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Abstract 

In this study, the use of pyrolytic cracking for managing non-recyclable plastic waste by 

conversion into value-added liquid and gaseous products was investigated. A single-stage 

reactor and a novel, two-stage reactor set-up were used for experiments involving 

polyethylene and polypropylene. Parameters including feedstock composition, feed rate, 

temperature and residence time were studied. The two-stage approach was investigated to 

overcome existing transportation limitations involved in the typical plastic waste lifecycle. 

Bulky plastic collected in towns and cities must be transported to industrial facilities 

typically located elsewhere for reprocessing. Both HDPE and LDPE showed promising 

results for olefin recovery with ethylene gas yields of 26.6% and 34.1% of the original 

polymer, respectively. A maximum hydrogen yield over all the experiments of 46.2% which 

was obtained using LDPE. The economic feasibility of scaling up the processes was 

analyzed. It was found that the two-stage set up increased the gas yields of both hydrogen 

and ethylene and rendered the process to be economically viable with a payback period of 3 

years.  
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Summary for Lay Audience 

The persistence and dispersion of plastic waste has been proven to be a very visible and 

damaging environmental issue. Enhanced by the COVID-19 global pandemic, the world’s 

plastic use and consumption is drastically increasing. New technologies need to be developed 

to address concerns of waste accumulation. 

In this study, a thermochemical technology called pyrolysis was used to convert plastic waste 

into value added products. Pyrolysis involves the thermal decomposition of polymers in the 

absence of oxygen at elevated temperatures. The aim of this process is to deconstruct the 

polymer materials back into their “building block” monomer components, so that new plastic 

can be remade of the same quality as the virgin material. In this study, an analysis was 

performed on plastic feedstock demonstrating the ability to convert an overall percentage of 

34.1% into the gaseous monomer form.  

Other products from pyrolysis include oil and other gaseous components. The oil collected 

showed promise to be used as a fuel, and the other gas components can be recycled back to 

the process for use in powering the plant. An economic evaluation was done to demonstrate 

the economic feasibility of this system.  
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1 Introduction and Background 

 

1.1 Research Motivation 

Plastic waste pollution has become an issue that is heavily scrutinized by the international 

community. Most plastics used today are derived from fossil hydrocarbons. They are 

often not biodegradable [1] . In 2015, the global production of resins and fibers was 

estimated to be 380 Mt. [2] Industrial development has pushed the manufacturing and 

disposal of plastics [2]. Plastic products play an important role in society, as they provide 

advantages of being lightweight, and versatile over similar materials. However, their 

improper disposal can lead to the contamination of the environment [2]. Plastic pollution 

has become a concern for marine and freshwater ecosystems as well as soil ecosystems. 

Some researchers have suggested that plastic waste is so pervasive in the environment if 

could be used as a geological indicator for the proposed Anthropocene era [3]. 

Microplastics, defined as plastics smaller than 5 mm [4], have been investigated due to 

their potential impact on health. Microplastics can be released into the environment 

through two different sources, primary and secondary [5]. Primary microplastics are 

produced as smaller sizes and enter the environment as such. An example would be 

microbeads in personal care and cosmetic products [6]. Secondary microplastics are 

derived from plastic waste being dispersed into the environment and undergoing various 

forms of degradation to smaller sizes [7]. Studies suggest that when microplastics enter 

the body they can pass through the intestinal barrier and cause negative health effects or 

further serve as a vector for microorganisms and/or toxic chemicals [7]. Smaller 

microplastics have the potential to irritate cells and tissue as a foreign presence [4]. In 

2018, China banned the importation of plastic waste from other countries. This ban 

pushed richer countries to export their plastic waste to developing countries. However, in 

2019 the United Nations’ Basel Convention was amended to include plastic waste. Now 
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many countries, including Canada, must develop initiatives to handle their own plastic 

waste [8]. This has created an incentive for developments in improving and extending 

recycling technologies. In Canada 3 million tonnes of plastic waste reach their end of life 

annually, with only 9% of that being recycled [9] . In 2016, an estimated 29,000 tonnes 

found its way to pollute the natural environment [9]. This leaves a gap that should be 

bridged with innovative solutions.  

There are several effective options that can be used to process and repurpose plastic 

waste. Mechanical recycling can be used to convert recycled material into new plastic 

products. However, this involves the degradation of the polymers, resulting in limitations 

with using mixed plastics, composite blends, and contaminated polymers. The low cost of 

virgin plastics reduces the economic feasibility of this process [10]. Chemical recycling, 

where the plastic’s polymer chain is broken down into its monomer components, is seen 

as a favorable alternative because it allows for recycled plastic to be created with the 

same quality as the virgin material. Pyrolysis is a form of chemical recycling that 

employs thermal decomposition in an oxygen-free environment and will be examined 

under the scope of this thesis.  

This study introduces an innovative two-stage approach for recycling plastic waste. The 

first stage will utilize thermal decomposition techniques to transform the solid plastic 

waste into a liquid oil that can be easily transported from waste collection sites located 

within municipalities to virgin plastic manufacturing locations, typically located away 

from major urban centres. This study represents an original contribution to the 

management of plastic waste through the utilization of a secondary furnace to further 

crack down pyrolysis oil/waxes into the monomer building blocks that can be utilized for 

repolymerization. In this thesis, continuous pyrolysis will be discussed to convert plastic 

waste to value-added oil and gas products. I will elaborate on the effects of reactors’ 

temperature, residence times, feed rates, and feed compositions on the yields and quality 

of the products.  
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1.2 Literature Review  

 

1.2.1 Thermoplastics and Thermosetting Polymers 

One key characteristic that is used to classify polymers is the glass transition temperature. 

With an amorphous polymer, the temperature at which the structure shifts towards a 

viscous liquid or rubbery state is defined to be the Glass Transition Temperature, Tg [11].  

If at the Tg the polymer softens and adopts a viscous liquid state the polymer can be 

classified as a thermoplastic. Thermoplastics have many desirable properties such as 

improved strength, toughness, and hardness. Whereas thermosetting polymers undergo an 

irreversible solidification process resulting in mechanical properties that are not 

temperature dependent. At higher temperatures these polymers will undergo chemical 

decomposition and structural degradation [12].   

 

1.2.2 7 Classes of Plastics- Uses and Opportunities for Recycling 

An identification system from the Society of the Plastics Industry is used to group 

plastics into 7 classes [13]. These groups are: 1) Polyethylene Terephthalate (PET) , 2) 

High Density Polyethylene (HDPE), 3) Polyvinyl Chloride (PVC), 4) Low Density 

Polyethylene (LDPE), 5) Polypropylene (PP), 6) Polystyrene (PS), and 7) Mixed-use 

plastics [14]. The first group, PET, is the typical component used to make drinking 

bottles [14] is easily recyclable and doesn’t lose its quality over repeated cycles [15] . 

High density polyethylene has applications in packaging such as shampoo and detergent 

bottles [14].  High density polyethylene is also easily recyclable, so long as there are no 

contaminants or other components mixed in the batch [16]. Polyvinyl chloride is used in 
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the manufacturing of commercial cling wrap and cosmetic containers [14]. It is also used 

for the construction of pipes. The high chlorine content in PVC as well as other additives 

make it challenging to recycle and requires separation from other materials prior to its 

processing [16]. Low density polyethylene is a commonly used polymer used in 

applications such as squeeze bottles and garbage bags [14]. Low density polyethylene 

must be separated for its recycling. Additives, including coloring, can affect its value 

[16]. Polypropylene is found in yogurt containers, medicine bottles and straws. It is one 

of the least recycled post-consumer plastics due to the difficulty in removing 

contaminants [16]. Polystyrene, trademarked as Styrofoam in its expanded form, is used 

in take-out food containers. Due to its low density and bulkiness, it is challenging and 

expensive to transport [16]. Conventionally #7 mixed plastics are difficult to recycle 

using traditional methods due to impurities and contaminants. Polypropylene and PE are 

two of the largest percentage components of typical municipal solid waste (MSW) [17].  

These plastics were investigated under the scope of this thesis to represent common post-

consumer mixed plastics.  

 

1.2.3 Polyethylene and Polypropylene 

Polyethylene is the most widely used plastic polymer [18]. It has the simple base 

structure of repeated CH2 units. Overall, it has many desirable characteristics that explain 

its widespread use; including low price, good chemical resistance, good processibility 

and the ability to utilize it for complex shapes, and visual appeal. It is used in a wide 

range of applications ranging from film packaging to piping. Polyethylene can further be 

classified based on its density. Low density polyethylene has a molecular chain with 

significant branching, making it difficult to compact into dense structures. This gives it 

the physical properties of being a tough but flexible substance. It is also extremely 

resistant to water [19].  Overall, its characteristics make it suitable for use in food and 

non-food packaging and as a film. High density polyethylene has a linear molecular chain 

formation, making it able to pack together more tightly [20].  This characteristic structure 

provides greater stiffness making it more suitable to use in applications such as 
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containers and plumbing features [21]. The melting point of HDPE is known to be 130C 

whereas the melting point of LDPE is 110C [22].  

Polypropylene is a saturated linear hydrocarbon. Its repeating units include a methyl CH3 

group [23]. It contributes to approximately 24.3% of MSW [19], and it is used in a 

variety of applications such as flowerpots, car bumpers and furniture [19]. It is also 

commonly used in “fast-turnover” food packaging items such as yogurt and ice cream 

containers [23]. 

 

1.2.4 Possible Outcomes: Recycling  

There are two main end of life options for plastic waste: the pathway of disposal to 

landfill or recycling. There are four different types of recycling technologies: primary, 

mechanical (secondary), tertiary (chemical) and lastly, energy recovery (quaternary) [24]. 

Primary recycling is defined as the reuse of recovered plastic in products with utilization 

and performance qualities similar to those of the original material [25]. A simple example 

would be the reuse of take-out containers. Another common example would be the 

recycling of polyethylene terephthalate (PET) waste into a PET bottle.  This type of 

reprocessing is typically limited to a few cycles due to deterioration of the plastics’ 

mechanical properties upon each cycle. It also requires that the type of plastic have very 

low impurities [26].  

Secondary recycling is defined as the reuse of recovered plastics in products with 

performance qualities that are less than that of the original product [25]. This type of 

recycling is also referred to as mechanical recycling.  An example would be recycling 

PET waste into a new fiber. Thermoplastics, or plastics that can be melted can be 

remoulded into different shapes for other purposes. This includes recycling HDPE 

products into buckets and bins [16].  Polyvinyl chloride is also a good candidate for this 

type of recycling as it has been shown that the profile of virgin PVC was similar to that of 

recycled PVC [27].  This type of recycling has the same drawbacks as primary recycling, 

it is limited to high purity plastic, and can only be reprocessed through a limited number 
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of cycles before it loses its overall quality [26].  The feasibility of secondary recycling is 

also hindered by the addition of impurities and additives in the plastic feedstock. It is 

important to note that no country will be able to achieve recycling targets using only 

primary and secondary methods of recycling due to its inherent limitations [26]. 

Tertiary recycling, or chemical recycling, uses waste plastic as the feedstock in a process 

that generates chemicals and fuels [25]. This may include the total depolymerization of 

the polymer to its monomers, or partial degradation to secondary valuable materials [28]. 

Lastly, quaternary recycling is energy recovered from waste plastic by incineration [25]. 

This is an effective method for reducing the overall volume of plastic waste. However, 

there is strong societal opposition due to emissions associated with incineration [28]. 

Plastics typically contain small amounts of chlorine in their additives. When burned these 

create dioxins [29]. 

Generally, chemical recycling is viewed as the most favorable recycling option because it 

allows for recycled plastic to be created that is of the same quality as the virgin material. 

In this way, the environment is not further exploited and there is no need for the 

extraction of new materials to make more plastic. This follows the principles set forth 

towards achieving a circular economy, in which products and materials are designed to be 

kept in circulation, rather than ending up in a landfill.   

 

1.2.5 Market Place Perspective and Needs Analysis 

The global market for LDPE was USD 56.6 Billion and is projected to grow 3% through 

2025 to reach USD 76.05 Billion [30]. This is mainly driven by food and non-food 

packaging.  The largest market for PE is Asia Pacific [30]. The global HDPE market is 

also projected to grow at a rate of 4% from USD 70.7 Billion in 2020 to 89.5 billion by 

2026 [30]. The market for recycled plastics is closely linked to the virgin product market. 

The COVID-19 pandemic has also created an aggressive surge in the demand for and use 

of single-use plastic products. From January to March of 2020 in Wuhan, medical waste 

increased from 40 t/d to a peak of 240 t/d, exceeding the incineration capacity [31] . 
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Disposable face masks were used for the protection of both health care workers and of 

the public. They are made of various polymers such as PP, PE, or polyester. Due to the 

COVID-19 pandemic, there was an unprecedented surge in their manufacturing and use 

worldwide [32].  As of February 2020, China raised is production of medical masks to 

14.8 million per day [33]. This increase in demand and production volume presents  

opportunities for sustainable solutions in waste management.  

 
 

1.2.6 What is pyrolysis? 

Pyrolysis is a thermal degradation process that occurs under the absence of oxygen, using 

intense heat, for a short duration of time [19]. This method is implemented to 

depolymerize the polymeric chain compounds of biomasses and of plastics. The main 

advantage of this type of thermochemical conversion technique is that the products are 

essentially an energy source that can be efficiently/feasibly stored [8]. Pyrolysis reactions 

typically yield a solid, a liquid and a gas. There are many challenges that hinder the 

development of recycling technologies. One being the addition of additives and 

impurities to the plastic that make them difficult to recycle [8]. Pyrolysis is seen as a 

favourable solution because it can be used to block the transfer of additives and harmful 

substances into new products by thermal destruction or through selective segregation in 

one of the phases. Plastics also tend to degrade over time. This degradation can take place 

from exposure to sunlight, air, water, hot or cold thermal stress. Degradation can be 

categorized as chemical, mechanical and biological [34].  Bacterial degradation is 

effectively nonexistent, however, there exists success in the identification of 

microorganisms that could be used to degrade plastic material [35] .  This type of 

physical degradation prevents the employment of mechanical recycling techniques, but 

pyrolysis can handle this type of contamination [8]. Pyrolysis is also a very flexible 

process since the parameters can be altered and adjusted to optimize the final products 

[19].  

Typically, the thermal cracking of PE and PP is carried out at high temperatures (>700 

C) to produce a mixture of olefins (C1-C4) and aromatic compounds (benzene, toluene, 
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and xylene). At lower temperatures (400-500 C) a waxy product is produced consisting 

of largely paraffins, as well as char [28].   

The mechanism for cracking polyolefins consists of four steps: initiation, depropagation, 

inter- or intra- molecular hydrogen transfer followed by b-scission and termination [28].  

 
 

1.2.7 Slow, intermediate, fast pyrolysis, and ultra-pyrolysis 

Slow pyrolysis occurs at temperatures between 350 and 500 C, a 1 – 10 C/min heating 

rate, and under a prolonged vapour residence time. This type of pyrolysis favours the 

production of char [36]. Fast pyrolysis takes place at higher temperatures between 500 

and 700 C and with heating rates above 1000 C/min. The vapour residence time is 

typically a few seconds [36]. This type of pyrolysis favours the production of the oil 

product. Ultrapyrolysis employs even shorter residence times. Ultrapyrolysis has been 

shown to tune the process in order to maximize the yield of the desirable products while 

minimizing the secondary reactions that lead to low value products such as coke and 

methane [37]. 

 
 

1.2.8 Temperature Influence 

Pyrolysis tends to take place in the range of 500 – 700 C. Lower temperatures favour the 

production of wax, while higher temperatures favour oil and the gas fraction. Kumar et 

al. [38] , reported that at high temperatures the pyrolysis reaction rate will increase, and 

the reaction time will decrease. This is because at a high temperature, there is easier 

cleavage of the polymer chain bonds which decreases the reaction time [38].  
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1.2.9 Oil Applications 

Plastic oil obtained from the pyrolysis of mixed plastic waste tends to have similar 

properties to that of diesel fuel. A study done by Singh et al. in 2011 shows that the 

pyrolysis plastic oil obtained from mixed plastic waste at 450 C had a similar 

composition in terms of components to that of fuels such as diesel and gasoline. The 

pyrolysis plastic oil could be blended with diesel to effectively be used in diesel engines. 

Increased CO emissions were reported [39].  

In 2016, Sharuddin et al., made a comparison between the characteristics of pyrolysis oil 

from different types of plastic and the commercial standard value (ASTM 1979). From 

the experimental results found in literature it could be seen that both PP and HDPE are 

comparable to the commercial diesel value while LDPE was comparable to the standard 

for commercial gasoline [19]. 

Table 1 Plastic Waste Oil Versus Commercial Standard Values for Gasoline and 

Diesel; Adapted from Sharuddin et al. 2016 

 Types of Plastic (Experimental Value) Commercial standard 

value (ASTM 1979) 

Physical 

Properties 

HDPE LDPE PP Gasoline Diesel 

Calorific Value 

(MJ/kg) 

40.5 39.5 40.8 42.5 43 

API Gravity  

@ 60 F 

27.48 47.75 33.03 55 38 

Viscosity 

(mm^2/s) 

5.08 5.56 4.09 1.17 1.9-4.1 
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Density @ 15C 

(g/cm^3) 

0.89 0.78 0.86 0.780 0.807 

Ash (wt %) 0.00 0.02 0.00 - 0.01 

Octane number 

MON (min) 

85.3 n.a. 87.6 81-85 - 

Octane number 

RON (min) 

95.3 n.a. 97.8 91-95 - 

Pour point (C) -5 n.a. -9 - 6 

Flash point (C) 48 41 30 42 52 

Aniline point (C) 45 n.a. 40 71 77.5 

Diesel Index 31.05 n.a. 34.35 - 40 

 

1.2.10 Char and Applications 

Under slow pyrolysis conditions there is substantial char formation from plastic pyrolysis 

[19].  A 2013 study from Jamradloedluk and Lertsatitthanakorn [40] looked at the 

characterization and utilization of char derived from the fast pyrolysis of HDPE. This 

study extruded char to produce briquettes, which were suitable to use as fuel to boil water 

[40] . However, the char obtained from PE and PP pyrolysis is mainly made up of 

inorganic material, limiting its application as a fuel. There has been research to point to 

its use in road surfacing and as a building material additive. There has also been focus 

placed on its use as an adsorbent in removing heavy metals from water [19].  
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1.2.11 Gas applications 

Pyrolysis gas has received less attention because it has typically been considered as an 

auxiliary fuel to power pyrolysis processes. However, pyrolysis gas from polyolefins 

(such as polyethylene) has a high olefin content [26]. Olefins such as ethylene and 

propene can be separated from the other components and used as a feedstock in the 

productions of polyolefins. In 2021, the global price of ethylene was estimated to be 

value at $1.01/kg [41]. Pyrolysis gas can also be used to generate electricity and power 

the pyrolysis process [19]. Other gaseous components that are typically recovered from 

pyrolysis gas are hydrogen and methane. Hydrogen is a valuable gas that when produced 

from fossil-based technologies can cost around $1.80/kg [42]. Methane prices are reliant 

on the price of natural gas and vary greatly with location. In the US in 2021 the price was 

averaged around $0.08/kg [43]. 

 
 

1.3 Previous Studies on Plastic Pyrolysis 

Plastic pyrolysis has been extensively studied in the literature. A study by Achilias et al. 

[24] looked at implementing a fixed bed reactor system for the pyrolysis of LDPE, 

HDPE, and PP. This was done under the presence of an acid FCC catalyst. With a low 

temperature of 450 C a high liquid yield was recorded for the model polymer system 

(46.6% LDPE, 38.5% HDPE and 67.3% PP). The liquid oil was mainly aliphatic in its 

composition, presenting potential to be recycled back into new plastics or refined fuels 

[24].  

High density polyethylene has been shown to produce a high oil yield from pyrolysis 

[19]. Sing and Kumar  [38] demonstrated their highest liquid yield, 23.96 wt. %, at 450 

C. Between 500 C and 550 C a viscous liquid and wax product was obtained. At 550 

C this wax/oil yield was 79.08 wt. %. These experiments were carried out using batch 

conditions [38]. High density polyethylene pyrolytic oil tends to have a low sulfur 

content.  



12 

 

Low density polyethylene at lower pyrolysis temperatures, also produces high oil and 

wax yield. Achilias et al. [28] used waste products and model polymers in a 450 C 

pyrolysis unit with an FCC catalyst to get oil/wax yields or 99.5 wt. % and 91.5 wt. % 

respectively. The reactor was a fixed bed laboratory-scale reactor [28]. At higher 

temperatures the gas yield has been shown to increase. Williams [44] demonstrated this 

with their LDPE pyrolysis experiments carried out over 500-700 C at 50 C intervals. As 

the temperature increased the wt.% of the gas yield also increased suggesting that 

increasing the temperature increases the amount of cracking of wax to oil and oil to gas. 

The gas composition also changed over this temperature range, with ethene and propene 

showing a significant increase in yield over the temperature range. At 700 C a 26.86 wt. 

% of ethene was recorded [44].  A fluidized bed pyrolysis reactor was used for these 

experiments.  

High density polyethylene and PP also exhibit similar trends during single stage pyrolysis 

over a range of temperatures.  

 
 

1.3.1 Previous Studies on Two-Stage Plastic Pyrolysis 

Several studies have been conducted to crack the intermediate oils and waxes at a high 

temperature and short residence times. A study by Zassa et al. [45] looked at employing a 

second cracking reactor for tertiary recycling in a batch process. An inert carried the oils 

and waxes produced from pyrolysis to the second reactor. During this stage olefins were 

produced.  The cracking unit used for these experiments was a reactor consisting of a 

stainless-steel pipe of a 0.6m and 0.007m ID. This reactor was a 3-zone oven, each one 

being 0.2 m long. The reactor operated at 900 C with a maximum residence time of 1.3 

s. The cracking products were condensed in a 3 m long pipe quenched in a cold bath. The 

results from this experiment have a yield of up to 45 wt. % ethene monomers from the 

original polyethylene [45]. 

A 2021 study by Suarez-Toriello et al. [46] looked at employing a two-stage approach for 

the pyrolysis of waste plastics. This experiment was done on the bench scale using a 
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batch approach. The system was first purged with nitrogen to remove any moisture and 

impurities. The first reactor had a heating rate of 10 C/min from room temperature to 

500 C and then the temperature was held for 1 h. The volatile matter then went directly 

to the second stage reactor containing a H-ZSM-5 catalyst. Using LDPE this paper 

reported a 57.1% yield of liquid products , 6.4 % yield of solid products and a 36.5 % 

yield of gaseous products [46]. The monomer yield was not included in this study.  

A 2020 study by Park et al. [26] used a novel two stage approach to the pyrolysis of 

polystyrene. This set up consisted of two reactors. The first being a heated auger and the 

second a fluidized bed reactor. In the auger the feed material was heated to approximately 

300 C with the intention of first increasing the bond length of the molecules. Then the 

temperature of the fluidized bed reactor was set between 500 and 800 C. With this 

technique a styrene monomer yield of 26.3 wt % was observed [47]. This research group 

also fed LDPE to this reactor setup. With a N2 fluidizing medium the highest ethene yield 

of 34.5 wt % with a 74.6 wt % gas yield was achieved when the auger reactor was set to 

300 C and the fluidized bed reactor to 730 C [26]. 

Hajekova et al. [48] took a decoupled approach to the recycling of LDPE and PP by 

employing the co-pyrolysis of their oil/waxes with naphtha in a two-stage set-up. First a 

batch reactor set to 450 C was used to co-pyrolyze LDPE and PP and promote the 

formation of oil/wax products. These products were then mixed with naphtha in a 10% 

mass solution and fed through a tubular flow reactor with temperatures ranging from 740-

820 C and residence times of 0.09 to 0.54 s. A steam to feedstock mass ratio of 0.5 was 

used.  This method of steam cracking showed to produce ethene yields in the range of 20-

25 wt % with the naphtha mixture [48].  

 

1.4 Research Objectives 
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When considering the research motivation and state-of-the-art information gathered from 

the literature, there exists gaps in investigating pyrolysis to recycle common mixed-use 

plastic waste, as well as studies utilizing a downstream furnace to employ secondary 

cracking following initial thermal decomposition. The main objectives of this study, 

aimed at addressing these existing gaps, are summarized as follows: 

• Investigate pyrolysis as a solution for the tertiary recycling of plastic waste. 

• Investigate two-stage pyrolysis as a means of converting plastic waste into value-

added products while addressing transportation bottlenecks.  

• Investigate the effect of reactor and furnace temperature, as well as residence time 

and feed rate on oil and gas, yield, and quality. 

• Characterize the oil and gas for identification of potential uses.  

This work will aim to improve upon existing knowledge of single-stage pyrolysis of 

plastic by cataloguing results from various temperature and feedstock conditions. A novel 

setup will be used to investigate the addition of a secondary furnace on downstream 

cracking as mentioned above.  
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2 Materials and Methods 

The following section describes the materials and methods used. While this study aims to 

address existing gaps in literature with mixed-use and contaminated waste plastics, the 

fundamentals of the proposed process was first studied under well controlled conditions 

using pure polymers. Virgin plastics were used to understand the influence of other 

parameters on the process. Artificial mixes of these pure polymers were created to 

maintain well characterized conditions.  Validation tests were later conducted using 

simulated plastic waste.  

 

2.1 Feedstock Characterization/ Preparation 

The virgin LDPE and HDPE pellets were obtained from NOVA Chemicals Ltd., 

(Calgary, Alberta) and used as a feedstock. Virgin PP pellets were obtained from the 

Fraunhofer Project Centre for Composites Research (London, Ontario). Waste pellets of 

PP were obtained through cutting, melting and reforming waste yogurt containers. The 

yogurt containers were rinsed and shredded using a paper cutter. The strips of plastic 

were then cut using scissors into 1 cm2 squares. A silicon ice cube tray of dimensions 

24x12x1 cm with 160 1 cm3 grid was filled with 1 cm2 squares and placed in the furnace 

at 130 C above the PP melting temperature. The silicone tray was removed from the 

oven, cooled, and the plastic pellets were collected.  

 

2.1.1 Ultimate Analysis 

Ultimate analysis was used to determine the carbon, hydrogen, nitrogen, and oxygen 

content of the feedstock, using a Thermo Flash EA 1112 elemental analyzer (CHNSO). 

The system was calibrated using the first four samples, 0.5, 1, 2, and 2.5 mg of BBOT 

(2,5- Bis (5-tert-butyl-benzoxazol-2-yl) thiophene) (CE Elantech, NJ, US). Each of the 

tin capsules contained 1-2 mg of plastic feedstock and 8-10 mg of vanadium pentoxide to 

achieve complete conversion of sulphur. Samples were combusted at 900 C in a stream of 
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helium with a known volume of oxygen. This technique produces N2, CO2, H2O and SO2 

which were then subjected to separation and quantification using gas chromatography, 

which comprises of a steel column 2 m long and 5 mm in diameter, and helium as a 

carrier gas (flow rate of 140 mL min-1). The elements were detected using a Propack 

model thermal conductivity detector (TCD). 

 

2.2 Experimental Setup 

The pyrolysis experiments were carried out in a bench scale pyrolysis unit made of 316 

stainless- steel.  The reactor was opened and cleaned daily to collect any residue and 

prevent cross contamination.  

 

2.2.1 Single-Stage Reactor 

Plastic is placed in a feed hopper. A screw feeder is controlled by a motor that pushes the 

plastic into the reactor. The screw feeder section prior to the reactor is heated using 

electric heat tracing to improve the feeding of the plastic. Nitrogen is fed into the system 

through a port on the hopper and controlled by a flow meter. The reactor itself is 1.4 L 

and heated using an induction heating system. An extraction trench is located at the 

bottom of the reactor which can be closed off when not required. The reactor can be 

mixed using a paddle powered by an electric motor. The exhaust gases from the reactor 

enter a ½” line that is heated by electric heat tracing. For one stage pyrolysis there is a 

two-component condenser train. To ensure a proper mass balance, all parts of the 

condensation train (including the connecting lines) are weighed before and after 

performing each experiment. The first condenser is heated in an oil bath at approximately 

50 C and the second condenser is in an ice bath at 0 C. The non-condensables leaving 

the condenser train then pass through a cotton filter before the gas sample collection port, 

where they are then vented to atmosphere.  
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Figure 1 Single Stage Reactor Set Up. Adapted from Horvers, 2021. [49] 

 

Figure 2 Single Stage Reactor Components  

 

2.2.2 Double-Stage Reactor and Furnace 

The double stage pyrolysis set up included a secondary furnace placed in sequential order 

after the heated exhaust line of the reactor (Figure 3). This furnace could be set up to 

1200 C. A piece of Inconel tubing was used inside the furnace due to its heat resistant 

properties. Glass beads of 1mm3 size were used in the reactor to improve the heat transfer 
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capabilities of the reactor. The glass beads were mixed using a reactor paddle. A 

thermocouple was placed on the top of the reactor bed to measure the bed temperature. 

Another thermocouple was used at the exit of the furnace to measure the real temperature 

of the gases upon leaving the furnace. The gases from the furnace then entered the 

condenser. The condenser had no tubing to prevent the build-up of wax that would plug 

the system and create pressure issues. The condenser was kept iced. The exhaust tubing 

was then vented to atmosphere with a detachable sampling port to collect gas sample 

bags.  

 

Figure 3 Double Stage Reactor Set Up. Adapted from Horvers, 2021. [49] 
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Figure 4 Double Stage Reactor Components 

 

2.3 Experimental Methods 

The major objective of the experiments was to be able to effectively characterize the oil 

and gas samples collected. There was negligible char collected, therefore it was not 

considered for analysis. To achieve the beforementioned objective, several analytical 

methods were used. The oil sample was investigated as a potential fuel, therefore GC-

MS, HHV, and Karl Fischer Titrations were performed.  

 

2.3.1 GC-MS 

GC-MS was used to characterize the main components of the oil samples obtained. A 50 

mg sample of each oil/liquid was dissolved in 2 ml of the solvent, 2-propanol. The 

solvent was used to extract the compounds from the samples. The samples were shaken 

for 30 minutes and filtered through a 0.2- micrometer filter three times to remove 

particulates. The samples were then placed in the fridge for preservation until being ran 

through the GC-MS system. The GC-MS system consists of a gas chromatograph 
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coupled to a quadrupole mass spectrometer (GC-MS QP 2010, Shimadsu) using a 

capillary column (DB5MS, 30 m Å~ 0.25 mm i.d.; film thickness: 0.25 μm). Electron 

ionization (EI) was used with an ion source temperature of 200 C and an interface 

temperature of 250 C. In EI, the instrument was used in SCAN mode initially to confirm 

the identity of the compounds. The GC system was equipped with a split/splitless inlet. 

The injector temperature was 200 C. An AOC-20S autosampler with a 10 μL syringe 

was used for injections of 1 μL at a rate of 10 μL s -1. The carrier gas was helium (UHP) 

at a constant flow of 1.5 mL min -1. The oven temperature program had an initial 

temperature of 40 C held for 10 min, rising by 10 C/min to 300 C which, was held for 

30 min, with a total run time of 75.0 min. This temperature program was selected to 

provide adequate separation of most of the compounds of interest. 

 

2.3.2 Higher Heating Value (HHV) 

To classify the potential of the oil samples to be used as fuel, the higher heating values 

were needed. To measure the higher heating values of the samples, a bomb calorimeter 

(C200, IKA, Germany) was used. A sample of each oil/wax collection between 0.3-0.4 

mg was weighed and placed in the bomb. Two replicates were recorded for each sample. 

The calibration process was carried out in the sample vessel using pelletized benzoic acid 

(IKA C723, IKA, Germany). 

 

2.3.3 Karl Fischer Titration 

Moisture content is a defining characteristic of fuel. To determine the moisture content of 

the samples, the Karl Fischer Titrator (Mettler Toledo Model V20) was used. A small 

amount of each sample was taken into a hypodermic needle. The needle was then 

weighed, and a single drop was added to the Karl Fischer Titrator; the needle was then re-

weighed and the difference, which indicates the quantity; was input into the device. After 

90 seconds, the moisture content was determined and displayed.  
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2.3.4 Micro-GC 

To analyze the gas products from the process, samples were taken during the reaction 

using Teflon bags (1L, Hedetech). The detachable samples bags were connected to the 

exhaust line of the process, 5 minutes into the reaction. A cotton filter was placed in 

between the line and the sample port to prevent any contaminants from damaging the 

equipment. A Varian mobile Micro-GC (CP-4900) equipped with M5. (Molecular Sieve., 

10 m), PPU (PolarPlot U, 10m), and 5 CB (CP-Sil, 5 CM, 8 meter) column modules was 

used to analyze the concentration of H2, CH4, CO, CO2, C2H4, C2H6, C3H6, C3H8, 

and C4H10. Helium and Argon (99.999%) were used as carrier gases for the thermal 

conductivity detector (TCD) at a pressure of 80 psi. The carrier gases were passed 

through an external gas clean moisture and oxygen filter to eliminate any suspended 

moisture and traces of oxygen associated with the carrier gas. The gas components from 

each sample were detected over a period of 3 minutes and automatically integrated using 

the Galaxie software. Due to the high utilization frequency, the micro-GC was 

conditioned every week. The conditioning time was extended overnight to remove any 

water present inside the column from either gas samples or the carrier gas. The 

conditioning was carried out by maximizing the oven temperature. Conditioning the 

column was done to improve the efficiency. Each gas sample was analyzed a minimum 

of three times, and the average was calculated to determine the gas concentration.  

Results were analyzed by comparing peaks to a database of known compounds and their 

peaks. 
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3 Experimental Results and Discussion 

3.1 Feedstock characterization  

The results of the ultimate analysis of the pellets are shown in Table 2. Oxygen was 

calculated by the remaining difference. Blends of these pellets were also used.  

Table 2 CHNS(O) Analysis Results for Feedstock 

Sample Hydrogen Carbon Nitrogen Sulfur  
Oxygen+ 

Ash  

HDPE 1.5 ± 0.2 83.6 ± 0.8 9.1 ± 0.0 0.4 ± 0.1 1.6 ± 1.1 

LDPE 0.0 ± 0.0 83.5 ± 0.3 13.0 ± 0.0 0.4 ± 0.0 3.1 ± 0.3 

PP 7.5 ±10.7 84.9±0.9 0.01±0.0 0±0 7.6±11.6 

Waste PP 0 80.4 0 0 19.7 

 

3.2 Single-Stage Pyrolysis Experimental Data 

 

3.2.1   Single- Stage Pyrolysis Yields 

Figure 5 displays the effects of temperature on product yields during the single stage 

pyrolysis of LDPE and HDPE pellets. Using LDPE pellets, the liquid yield decreased 

(65% to 17%) as the pyrolysis temperature increased from 550 C to 700 C. Negligible 

char was collected during any of the experiments. Therefore, this resulted in an inverse 

trend in the gas yield. These results are typical of polyethylene pyrolysis [28]. At a lower 

temperature, most of the liquid yield was a wax fraction. At higher temperatures (700 C) 

the liquid yield was an oil. This is aligned with previous studies on LDPE pyrolysis [50]. 

With the HPDE feedstock, the liquid yield decreased (66% to 11%), as the pyrolysis 

temperature increased from 550 C to 700 C. The wt. percent of gases increased as the 

temperature increased. Again, at lower temperatures, most of the liquid yield was wax 
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(Figure 6) , and at the higher temperatures there was more of an oil product. Sogancioglu 

et al. (2017) reported similar trends using waste HDPE with a liquid yield of 87.62 wt % 

at 500 C [51]. 

 

 

Figure 5 The recorded wt. % yields of both oil and gas for HDPE and LDPE over 

the 550C-700C temperature range. As the temperature increases the oil yield 

decreases and the gas yield increases 

  

 

 

 

 

 

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

550 °C 600 °C 650 °C 700 °C

Yi
el

d
 W

t%

Product Yields Single Stage Pyrolysis Effect of 
Temperature 

HDPE Oil  (%) HDPE  Gas (%)

LDPE Oil  (%) LDPE  Gas (%)

Figure 6 Left: wax product collected from oil fraction at lower temperatures. 

Right: liquid oil collected from the oil fraction at the higher temperatures. 
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Experiments using blends of HDPE and LDPE were also completed at 550 C. This was 

done to artificially simulate mixed plastic waste. As observed in Figure 7, a comparison 

chart was made to explore the relationship between the yields of liquid for blends and 

pure products. Noticeably, higher oil yields were recorded using the blends. This 

synergistic effect is not well understood. It could be attributed to the interactions between 

the different molecular structures of the branched LDPE vs the linear HDPE.  

 

 

Figure 7 The product yields of pure product vs. blends at 550C. H:L is ratio of 

HDPE Plastic to LDPE Plastic in the feedstock.  The oil yield increased when blends 

were used as compared to their individual counterparts.  

  

3.2.2 Single-Stage Pyrolysis HHV  
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LDPE at 550 C and slightly decreased with an increase in temperature. All samples were 

in the range expected for diesel-like products [52]. The HHV results for blends were 

higher than the HHV values of pure products. This is indicative of the synergistic effects 
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of mixing plastic and could again be due to the different branching nature of the two 

plastics.  

 

 

  

Figure 8 The bomb calorimetry results from the oil samples collected during single 

stage pyrolysis from 1st condenser (hot oil bath). All HHVs are within 42-46 MJ/kg 

range.  
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Figure 9 The bomb calorimetry results from the oil samples collected during single 

stage pyrolysis from 2nd condenser (ice bath). All HHVs are within 43-46 MJ/kg 

range. 

 

 

Figure 10 The bomb calorimetry results from the oil samples collected during single 

stage pyrolysis, All HHVs are within 45-47 MJ/kg range. This chart depicts pure 

products vs blends. H:L is ratio of HDPE plastic to LDPE plastic in the feedstock.  
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3.2.3 Single-Stage Pyrolysis Karl Fisher Titration 

Overall, the wax and oil samples collected during single stage pyrolysis were determined 

to have a negligible water content of less than 1%.  These results align with what has 

been previously reported in literature of a highly viscous oil/wax product [53] [54].  

 

3.2.4 Single- Stage Pyrolysis GC-MS  

Gas chromatography -mass spectrometry analysis was performed on all the oils collected 

between 550 C and 700 C. From HDPE pyrolysis (Figure 11), there was a larger 

amount of lighter C6-C11 compounds collected at higher temperatures (the second 

condenser at 650 C, as well as 700 C).  This trend can be attributed to further cracking 

of the hydrocarbon chains at elevated temperatures. A 2019 study by Al- Salem using a 

fixed bed reactor noted the same trend, with a high amount of gasoline range 

hydrocarbons (C6 - C11) present in their pyrolysis oil samples. During their experiments, 

the gasoline profile increased with elevated temperatures [55].  A similar trend was 

displayed during LDPE pyrolysis. With LDPE there was a noticeable difference in the 

amount of C6-C11 compounds in the second condenser at the higher temperature 

compared to the first. At 650 C this was 66.7 % C6-C11 in the second condenser, 

compared to 44.9 % in the first condenser. At 700 C this was 69.0 % in the 2nd 

condenser as compared to 45.9 % in the 1st condenser. These results are consistent with 

data found in the literature [56] [55].  
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Figure 11 The % area of hydrocarbons that were present in GC-MS analysis of oil 

samples collected from HDPE single stage pyrolysis. Shorter hydrocarbons are 

more abundant at higher temperatures.  

 

 

Figure 12 The % area of hydrocarbons that were present in GC-MS analysis of oil 

samples collected from LDPE single stage pyrolysis. Shorter hydrocarbons are more 

abundant at higher temperatures (650C-700C). 
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different blend ratios. These experiments were all carried out at the same temperature 

conditions. This is to be expected as the results of the individual LDPE and HDPE 

experiments at 550 C were very similar in product type percent areas. This indicates that 

temperature plays a larger factor in product composition than the plastic feedstocks used. 

Across all of the blends there was a dominant amount of C12-C18 hydrocarbons followed 

by C6-C11 hydrocarbons and smaller amounts of C19+. 

 

 

 

Figure 13 The % area of hydrocarbons that were present in GC-MS analysis of oil 

samples collected from blends of HDPE and LDPE single stage pyrolysis.  
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methane produced. The yield of methane for HDPE increased from 41.1% to 47.0 % 

while with LDPE went from 38.1% to 48.24 %. This is explained because at elevated 

temperatures there is further cracking of heavier molecular weight compounds to smaller 

molecules like methane. The presence of CO2 at 700 C is indicative of possible 

contamination or issues with the sampling process as there are negligible amounts of 02 

present in the feedstock (as depicted in Table 2 ). The results of the gas analysis and the 

observed trends are consistent with reported data in the literature [57] [38] .  

 

 

Figure 14 The concentration of various gas components collected from 550C and 

700C single stage pyrolysis for both HDPE and LDPE feedstock. There was a 

higher concentration of methane at the higher temperature.  
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second furnace allows for the system to be decoupled. Bulky waste produced can undergo 

the first pyrolysis reaction to become a liquid, wherein it can easily be transported and 

then be further cracked into its monomer (or gaseous) components.  

3.3.1  Two- Stage Pyrolysis Residence Times 

The residence times for each corresponding N2 flow rate can be found in Table 3. A 

detailed sample calculation can be found in the appendix. Calculations were based off the 

GC-MS and Micro-GC results from single stage pyrolysis using HDPE.  

Table 3 Two-Stage Pyrolysis Residence Times 

N2 Flow Rate (LPM) Residence Time (s) 

1 6.6 

5 2.6 

7.5 1.9 

10 1.5 

15 1.0 

15 x1.5 Feed rate 1.0 

15 x2 Feed rate 0.9 

15 3/8” tube 1.0 

 

3.3.2 Two-Stage Pyrolysis Yields 

Figure 15, Figure 16 and Figure 17 demonstrate the effect of using a secondary furnace 

on the oil yields collected. Overall, while using the secondary furnace the recorded oil 

yields were much smaller than when using the single reactor and condenser train as 

demonstrated in Figure 5. This is explained by the vapors being exposed to higher 
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temperatures which enhances the cracking effect, increasing the gaseous product yield. 

Char was again considered negligible during the collection process, which is explained 

by the absence of any contaminants in the virgin feedstock.  With HDPE and LDPE and 

varying the residence time there was little variation in the oil yield collected with the % 

ranging from 8 to 20.75 wt. % over the set of experiments. Following the previously 

mentioned phenomena of longer residence times resulting in further cracking, it should 

be expected that there would be larger oil yields at the longer residence times. Variations 

could be explained by issues in the oil collection process. Adjustments to the condenser 

were made by removing the central line to prevent clogging issues that were seen in some 

earlier experiments. When this feature was removed, it led to some wax formation in the 

exhaust line. This wax could not always be collected, and a slight yield loss was 

experienced at higher nitrogen flow rates (longer residence times). No yield was 

calculated for some experiments where errors occurred such as incomplete feeding, or 

condenser leak that would make the results incorrect. In Figure 15 and Figure 16 the 

experiments at the longer residence times were completed with a different set point for 

the secondary furnace (800 C rather than 850 C). This is depicted by different colours 

on the bar graphs. This was done because operating conditions were optimized as the 

experiments were continued.  As seen in Figure 17 when other factors were changed 

there was again little variation or noticeable trends in the oil yield with results consistent 

around 10-15%. One outlier was the experiment conducted at the higher reactor 

temperature. This could present the fact that the reactor temperature has a larger influence 

on the amount of cracking and could be further investigated. The LDPE 500/850 run was 

repeated and a standard deviation of 5% was calculated between the oil sample yield 

collected. This is represented by the error bars in Figure 16 and Figure 17.  
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Figure 15 The wt.% oil yield of samples collected during HDPE two-stage pyrolysis 

with adjustments to residence time. Blue indicates a set point of 800 C for the 

secondary furnace versus orange indicates a set point of 850 C.  

  

Figure 16 The wt.% oil yield of samples collected during LDPE two-stage pyrolysis 

with adjustments to residence time. Blue indicates a set point of 800 C for the 

secondary furnace versus orange indicates a set point of 850 C. 
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Figure 17 The wt. % oil yield of samples from LDPE two-stage pyrolysis collected 

during the 1.0s residence time experiments. All the yields within 5-20 wt. %.  

The experiments using waste polypropylene resulted in a mostly char product that was 

difficult to collect and therefore accurate yields were not collected from these 

experiments.  

3.3.3 Two-Stage Pyrolysis HHV 
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collected had a HHV of over 44.0 MJ/kg. Adding the standard deviation to the average 
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HHV for diesel is in the range of 42 – 46 MJ/kg [52]. This demonstrates the potential 

application of the oil fraction as a fuel.  
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Figure 18 The HHVs of samples from two-stage pyrolysis collected during the 1.0s. 

All the HHVs are over 37MJ/kg. 
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C12-C18 compounds. As evident in  Figure 19, this increased over time. When looking at 

the nature of the bonds there were more aromatic type compounds at the longer residence 

times of 6.6s to 2.6s versus at the shorter times of 1.9s to 1.0s where these bonds were 

predominantly olefinic. This is aligned with trends described in the literature [53].  

 

 

Figure 19 The results of GC-MS analysis on the samples collected from HDPE two -

stage pyrolysis. These results demonstrate the effect of residence time on the carbon 

number in the liquid fraction. The number of shorter C6-C11 compounds (grey) 

decreases as the residence time is also decreased.  
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Figure 20 The results of GC-MS analysis on the samples collected from HDPE two -

stage pyrolysis.  These results demonstrate the effect of residence time on the bond 

nature in the liquid fraction. There is a larger aromatic fraction at longer residence 

times.  

 

Similar trends were observed through adjusting the residence time using LDPE as the 

feedstock (Figure 21 and Figure 22). An insufficient sample was collected during the 6.6s 

run, there was still a noticeable pattern with the highest percentage of C6-C12 collected 

during the experiments using longest residence times, while at the shorter residence times 

there is less degradation and as such more longer chain hydrocarbons. There are only 

aromatic type bonds present in the longer residence times (Figure 22). These compounds 

are predominantly benzene and toluene, which is aligned with what has been previously 

reported in literature [53] [58].   
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Figure 21 The results of GC-MS analysis on the samples collected from LDPE two -

stage pyrolysis. These results demonstrate the effect of residence time on the carbon 

number in the liquid fraction. The number of longer C12-C18 compounds (orange) 

and C19+ compounds (blue) increase as the residence time is decreased. 

 

Figure 22 The results of GC-MS analysis on the samples collected from LDPE two -

stage pyrolysis.  These results demonstrate the effect of residence time on the bond 

nature in the liquid fraction. An aromatic fraction is only present at the longest 

residence time. 
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3.4 Gas Composition Analysis 

3.4.1 Gas Analysis Two-Stage HDPE Pyrolysis  

Micro-GC was used to analyze the composition of the gas samples taken downstream of 

the two-stage pyrolysis process. First, the results of varying the residence times using the 

HDPE feedstock were analyzed.  During experiments that had the longest residence time, 

there was more overcracking and methane and hydrogen were the predominant products. 

As the residence time was shortened, the percent yields of the monomer ethylene 

increased. This trend can be observed in Figure 23 . At 6.6s there was the smallest 

amount of ethylene at 10 wt. %. As the residence time was shortened, larger ethylene 

yields were recorded with a 30 wt. % yield recorded at both the 1.5s and the 1.0s 

residence times. Considering a gas yield of 88.5% for the 1.0s run, this resulted in an 

overall monomer recovery of 26.6 % from the feedstock.  An inverse trend was recorded 

with regards to methane and hydrogen (Figure 24). This is similar to reported trends in 

literature that methane and hydrogen yields will increase with a longer residence time 

[59]. 
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Figure 23 The concentration of select gas compounds present in samples collected 

during HDPE pyrolysis using a secondary furnace. The amount of ethylene (light 

blue) increased as the residence times was shortened.  

 

Figure 24 This figure depicts the relationship between hydrogen, methane and 

ethylene yields as the residence time is adjusted during HDPE two-stage pyrolysis.  
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3.4.2 Gas Analysis Two-Stage LDPE Pyrolysis 

The same trend was reported for the varying residence times with the LDPE feedstock 

(Figure 25 and Figure 26). Decreasing the residence time reduced the amount of over 

cracking of the hydrocarbon products, resulting in larger amounts of the monomer 

ethylene and smaller amounts of methane. As seen in Figure 26, the methane yield 

decreased as the residence time increased.   

The results of the LDPE feedstock pyrolysis resulted in similar outcomes as compared to 

the HDPE feedstock pyrolysis. Increasing the residence time decreased the amount of 

overcracking which produced higher ethylene yields and heavier hydrocarbons. A 15 

LPM N2 flow rate, with a 1.0s residence time, produced the highest recorded ethylene 

yield 40 wt. %. Considering a gas yield of 85.25% for this run, this results in an overall 

monomer recovery of 34.1% from the feedstock.  When comparing this to other results in 

the literature this is significant. A study by Williams et al. from 1998 recorded 26.86 wt. 

% as their maximum monomer yield, a 1997 study by Lovett et al. recorded 37 wt. % as 

the maximum monomer yield and from Park K.B. in 2019 they recorded 34.50 % [44] 

[60] [26]. From the 1.0s residence time run, there was a hydrogen yield of 24 wt. %. 

Considering a gas yield of 85.25% this results in an overall yield of 54.56 % for the 1high 

value components.  
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Figure 25 The concentration of select gas compounds present in samples collected 

during LDPE pyrolysis using a secondary furnace. The amount of ethylene (light 

blue) increased as the residence times were shortened. The amount of methane 

(orange) decreased as the residence times were shortened.  
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Figure 26 This figure depicts the relationship between hydrogen, methane and 

ethylene yields as the residence time is adjusted during LDPE two-stage pyrolysis. 
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high amounts of hydrogen and ethylene as well as slightly longer hydrocarbons such as 

propane. When considering the goal of optimizing the monomer yield, the best results 

were at the 500/850C temperature conditions. 

 

 

Figure 27 The concentration of select gas compounds present in samples collected 

during LDPE pyrolysis using a secondary furnace. The temperatures in both the 

secondary furnace and the main reactor were adjusted to analyze the effect of 

temperature on gas composition. As the temperatures were increased more methane 

(orange) was produced.  
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This was confirmed by repeated experiments. While this may be counterintuitive as at the 

faster feed rate there is a shorter residence time (Table 3) and as presented earlier, shorter 

residence times should decrease the amount of over-cracking, these results can be 

explained by the reaction kinetics. Various reaction models for LDPE pyrolysis have 

been proposed in the literature. The most common model used for the thermal 

decomposition of polyethylene is a radical chain mechanism. The rate law obtained using 

this model is a function of the original polymer, ranging to the power of 0.5 and 1.5 [61] 

[62].   In a 2021 study by Dubdub et al., the Coats- Redfern model was used to 

demonstrate that an equi-mass waste plastic mixture including PS, PP and LDPE fit to a 

third-order reaction mechanism [63].  These proposed models demonstrate the 

dependence of the rate of the reaction on the amount of polymer added to the system. 

When the amount of feed is increased, the rate of the reaction will also increase. More 

conversion will lead to a greater product distribution of shorter chain molecules like 

methane. There is also gas-liquid interface, due to the presence of the melted feedstock 

entering the reactor and the gaseous degradation products that are leaving the reactor [64] 

that could impact the product distribution in the gas yield. A repeat experiment was 

conducted for the doubled feed rate and is depicted by error bars for the standard 

deviation between results in Figure 28. The standard deviation for each compound was 

below 5%, indicating good reproducibility of the results.  
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Figure 28 The concentration of select gas compounds present in samples collected 

during LDPE pyrolysis using a secondary furnace. The feed rate of the plastic was 

adjusted to analyze its effect on gas composition. As the feed rate was increased 

more hydrogen (dark blue) was produced. 

 

3.4.5 Gas Analysis Two-Stage Pyrolysis Feedstock Adjustment 

Feedstock compositions were tested at the same operating conditions of a 1.0s residence 

time, 500C for the reactor with 850C for the secondary furnace. Pure HDPE and LDPE 

were compared to a mixed feedstock containing 50% HDPE and 50% LDPE. When 

looking at the monomer yield pure LDPE had the highest amount of ethylene with a 40 

wt. % yield, HDPE had a 30 wt. % yield and the mixed feedstock at a 39 wt. % yield. In 

this case, the blend had little effect on the product range distribution.  
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Figure 29 The concentration of select gas compounds present in samples collected 

during pyrolysis using a secondary furnace. HDPE, LDPE and a 50:50 blend of both 

plastics were used as feedstock for these experiments, all of the other conditions 

were kept the same.  

3.4.6 Gas Analysis Two-Stage LDPE Pyrolysis Tube Dimensions 

Adjustment 

Another way to adjust the residence time for the reactor was to alter the size of the tube in 

the furnace. For one experiment a smaller, 3/8” tube was used. This increased the contact 

area ratio between the gases in the furnace and the hot metal and decreased the residence 

time from 1.03 to 0.98 seconds. Compared with similar trends previously analyzed, when 

the residence time is decreased it is expected that there is less over-cracking and higher 

yields of longer chain hydrocarbons [58].  

As seen in Figure 30 there was more Pentane (C5H12) and Hexane (C6H14) produced with 

the 3/8” tube as compared to the larger tube which corresponds with this expected trend. 

However, there was also more methane produced which was not expected. Increasing the 

amount of contact that the gases have with the hot metal tubing could also increase the 

amount of heat transfer and thus molecular cracking. This phenomenon would explain the 

increased methane yield.  
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Figure 30 The concentration of select gas compounds present in samples collected 

during LDPE pyrolysis using a secondary furnace. The gas composition from 

pyrolysis experiments using 3/8" tube were compared to a run using the same 

conditions. There is a larger amount of longer hydrocarbon molecules produced 

with the smaller tube as compared to the baseline conditions.  

 

3.4.7 Gas Analysis Two-Stage Polypropylene Pyrolysis  

Waste PP was used as the feedstock for two experiments with different N2 flow rates and 

gas residence times Figure 31. A lot of over-cracking occurred during both experiments 

with high amounts of methane present for both residence times (42% at 1 LPM and 41 % 

at 15 LPM) and low yields of the propylene. This could be explained by fillers and other 

contaminants such as coloring found in the waste samples.  Results from the literature 

have also indicated that the addition of impurities in PP have led to higher gas yields 

indicating cracking being favored [65]. At the shorter residence time there were 

noticeably higher amounts of heavier hydrocarbons such as butane, propane, and 

propylene than at the longer residence time; 9%, 2%, 3% versus 3%, 1%, 1% 

respectively. This is similar to what has been reported in literature [28] [65].   
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Figure 31 The concentration of select gas compounds present in samples collected 

during Waste PP pyrolysis using a secondary furnace. Large amounts of methane 

(orange) were present during both experiments.  

3.4.8 Gas Analysis Mixed Plastic Pyrolysis  

An exploratory run was completed at the 500/850C temperature conditions using mixed 

plastics to mimic typical municipal plastic waste blends as described in the literature [17]. 

This blend was selected to be 41% LDPE, 34% HDPE and 25% PP of the virgin pellets 

based off typical waste compositions. A 1.0s residence time was used. The results from 

this run can be found in Figure 32. Overall, the yield of ethylene was lower than other 

experiments conducted at similar conditions. This could be attributed to the effect of PP 

on the sample. From the literature this compound is typically reduced to its monomer 

propylene [66]. In this sample there were more of the longer hydrocarbons present. More 

experiments would need to be conducted to make definitive conclusions.  
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Figure 32 The concentration of select gas compounds present in the sample collected 

using mixed plastic as the feedstock for pyrolysis using a secondary furnace. 
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4 Techno-Economic Analysis 

The following chapter provides a discussion of the economic sustainability and 

profitability of a two-stage waste plastic pyrolysis plant. The analysis is based on the 

results obtained from experiments performed using virgin polyethylene. 

 

4.1 Mass and Energy Balance 

 

The low heating value on a dry basis was calculated for both LDPE and HDPE using 

Equations 1 and 2: 

1 

 

 2 

 

where C is the carbon content, H is hydrogen content, S is sulfur content, O is oxygen 

content, N is nitrogen content and A is the Ash content. The calculated value for HDPE 

was 8.45 kW and for LDPE it was 8.26 kW.  

An energy balance was preformed using the first law of thermodynamics (Equation 3). 

3 

 

Where Ein in the energy input, Eout is the energy output and Eloss is the energy loss.  
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Based on the system Equation 3 was rewritten as 

4 

5 

Qpw is the energy content of the plastics and Qs is the energy required by the reactor to 

run at the set conditions. The potential recovered energy is the maximum energy 

recovered from the pyrolysis products and is the sum of the energy content from each 

product fraction (gas, solid, and liquid). Since the char production is negligible, the 

energy in the products can be written as in Equation 6: 

6 

 

The energy content calculation is based on the higher heating values of the compounds: 

7 

8 

 

Where Xi is the mass yield of the products per kg of virgin plastic input and HHVi is the 

corresponding heating value. 

The total energy recovery ratio (ERR) is defined in Equation 9: 

9 

 

Where Qpw is the maximum energy potential of the plastic waste, it is a measure of the 

available heat of combustion obtained by plastic combustion.  
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Finally, the theoretical energy efficiency of the pyrolysis process can be calculated using 

Equation 10. 

10 

 

4.1.1 Single-Stage Pyrolysis Mass and Energy Balance  

The mass and energy balance for the single stage LDPE and HDPE plant set up can be 

seen in Figure 33. Oil yields of 65.7% for HDPE and 65.5% for LDPE with a feeding rate 

of 0.72 kg/h accounted for oil being produced at a rate of 0.47 kg/hr. For the mass 

balance, only the yields of hydrogen, methane and ethylene were considered in the non- 

condensable fraction. Their concentrations were normalized. The LHV of the oil fraction 

was measured in kW to demonstrate the energy potential of the recovered portion. 

 

Figure 33 A mass and energy balance conducted on the single stage pyrolysis plant. 

Table 4 Energy Values Single-Stage Pyrolysis 

 Qpw 

(MJ/kg) 

Qs 

(MJ/kg) 

Ein 

(kW) 

Qliquid 

(MJ/kg) 

Qgas 

(MJ/kg) 

Qrecovery 

(MJ/kg) 

Eout 

(kW) 

Eloss 

(kW) 

ERR 

(%) 

 

(%) 
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HDPE 45.20 50.90 19.2 30.2 20.7 50.8 10.17 9.1 112.5 54.6 

LDPE 44.15 50.90 19.0 29.8 23.9 53.7 10.74 8.3 121.6 58.2 

 

 

4.1.2 Two-Stage Pyrolysis Mass and Energy Balance 

 

The mass and energy balance for the double stage LDPE and HDPE plant set up can be 

seen in Figure 34. Oil yields of 11.5% for HDPE and 14.75% for LDPE with a feeding 

rate of 0.72 kg/h accounted for oil fractions of 0.083 kg/h and 0.106 kg/h respectively. 

For the mass balance only the yields of hydrogen, methane and ethylene were considered 

in the non- condensable fraction. Their concentrations were normalized. The LHV of the 

oil fraction was measured in kW to demonstrate the energy potential of the recovered 

portion. 

 

Figure 34 A mass and energy balance conducted on a two-stage pyrolysis plant.  
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Overall, the efficiency of the system is lowered when considering the two-stage pyrolysis 

plant because more energy must be put into the system with the secondary furnace. The 

calculated energy values of the system can be found in Table 5.  

 

 

Table 5 Energy Values for Two-Stage Pyrolysis Plant 

 Qpw 

(MJ/kg) 

Qs 

(MJ/kg) 

Ein 

(kW) 

Qliquid 

(MJ/kg) 

Qgas 

(MJ/kg) 

Qrecovery 

(MJ/kg) 

Eout 

(kW) 

Eloss 

(kW) 

ERR 

(%) 

 

(%) 

HDPE 45.20 79.00 24.5 5.3 57.4 62.6 12.35 12.1 138.6 51.7 

LDPE 44.15 79.00 24.3 6.7 55.0 61.7 12.18 12.1 139.8 51.3 

 

For each of the given scenarios the following calculations and assumptions were used. 

The total capital investment consists of the fixed and working capital. The fixed capital 

includes direct costs and indirect costs. These costs were estimated based on percentages 

of the equipment costs according to approximations used by Peters et al 1991 [67]. The 

price of plastic pyrolysis oil was estimated based on the price of crude oil, at $0.377/kg 

[68]. The gas price was calculated using the normalized hydrogen, methane, and ethylene 

values. These values were approximated to be $2/kg for hydrogen, $1.01/kg for ethylene 

and $0.077/kg for methane [69] [41] [43].  

Manufacturing costs consist of direct production costs, fixed charges, as well as plant 

overhead costs. General expenses include administrative costs, as well as distribution and 

marketing expenses. The raw material costs were assumed to be $0 since it will be a 

waste stream. 

The labor costs were based on the following assumptions: 
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1) 8-hour shifts 

2) 3 shifts per day 

3) The average salary is $44,018 USD/year 

 

Other manufacturing costs and expenses were estimated again based off percentages from 

Peters et al., 1991 [67]: 

1) Maintenance and repair: 7% of equipment costs 

2) Operating supplies: 15% of maintenance and repair 

3) Laboratory charge: 15% of operating labour 

4) Taxes: 13% 

5) Plant overhead: 50% of total operating labour and maintenance  

6) Administrative: 20% of operating labor 

7) Distribution and selling: 5% of total product costs 

8) Research and development: 3% of sales 

 

Depreciation has been evaluated based on a 20-year period. The final value of the 

equipment was assumed to be $2000. The annual net cash income is the sum of the 

annual operating income after tax plus the depreciation.  

The NPV and Payback time were used to assess the profitability of the plant. A discount 

factor of 5% was used. 

 

11 

 

ACF is the annual cash flow, d is the discount factor, and n is the reference year of the 

considered cased flow. 

12 

 

Where, APV represents the annual present value, N is the plant lifetime in years and CTC is 

the total capital investment.  
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4.2 Economic Analysis 

4.2.1  Applied Economic Scenarios 

The experimental parameters and yields obtained in Chapter 3 were applied to the 

following scenarios to develop an understanding of how these conditions may impact the 

profitability of a plastic pyrolysis plant. The base scenario was evaluated as the pilot 

scale plant with a feed rate of 0.72 kg/hr and with 4.5 workers per shift to run the plant. 

The plant was powered by electricity. Scenario 1 was the unaltered scale up of the base 

scenario. Under this scenario, a feed rate of 2500 kg/hr was used.  It was approximated 

that included vacation and changeovers; 9 workers would be needed per shift to run the 

plant. Scenario 2 worked under the assumption that the plant was built in Quebec, where 

electricity costs are typically lower due to an abundance of hydroelectric plants. An 

energy price of $0.043 kW/h was used [70]. Scenario 3 altered the heating source for the 

plant, using natural gas rather than electricity. Scenario 4 considered using the methane 

produced by the process as a heat source for the plant. Part of the methane produced then 

acts as a recycled stream back to the process. These calculations were simplified to 

neglect the separation and additional gas treatments required. The methane required (as 

determined in scenario 3) was subtracted from the methane produced based on the 

experimental yields achieved. The remaining methane was considered available for sale 

while the rest was recycled through the process.  

4.2.2 LDPE Single-Stage Pyrolysis Economic Analysis  

Table 6 provides a summary of the results from the calculations of the LDPE single-stage 

pyrolysis economic analysis. Figure 35 displays the payback period for each applied 

scenario.  

Table 6 LDPE Single-Stage Pyrolysis Economic Analysis 

Gas Production [kg/y] 1382 5016902 5016902 5016902 5016902 

Hydrogen (%) 5% 5% 5% 5% 5% 
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Hydrogen Sale Price [USD/kg] 2 2 2 2 2 

Methane (%) 54% 54% 54% 54% 37% 

Methane Sale Price [USD/kg] 0.077 0.077 0.077 0.077 0.077 

Ethylene (%) 41% 41% 41% 41% 41% 

Ethylene Sale Price [USD/kg] 1.01 1.01 1.01 1.01 1.01 

Gas Sale Price [USD/kg] 0.55 0.56 0.56 0.56 0.54 

Oil Production [kg/h] 0.5 1629.1 1629.1 1629.1 1629.1 

Oil Production [kg/y] 2707 9383328 9383328 9383328 9383328 

Oil Sale Price [USD/kg] 0.43 0.38 0.38 0.38 0.38 

Annual Income (sales) 

[USD/y] 
1,921.0 

6,325,307.

0 

6,325,307.

0 

6,325,307.

0 

6,259,636

.0 

Raw Material [USD/y] 0 0 0 0 0 

Workers  4.5 9 9 9 9 

Salary [USD/y] 44,018 44,018 44,018 44,018 44,018 

Operating Labor [USD/y] 198,081 396,162 396,162 396,162 396,162 

Utilities [USD/y] 49,796 993,686 459,446 106,011 55 

Maintenance and Repair 

[USD/y] 
2,254 300,136 300,136 300,136 300,136 

Operating Supplies [USD/y] 338 45,020 45,020 45,020 45,020 
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Laboratory Charges [USD/y] 29,712 59,424 59,424 59,424 59,424 

Taxes  250 822,290 822,290 822,290 813,753 

Plant Overhead 100,168 348,149 348,149 348,149 348,149 

Annual Manufacturing Cost 

[USD/y] 
424,621 3,008,895 2,474,655 2,121,220 2,006,727 

Administrative [USD/y] 39,616 79,232 79,232 79,232 79,232 

Distribution and Selling 

[USD/y] 
2,548 18,053 14,848 12,727 12,040 

Research and Development 

[USD/y] 
58 189,759 189,759 189,759 187,789 

Annual General Expenses 

[USD/y] 
42,222 287,045 283,840 281,719 279,062 

Annual Total Product Cost 

[USD/y] 
466,843 3,295,940 2,758,495 2,402,939 2,285,789 

Annual Operating Income 

[USD/y] 
-464,921 3,029,367 3,566,812 3,922,368 3,973,847 

Annual Depreciation [USD/y] 1,510 198,383 198,383 198,383 198,383 

Income before Tax [USD/y] -466,431 2,830,984 3,368,429 3,723,985 3,775,464 

Income after Tax [USD/y] -466,681 2,008,694 2,546,139 2,901,695 2,961,711 

Annual Net Cash Income 

[USD/y] 
-465,171 2,207,077 2,744,522 3,100,078 3,160,094 
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Figure 35 The NPV of 4 “scale-up” scenarios as applied to a LDPE single-stage plant. The 

payback period is depicted on the y-axis. For each subsequent scenario the payback period is 

lowered and the NPV increases.  
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With the single-stage reactor set-up, the pilot plant is not economically feasible. The 

NPV is always negative, even after 20-year lifespan. When the process is scaled up, it is 

profitable after the fourteenth year of operation. Again, this is not indicative of a 

financially feasible process. This value is improved in all the subsequent scenarios. In all 

scenarios there is a very large payback period of over ten years. 

 

4.2.3 HDPE Single-Stage Pyrolysis Economic Analysis  

Table 7 provides a summary of the results from the calculations of the LDPE single-stage 

pyrolysis economic analysis. Figure 37 Figure 37 displays the payback period for each 

applied scenario.  

Table 7 HDPE Single-Stage Pyrolysis Economic Analysis 

 Base 

Scenario 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Gas Production [kg/y] 1382 4999104 4999104 4999104 4999104 

Hydrogen (%) 12% 12% 12% 12% 12% 

Hydrogen Sale Price [USD/kg] 2 2 2 2 2 

Methane (%) 57% 57% 57% 57% 37% 

Methane Sale Price [USD/kg] 0.077 0.077 0.077 0.077 0.077 

Ethylene (%) 31% 31% 31% 31% 31% 

Ethylene Sale Price [USD/kg] 1.01 1.01 1.01 1.01 1.01 

Gas Sale Price [USD/kg] 0.6 0.6 0.6 0.6 0.6 

Oil Production [kg/h] 0.5 1632.1 1632.1 1632.1 1632.1 
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Oil Production [kg/y] 2707 9401068.8 9401068.8 9401068.8 9401068.8 

Oil Sale Price [USD/kg] 0.377 0.377 0.377 0.377 0.377 

Annual Income (sales) 

[USD/y] 
1,834 6,528,618 6,528,618 6,528,618 6,451,632 

Raw Material [USD/y] 0 0 0 0 0 

Workers  5 9 9 9 9 

Salary [USD/y] 44,018 44,018 44,018 44,018 44,018 

Operating Labor [USD/y] 198,081 396,162 396,162 396,162 396,162 

Utilities [USD/y] 49,796 993,686 459,446 106,011 55 

Maintenance and Repair 

[USD/y] 
2,254 300,136 300,136 300,136 300,136 

Operating Supplies [USD/y] 338 45,020 45,020 45,020 45,020 

Laboratory Charges [USD/y] 29,712 59,424 59,424 59,424 59,424 

Taxes  238 848,720 848,720 848,720 838,712 

Plant Overhead 100,168 348,149 348,149 348,149 348,149 

Annual Manufacturing Cost 

[USD/y] 
424,610 3,035,326 2,501,086 2,147,650 2,031,686 

Administrative [USD/y] 39,616 79,232 79,232 79,232 79,232 

Distribution and Selling 

[USD/y] 
2,548 18,212 15,007 12,886 12,190 
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Research and Development 

[USD/y] 
55 195,859 195,859 195,859 193,549 

Annual General Expenses 

[USD/y] 
42,219 293,303 290,097 287,977 284,971 

Annual Total Product Cost 

[USD/y] 
466,829 3,328,629 2,791,183 2,435,627 2,316,658 

Annual Operating Income 

[USD/y] 
-464,995 3,199,989 3,737,435 4,092,991 4,134,974 

Annual Depreciation [USD/y] 1,510 198,383 198,383 198,383 198,383 

Income before Tax [USD/y] -466,505 3,001,606 3,539,052 3,894,608 3,936,591 

Income after Tax [USD/y] -466,743 2,152,886 2,690,331 3,045,888 3,097,879 

Annual Net Cash Income 

[USD/y] 
-465,233 2,351,269 2,888,714 3,244,271 3,296,262 
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Figure 37 The NPV of 4 “scale-up” scenarios as applied to a HDPE single-stage plant. The payback 

period is depicted on the y-axis. For each subsequent scenario the payback period is lowered and the 

NPV increases. 
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With the single-stage reactor set-up, the pilot scale is not economically feasible. The 

NPV is always negative, even after 20-year lifespan. When the process is scaled up, it is 

profitable after the fourteenth year of operation. Again, this is not indicative of a 

financially feasible process. This value is improved in all the subsequent scenarios. 

However, in each scenario there is a very large payback period of over ten years. When 

compared to the LDPE single-stage analysis, the value of hydrogen makes a difference in 

the profitability of the plant. When the hydrogen yield is increased, the overall profits 

also increase.  

 

4.2.4 LDPE Two- Stage Pyrolysis Economic Analysis  

Table 8 provides a summary of the results from the calculations of the LDPE two-stage 

pyrolysis economic analysis. Figure 38 displays the payback period for each applied 

scenario.  

Table 8 LDPE Two-Stage Pyrolysis Economic Analysis 

Gas Production [kg/y] 3535 12276000 12276000 12276000 12276000 

Hydrogen (%) 30% 30% 30% 30% 30% 

Hydrogen Sale Price [USD/kg] 2 2 2 2 2 

Methane (%) 18% 18% 18% 18% 8% 

Methane Sale Price [USD/kg] 0.077 0.077 0.077 0.077 0.077 

Ethylene (%) 51% 51% 51% 51% 51% 

Ethylene Sale Price [USD/kg] 1.01 1.01 1.01 1.01 1.01 

Gas Sale Price [USD/kg] 1.13 1.13 1.13 1.13 1.12 

Oil Production [kg/h] 0.106 368.75 369 368.75 368.75 
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Oil Production [kg/y] 611.7 2124000 2124000 2124000 2124000 

Oil Sale Price [USD/kg] 0.377 0.377 0.377 0.377 0.377 

Annual Income (sales) 

[USD/y] 
4,222 

14,659,86

1 

14,659,86

1 

14,659,86

1 

14,565,33

6 

Raw Material [USD/y] 0 0 0 0 0 

Workers  5 9 9 9 9 

Salary [USD/y] 44,018 44,018 44,018 44,018 44,018 

Operating Labor [USD/y] 198,081 396,162 396,162 396,162 396,162 

Utilities [USD/y] 50,021 1,224,029 565,949 130,585 68 

Maintenance and Repair 

[USD/y] 
2,611 347,673 347,673 347,673 347,673 

Operating Supplies [USD/y] 392 52,151 52,151 52,151 52,151 

Laboratory Charges [USD/y] 29,712 59,424 59,424 59,424 59,424 

Taxes  549 1,905,782 1,905,782 1,905,782 1,893,494 

Plant Overhead 100,346 371,918 371,918 371,918 371,918 

Annual Manufacturing Cost 

[USD/y] 
425,734 4,401,166 3,743,086 3,307,722 3,164,917 

Administrative [USD/y] 39,616 79,232 79,232 79,232 79,232 

Distribution and Selling 

[USD/y] 
2,554 26,407 22,459 19,846 18,990 
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Research and Development 

[USD/y] 
127 439,796 439,796 439,796 436,960 

Annual General Expenses 

[USD/y] 
42,297 545,435 541,487 538,875 535,182 

Annual Total Product Cost 

[USD/y] 
468,031 4,946,601 4,284,573 3,846,597 3,700,099 

Annual Operating Income 

[USD/y] 
-463,809 9,713,260 

10,375,28

8 

10,813,26

4 

10,865,23

7 

Annual Depreciation [USD/y] 1,765 232,338 232,338 232,338 232,338 

Income before Tax [USD/y] 
-465,574 9,480,922 

10,142,95

0 

10,580,92

6 

10,632,89

9 

Income after Tax [USD/y] -466,123 7,575,140 8,237,168 8,675,144 8,739,405 

Annual Net Cash Income 

[USD/y] 
-464,358 7,807,478 8,469,506 8,907,483 8,971,743 
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Figure 38 The NPV of 4 “scale-up” scenarios as applied to a LDPE two-stage plant. 

The payback period is depicted on the y-axis. For each subsequent scenario the 

payback period is lowered and the NPV increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When observing just the base scenario, the process is not economically feasible. The 

NPV is always negative, even after 20-year lifespan. When the process it scaled up, it is 

profitable after the fourth year of operation. This value is improved in all the subsequent 
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scenarios. As can be seen in Table 8, by applying Quebec energy prices, there is a 

decrease in nearly $700,000 USD/year. This is indicative of the importance of 

considering the location and energy costs when building an electric plant. When natural 

gas is used to heat the plant, nearly $1,000,000 is gained as compared to Scenario 1.  

Finally, in Scenario 4, recycling the produced methane to heat the plant demonstrates 

how this again can decrease required costs to improve the feasibility, with a positive NPV 

of nearly 3 years. When compared to the single-stage process, increasing the ethylene and 

hydrogen as well as overall gas yields has a remarkable impact on the profitability and 

payback period of the plant.  

 

4.2.5 HDPE Two-Stage Pyrolysis Economic Analysis  

Table 9 provides a summary of the results from the calculations of the HDPE two-stage 

pyrolysis economic analysis. Figure 40 displays the payback period for each applied 

scenario.  

 

Table 9 HDPE Two-Stage Pyrolysis Economic Analysis 

Gas Production [kg/y] 3670 12744000 12744000 12744000 12744000 

Hydrogen (%) 29% 29% 29% 29% 29% 

Hydrogen Sale Price [USD/kg] 2 2 2 2 2 

Methane (%) 29% 29% 29% 29% 19% 

Methane Sale Price [USD/kg] 0.077 0.077 0.077 0.077 0.077 

Ethylene (%) 41% 41% 41% 41% 41% 

Ethylene Sale Price [USD/kg] 1.01 1.01 1.01 1.01 1.01 
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Gas Sale Price [USD/kg] 1.02 1.02 1.02 1.02 1.01 

Oil Production [kg/h] 0.083 287.5 287.5 287.5 287.5 

Oil Production [kg/y] 476.9 1656000 1656000 1656000 1656000 

Oil Sale Price [USD/kg] 0.377 0.377 0.377 0.377 0.377 

Annual Income (sales) 

[USD/y] 
3,933 

13,656,37

7 

13,577,69

6 

13,577,69

6 

13,479,56

7 

Raw Material [USD/y] 0 0 0 0 0 

Workers  5 9 9 9 9 

Salary [USD/y] 44,018 44,018 44,018 44,018 44,018 

Operating Labor [USD/y] 198,081 396,162 396,162 396,162 396,162 

Utilities [USD/y] 50,021 1,224,029 565,949 130,585 68 

Maintenance and Repair 

[USD/y] 
2,611 347,673 347,673 347,673 347,673 

Operating Supplies [USD/y] 392 52,151 52,151 52,151 52,151 

Laboratory Charges [USD/y] 29,712 59,424 59,424 59,424 59,424 

Taxes  511 1,775,329 1,765,100 1,765,100 1,752,344 

Plant Overhead 100,346 371,918 371,918 371,918 371,918 

Annual Manufacturing Cost 

[USD/y] 
425,697 4,270,713 3,602,405 3,167,040 3,023,767 
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Administrative [USD/y] 39,616 79,232 79,232 79,232 79,232 

Distribution and Selling 

[USD/y] 
2,554 25,624 21,614 19,002 18,143 

Research and Development 

[USD/y] 
118 409,691 407,331 407,331 404,387 

Annual General Expenses 

[USD/y] 
42,288 514,548 508,178 505,566 501,762 

Annual Total Product Cost 

[USD/y] 
467,985 4,785,261 4,110,582 3,672,606 3,525,529 

Annual Operating Income 

[USD/y] 
-464,052 8,871,116 9,467,114 9,905,090 9,954,038 

Annual Depreciation [USD/y] 1,765 232,338 232,338 232,338 232,338 

Income before Tax [USD/y] -465,817 8,638,778 9,234,776 9,672,752 9,721,700 

Income after Tax [USD/y] -466,328 6,863,449 7,469,675 7,907,651 7,969,356 

Annual Net Cash Income 

[USD/y] 
-464,563 7,095,787 7,702,013 8,139,989 8,201,694 
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Figure 40 The NPV of 4 “scale-up” scenarios as applied to a HDPE two-stage plant. The 

payback period is depicted on the y-axis. For each subsequent scenario the payback period is 

lowered and the NPV increases. 
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The base scenario is not economically feasible. It always costs more money to operate the 

plant than can be made from profits.  When the process it scaled up, it becomes profitable 

after the fourth year of operation. This value is improved in all the subsequent scenarios. 

As can be seen in Table 9, by applying Quebec energy prices, there is a decrease in 

nearly $700,000 USD/year. When comparing the LDPE plant to the HDPE plant, the 

main difference is the amount of methane produced. Methane is the least profitable of the 

3 gases considered for this analysis. In the LDPE plant more ethylene and hydrogen are 

comparatively produced. Both of these gases are of higher value than methane. Overall, 

this makes the LDPE plant more profitable than the HDPE plant.  
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5 Conclusions and Recommendations 

With the world’s plastic use and consumption drastically increasing, new technologies 

need to be developed to address concerns of waste accumulation. Chemical recycling 

provides a favorable avenue to minimize the need for new plastic resins. In this thesis, the 

chemical recycling of plastic was investigated using both a continuous single-stage and 

two-stage pyrolysis reactor. Liquid and gaseous products were collected and analyzed 

using GC-MS, Micro-GC, Karl Fischer Titration and Gas Chromatography.  

Single stage pyrolysis was explored as a solution for the tertiary recycling of plastic 

waste. Lower temperatures led to higher liquid yields while higher temperatures led to 

more over-cracking and higher gas yields.  

A secondary furnace was used to enhance downstream cracking of the vapors produced 

from the pyrolysis unit.  These experiments were completed with the intention of 

identifying trends and opportunities using this set-up. The same trends in yields were 

observed during the two-stage experiments.  Overall, the secondary furnace increased the 

amount of gas produced as compared to the single stage unit.  

Operating parameters such as reactor and furnace temperature, residence time, and feed 

rate were altered to gain an understanding of their impact on operating outputs. With the 

reactor and secondary furnace set point conditions of 500 C and 850 C, maximum 

monomer recovery for HDPE and LDPE were achieved using the shortest residence time 

of 1.0 seconds. There was a 26.6 wt. % monomer recovery of the original feedstock using 

HDPE and 34.1 wt. % using LDPE. These temperature conditions were kept constant 

while the feed rate of the plastic was increased. Doubling the feed rate resulted in an 

increased hydrogen yield of 46.2 wt. % of the original polymer.  

The liquid products collected during these experiments were analyzed and the results 

demonstrated their potential to be used as a diesel-like fuel. During two-stage pyrolysis, 

the conditions were altered to maximize the yields of ethylene and hydrogen produced. 

Using knowledge gained from the techno-economic evaluation, these are the two most 

valuable components that contribute to the financial success of any future reactor, so 
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maximizing their yields will increase profitability. With the techno-economic evaluation 

it could be seen that the process became considerably more profitable when it was scaled 

up and the two-stage set up was used. None of the base scenarios themselves were 

economically feasible. However, looking at a two-stage HDPE and LDPE pyrolysis plant 

set up some of the most promising scenarios demonstrated payback periods of under 4 

years. This is largely because of the increased profitability of the ethylene and hydrogen 

as a product compared to methane. This once again depicts the need to optimize reactor 

conditions in favor of the production of ethylene and hydrogen.  

Overall, this research demonstrates the feasibility and potential of using a novel, two-

stage pyrolysis reactor and furnace set up to enhance the chemical recycling of plastic 

waste.  

 

5.1.1 Recommendations 

To improve the accuracy and confirm the validity of these results, repeats of some of the 

experiments should be performed. As previously mentioned, to increase the profitability 

of any future scaled-up operations the yields of ethylene and hydrogen should be 

optimized. To do this there could be further investigation towards optimizing the reactor 

parameters including, temperature and pressure, to maximize these yields. A current 

limitation exists in the tubing material that is required to reach a higher temperature in the 

furnace. Other materials, such as quartz, could be selected for the furnace tubing as an 

alternative to reach higher temperatures in the secondary furnace.  
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Appendices  

Appendix A: Sample Calculation Residence Time 

Assumptions 

Mass in: HDPE & N2 

Mass out: Oil, Gas, N2 

Volume of Reactor – Total Volume minus space of glass beads 

HPDE MW (of repeat unit) 28.05g/gmol 

N2 MW 28 g/gmol 

HDPE feed at 12g/min 

 

N2 feed 
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Oil Yield 0.115 

Gas Yield 0.885 

Non Condensables Volumetric Flow Rate 

  

H2 

  

  

Non-condensables    

 

Gas Density (@ 550 C) 
kg/m^3 % Comp 

MW 
(g/gmol) 

Volumetric Flow Rate 
m^3/s 

H2 0.0296 0.21 2 8.95361E-05 

CH4 0.234 0.21 16 9.06074E-05 

CO2 0.651 0.11 44 4.69142E-05 

C2H4 0.751 0.3 28 7.05797E-05 

C2H6 0.444 0.03 30 1.27909E-05 

C3H6 0.647 0.01 42 4.09624E-06 

C3H8 0.647 0.11 44 4.72043E-05 

C4H10 1.487 0.03 58 7.38378E-06 
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Condensables Volumetric Flow Rate 

       

 

C21H44  

       

       

Condensables    

 

Critical Volume  
m^3/gmol  % Comp 

MW 
(g/gmol) 

Volumetric Flow Rate 
m^3/s 

C21H44 0.00121 0.131 296 1.29973E-07 

C17H34 0.00097 0.0746 238 5.93343E-08 

C15H30 0.00086 0.0809 210 5.70482E-08 

C13H26 0.00074 0.2187 182 1.32701E-07 

C12H24 0.00069 0.108 168 6.11037E-08 

C11H22 0.00063 0.128 154 6.61219E-08 

C9H18 0.00053 0.107 126 4.65002E-08 

C8H16 0.00047 0.083 112 3.19868E-08 

C7H14 0.00041 0.068 98 2.28606E-08 

 

Volume of the pipe 

 

Length  
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Cross-sectional area 

 

 

 

Volume 

 

 

Volume of Reactor  

V=0.0035 m^3 

Total Volumetric Flow Rate 
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Residence Time 
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