tracer studies used a variety of techniques including painted and magnetic particles. Recent 

technological advances have led to the use of passive integrated transponders (PIT tags) that track 

individual particles by radio frequency identification (RFID) technology using radio antennas and 

has shown promising results for applications in large gravel-bed rivers (Nichols, 2004; Lamarre et 

al., 2005; Schneider et al., 2010; Bradley and Tucker, 2012; Phillips et al., 2013). PIT tag 

technology is relatively inexpensive, resistant to breakage, and long-lasting, with studies 

generating high recovery rates in streams (78%-100%) (Macvicar and  Roy, 2011; Biron et al., 

2012; Milan et al., 2013) capturing sediment dynamics over multiple years and travel distances on 

the scale of 102, even 103m depending on search capacity. Furthermore, the small size of the PIT 

tag allows for a larger range of grain size classes to be studied leading to an improved understanding 

of sediment dispersion in gravel-bed rivers (Hassan and Roy, 2016).  

PIT tag technology, when coupled with other bedload monitoring techniques, has seen increasing 

use in larger, more complex rivers (channel width > 80m), although limitations still exist. Rollet et 

al. (2008) first tested the use of PIT tags in the Ain River, a large wandering gravel-bed river in 

France, and saw a recovery rate of 36%, finding that shallow detection ranges (up to 25cm) limited 

recovery in areas of deep burial as well as deep pools. Chapuis et al. (2015) and Arnaud et al. 

(2017) also noted the shallow detection range of PIT tags as a key limitation to their recovery rates 

(40% in the Durance River, France; 11-43% in the Old Rhine River, Switzerland, respectively). 

However, developments in PIT tag technology continue. Chapuis et al. (2014) studied the effects 

of tag orientation on detection ranges and found optimal detection using vertical cylinder tags, 

which motivated the design of artificial “wobblestones” (Papangelakis et al., 2019) that 

automatically orient the tag in the optimal orientation for detection. Technological improvements 



19 

 

have also led to increased read ranges of antenna devices (Arnaud et al., 2015; McQueen et al., 

2020). McQueen et al. (2021) used an innovative “mega-antenna” that resulted in recovery rates 

exceeding 65% which is a considerable improvement when compared to tracer searching in similar 

large gravel-bed rivers such as Chapuis et al. (2015). Low recovery in large gravel-bed rivers 

supports the need to develop and test alternative recovery strategies to improve the validity of 

tracking studies and our overall understanding of particle dynamics in large, complex river systems.   

Improved detection ranges of RFID technology has also been used advantageously to better 

understand the depth of exchange of the bed active layer during flood events, also known as the 

active layer depth. Primarily, scour chains developed by (Leopold et al., 1966) are used to monitor 

scour and fill depths providing knowledge on active layer depths (Haschenburger, 1999, Lapointe, 

2000; Montgomery et al., 1996), however harsh conditions and large flood events can remove scour 

chains or bury them making recovery and relocation difficult. Papanicolaou et al. (2014) adapted 

conventional scour chains with passive RFID tags to monitor bridge scour but this method requires 

a fixed antenna with continuous power, thus not transferable for monitoring the active layer in the 

natural environment and over a large area of river-bed. Recently, Brousse et al. (2018) developed 

a new active RFID scour chain device used in two braided mountain streams which was proven to 

be successful for the measurement of active-layer depths, although this device is limited to the use 

of large particles (b-axis >70mm).  To the author’s knowledge, no other studies have been done 

using buried RFID tracer methods to assess the controls on the active layer depth in large, complex, 

gravel bed rivers subject to large flood events, leading to a need for further work on the potential 

use of RFID tracers for scour and fill monitoring.  

2.7 Research Rationale 

Understanding the factors that drive the governing processes behind sediment transport in gravel-

bed rivers is important knowledge to better inform modelling and accurately predict bedload 

transport rates. Studying sediment transport at the individual grain-scale has provided useful insight 

over the past few decades, with grain size and flow being cited as primary controls of both particle 

mobility, pathlength distances, and scour and fill processes (Hassan and Bradley, 2017; Vasquez-

Tarrio, 2019). However, the majority of theories and empirical-based evidence from field and 

flume experiments have been derived from small, simple streams and rivers. 
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Importantly, large wandering rivers have complex channel morphology with bar development 

being a key erosional and depositional process that is governed by individual particle movement 

(Ham, 2005; Church and Rice, 2009). Therefore, it is reasonable to suggest that the role of channel 

morphology may be more significant, however this has not been well studied. Flume experiments 

have shown that even during high-magnitude flood events, channel morphology is the primary 

control on particle pathlengths in bar-dominated rivers (Pyrce and Ashmore, 2003a), although field 

evidence to support the theory is lacking. Coupling topographic change and tracer data has led to 

direct observations of individual particle displacements tied to bar development in a large 

wandering gravel bed river, with tracers seeded at bar heads depositing at the nearest downstream 

depositional area (i.e. gravel bar) (Chapuis et al. 2015; McQueen et al., 2021). Using burial data 

and topographic change, McQueen et al. (2021) also found compelling evidence to suggest the 

maximum grain exchange depth of twice the D90  may not hold true in larger rivers.  

Although knowledge on sediment dynamics in large complex rivers has improved, gaps still exist. 

Little is known on particles seeded at varying locations at the reach scale. Particle seeding locations 

in large wandering rivers can influence entrainment due to variable bed morphology, grain size, 

and flow within the reach and even within the dominant macro-bedform (riffle-pool-bar) 

(McDowell et al., 2021). This variation also creates transitional areas, known as pool-riffle 

transitions, or pool tailouts, an important morphologic feature as they are preferred salmon 

spawning habitat (Montgomery et al., 1999; Hanrahan, 2007; Moir and Pasternack, 2008). 

Studying sediment dynamics, particularly particle mobility and scour and fill processes, at pool 

tailouts can add insight to bedload transport rates as well as identify the risk of scour to salmon egg 

burial.  

Scour chains have been used to assess scour risks near salmon spawning locations in small streams 

(Montgomery et al., 1996; Rennie and Millar, 2000; Dusterhoff et al., 2017; Meredith et al., 2018) 

and rivers (May et al., 2009). Results from these studies suggest non-uniform lateral (cross-

sectional) distributions of scour, with the greatest extent near the channel centre, away from 

channel margins where spawning commonly occurs. However, the spatial extent of scour has rarely 

been assessed in large rivers that are subject to extreme winter flood events. Furthermore, the 

complex cross-sectional bed morphology may play a large role in scour distributions, although this 

currently lacks empirical evidence.  
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The objective of this study is to examine individual particle dispersion, with a focus on determining 

the key factors that influence particle mobility and scour depths in a large wandering gravel-bed 

river near salmon spawning locations. Specifically, this study aims to address the role of channel 

morphology, in conjunction with grain size and flow, on overall pathlength characteristics, particle 

mobility, and scour, using data from deployed surface and buried tracers. To meet these objectives, 

PIT-tagged tracer stones were deployed on the surface and subsurface at pool tail-out locations at 

three study reaches in the San Juan River, B.C for two winter flooding seasons (Oct-July). Data 

from a previous four-year tracer study on the San Juan River will also be used to compare sediment 

transport dynamics at differing seeding locations and characterize the influences of flow, grain size, 

and morphology over a longer temporal scale. 

Therefore, this thesis is focused on the following objectives related to bed particle motion in San 

Juan River as a case study in gravel-bed wandering channel types:  

1. Quantify surface and subsurface particle mobility and scour and fill processes in the 

vicinity of salmon spawning habitat (pool tailouts) 

2. Observe and identify pathlength characteristics of particles seeded at pool tailout 

locations in relation to reach-scale morphology and bar development 

3. Compare and contrast pathlength dispersion between surface and subsurface particles  

4. Evaluate the controls of flow, grain size, and morphology on particle dispersion 
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3 Study Area 

3.1 The San Juan River 

The San Juan River is a large wandering gravel-bed river located on southern Vancouver Island 

with a drainage area of  ~730km2 and an approximate bankfull discharge (Qbf) = 650m3 s-1. The 

river flows westward, ends in an estuary and drains to the Pacific Ocean at Port San Juan on the 

Juan de Fuca Strait (Figure 2). The rivers native name is Pacheedaht, translating to “Children of 

the Sea Foam” and is situated on Pacheedaht territory (Pacheedaht First Nations Treaty 

Information, 2020). The San Juan River mainstem is ~50km long, the upper river is constrained by 

a narrow valley that widens with the final 16km in a wide alluvial valley (Northwest Hydraulic 

Consultants Ltd., 1994).  

  

 

 

 

 

 

 

 

 

 

 Figure 2. Depiction of the San Juan watershed area.  
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3.1.1 Climate and Hydrology 

The San Juan watershed is actively logged with roughly 98% of the San Juan Watershed managed 

for forest harvest, with ~25% of the total watershed area cut between ~ 1950-1990s (NHC, 1994). 

The Watershed experiences a maritime or coastal climate, situated in the Coastal Western Hemlock 

Zone (CWH), the wettest biogeoclimatic zone, on average, in British Columbia (Moore et al., 

2010). Climate data is taken from the nearby Port Renfrew station (1016335), located at the mouth 

of the river (48°35’30’’N, 124°19’35’’W) (Table 1) (ECCC, 2021). Total annual precipitation is 

rainfall-dominated with only 1% as snowfall. Nearly the full extent of precipitation is rainfall at 

the valley bottom, but there is some snowfall at higher elevation in the interior watershed. Normal 

(1981-2010) annual precipitation is ~ 3505mm (Table 1) (ECCC, 2021). The west-facing coastal 

valley is subject to mid-latitude cyclonic storms that span from October until March. In 

consequence, this winter storm season experiences on average ~78% of total annual precipitation 

(Table 1); features of these rainstorm events include their prolonged duration and high amounts of 

total precipitation (NHC, 1994). In consequence, the majority of precipitation in the watershed 

occur during this time period, with November being the wettest month (579.7mm) and July the 

driest (50.5mm) (Table 1) (ECCC, 2021). Normal (1981-2010) annual average temperature is 

9.3°C, with the warmest daily temperature on average occurring in the month of  August (15.6°C) 

and the coldest in December (3.8°C) (Table 1) (ECCC, 2021).  

 

Table 1. Climate normals extracted from the Port Renfrew climate station data (1016335) (ECCC, 2021).  

 The Water Survey of Canada (WSC) has operated the ‘San Juan River  Port Renfrew’ hydrometric 

gauging station (08HA010) located ~2km downstream of Bar 15 near the mouth of the river at Port 

Renfrew since 1959 (4834’38’’N, 12419’02’’W) (Figure 3.1) (Water Survey of Canada, 2021). 

Water level data is collected by the station at five minute intervals, discharge data is then calculated 

 Jan Feb March April May June July Aug Sept Oct Nov Dec Annual 

Daily Average 

Temperature (°C) 
4.1 4.6 6.2 8.4 11.1 13.4 15.3 15.6 13.4 9.6 6.1 3.8 9.3 

Precipitation 

(mm) 
555.7 376.6 362.3 258.7 154.7 107.9 50.5 82.4 123.9 371.2 579.7 481 3504.6 
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by using a stage-discharge model (Water Survey of Canada, 2021). The San Juan River experiences 

highest flows, and thus most extreme bedload movement and morphological change, during the 

fall and winter flooding periods, attributable to the monthly trends in precipitation from storms. On 

average, highest flows occur in January with an average daily discharge of 99.7m3s-1 and drops to 

an average of 4.5m3s-1 in August which experiences the lowest flow levels for the historical record 

(1960-2020) (Figure 3; Figure 4).   

During the 2019-2020 deployment year, the largest flood ever recorded on the San Juan occurred 

from January 31st - February 1st 2020 with maximum peak discharge (Qp) reaching ~1360m3 s-1 

and a return period of ~100 years. Maximum peak discharge (Qp) above 1000m3 s-1 has only been 

exceeded nine times since 1959, prior to this flood (Figure 3; Figure 4). This flood was 

supplemented by two other events (early and mid-January) during the period of study that reached 

discharge levels near bankfull (Figure 3). Overall, seasonal flows for the study period align with 

annual historical flow trends, with January having an abnormal mean discharge of 170.8m3 s-1 

influenced by the three flood events while August had a typical mean discharge of 4.5m3 s-1. 
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Figure 3. A) Flood frequency plot. B) San Juan River hydrograph for the two year 

study period. 
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3.1.2 Study Reach Characteristics 

The study reach is in the mainstem of the San Juan River which is characterized as an alluvial 

channel with both the bed and banks composed of erodible material deposited by the river with the 

exception of a few locations that have exposed bedrock outcrops. The mainstem is classified as an 

active wandering channel displaying characteristics of a low sinuosity single thread channel with 

occasional mid-channel bars (Church, 1983). There are frequent, regularly spaced gravel point bars, 

which are growing laterally in the downstream direction and are associated with erosion and retreat 

of the outer bank in bends (Figure 5) (McQueen, 2019).  This is consistent with known lateral 

instability and overall channel widening since 1995, linked to an increased sediment supply from 

a surge in landslide occurrences due to logging activity in the watershed in the latter half of the 

twentieth century (NHC Ltd, 1994). 

 

Figure 4. Discharge ‘heat’ map. 

Discharge ‘heat’ map of historical mean daily discharge levels for the San Juan River 

(1960-2020).Gaps represent missing data due to gauging station malfunction (Water 

Survey of Canada, 2021). Water day ‘0’ represents October 1st.  



27 

 

 

 

 

 

 

 

 

 

 

 Consequently, stocks of all five salmonid species in the river declined, including Pink salmon 

(Oncorhynchus gorbuscha), Chinook Salmon (Oncorhynchus tshawytscha), Coho salmon 

(Oncorhynchus kisutch), Chum salmon (Oncorhynchus keta), and Sockeye salmon (Oncorhynchus 

nerka) (Burt and Palfrey, 2011). In response to these findings, the San Juan Stewardship 

Roundtable (composed of stakeholders and rightsholders in the watershed including provincial and 

federal government, First Nations, and industry) began restoration efforts in the watershed to re-

establish past river conditions and revitalize salmonid habitat, which includes recent vegetation 

plantings of willows from 2015-2017 (NHC Ltd, 1994). 

At present, only Chinook, Coho, and Chum occur as major runs in the San Juan watershed and 

therefore are the focus of restoration work on the San Juan River (Burt and Palfrey, 2011). With 

annual salmon escapement estimates as high as 7,000, 3,500, and 6,000 in the 1950s, for Coho, 

Chinook, and Chum, respectively (Burt and Palfrey, 2011). The most recent escapement estimates 

(2010) are 1,000, and ~100 for Coho and Chum, respectively, with no observations of Chinook 

escapements (Burt and Palfrey, 2011). Salmon spawning occurs at baseflows in the fall, but vary 

between species (Table 2). Unfortunately, egg burial depths for spawning salmonid species in the 

Figure 5. Erosion of the left bank at the Bar 6 study reach. 

Erosion of the left bank (looking downstream) at the Bar 6 study 

reach, near the tracer deployment location (July 2020). 
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San Juan River is unknown. Although, they can assumed to be similar to egg burial depths of 

Pacific salmonid species in other rivers, ranging from 10cm – 50cm (Devries, 1997).  

 

Table 2. Spawning Times for Chinook, Coho, and Chum salmon in the San Juan Watershed (Burt and 

Palfrey, 2011). 

 

The active channel width (portion of the channel actively altered by floods) varies between 50-

150m, with a reach-averaged slope of 0.0011 in the mainstem with local variation (Figure 6). The 

mainstem and study reach is composed of riffle-pool sequences associated with large gravel point 

bars (Figure 7).  Bars are a major storage site of sediment and are composed of gravel pebbles, 

cobble, and sand. Pools are topographically low and slow-moving with riffles at higher elevation 

and fast-flowing water; the transitions between pools and riffles are known as pool-tailouts and are 

a common location of salmonid spawning habitat (Figure 7; Figure 8) (Hogan and Luzi, 2010).  

 

 

 

 

 

 

 

Common Name Scientific Name Peak Spawning Time 

Chinook Salmon Oncorhynchus tshawytscha Late September - Early October 

Coho Salmon Oncorhynchus kisutch Late August – Late September 

Chum Salmon Oncorhynchus keta Late August – Late October 

Figure 6. Elevation profile of the mainstem of the San Juan River. 

Elevation data collected and provided by Tom Millard (B.C. Ministry). 
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The three gravel bar study reaches are located in the lower alluvial reach (Bar 6, Bar 7, Bar 15) 

(Figure 7). There is a pre-existing numbering system for gravel bars in the lower San Juan that 

follows a downstream sequence, with Bar 6 being farthest upstream and Bar 15 ~3km downstream 

of Bar 6 and 7 (Figure 7). The study reach includes three individual riffle-pool-bar sequences 

(Figure 7). These three gravel bar sites were chosen as they are of particular interest to the San Juan 

River Roundtable, being identified as known salmonid spawning locations by local Pacheedaht 

biologists with previous restoration work being done on the bars as well through the planting of 

willows. They are also the location of previous particle tracking work, which provides additional 

background information on the river (McQueen, 2019). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Bar Apex 

Figure 7. Map of the three San Juan River Study Reaches (Bar 6, 7, and 15). 

Depiction of macro-bedform morphological units: riffle, pool tailouts, pool, and bar. Pool tail-outs 

(location of seeding site) occur at the transition of pool to riffle. The bar apex, which is defined as the 

bend, or most laterally-extended section of the gravel bar, is also labelled for Bar 6 and Bar 7.  

Apex 
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The gravel point bars in the three study reaches are representative of the typical length, width, 

overall appearance, and grain size distributions of gravel bars found in the mainstem alluvial reach. 

Characteristics of the three gravel bars involved in this study are presented in Table 4.  

Measurements of individual bars were extracted from 2015 digital elevation models (DEMs). 

Measurements of bar length were taken from the head to the tail of each bar, following the 

centreline of the bar. To extract the slope, using the polygon tool in ArcGIS, an average elevation 

from DEM cells was extracted at the head of the gravel bar and differenced from an average 

elevation at the tail of the bar and then divided by the length of the bar between them. 

 

Table 3. Characteristics of the three gravel bar study reaches. 

Gravel Bar Length (m) Average Width 

(m) 

Slope 

 

D50 (mm) D84 (mm) D90 (mm) 

Bar 6 550 100 0.0038 50 84 95 

Bar 7 540 55 0.0031 43 87 103 

Bar 15 585 45 0.0009 28 67 88 

 

 

 

Figure 8. Salmon spawning nests (redds) at the Bar 15 study reach.  

Salmon spawning areas at the Bar 15 study reach (September 2021).  

Redds can be seen in the lower left of the image (areas of clean gravels). 
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4 Methods 

Two primary datasets were collected for use in this study: particle tracking data to observe particle 

dispersion and scour, and aerial surveys to capture grain size and topography. Individual particle 

tracking data using RFID technology was collected for two seasons (2019-20, 2020-21) spanning 

the winter flooding period (Oct-July). Repeat annual aerial surveys were collected by way of 

uncrewed aerial vehicle (UAV) and aerial LIDAR technology for the two tracer deployment 

seasons, using the imagery to assess morphologic changes in the mainstem channel at the study 

locations. 

4.1 Individual Bed Particle Tracking  

Individual particles were tracked through the use of RFID low-frequency PIT (Passive Integrated 

Transponder) tags, commonly used in fluvial environments for bedload tracking (Arnaud et al., 

2015; Cassel et al., 2016; Chapuis et al., 2014; Lamarre et al., 2005). Tags were purchased from 

Oregon RFID (Oregon RFID, 2021). Once activated, tags transmit a unique identification code that 

is communicated to the reader via radio waves that can be read at a short distance that depends on 

tag size and antenna design. Tracer stones were fabricated by drilling and inserting the PIT tags 

into natural grains collected from the field in 2015, then sealed with epoxy resin (Figure 9). To 

optimize tracking and recovery, tracers were also painted and numbered with an ID distinct from 

the unique ID of the PIT tag. An inventory database was created, with records of both RFID and 

written ID numbers for all tracer stones prior to deployment. A detailed description of tracer 

fabrication can be found in McQueen (2019).  

 

 

 

 

 

 

Figure 9. Example of a prepared 64-90 mm tracer stone, with 32 mm PIT 

tag (right). 
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4.1.1 Tracer Tracking and Deployment 

Tracers were deployed in October 2019 and 2020 at three gravel bar study reaches (Bar 6, Bar 7, 

Bar 15), prior to winter high flows when bed mobilization and morphologic change to the channel 

are expected to occur (Table 5). Over two years, 611 tracers were deployed on the riverbed surface 

as well as 216 tracers deployed that were buried in the subsurface (Table 5). The number of tracers 

chosen for deployment is based on previous recovery results for tracer work in the San Juan River 

(McQueen, 2019). Furthermore, buried tracers are limited in the number deployed (N = 36), 

because of feasibility issues. It takes ~30 min of digging to bury each tracer, with subsequent 

recovery digging taking even longer due to the unknown recovered buried location.  

                       Table 4. Tracer deployment dates for the two deployment years. 

Location Deployment Date Deployment Type # of Tracers seeded 

Bar 6 

October 28th, 2019 Surface 106 

Buried 36 

October 20th, 2020 Surface 100 

Buried 36 

Bar 7 

October 28th-29th, 2019 Surface 100 

Buried 36 

October 20th, 2020 Surface 100 

Buried 36 

Bar 15 

October 29th, 2019 

Surface 98 

Buried 36 

Coarse Rocks 7 

October 22nd, 2020 Surface 100 

Buried 36 

 

Grain size distributions for surface tracers aimed to be representative of the natural riverbed and 

were based on Wolman counts (Wolman, 1954) conducted for the three seeding sites in 2015 

(Figure 10).  Additionally a set of seven coarse tracers were deployed at bar 15 to analyze coarse 

particle mobility and their role in controlling channel dynamics (MacKenzie et al., 2018) and bed 

scour depth (Dusterhoff et al., 2017) using binned groups of 91-128mm and 128-180mm. Particles 

used for buried seeding were selected from the same binned groups that were used for surface 

deployment: 22-32mm, 32-45mm, 45-64mm, and 64-90mm. PIT tags are too large to be inserted 
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in particles less than 22mm,  leading to an under-representation of fine grained material, which is 

common in RFID studies (Chapuis et al., 2015; Lamarre et al., 2005; Vazquez-Tarrio et al., 2019).  

 

 

 

 

 

 

 

 

Surface tracers were deployed at pool-riffle transitions, also known as pool tail-outs, to assess 

particle mobility and pathlengths at three gravel bar study reaches. The tracers (~100 per site) were 

seeded in clusters grouped by grain size, spanning the entire width of the wetted-channel along 

lines perpendicular to the direction of flow at the three sites of deployment (Figure 11). Lines were 

spaced at ~1m intervals to reduce the risk of RFID signal collision (Chapuis et al., 2014). Due to 

channel changes, the deployment location at the Bar 6 reach was moved 10m downstream for the 

Figure 10. Grain size distribution of the bed material, truncated gravel material  (>22mm), 

tracers for A) Bar 6, B) Bar 7, and C) Bar 15.  
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2020-21 year and the Bar 7 deployment location moved ~20m upstream for the 2020-21 

deployment year. 

In addition to surface tracer deployment, tracers were also buried to assess scour. Buried tracers 

(36 per study reach) were deployed in the subsurface at the gravel bar margins in parallel lines;  

tracers could not be buried in the wetted channel, because wading depths even at low flows are too 

high, thus the bar margin was the most proximal location to assess scour near pool tail-outs (Figure 

11). Buried tracers were deployed perpendicular to the surface launch lines and parallel to the 

channel flow direction and spaced ~1m apart (Figure 11).  An equal number of tracers (n = 12) 

were buried at either 10, 20, or 30cm depths with the same proportion of grain size classes buried 

at each depth. Chosen burial depths are representative of average burial depths for all five Pacific 

salmonid species (ranging from 10cm – 50cm). This study design of unfixed vertical burial of RFID 

tracers can provide further knowledge on the relationship of active layer depth and subsequent 

pathlength travel distance. Only one previous study conducted by Brousse et al. (2018) has used 

stationary active RFID columns to assess active layer depths, to the author’s knowledge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

4.1.2 Tracer Stone Recovery 

Recovery of tracers was done after the winter flood season, beginning in July during the low-flow 

season to maximize searchable areas (pools). Areas that were too deep to wade even at low flow 

(deepest portions of pools) were searched using a small boat. Two antennas were used to find 

tracers in the recovery process; a smaller hand-held antenna used to locate immobile and buried 

tracers as well as a large more complex antenna system used to search large areas, both purchased 

Figure 11. Depiction of tracer deployment locations and study design for A) Bar 6 and 

7; B) Bar 15. Insets show close up of deployed transects. Flow right to left. 
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from Biomark® (Biomark, 2019) (Figure 12). The antennae detect the RFID tags and 

simultaneously buzz a reader (digital screen) with the associated unique identification number of 

the RFID tag. The smaller antenna has a read range of ~45-50cm for 32mm PIT tags, while the 

larger antenna has a read range of up to 1.75m, however read range varies depending on tag 

orientation (Arnaud et al., 2015; Chapuis et al., 2014). The maximum extent searched using the 

antenna systems differed for each bar, but generally the first two bars downstream of the seeding 

site were searched. Tracer recovery was labor-intensive and took approximately three weeks with 

a team of three to four people. 

 

 

 

 

 

 

 

 

The searching process involved an initial sweep of the launch lines with the hand-held antenna 

followed by the use of the large antenna frame system to search large areas of both the dry exposed 

bars and wetted channel, searching in a downstream direction. The search method involved 50m 

path lines, parallel to the channel that were then marked with flagging tape. Search lines had  ~1.5m 

overlap to ensure all areas were searched thoroughly. Once a tag was identified by the reader, an 

accurate location of the tracer was determined using triangulation methods; the user would walk 

forward, backward, and at varying angles, to determine the detection limits of the tag. The verified 

location was then marked with a small yellow peg and labelled with the unique RFID number. 

Once a full section was searched, the hand-held antenna was then used to pinpoint and refine the 

location (if possible) of the detected tracers. In the deeper water the backpack component of the 

Figure 12. Large antenna cord system with backpack fastened 

to PVC pipe frame using ropes, pulleys, and cams. 
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antenna-cord system was stationed in the middle of the boat, with the antenna-pipe frame draped 

off the back of the boat. Once the reader identified a tracer, the boat was stalled and a GPS 

averaged-waypoint was recorded.  

Once recovered, tracer positions were recorded as a GPS averaged waypoint using a handheld 

Garmin GPS with typical error in the range of < 1m but up to 3m on overcast days. Average 

pathlengths of mobile tracers were ~150-200m thus resulting in less than 5% error (initial and final 

GPS points) (Garmin, 2019). To account for instrument error the threshold to deem a tracer mobile 

was set to 10m. Once located, the burial depth, grain size, RFID number, written number and 

morphology were recorded in a written notebook. Burial depth for both buried and surface tracers 

recovered was measured using a shovel handle to represent bed surface levels, and a hand-held 

measuring tape to measure from the bed surface to the top of the tracer stone, to the nearest 5mm 

(Figure 13). Not all tracers could be physically recovered as some were deposited in the wetted 

channel or buried too deeply. Tracers that were buried too deep for detection using the hand-held 

wand antenna were assumed to be deeper than 30cm, which is a conservative estimate of the 

maximum detection range of the wand antenna (~50cm). 

 

 

 

 

 

 

 

 

 

 

Figure 13. Measuring tracer burial depth from top of the bed surface 

(shovel handle) to the top of the tracer stone. 
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4.2 Pathlength Analysis 

GPS waypoints of initial and final tracer positions were uploaded to ArcGIS and stored in a 

geodatabase as a point feature class. Field notes of tracer characteristics (morphology, burial depth, 

grain size) were imported as attribute data to the point feature class of tracer recovery locations. 

Orthoimages of the gravel bars collected from aerial surveys during the low flow period of July 

2020 were used for mapping and subsequent pathlength analysis. Pathlengths of mobile tracers 

(>10m) were measured by delineating a longitudinal profile along the channel centreline (thalweg) 

and projecting tracer positions along the profile which is the common method of pathlength 

analysis seen in the literature (Arnaud et al., 2017; Liebault et al., 2012; MacVicar et al., 2015) as 

well as the method used for past tracer data on the San Juan (McQueen et al., 2021).  

4.3 Hydrological Analysis 

To understand the influence of flow characteristics on tracer particle movements, discharge data 

from the WSC hydrometric station was used to calculate multiple metrics describing hydrological 

conditions for the 2019 and 2020 study period as well as to compare with three years of previous 

tracer data on the San Juan (2015-2018)  (McQueen, 2019). For this study, bankfull discharge (Qbf) 

of 650m3 s-1, with a recurrence interval of 1.5 years  (Q1.5), is taken to represent the threshold of 

mobilizing flow events at which sediment mobility is initiated (Qc). In other studies, the critical 

discharge (Qc) has been assessed more precisely, especially in smaller rivers, based on tracking 

mobility for individual events for which discharge and mobility data are available  (Haschenburger, 

2013; Hassan et al., 1992; Pfeiffer et al., 2017). Variability of grain size and multiple mobilizing 

events per season between tracer development and recovery, precludes this approach in the San 

Juan River. Alternative discharge thresholds were investigated and saw minor changes to the 

number of potential mobilizing events in a season (McQueen, 2019).  

Hassan et al. (1992) helped elucidate the idea that since the majority of mobilization occurs during 

the largest events, the largest measured discharge during these events, termed the maximum peak 

discharge (Qp), is thereby a dominant control on sediment transport. However, sediment 

mobilization occurs for all flows above bankfull and thus, for a hydrograph that has multiple 

mobilizing events, a metric to incorporate both the magnitude and duration of flows above the 

threshold discharge is needed to investigate the effect of flow magnitude on tracer dispersal. 

Previous studies on tracer dispersal and channel morphodynamics have used the total excess flow 
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energy (ΩT) (Haschenburger, 2013) as a metric that captures both magnitude and duration of flows 

for multiple mobilizing events (Wheaton et al., 2013; Papangelakis & Hassan, 2016). To use this 

metric, knowledge of the critical discharge (Qc) is needed, therefore a modified ΩT was used in 

analysis for each flow season whereby the total flow above estimated bankfull, assumed to be 

similar to Qc, was integrated over the period between tracer deployment (td) and recovery (tr): 

 

ΩT = 𝜌gS∫ (𝑄 − 𝑄𝑏𝑓)𝑑𝑡
𝑡𝑟

𝑡𝑑
 

where 𝜌 = the density of water (1,000 kg/m3), g = the acceleration due to gravity (9.81m/s2), and S 

= the gravel bar reach slope. Discharge data from the WSC gauging station is collected in 5 minute 

intervals and therefore was integrated at 5 min intervals. The 𝛺T, was also used to calculate excess 

flow energy for the peak mobilizing event (𝛺P) (flood event with the maximum peak discharge) 

for each season, as well as maximum peak discharge (Qp). This allows for further analysis of 

differences in annual tracer movement that might be explained by differences in annual hydrologic 

conditions such as the magnitude or duration of flows. Differences are further explored in relation 

to morphologic control, at the scale of the dominant channel morphology.  

4.4 Channel Change (Aerial Surveying) Analysis 

To observe annual channel changes during the tracer deployment period, repeat aerial surveys were 

conducted to collect aerial imagery at the three study reaches. To capture topographic changes for 

the first deployment year, aerial surveys were collected by uncrewed aerial vehicle (UAV), or 

drone,  in July 2020, as well as the collection of supporting topographic data using total station and 

real-time kinematic (RTK) surveying at the three study reaches. For the following 2020-21 

deployment year, an aerial lidar survey was made available by the B.C. Ministry (FLNRORD). 

The lidar survey was conducted in March 2021 by Terra Remote Sensing Inc. To clarify, only aerial 

imagery extracted from the lidar data was used in the analysis for this study, as well as aerial 

imagery from a previous lidar survey in the summer of 2019, to plot tracer recovery locations. This 

section will provide an overview of the methods used for the 2020 drone survey collection and 

analysis. 
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4.4.1 Data Collection 

Imagery was acquired over three days during the week of July 13th 2020, using a DJI Phantom 4 

Advanced uncrewed aerial vehicle (UAV). The weather was sunny, with moderate to high winds. 

Approximately ~400 images, which varied slightly between reaches, were captured from an 

altitude of 60m with an 80% overlap between consecutive photos. Camera specifications for the 

Phantom 4 Advanced camera can be found in Appendix A. Accuracy of the Phantom 4 Advanced’s 

image georeferencing was increased by RTK surveying of three reference ground control points 

(GCP’s) collected by Griffin Fisk (B.C Ministry employee). At each study reach, 17 ground control 

points (GCPs) were surveyed with a total station  and accurately georeferenced by triangulating 

the position of each GCP with the position of the three reference RTK GCPs. The coordinate 

system used was NAD 83(CSRS)/UTM Zone 10N. GCPs were evenly distributed across the gravel 

bar and at a variety of elevations.  

4.4.2 Data Processing  

The collected UAV imagery was subsequently analyzed using AgiSoft Metashape software 

(AgiSoft, 2021). Prior to processing, the image quality function was used to ensure all images had 

a quality value above 0.5 (the recommended value by AgiSoft). All imagery had a quality above 

0.80, therefore no images had to be excluded. An initial sparse point cloud was generated using the 

‘Align Photos’ function with accuracy set to ‘Highest’ and pair pre-selection set to generic; no 

point or tie limit was used. The gradual selection tool was used with the ‘Reconstruct Uncertainty’ 

criterion set to 10 and ‘Reprojection Error’ criterion set to 0.5 to identify and remove tie points 

with a high degree of uncertainty. The ‘Optimization tool’ was then used to optimize photo 

alignment and camera locations.  

Georeferencing was done by going through each image and locating individual GCPs. Once 

located, a GCP marker was created and placed at the centre of each GCP in all images, this was 

done by using the ‘Filter Photos by Marker’ tool and repeated for all 17 GCPs. The GCP markers 

were then associated with their real-world coordinates that were collected during the total station 

surveying.  GCP coordinates and precision (error) for the three study reaches can be found in 

Appendix A. Following georeferencing, a dense point cloud was built with quality set to ‘Ultra-

high’ and ‘Aggressive’ depth filtering. Finally, a digital elevation model (DEM) and orthomosaic 

(orthoimage) was built and exported as a .tiff file. 
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5 Results 

5.1 Introduction 

Firstly, section 5.2 discusses results of channel changes, as well as changes to the gravel bar at the 

three study sites (Bar 6, 7, and 15) that occurred between the 2019-2021 study period. The 

following section 5.3 describes bar size sorting characteristics at each study site from Wolman 

counts conducted in 2020. Section 5.4 and 5.5 provide surface and buried tracer results, 

respectively.   

5.2 Changes in Reach-scale Channel Characteristics 

Changes to the channel boundaries and gravel bars at the three study reaches (Bar 6, 7, 15) from 

2019-2021 were broadly observed, to better understand particle dispersion and the link to overall 

channel change and bar development. Aerial imagery from July 2019 and March 2021 collected 

LIDAR data, was used to delineate channel boundaries, and were plotted using the ArcGIS polygon 

tool. The bar 6 channel boundaries could not be delineated from the 2021 March LIDAR because 

of the limited extent, specifically the left bank boundary of Bar 6 that wasn’t captured in the 

imagery. Aerial images of Bar 6 and Bar 15 from July 2020 UAV surveys were also used to 

delineate channel boundaries, however imagery for Bar 7 could not be used due to the limited 

extent of the image. Channel boundaries were then plotted over the 2021 imagery for each study 

reach. The gravel bars at the three study reaches could not be properly delineated for the 2020-21 

winter flood period as the aerial imagery was collected in March at higher flows, when the gravel 

bars were more inundated.  

Channel and gravel bar boundaries were difficult to delineate, particularly where riparian 

vegetation overhangs the river on the left bank and areas where vegetation growth on the gravel 

bars transitions into bank vegetation. Furthermore, an accurate estimate of the error from manual 

delineation of channel boundaries cannot be made However, areas of most significant change 

(greatest bank retreat) are the focus of this analysis and were precisely delineated by referencing 

DEM’s which helped reveal the cut off between the active channel and floodplain areas. Channel 

boundary areas that were more ambiguous will be further discussed with specific reference to each 

gravel bar study reach in the following section 5.2.1.  
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5.2.1 Channel Change Boundaries 

Bar 6 

 

 

 

 

 

 

 

 

 

 

The right bank boundary on the inside of Bar 6 (attached to the gravel bar) could not be properly 

delineated from the 2020 orthoimagery and instead represents the extent of the 2020 orthoimagery, 

not the channel boundary (Figure 14). However, previous channel boundary assessments by the 

BC Ministry (FLNRORD) indicate that the right bank channel boundary has been relatively stable 

since 2011 (McQueen, 2019). The left bank channel boundary at Bar 6 shows significant bank 

retreat occurring during the 2019-20 winter flood period, with the most significant change at the 

bend of Bar 6X, opposite the Bar 6 tail (Figure 14). The channel is locally constricted by exposed 

bedrock on the right bank at the Bar 6 tail, which can explain the significant bank retreat occurring 

at the opposite bend (left bank bend at the Bar 6X head) (Figure 14). Furthermore, the annual left 

bank retreat (erosion to the left bank of the channel) that occurred during the 2019-20 period at Bar 

6 is significantly greater than the observed annual left bank retreat that has occurred since 1995 

(McQueen, 2019). High rates of channel change can be attributed to the extreme flood event during 

that year with similar observations seen in the literature (Lisenby et al., 2016; Gervasi et al., 2021). 

Figure 14. Annual change to channel boundaries (2019-2020) at the Bar 6 

study reach. Flow right to left. 

Bar 6 
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The left bank of Bar 6 has been retreating significantly since 1995 (first year of channel boundary 

assessment), and has continued despite the right bank remaining relatively stable since 2011 

(McQueen, 2019). This suggests that in-channel deposition related to the lateral development of 

Bar 6 has forced the channel towards the left bank causing erosion. Lateral development of Bar 6 

will be discussed further in section 5.2.2. 

Bar 7 

 

 

 

 

 

 

 

Bar 7 channel boundaries were delineated from 2019 and 2021 aerial imagery and are plotted on 

the 2021 aerial imagery (Figure 15). The right bank channel boundary at Bar 7 has some error due 

to the difficulty distinguishing the cut off between bar vegetation and bank vegetation, however 

there appears to be minimal channel changes to the right bank, which is consistent with channel 

boundary changes since 1995 (Figure 15) (McQueen, 2019). Similar to Bar 6 processes, almost all 

bank retreat is occurring at the left bank opposite of Bar 7, although significantly less retreat relative 

to the left bank opposite Bar 6 (Figure 15). The greatest area of bank retreat that occurred between 

2019 - 2021 at Bar 7 appears to be opposite the bar apex and near the bend at the Bar 7 tail (Figure 

15). Furthermore, channel widening at Bar 7 has been attributed to the retreat of the left bank since 

Figure 15. Channel boundary changes (2019-2021) at the Bar 7 study reach. Flow right to left. 

Bar 7 



44 

 

1995, with evidence that the rate of bank retreat opposite of Bar 7 has declined in recent years 

(McQueen, 2019).   

 

Bar 15  

 

 

 

 

 

 

 

 

Bar 15 channel boundaries were delineated for all three years using 2019 and 2021 aerial imagery 

as well as 2020 aerial imagery from UAV surveying (Figure 16). The right bank channel boundary 

at Bar 15 also has some error due to the difficulty distinguishing the cut off between bar vegetation 

and bank vegetation, however, similar to Bar 7 there appears to be negligible change to the right 

bank (Figure 16).  Bar 15 has experienced significantly less change to both the left and right bank 

channel boundaries since 1995 compared to the other two study reaches, which is consistent with 

channel boundary changes for this study period between 2019 and 2021 (Figure 16) (McQueen, 

2019). However, for the 2019-2021 period, some change has occurred, with the most evident bank 

retreat near bends, specifically at the left bank opposite the tail of Bar 15 as well as to the right 

bank at the head of Bar 15 which is typical for gravel-bed meandering rivers and indicates gradual 

down valley migration of bends (Clayton, 2008) (Figure 16). Overall bank retreat at the reach-scale 

appears to occur at a much slower rate at the Bar 15 seeding site, relative to both Bar 7 and Bar 6.  

Figure 16. Channel boundary changes (2019-2021) at the Bar 15 study reach. Flow right to left. 
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5.2.2 Gravel Bar Changes 

Bar 6 

 

 

 

 

 

 

 

 

 

Delineation of the upper right boundary of Bar 6 involves some error because of  dense vegetation 

growth, however, the majority of bar growth is occurring laterally or longitudinally, with little to 

no change to the right bank vegetated area (Figure 17). There appears to be some erosion of the 

gravel bar at the head of Bar 6, and minor deposition and growth at the bar tail, as well as 

considerable lateral expansion near the apex (Figure 17). Bar 6 displays a well-known pattern of 

bar evolution with rapid lateral expansion and a high rate of erosion of the opposite (left) bank 

(Rice et al., 2009). The downstream migration and lateral expansion occurring between 2019 and 

2020 at Bar 6 are in agreement with previous findings of lateral growth at the bar apex observed 

from the previous tracer study (2015-2018) (McQueen, 2019). Furthermore, from 2015-2018, 

McQueen (2019) also identified a ~1m thick bedload sheet that migrated from the bar head, 

accreted laterally and stopped near the bar apex. The exposed bedrock bend at the tail of Bar 6 

Figure 17. Changes to the gravel bar (2019-2020) at the Bar 6 study reach. Flow right to left. 
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limits the longitudinal growth of the bar, and is a possible explanation for why the bar is primarily 

growing laterally at such a high rate (Figure 17).  

Bar 6X and 7 

Bar 6X saw considerable changes from the 2019-20 year, which is not surprising due to its location, 

with high rates of erosion because of channel narrowing at the bend (Figure 18). During the 2019-

20 flooding period,  a chute cut-off was formed and subsequent channel avulsion at the bend of Bar 

6X, which lead to significant changes to the gravel bar (Figure 18). The gravel bar became divided, 

with a newly formed channel island and a subsequently reduced area to bar 6X (Figure 18). The 

change in flow direction most likely caused subsequent erosion at the apex of Bar 6X, with 

longitudinal expansion at the Bar 7 tail (Figure 18). Although no delineation of the gravel bar was 

done using the 2021 imagery because of higher flows and greater inundation, there was apparent 

longitudinal and lateral growth at the head of Bar 6X for the 2020-21 year, with exposed gravel 

expanding farther than the 2020 boundary of the bar (Figure 18).  

The right bank boundary of Bar 7 could not be accurately delineated because of the difficulty 

distinguishing between bar and bank vegetation, however it is assumed little to no change occurred 

at this boundary based on previous years (McQueen, 2019) (Figure 18). The most significant 

change to Bar 7 was erosion at the bar head which may be attributed to channel avulsion occurring 

at the bend and subsequent changes in flow direction (Figure 18). Previous observations by 

Figure 18. Changes to gravel bar 6X and 7 (2019-20) at the Bar 7 study reach. Flow right to left. 

Bar 7 
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McQueen (2019)  of erosion of the left bank opposite Bar 7, as well as high tracer deposition  at 

the apex of Bar 7, suggest long-term lateral growth of the bar. Erosion to the left bank was focused 

closer to the Bar 7 tail, with identifiable lateral growth of the bar from 2019-20 adjacent to this 

area of erosion (Figure 18).  

Bar 15 

 

 

 

 

 

 

 

 

 

Similar to results of minimal channel boundary change to the Bar 15 reach between 2019-2021, 

there was little change to the gravel bar itself (Figure 19). There appears to be some change, with 

considerable longitudinal and lateral erosion at the bar head which most likely can be attributed to 

the 100-year flood occurring in January 2020 (Figure 19). Results from the previous tracer study 

on the San Juan also found that Bar 15 is primarily being built by vertical accretion with limited 

lateral growth of the bar, which aligns with the minimal change observed from 2019-2020 

(McQueen, 2019). Overall, Bar 15 appears to have undergone less extreme morphologic change, 

with minimal erosion to the left bank and limited lateral bar growth relative to the other two seeding 

sites.  

Figure 19. Changes to the gravel bar (2019-2020) at the Bar 15 study reach. Flow right to left. 



48 

 

5.3 Gravel Bar Grain Size Characteristics 

Surface Wolman counts (Wolman, 1954) were conducted in July of 2020 at each of the three study 

sites at three distinct locations on the gravel bar: head, apex, and tail. Results from the Wolman 

counts provide insight into potential patterns of particle size sorting on the three gravel bars of 

interest (Figure 20). At all three study sites, the grain size distribution at the bar head was coarsest 

(Figure 20). At Bar 6, the apex and tail saw finer grain distributions that were almost identical 

(Figure 20). However, for both Bar 7 and Bar 15, the grain size distribution at the bar tail was 

considerably finer than both the apex and head of the bars (Figure 20). Differences in the 

distribution between gravel bars can also be seen, with Bar 15 having an overall finer grain size 

distribution at the head, apex, and tail relative to the distribution at Bar 6 and 7 (Figure 20). The 

results from the Wolman counts provide evidence of grain size sorting patterns on the gravel bars, 

more specifically downstream fining of grain size from the bar head to the bar tail. This is common 

in wandering gravel bed rivers with well-developed bar morphology because of the trajectory of 

secondary flows that have the capacity to carry only finer particles along the inward apex of the 

bar (Clayton, 2010).  

 

 

 

 

 

 

 

 

 

 
Figure 20. Wolman count results (July 2020) of the grain size distribution at Bar 6 (top left), Bar 7 

(top right) and Bar 15 (bottom). 
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5.4 Surface Tracer Results 

5.4.1 Introduction 

Approximately 100 surface tracers were deployed at each of the three study sites (Bar 6, 7, 15) for 

the 2019-20 and 2020-21 deployment years. Tracers were deployed across the surface of the wetted 

channel at pool tail-out locations. Tracer particles were binned into four grain size classes 

representative of the grain-size distribution on the natural bed surface. Surface tracers were 

deployed in October and recovery took place the following July at low flow. Surface tracer results 

for the 2019-20 and 2020-21 deployment year include analyses with three years of previous tracer 

results on the San Juan River (McQueen, 2019). An overview of results for surface tracers is 

presented in section 5.4.2. The results of particle mobility and pathlength distances of recovered 

surface tracers as well as the influence of grain size and flow on mobility and pathlength distance 

can be found in sections 5.4.3 - 5.4.5. Pathlength and exceedance probability distributions were 

analyzed to better understand particle dispersion and results can be found in section 5.4.6. Section 

5.4.7 describes tracer deposition by morphological unit and lastly, section 5.4.8 examines burial 

depths of recovered mobile tracers.  

5.4.1.1 Hydrological Analysis 

An analysis of the hydrological events that occurred during the winter flooding season for the past 

two deployment seasons along with the previous three tracer deployment seasons was conducted 

(McQueen, 2019). For the 2019-20 deployment period, there was one mobilizing event above Qbf, 

with Qp = 1360m3s-1 which is estimated to be 2.1Qbf , and a recurrence interval of at least 100 years. 

The 2020-21 deployment season saw the least amount of hydrological activity, with only one event 

above Qbf with a peak discharge of 735 m3s-1. The small flood event (1.1Qbf) was of short duration, 

with excess flows totaling 8 hours above bankfull (Table 5). Peak discharge during the previous 

deployment seasons (2016-17 to 2018-19) was similar to the two most recent deployments, ranging 

from 749 m3s-1 –  1,003 m3s-1  (Table 5).  
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Table 5. Results from the hydrological analysis for all (2016 – 2021) deployment years. 

 

5.4.2 Overview of Surface Tracer Results 

An overview of surface tracer results can be found in Table 6. Recovery of surface tracers were 

similar between deployment years, ranging from 60.3 - 83% for the 2019-20 deployment and from 

60 – 76% for the 2020-21 year (Table 6). For both tracer deployment years, Bar 6 surface tracers 

had the lowest recovery. A possible explanation for the low recovery is the deep pool located 

~150m downstream of the seeding site, where tracers may have been deposited at water depths 

beyond detection. The smaller two size classes of surface tracers deployed (22-32mm and 32-

45mm) had lower recovery rates, with an average recovery of ~65% compared to ~77% recovery 

for the largest size classes (45-64mm and 64-90mm). This was especially the case for Bar 6, where 

the 22-32mm size surface tracers had a recovery rate of just 50% for both years, and the 32-45mm 

had a slightly higher recovery of 60% and 64% for the respective two years. Differences in recovery 

rates between grain sizes was also seen in previous tracer work on the San Juan River (McQueen, 

2019; McQueen et al., 2021). 

 

 

 

 

 

Year 

Number of 

Events  

Q > Qbf 

Maximum 

peak, Qp  

(m3s-1) 

Total Time  

Q > Qbf 

(hours) 

Total Excess Flow 

Energy, ΩT (MJ/m) 

Peak Event Excess 

Energy Ω P (MJ/m) 

Bar 6 & 7 Bar 15 Bar 6 & 7 Bar 15 

2016-17 2 749 22.5 66.7 36 56.9 30.7 

2017-18 4 1,003 44 352.5 190.2 157.5 85 

2018-19 2 942 28 150.5 81.2 139.3 75.2 

2019-20 1 1,360 21 421.1 227.2 421.1 227.2 

2020-21 1 735 8 20.1 10.9 20.1 10.9 
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Table 6. Summary of surface tracer results for the 2019-20 and 2020-21 deployment year. 

Year Qp (m3 s-1) Recovery (%) Fm 𝐿̅ (m) Lm (m) 

Bar 6 

2019-20 1360 60.3 1 306.2 168.4 

2020-21 735 60.0 0.98 157.1 73.9 

Bar 7 

2019-20 1360 83.0 0.96 393.8 425.1 

2020-21 735 74.0 0.96 253.3 223.1 

Bar 15 

2019-20 1360 72.4 0.94 344.2 297 

2020-21 735 76 0.33 139.4 81.2 

 

5.4.3 Mobility and Pathlength Distance 

Mobility was calculated as the fraction of recovered tracers (Fm) that moved more than 10m 

downstream from the initial seeding site. Recovered surface tracers had high mobility across both 

deployment seasons ( Fm > 0.90 for all study reaches) with the exception of Bar 15 for the 2020-

21 season (Fm = 0.33) (Table 6). Negligible differences in mobility are seen between grain size 

classes for both Bar 6 and Bar 7 study reaches, as almost all particles were mobilized (Table 6; 

Table 7). Differences in mobility between size classes of tracers is apparent for the Bar 15 reach 

that had low mobility during the 2020-21 year. The smallest grain size class (22-32mm) had the 

highest number of tracers mobilized, and the largest grain size class (64-90mm) had the lowest 

number of tracers mobilized  (Table 7). Recent channel avulsion and subsequent changes to flow 

direction in the Bar 15 reach provide a potential explanation for the low number of tracers 

mobilized. 

Pathlength distances (L) were calculated as the distance travelled by recovered mobilized tracers 

(moved >10m downstream from the initial seeding site), for the three study reaches. Average 

pathlength distances (𝐿̅) and median pathlength distances (Lm) were used in the analyses, to account 

for expected skewed distributions (Table 6). Overall, average pathlength distances for the 2019-20 

year ranged from 306.2m - 393.8m for the three study reaches, which are well-above average 

pathlength distances of previous tracers deployed in the San Juan River (Table 6) (McQueen, 

2019).  
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Average pathlength distances (𝐿̅̅̅) of recovered surface tracers for the 2020-21 tracer deployment 

season were lower, ranging from 139.4m – 253.3m for the three study reaches. Amongst grain size 

classes, 𝐿̅ tended to follow a decreasing trend with increasing grain size class for both deployment 

years and all study reaches, with few exceptions (Table 7). Mobilized tracers at the Bar 15 reach 

for the 2020-21 deployment year appear to deviate from this trend, as the second largest grain size 

class of tracers (45-64mm) had the highest pathlength distances (𝐿̅ = 298.6m). However, only two 

45-64mm tracers were mobilized, which does not accurately represent tracer pathlengths of this 

size class when compared to the other study reaches and previous deployment years (Table 7).   

Table 7. Mobility (Fm) and pathlength distances (L) of recovered surface tracers.  

 

5.4.4 Discharge effects on mobility and pathlength distance 

The fraction of recovered mobile tracers (Fm)  for the 2019-20 and 2020-21 deployment years were 

analyzed, along with three years of past tracer data, against three different flow metrics to better 

understand the influence of flow. To investigate, a simple linear regression was performed, using 

the three different flow metrics as predictor variables; total excess energy expenditure (𝛺T), peak 

event excess energy expenditure (𝛺P),  and maximum peak discharge (Qp) (Table 5). The three 

predictor variables were tested against  the Fm in each study reach, for a total of five deployment 

years.  

The linear fit between Fm and all three flow metrics in the Bar 6 and Bar 7 reach was weak. 

However, the Fm at the Bar 6 and Bar 7 study reaches was better correlated to peak event excess 

Year 
Grain Size 

(mm) 

Bar 6 Bar 7  Bar 15  

Nr R 

(%) 

Fm 𝐿̅ (m) Lm (m) Nr R 

(%) 

Fm 𝐿̅ (m) Lm 

(m) 

Nr R (%) rm 𝐿̅ (m) Lm 

(m) 

2019-

20 

22-32 18 64 1 352.1 148.2 20 77 .95 468.5 435.6 16 64 1 426.3 433.2 

32-45 12 42 1 357 287.6 17 71 1 409.1 444.2 16 67 1 462.7 437.1 

45-64 20 74 1 298.7 250.4 24 96 1 342.2 370.7 21 84 1 314.2 277.2 

64-90 14 61 1 206.2 95.1 22 88 .91 371.7 412.5 18 75 1 201 148 

> 90 - - - -  - - - -  4 57 .70 106.4 125.3 

2020-

21 

22-32 13 50 1 205.3 188 20 80 .95 278.6 220.1 14 56 .64 172.4 122.2 

32-45 15 60 1 167.3 68.7 17 65 1 314.7 327.9 28 82 .39 171.5 123.6 

45-64 12 48 .92 112.8 67.7 20 83 .95 231.5 237.8 13 81 .15 298.6 298.6 

64-90 20 83 1 142.6 84.2 17 68 .94 165.6 185.4 21 84 .14 64.8 32.2 
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energy expenditure (𝛺P) (Bar 6: R2 = 0.25, p = 0.39; Bar 7: R2 = 0.16, p = 0.51) and maximum 

peak discharge (Qp) (Bar 6: R2 = 0.26, p = 0.38; Bar 7: R2 = 0.18, p = .47) than to total excess 

energy expenditure (𝛺T) (Bar 6: R2 = 0.11, p = 0.58; Bar 7: R2 = 0.04, p = 0.75) (Figure 21). All 

three flow metrics were good predictors of Fm in the  Bar 15 reach with (𝛺T) yielding the 

strongest correlation (R2 = 0.71, p = 0.07). Results of  𝛺P (R2 = 0.57, p = 0.14) and Qp (R
2 = 0.66, 

p = 0.09) show similar, relatively strong, correlation to Fm in the Bar 15 reach. The slopes of the 

linear fit between the three flow metrics and Fm in the Bar 15 reach (𝛺T = 0.0027, 𝛺p = 0.0027, 

Qp = 0.0010) differed from the slopes of Bar 6 (𝛺T = 0.00014, 𝛺p = 0.00024, Qp = 0.00015) and 

Bar 7 (𝛺T = 0.000079, 𝛺p = 0.00017, Qp = 0.00011) suggesting a different relationship between 

Fm and the influence of flow between these reaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 21. Mobility (Fm) of surface tracers at the three study reaches plotted against A: total excess 

flow energy (𝜴T); B: peak event excess flow energy (𝜴P); C: maximum peak discharge (QP). 
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The relationship between Fm in the Bar 6 and Bar 7 study reach and all three flow metrics appears 

to be weak. However, peak flood events led to near full mobilization of recovered tracers for all 

five deployment years in these reaches. Therefore, any differences in both peak flows and flow 

duration between years in the Bar 6 and Bar 7 study reach could not lead to significant changes in 

Fm. At a smaller temporal scale and larger range of flows, mobility at these reaches may be better 

predicted; however results from this study suggest mobilizing events have roughly the same effect 

on mobility regardless of magnitude and duration.  

Bar 15 had greater variation in mobility (Fm) between deployment years, with 𝛺T,  the variable that 

takes into account both peak flows and flow duration, being the strongest predictor variable. 

Although, linear fits of all three metrics had similar explained variation (R2) in relation to Fm in the 

Bar 15 study reach. The apparent ‘strength’ (high R2 values) in the relationship between the three 

flow metrics and Fm  at the Bar 15 study reach  is most likely influenced by the abnormally low 

mobility seen in the 2016 tracer results (McQueen et al., 2021). McQueen et al. (2021) suggested 

the anomaly was in part due to local morphodynamics and lower 𝛺T. Aside from the extreme high 

and low Fm values in the Bar 15 study reach, the relationship between flow and tracer mobility 

appears to be weak. Overall, there is a considerable amount of variation in Fm that is left 

unexplained by the influence of all three flow metrics. 

Grain size distributions (number of tracers of each grain size class) were similar between 

deployment years and thus, it is unlikely that the influence of grain size could explain any 

differences in Fm between years. However, differences in seeding locations, as well as annual 

morphologic change to the channel, may have led to restructuring in the local bed morphology 

between years. This suggests that differences in bed texture at deployment sites may be able to 

explain the variation in Fm in the three study reaches that is left unexplained from the flow analysis. 

However,  changes in the local bed texture at deployment sites, influenced by annual flood events, 

could not be properly identified in this study. Therefore, differences in channel morphology 

between and within deployment years may explain variation in mobility between and within 

reaches, although empirical evidence is needed.  

Median pathlength distances (Lm) of recovered surface tracers were analyzed with previous tracer 

results (2015-2018) in the San Juan River  (McQueen, 2019; McQueen et al., 2021) in relation to 
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the three flow metrics. Average pathlength distances (𝐿̅̅̅) rather than median, of recovered surface 

tracers were also analyzed with the three flow metrics, and produced similar results. However, 

median pathlength distances better account for skewness in the data’s distribution and was chosen 

to best interpret the influence of flow on pathlength distances.  

The relationship between pathlength distances and flow was first assessed by study reach. Median 

pathlength distances (Lm) were weakly correlated to total excess energy expenditure (𝛺T) for both 

Bar 6 and Bar 7, but yielded a strong significant relationship for Bar 15 (Bar 6: R2 = 0.49, p = 0.12; 

Bar 7: R2 = 0.19, p = 0.26; Bar 15: R2 = 0.99,  p = < 0.001) (Figure 22). Both peak event excess 

flow energy expenditure (𝛺P) (Bar 6: R2 = 0.56, p = 0.09; Bar 7: R2 = 0.66, p = 0.06; Bar 15: R2 = 

0.64, p = 0.07) and maximum peak discharge (QP) (Bar 6: R2 = 0.67, p = 0.06; Bar 7: R2 = 0.63, p 

= 0.07; Bar 15: R2 = 0.75, p = < 0.05) yielded a stronger relationship to median pathlength distance 

for both the bar 6 and bar 7 study reaches (Figure 22). 

 

 

 

 

Figure 22. Median pathlength distances (m) of  surface tracers at the three study reaches plotted against A: 

total excess flow energy (𝜴T); B: peak event excess flow energy (𝜴P); C: maximum peak discharge (QP). 
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In contrast to tracer mobility, pathlength distances showed high correlation to the three flow metrics 

for two of the three study reaches, with the exception of Bar 7 pathlength distances relating to 𝛺T. 

However, aside from the extreme high and low flow values, the relationship between flow and 

median pathlength distances is less clear, indicating that distances are similar for the majority of 

flows with the exception of extreme low and high flood years (Figure 22). For Bar 6 and Bar 7 the 

weakest correlation was  𝛺T, suggesting that flow duration has minimal influence on tracer 

pathlength distances for the two study reaches. Bar 15 yielded a strong relationship between 

pathlength distances and 𝛺T but were weakly correlated to the other two flow metrics. Surprisingly, 

four separate flood events above bankfull in 2017, including the second highest peak discharge 

event (Qp = 1,003m3 s-1), did not lead to substantially higher pathlength distances when compared 

to other years that experienced lower magnitude flows and had a smaller number of flood events 

(Table 5; Figure 22). 

Overall, there is positive trend seen, with higher peak flows leading to greater pathlength distances.  

The number and duration of events above bankfull (𝛺T) may be a less important influence on 

pathlength distances compared to the magnitude and duration of the peak flood event. Additionally, 

median pathlength distances differed between study reaches subject to the same flow events, even 

during years with high peak flood events, reflected in the variation in slope of linear fit between 

sites for all three metrics (Figure 22). Furthermore, Bar 15 yielded a strong relationship to 𝛺T and 

saw weaker relationships to both 𝛺P and Qp, suggesting that the Bar 15 reach may be more 

influenced by flow duration. This relationship may be caused by the Bar 15 reach having a less 

morphologically-complex channel, relative to the other two reaches. As well, the deployment 

location at the Bar 15 reach did not change across all five years. This allowed for a more accurate 

estimate of the influence of flow variables, controlling for other factors, such as morphological 

differences, at the location tracers were initially entrained. Bar 6 and 7 study reaches had less 

variation explained by the three flow metrics, which is perhaps due to differences in initial seeding 

sites between study years that are not accounted for. 

Median pathlength distances (Lm) were morphologically-scaled to the bar length to assess the 

overall relationship between pathlength distances and both 𝛺T  and 𝛺P. The relationship between 

pathlength distances and Qp was not assessed as this metric did not change between sites. Scaled 

median pathlength distances were weakly correlated to both (𝛺T) (R2 = 0.22, p = < 0.05) and (𝛺P) 
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(R2 = 0.34, p = < 0.05) (Figure 23). Comparable to the results assessed by study reach, a stronger 

correlation is seen for 𝛺P, supporting the idea that the magnitude and duration of a peak flood event 

has a greater influence on pathlength distances of individual particles, rather than the total 

magnitude and duration of flood events above bankfull within each winter flooding season. The 

weaker correlation seen when assessing the influence of flow for all three study reaches combined, 

also supports the idea that pathlength distances differ significantly at the reach scale, suggesting a 

strong morphological influence on particle dispersion. Furthermore, maximum pathlength 

distances rarely exceeded one bar length even in the 2019-20 study year, affected by the 100-year 

flood event. This points to a larger-scale morphological constraint on pathlength distances that may 

explain some of the variation seen when analyzing the relationship between pathlength distances 

and flow. 

5.4.5 Grain Size Effects on Pathlength Distance 

The effects of grain size on pathlength distances (L) were also analyzed.  The Shapiro-Wilk test 

was used to assess the normality of the data for both study years. Data did not fit normal 

distributions (p = < 0.05). The Kruskal-Wallis (K-W) test, which is used for data that does not 

follow a normal distribution, was chosen to assess for differences in pathlength distances between 

grain size classes. Pathlength distances were morphologically-scaled to the bar length to normalize 

data between gravel bar reaches and were further analyzed by individual gravel bar study site for 

Figure 23. Median pathlength distances (m) of  surface tracers scaled by bar length plotted 

against A: total excess flow energy (𝜴T); B: peak event excess flow energy (𝜴P). 
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the 2019-20 and 2020-21 study years to assess differences between grain size groups at the reach 

scale. Individual study reach data did not fit normal distributions (p = < 0.05), therefore the K-W 

test was also used for this analysis.    

For the 2019-20 deployment year, pathlength distances were compared between five grain size 

groups (22-32mm, 32-45mm, 45-64mm, 64-90mm, and > 90mm). The largest grain size group (> 

90mm) had a very small sample size (N = 3), therefore results for this grain size group were 

interpreted with caution. There was a statistically significant difference between grain size groups 

and pathlength distances for the 2019-20 study year (Chi-Square = 20.909, D.F = 4, and P = < 

0.001) (Figure 24). A post-hoc Dunn test was used to test pairwise differences between groups. 

The Dunn test indicated that there are significant differences in pathlength distances between 22-

32mm and 45-64mm (P = < 0.05), 32-45mm and 45-64mm (P = < 0.05), 22-32mm and 64-90mm 

(P = < 0.01), 32-45mm and 64-90mm (P = < 0.05), 22-32mm and > 90mm (P = < 0.05), and 32-

45mm and > 90mm (P = < 0.05).  The results show that significant differences in pathlength 

distances are between the smallest two grain size groups and the largest three grain size groups 

(Figure 24). Although the Benjamini-Hochberg method was used in the post-hoc Dunn test to 

reduce the false discovery rate and adjust p-values, significant results for the largest (>90mm) grain 

size group may not be accurate due to underrepresentation from the extremely small sample size 

recovered. Overall, the influence of grain size for the 2019-20 study year is significant, with 

decreasing pathlength distances with increasing grain-size of tracers.  

For the 2020-21 study year, pathlength distances were compared between four grain size groups 

(22-32mm, 32-45mm, 45-64mm, and 64-90mm) (Figure 24). There was no statistically significant 

difference between grain size groups and pathlength distances for the 2020-21 study year (Chi-

Square = 3.460, D.F = 3, and P = 0.326) (Figure 24). Data did not show any significant trends of 

decreasing pathlength distances with increasing grain-size. Weak trends do appear, with the 

smallest grain size group (22-32mm) having the greatest median pathlength distance (Lm = 213m) 

and the largest grain size group (64-90mm) resulting in the lowest (Lm = 96m). However, the trend 

becomes less evident beyond the smallest and largest grain size groups. The third largest grain size 

group (45-64mm) had a very similar pathlength distance to the smallest grain size group (Lm = 

202m), and much greater than the second smallest grain size group (32-45mm) (Lm = 124m). 

Overall, grain size appears to have little influence on pathlength distances for the 2020-21 study 
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year, which saw a much smaller peak flood event (Qp = 735m3 s-1) and overall less hydrological 

activity than the previous year. For the 2019-20 deployment that experienced a 100-year flood 

event (Qp = 1360m3 s-1), resulting in greater travel distances across all study reaches, we are able 

to see a more evident influence of grain size. To assess the influence of grain size further, 

pathlength distances were also compared by study reach.  

 

 

 

 

 

 

 

 

 

For the 2019-20 study year, pathlength distances were compared between four grain size groups 

(22-32mm, 32-45mm, 45-64mm, and 64-90mm) for both the Bar 6 and Bar 7 study reaches (Figure 

25). Bar 15 had an additional set of coarse tracers (> 90mm) for the 2019-20 deployment year so 

pathlength distances were between five grain size groups (22-32mm, 32-45mm, 45-64mm, and 64-

90mm, and >90mm). There was no statistically significant difference between grain size groups 

and pathlength distances for Bar 6 (Chi-Square = 3.170, D.F = 3, and P = 0.366) and Bar 7 (Chi-

Square = 5.122, D.F = 3, and P = 0.163) (Figure 25). However, there was a significant difference 

between grain size groups and pathlength distances for Bar 15 (Chi-Square = 21.644, D.F = 4, and 

P = < 0.001) (Figure 25). A post-hoc Dunn test revealed statistically significant differences in 

pathlength distances between 22-32mm and 64-90mm grain size groups (P = < 0.01) and between 

32-45mm and 64-90mm grain size groups (P = < 0.01). There were also significant differences 

between the two smallest grain sizes (22-32mm and 32-45mm) and > 90mm grain size (P = < 0.05); 

Figure 24. Scaled pathlength distance (m) by grain size class (mm) for A: 2019-20 study year and B: 

2020-21 study year 

Boxes represent the first and third quartile, the median is depicted by the black centre line of the boxes. 

Whiskers represent the minimum and maximum pathlength distance with block dots representing outliers. 
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however as previously mentioned, the small sample size (N = 3), may not accurately represent 

pathlength distances for this grain size. At the 90% confidence level, there were statistically 

significant differences between 22-32mm and 45-64mm grain size groups (P = < 0.10) and between 

32-45mm and 45-64mm grain size groups (P = < 0.10).  

A weak trend of decreasing pathlength distances with increasing grain size can be seen between 

the smallest and largest grain size groups for the Bar 6 study reach (Figure 25). No trends appear 

for the Bar 7 study reach for the 2019-20 year, with similar pathlength distances seen across all 

grain size groups (Figure 25). Disregarding the largest grain size group (> 90mm), Bar 15 still 

shows a very strong trend of decreasing pathlength distance with increasing grain size (Figure 

25C). Of the three gravel bar study reaches, Bar 15 exhibits the least complex morphology, thus it 

is possible that the influence of grain size will be most apparent; whereas  channel morphology 

may have a more dominant role in controlling pathlength distances for the Bar 6 and Bar 7 study 

reach. 
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For the 2020-21 deployment, pathlength distances (L) were compared between four grain size 

groups (22-32mm, 32-45mm, 45-64mm, and 64-90mm) for the three study reaches. There were no 

statistically significant difference between grain size groups and pathlength distances for Bar 6 

(Chi-Square = 2.506, D.F = 3, and P = 0.474), Bar 7 (Chi-Square = 4.227, D.F = 3, and P = 0.238), 

and Bar 15 (Chi-Square = 2.575, D.F = 3, and P = 0.462). There appears to be a weak trend of 

decreasing L with increasing grain size for Bar 6, with the smallest grain size group (22-32mm) 

having significantly greater pathlength distances relative to the three larger grain size groups 

(Figure 26). No trends are apparent for both the Bar 7 and Bar 15 study reaches for the 2020-21 

deployment. Furthermore, Bar 15 pathlength distances between grain size groups shows an 

surprising relationship, with the third largest grain size group having the greatest Lm. However, due 

Figure 25. Pathlength distance (m) grouped by grain size class (mm) for A: Bar 6 2019-20 study year; 

B: Bar 7 2019-20 study year and; C: Bar 15 2019-20 study year. 
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to low recovery rates of the larger grain size groups at the Bar 15 study reach, the sample size for 

both the 45-64mm (N = 2) and 64-90mm tracers (N = 3) were extremely small and most likely does 

not accurately represent relative pathlength distances for these grain size classes. Overall, for the 

2020-21 study year, the influence of grain size on pathlength distances of tracers appears to be 

negligible. 

 

 

 

 

In summary, results indicate that pathlength distances are weakly influenced by grain size during 

years with lower peak flood events and limited hydrological activity. Furthermore, the 2019-20 

study year subject to a 100-year flood event saw differences in the effects of grain size between 

study reaches, suggesting the relationship between grain size and pathlength distance may vary due 

to the dominant role of channel morphology, especially in reaches that have more complex 

Figure 26. Pathlength distance (m) grouped by grain size class (mm) for A: Bar 6 2020-21 study 

year; B: Bar 7 2020-21 study year and; C: Bar 15 2020-21 study year. 
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morphological features.. To further understand pathlength dispersion of recovered tracers, 

pathlength distributions can be explored. 

5.4.6 Pathlength Distributions 

Tracer pathlength distributions were binned into 50m intervals to visualize tracer frequency 

distributions within and between macroforms (length of the gravel bar) to interpret final tracer 

positions relative to meso-scale morphological units in the reach. Frequency distributions of Bar 7 

and Bar 15 pathlengths from previous tracer deployments on the San Juan River (McQueen, 2019) 

were also re-analyzed to further understand the influence of morphology on pathlength 

distributions, with relative deployment locations from all years being in close proximity (< 50m). 

Distributions for Bar 6 could not be compared to previous deployment years, as earlier deployment 

locations (2015-18) were located at the head of Bar 6, ~500m upstream. Aerial imagery from 

collected LIDAR data. in the summer of 2019 is used to display recovery locations for the 2019-

20 tracer deployment. Aerial imagery from LIDAR data which was also collected by Terra Remote 

Sensing Inc in March (2021) and is used to display recovery locations for the 2020-21 tracer 

deployment. It is important to note that the 2019 imagery shows recovery locations relative to the 

channel at the time of deployment (Fall 2019), therefore they do not capture channel changes that 

occurred during the 2019-2020 winter flooding period. As well, the 2021 aerial imagery was 

collected earlier than usual, at higher flows, and the gravel bars are more inundated compared to 

the 2019 imagery, making comparison and interpretation problematic. 

Bar 6  

Both the 2019 and 2020 deployments of surface tracers at the Bar 6 study reach were seeded at the 

tail of Bar 6 at pool tail-out locations (Figure 27). The Bar 6 deployment location for the 2020-21 

deployment was moved ~10m downstream to a new pool-tailout location because of changes to the 

channel morphology (Figure 27). Bar 6 pathlength distributions from both the 2019 and 2020 

deployment display a right-skewed multi-modal distribution with 𝐿̅ greater than Lm (Figure 27; 

Figure 28). The majority (>50%) of the tracers did not move past the large bend at Bar 6X in both 

deployment years (Figure 27). This may also explain the low recovery rate for Bar 6 deployment, 

with a large number of tracers potentially being trapped in the deep pool ~200m downstream at 

undetectable water and/or sediment depths due to infilling of the pools.  
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Bar Apex  

Figure 28. Recovered tracers deployed at the Bar 6 study reach for the 2019-20 year (top) and 

2020-21 year (bottom). Flow right to left. 

Figure 27. Pathlength distributions for recovered tracers at the Bar 6 study reach for the 2019-20 study year  

(Left) and 2020-21 study year (right). 
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Both the 2019 and 2020 deployments of surface tracers at the Bar 6 study reach were seeded at the 

tail of Bar 6 at pool tail-out locations (Figure 27). The Bar 6 deployment location for the 2020-21 

deployment was moved ~10m downstream to a new pool-tailout location because of changes to the 

channel morphology (Figure 27). Bar 6 pathlength distributions from both the 2019 and 2020 

deployment display a right-skewed multi-modal distribution with 𝐿̅ greater than Lm (Figure 27). 

The majority (>50%) of the tracers did not move past the large bend at Bar 6X in both deployment 

years (Figure 27; Figure 28). This may also explain the low recovery rate for Bar 6 deployment, 

with a large number of tracers potentially being trapped in the deep pool ~200m downstream at 

undetectable water and/or sediment depths due to infilling of the pools.  

For the 2019 deployment, the first mode coincides with the location of the nearest downstream 

riffle (~50m), where the largest fraction of tracers were deposited (Figure 28). There were two 

modes associated with tracers that moved past the Bar 6X bend. The second mode is associated 

with a small number of tracers that were deposited near the pool tail-out adjacent to Bar 6X (Figure 

27; Figure 28). The last mode represents the farthest downstream site of significant tracer 

deposition located at the Bar 7 apex, specifically along the channel margin, which is also a site of 

major deposition for tracers seeded at Bar 7 in the 2019-20 deployment (Figure 27). High tracer 

deposition at the Bar 7 apex can be attributed to reach-scale downstream migration and lateral 

growth of the gravel bar (Figure 27; Figure 28).  

For the 2020-21 deployment, that had a much lower peak flood event than the 2019-20 deployment, 

tracers moved shorter distances. The first mode represents a significant deposition site for tracers 

(>60%) at the Bar 6X head (Figure 27; Figure 28). This was also an area of tracer deposition for 

the previous deployment, although a greater number of tracers were deposited at the Bar 6X head 

for the 2020-21 deployment. The second mode is associated with deposition at the Bar 7 head, with 

10% of tracers being deposited in this area (Figure 27; Figure 28). There was also a small number 

of tracers deposited at the Bar 7 apex, which represents the farthest downstream depositional area 

(mode) for the 2020-21 deployment (Figure 27). Fewer tracers travelled far enough to become 

trapped at the Bar 7 apex for the 2020-21 deployment, which may be attributed to the  lower peak 

flood event that occurred, compared to the previous 2019-20 deployment (Figure 27).  
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Hydrological activity (all flood events above bankfull), as well as the peak flood event were 

considerably different between the two deployment years. This may explain the differences seen 

in pathlength distributions between the two deployments, with a greater proportion of recovered 

tracers moving less than 200m downstream of the initial deployment location for the 2020-21 

deployment. However, depositional areas where tracers seem to become trapped were consistent 

for both years, with tracers being deposited at the Bar 6X head, and Bar 7 apex in both deployments. 

This indicates a strong morphological control on pathlength distances at the reach scale. The 2019-

20 deployment at the Bar 6 study reach also had the farthest distance travelled (1072m) by any 

tracer across the three  study reaches and five years of tracer deployment on the San Juan River, 

which may be influenced by the 100-year flood event (Figure 27). 

Bar 7 

Both deployment locations at the Bar 7 study reach were adjacent to Bar 6X,  at pool tailout 

locations, slightly upstream of the Bar 7 head (Figure 29). The 2020-21 deployment location was 

moved ~30m upstream to a new pool tailout location because of channel changes. Deployment 

locations for previous tracer work on the San Juan River (2015 - 2018) at the Bar 7 study reach 

were ~20m downstream of the 2019-20 deployment location (McQueen, 2019). Deployment 

strategy for the previous deployments (2015-2018) placed tracers in both the wetted channel and 

dry gravel bar, which may influence pathlength distributions compared to the deployment strategy 

used for this study.    

Pathlength distributions for the 2019-20 deployment year at the Bar 7 study reach followed a 

roughly symmetrical distribution, with the primary mode occurring at the Bar 7 apex, where 

roughly half of recovered tracers were found (Figure 29; Figure 30). A greater number of tracers 

exceeded one riffle-pool-bar unit during the 2019-20 deployment at the Bar 7 study reach, relative 

to the other two study reaches for all deployment years. This can be attributed to the extreme flood 

event that occurred in January 2020. Furthermore, significant bank erosion at the Bar 6 and Bar 7 

study reach  suggests that channel changes were greater during the 2019 deployment of tracers, and 

is reflected in the high mobilization and greater pathlength distances of tracers at the Bar 7 study 

reach for the 2019-20 deployment.  
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Tracer pathlength results from the 2020-21 deployment followed a right-skewed distribution, with 

four distinct modes (Figure 30). The majority of tracers travelled short distances and deposited at 

the Bar 6X apex, slightly downstream from the seeding site, representing the first mode (Figure 

29; Figure 30). The second mode saw the largest proportion of tracers (~ 40%) deposited at Bar 7 

head (Figure 29; Figure 30). A smaller proportion of tracers were deposited at both the Bar 7 apex 

and tail, representing the third and fourth modes of pathlength distributions (Figure 29; Figure 30).  

Bar 6X 

Figure 29. Recovered tracers deployed at the Bar 7 study reach for the 2019-20 year (top) and 2020-21 year 

(bottom). Flow right to left. 

Bar 7 apex 

Bar 7 apex 

Bar 6X 
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The 2017 deployment at the Bar 7 study reach, that experienced the second largest peak flood 

event, had a similar uniform distribution to the 2019 tracer deployment, with high deposition of 

tracers at the Bar 7 apex (Figure 30). Furthermore, pathlength distributions for the 2016, 2018, and 

2020 deployment years that had relatively moderate peak flood events, all displayed right-skewed 

Figure 30. Pathlength distributions for recovered tracers at the Bar 7 study reach for the 

2019-20  year (middle right) and 2020-21 year (bottom) and for a previous tracer deployment 

study (2016-2018). 
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multimodal distributions. The greater peak flood events that occurred during the 2017 and 2019 

deployments may explain the difference in pathlength distributions for these years, with higher 

flows leading to greater overall mobility and greater pathlength distances of tracers. In contrast, 

deployments that were subject to more moderate flood events had a high proportion of tracers that 

remained close (< 100m) to the initial seeding location (Figure 29; Figure 30).  

For all deployment years at the Bar 7 study reach, there was consistent high deposition of tracers 

at the Bar 7 apex, even though hydrological activity and the magnitude of peak flood events differed 

between years (Figure 29; Figure 30) . This suggests that channel morphology, rather than flow, is 

the dominant control on pathlength distances. As well, high deposition at the bar apex, specifically 

the bar apex margins, can be linked to overall bar development, with observations of downstream 

migration and lateral growth of the gravel bar from annual aerial imagery (McQueen et al., 2021). 

Furthermore, the 2019-20 and 2020-21 deployments at the Bar 6 study reach (located ~200m 

upstream of the Bar 7 study reach deployment locations) also had a high proportion of tracers being 

deposited at the Bar 7 apex. This suggests that the Bar  7 apex is a significant trapping area and 

thus, an important morphological control on pathlengths, especially for years subject to greater 

peak flood events. Overall results from pathlength comparisons show a strong morphological 

constraint on pathlengths, with tracers becoming trapped at the first major downstream depositional 

area. As well, observations of annual channel change from aerial imagery can link individual tracer 

pathlengths to overall bar growth development, with compensating erosion to the opposite bank. 

The influence of flow strength is also apparent, with deployment years subject to lower magnitude 

flood events leading to a greater proportion of tracers moving short (<100m) distances downstream 

of the initial deployment location. 

Bar 15 

The 2019-20 and 2020-21 deployment locations were the same, with tracers seeded at the pool 

tailout adjacent to the Bar 15 head at the bar head (Figure 31). The previous two deployments (2017 

and 2018) were located  ~15m downstream, and the 2016 deployment was located ~30m 

downstream of the 2019-20 and 2020-21 deployment location.  
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Figure 31. Recovered tracers deployed at the Bar 15 study reach for the 2019-20 year (top) and 

2020-21 year (bottom). Flow right to left. 

Apex 
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Pathlength distributions for the 2019-20 and 2020-21 deployments display similar right-skewed 

multi-modal distributions (Figure 32). Although, differences are apparent in the longer-tailed 

pathlength distribution for the 2019-20 deployment, compared to the 2020-21 deployment at the 

Figure 32. Pathlength distributions for recovered  tracers at the Bar 15 study reach for the 

2019-20  year (middle right) and 2020-21 year (bottom) and for a previous tracer 

deployment study (2016-2018). 
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Bar 15 study reach that had a maximum pathlength distance of only 450m (Figure 32). The first 

mode of deposition of tracers at the Bar 15 study reach for the 2019-20 deployment occurs at the 

bar head , ~100m downstream of the seeding site (Figure 31; Figure 32). This was also the case for 

the 2020-21 deployment, with a greater number of tracers travelling short distances and depositing 

at the bar head, relative to the 2019-20 deployment (Figure 31). The second mode of deposition for 

the 2019-21 deployment is associated with a cluster of tracers that deposited at the bar apex near 

the channel margin (Figure 31; Figure 32). The second and third mode of deposition for the 2020-

21 deployment also occurs at the bar apex, and just downstream of the bar apex, respectively. 

Differences in pathlength distribution of tracers between the 2019-20 and 2020-21 deployment are 

reflective of peak discharge and flow conditions experienced that year.  

Bar 15 tracer pathlength distributions from previous deployment years are similar to both 2019-20 

and 2020-21, exhibiting right-skewed, multi-modal distributions, with the exception of the 2017 

deployment (Figure 32). The 2017 year exhibits a more uniform pathlength distribution, with the 

primary mode of deposition occurring at the bar apex (Figure 32). Although the 2020-21 

deployment year had the highest peak flows, the 2017 year had the most flood events above 

bankfull. This suggests that the frequency and duration of flood events above may have influenced 

tracer pathlength distributions, with a greater number of tracers being remobilized for the 2017-18 

deployment year. Like the other two study reaches, for all deployment years at the Bar 15 study 

reach, there appears to be a  morphological constraint, with tracers rarely exceeding one riffle-pool-

bar unit. Furthermore, differences in tracer pathlength distributions at the Bar 15 study reach 

between years may be associated to the number of flood events above bankfull and flood duration. 

This suggests that since the Bar 15 study reach has a more simple channel morphology relative to 

the other two study reaches, the influence of flow may be greater.  

5.4.6.1 Exceedance Probability Distributions 

Tracer pathlength distances for the three study reaches were ranked in a descending order (X > x) 

to examine exceedance probabilities. Such that, the probability of exceeding the minimum 

pathlength distance for a given year, at a given study reach is equal to 1. Exceedance probability 

distributions were analyzed for the 2019-20 and 2020-21 deployment years at the three study 

reaches, with previous pathlength data (2015-2018) also assessed for the Bar 7 and Bar 15 study 

reach (McQueen, 2019) (Figure 33).   
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Exceedance probabilities show differences between study reach distributions, as well as differences 

within a given study reach between years (Figure 33). The 2016-17 and 2020-21 deployment years 

were subject to the lowest peak flood events, with  less tracers travelling extreme distances (relative 

to the average) at the Bar 15 study reach, seen in the lighter-tailed distributions for these years 

(Figure 33). This is also apparent at the Bar 6 study reach, with more extreme values, reflected in 

the heavy-tailed distribution for the 2019-20 deployment year, compared to the 2020-21 

deployment year that saw a much more moderate flood event. Furthermore, the Bar 7 study reach 

displays the heaviest-tailed distributions of tracer pathlength distances compared to the other two 

study reaches for all years (Figure 33). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. Exceedance probability plots of pathlength distances for A: Bar 6 study reach B: 

Bar 7 study reach and C: Bar 15 study reach. 



74 

 

5.4.7 Deposition By Morphology 

The influence of channel morphology on tracer pathlength dispersion was further investigated by 

assessing tracer deposition by morphology unit for both the 2019-20 and 2020-21 deployment years 

(Figure 34). The channel was classified by macro-scale bedform (Bar Head, Bar Apex, Bar Tail) 

as well as pool, riffle, and pool tailout units. Tracer deposition by morphology unit was further 

classified to investigate any influence of grain size on deposition location. The unit of deposition 

for tracers was recorded during tracer recovery and further verified using 2019 and 2020 aerial 

imagery. The extent of each unit could not be precisely delineated (i.e pool transition into pool 

tailout), however using recorded field notes and aerial imagery, reliable deposition locations could 

be inferred.  

 

 

 

 

 

 

 

 

 

 

 

 

 

A) Bar 6 

Figure 34. Surface tracer frequency across morphological units for A: Bar 6 study reach; B: 

Bar 7 study reach and C: Bar 15 study reach. 

B) Bar 7 

C) Bar  15 
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Different patterns of tracer deposition by morphology unit are seen between the three study reaches, 

with a greater proportion of tracers at the bar 15 study reach depositing at the bar head (Figure 34). 

Differences in flow trajectory where tracers are initially mobilized, influenced by the reach-scale 

morphology, may explain the variation in tracer deposition by morphology unit between the three 

study reaches.  Differences in tracer deposition are also apparent between the two deployment 

years, within a given study reach. For the 2019-20 deployment year, which experienced the 100-

year flood event, all three study reaches saw a greater proportion of tracers depositing at the bar 

apex, compared to the 2020-21 deployment year (Figure 34). For the Bar 6 and Bar 7 study reaches, 

there was an increase in the number of tracers depositing at the bar head, and a subsequent decrease 

in the number of tracers depositing at the bar apex, for the 2020-21 deployment year, which was 

also seen in previous tracer work in the San Juan River (McQueen, 2021) (Figure 34). These 

findings support the idea that in lower flow years, more particles deposit onto the bar head, with 

greater tracer deposition at the bar apex and thus, greater bar growth and development,  in years 

subject to higher-magnitude peak flood events.  

For the 2020-21 deployment year, a greater proportion of tracers were deposited in pools at the Bar 

7 and Bar 15 study reach, compared to the 2019-20 deployment year that experienced higher peak 

magnitude flows (Figure 34). This agrees with the literature, that a greater proportion of particles 

are routed into pools during lower peak flood events (Milan et al., 2013). Contradicting this, the 

bar 6 study reach had a lower proportion of tracers deposited in pools for the 2020-21 deployment, 

(Figure 34). However, the Bar 6 study reach had the lowest recovery, with the smallest tracer class 

having the lowest number recovered for the 2020-21 year, which suggests that some of the 

‘missing’ tracers may well be deposited in pools, at water depths beyond detection. 

Although there is no obvious influence of grain size on tracer deposition by morphology unit, some 

patterns emerge. The larger grain size classes had a higher proportion deposited on the bar head 

and bar apex, especially at the Bar 15 study reach (Figure 34). The smaller two grain size classes 

of tracers had a greater number deposit on the bar tail, riffles, and pools (Figure 34). This also 

points to sediment routing patterns influenced by grain size, as well as grain-size sorting patterns 

on the gravel-bar, which have been noted in the literature (Clayton, 2010).   
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5.4.8 Tracer Burial Depths 

To investigate the active layer depth in large gravel-bed rivers, tracer burial depth data for the 2019-

20 and 2020-21 deployment years were analyzed (Table 8). Median burial depth (Bm) is used to 

represent the distribution of the data, as tracers that could not be detected with the wand antenna 

(> 0.5m) were not physically dug up, and accurate burial depth is unknown. Tracers that were 

undetectable were assumed to be buried at 0.5m, which was also used as a proxy for previous tracer 

work in the San Juan River (McQueen et al., 2021), therefore burial depths are a conservative 

estimate. Burial depth data for the 2020-21 deployment year is limited, due to lower mobility and 

a greater proportion of tracers being deposited in the wetted channel, in which burial depth could 

not be assessed.   

Table 8. Tracer burial data for the 2019-20 and 2020-21 deployment years. 

 

 

 

 

 

For both deployment years, the bar 6 study reach had the greatest burial depth, with Bm = 0.5m 

(Table 8). Both the Bar 6 and Bar 7 study reach had greater median burial depths than the Bar 15 

study reach. This agrees with previous findings in the San Juan River, where lower burial depths 

at the Bar 15 reach reflected the lower magnitude of topographic change seen on DoDs (McQueen, 

2021). The value of 2D90 (twice the 90th percentile of the coarsest grain size) is commonly used to 

assess the maximum extent of the active layer depth (Hassan, 1990). Importantly, median burial 

depths were greater than  2D90 for all three study reaches (Bar 6 D90 = 95mm; Bar 7 D90 = 103mm; 

Bar 15 D90 = 88mm) during the 2019-20 deployment year subject to the 100yr flood event. Burial 

depths were also analyzed by grain size class for the 2019 deployment year, however, no obvious 

trends were observed (Figure 35). 

Year Gravel Bar Site Nburied Bm 

 

2019-20 

 

Bar 6 21 50 

Bar 7 41 32 

Bar 15 52 21.8 

2020-21 

Bar 6 7 50 

Bar 7 13 17 

Bar 15 4 7 
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5.5 Buried Tracer Results 

5.5.1 Overview of Results 

Table 9 provides a summary of buried tracer results for the two deployment years. Recovery of 

buried tracers was high, ranging from 69.4-100% recovery (Table 9). The Bar 6 study reach for the 

2019-20 deployment, and the Bar 15 study reach for the 2020-21 deployment experienced limited 

scour, and therefore had high recovery of tracers for that year (Table 9). The Bar 7 study reach had 

high mobility and scour for both deployment years, relative to the other two study reaches (Table 

9). Pathlength distances of recovered mobilized tracers for the Bar 6 and Bar 7 study reaches were 

greater for the 2019-20 deployment year, relative to the 2020-21 year (Table 8). However, only 

two tracers were mobilized at the Bar 6 study reach for the 2019-20 year, with (N = 2), making 

pathlength comparisons difficult to interpret between the two years at the Bar 6 study reach (Table 

9).  

Tracer mobility and pathlength distances of buried tracers are assessed in section 5.5.2. 

Pathlength distributions, as well as exceedance probability distributions, which compare buried 

and surface tracer pathlengths, are found in section 5.5.3 and 5.5.3.1 respectively. Results of 

buried tracer deposition by morphology unit are found in section 5.5.4. Section 5.5.5. discusses 

Figure 35. Burial depths (cm) by grain size class (mm) for the 2019 

deployment year.  
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the comparison results between surface and buried tracer pathlength distributions. Scour results 

can be found in section 5.5.6, and burial depth results can be found in section 5.5.7. Lastly, a 

summary of surface and buried tracer results can be found in section 5.6. 

 

Table 9. Summary of buried tracer results for the 2019-20 and 2020-21 deployment year 

Year Qp (m3 s-1) Recovery (%) Fm S (%) 𝐿̅ (m) Lm (m) 

Bar 6 

2019-20 1360 97.3 0.06 5.7 266.5 NA 

2020-21 735 83.3 0.54 82.7 125.7 72.6 

Bar 7 

2019-20 1360 69.4 0.97 100 425.8 438.9 

2020-21 735 83.3 1 100 251.8 262.4 

Bar 15 

2019-20 1360 75 0.77 96.7 115.7 122.2 

2020-21 735 100 0 0 NA NA 

 

5.5.2 Particle Mobility and Pathlength Distance 

Buried tracer mobility (Fm) varied between study reaches as well as deployment years (Table 9; 

Table 10). For the 2019-20 deployment year, the Bar 6 study reach had low overall mobility of 

buried tracers (Fm = .06)  with only two tracers, initially buried at 10cm depths, being mobilized 

(Table 10). Overall mobility of buried tracers for the 2019-20 deployment year was higher for the 

other two study reaches: Bar 7 (Fm = .97) and Bar 15 (Fm = .77). For the 2019-20 year, the Bar 7 

study reach had full mobility for tracers initially buried at 10cm and 30cm depths, with slightly 

lower mobility (Fm = .89) for tracers initially buried at 20cm depth (Table 10). The Bar 15 study 

reach also had near full mobility for the 2019-20 deployment year, with tracers initially buried at 

10cm depths having slightly lower mobility (Fm = .70) compared to 20cm depths (Fm = .91) and 

30cm depths (Fm = .80) (Table 10). 

For the 2020-21 deployment year, that saw a more moderate peak flood event, compared to the 

2019-20 year (Table 10), the Bar 6 study reach saw greater mobility (Fm = 0.54). For the 2020-21 

year, tracers at the Bar 6 study reach that were initially buried at 30cm depths had significantly 

lower mobility (Fm = 0.27) relative to 10cm (Fm = 0.63) and 20cm depths (Fm = 0.73) (Table 10).  
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For the 2020-21 year, the Bar 7 study reach had the highest mobility of buried tracers, relative to 

the other two study reaches, with full mobility (Fm = 1) at 10cm seeding depths and near full 

mobility at both 20cm (Fm = 0.80) and 30cm depths (Fm = 0.88). None of the buried tracers at the 

bar 15 study reach were mobilized for the 2020-21 year, with surface tracers at the Bar 15 study 

reach for the 2020-21 year also subject to much lower mobility, relative to the previous deployment 

year.   

Table 10. Mobility  (Fm) of recovered buried tracers by initial burial depth (cm). 

 

 

 

 

 

Surprisingly, mobility of buried tracers at the Bar 6 study reach was low for the 2019-20 

deployment subject to the  extreme flood event, relative to the 2020-21 deployment year that had 

a more moderate flood event (Table 10). Previous tracer work at the Bar 6 study reach identified a 

coarse gravel sheet that migrated downstream from the Bar 6 head between 2015 and 2019 

(McQueen et al., 2021). This may explain the limited mobility of buried tracers that were seeded 

near the apex margin at the Bar 6 study reach for the 2019-20 year, with only two tracers being 

able to become mobilized and ‘escape’ prior to deposition by the coarse gravel sheet at the seeding 

area.  The Bar 7 study reach had similar mobility between the two deployment years, even with the 

Bar 7 seeding site being moved ~20m upstream for the 2020-21 deployment.  The Bar 15 study 

reach, which had high mobility during the 2019-20 deployment, did not have any tracers mobilized 

during the 2020-21 deployment year (Table 9). This may be explained by channel changes that 

occurred during the 100yr flood event the prior deployment year, specifically, channel avulsion, 

which led to primary flows being redirected, away from the seeding area. Differences in mobility 

between study reaches and deployment years may be related to differences in flow strength, as well 

Year Initial Burial 

Depth (cm) 

Bar 6 

Fm 

Bar 7 

Fm 

Bar 15 

Fm 

2019-20 

10 0.17 1 0.70 

20 0 0.88 0.91 

30 0 1 0.80 

2020-21 

10 0.75 1 0 

20 0.73 0.80 0 

30 0.27 0.88 0 
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as the influence of the local bed texture at the seeding area, with high spatial variation of tracer 

mobility seen within study reaches.   

Both average (𝐿̅) and median (Lm) pathlength distances of buried tracers were calculated, to account 

for expected skewed distributions (Table 9; Table 11). For the 2019-20 deployment year, recovered 

buried tracers that were mobilized had 𝐿̅ of 266.5m, 425.8m, and 115.7m for the Bar 6, 7, and 15 

study reach respectively (Table 9). Lm could not be calculated for the Bar 6 study reach for the 

2019-20 year (N = 2), however both the Bar 7 and Bar 15 study reach had Lm > 𝐿̅, suggesting 

skewed pathlength distributions. Average pathlength distances (𝐿)̅̅̅ of recovered buried tracers for 

the 2020-21 deployment year were significantly lower for the Bar 6 and Bar 7 study reach, relative 

to the 2019-20 deployment year (Table 9).   

Amongst grain size classes, pathlength distances tend to follow a decreasing trend with increasing 

grain size class for both deployment years for all study reaches, with few exceptions (Table 11). 

The smallest grain size class (22-32mm) had the greatest pathlength distances for all study reaches 

and both deployment years, with the exception of Bar 7 for the 2020-21 deployment year, with the 

largest grain size class (64-90mm) having the highest average pathlength distances (Table 11). 

However, the smallest grain size class of buried tracers at the Bar 7 study reach for the 2020-21 

deployment year had a slightly greater median pathlength distance than the largest class. Two 64-

90mm tracers, initially buried at 10cm depths travelled > 500m at the Bar 15 study reach for the 

2020-21 deployment year, skewing the data for the largest grain size class (Table 11).  

In summary, the 2019-20 deployment year subject to a 100-yr flood event led to greater pathlength 

distances of buried tracers, compared to the 2020-21 deployment year subject to a more moderate 

flood event. Similar to surface tracer results, pathlength distances of buried tracers varied between 

study reaches and deployment years, with Bar 7 tracers having the greatest average pathlength 

distances for both deployment years (Table 11). Similar to surface tracer results, pathlength 

distances tended to decrease with an increase in grain size class, however, two 64-90mm tracers 

travelled extreme distances at the bar 15 study reach for the 2020-21 deployment year, skewing the 

data.  
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Table 11. Pathlength distances (m) of recovered buried tracers by grain size class (mm). 

NA represents the number of buried tracers recovered that are used in the analysis. 

 

 

 

 

 

 

5.5.3 Pathlength Distributions 

To further assess pathlength distances of buried tracers, the pathlength distributions (pathlength 

distance frequencies) of recovered, mobilized (moved > 10m downstream) buried tracers were also 

analyzed. Pathlength distributions were binned into 50m intervals to visualize tracer frequency 

distributions within and between macro-scale bedforms (length of the gravel bar) to interpret final 

tracer positions relative to meso-scale morphological units (pools, riffles, bar apex) in the reach. 

Buried tracer pathlength distributions at the bar 15 study reach from the 2019-20 deployment year, 

as well as buried tracers at the bar 15 study reach from the 2020-21 deployment year, are not 

included in this analysis as the tracers had limited or no mobility.  

Aerial imagery acquired from LIDAR data collected by Terra Remote Sensing Inc in 2019, is used 

to display buried tracer recovery locations for the 2019-20 deployment year. As well, aerial 

imagery acquired from LIDAR data, collected by Terra Remote Sensing Inc in 2021 is used to 

display tracer recovery locations for the 2020-21 deployment year. Importantly, the July 2019 

aerial imagery shows recovered buried tracer locations relative to the channel morphology at the 

time of deployment (Fall 2019) and does not capture channel changes that occurred during the 

2019-20 winter flooding period. Furthermore, the March 2021 aerial imagery was collected earlier 

than usual, at higher flows, thus the gravel bars are more inundated relative to the actual recovered 

position in July 2021 at low flow.  

Year Grain Size 

(mm) 

Bar 6 Bar 7 Bar 15 

NA 𝐿̅ (m) 
Lm  

(m) 
NA 𝐿̅ (m) 

Lm 

(m) 
NA 𝐿̅ (m) Lm (m) 

2019-20 

 

 

22-32 0 - - 5 562.5 558.9 7 139.6 139.3 

32-45 1 446.2* 446.2* 5 347.2 445.3 6 144.4 154.9 

45-64 1 86.8* 86.8* 7 388.7 430.6 6 96.7 89.6 

64-90 0 - - 7 421.3 419.5 6 78.0 45.5 

2020-21 

32-45 10 219.5 181.5 11 267.9 271.3 0 - - 

45-64 3 200.7 114.7 7 199.8 111.7 0 - - 

64-90 3 80.6 87.3 6 320.9 269.1 0 - - 
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Bar 6 

The Bar 6 study reach deployment location for the 2019-20 and 2020-21 deployment of buried 

tracers was located near the tail of Bar 6 at the channel margin adjacent to the pool-tailout where 

surface tracers were deployed (Figure 37). The  deployment location  for the 2020-21 deployment 

was relocated ~10m downstream because of changes to the channel morphology at the original 

deployment location (Figure 37). Only two tracers for the 2019-20 deployment at the Bar 6 seeding 

site were mobilized, moving ~85m and ~450m downstream (Figure 37). The 2020-21 deployment 

year at the bar 6 study reach, subject to a more moderate peak flood event relative to the 100-year 

flood event in 2019-20, had a greater number of buried tracers become mobilized (N = 26). 

 

 

Figure 36. Recovered buried tracers deployed at the Bar 6 study reach for the 2019-20 

year (top) and 2020-21 year (bottom). Flow right to left. 

Bar 6X 

Bar 6 

Tail 

Bar 7 
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The 2020-21 buried tracers at Bar 6 display a right-skewed distribution with the majority (~ 40%) 

tracers moving a relatively short distance, depositing in a cluster at the head of Bar 6X, representing 

the primary mode of buried tracer deposition (Figure 38). A few tracers travelled farther, with two 

tracers being deposited near the Bar 7 head, and one tracer being deposited at the Bar 7 tail (Figure 

38). No tracers in either year travelled farther than one riffle-pool-bar unit, which is similar to 

surface tracer results for the two deployment years as well as previous tracer results in the San Juan 

River at the Bar 6 study reach (McQueen, 2019; McQueen et al., 2021). Furthermore, the primary 

mode of deposition at the Bar 6X head for the 2020-21 deployment year, where a large proportion 

of tracers were deposited, shows that mobilized tracers were subsequently trapped at the first 

depositional area downstream of the seeding site (Figure 38).  

Bar 7 

The deployment location at the Bar 7 study reach for both the 2019-20 and 2020-21 deployment of 

buried tracers was located near the Bar 6X apex, just upstream of the Bar 7 head, at the channel 

margins adjacent to the surface tracer pool-tailout deployment location (Figure 39). The seeding 

site for the 2020-21 deployment was relocated ~20m upstream because of changes to the channel 

(Figure 39). Both deployment years had high mobilization of recovered buried tracers at the Bar 7 

Figure 37. Pathlength distributions for recovered buried tracers at the Bar 6 

study reach for  2020-21 study year . 
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study reach, with tracers travelling greater distances in the 2019-20 deployment year, subject to the 

100 year flood event. 

 

Figure 39. Recovered buried tracers deployed at the Bar 7 study reach for the 2019-20 year (top) and 2020-21 

year (bottom). Flow is from right to left. 

Figure 38. Pathlength distributions for recovered) buried tracers at the Bar 7 study reach for the 2019-

20 (left) 2020-21 study year (right). 
 

Apex 
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Pathlengths of recovered buried tracers at the Bar 7 study reach for the 2019-20 deployment year 

followed an approximately uniform distribution, with the highest proportion of tracers (~30%) 

being deposited at the Bar 7 apex (Figure 39; Figure 40). Only 10% of buried tracers exceeded one 

riffle-pool bar unit for the 2019-20 deployment year, which is similar to surface tracer results at 

the Bar 7 study reach for the 2019-20 year. For the 2020-21 deployment year, pathlengths of 

recovered buried tracers at the bar 7 study reach followed a multi-modal right-skewed distribution 

(Figure 40). A cluster of 2020-21 deployed tracers (~20%) travelled a short distance downstream 

and deposited at the Bar 6X apex, with a second cluster of tracers (~20%) being deposited at the 

Bar 7 head (Figure 39; Figure 40). A third cluster of tracers, representing the last depositional 

mode, were deposited at a newly formed channel island adjacent to  the Bar 7 tail, although the 

imagery shows inundation in that area due to higher flows at the time of imagery collection (Figure 

39; Figure 40). For the 2020-21 year, no tracers exceeded one riffle-pool-bar unit. 

There are apparent differences between buried tracer pathlength distributions for the two 

deployment years at the Bar 7 study reach. The shorter pathlength distances of buried tracers for 

the 2020-21 deployment year can be attributed to the lower peak flood event that occurred, relative 

to the 2020-21 deployment year. Furthermore, the 2019-20 year that was subject to the extreme 

flood event, had a greater proportion of tracers (10%) exceed one riffle-pool bar unit. Additionally, 

a higher fraction of tracers were deposited at the Bar 7 apex for the 2019-20 year. This suggests 

that greater peak flows for the 2019-20 year led to greater pathlength distances, and contributed to 

bar growth and development at the Bar 7 study reach.   

Bar 15  

The bar 15 deployment location was located on the bar head, at the channel margin, adjacent to the 

pool tailout where surface tracers were deployed (Figure 41).  The 2019-20 deployment year saw 

high mobility of recovered buried tracers (Figure 41). The 2020-21 deployment year, which 

experienced a more moderate peak flood event, had no mobilization of recovered buried tracers. 

This is similar to the results of Bar 15 surface tracers as the 2020-21 deployment year had much 

lower mobility than that of the 2019-20 recovered surface tracers, and may be influenced by recent 

channel avulsion leading to changes in flow direction at the deployment location between the two 

years.  



86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41. Pathlength distributions for recovered buried tracers 

at the Bar 15 study reach for the 2019-20 study year. 

Figure 40. Recovered buried tracers deployed at the Bar 15 study reach for the 2019-

20 year (top) and 2020-21 year (bottom). Flow right to left. 
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Pathlength distributions of recovered mobilized buried tracers at the Bar 15 study reach for the 

2019-20 deployment year follow a right skewed distribution, with the vast majority of tracers 

(~90%) being deposited a short distance downstream at the bar 15 head (Figure 41; Figure 42). The 

remaining tracers (~10%) deposited at the Bar 15 apex, with no tracers exceeding one riffle-pool-

bar unit (Figure 41; Figure 42). Overall, the Bar 15 study reach had shorter pathlength distances 

for both buried and surface tracers for the 2019-20 deployment year, compared to the bar 7 study 

reach, and may be related to the more simple channel morphology at the Bar 15 study reach.   

5.5.3.1 Exceedance Probability Distributions 

Exceedance probability plots were also used to visualize mobilized buried tracer pathlength 

distributions, as well as directly compare surface and buried tracer pathlength distributions at the 

same study reach and deployment year. The Bar 7 study reach had significant mobilization of 

buried tracers for both deployment years, although only the 2020-21 deployment year at the Bar 6 

study reach and the 2019-21 deployment year at the Bar 15 study reach had sufficient tracer 

mobilization and are included in this analysis (Figure 43). Exceedance probability distributions 

help visualize the apparent pathlength differences between study reaches and deployment years 

(Figure 43). Furthermore, surface and buried pathlength distributions at the same study reach for 

the same deployment year, appear to be similar (Figure 43).   

Figure 42. Comparison of exceedance probability distributions of surface and buried tracer pathlengths for 

the study reaches for the 2019-20 study year (left) and 2020-21 study year (right). 
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For the 2019-20 deployment year, Bar 15 buried tracers had  much shorter pathlength distances 

with a maximum pathlength distance (Lmax) = 342m, and exhibits a thinner-tailed distribution 

relative to bar 7 buried tracers, which saw an Lmax = 709.1m. Furthermore, 75% of Bar 7 buried 

tracers exceeded the buried tracers Lmax = 342m at the Bar 15 study reach, for the 2019-20 year. 

This results highlights, the differences in pathlength distributions between the two study reaches, 

which can be attributed to differences in morphology at the reach and local scale  (Figure 43). 

Interestingly, for the 2019-20 year, Bar 7 recovered surface and buried tracers exhibit an extremely 

similar exceedance pathlength distribution, with buried tracers having a Lmax of 709.1m, and surface 

tracers having a Lmax of 780.6m (Figure 43). In contrast, buried and surface tracers display different 

pathlength distributions at the bar 15 study reach (Figure 43). However the overall shape of the 

distribution is similar, with the main difference being that buried tracers had a much shorter Lmax  

= 342m, relative to  Lmax = 763.4m for surface tracers (Figure 43).  

For the 2020-21 deployment year, buried tracers at the Bar 6 study reach travelled shorter distances 

on average than buried tracers at the Bar 7 study reach, however Bar 6 buried tracers had a greater 

Lmax = 644.5m, with Bar 7 buried tracers Lmax = 572m (Figure 43). Similar to pathlength results for 

the 2019-20 year, both buried and surface tracers at the Bar 7 study reach for the 2020-21 year 

exhibit similar pathlength distributions with  Lmax = 255m for buried tracers and Lmax = 223m for 

surface tracers (Figure 43). Bar 6 buried and surface tracers exhibit similarly-shaped pathlength 

distributions, although a much heavier-tailed distribution is seen for surface tracers at the Bar 6 

study reach (Figure 43). 

Overall, Bar 7 surface and buried tracers exhibit similar exceedance pathlength distributions for 

both deployment years, with tracers travelling greater distances for the 2019-20 deployment year, 

seen in the heavier-tailed distribution, influenced by the 100-year flood event in January 2020 

(Figure 43). Bar 6 buried and surface tracers for the 2020-21 year also displayed similar exceedance 

distributions, with the Bar 6 and Bar 7 seeding sites being in relative proximity. This suggests that 

in these two reaches, pathlengths of subsurface and surface tracers are in part controlled by 

depositional trapping areas, dictated by the reach-scale morphology. Furthermore, the different 

exceedance distributions seen for surface and buried tracers at the Bar 15 study reach, suggests that 
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the reduced complexity in channel morphology at this reach allows for other controls, such as flow, 

to have a greater influence on pathlength dispersion. 

5.5.4 Deposition by Morphology Unit 

The influence of channel morphology on buried tracer pathlength dispersion was further 

investigated by assessing the location of tracer deposition by morphology unit for both the 2019-

20 and 2020-21 deployment years. However, neither Bar 6 2019-20 nor Bar 15 2020-21 buried 

tracers are analyzed because of the limited mobilization of these buried tracers. The channel was 

classified by macro-scale bedform (bar head, bar apex, bar tail) as well as by channel island (tail 

island), pool, riffle, and pool tailout units. Tracer deposition by morphology unit was further 

classified to investigate any influence of grain size on deposition location. The unit of deposition 

for tracers was recorded during tracer recovery and further verified using 2019 and 2020 aerial 

imagery. The extent of each unit could not be precisely delineated (i.e pool transition into pool 

tailout), however using recorded field notes and imagery, reliable depositional locations could be 

inferred.  

All three study reaches displayed different depositional patterns of tracers by morphology unit 

(Figure 44). Similar to surface tracer results, deposition of Bar 15 buried tracers exhibit a less 

complex pattern, with deposition either at the bar head or bar apex, and is reflective of the more 

simple channel morphology at the Bar 15 reach, relative to the Bar 6 and Bar 7 study reach (Figure 

44). Depositional patterns reflect the influence of the most proximate macroform unit, relative to 

the deployment location of buried tracers. With the majority of buried tracers at the Bar 15 study 

reach being deposited short distances downstream of the bar head seeding area, with only two 

tracers travelling slightly farther downstream and depositing at the bar apex (Figure 44).  
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The majority of Bar 6 buried tracers that were mobilized during the 2020-21 deployment year were 

subsequently deposited in the riffle, which is the nearest downstream depositional unit, with most 

Figure 43. Buried tracer frequency distributions across morphological units by grain size 

(mm). 
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of the remaining mobilized buried tracers also travelling short distances and were deposited at the 

bar 6X head, adjacent to this riffle (Figure 44). The high proportion of buried tracers being 

deposited at the bar 6X head is similar to surface tracer results at the Bar 6 study reach for the 

2020-21 deployment year. Additionally, all of the recovered buried tracers at the Bar 6 study reach 

of the largest grain size-class deposited just a short distance downstream in the riffle, highlighting 

the influence of grain size on buried tracer deposition (Figure 44).  

Bar 7 buried tracers had relatively similar depositional patterns for both deployment years, with 

high deposition at the bar apex (Figure 44). Although this is misleading, as the majority of buried 

tracers for the 2020-21 deployment deposited at the Bar 6X apex, roughly ~20m downstream of 

the deployment location, whereas for the 2019-20 deployment year, the majority of bar 7 buried 

tracers deposited ~400m downstream at the Bar 7 apex. The consistent deposition of both bar 7 

recovered surface and buried tracers at the Bar apex strongly suggests the apex is a high trapping 

area, which can tied to lateral bar growth and development at the reach scale. When observing grain 

size trends, only the two smallest grain size classes of buried tracers at the Bar 7 study reach were 

deposited at the bar tail for both deployment years, which points to downstream fining, and overall 

grain-size sorting patterns of the bars.  

Overall, between study reaches and deployment years, recovered buried tracers exhibit different 

depositional patterns by morphology unit, although there are some consistencies (Figure 44). 

Buried tracer results show high deposition at the bar apex for both deployment years at the bar 7 

study reach (Figure 44). This was also seen for surface tracer results for the 2019-20 deployment 

year for both the Bar 6 and Bar 7 study reaches, suggesting the bar apex is a key morphological 

unit of deposition, with the greatest number of tracers trapped at these two reaches. At the reach 

scale, the biggest difference can be seen between the Bar 15 study reach and the other two study 

reaches,  where the majority of buried tracers for the 2019-20 deployment year were trapped at the 

bar head and few were deposited at the apex (Figure 44). Although, surface tracers at the Bar 15 

study reach for the 2019-20 deployment year had high deposition at the bar apex. This suggests 

that at high enough peak flows, tracers seeded in both the subsurface and surface near the bar head 

will most likely become trapped at the bar apex at all three study reaches, with few exceptions. 

Lastly, grain-size patterns show that the largest-sized grain size classes of tracers were deposited 

at the nearest downstream morphological unit, travelling shorter distances, relative to  the smaller 
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grain size classes. As well, only the smallest two grain-size classes of recovered mobilized buried 

tracers were deposited at the bar tail, suggesting grain-size sorting of bars influences both surface 

and subsurface tracer dispersion.    

5.5.5 Comparison Between Buried and Surface Tracer Dispersion 

Similarities in pathlength distribution between surface and buried tracers are apparent, with 

exceedance probabilities of surface and buried tracers at the Bar 7 study reach exhibiting similar 

shaped distributions, (Figure 43). This is also the case at the Bar 6 study reach for the 2020-21 

deployment year, where the shape of the exceedance probability distribution, as well as median 

pathlength distances for surface and buried tracers are similar (Figure 43). Furthermore, Bar 15 

buried and surface tracers for the 2019-20 year also had a similar-shaped pathlength distribution, 

although the difference in median and maximum pathlength distance between surface and buried 

tracers is much greater relative to the other two seeding sites (Figure 43). The similar shaped 

distributions can be attributed to the similar patterns of morphological deposition for buried and 

surface tracers at each seeding site for the same deployment year.  

Bar 7 buried and surface tracers for the 2019-20 deployment year both had high deposition at the 

bar apex, with Bar 15 buried and surface tracers both having the majority of deposition at the head 

of the bar. For the 2020-21 deployment year, overall pathlength distances for Bar 6 and 7 buried 

and surface tracers were shorter relative to the prior deployment year that saw the 100 year flood 

event, however both surface and buried tracers still had similar depositional patterns to each other, 

with the majority of tracers depositing closer to the seeding site at the head and apex of bar 6X.  

Overall, once mobilized, tracers that are initially buried in the subsurface exhibit similar tracer 

dispersion characteristics to surface tracers at the same seeding location. The similar pathlength 

distributions and depositional patterns between surface and buried tracers provide strong evidence 

of morphological control with both surface and buried tracers becoming trapped in the same 

depositional area for the same deployment year. Furthermore, both surface and buried tracers at all 

seeding sites and both deployment years, rarely exceed one riffle-pool-bar unit, even when subject 

to a 100-year flood event, suggesting that at a certain threshold, flow is no longer the control and 

particle pathlengths become governed by morphological constraint. 
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5.5.6 Scour and Fill 

Buried tracers were initially seeded at either 10, 20, or 30cm depths, to better understand the 

process of scour and fill at pool tailout margins in the San Juan River. Digital Elevation Models 

(DEMs) extracted from UAV imagery collected in  July of 2020, post 2019-20 tracer recovery, are 

used to display the spatial variation of scour and fill of immobile buried tracers, where useful. 

Percent scoured,  refers to the number of tracers that were subject to scour at depths equal to or 

greater than the initial burial depth of the tracer, out of the total number of recovered buried tracers. 

In some cases, there was scour up to the initial burial depth, but the tracer was not subsequently 

mobilized (moved >10m downstream). Furthermore, some tracers were found in the wetted 

channel, and no final burial depth could be measured. However, using both field measurements 

(measuring tape) for physically recovered tracers as well as recovered GPS waypoints, most tracers 

were able to be accurately identified as scoured or not; only four tracers had to be excluded from 

the analysis. 

5.5.6.1 Scour  

Scour results of buried tracers at the three study reaches are presented in Table 12.  Scour of buried 

tracers varied between study reaches as well as within a study reach (Table 12). There was full 

scour (all tracers were scoured to initial burial depth) at the Bar 7 study reach for both deployment 

years (Table 12). The Bar 6 study reach had only partial scour of recovered buried tracers for both 

the 2019-20 and 2020-21 deployment year (Table 12). The Bar 15 study reach also had partial 

scour of recovered buried tracers for the 2019-20 deployment year, with no tracers being scour for 

the 2020-21 deployment year at the Bar 15 study reach (Table 12).  

 

Table 12. Scour results of buried tracers. NA represents the number of tracers used in the analysis. 

Year 
Initial Burial 

Depth (cm) 

Bar 6 Bar 7 Bar 15 

NA %  Scour NA % Scour NA 
%  

Scour 

2019-20 

10 12 17 6 100 10 100 

20 12 0 8 100 11 100 

30 11 0 10 100 10 90 

2020-21 

 

10 8 100 9 100 12 0 

20 10 100 8 100 12 0 

30 11 55 7 100 12 0 
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For the 2019-20 deployment year, the Bar 6 study reach had the most limited scour depths, with 

only two tracers subject to scour up to 10cm depths (Figure 45). Surprisingly, the Bar 6 study reach 

experienced greater scour in 2020-21 deployment year, relative to the previous year that 

experienced the extreme flood event. With 100% scour of tracers at both 10 and 20cm depths, and 

55% (6 out of 11 tracers) scour at 30cm depths at the Bar 6 study reach for the 2020-21 deployment 

year (Figure 45). The Bar 15 study reach had significant scour for the 2019- 20 deployment year, 

with 100% scour of tracers at 10 and 20cm depths, and 80%  (8 out of 10 tracers) scour at 30cm 

initial depths. The Bar 15 study reach did not experience any scour of deployed tracers for the 

2020-21 year, with Bar 15 surface tracers also subject to limited mobility for the 2020-21 

deployment year. This can be attributed to channel changes and subsequent changes to the flow 

trajectory, leading to reduced mobility and scour near the bar 15 deployment location.    

 

 

 

 

 

 

 

 

Overall, results show that scour is highly spatially variable and reach-dependent, with all three 

study reaches experiencing different scour extents in both deployment years (Figure 45). For the 

Bar 6 study reach, it appears that although peak flows do play a role, there may be other factors, 

such as bed texture, with a migrating gravel bed sheet observed at the Bar 6 study reach from 2015-

2019 (McQueen, 2019; McQueen et al., 2021). Furthermore, the Bar 7 study reach experienced full 

scour up to 30cm depths even during years of moderate flood events. This suggests that scour in 

Figure 44. Percent scour (%) of recovered buried tracers that were included in analysis for the 2019-20 

(left) and 2020-21 study year (right). 
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the San Juan River may occur at significant depths (up to 30cm) during any year that experiences 

a typical moderate flood event. Furthermore, the spatial distribution of scour at the reach-scale can 

vary greatly, with the Bar 6 and Bar 7 study reach experiencing either limited or no scour (< 10cm 

depths), while the Bar 7 study reach experienced full scour of all tracers, up to 30cm depths, all 

subject to the same peak flood events. In summary, for the limited sampling data collected for 

buried tracers, scour appears to be unpredictable beyond the fact that scour up to and above 30cm 

depths is possible in some locations in any year subject to a moderate flood event. To further 

understand  the influence of bed morphology, the spatial distribution of scour can be assessed.  

5.5.6.2 Spatial Distribution of Scour 

DEM’s extracted from UAV imagery collected in July 2020 are used to help identify patterns in 

the spatial distribution of scour that occurred at the Bar 6 study reach for both deployment years, 

as well as the bar 15 study reach for the 2019-20 deployment year. It is important to note that DEMs 

do not reflect any changes to the gravel bars that occurred during the 2020-21 deployment year. 

Bar 6 

For the 2019-20 deployment year, the two tracers that were subject to scour up to 10cm depths 

were in relatively close proximity to each other (Figure 46). The remaining 10 tracers that were 

initially buried at 10cm depths did not experience full scour and remained in place (Figure 46). 

Surprisingly, the two tracers that were scoured at 10cm depths were seeded in the transect furthest 

from the wetted channel that most likely experiences the greatest flow strength, further pointing to 

the role of bed texture, rather than flow, as the primary influence on scour at the Bar 6 study reach 

for the 2019-20 deployment year (Figure 46). These results show that scour at the Bar 6 seeding 

site during the 2019-20 deployment year was extremely localized. 

 

 

 



96 

 

 

For the 2020-21 deployment, Bar 6 tracers experienced scour depths up to 30cm, with all recovered 

tracers initially buried at 10 and 20cm depths subject to scour (Figure 46). Two tracers initially 

buried at 20cm depths appear to have remained in place, however they were found at the surface 

(0cm depths) and therefore were still subject to 30cm scour depths. Only 55% of the tracers initially 

buried at 30cm depths (6 out of 11) were scoured. Interestingly, only one of the tracers initially 

buried at 30cm depths seeded in the transect farthest from the wetted channel was scoured, 

suggesting that for the 2020-21 deployment year, peak flows played a greater role on the extent of 

scour of tracers (Figure 46). There was a pattern of greater scour in the transect closest to the wetted 

channel, however scour of tracers still appears to be highly localized at the bar 6 study reach for 

the 2020-21 deployment year (Figure 46).  

Bar 15 

For the 2019-20 deployment year, the Bar 15 study reach had 100% of tracers scoured up  to 20cm 

depths, although one tracer initially buried at 10cm depths was not mobilized (moved <10m), but 

was found at the surface (Figure 47). Furthermore, all but one tracer (9 out of 10) was scoured to 

30cm depths at the bar 15 study reach, for the 2019-20 deployment year. The only tracer that was 

not scoured up to 30cm depths was initially seeded at the farthest downstream position of the inner 

transect, farthest from the bar margin and wetted channel, and appears to be located in an area of 

Figure 45. Spatial distribution of scour of recovered buried tracers at the Bar 6 study reach. 

The spatial distribution of scour of recovered buried tracers at the Bar 6 study reach for the 2019-20 

deployment year (pictured left) and the 2020-21 deployment year (pictured right) by initial burial depth (cm). 

X represents tracers that were fully scoured from the seeding site. burial depth 
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greater elevation (Figure 47). Results suggest that there may be scour up to 30cm depths in areas 

closest to the wetted channel during years of extreme flood events, which may have implications 

for salmon spawning habitat located near the channel center at the Bar 15 study reach.  

 

 

 

 

 

 

  

 

5.5.6.3 Scour and Fill Depths 

To better understand the active layer depth in the San Juan River, the net burial depth change (cm) 

of recovered buried tracers that remained in place at the initial seeding location were analyzed. The 

net burial depth change (cm) is calculated by taking the difference between the final and initial 

burial depths of recovered tracers, which includes tracers that were scoured, but remained at the 

seeding site. However the net burial depth change does not include the final burial depths of 

mobilized tracers. The net burial depth change of tracers were analyzed at the Bar 6 study reach 

for the 2019-20 deployment year, as well as, the Bar 15 study reach for the 2020-21 deployment 

year (Figure 48; Figure 49). 

Median net burial depth change for recovered tracers was similar for tracers seeded at all three 

initial burial depths (Figure 48). The median net burial depth change for Bar 6 tracers initially 

Figure 46. Spatial distribution of scour of recovered buried tracers (by initial burial 

depth) at the Bar 15 study reach for the 2019-20 study year. 



98 

 

buried at 10cm, 20cm, and 30cm initial depths was 12cm, 11.3cm, and 12cm respectively (Figure 

48). The maximum net burial depth change, which is equivalent to the maximum exchange depth 

of the active layer at the seeding site was 27cm (Figure 48). The positive median net burial change 

represents an overall net fill, suggesting that the bar 6 study reach for the 2019-20 deployment year 

was a site of deposition. Results also show that deposition was relatively equal across the seeding 

site and that the two tracers that were mobilized at this site, may have escaped before burial 

happened, or earlier on in the same flood event.  

 

 

 

 

 

 

 

 

 

 

In contrast to the Bar 6 study reach for the 2019-20 deployment year, the Bar 15 study reach seems 

to have had a more limited active layer exchange, with overall negative depth change, suggesting 

the seeding site was an area of erosion for the 2020-21 deployment year (Figure 49). Similar to the 

Bar 6 tracers for the 2019-20 deployment, median net burial depths were relatively equal across 

the three initial burial depths (Figure 49). The median net burial depth change for tracers was -4cm, 

-3.5cm, and -4cm for tracers initially seeded at 10, 20, and 30cm depths respectively (Figure 49). 

The maximum net burial depth change, which is equivalent to the maximum exchange of the active 

layer was -12cm, suggesting that  the Bar 15 study reach deployment location experienced a less 

dynamic active layer for the 2020-21 deployment year relative to the Bar 6 deployment location 

for the 2019-20 deployment year. The minimal burial depth change is reflective of the limited bed 

Figure 47. Median net burial depth change (cm) for recovered buried 

tracers at the Bar 6 study reach for the 2019-20 study year. 
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movement that occurred during the 2020-21 deployment year at the Bar 15 study reach, which was 

also apparent in surface tracer results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5.6.4 Spatial Distribution of Scour and Fill  

Bar 6 

The active layer exchange depth at the Bar 6 study reach for the 2019-20 year, was further analyzed 

by assessing the spatial distribution of net burial depth change at the seeding site. DEMs extracted 

from aerial imagery collected in July 2020 are used to display the net burial depth change. Although 

overall median net burial depth change was similar between grouped tracers at initial 10, 20, and 

30cm depths suggesting an even distribution of scour, closer analysis of the spatial distribution 

shows variation between closely seeded tracers (Figure 50). Overall, individual tracers were subject 

to similar net burial depth change when in close proximity (Figure 50). Furthermore, the transect 

seeded closest to the wetted channel, appears to have slightly smaller net burial depth change 

relative to the farthest transect (Figure 50). Although differences are seen between tracers within 

the seeding site, the relative difference is quite small, especially for tracers in close proximity. The 

local bed texture most likely plays a dominant role in the apparent differences in exchange depths 

Figure 48. Net burial depth change (cm) for recovered buried 

tracers at the Bar 15 study reach for the 2020-21 study year. 
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at the seeding site, however the subsurface grain-size distribution at deployment was not able to be 

measured in this study.  

 

 

 

 

 

 

 

 

 

 

Bar 15 

The active layer exchange depth at the Bar 15 study reach for the 2020-21 deployment year was 

also further analyzed by assessing the spatial distribution of net burial depth change at the seeding 

site. A DEM of Bar 15 from 2020 aerial imagery is also used to visualize the net burial depth 

change at the Bar 15 deployment location, however the DEM does not reflect any channel changes 

that occurred during the 2020-21 deployment year. Overall, buried tracers at the Bar 15 seeding 

site were subject to similar net burial depth changes (Figure 51). However, there are a few 

differences between net burial depth change of adjacent tracers at the Bar 15 seeding site. Three 

tracers that experienced a net scour between 10-15cm, had adjacent tracers only experiencing a net 

scour between 0-5cm (Figure 51).  A 10cm difference between the amount of scour experienced at 

a 1m scale (tracers were initially spaced ~1m apart) suggests there is high spatial variation of active 

layer exchange depths at a localized scale. As mentioned for the bar 6 seeding site, similar 

Figure 49. Spatial Distribution of scour and fill at the Bar 6 study reach for 

the 2019-20 deployment year. 

The spatial distribution of scour and fill is depicted by net burial depth change (cm) 

at the Bar 6 study reach for the 2019-20 deployment year. X represents tracers that 

were fully scoured from the seeding site. 
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influences of  subsurface bed texture may explain the differences in net burial depth change of Bar 

15 tracers for the 2020-21 deployment year, although more research is needed. 

 

 

 

 

 

 

 

 

 

 

5.5.7 Burial Depths of Mobilized Tracers 

To further investigate the active layer depth, tracer burial depth data at the Bar 15 study reach for 

the 2019-20 deployment year are analyzed and compared to surface tracer burial depth results 

(Figure 52). There is limited burial depth data because of either low mobility, a high number of 

tracers being unrecoverable due to burial at undetectable depths, as well as tracers being deposited 

in the wetted channel that could not be recovered. Furthermore, the sample size of deployed buried 

tracers at each of the three study reaches was small to begin with (N = 36). Median burial depth is 

used to assess the data, as tracers that could not be detected with the wand antenna (> 50cm) were 

not  physically dug up and accurate burial depth is unknown. Tracers that were buried beyond wand 

detection depths were assumed to be buried at 50cm, which was the assumed burial depth used for 

previous tracer results; therefore burial depths are a conservative estimate.  

Figure 50. Spatial Distribution of scour and fill at the Bar 15 study reach for the 

2020-21 study year. 
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Bar 15 tracers for the 2019-20 deployment year had high median burial depths, with a median 

burial depth of 22, 37.8, and 35.3cm for tracers initially seeded at 10, 20, and 30cm depths 

respectively (Figure 52). The median burial depth of Bar 15 buried tracers is similar to the median 

burial depth of bar 15 surface tracers for the 2019-20 deployment (21.8cm), suggesting that tracers 

mobilized from either the surface or subsurface experience similar burial depths. Importantly, the 

majority (~75%) of recovered buried tracers were found at depths exceeding twice the D90, which 

is equal to 17.7cm for the Bar 15 study reach. Burial depths exceeding twice the D90 were also seen 

in the 2019-20 and 2020-21 surface tracer results as well as from previous trace work (2016-2018) 

on the San Juan River (McQueen, 2019; McQueen et al., 2021).  

5.6 Summary of Results 

Results from both surface and subsurface particle tracking on the San Juan River provide valuable 

insight on tracer dispersion at the reach-scale. Recovery of surface and buried tracers was high for 

both deployment years. Mobility and pathlength distances of recovered surface tracers varied 

between reaches, with high mobility at pool tailouts at the three study reaches, with the exception 

of the bar 15 study reach for the 2020-21 deployment year. Tracer pathlength distances show a 

Figure 51. Recovered burial depths of mobilized buried tracers at the Bar 15 study 

reach for the 2019-20 year. 
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positive relationship with peak flows, although the relationship appears weak for all flow metrics, 

which include peak flow and flow duration variables. Additionally, subsurface and surface tracer 

pathlength distributions were similar at the same reach, with tracers becoming trapped at the same 

depositional macroform units, further highlighting a strong morphological control on tracer 

dispersion across the entire active layer depth. Scour and fill of buried tracers also varied between 

reaches, with high spatial variation of scour at the local scale (within the reach). Results from this 

study will be compared with results from the literature, including work from a previous 4-year 

particle tracking study on the San Juan River, in section 6.  
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6 Discussion 

Results of surface tracer particle mobility and characteristics of pathlength dispersion are discussed 

in section 6.1, along with a discussion of the influences of flow, grain size, and channel 

morphology. Surface tracer pathlength characteristics are further compared to subsurface tracer 

pathlengths in section 6.2. Results of scour and fill of initially buried tracers as well as burial depths 

of recovered surface tracers are discussed with the literature on the active layer depth in gravel-bed 

rivers and scour risk to physical spawning habitat (section 6.3). Section 6.4 discusses recovery rate 

results on the San Juan River, relating to particle tracking work done on similar gravel bed rivers. 

Lastly, section 6.5 discusses resulting implications on the risk to salmonid species in the San Juan 

River, as well as a discussion of broader implications for restoration work done on similar rivers 

subject to disturbance.  

6.1 Surface particle mobility and pathlength dispersion 

The two year surface tracer dataset collected in this study can provide insight into individual 

particle mobility at pool-tailouts in a large wandering gravel-bed river at three distinct study 

reaches (Bar 6, 7, 15).  For the 2019-20 deployment that saw the 100-year extreme flood event, all 

three study reaches experienced near full mobility of recovered surface tracers. The subsequent 

2020-21 deployment year that was subject to a more moderate flood event (~1.5yr recurrence) saw 

near full mobility at two of three reaches, with the Bar 15 reach subject to partial (~55%) mobility. 

Mobility results are similar to McQueen’s (2019) previous tracer deployment results for the same 

three study reaches, with near full mobility of tracers with the exception of partial mobility at the 

Bar 15 reach for the 2016-17 deployment year that saw a similar flood event (~1yr recurrence) to 

the 2020-21 deployment year that also experienced partial mobility at the Bar 15 study reach.  

Pathlength distances for recovered surface tracers differed between the two deployment years. 

Recovered surface tracers from the 2019-20 deployment year had greater average pathlength 

distances at all three study reaches, ranging from 303m – 394m, relative to pathlength distances of 

tracers from the 2020-21 deployment year as well as to the previous three years of tracer results at 

the three study reaches (McQueen, 2019). The significant increase in average and maximum 

pathlength distances of tracers for the 2019-20 deployment year can be attributed to the 100-year 

flood event (Qp = ~1360m3/s) that occurred January 2020, and will be discussed further in the 
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following subsection. The pathlength distances of tracers for the 2020-21 deployment year with  

Qp = ~735m3s-1, ranged from 139.4m – 253.3m which are similar to results from previous tracer 

deployment years that had comparable peak flood events in 2016-2017 deployment with Qp = 

749m3s-1 and for the 2018-19 deployment year with Qp = 942m3s-1 (McQueen, 2019; McQueen, 

2021).  

Furthermore, average pathlength distances of tracers were much greater compared to results from 

previous tracer tracking studies on similar gravel-bed rivers. Rollet et al. (2008) used PIT tags to 

track particles seeded at the head of gravel bars in the Ain River, France, a large bar-dominated 

gravel-bed river (Qp = 800m3s-1) for a one-year period and saw an average pathlength distance of 

just 50m. On the Durance River, France, that saw a similar peak flood event (Qp = 1156m3s-1) to 

the 100-year flood event for the 2019-20 deployment year on the San Juan, results from a particle 

tracking study with tracers seeded from the mid to lower portion of the gravel bar saw an average 

pathlength distance of 83m for recovered tracers (Chapuis et al., 2015). Differences in average 

pathlength distances between the Durance and San Juan River may be explained by the greater 

average channel width (240m) that characterizes the Durance River (Chapuis et al., 2015) relative 

to the average channel width (67m) of the San Juan study reaches, where flow will be more 

constrained and thus lead to greater pathlength distances of tracers on the San Juan River. 

Discrepancies in pathlength distances observed on the San Juan and previous tracking studies may 

also be in part due to recovery differences, with both the Ain and Durance River having low 

recovery rates (~40%) which may have led to an underrepresentation of particle pathlength 

distances (Rollet et al., 2008; Chapuis et al. 2015). Additionally, differences in seeding locations 

may have an influence in resulting pathlength distances. Both Liebault et al. (2012) and Chapuis et 

al. (2015) noted that tracers seeded closer to the thalweg experienced greater transport distances, 

which is reflective of the higher pathlength distances observed on the San Juan for this study where 

tracers were seeded exclusively in the wetted channel at pool-tailout locations (Liebault et al., 

2012).   

Pathlength distributions of recovered surface tracers differed between deployment years as well as 

between study sites, highlighting the spatial variation of particle dispersion at the reach-scale as 

well as temporal differences that may be explained by differences in annual peak flood events. 

Tracer pathlengths for both deployment years and all three study reaches followed either a multi-
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modal or bi-modal right-skewed distribution, similar to previous tracer results on the San Juan 

River and provides further validation of the bi- and multi-modal pathlength distributions that 

resulted from flume experiments of bar-dominated channels (Pyrce & Ashmore, 2003a; McQueen, 

2019; McQueen et al., 2021) . For two of the three reaches, individual pathlength distributions also 

reflected large-scale bar development patterns that are typical of large wandering gravel-bed rivers, 

with high deposition at the apex and bar-pool margins (Church & Rice, 2009). Pathlength 

distributions from this study indicate a strong morphological role in particle dispersion at the reach 

scale, that is complicated by the influence of both flow and grain-size. 

6.1.1 Influence of Flow 

The influence of flow on mobility rates and pathlength distances for this study as well as three 

previous deployment years (McQueen et al., 2021) were tested against three flow metrics, peak 

discharge (Qp) which considers only the magnitude, as well as excess energy of the peak flood 

event (𝛺P) and total excess energy of all flood events above bankfull (𝛺T) which considers both 

magnitude and duration of flows.  In general, mobility rates increased with increasing flow on the 

San Juan River, with the additional two years of data from this study strengthening the relationship 

from McQueen’s (2021) results because of the January 2020 extreme flood event, and agrees with 

the literature (Wilcock, 1997; Haschenburger & Wilcock, 2003; Papangelakis et al., 2016). 

However, there was no clear relationship between mobility rates and any of the three flow metrics, 

which may be caused by the limited sample size (n = 5). Furthermore, all five deployment years 

saw near full mobility, with only two years where partial mobility occurred at one of the study 

reaches, leaving little variation to explain. This suggests that on the San Juan River, most flows 

near or above bankfull (1.5-2 year flood event) cause full mobilization of the bed. Previous results 

from a particle tracking study in a small stream using magnetic tracers differ, where the bed 

remained in a state of partial-mobility during a 2-year flood event and only reached full mobility 

during a 7-year flood event, however the San Juan River is of much larger size and subject to peak 

flood events up to 103 higher (Haschenburger & Wilcock, 2003). Differences in mobility rates 

between the San Juan River and the majority of previous particle tracking studies may be explained 

by the armored bed that is more common for smaller streams and rivers (Wilcock & McArdell, 

1997; Church et al., 1998) and highlights the need for continued field observations on particle 

mobility in large gravel bed rivers.  
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Pathlength distances for all three study reaches generally increased with increasing flow, a 

dominant trend throughout the literature (Hassan et al., 1992; Schneider et al., 2014; Bradley, 

2017). Pathlength distances showed high correlation to all three flow metrics with two study 

reaches yielding strongest relationships with the flow metric that only considers the magnitude of 

the peak flood event (Qp), although there is significant variation left unexplained and the small 

sample size (N = 5) limits the validity of any significant relationships seen. The weak relationship 

between pathlength distances and the two flow metrics that considers duration, suggest that particle 

transport in the San Juan River is mostly controlled by the magnitude of peak flows, which supports 

findings from a recent analysis on a large tracer dataset that found a strong relationship between 

peak stream power (a similar flow metric) and pathlength distances, while also noting large 

amounts of scatter in the data (Vasquez-Tarrio et al., 2018).  

Differences between reaches are apparent, with tracer pathlength distances at the Bar 15 study 

reach being most strongly correlated to the flow metric that considers both magnitude and duration 

of all flows above bankfull (𝛺T). Further evidence of between-reach differences is seen in the weak 

relationships between scaled pathlength distances of all study reaches combined and both 𝛺P and 

𝛺T. Reach-scale differences between the relationship of pathlength distance and increasing flow on 

the San Juan River suggests a strong morphological influence on tracer dispersion, which was also 

seen by Vasquez-Tarrio et al. (2018) where a meta-analysis of pathlength distances in relation to 

flow exhibited some scale dependence on the channel morphology. Additionally, individual tracer 

pathlengths on the San Juan River rarely exceeded one riffle-pool-bar unit, even for the deployment 

year subject to the most extreme flood event (2019-20), providing further evidence of 

morphological control on tracer dispersion at the reach scale. 

6.1.2 Influence of Grain Size 

No influence of grain size on particle mobility was observed in this study which was also the case 

for previous particle tracking work on the San Juan River, as near full mobilization occurred for 

all grain size classes, with few exceptions (McQueen, 2019). Previous studies done on smaller 

streams also saw limited grain size influence on mobility of particles < D50 (Church & Hassan, 

1992; Papangalakis & Hassan, 2016; Ferguson & Wathen, 1998), thus offering a possible 

explanation for the lack of observed grain-size trends on the San Juan River where the grain size 

distributions were skewed to the smaller size classes. Furthermore, McQueen (2019) also noted 
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that  stronger size-sorting effects due to complex bar development and morphological patterns 

suggests the controls on grain size sorting and overall tracer dispersion may be different for larger 

rivers compared to smaller, uniform streams.  

For the 2019-20 deployment year, subject to the 100 year flood event, there was a general trend of 

decreasing pathlength distance with increasing grain size, which has been well documented in the 

literature (Church & Hassan, 1992; Milan et al., 2002; Liebault et al., 2012; Schneider et al., 2014). 

Furthermore, the 2019-20 study year saw differences in grain size trends between study reaches, 

suggesting the relationship between grain size and pathlength distance may vary due to the 

dominant role of channel morphology, especially in reaches that have more complex morphological 

features. However, for the following deployment year that saw a more moderate peak flood event, 

either very weak or no grain size trends were observed at the three study reaches, which was also 

the result from previous tracer work on the San Juan River (McQueen, 2019). Results from the San 

Juan River suggest grain size influences may be most apparent during years of more extreme food 

events when the majority of morphological work to the channel occurs, especially in relation to 

size-sorting processes during bar formation which has also been previously observed in flume 

experiments at channel forming discharges (Pyrce & Ashmore, 2005).  

Results from the analysis of tracer deposition as well as grain size distributions of the gravel bars 

at the three study reaches taken in July 2020, exhibit downstream fining and  size-sorting patterns 

on the San Juan River. In almost all cases, the larger two size classes of tracers saw high deposition 

at the head of the bar, with deposition at the bar tail being almost exclusively of the smaller two 

size classes. Downstream fining is also apparent in the grain size distributions of the head, apex, 

and tail of the gravel bars at all three study reaches for the 2019-20 year. Observations of size-

sorting and downstream fining of gravel bars on the San Juan River provide direct field evidence 

to support 

6.1.3 Influence of Channel Morphology 

Pathlength distribution characteristics shows strong evidence of the underlying morphological 

influence on bedload transport rates in large wandering gravel bed rivers and supports previous 

findings of individual particle dispersion linked to overall bar development and channel change on 

the San Juan River (McQueen et al., 2021). The apparent trapping zones of tracers focused at the 
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bar apex as well as bar-pool margins persistent over the five years of sediment tracking on the San 

Juan River (McQueen et al., 2021) provide field based evidence to corroborate flume observations 

of individual tracer displacement linked to bar development (Pyrce and Ashmore, 2003a; Kasprak, 

2015). Furthermore, the tendency of tracers to remain within one riffle-pool-bar unit even during 

years of extreme flood events also suggests a strong underlying morphological control on bedload 

transport rates with implications for similar wandering gravel-bed rivers with complex bar 

development. 

The increased trapping zones linked to bar development during years of higher peak flood events 

identified by McDowell and Hassan (2021) using field based probability modelling agree with 

observations on the San Juan River; where an increased number of particles were trapped at the bar 

apex and channel margins during the 2020-21 deployment year subject to the 100-year flood event. 

However, a study on long-term topographic change on the Lower Yuba River, California suggests 

moderate flood events with longer duration flooding leads to greater rates of geomorphic 

effectiveness (channel change) than higher magnitude flooding (Gervasi et al., 2021). This is in 

contrast to observations on the San Juan River, although differences in hydrological regime may 

provide an explanation, as well as the different temporal scales between studies.  

In years of higher peak-flood events, tracer pathlength tended to follow a symmetrical distribution, 

compared to multi-modal and positively-skewed distributions observed for years subject to more 

moderate-flood events which supports findings in the literature (Pyrce and Ashmore, 2003a; 

McQueen et al, 2021; McDowell and Hassan, 2021). Furthermore, the shorter pathlength modes 

and minimal trapping rate of tracers at the bar apex and bar-pool margin observed at the Bar 15 

study reach can be linked to the overall lower rate of channel change relative to the other two study 

reaches, supporting the idea of individual tracer displacement linked to long-term channel 

evolution (Kasprak et al., 2015; McDowell and Hassan, 2021; Gervasi et al., 2021).  

Evidence of lateral accretion of gravel bars and subsequent erosion to the opposite bank from 

observations of individual tracer displacement and channel change on the San Juan River is similar 

to patterns of bar development and overall channel evolution previously described for wandering 

style gravel-bed rivers (Ham, 2005; Church and Rice, 2009). Previous studies that observed long-

term channel changes in morphologically-complex rivers found evidence of increased channel 

avulsion and aggradation due to increased sediment supply to the river (East et al., 2017; Gervasi 
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et al., 2021), strikingly similar to observations of channel change on the San Juan River which was 

subject to increased sediment supply due to logging activities in the latter half of the 20th century 

(NHC Ltd, 1994). High rates of sediment transport and subsequent erosion to banks in the San Juan 

River can lead to reduction of pools and changes to transitional areas, specifically between pools 

and riffles (pool tailouts) (Hanrahan, 2007) and has important implications for physical salmon 

habitat.  

6.2 Comparison of Pathlength Dispersion Between Surface and Buried Tracers 

Recovered mobilized tracers that were initially buried at either 10, 20, or 30cm depths were 

analyzed to better understand how subsurface mobilization and subsequent pathlength dispersion 

contributes to the bedload volume within the study reach and compares to surface tracer dispersion. 

Subsurface and surface pathlength distributions of mobilized recovered tracers were strikingly 

similar at two of the three reaches especially for the 2019-20 deployment year subject to the 

extreme flood event with average pathlength distances also very similar. High trapping of 

subsurface and surface tracers at distinct depositional zones relating to the development and 

maintenance of morphological features, specifically gravel bars can provide an explanation for the 

apparent similarities (Mcdowell and Hassan, 2021). Furthermore, surface and subsurface 

pathlength distributions saw fewer similarities with subsurface tracers travelling shorter distances 

than surface tracers at the Bar 15 reach. At this reach, the morphological features are less developed 

and tracer dispersion may be more so governed by flow and grain size, leading to greater spatial 

and temporal variation of particle deposition which have been recognized as primary controls on 

overall bedload volumes in riffle-pool channels with more simple morphologies (Vasquez-Tarrio 

et al., 2021).  

To the author’s knowledge, no other studies have been done to assess and compare subsurface and 

surface pathlength distributions in a morphologically complex river system. This is also highlighted 

by Liebault & Laronne (2008) who used scour chains and painted surface tracers to estimate the 

bedload volume in the Esconavette Torrent, a small gravel-bed tributary, but highlighted 

uncertainty due to the underlying assumption that subsurface (scour chains) and surface (painted 

tracers) dispersion results in similar bedload volumes. Additionally, the only other use of RFID 

tracers buried in the subsurface is a recent study by Brousse et al. (2018), where active RFID tracers 

are seeded in a fixed column to survey event-based scour depths, therefore no information on 
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subsequent pathlength dispersion of subsurface particles can be gathered. Observations of 

subsurface and surface pathlength distributions in the San Juan River suggest reach-scale 

differences that are dependent on the morphological complexity of channel features. Results from 

this study on the San Juan River can provide novel insight for predicting overall bedload volumes 

using the morphological approach, however further research is required that captures a smaller 

temporal scale (event-based) and greater spatial variation in the deployment strategy to accurately 

quantify bedload transport rates in morphologically complex gravel-bed rivers.   

6.3 The Active Layer Depth 

6.3.1 Burial Depths of Surface Tracers 

Burial depths of surface tracers varied spatially, and a large proportion of tracers were found at 

depths exceeding twice the D90, which aligns with previous findings on the San Juan River 

(McQueen et al., 2021) and is commonly cited in the literature as the maximum value of the active 

layer depths in gravel bed rivers (Hassan, 1990). Burial depths of mobilized surface tracers also 

appear to be governed by flow strength, with greater median burial depths at two of the three study 

reaches during the 2019-20 deployment year subject to the extreme flood event, with previous 

findings of positive trends between active layer depths and flow metrics in the literature 

(Houbrechts et al., 2012; Mao et al., 2016). Furthermore, burial depths varied between study 

reaches, with significantly smaller median burial depths observed at the Bar 15 reach in both 

deployment years. Bar 15 is subject to lower rates of annual morphological change to the channel 

and subsequently experiences less elevation change (scour and fill) on an annual basis (McQueen 

et al., 2021) which may help to explain the smaller burial depths relative to the other two study 

reaches. This suggests the reach-scale morphology and complexity of the macro-bedform features 

may influence burial, with greater burial in more complex river reaches and those with greater 

elevation changes (scour and fill) during flood events. This observation is supported by a recent 

meta-analysis, which found that dominant macro-bedforms in riffle-pool channels control the way 

flow scales to active depths pointing towards an important morphological influence between flow 

and active layer depths (Vasquez-Tarrio et al., 2021).  

The high rate of tracer burial beyond the maximum antenna detection depth (~0.5m) in the San 

Juan River suggests the current use of 2D90 as the maximum exchange depth of the active layer 

may lead to inaccuracies if used to predict overall bedload transport rates in large gravel-bed rivers. 
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In addition to tracer burial beyond the maximum antenna detection depths, low mobilization as 

well as a large proportion of tracers depositing in the wetted channel where burial depths cannot 

be measured were limitations to burial depth analysis for this study, and have also been noted in 

previous tracer work on the San Juan River (McQueen et al., 2021). Continued studies on the active 

layer depth, specifically for large dynamic rivers are needed, with promising recent work of passive 

(Papangelakis et al., 2019) and active RFID tracking (Brousse et al., 2018) methods, which along 

with increased antenna detection depths can improve the quality of data and therefore minimize 

the knowledge gap on active layer depths.   

6.3.2 Scour and Fill of Buried Tracers 

Full scour of all tracers at 10, 20, and 30cm depths occurred at the Bar 7 reach for both deployment 

years. Only partial or near full scour occurred at the other two seeding sites for both deployment 

years, highlighting the spatial variation of scour at both the reach scale and at the local scale 

(seeding site). Interestingly, scour rates at the Bar 6 study reach were greater for the deployment 

year that saw a more moderate flood event, compared to the previous deployment year that was 

subject to the extreme flood event where only two tracers were scoured. In summary, with the 

limited sampling data collected, scour at channel margins near pool tailouts in the San Juan River 

at the three study reaches appears to be unpredictable beyond the fact that scour up to and greater 

than 30cm is possible in some locations in any year subject to moderate flood events. 

At the local scale, cross-sectional and longitudinal spatio-temporal variability of scour depths has 

been well documented in the literature (Rennie and Millar, 2000; May et al., 2009; Merideth et al., 

2018) and is consistent with results on the San Juan River. In a mountain river in Utah, U.S.A, 

Meredith et al. (2018) measured 4cm differences in scour depths along a longitudinal gradient. The 

deployment strategy of longitudinal transects was also used for this study, and differences in scour 

depths within seeding sites was also observed with only some of the tracers at the same initial burial 

depths being scoured at 10, 20, and 30cm depths at two of the reaches. Furthermore, variability in 

net scour and fill depths suggest differences much greater than 4cm reported by Meredith et al., 

2018, where maximum differences in net scour or fill of tracers that remained in place were up to 

25cm. Rennie & Millar (2001) found no spatial autocorrelation in scour depths at a local (1m) 

scale, and suggested bed roughness variability and topography as a potential explanation. The 

complex morphological features attributed to the Bar 6 study reach in the San Juan River, which 
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contributes to bed roughness and variable topography at the seeding site may also be a potential 

explanation for the spatial variation in scour depths at this site. Furthermore, a migrating 

depositional gravel sheet has been identified at the Bar 6 study reach from previous tracer work 

(McQueen et al., 2021) which has been noted as a likely control on active depths in riffle-pool 

rivers with high sediment supply (Vasquez-Tarrio et al., 2021) and may explain the minimal scour 

experienced at this site for the 2019-20 deployment year subject to the most extreme flood event 

on record.  

Peak stream power of the flow event as well as shear stress has been commonly cited in the 

literature as a control on scour depths (Rennie & Millar, 2000; May et al., 2009; Meredith et al., 

2018) and overall scour and fill (active layer) depths (Gottesfeld et al., 2004; Habersack et al., 

2008; Mao et al., 2016). However, the influence of flow is less apparent from results on the San 

Juan River, where greater scour occurred in years of weaker flood events at one of the three reaches 

suggesting that local bed texture governed by reach-scale channel morphology that varies annually 

is the primary control on scour depths near pool-tailout locations. However the limited data from 

only two deployment years with a small number of tracers buried at each site, as well as the larger 

temporal scale of the study most likely is not  sufficient to identify the influence of flow.  

Overall, evidence of scour at up to 30cm depths at channel margin locations on the San Juan River 

does not agree with previous findings in the literature which suggest only limited scour occurs 

away from the channel centreline (thalweg) (Montgomery et al., 1996; Rennie & Millar, 2000; May 

et al., 2009 Meredith et al., 2018). Scour depths up to 30cm for some buried tracers and subsequent 

net fill up to 50cm depths on the San Juan River provide further evidence that the exchange depth 

of the active layer, and thus the actual bedload volume may exceed previous theorized limits used 

in sediment transport modelling (Hassan, 1990; Haschenberger, 1999; Hassan & Bradley, 2017) 

with implications for other large-gravel bed rivers with complex morphology (McQueen et al., 

2021). Implications of scour risk for physical salmon habitat will be discussed in section 6.5.     

6.4 Tracer Recovery 

Overall, recovery rates for surface tracers were high for the two deployment years of this study, 

and similar to previous recovery results on the San Juan River (McQueen et al., 2021). Recovery 

rates ranged from 60 – 76% for surface tracers at the three study reaches, with similar recovery 
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rates seen between years even with the extreme flood event for the 2019-20 deployment that 

resulted in greater pathlength distances and overall tracer dispersion. Furthermore, there appears to 

be differences in recovery between grain-size classes, with smaller grain size classes subject to 

lower recovery rates which was also noted by McQueen et al. (2021) on the San Juan River and 

other particle tracking studies (Papangelakis, 2015) which can lead to misrepresentation of tracer 

dispersion data across grain size classes. However, a recent classification system proposed by 

MacVicar and Papangelakis (2021) provides a potential strategy to be able to accurately infer tracer 

movement of unrecovered tracers, although this application requires a deployment strategy that 

monitors tracer positions over multiple events or specified time-intervals, which is not the case for 

tracer work on the San Juan River.  

Although recovery rates were relatively high when compared to previous particle tracking work on 

large rivers (Rollet et al., 2008; Chapuis et al., 2015), limitations still exist. Tracer burial beyond 

maximum antenna detection depths as well as the clustering of tracers within the same area leading 

to signal interference seems to be a plausible limitation on tracer recovery on the San Juan River 

(McQueen, 2021) and has been noted in the literature (Lamarre et al., 2005; Chapuis et al., 2015; 

Arnaud et al., 2015). A recently designed synthetic tracer “wobble stone” which ensures the proper 

vertical orientation of the PIT tag to increase detection reading by the antenna, is a potentially 

viable solution to increase tracer recovery (Papangelakis et al., 2017). Furthermore, deep pools that 

are a potential high trapping area especially for smaller grain size classes of tracers (Milan et al., 

2013) were searched using a boat towing a large antenna system and is a new recovery strategy 

used on the San Juan River, which resulted in a significant proportion of tracers recovered. Arnaud 

et al. (2017) also employed a similar boat surveying strategy which proved to be a successful 

recovery strategy on the Old Rhine River, and may be a viable recovery strategy for tracer work in 

large gravel-bed rivers.  

The novel deployment strategy of initially buried tracers across longitudinal transects also resulted 

in high recovery rates, ranging from 69 – 100% for the three study reaches over both deployment 

years. For the Bar 7 reach where 100% of tracers were subsequently mobilized, recovery rates were 

lower, and more closely matched to recovery rates of surface tracers. The ~1m spacing of initially 

seeded buried tracers did not lead to signal interference and recovery remained high when all 

tracers stayed in place. As well, most tracers that remained in place and were subject to high burial 
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were also able to be recovered by locating the initial seeding site and digging along the longitudinal 

transect. Overall the deployment strategy of buried tracers seems to be a viable method to assess 

scour and fill as well as active layer depths in large gravel bed rivers. A similar, yet more 

constrained deployment strategy for use of RFID tracer tracking in the subsurface, was proposed 

by Brousse et al. (2018) by drilling a vertical cylindrical column of active RFID tracers into the 

subsurface of the bed, which is the only other study that has used RFID tracers, rather than scour 

chains to study active layer depths. A limitation to this study was the inability to bury tracers closer 

to the channel thalweg (centre) where spawning activities occur on the San Juan River (Burt and 

Palfrey, 2011). As particle tracking technology continues to be developed, deployment strategies 

that allow for unconstrained tracers (tracers that can become mobilized and dispersed) to be buried 

in the deepest part of the wetted channel should be considered, to further understand the active 

layer depth and subsequent particle dispersion at the subsurface.  

6.5 Implications for Salmon Habitat and Future Restoration Work 

The overarching goal of geomorphic investigations on the San Juan River is to provide background 

information to help improve and restore physical habitat for salmonid species in the river  (NHC 

Ltd, 1994; Burt and Palfrey, 2011). One of the main objectives of this study directly aligns with 

this goal, which is to examine scour depths at channel margins, adjacent to spawning habitat at 

pool tailout locations. Furthermore, reach-scale annual channel change was also observed along 

with individual particle dispersion at the three study reaches which provides useful insight into the 

overall channel stability of the San Juan River. 

During winter high flows, salmon eggs buried in the subsurface at pool tailouts are at risk of bed 

erosion (scour) and consequent decreased survival rates of embryos (Montgomery et al., 1996; 

Baxter and Hauer, 2000). Results from this study show that scour can occur at some channel margin 

locations at up to 0.3m depths during any year subject to moderate flood events, at or above 

bankfull. Although exact egg burial depths for salmonid species spawning in the San Juan River is 

unknown, commonly used criteria in the literature suggest egg burial depths begin at 0.1 – 0.15m 

depths for all five Pacific salmonid species in the San Juan River (Devries, 1997). Therefore, results 

suggest salmonid eggs in the San Juan River may be at risk of scour on an annual basis. Although 

scour could not be directly measured at the channel thalweg, where spawning occurs in the San 

Juan River, scour depths greater than egg burial depths measured at channel margins can be used 
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as an indication of scour risks, which may be even greater closer to the channel centre which has 

been a dominant observation in the literature (Montgomery et al., 1996; May et al., 2009; Merideth 

et al., 2018).  

Furthermore, individual tracer dispersion related to high rates of bar development and subsequent 

erosion of the opposite bank, recognized in annual channel change observations at the three study 

reaches, suggest the San Juan River may be relatively unstable in some areas. High rates of bank 

erosion can also lead to increased fine sediment contributed to the river, and may have 

consequences for physical spawning habitat due to infilling of fines leading to suffocation of buried 

salmonid eggs (Buxton et al., 2015). At the reach scale, evidence of local variation in sediment 

entrainment and subsequent deposition associated with the formation of bars and islands, may lead 

to a decrease in important physical habitat for salmonids such as deep pools and transitional areas 

(pool tailouts) (Hanrahan, 2007). Overall, particle dispersion, active layer depths, and overall 

channel change provide evidence of a high sediment supply at the three study reaches on the San 

Juan River. This may be a consequence of logging activities that occurred during the latter half of 

the 20th century, although sufficient knowledge on sediment movement through the mainstem 

channels and tributaries of the San Juan River, make it difficult to accurately identify all factors 

(NHC, 1994). Individual particle tracking at the surface and subsurface, together with aerial 

imagery to identify concurrent reach-scale annual channel change, has provided useful insight into 

the overall channel stability at the three study reaches while also providing important information 

on the risk of scour at known salmon spawning habitat in the San Juan River.  
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7 Conclusions 

This study involved a two-year dataset of tracked bed particles seeded at the surface and subsurface 

at three distinct study reaches in the wandering, gravel-bed San Juan River. Results from this 

particle tracking study show high surface particle mobility at pool tailout locations, with near full 

mobility experienced, even during moderate flood events. This differs from particle tracking results 

on smaller streams and rivers, where full mobilization of surface particles only occurs during the 

most extreme flood events. Average pathlengths of surface tracers ranged from 139m – 394m over 

the two deployment years, which is similar to previous tracer results on the San Juan River 

(McQueen et al., 2021). Furthermore, results from the flow analyses that also incorporated particle 

tracking data from previous tracer work on the San Juan River (McQueen et al., 2021) indicate that 

the magnitude of the peak flood event seems to be a greater control on expected pathlength 

distances, rather than flow duration. 

Pathlengths of subsurface and surface tracers seeded at the same reach saw similar distributions. 

As well, less than 10% of tracers travelled farther than one riffle-pool-bar unit even during the 

2019-20 deployment year subject to the extreme flood event. This suggests a strong morphological 

control on individual pathlength dispersion along with the influence of flow. Furthermore, 

identifiable trapping areas linked to bar development at the bar apex margins saw consistently high 

tracer deposition year to year, with observations of significant erosion to the opposite bank. This 

provides key insight into the processes of bar development at the individual particle scale in large 

wandering gravel-bed rivers, and also provides information on the relative channel stability at the 

three study reaches.   

Grain size did not appear to influence particle mobility. However a significant trend of decreasing 

pathlength distance with increasing grain size was observed for surface tracers for the 2019-20 

deployment year. Results suggest grain size influences may be most apparent during years of more 

extreme flood events when the majority of morphological work to the channel occurs, especially 

in relation to size-sorting processes during bar formation. Although all sizes are mobilized, 

morphologically significant floods allow size sorting on bars with finer particles travelling to the 

bar tail while coarser particles, although mobile, deposit at the bar head or apex. 
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Scour of tracers initially seeded  in the subsurface varied between study reaches and also had high 

spatial variation within the study reach. Results indicate that in some locations in the San Juan 

River, scour may occur up to 0.3m depths, even in years of moderate flood events. Scour and fill 

results of initially buried tracers, along with observations of surface tracer burial depths, indicate 

the active layer depth in the San Juan River may be closer to 30cm; which is much greater than the 

equivalent to 2D90 (~20cm), commonly used in sediment transport modelling (Hassan et al., 1990). 

Greater active layer depths in the San Juan River may be in part due to local bed texture, governed 

by the reach-scale morphology. Scour up to 0.3m depths at pool tailout channel margins, on an 

annual basis, may mean significant risk for salmon spawning survival, although more research is 

needed to better understand spawning depths and locations in the San Juan River. Furthermore, 

significant bank erosion related to overall channel instability at the three study reaches, may also 

lead to increased infilling of fines at pool tailouts, putting salmon spawning in the San Juan River 

at an even greater risk of embryo loss. 

Overall, particle tracking results from this study provide important field observations to improve 

our understanding of sediment transport dynamics in large gravel bed rivers with complex 

morphology. However, due to the difficult nature of field data collection in large dynamic rivers, 

gaps in knowledge still exist. Future efforts should include computational flow modelling to map 

details of bed shear stress variation along with greater variability in seeding locations within the 

reach to better understand the relationship between flow, bed morphology, and subsequent tracer 

dispersion. Furthermore, if feasible, greater efforts would have been made by the author to map 

annual elevation change using digital elevation models as well as, using aerial surveys to better 

capture grain size sorting patterns of the gravel bars.  
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Appendix A – UAV Specifications  

 

Table 0.1. Specifications for the DJI Phantom 4 Advanced camera 

 

 

 

 

Table 0.2. GCP coordinates and precision for the Bar 6 study reach for July 2020 drone survey. 

GCP Northing Easting Elevation (m) 

Standard 

Deviation 

Northing (m) 

Standard 

Deviation 

Easting (m) 

Standard 

Deviation 

Elevation (m) 

6A 5382152.870 409081.196 9.262 0.0159 0.0415 0.0076 

6B 5382158.387 409102.328 10.078 0.0103 0.0118 0.0010 

6C 5382115.594 409108.336 10.218 0.0055 0.0072 0.0099 

6D 5382083.450 409081.784 10.058 0.0210 0.0386 0.0080 

6E 5382085.612 409137.080 10.142 0.0266 0.0236 0.0109 

6F 5382053.594 409152.733 10.596 0.0193 0.0094 0.0009 

6G 5381990.557 409075.262 9.581 0.0401 0.0131 0.0025 

6H 5381997.890 409164.952 11.295 0.0222 0.0161 0.0010 

6I 5381952.886 409096.171 9.726 0.0057 0.0136 0.0021 

6J 5381914.019 409136.673 9.820 0.0179 0.0016 0.0016 

6K 5381945.866 409173.405 13.124 0.0085 0.0135 0.0025 

6L 5382033.838 409226.927 11.351 0.0380 0.0056 0.0016 

6M 5382048.947 409231.466 11.394 0.0179 0.0251 0.0025 

6N 5381999.620 409239.445 11.867 0.0529 0.0612 0.0143 

6O 5381949.501 409206.388 12.824 0.0007 0.0214 0.0102 

6P 5381968.002 409278.644 11.823 0.0189 0.0009 0.0187 

6Q 5381885.608 409200.876 10.043 0.0059 0.0075 0.0053 

6R 5381891.120 409238.119 9.489 0.0102 0.0203 0.0026 

6S 5381923.332 409303.994 10.394 0.0116 0.0147 0.0019 

 

 

DJI Phantom 4 Advanced 

Model FC6310S 

Focal length 8.8 

F-stop F/5 

ISO 100 

Shutter 1/320 

35mm focal 24 
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Table 0.3. GCP coordinates and precision for the Bar 7 study reach for July 2020 drone survey. 

 

 

 

 

 

 

  

 

 

GCP Northing Easting Elevation (m) 

Standard 

Deviation 

Northing (m) 

Standard 

Deviation 

Easting (m) 

Standard 

Deviation 

Elevation (m) 

7A 5382137.559 408666.275 11.478 0.0020 0.0060 0.0019 

7B 5382136.604 408683.817 11.779 0.0103 0.0162 0.0022 

7C 5382139.788 408708.122 11.680 0.0021 0.0011 0.0024 

7D 5382103.451 408724.533 10.489 0.0020 0.0048 0.0028 

7E 5382136.491 408728.81 11.994 0.0033 0.0058 0.0026 

7F 5382133.358 408758.438 12.005 0.0050 0.0083 0.0021 

7G 5382113.725 408778.406 10.815 0.0047 0.0029 0.0028 

7H 5382103.948 408815.224 10.589 0.0031 0.0127 0.0044 

7I 5382120.911 408877.185 12.438 0.0115 0.0051 0.0013 

7J 5382201.26 408480.532 10.535 0.0019 0.0109 0.0054 

7K 5382173.478 408503.141 10.621 0.0014 0.0011 0.0003 

7L 5382144.11 408528.602 10.377 0.0016 0.0014 0.0018 

7M 5382177.618 408533.59 10.797 0.0019 0.0016 0.0005 

7N 5382129.836 408558.714 10.680 0.0037 0.0133 0.0023 

7O 5382163.866 408562.577 11.022 0.0017 0.0081 0.0013 

7P 5382146.481 408596.367 11.282 0.0051 0.0077 0.0022 

7Q 5382121.341 408596.508 10.568 0.0178 0.0089 0.0097 

7R 5382141.493 408634.554 11.101 0.0037 0.0037 0.0042 
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Table 0.4. GCP coordinates and precision for the Bar 15 study reach for July 2020 drone survey. 

GCP Northing Easting Elevation (m) 

Standard 

Deviation 

Northing (m) 

Standard 

Deviation 

Easting (m) 

Standard 

Deviation 

Elevation (m) 

15A 5381470.873 405378.999 8.287 0.0110 0.0001 0.0057 

15B 5381410.167 405389.775 5.693 0.0061 0.0049 0.0039 

15C 5381431.247 405306.632 5.579 0.0004 0.0187 0.0075 

15D 5381479.065 405416.980 8.461 0.0013 0.0002 0.0058 

15E 5381473.760 405469.202 9.034 0.0002 0.0100 0.0003 

15F 5381466.776 405516.297 8.563 0.0037 0.0108 0.0102 

15G 5381406.017 405453.286 5.878 0.0001 0.0119 0.0029 

15H 5381479.116 405562.691 9.071 0.0053 0.0102 0.0108 

15I 5381489.271 405615.813 10.049 0.0044 0.0068 0.0045 

15J 5381576.665 405731.070 5.993 0.0056 0.0070 0.0053 

15K 5381525.421 405672.230 8.122 0.0047 0.0067 0.0026 

15L 5381407.475 405512.141 5.919 0.0008 0.0085 0.0012 

15M 5381417.952 405570.874 5.627 0.0052 0.0011 0.0022 

15N 5381444.711 405629.211 5.620 0.0027 0.0083 0.0047 

15O 5381484.187 405688.488 5.605 0.0143 0.0021 0.0015 

15P 5381464.528 405250.445 5.641 0.0087 0.0210 0.0124 

15Q 5381475.911 405326.791 6.246 0.0107 0.0096 0.0124 
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