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Abstract 

Climate warming and atmospheric nitrogen deposition, two elements of global change, are 

expected to exert strong effects on northern temperate ecosystems over the next century. I 

added new nitrogen addition and warming plots to a pre-existing nitrogen and warming field 

experiment in London, Ontario to compare the short-term (1-2 year; new plots) versus long-

term (14-15 year; old plots) treatment effects on soil carbon and microbial activity. I used 

soil density fractionation and size fractionation to separate soil carbon fractions and analyzed 

carbon quality using Fourier-transform infrared spectroscopy (FTIR). I used extracellular 

enzyme assays to assess microbial activities. The soil organic matter free light fraction 

recovery increased with nitrogen addition in the old plots but decreased in the new plots. 

Interactions between warming and plot age were significant for some hydrolase enzymes. 

These results confirm short-term responses of soil carbon and microbial activity differed 

from long-term responses in this field experiment.  

 

Keywords 

Carbon cycle, grassland, extracellular enzymes, nitrogen fertilization, climate warming, soil 
organic matter, soil carbon, Fourier-transform infrared spectroscopy, density fractionation, 
global change 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

iii 

 

Summary for Lay Audience 
Since the industrial revolution, the burning of fossil fuels and agricultural intensification 

have increased globally. These activities have accelerated global change through the release 

of greenhouse gases, such as carbon dioxide (CO2) and methane (CH4), and increased 

nitrogen pollution. Greenhouse gases trap radiation from the sun in the form of heat, 

ultimately increasing the Earth’s global surface temperatures. In the coming decades, average 

global surface temperatures are expected to increase around 2 ℃, with the greatest warming 

effect towards the poles. In addition to warming, nitrogen pollution threatens the surrounding 

environment when excess nitrogen enters a system. Nitrogen-based fertilizers are often 

applied excessively to agricultural soils as nitrate, ammonia, urea, and/or ammonium, and 

can have non-specific effects, such as runoff contaminating aquatic environments. Nitrogen 

released to the atmosphere also can be deposited back into ecosystems through atmospheric 

nitrogen deposition. I was interested in understanding how soils would respond to warming 

and nitrogen addition over time. To study this, I conducted a long-term field experiment in a 

temperate old field to examine the short-term (1-2 year) versus the long-term (14-15 year) 

responses of soil organic matter (primarily decomposing plant material) and microbial 

activities to warming and nitrogen treatments. Rather than comparing short-term responses 

from previous studies with long-term responses, new treatment and control plots were 

established to control for weather variation over time. Overall, long-term plots exhibited 

stronger treatment responses than the short-term plots. Nitrogen addition enhanced the 

accumulation of organic matter in the long-term plots for the free light fraction of organic 

matter in soil, which is comprised mostly of root fragments. Warming alone had no effect on 

organic matter accumulation but, when combined with nitrogen addition, organic matter in 

soil aggregates (i.e. small soil clumps protected from microbial decomposition) was greater. 

Lastly, both warming, and nitrogen addition treatments affected microbial enzyme activities, 

but carbon-acquiring enzymes, targeting easily decomposable organic matter, responded 

more to treatments than the enzymes produced to target more difficult substrates. Results 

from my thesis suggest that short-term treatment responses cannot be extrapolated to the 

long-term, and that cumulative responses can occur in the long-term. 
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Chapter 1  

1 Introduction 

1.1 Climate Warming 
In recent decades, anthropogenic climate change has become an increasing global 

concern. Global temperatures have risen an average of 1.1 °C from pre-industrial levels 

(IPCC, 2021), and if future climate predictions are correct, global surface temperatures 

will increase by another 0.4 °C in the next two decades and by 2100, temperatures could 

rise up to 4.4 °C from pre-industrial levels, with more intense climate warming expected 

to occur with increasing latitude (IPCC, 2021). Soils in northern latitudes, including 

mineral soils in northern temperate regions, are therefore expected to experience large 

temperature increases with climate warming relative to most other soils. Soils are the 

largest terrestrial store of carbon, and environmental changes such as warming, could 

cause soil carbon losses that may encourage positive carbon-climate feedbacks (Bradford 

et al., 2016; Crowther et al., 2016). Many biogeochemical processes, such as 

decomposition, are sensitive to temperature, and temperature increases consistent with 

future projections have the potential to alter global ecosystem functioning in the coming 

decades (Millennium Ecosystem Assessment, 2005; Stone et al., 2012; Li et al., 2019); 

however, the extent to which climate warming will affect ecosystem functioning remains 

unclear. 

1.2 Atmospheric Nitrogen Deposition 
Nitrogen is an important mineral nutrient for plants; the availability of nitrogen in soil 

limits plant growth in most terrestrial ecosystems (Lebauer and Treseder, 2008). Nitrogen 

is extremely abundant in the atmosphere in the form of nitrogen gas (N2), which makes 

up approximately 78% of the atmosphere (Galloway et al., 2004). However, N2 is an inert 

form of nitrogen, and atmospheric N2 must be converted into a bioavailable form, such as 

ammonium (NH4+) and/or nitrate (NO3-). The first step of this process is nitrogen 

fixation. Nitrogen fixation can occur naturally when the energy of lightning breaks the 

bond of N2 in the atmosphere, or when it is fixed by microbes in soils. Specialized 
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nitrogen-fixing bacteria free-living in the soil, or with symbiotic relationships with plants, 

produce nitrogenase enzymes to break the nitrogen bonds (Chapin et al., 2002; Galloway 

et al., 2004). The resulting product of nitrogen fixation is NH4+, which can then be taken 

up by plants. Nitrogen mineralization by microbes, the process describing the conversion 

of organic nitrogen (nitrogen originating from living material) into inorganic forms of 

ammonium (NH4+) and/or nitrate (NO3-), which are the two dominant forms of inorganic 

nitrogen in soil available for plant uptake, occurs when microbes break down detritus 

after organisms die, and release it into the soil (Galloway et al., 2004). Microbes can use 

this organic nitrogen to produce biomass and excrete nitrogen-containing compounds, 

which can then be used by plants. Nitrogen can also enter soil systems through fertilizer 

application to increase crop productivity (typically produced via industrial nitrogen 

fixation), or natural processes, including atmospheric deposition, or other inputs from 

decaying plant and animal matter (Galloway et al., 2004). Nitrogen may leave soil when 

NH4+ undergoes nitrification to become NO3-, which due to its negative charge is highly 

mobile in soil and susceptible to leaching, or nitrogen may leave under anaerobic 

conditions through denitrification, when NO3- is converted to nitrous oxide (N2O) or N2 

gas (Phoenix et al., 2012). Other nitrogen-based gases, nitrogen oxides (NOx), are 

reactive, toxic gases produced by the combustion of fossil fuels, most notably from 

automobile engines (Kanakidou et al., 2016). Deposits of reactive nitrogen in terrestrial 

ecosystems can occur when NOx gases fall as wet or dry atmospheric nitrogen deposition; 

wet deposition occurs through precipitation, and dry deposition occurs through processes 

such as sedimentation. Oversaturation of soils with nitrogen due to natural and 

anthropogenic causes can lead to nitrogen runoff into surrounding environments causing 

eutrophication, groundwater contamination, as well as detrimental changes in the 

nitrogen and carbon cycles (Smith and Schindler, 2009; Phoenix et al., 2012).  

Atmospheric nitrogen deposition is a natural process, but over the last century, human 

activities have become the main source of reactive nitrogen deposition in terrestrial 

ecosystems (Galloway et al., 2008). Regional differences in atmospheric nitrogen 

deposition occurs between remote, undeveloped areas, and highly developed areas that 

feature intense industrial and agricultural production. Areas with intense agricultural 

production currently receive high levels of nitrogen deposition, and future nitrogen 
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deposition is expected to continue to increase in these areas (Galloway et al., 2004; 

Kanakidou et al., 2016). Because bioavailable forms of nitrogen (NH4+ and NO3-) are 

limited in terrestrial environments, intense atmospheric nitrogen deposition can alter 

plant productivity and nutrient cycling in terrestrial systems, and enhance global change 

(Phoenix et al., 2012). 

1.3 Soil Organic Matter and Carbon Fractions 
Soils contain the majority of all carbon in terrestrial ecosystems and are therefore an 

integral component of carbon storage on Earth (Crowther et al., 2016). Carbon enters the 

terrestrial system when plants photosynthesize and fix CO2 into plant aboveground and 

belowground biomass. Symbiotic relationships with mycorrhizal fungi can form when 

plants provide carbon as an energy source to fungi through plant roots, while the fungi 

provide plants with essential nutrients, such as nitrogen and phosphorus (Allison and 

Treseder, 2008). Carbon is lost from soil systems when plants and soil microbes respire, 

or when dissolved organic carbon (DOC) leaches out of the system (Barker et al., 2003).  

Soil carbon is largely composed of organic carbon, and mineral carbon. Mineral carbon 

describes the inorganic carbon, such as mineral carbonates, in soils released from 

weathering of rocks (Barker et al., 2003). Organic carbon describes carbon originating 

from living organisms, and organic carbon inputs can enter from aboveground plant 

material, as well as recycled organic carbon from soil organism waste and dead cells, 

which can enter the soil food web. Soil organic carbon is strongly related to soil organic 

matter (SOM), a carbon-rich, heterogenous mixture of organic material in various stages 

of decomposition, from recently decomposed to highly decomposed organic matter, 

originating from plant and soil organisms and their wastes (Barker et al., 2003). Soil 

organic matter contributes to soil functioning by facilitating nutrient and moisture 

retention, carbon turnover and sequestration, as well as influencing soil structure 

(Wander, 2004). SOM can be divided into distinct fractions with different carbon 

structure profiles and residence times. Labile organic matter is sometimes referred to as 

particulate organic matter (POM) and is generally composed of highly desirable carbon 

compounds for microbial degradation, such as soluble saccharides, which are quickly 

degraded (Wander, 2004). Recalcitrant carbon or mineral-associated organic matter 



4 

 

(MaOM) tends to be less desirable for microbes, due to the high energetic costs of 

breaking down the complex compounds, such as lignin or phenol, and has slow carbon 

turnover (Wander, 2004; Song et al., 2012). 

Due to the high background levels of carbon in soil, small changes in soil carbon with 

experimental treatments can be difficult to detect in bulk soil. However, fractionation 

techniques can give more insight into changes in distinct organic matter fractions (Song 

et al., 2012), some of which are disproportionately sensitive to environmental change. 

Fractionation can be done physically, by separating fractions by particle size or density, 

and/or chemically, or sometimes using a combination of methods, such as separating by 

particle size and density (von Lützow et al., 2007). SOM can be divided based on density 

into two distinct fractions, the heavy fraction and the light fraction. The heavy fraction of 

soil is composed of MaOM, with long residence times in soils from years to centuries 

(Golchin et al., 1994; Wander, 2004; Song et al., 2012). The light fraction of soil is made 

up of POM, which has a shorter residence time in soils than the heavy fraction (Sequeira 

et al., 2011). The light fraction can be further divided into the free light fraction (FLF), 

and the occluded light fraction (OLF) (Golchin et al., 1994; Sequeira et al., 2011). The 

FLF is readily available for breakdown by microbes with a turnover period of a few days 

to a few years (Wander, 2004). The OLF, on the other hand, is sometimes considered the 

slow/intermediate organic matter because although it is partly composed of labile organic 

matter similar to the FLF, this carbon is protected in soil aggregates, and it requires 

dispersal of the aggregates before it can be broken down by microbes; it therefore has a 

longer carbon turnover rate than the FLF (Wander, 2004; Cerli et al., 2012). It is 

important to understand SOM functioning in soils, not only for the intrinsic value of 

minimizing soil carbon losses, but because the sequestration of carbon from the 

atmosphere (CO2 in particular) by soils could have an important role in slowing climate 

change (Thornton et al., 2009). 

The carbon quality of organic matter describes the quality of the carbon as a substrate for 

microbial degradation. High quality carbon includes carbon compounds that are preferred 

by microbes as a carbon source while low quality carbon describes carbon substrates that 

are less desirable due to their high energetic costs for degradation. Carbon quality can be 
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assessed via analytical techniques such as Fourier-transform infrared spectroscopy 

(FTIR). FTIR provides spectral data (absorbance) for a variety of solids, liquids, and/or 

gases by passing infrared light through a sample (Linker et al., 2005). Depending on the 

chemical composition of the sample, the infrared radiation will be absorbed to various 

degrees, and a spectrum is produced (Linker et al., 2005). The spectrum for each sample 

displays the intensity of absorbance for different wavenumbers, with the latter 

corresponding to the vibrations of specific bonds in different chemical classification 

groups, such as polysaccharides, lignins, and carboxylic acids (Artz et al., 2008), 

providing qualitative information regarding the chemical composition of the sample. 

1.4 Potential Extracellular Enzyme Activity 
As described above, microbes are an extremely important component of ecosystem 

functioning and they are responsible for regulating many aspects of the carbon and 

nitrogen cycles through processes such as decomposition and nutrient mineralization. 

Extracellular enzymes, synthesized by microbes and released into soil, are produced 

primarily to break down complex chemical structures, releasing nutrients such as carbon 

and nitrogen, that can then be taken up by microbes or plant roots (Wallenstein et al., 

2010; Henry, 2012). Enzymes are released into their surrounding environment either by 

live cells actively producing them in response to nutrient demand, or in some cases by 

dead cells through cell lysis (Sinsabaugh, 2010). There are two main classes of enzymes 

produced by microbes that facilitate ecosystem functioning: hydrolase enzymes and 

oxidase enzymes. Hydrolase enzymes are C-acquiring enzymes produced by microbes to 

break down labile saccharides, such as cellulose and hemicellulose (Koyama et al., 2013). 

They can also be P- and N-acquiring in the case of phosphatase, which releases 

phosphorus, and N-acetyl-glucosaminidase which breaks down chitin, a compound 

containing nitrogen (Koyama et al., 2013). Oxidase enzymes, including phenol oxidase 

and peroxidase, are C- and N-acquiring enzymes produced by microbes, to break down 

recalcitrant organic matter, especially lignin and phenolic compounds, and these enzymes 

are typically less stable in the environment than hydrolases (Sinsabaugh, 2010).  

Activities of extracellular enzymes are measured using enzyme assays, and information 

provided by assays can be used to assess soil microbial responses to environmental 
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change (Henry, 2012). Enzyme assays measure specific substrates that may be cleaved 

only by a particular enzyme. The extracellular enzyme activities (EEAs) measured are 

considered potential activities, because they assess enzyme activities in the laboratory 

under controlled temperature conditions, with high water availability and mixing with the 

substrate, via the creation of a well-mixed soil slurry (Wallenstein et al., 2010; Henry, 

2012). Biotic factors, such as plant and microbial community composition and microbial 

biomass, can directly determine extracellular enzyme production. In addition to secreting 

their own enzymes from roots, plants produce root exudates that can prime microbes to 

degrade organic matter, which affects both microbial enzyme production and microbial 

biomass in soil close to the root surface (Arnosti et al., 2014). Abiotic factors affecting 

the soil microclimate, such as temperature, soil moisture, pH, and soil texture, can also 

influence the availability and activity of enzyme substrates and organic matter quality, 

resulting in spatial and temporal differences in potential EEAs (Allison and Vitousek, 

2005; Arnosti et al., 2014).  

1.5 Climate Warming Impacts on Soil Carbon 
Nutrient cycling and decomposition are two dominant processes that define ecosystem 

functioning in soils, and these processes largely depend on plant-soil interactions. Small 

changes in biotic factors, such as microbial biomass and activity, as well as abiotic 

factors, including temperature and soil pH, can alter plant-soil interactions and therefore 

directly and indirectly impact nutrient cycling and decomposition. For example, 

temperature can directly impact decomposition by upregulating microbial activity, but 

also indirectly impact decomposition by decreasing soil moisture due to the warming-

drying effect (Allison and Treseder, 2008). 

In general, experimental soil warming has led to increased plant productivity, soil 

respiration, decomposition, and nutrient mineralization (Rustad et al., 2001). The effects 

of warming on soil carbon are, however, complicated by the integrated effects of 

warming on soil temperature and moisture, along with substrate and nutrient availability 

(Melillo et al., 2017). Short-term studies have, in some cases, demonstrated that warming 

can increase enzyme production by promoting increased microbial biomass and activity; 

however, warmer temperatures also can increase microbial enzyme efficiency, which 
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means microbes can produce fewer enzymes to meet their needs (Koch et al., 2007). In 

other short-term experiments, warming has been found to stimulate carbon turnover, 

leading to changes in carbon pools (Xu et al., 2012). Although the effects of warming on 

soil functioning have been researched extensively in field experiments, there has been a 

lack of consensus, possibly because direct warming treatment effects can be confounded 

by indirect effects of warming on plant productivity (Jonasson et al., 1999; Classen et al., 

2015). For example, it is unknown if warming effects on decomposition are due to 

indirect effects on plant community composition and litter production, or direct effects on 

microbial activity. 

Long-term field experiments (>10 years) have provided evidence that short-term 

warming effects may not translate to the long-term. For example, soil carbon losses in a 

26-year field experiment were not uniform over time and alternated between periods of 

significant carbon loss and periods of undetectable carbon loss (Melillo et al., 2017). 

Another long-term experiment similarly found that warming initially upregulated 

microbial activities, increasing soil carbon losses, but this loss was temporary due to a 

progressive depletion of substrate availability over time (Walker et al., 2018). Several 

factors affect the timing and magnitude of soil carbon loss, including changes in 

microbial community composition and biomass, as well as microbial carbon use 

efficiency, and evidence suggests warming induced changes in the short-term can 

dampen over longer time periods (Melillo et al., 2017). Warming can also alter nitrogen 

cycling by stimulating nitrogen turnover and microbial growth, which can contribute to 

both increased soil nitrogen availability and increased soil nitrogen losses, often with 

important consequences for soil carbon cycling (Wu et al., 2012).  

As described above, in addition to increasing soil surface temperatures, warming has 

further indirect implications for litter and SOM decomposition by altering litter and soil 

moisture content (Cheng and Huang, 2016), which can be confounded with the direct 

effects of warming (Allison and Treseder, 2008). Experimental drought treatments are 

shown to decrease microbial biomass, while increasing extracellular enzyme activities 

(Alster et al., 2013). Under drought conditions, soil microbes must increase enzyme 

production to compensate for the limited diffusion of enzymes (Allison and Vitousek, 



8 

 

2005). However, when water availability in soil is sufficient, warmer temperatures 

increase decomposition rates due to the upregulation of microbial activity, with the 

caveat that these responses can decline over the longer term (Wu et al., 2012). The effects 

of warming treatments also vary seasonally. In the summer, the effects of a warming 

treatment at the soil surface can be small relative to the fluctuating, hot summer air 

temperatures, and a thick plant canopy combined with the litter layer also can insulate the 

soil from overhead warming (Sharratt, 2002). In turn, over winter, the snowpack provides 

insulation, resulting in relatively stable soil temperatures and protection from extreme 

drops in air temperature (Henry, 2008). However, when warming decreases or eliminates 

the snowpack, soil freezing intensity and soil temperature variability can increase, which 

can stress soil microbes and plant roots, with implications for both carbon and nitrogen 

cycling (Bell et al., 2010). Future climate projections suggest that with increases in winter 

temperature, the frequency and intensity of soil freeze-thaw cycles may increase in 

northern temperate regions (Henry, 2008; Schuerings et al., 2014). 

1.6 Effects of Increased Atmospheric Nitrogen Deposition 
on Soil Carbon  

Changes in nitrogen inputs to a system has a high capacity for altering soil function and 

carbon storage, and soil functional responses to chronic nitrogen inputs often change over 

time. Chronic nitrogen addition can increase foliar nitrogen (the nitrogen found in plant 

leaves or needles), which subsequently alters the C:N ratio of the plant litter, which can 

have implications for litter decomposition rates (Aber et al., 1998; Yue et al., 2017). 

Nitrogen mineralization, and net primary productivity (NPP), which describes the rate at 

which energy is stored as biomass in plants, also can change over time with nitrogen 

addition (Aber et al., 1998). While nitrogen addition typically increases NPP in the short-

term, chronic nitrogen addition can promote soil acidification; the latter can decrease soil 

fertility over time as a result of important plant nutrients (e.g. calcium and magnesium) 

being released from soil particles making them susceptible to leaching, due to exchange 

with the hydrogen ions released from excess plant uptake of NH4+ (Chapin et al., 2002). 

In addition, when the nitrogen becomes saturated (i.e. when its availability in the soil no 
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longer limits plant or microbial growth), soil inorganic nitrogen can accumulate, and soil 

nitrogen losses tend to increase (Zhong et al., 2015).  

As addressed above, soil nitrogen cycling interacts strongly with carbon cycling, 

especially when nitrogen availability limits plant growth and decomposition (Fernández-

Martínez et al., 2014). While bulk soil respiration as an indicator of microbial activity 

and decomposition is not always affected by treatments such as nitrogen fertilization, the 

latter can have a strong effect on microbial biomass (Wallenstein et al., 2006; Khalili et 

al., 2016), along with the production of extracellular enzymes that target carbon and 

phosphorus acquisition (Allison et al., 2008). Previous long-term studies have found that 

nitrogen fertilization suppresses lignin-degrading enzyme production, reducing the 

decomposition of lignin-dense, recalcitrant plant matter (Carreiro et al., 2000; Saiya-Cork 

et al., 2002). However, chronic nitrogen addition also can increase the production of 

cellulose-degrading enzymes (Saiya-Cork et al., 2002; Cenini et al., 2015; Chen et al., 

2018), and can increase carbon storage in soils (Khalili et al., 2016; Chen et al., 2018). 

For example, in a grassland system after 19 years of nitrogen addition, increases in soil 

carbon sequestration in the heavy fraction of soil were found, but there was no change to 

the light fraction (Cenini et al., 2015), suggesting that microbes may produce more 

metabolites under nitrogen fertilization that encourage organic matter and mineral-

associations. Similar to the effects of warming, nitrogen application can also cause 

changes in plant community composition and production, indirectly impacting soil 

functional responses (Rinnan et al., 2007). However, given the slow rates of turnover of 

individuals in plant communities relative to those of soil microbes, there can be multi-

year time lags in such responses (Parmesan, 2006; Komatsu et al., 2019).  

1.7 The WINNTER (WINter, warming and Nitrogen addition 
in Temperate Ecosystems Research) Field Experiment 

In 2006, the WINNTER (WINter, warming and Nitrogen addition in Temperate 

Ecosystems Research) experiment was established at a temperate old field site in London, 

Ontario, Canada, to examine the individual versus combined effects of warming and 

nitrogen addition on plants and soil. The term ‘old field’ describes plant communities that 

establish following the abandonment of agricultural land (Gibson and Newman, 2019). 
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An old field was selected for WINNTER primarily because the relatively small stature of 

the plants allowed for warming and nitrogen treatments to be administered to multiple 

plants within 1 m2 field plots, allowing community-level (i.e. changes in the relative 

abundances or composition of species) and ecosystem-level (i.e. productivity, 

decomposition, and nutrient cycling) responses to be assessed. Moreover, old fields and 

other grass-dominated ecosystems are widespread globally and important in the context 

of global carbon cycling (Cramer and Hobbs, 2007). 

The factorial experiment consisted of control plots, nitrogen addition plots, warming 

plots, and plots with the combination of nitrogen addition and warming. Within two 

years, aboveground plant productivity began to respond strongly to nitrogen addition 

(Hutchinson and Henry, 2010), and this response remained strong through the following 

five years of the experiment, with significant effects of warming on plant productivity in 

some years (Henry et al., 2015). However, despite these strong increases in aboveground 

plant biomass, warming and nitrogen addition treatments had few significant effects on 

belowground responses, such as net nitrogen mineralization (Turner and Henry, 2010), 

extracellular enzyme activities, and microbial biomass (Bell et al., 2010; Bell and Henry, 

2011). Although the decoupling of above and belowground responses to the treatments 

was unexpected, it was hypothesized that cumulative effects would likely result in the 

emergence of belowground effects over the longer term. However, it also was noted that 

the specific aboveground and belowground responses observed in the first few years of 

the experiment could have been caused by interactions of the treatments with annual 

variation in weather. Therefore, in 2019, new control, warming and nitrogen addition 

treatment plots were established to compare short-term (1-2 year) versus long-term (14-

15 year) responses under identical weather conditions. No new combined nitrogen 

addition and warming plots were established in 2019 due to logistical constraints, but few 

significant interactions between nitrogen addition and warming had been observed over 

the first seven years of the experiment (Henry et al., 2015).  

1.8 Thesis Objectives 
The overall objective of my thesis was to compare the short-term (1-2 year) versus the 

long-term (14-15 year) effects of warming and nitrogen addition treatments on soil 
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carbon and microbial activity in a grass-dominated, temperate old field. I hypothesized 

that warming and nitrogen addition treatments would affect previously established plots 

more than newly established plots. 

 

My specific objectives were to: 

 

Objective 1: Evaluate the treatment effects of warming and nitrogen on the quantity and 

quality of carbon in soil organic matter fractions. – I used density fractionation to divide 

bulk soil into distinct organic matter fractions, then ran FTIR analyses to determine the 

composition and quantity of the different carbon compounds (e.g. polysaccharides and 

lignin) found in each fraction. I predicted the amount of labile carbon (FLF and OLF) 

recovered in the warming and nitrogen addition plots would be less than the amount 

recovered in the control plots due to the stimulation of microbial activity in the former, 

and that these effects would be more pronounced in the old plots than in the new plots. I 

also predicted that the warming and nitrogen treatments would have a higher proportion 

of recalcitrant carbon (i.e. lignin) than the control plots as a consequence of increased 

decomposition of more labile compounds, and that these effects also would be more 

pronounced in the old plots than the new plots. 

 

Objective 2: Evaluate the treatment effects of warming and nitrogen on potential soil 

extracellular enzyme activities (EEAs). – I examined the potential EEAs of five microbial 

enzymes (N-acetyl-glucosaminidase [NAG], phosphatase, β-glucosidase, phenol oxidase, 

and peroxidase). Enzymes were a combination of hydrolase and oxidase enzymes, and 

included a variety of C-, N- and P-acquiring enzymes. I predicted that in response to 

nitrogen addition, microbial functioning would change. Specifically, oxidative enzyme 

production would decrease, and C- and P-acquiring hydrolase enzyme production would 

increase. I also predicted that enzyme efficiencies would increase with warming and 

therefore result in decreased enzyme production, leading to reduced potential activities. 

In both cases, I predicted these effects would be more pronounced in the old plots than in 

the new plots. 

 



12 

 

References 

Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., ... & 
Fernandez, I. (1998). Nitrogen saturation in temperate forest ecosystems: 
Hypotheses revisited. BioScience, 48(11), 921-934. 

Allison, S. D., Czimczik, C. I., & Treseder, K. K. (2008). Microbial activity and soil 
respiration under nitrogen addition in Alaskan boreal forest. Global Change 
Biology, 14(5), 1156-1168.  

Allison, S. D., & Treseder, K. K. (2008). Warming and drying suppress microbial activity 
and carbon cycling in boreal forest soils. Global Change Biology, 14(12), 2898-
2909. 

Allison, S. D., & Vitousek, P. M. (2005). Responses of extracellular enzymes to simple 
and complex nutrient inputs. Soil Biology and Biochemistry, 37(5), 937-944. 

Alster, C. J., German, D. P., Lu, Y., & Allison, S. D. (2013). Microbial enzymatic 
responses to drought and to nitrogen addition in a southern California 
grassland. Soil Biology and Biochemistry, 64, 68-79. 

Arnosti, C., Bell, C., Moorhead, D. L., Sinsabaugh, R. L., Steen, A. D., Stromberger, M., 
... & Weintraub, M. N. (2014). Extracellular enzymes in terrestrial, freshwater, 
and marine environments: perspectives on system variability and common 
research needs. Biogeochemistry, 117(1), 5-21. 

Artz, R. R., Chapman, S. J., Robertson, A. J., Potts, J. M., Laggoun-Défarge, F., Gogo, 
S., ... & Francez, A. J. (2008). FTIR spectroscopy can be used as a screening tool 
for organic matter quality in regenerating cutover peatlands. Soil Biology and 
Biochemistry, 40(2), 515-527. 

Barker, S., Higgins, J. A., & Elderfield, H. (2003). The future of the carbon cycle: 
Review, calcification response, ballast and feedback on atmospheric 
CO2. Philosophical Transactions of the Royal Society of London. Series A: 
Mathematical, Physical and Engineering Sciences, 361(1810), 1977-1999. 

Bell, T. H., Klironomos, J. N., & Henry, H. A. (2010). Seasonal responses of 
extracellular enzyme activity and microbial biomass to warming and nitrogen 
addition. Soil Science Society of America Journal, 74(3), 820-828.  

Bell, T. H., & Henry, H. A. (2011). Fine scale variability in soil extracellular enzyme 
activity is insensitive to rain events and temperature in a mesic system. 
Pedobiologia, 54(2), 141-146. 

Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A., & Crowther, 
T. W. (2016). Managing uncertainty in soil carbon feedbacks to climate 
change. Nature Climate Change, 6(8), 751-758.  

Carreiro, M. M., Sinsabaugh, R. L., Repert, D. A., & Parkhurst, D. F. (2000). Microbial 
enzyme shifts explain litter decay responses to simulated nitrogen 
deposition. Ecology, 81(9), 2359-2365.  



13 

 

Cenini, V. L., Fornara, D. A., McMullan, G., Ternan, N., Lajtha, K., & Crawley, M. J. 
(2015). Chronic nitrogen fertilization and carbon sequestration in grassland soils: 
Evidence of a microbial enzyme link. Biogeochemistry, 126(3), 301-313. 

Cerli, C., Celi, L., Kalbitz, K., Guggenberger, G., & Kaiser, K. (2012). Separation of 
light and heavy organic matter fractions in soil—Testing for proper density cut off 
and dispersion level. Geoderma, 170, 403-416.  

Chapin, F. S., Matson, P. A., Mooney, H. A., & Vitousek, P. M. (2002). Principles of 
terrestrial ecosystem ecology. Springer New York.  

Chen, J., Luo, Y., Van Groenigen, K. J., Hungate, B. A., Cao, J., Zhou, X., & Wang, R. 
W. (2018). A keystone microbial enzyme for nitrogen control of soil carbon 
storage. Science Advances, 4(8), eaaq1689. 

Cheng, S., & Huang, J. (2016). Enhanced soil moisture drying in transitional regions 
under a warming climate. Journal of Geophysical Research: Atmospheres, 121(6), 
2542-2555. 

Classen, A. T., Sundqvist, M. K., Henning, J. A., Newman, G. S., Moore, J. A., Cregger, 
M. A., ... & Patterson, C. M. (2015). Direct and indirect effects of climate change 
on soil microbial and soil microbial‐plant interactions: What lies 
ahead?. Ecosphere, 6(8), 1-21. 

Crowther, T. W., Todd-Brown, K. E., Rowe, C. W., Wieder, W. R., Carey, J. C., 
Machmuller, M. B., ... & Bradford, M. A. (2016). Quantifying global soil carbon 
losses in response to warming. Nature, 540(7631), 104-108. 

Fernández-Martínez, M., Vicca, S., Janssens, I. A., Sardans, J., Luyssaert, S., Campioli, 
M., ... & Papale, D. (2014). Nutrient availability as the key regulator of global 
forest carbon balance. Nature Climate Change, 4(6), 471-476. 

Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., 
Seitzinger, S. P., ... & Karl, D. M. (2004). Nitrogen cycles: Past, present, and 
future. Biogeochemistry, 70(2), 153-226.  

Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., ... 
& Sutton, M. A. (2008). Transformation of the nitrogen cycle: Recent trends, 
questions, and potential solutions. Science, 320(5878), 889-892. 

Gibson, D., & Newman, J. (Eds.). (2019). Grasslands and Climate Change (Ecological 
Reviews). Cambridge: Cambridge University Press.   

Golchin, A., Oades, J. M., Skjemstad, J. O., & Clarke, P. (1994). Study of free and 
occluded particulate organic matter in soils by solid state 13C CP/MAS NMR 
spectroscopy and scanning electron microscopy. Australian Journal of Soil 
Research, 32(2), 285-309.  

Henry, H. A. (2008). Climate change and soil freezing dynamics: Historical trends and 
projected changes. Climatic Change, 87(3), 421-434. 

Henry, H. A. (2012). Soil extracellular enzyme dynamics in a changing climate. Soil 
Biology and Biochemistry, 47, 53-59. 



14 

 

Henry, H. A., Hutchison, J. S., Kim, M. K., & McWhirter, B. D. (2015). Context matters 
for warming: interannual variation in grass biomass responses to 7 years of 
warming and N addition. Ecosystems, 18(1), 103-114. 

Hobbs, R. J., & Cramer, V. (2007). Why old fields? Socioeconomic and ecological 
causes and consequences of land abandonment. Old fields: Dynamics and 
restoration of abandoned farmland, 1-14. 

Hutchison, J. S., & Henry, H. A. (2010). Additive effects of warming and increased 
nitrogen deposition in a temperate old field: Plant productivity and the importance 
of winter. Ecosystems, 13(5), 661-672. 

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working 
Group I to the Sixth Assessment Report of the Intergovernmental Panel on 
Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, 
S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. 
Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and 
B. Zhou (eds.)]. Cambridge University Press. In Press. 

Jonasson, S., Michelsen, A., Schmidt, I. K., & Nielsen, E. V. (1999). Responses in 
microbes and plants to changed temperature, nutrient, and light regimes in the 
arctic. Ecology, 80(6), 1828-1843. 

Kanakidou, M., Myriokefalitakis, S., Daskalakis, N., Fanourgakis, G., Nenes, A., Baker, 
A. R., ... & Mihalopoulos, N. (2016). Past, present, and future atmospheric 
nitrogen deposition. Journal of the Atmospheric Sciences, 73(5), 2039-2047. 

Khalili, B., Ogunseitan, O. A., Goulden, M. L., & Allison, S. D. (2016). Interactive 
effects of precipitation manipulation and nitrogen addition on soil properties in 
California grassland and shrubland. Applied Soil Ecology, 107, 144-153. 

Koch, O., Tscherko, D., & Kandeler, E. (2007). Temperature sensitivity of microbial 
respiration, nitrogen mineralization, and potential soil enzyme activities in 
organic alpine soils. Global Biogeochemical Cycles, 21(4), GB4017. 

Komatsu, K. J., Avolio, M. L., Lemoine, N. P., Isbell, F., Grman, E., Houseman, G. R., ... 
& Anderson, J. P. (2019). Global change effects on plant communities are 
magnified by time and the number of global change factors imposed. Proceedings 
of the National Academy of Sciences, 116(36), 17867-17873.   

Koyama, A., Wallenstein, M. D., Simpson, R. T., & Moore, J. C. (2013). Carbon-
degrading enzyme activities stimulated by increased nutrient availability in arctic 
tundra soils. PloS One, 8(10), e77212. 

LeBauer, D. S., & Treseder, K. K. (2008). Nitrogen limitation of net primary productivity 
in terrestrial ecosystems is globally distributed. Ecology, 89(2), 371-379. 

Li, J., Wang, G., Mayes, M. A., Allison, S. D., Frey, S. D., Shi, Z., ... & Melillo, J. M. 
(2019). Reduced carbon use efficiency and increased microbial turnover with soil 
warming. Global Change Biology, 25(3), 900-910. 



15 

 

Linker, R., Shmulevich, I., Kenny, A., & Shaviv, A. (2005). Soil identification and 
chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-
infrared spectroscopy. Chemosphere, 61(5), 652-658. 

Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. 
P., ... & Grandy, A. S. (2017). Long-term pattern and magnitude of soil carbon 
feedback to the climate system in a warming world. Science, 358(6359), 101-105. 

Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: 
Synthesis. Island Press, Washington, DC.  

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. 
Annual Review Ecology, Evolution, and Systematics, 37, 637-669. 

Phoenix, G. K., Emmett, B. A., Britton, A. J., Caporn, S. J., Dise, N. B., Helliwell, R., ... 
& Power, S. A. (2012). Impacts of atmospheric nitrogen deposition: Responses of 
multiple plant and soil parameters across contrasting ecosystems in long‐term 
field experiments. Global Change Biology, 18(4), 1197-1215. 

Rinnan, R., Michelsen, A., Bååth, E., & Jonasson, S. (2007). Fifteen years of climate 
change manipulations alter soil microbial communities in a subarctic heath 
ecosystem. Global Change Biology, 13(1), 28-39.  

Rustad, L. E. J. L., Campbell, J., Marion, G., Norby, R., Mitchell, M., Hartley, A., ... & 
Gurevitch, J. (2001). A meta-analysis of the response of soil respiration, net 
nitrogen mineralization, and aboveground plant growth to experimental 
ecosystem warming. Oecologia, 126(4), 543-562. 

Saiya-Cork, K. R., Sinsabaugh, R. L., & Zak, D. R. (2002). The effects of long-term 
nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest 
soil. Soil Biology and Biochemistry, 34(9), 1309-1315. 

Schürings, J., Jentsch, A., Hammerl, V., Lenz, K., Henry, H. A., Malyshev, A. V., & 
Kreyling, J. (2014). Recurrent winter warming pulses enhance nitrogen cycling 
and soil biotic activity in temperate heathland and grassland 
mesocosms. Biogeosciences Discussions, 11(6), 7797-7822. 

Scurlock, J. M. O., & Hall, D. O. (1998). The global carbon sink: A grassland 
perspective. Global Change Biology, 4(2), 229-233. 

Sequeira, C. H., Alley, M. M., & Jones, B. P. (2011). Evaluation of potentially labile soil 
organic carbon and nitrogen fractionation procedures. Soil Biology and 
Biochemistry, 43(2), 438-444. 

Sharratt, B. S. (2002). Corn stubble height and residue placement in the northern US 
Corn Belt: Part I. Soil physical environment during winter. Soil and Tillage 
Research, 64(3-4), 243-252. 

Sinsabaugh, R. L. (2010). Phenol oxidase, peroxidase and organic matter dynamics of 
soil. Soil Biology and Biochemistry, 42(3), 391-404. 

Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: Where do we go from 
here?. Trends in Ecology & Evolution, 24(4), 201-207. 



16 

 

Song, B., Niu, S., Zhang, Z., Yang, H., Li, L., & Wan, S. (2012). Light and heavy 
fractions of soil organic matter in response to climate warming and increased 
precipitation in a temperate steppe. PloS One, 7(3), e33217. 

Song, B., Niu, S., Li, L., Zhang, L., & Yu, G. (2014). Soil carbon fractions in grasslands 
respond differently to various levels of nitrogen enrichments. Plant and 
Soil, 384(1), 401-412. 

Stone, M. M., Weiss, M. S., Goodale, C. L., Adams, M. B., Fernandez, I. J., German, D. 
P., & Allison, S. D. (2012). Temperature sensitivity of soil enzyme kinetics under 
N‐fertilization in two temperate forests. Global Change Biology, 18(3), 1173-
1184. 

Thornton, P. E., Doney, S. C., Lindsay, K., Moore, J. K., Mahowald, N., Randerson, J. 
T., ... & Lee, Y. H. (2009). Carbon-nitrogen interactions regulate climate-carbon 
cycle feedbacks: Results from an atmosphere-ocean general circulation 
model. Biogeosciences, 6(10), 2099-2120. 

Turner, M. M., & Henry, H. A. (2010). Net nitrogen mineralization and leaching in 
response to warming and nitrogen deposition in a temperate old field: the 
importance of winter temperature. Oecologia, 162(1), 227-236. 

von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., 
Matzner, E., & Marschner, B. (2007). SOM fractionation methods: Relevance to 
functional pools and to stabilization mechanisms. Soil Biology and 
Biochemistry, 39(9), 2183-2207. 

Walker, T. W., Kaiser, C., Strasser, F., Herbold, C. W., Leblans, N. I., Woebken, D., ... & 
Richter, A. (2018). Microbial temperature sensitivity and biomass change explain 
soil carbon loss with warming. Nature Climate Change, 8(10), 885-889. 

Wallenstein, M. D., McNulty, S., Fernandez, I. J., Boggs, J., & Schlesinger, W. H. 
(2006). Nitrogen fertilization decreases forest soil fungal and bacterial biomass in 
three long-term experiments. Forest Ecology and Management, 222(1-3), 459-
468. 

Wallenstein, M., Allison, S. D., Ernakovich, J., Steinweg, J. M., & Sinsabaugh, R. 
(2010). Controls on the temperature sensitivity of soil enzymes: A key driver of in 
situ enzyme activity rates. Soil enzymology (pp. 245-258). Springer, Berlin, 
Heidelberg. 

Wander, M. (2004). Soil organic matter fractions and their relevance to soil function. In 
F. Magdoff & R.W. Ray (Eds.), Soil organic matter in sustainable agriculture 
(67-102). CRC Press Inc.  

Wu, Z., Dijkstra, P., Koch, G. W., & Hungate, B. A. (2012). Biogeochemical and 
ecological feedbacks in grassland responses to warming. Nature Climate 
Change, 2(6), 458-461. 

Xu, Z. F., Pu, X. Z., Yin, H. J., Zhao, C. Z., Liu, Q., & Wu, F. Z. (2012). Warming 
effects on the early decomposition of three litter types, Eastern Tibetan Plateau, 
China. European Journal of Soil Science, 63(3), 360-367. 



17 

 

Yue, K., Fornara, D. A., Yang, W., Peng, Y., Li, Z., Wu, F., & Peng, C. (2017). Effects 
of three global change drivers on terrestrial C: N: P stoichiometry: A global 
synthesis. Global Change Biology, 23(6), 2450-2463. 

Zhong, Y., Yan, W., & Shangguan, Z. (2015). Soil carbon and nitrogen fractions in the 
soil profile and their response to long-term nitrogen fertilization in a wheat 
field. Catena, 135, 38-46. 

 
 



18 

 

Chapter 2  

2 Short-term vs. long-term warming and nitrogen 
treatment effects on soil carbon and microbial activity in 
a temperate old field  

2.1 Introduction 
Elements of global change, such as climate warming and atmospheric nitrogen 

deposition, have the potential to exert very strong influences on ecosystem functioning in 

the coming decades (Millennium Ecosystem Assessment, 2005). Both factors vary with 

latitude; climate warming is projected to intensify with increasing latitude (IPCC, 2021), 

whereas atmospheric nitrogen deposition is highest in regions that feature a high density 

of industrial or agricultural activities (Galloway et al., 2004). Northern temperate regions 

are therefore expected to experience both factors to a relatively high degree over the next 

century. Grass-dominated communities can be particularly informative and tractable for 

studying the effects of climate warming and atmospheric nitrogen deposition on 

ecosystems. Specifically, the productivity of these systems is typically nitrogen limited, 

and the relatively small stature of the herbaceous species makes them convenient for the 

administration of treatments at the plot level in field experiments (Gibson and Newman, 

2019). Grasslands, and other grass-dominated systems such as old fields, also are 

widespread globally, and they comprise approximately 37% of the Earth’s terrestrial 

surface (O’Mara, 2012) and store approximately 30% of all terrestrial carbon (Scurlock 

and Hall, 1998). 

 

The soils of grass-dominated systems are large reservoirs for carbon, and global change 

has the potential to alter the carbon balances of these soils substantially over the next 

century (Cerli et al., 2012). However, the effects of global change drivers on soil carbon 

and nitrogen cycling often have been studied over relatively short time spans (e.g. 1-5 

years). These short-term experiments can be unrepresentative of longer-term trends if 

they coincide with anomalous weather conditions, such as extremely wet or dry periods 

(Henry et al., 2015). Grass-dominated systems, in particular, can alternate among years in 

functioning as net carbon sources or sinks as a result of interannual weather variability 
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(Novick, 2004). It also is not clear whether initial effects in field experiments may be 

transient, and to what extent cumulative effects on soil carbon may emerge over longer 

time scales (Bell et al., 2010; Bradford et al., 2016). For example, when water availability 

is sufficient, warm temperatures can increase decomposition rates due to upregulation of 

microbial activity, but these responses can decline over time (Wu et al., 2012). Long-term 

warming experiments (>10 years) have provided evidence that reductions in microbial 

activity and biomass may result from labile carbon pools becoming depleted over time, 

which can limit further carbon losses (Melillo et al., 2017). In addition, plant responses 

may be an important indirect driver of soil carbon responses to global change (Rinnan et 

al., 2007), and long-term studies (>10 years) of plant productivity and community 

composition have revealed lag periods in response to global change drivers, with long-

term experiments showing more pronounced differences between treatment and control 

conditions over time (Parmesan, 2006; Komatsu et al., 2019).  

 

Typically, the high levels of carbon in soil make it difficult to detect significant changes 

in total soil carbon in global change experiments (Song et al., 2012). However, 

fractionation techniques can be used to isolate distinct soil organic matter (SOM) carbon 

pools to provide more refined information. The heavy fraction of soil is large and is 

composed of mineral-associated organic matter (MaOM) that remains relatively stable in 

response to environmental change (Golchin et al., 1994; Song et al., 2014). In contrast, 

the light fraction of soil, the more labile fraction, appears as two distinct fractions, the 

free light fraction (FLF) and the occluded light fraction (OLF); carbon composing the 

OLF is highly labile, similar to the FLF, but is protected in soil aggregates, which must 

be dispersed prior to chemical analysis, and this fraction typically has proportionally less 

lignin than the FLF (Henry et al., 2005; Cerli et al., 2012). Following fractionation, 

analytical techniques, such as Fourier-transform infrared (FTIR) spectroscopy, can be 

used to assess the chemical composition of the different carbon fractions (Matějková and 

Šimon, 2012), which can provide further insight into how global change treatments can 

affect carbon quality. While experiments examining the effects of warming and nitrogen 

addition treatments on distinct soil carbon fractions have been uncommon, there is 

evidence that warming can decrease the FLF and OLF, while having no detectable effect 
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on the heavy fraction of organic matter (Song et al., 2012). However, in some cases 

warming has had no effect on the free light fraction (Henry et al., 2005). Similarly, 

chronic nitrogen addition may decrease FLF carbon over time (Song et al., 2014), or have 

no effect on FLF carbon (Cenini et al., 2015). Variation in the time scales of experiments 

may be an important factor in explaining this variation in results among studies.  

 

The mechanisms underlying changes in soil carbon in global change experiments can be 

further explored by assessing functional components of microbial activity. For example, 

while microbial functions, such as bulk soil respiration, do not always respond 

significantly to nitrogen fertilization, there may be a strong effect on the production of 

extracellular enzymes that target carbon and phosphorus acquisition (Allison et al., 2008). 

Since the nitrogen cycle and carbon cycle are directly linked, when nitrogen availability 

limits plant growth and decomposition, implications for the carbon cycle may exist 

(Fernández-Martínez et al., 2014). When nitrogen is no longer limiting, in the case of 

nitrogen addition treatments, the production of C- and P-acquiring hydrolase enzymes is 

increased (Carreiro et al., 2000). In addition, while nitrogen-rich litter tends to 

decompose rapidly, long-term studies have found that nitrogen fertilization can suppress 

lignin-degrading enzyme activities, which reduces the decomposition of lignin-dense, 

recalcitrant plant matter (Saiya-Cork et al., 2002). In response to warming, microbes can 

initially increase enzyme production, accelerating decomposition (Rustad et al., 2001), 

but this response can diminish in the long-term if substrates are depleted (Walker et al., 

2018). The drying effect caused by warming also can reduce enzyme production in some 

cases (Allison and Treseder, 2008), but in many other cases warming treatments have had 

little to no effect on microbial enzyme activities in field experiments (e.g. Bell and 

Henry, 2011; Henry, 2012). However, many of these results have been obtained from 

short-term experiments. 

 

The goal of my study was to measure soil carbon and microbial activities to compare 

short-term (1-2 year) versus long-term (14-15 year) warming and nitrogen addition 

treatment differences using a field experiment conducted in a northern temperate old 

field. I predicted there would be a divergence between the short-term and long-term plots, 
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due to cumulative effects in the long-term plots that would alter soil carbon and microbial 

activities over time. Specifically, I examined the quantity of soil carbon fractions (FLF 

and OLF) and the carbon quality of the fractions using FTIR over the short- and long-

term with warming and nitrogen addition treatments. In addition, I assessed the potential 

activities of five extracellular enzymes (N-acetyl-glucosaminidase [NAG], phosphatase, 

β-glucosidase, phenol oxidase, and peroxidase). I predicted the amount of labile carbon 

(FLF and OLF) recovered in the warming and nitrogen addition plots would be less than 

the amount recovered in the control plots, and I also predicted that the warming and 

nitrogen treatments would have a higher proportion of recalcitrant carbon (i.e. lignin) 

than the control plots. I predicted in both cases that the proxies measured would differ 

between old and new plots, with greater divergence in the old plots. For the extracellular 

enzymes, I predicted that decreased enzyme production would occur with warming due to 

warming increasing enzyme efficiencies, leading to reduced potential activity in the 

laboratory for old plots. I also predicted there would be greater activity of C- and P-

acquiring enzymes with nitrogen addition, and reduced activity of oxidative enzymes. As 

with the soil carbon proxies, I predicted that extracellular enzyme activities would differ 

more from the control in the old plots.  

2.2 Materials and Methods 
2.2.1 Site Description 

The study was performed at a temperate old field site located in London, Ontario, 

Canada, on the property of the Agriculture and Agri-Food Canada Southern Crop 

Protection and Food Research Centre (43°01′46″N, 81°12′52″W). The old field was taken 

out of agricultural production over 30 years ago and seeded with grasses. The vegetation 

at the site has remained dominated by Kentucky bluegrass (Poa pratensis L.) and smooth 

brome (Bromus inermis Leyss.), with the forbs Canada thistle (Cirsium arvense L.), 

common milkweed (Asclepias syriaca L.), white heath aster (Aster ericoides L.), tall 

goldenrod (Solidago altissima L.), and the legume bird’s-foot trefoil (Lotus corniculatus 

L.) present at lower densities. The soil is a silt loam glacial till (Hagerty and Kingston, 

1992) composed of approximately 50% sand, 41% silt and 9% clay, with an average pH 

of 7.6 (Bell et al., 2010). 
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2.2.2 Experimental Design 

A randomized factorial block design experiment was established at the site in late 2006, 

with 1 m2 circular plots assigned to either warming or ambient temperature, and either 

with nitrogen addition or without nitrogen addition (n=10 per treatment combination, 40 

old plots total; Turner and Henry 2009). An additional 10 new warmed plots were 

established in October 2019, and 10 new nitrogen addition plots were established in early 

spring 2020. In addition, 10 new control plots were designated to test for potential long-

term disturbance effects caused by the frequent plant and soil sampling in the original 

control plots. The expanded experiment therefore contained a total of 70 plots. No new 

warming and nitrogen fertilization combination treatment plots were established due to 

logistical constraints. However, previous studies conducted in the site found few 

significant warming by nitrogen addition effects (Bell et al., 2010; Henry et al., 2015). 

Warming was administered year-round using 150 W ceramic infrared heaters (Zoo-Med 

Laboratories, San Luis Obispo, CA, USA) at a height of 50 cm, which increased surface 

soil temperatures by approximately 2 °C without producing photosynthetically active 

radiation (Harte et al., 1995). Nitrogen was added annually during early spring as 

aqueous NH4NO3 at a rate of 2 g m−2 followed by the addition of 4 g m−2 of slow-release 

NH4NO3 pellets in early summer. The total addition rate of 6 g m−2 (60 kg/ha) is 

consistent with the high estimate of the predicted increase in nitrogen addition expected 

by 2050 in the study region (Galloway et al., 2004). Plot-level microclimate conditions 

were also monitored hourly using soil temperature probes (5 cm depth) and soil moisture 

probes measuring volumetric water content (5 cm depth).  

 

2.2.3 Soil Carbon Analysis 

2.2.3.1 Density Fractionation 

For density fractionation, I used a method adapted from Henry et al. (2005), based on the 

methods of Six et al. (2001). Soil samples were collected 5 August, 2020, using a 15 cm 

deep, 1.5 cm diameter corer, and the soil was oven-dried at 60 °C for five days. Once dry, 
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the soil was passed through a 2 mm sieve to remove large root fragments, small rocks, 

and other debris. The soil cores were homogenized, and 14 g of dry soil was weighed into 

50 ml centrifuge tubes. Next, 25 ml of sodium polytungstate (NaPT) with a density of 

1.85 g cm-3, was added to each tube. Samples were then shaken at 60 Hz for two hours 

and centrifuged for 10 min at 2100 ´ g (RCF) (2300 rpm). The supernatant containing the 

FLF of organic matter was vacuum filtered through a 1.2 µm nylon filter membrane that 

was weighed prior to use, and then rinsed with deionized water. The filters with the FLF 

were then left to oven dry at 60 °C. The pellet was redispersed in NaPT, and the previous 

step was repeated to collect the remainder of the FLF. To fraction out the OLF following 

the second FLF filtration, the pellet was redispersed in 0.5% sodium hexametaphosphate 

and shaken again for two hours to break up soil aggregates. Following centrifugation and 

decanting of the sodium hexametaphosphate supernatant, NaPT was returned to the pellet 

and centrifugation in NaPT was repeated to recover the OLF. Filter membranes were 

dried at 60 °C for three days and then weighed to estimate fraction recovery. The FLF 

and OLF were then recovered for analysis by gentle scraping of the membrane. The FLF 

was further fractioned by size by sieving (282 µm) to separate the fine organic particles 

from the more obvious root fragments. To prepare for FTIR analysis, a ball mill with 

stainless steel balls was used to grind each sample. 

Statistical Analyses 

The amounts recovered from fractionation for each fraction were analyzed to determine 

treatment effects using three two-way factorial block ANOVAs. The first ANOVA tested 

warming and plot age effects for the unfertilized plots only, the second tested nitrogen 

and plot age effects for the ambient temperature plots only, and the third examined the 

interactions between warming and nitrogen for the old plots only. Two-way ANOVAs 

were chosen instead of a three-way ANOVA, because no new nitrogen and warming 

combination treatment plots were established, rendering the experiment only partially 

factorial, not fully factorial. Prior to statistical analysis, the data were square root-

transformed. Data transformations and ANOVAs were run using RStudio (Version 

1.4.1106), and the outliers indicated in the boxplots were included in the analysis (see 

Figures 2.3, 2.4, and 2.5). 
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2.2.3.2 FTIR Analysis 

Soil organic matter fractions were analyzed for carbon quality using ATR (attenuated 

total reflection)-FTIR. FTIR absorbance spectra were collected using a Nicolet 380 FTIR 

spectrometer equipped with a Smart MIRacleTM Single Reflection ATR accessory and a 

ZnSe crystal plate (PIKE Technologies, Inc., WI, USA) following the method developed 

by James (2020). For each experimental field plot, FTIR data were collected for both the 

particulate and root debris fractions of the FLF (referred to hereafter as the FLF < 282 

µm and FLF > 282 µm), and the OLF. The average of 32 scans at a 4 cm-1 resolution over 

a wavenumber range of 400-4000 cm-1 was collected for each organic matter fraction 

recovered (FLF < 282 µm, FLF > 282 µm, and OLF) and three replicates, which were 

then averaged, were collected for each fraction to create a representative spectrum for 

each sample (Figure 2.1). Corrections were applied for all spectra for the baseline, ATR, 

and atmospheric CO2 and H2O, using OMNICTM Series Software (Thermo Fisher 

Scientific Inc., WI, USA). Absorption peaks used as indicator peaks for organic matter 

quality are listed in Table 2.1 and were identified according to Niemeyer et al. (1992), 

Zaccheo et al. (2002), and Boeriu et al. (2004). 
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Table 2.1: List of wavenumbers for indicator peaks used for Fourier-transform 

infrared spectroscopy analysis. 

Wavenumber (cm-1) Characterization Reference 
1030 Polysaccharides Zaccheo et al. (2002) 
1265 Lignin backbone Niemeyer et al. (1992) 
1371 Aliphatic compounds Boeriu et al. (2004) 
1426 Humic acids Boeriu et al. (2004) 
1515 Lignin/phenolic backbone Zaccheo et al. (2002) 
1650 Aromatic structures Zaccheo et al. (2002) 
1720 Carboxylic acids Niemeyer et al. (1992)  
2920 Fats, waxes, and lipids Niemeyer et al. (1992)  

 

 

 

Figure 1.1: Example of Fourier-transform infrared spectroscopy spectrum collected 

using Nicolet 380 FTIR spectrometer equipped with a Smart MIRacleTM Single 

Reflection ATR accessory and a ZnSe crystal plate produced by OMNICTM Series 

Software. Values on the spectrum indicate the wavenumber, and the peak heights 

represent the corresponding absorbance intensities.  
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Statistical Analyses 

Peak absorption intensities were collected and classified for the peaks of interest noted in 

Table 2.1. Peak absorption intensities were analyzed for each peak within each treatment 

using three two-way factorial block ANOVAs, similar to those used for the density 

fractionation experiment. The ANOVAs were performed using RStudio (Version 

1.4.1106), and the outliers indicated in the boxplots (see Figure 2.6, and Appendices A-F) 

were included in the statistical analysis. The first ANOVA tested warming and plot age 

effects, the second tested nitrogen and plot age effects, and the third examined the 

interactions between warming and nitrogen for the old plots only. 

 
 
2.2.4 Microbial Activity Analysis 

2.2.4.1 Enzyme Assays 
Enzyme assays were conducted following a protocol by Sinsabaugh et al. (2003) and 

adapted by Henry et al. (2005) and Saiya-Cork et al. (2002). The activities of three 

hydrolase enzymes (N-acetyl-glucosaminidase [NAG], phosphatase, and β-glucosidase), 

were analyzed using methylumbelliferone-tagged substrates (4-MUB- N-acetyl-β-D-

glucosaminide, 4-MUB- phosphate, 4-MUB-β-D-glucopyranoside, respectively). The 

activities of two oxidase enzymes (phenol oxidase and peroxidase) were analyzed using 

L-3,4-dihydroxyphenyl-alanine (L-DOPA) as a substrate. Soil cores were taken from 

each sample plot over two two-week periods, one in mid-spring (10-26 May) and the 

other in early summer (12-23 July) and were processed within 24 hours of collection. Soil 

cores were homogenized, and subsamples were taken for moisture content analysis. A 

sample of soil was measured out to 1 g and blended with 125 ml of 50 mM, Tris buffer, 

with a pH of 7.5, to match the site soil pH. Using a multichannel pipette, eight 200 µl 

aliquots were taken for analysis while the soil suspension was stirred and dispensed into 

black 96-well microplates for hydrolase enzymes, or clear flat-bottomed microplates for 

the oxidase enzymes.  

 

For hydrolase enzymes, 50 µl of 200 µM substrate solutions were added to the soil 

suspension in eight sample wells. Blank wells received 200 µl of the soil suspension and 
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50 µl of Tris buffer. Negative controls received 50 µl of 200 µM substrate solution and 

200 µl of Tris buffer. Hydrolase enzymes also required both a quench standard and 

reference standard. The quench standard received 200 µl of soil suspension and 50 µl of 

10 µM methylumbelliferone (MUB) standard. The reference standard received 200 µl of 

Tris buffer and 50 µl of 10 µM MUB standard. Eight replicate wells were used for each 

blank, negative control, quench, and reference standard. Plates were incubated in the dark 

at room temperature for the appropriate length of time (45 mins for NAG and 

phosphatase, and 3 hours for β-glucosidase) then 10 µl of 1M NaOH was added to each 

well to stop the reaction. Fluorescence was measured using a multi-detection microplate 

reader (SpectraMax® M2e with SoftMax® Pro software) with 365 nm excitation and 450 

nm emissions filters. To measure oxidase enzymes for each sample, 50 µl of 25 mM L-

DOPA substrate solutions were added to the 200 µl of soil suspension in sample wells. 

For peroxidase only, 10 µl of 0.3% hydrogen peroxide (H2O2) was also added to each 

well in the assay. Similarly, blank wells received 200 µl of the soil suspension and 50 µl 

of Tris buffer, and negative controls received 50 µl of 200 µM substrate solution and 200 

µl of Tris buffer. Eight replicate wells were used for each sample, blank, and negative 

control. Phenol oxidase and peroxidase assays were incubated in the dark at room 

temperature for 1 hour, and then absorbance was measured at 450 nm using the same 

multi-detection microplate reader as previously mentioned. 

 

Statistical Analyses 

Extracellular enzyme activities were calculated based on absorbance or fluorescence 

values measured for each enzyme and converted to nmol h-1 per gram of soil dry weight 

(dw). Using RStudio (Version 1.4.1106), three two-way factorial block ANOVAs were 

used to test for treatment effects on EEAs. The first tested warming and plot age effects, 

the second two-way factorial block ANOVA tested nitrogen and plot age effects, and the 

third examined the interactions between warming and nitrogen for the old plots only. All 

outliers indicated in the boxplots (See Figure 2.7, 2.8 and 2.9) were included in the 

analysis. 
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2.3 Results 
2.3.1 Soil Temperature and Soil Moisture Data 

Soil temperature and soil moisture varied between the two years of observation (2020 and 

2021). The soil temperature and moisture probe data in Figure 2.2 (Craig, 2021, p.27) 

showed that soils were warmer in the early part of the growing season (1 March to 31 

July – when the dominant grasses are most active) in 2021 compared to 2020. Mean air 

temperature for this period was 12.7 °C (± 3.9 SE) in 2020, and 13.0 °C (± 3.3 SE) in 

2021, and mean precipitation was 69.8 mm (± 11.8 SE) in 2021, and 63.4 mm (± 8.3 SE) 

in 2020 for this period (Environment Canada, National Climate Data and Information 

Archive, Historical Data). Soil temperature was on average 13.7 °C (± 0.1 SE) for the 

warmed plots and 12.5 °C (± 0.1 SE) for the ambient temperature plots for 2020. In 2021, 

average soil temperatures were on average 15.6 °C (± 0.11 SE) in the warmed plots and 

13.9 °C (± 0.11 SE) in the ambient temperature plots. Volumetric water content for the 

warmed plots in 2020 was on average 0.31 (± 0.002 SE), and 0.33 (± 0.002 SE) for the 

ambient temperature plots compared to 2021, which was 0.31 (± 0.001 SE) on average 

for warmed plots and 0.32 (± 0.001 SE) for ambient temperature plots.
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Figure 2.2: (a) Soil temperature and (b) volumetric water content for ambient 

temperature and warmed plots at 5 cm depth from September 2019 to July 2021. 

Note. Adapted from "Long-term vs. Short-term Plant Responses to Warming and 

Nitrogen Addition in a Temperate Old Field," by B, Craig, 2021, Electronic 

Thesis and Dissertation Repository. 8194. (https://ir.lib.uwo.ca/etd/8194). 

a) 

b) 
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2.3.2 Soil Organic Matter Fraction Recovery 

In the old plots, nitrogen addition alone increased FLF recovery (PN=0.018; Table 2.2; 

Figure 2.3), but FLF recovery was not significantly affected by warming, nor was there a 

significant interaction between warming and nitrogen addition. In contrast to the 

increased FLF recovery in the old plots with nitrogen addition, FLF recovery declined in 

the new plots with nitrogen addition, as evidenced by the significant interaction between 

nitrogen and plot age (PN×age=0.015; Table 2.2; Figure 2.4). There were no significant 

treatment effects on the ratio of FLF > 282 µm to FLF < 282 µm recovery; the mean FLF 

> 282 µm recovered was 0.077 g (± 0.004 SE) and the mean FLF < 282 µm recovered 

was 0.073 g (± 0.004 SE) across all treatments. OLF recovery declined with independent 

nitrogen (PN=0.016) and warming (Pw=0.036) treatments in the old plots (Table 2.2; 

Figure 2.3). However, OLF recovery increased significantly with nitrogen addition in the 

old plots, in combination with warming (PW×N=0.002; Table 2.2; Figure 2.3). 
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Figure 2.3: Changes in a) free and b) occluded light soil fractions in response to nitrogen 

addition, warming, and nitrogen by warming treatments (W×N) (n=10). Boxes indicate 

the upper quartile (75th percentile) and the lower quartile (25th percentile) which make 

up the interquartile range (IQR) of the dataset, and the median is represented by the line 

within the box. Whiskers are drawn up to largest data point that is 1.5 times the IQR, and 

black circles represent outliers that lie more than 1.5 times outside the IQR. P-values 

from three two-way ANOVAs are displayed and shown in Table 2.2. The data were 

square-root transformed prior to statistical analysis. 

 
 
 
 
 
 
 
 
 
 
 

PN = 0.018 PN = 0.016 
PW = 0.036 
PW × N = 0.002 
 
 

a) b) 
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Figure 2.4: Changes in a) free and b) occluded light soil fractions recovered from 

nitrogen and age effects plots (ambient temperature plots only) in response to nitrogen 

treatments and plot age (n=10). Boxplot and p-value details as described in Figure 2.3. 

The data were square-root transformed prior to analysis. 

 

 

 
 
 

 

 

PN × age= 0.015 
a) b) 
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Figure 2.5: Changes in a) free and b) occluded light soil fractions recovered from the 

warming and age effects plots (unfertilized plots only) in response to warming treatments 

and plot age (n=10). Boxplot and p-value details as described in Figure 2.3. The data 

were square-root transformed prior to analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) a) 
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Table 2.2: Summary of P-values from three two-way ANOVAs measuring effects of 

warming and nitrogen treatments and plot age on soil organic matter fraction 

recovery. 

  Fraction 
Plot Type Treatment FLF OLF 

Old Plots N (1) 0.018* 0.016*  
W (1) 0.228 0.036*  
W × N (1) 0.486 0.002**  
Df error (27)  

 

Nitrogen and Age Effects 
(ambient temperature 
plots only) 

N (1) 0.473 0.840 
Age (1) 0.116 0.777 
N × age (1) 0.015* 0.409 

 
Df Error (27)  

 

Warming and Age 
Effects (unfertilized plots 
only) 

W (1) 0.670 0.914 
Age (1) 0.673 0.839 
W × age (1) 0.865 0.488 

 Df Error (27)   
W - Warming; N - Nitrogen; Age - Plot age; FLF - Free light fraction; OLF - Occluded 
light fraction. Asterisks denote significant results (*** < 0.001, ** 0.001 - 0.01, * 0.01 - 
0.05). Degrees of freedom for treatments and error are in parentheses. 
 
 
2.3.3 FTIR 

There were few significant treatment effects on the FTIR peak intensities. The 

polysaccharide peak intensity of the FLF < 282 µm decreased significantly with warming 

in the old plots (PW=0.013; Table 2.3, Figure 2.6). See Appendix A for nitrogen by plot 

age treatment effects, and Appendix D for warming by plot age treatment effects. For the 

FLF > 282 µm, the warming treatment reduced the lignin peak intensity in combination 

with nitrogen addition, but lignin peak intensity was greater without nitrogen addition, 

although not statistically significant (PW×N=0.055; Table 2.4, Figure 2.6). See Appendix 

B for nitrogen by plot age treatment effects, and Appendix E for warming by plot age 

treatment effects. There were no significant treatment effects on any of the intensities of 

the indicator peaks for the OLF (Table 2.5). See Appendix C for nitrogen by plot age 

treatment effects, and Appendix F for warming by plot age treatment effects.  
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Figure 2.6: Absorbance peak intensities from Fourier-transform infrared spectroscopy (FTIR) analysis for the free light fraction (FLF) 

< 282 µm, FLF > 282 µm, and occluded light fraction (OLF) from the old plots in response to warming and nitrogen addition 

treatments for the various indicator peaks as mentioned in Table 2.1 (n=10). Details of boxplots explained in Figure 2.3. P-values from 

three two-way ANOVAs are displayed and shown in Table 2.3, Table 2.4, and Table 2.5. 

PW (FLF < 282µm) = 0.013 
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Table 2.3: Summary of P-values from three two-way ANOVAs measuring the treatment effects of warming and nitrogen 

treatments and plot age on the peak intensities of the free light fraction (FLF) < 282 µm of soil organic matter using Fourier-

transform infrared spectroscopy. 
  Indicator Peaks 
 
 
Plot Type 

 
 
Treatment 

Polysaccharides Lignin Aliphatics Phenolics Humic Acids Aromatics Carboxylic 
acids 

Fats, waxes, 
lipids 

Old Plots N 0.844 0.740 0.626 0.609 0.448 0.924 0.243 0.811  
W 0.013* 0.229 0.333 0.149 0.465 0.563 0.385 0.905  
W × N 0.467 0.408 0.645 0.837 0.592 0.924 0.793 0.811   

 
  

 
    

Nitrogen and 
Age Effects 
(ambient 
temperature 
plots only) 

N 0.869 0.811 0.602 0.345 0.745 0.869 0.933 0.681 
Age 0.626 0.212 0.480 0.315 0.485 0.347 0.454 0.953 
N × age 0.542 0.707 0.628 0.501 0.959 0.869 0.340 0.860 

  
 

  
 

    

Warming and 
Age Effects 
(unfertilized 
plots only) 

W 0.372 0.895 0.931 0.736 0.852 0.958 0.591 0.902 
Age 0.239 0.895 0.813 0.591 0.894 0.975 0.107 0.882 
W × age 0.303 0.662 0.700 0.367 0.709 0.531 0.939 0.805 

W - Warming; N - Nitrogen; Age - Plot age. Asterisks denote significant results (*** < 0.001, **0.001-0.01, *0.01 – 0.05). Degrees of 

freedom are as shown in Table 2.2. 
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Table 2.4: Summary of P-values from three two-way ANOVAs measuring the treatment effects of warming and nitrogen 

treatments and plot age on the peak intensities of the free light fraction (FLF) > 282 µm of soil organic matter using Fourier-

transform infrared spectroscopy. 
  Indicator Peaks 
 
 
Plot Type 

 
 
Treatment 

Polysaccharides Lignin Aliphatics Phenolics Humic Acids Aromatics Carboxylic 
acids 

Fats, waxes, 
lipids 

Old Plots N 0.402 0.643 0.717 0.647 0.602 0.881 0.938 0.979  
W 0.819 0.695 0.732 0.810 0.551 0.759 0.718 0.617  
W × N 0.552 0.055 0.236 0.290 0.186 0.964 0.643 0.617   

 
  

 
    

Nitrogen and Age 
Effects (ambient 
temperature plots 
only) 

N 0.875 0.383 0.495 0.809 0.575 0.751 0.375 0.373 
Age 0.986 0.589 0.630 0.665 0.801 1.000 0.422 0.908 
N × age 0.856 0.304 0.666 0.511 0.624 0.958 0.799 0.783   

 
  

 
    

Warming and Age 
Effects (unfertilized 
plots only) 

W 0.570 0.432 0.378 0.664 0.626 0.672 0.524 0.729 
Age 0.988 0.271 0.306 0.739 0.763 0.988 0.963 0.992 
W × age 0.897 0.320 0.321 0.591 0.732 0.977 0.721 0.730 

W - Warming; N - Nitrogen; Age - Plot age. Asterisks denote significant results (*** < 0.001, **0.001-0.01, *0.01 – 0.05). Degrees of 

freedom are as shown in Table 2.2. 
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Table 2.5: Summary of P-values from three two-way ANOVAs measuring the treatment effects of warming and nitrogen 

treatments and plot age on the peak intensities of the occluded light fraction (OLF) of soil organic matter using Fourier-

transform infrared spectroscopy. 
  Indicator Peaks 
 
 
Plot Type 

 
 
Treatment 

Polysaccharides Lignin Aliphatics Phenolics Humic Acids Aromatics Carboxylic 
acids 

Fats, waxes, 
lipids 

Old Plots N 0.946 0.626 0.630 0.276 0.461 0.321 0.350 0.592  
W 0.488 0.533 0.619 0.311 0.240 0.228 0.235 0.169  
W × N 0.897 0.845 0.953 0.592 0.689 0.633 0.677 0.490   

 
  

 
    

Nitrogen and Age 
Effects (ambient 
temperature plots 
only) 

N 0.915 0.745 0.778 0.313 0.516 0.771 0.639 0.585 
Age 0.805 0.957 0.900 0.653 0.578 0.541 0.397 0.671 
N × age 0.949 0.812 0.860 0.634 0.727 0.837 0.927 0.629   

 
  

 
    

Warming and Age 
Effects 
(unfertilized plots 
only) 

W 0.354 0.534 0.695 0.585 0.426 0.232 0.797 0.167 
Age 0.798 0.960 0.927 0.967 0.820 0.875 0.581 0.315 
W × age 0.948 0.843 0.977 0.991 0.004 0.485 0.169 0.920  

W - Warming; N - Nitrogen; Age - Plot age. Degrees of freedom are as shown in Table 2.2.
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2.3.4 Extracellular Enzyme Assays 

Potential extracellular enzyme activities differed between sampling periods, and the 

activities of individual enzymes differed with treatments, with hydrolase enzymes 

typically having greater treatment responses than oxidase enzymes (Table 2.6). For the 

enzyme assays conducted in May, NAG activity was greater with warming (PW=0.047; 

Figure 2.7) in the old plots. In July, the latter effect was no longer significant, and the old 

plots had significantly less NAG activity (Page=0.013; Figure 2.8 and Figure 2.8) than the 

new plots. Also in July, there was a significant interaction between warming and nitrogen 

for NAG activity (PW×N=0.047; Figure 2.7), with the latter increasing in response to 

nitrogen addition, but only in the warmed plots. In May, there was a significant 

interaction between warming and plot age for phosphatase activity, with less phosphatase 

activity in the new plots with warming, but greater phosphatase activity in the old plots 

(PW×age=0.024; Figure 2.9). A similar interaction between nitrogen and age occurred with 

phosphatase having greater activity in the old plots with nitrogen addition, and less 

activity in the new plots with nitrogen, but this interaction was not statistically significant 

(PN×age=0.087; Figure 2.8). In May, there was a significant interaction between warming 

and plot age for β-glucosidase activity (PW×age=0.041). β-glucosidase activity was greater 

with warming in the old plots but had reduced activity in new plots (Figure 2.9). 

Warming alone also significantly increased β-glucosidase activity (PW=0.039) in old plots 

(Figure 2.7). In July, β-glucosidase activity increased significantly with nitrogen addition 

(PN=0.028) in the old plots (Figure 2.7).  

Phenol oxidase activity was unchanged regardless of treatment at either time point, but in 

May peroxidase activity was greater in the old plots with nitrogen addition (PN=0.021; 

Figure 2.7). In July, the warming treatment effects on peroxidase (PW=0.076) were not 

statistically significant (Figure 2.9), but there was a strongly significant interaction 

between warming and nitrogen (PW×N =0.001) in the old plots (Figure 2.7). 

 



40 

 

 

 

Figure 2.7: Potential extracellular enzyme activities in the old plots from enzyme assays 

in May and July in response to nitrogen addition, warming and their combination (n=10). 

Details of boxplots explained in Figure 2.3. P-values from three two-way ANOVAs are 

displayed and shown in Table 2.6. 

PW = 0.047 PW = 0.039 

PN = 0.047 
PW × N= 0.047 
 

PN = 0.021 

PN = 0.028 

PW × N = 0.001 
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Figure 2.8: Potential extracellular enzyme activities in the nitrogen and age effects plots 

(ambient temperature plots only) from enzyme assays in May and July in response to 

nitrogen addition and plot age (n=10). Boxplot details as described in Figure 2.3. P-

values from three two-way ANOVAs are displayed and shown in Table 2.6. 

PN × age= 0.087 
 

PAge = 0.066 
 

PN = 0.094 
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Figure 2.9: Potential extracellular enzyme activities in the warming and age effects plots 

(unfertilized plots only) from enzyme assays in May and July in response to warming 

treatments and plot age (n=10). Boxplot details as described in Figure 2.3. P-values from 

three two-way ANOVAs are displayed and shown in Table 2.6.

PAge = 0.086 
PW ×age= 0.041 
 

PW × age = 0.024 

PAge = 0.013 

PW = 0.076 
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Table 2.6: Summary of P-values from three two-way ANOVAs measuring effects of warming and nitrogen treatments and plot 
age on enzyme production. 

  May July 
 
Plot Type 

 
Treatment 

NAG Bglu Phos Phenol 
Ox 

Perox NAG Bglu Phos Phenol 
Ox 

Perox 

Old Plots N 0.642 0.458 0.702 0.512 0.021* 0.047* 0.028* 0.108 0.237 0.622  
W 0.047* 0.039* 0.452 0.378 0.776 0.257 0.975 0.976 0.156 0.622  
W × N 0.323 0.600 0.315 0.668 1.000 0.047* 0.642 0.932 0.214 0.001***   

 
 

  
   

  
 

Nitrogen and 
Age Effects 
(ambient 
temperature 
plots only) 

N 0.575 0.176 0.827 0.776 0.372 0.662 0.094 0.222 0.448 0.153 
Age 0.911 0.541 0.998 0.494 0.308 0.066 0.661 0.929 0.554 0.908 
N × age 0.152 0.287 0.087 0.361 0.668 0.662 0.132 0.535 0.142 0.141 

  
 

 
  

   
  

 

Warming and 
Age Effects 
(unfertilized 
plots only) 

W 0.312 0.448 0.762 0.245 0.754 0.793 0.789 0.978 0.520 0.076 
Age 0.368 0.086 0.964 0.329 0.272 0.013* 0.405 0.644 0.639 0.938 
W × age 0.121 0.041* 0.024* 0.388 0.630 0.196 0.817 0.978 0.639 0.150 

W - Warming; N - Nitrogen; Age - Plot age; NAG - N-acetyl-glucosaminidase; Phos - phosphatase; Bglu - β-glucosidase; Phenol Ox - 
Phenol oxidase; Perox - Peroxidase. Asterisks denote significant results (*** < 0.001, **0.001-0.01, *0.01 – 0.05). Degrees of 
freedom are as shown in Table 2.2.
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2.4 Discussion 
2.4.1 Soil Organic Matter Fraction Recovery 

I predicted that nitrogen addition would stimulate labile carbon breakdown, which would 

lead to a decrease in FLF and OLF recovery. While this prediction was evident in the 

new plots, the opposite response was observed for the old plots. This nitrogen addition by 

plot age interaction may be explained by the fact that the quantity and quality of labile 

SOM in soil is affected by both microbial carbon consumption and by carbon inputs from 

plant litter and roots. In the case of the new plots, the direct effect of nitrogen addition 

could have enhanced microbial activities, whereas there were no significant above and 

belowground plant growth responses in the first year of treatment (Craig 2021), which 

would have precluded an increase in plant soil carbon inputs. In contrast, the old plots 

exhibited a strong plant response to nitrogen addition, including a significant increase in 

root biomass (Craig 2021), which appeared to be an important contributor to the FLF. 

Therefore, my prediction appeared to overlook the important role of variation in plant 

responses in driving the overall FLF quantity with nitrogen addition in the old plots. In 

other systems, effects of nitrogen treatments likewise have been inconsistent between 

short and long-term experiments. Specifically, in a short-term grassland nitrogen addition 

experiment, nitrogen increased the FLF of soil carbon (Khalili et al., 2016), whereas in 

another experiment it had no effect (Song et al., 2014). In a long-term nitrogen 

fertilization experiment, there was no effect of nitrogen addition on the light density 

fraction recovered, but nitrogen addition did increase soil carbon in the heavy fraction 

(Cenini et al., 2015), and there is evidence that nitrogen increases total soil carbon stocks 

(Tong et al., 2014). It has been suggested that inconsistent results from nitrogen addition 

experiments on soil carbon pools have been due to site-specific responses (Kazanski et 

al., 2019), or abiotic factors such as soil pH (Song et al., 2014), but my results emphasize 

that treatment effects on plant biomass production and litter inputs also may play an 

import role in explaining this variation. Importantly, lags in plant responses to nitrogen 

addition can modulate changes in soil carbon over time.  
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While previous studies have reported that warming treatments can decrease the soil 

carbon light fraction (Song et al., 2012) and total carbon stocks (Peplau et al., 2021), 

short-term warming experiments nevertheless have failed to detect effects of warming on 

soil organic carbon content in surface soils (Guan et al., 2018) and subsoils (Jia et al., 

2019). I consequently predicted the amount of labile carbon recovered in the old warming 

plots would be less than the amount recovered in the control plots and new warming 

plots. Contrary to my prediction, there were no significant warming effects on FLF 

recovery in either the old or new plots, likely due to the relatively weak warming 

treatment. Mean soil temperature was only increased by 1.2°C and 1.7°C in 2020 and 

2021, respectively, with the warming treatment. However, given there has not been a 

consistent effect on warming on plant productivity in the experiment (Henry et al., 2015), 

carbon inputs to the soil may not have differed substantially over time among treatments. 

As for the OLF, although it is comprised of labile carbon, the latter is protected from 

microbial decomposition within soil aggregates. While this results in a slower carbon 

turnover rate than the FLF, the quality of the aggregated carbon often is preferred by 

microbes for decomposition (Golchin et al. 1994; Kölbl et al., 2004; Wander et al., 2004; 

Riggs et al., 2015). Therefore, treatment effects on soil aggregate formation and 

breakdown are key in driving the quantity of OLF in response to changes in edaphic 

conditions. Nitrogen addition treatments can increase SOM aggregate formation by 

stimulating plant root biomass, and microbial aggregation of organic matter, which is 

consistent with nitrogen treatments increasing carbon accumulation in soils (Song et al., 

2014; Riggs et al., 2015), however, the results of my study contradict this. In contrast, it 

was observed that the OLF decreased with warming, which is consistent with some 

previous research (Guan et al., 2018), but it is also sometimes unaffected despite 

enhanced microbial decomposition (Schnecker et al., 2016). My observation that OLF 

recovery increased with the combination of warming and nitrogen addition in the old 

plots is difficult to explain, given these contrasting effects. Nevertheless, the latter 

remains an intriguing result, given that interactive effects of the warming and nitrogen 

addition treatments were largely absent through the first seven years of the experiment 

(Henry et al., 2015).  
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2.4.2 Carbon Quality 

Warming and nitrogen addition treatments can alter SOM quality, even in short-term 

experiments (Sun et al., 2019). I therefore predicted that treatment effects on labile 

carbon decomposition would vary the carbon quality of the FLF and OLF, and in 

particular, the remaining proportion of recalcitrant compounds. However, the FTIR 

spectral data demonstrated that carbon quality of the different soil organic matter 

fractions did not differ with experimental treatments. Density fractionation separates soil 

carbon coarsely into fractions associated with relatively labile carbon (FLF and OLF) 

versus relatively recalcitrant carbon (the heavy fraction), and I further separated the FLF 

by particle size into the FLF < 282 µm, which was very fine, indistinguishable material, 

and the FLF > 282 µm, which was composed of larger, more recognizable root debris 

fragments. Peak intensities for the FLF > 282 µm demonstrated that this fraction 

contained consistently greater lignin, humic acids, aliphatic, and aromatic carbon 

compounds than the FLF < 282 µm, but both the FLF > 282 µm and FLF < 282 had 

similar polysaccharide content. The composition of the OLF was more variable but was 

similar to that of the FLF < 282 µm. Although the treatments affected the amounts of 

these fractions recovered (as discussed in the previous section), my results indicate that 

the density and size fractionation steps were effective in separating the resulting fractions 

into pools of uniform carbon quality. One significant result I observed was that warming 

altered the carbon composition of the polysaccharides in the FLF < 282 µm. This soil 

carbon fraction is composed of soluble saccharides that feature a rapid turnover rate 

(Wander, 2004; Sequeira et al., 2011), and as described above, warming can reduce labile 

carbon pools, especially in the short-term, by stimulating microbial decomposition (Song 

et al., 2012; Melillo et al., 2017; Li et al., 2018). 

Although not statistically significant, in the old plots, the lignin peak for the FLF > 282 

µm declined with warming when nitrogen was applied, but peak intensity was higher 

with warming alone. This contrasts with previous research, which found that nitrogen 

addition impedes the breakdown of recalcitrant organic matter by reducing microbial 

biomass and decreasing oxidase enzyme activities (Carreiro et al., 2000; Song et al., 

2014). Because the OLF is protected in aggregates, it is possible that this material was 
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not accessible for microbes to degrade, regardless of treatment (Wander, 2004), and I did 

not observe a change in the carbon composition of the OLF that corresponded with the 

combined warming by nitrogen addition effect on OLF recovery described above for the 

old plots. 

 
2.4.3 Extracellular Enzyme Activities 

In support of my prediction, there were greater enzyme activities in the old plots than in 

the new plots. It was expected that microbial activities, and therefore function, would 

have shifted over time as a result of cumulative treatment effects. Although there was 

variability in EEAs between sampling periods for each enzyme, it appeared that microbes 

responded to treatments by altering production of hydrolase enzymes more so than the 

oxidase enzymes. Typically, nitrogen addition stimulates enzyme activities, specifically 

increasing hydrolase enzyme production (Allison et al., 2008; Song et al., 2014; Khalili et 

al., 2016; Zhang et al., 2019). Warming can also stimulate C-acquiring hydrolase enzyme 

activities in the short-term, but this response decreases over time as substrate availability 

decreases (Li et al., 2018; Walker et al., 2018). As I predicted, the activities of two 

hydrolase enzymes (NAG and β-glucosidase) were greater with nitrogen addition, but the 

lack of a change in phosphatase production with nitrogen addition in the old plots was 

unexpected. When nitrogen limitation is alleviated, it is expected that other important 

nutrients, such as phosphorus, become limiting, resulting in increasing P-acquiring 

enzyme production by microbes, and plants (Calleiro et al., 2000); however, this was not 

the case in my experiment.  

Given that nitrogen addition typically suppresses the production of oxidase enzymes by 

microbes (Calleiro et al., 2000; Saiya-Cork et al., 2002; Henry et al., 2005; Keeler et al., 

2009), it was unexpected for the peroxidase activities measured in the old plots with the 

combination treatment of warming and nitrogen addition, to be greater than the control. 

Warming appeared to negate the negative effect of nitrogen on peroxidase activity. As 

previously mentioned, warming can stimulate C-acquiring hydrolase enzymes (Li et al., 

2018; Walker et al., 2018), and the increased substrate availability from plant litter and 

roots in old plots (Craig, 2021) may also explain why, contrary to my prediction, the 
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enzyme activities in the old plots were greater with the warming treatment. The 

observation that warming effects were stronger in the spring compared to the summer 

was consistent with the warming treatment having less of an effect on soil temperature in 

summer due to the insulating effect of the plant canopy (Hutchison and Henry, 2010).  

 
2.4.4 Conclusions 

Overall, the warming and nitrogen addition effects on the light fraction of SOM and 

microbial activities appeared to be strongly influenced by indirect treatment effects on 

plant growth. This mechanism may similarly explain why the effects of warming and 

nitrogen treatments on EEAs were negligible in the early years of the experiment in the 

old plots (Bell and Henry, 2010). Because the OLF is formed when old pools of carbon 

become aggregated during decades of root growth and is often lost due to cultivation, 

conversion of cultivated land to old fields may therefore negate the losses of this fraction 

if quantities of OLF carbon increase in old fields, revealing additional ecological benefits 

of old field systems (Golchin et al., 1994). Questions regarding long-term carbon storage 

in the presence of warming temperatures and atmospheric nitrogen deposition may 

potentially be addressed by analyzing changes in carbon of the soil heavy fraction, 

despite the slow response of this pool to environmental variation. Organic matter in the 

heavy fraction has extremely long residence times, and is less susceptible to microbial 

degradation, and therefore has a greater capacity for carbon sequestration than the light 

fraction. 
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Chapter 3  

3 Conclusions and Future Directions 

3.1 Research Findings 
My study revealed warming and nitrogen treatment effects on both soil organic matter 

fraction recovery and extracellular enzyme activities. Overall, the old plots exhibited 

greater differences from controls than the new plots, which reinforces the concept that 

results of short-term experiments measuring soil carbon and microbial responses may not 

reflect long-term responses, likely due in part to lags in plant responses to the treatments. 

Other key observations were that once the density and size fractionation steps were 

complete, there was little variation among treatments in carbon quality, and that 

microbial activities of hydrolase enzymes were more affected by treatments than those of 

the oxidase enzymes. 

3.2 Methodological Considerations and Potential 
Limitations 

The soil fractionation methods I used were physical fractionation techniques. These 

methods separate soil fractions by density or particle size and are based on the physical 

associations and bioavailability of the organic matter for decomposition (von Lützow et 

al., 2007). Chemical methods can also be used for soil fractionation. Chemical 

fractionation can remove the mineral component of soil, isolating organic matter for 

analysis; however, chemical fractionation methods do not allow the differentiation 

between the free and occluded soil organic matter found in aggregates if both 

components are soluble in the extracting agent (von Lützow et al., 2007). Another 

advantage of using density for fractionation as opposed to chemical fractionation is that 

separating by density maintains the integrity of the organic matter fractions (Cerli et al., 

2012). The light fraction of SOM is generally a good representation of the active organic 

matter in soil, but the differentiation between the light fraction and heavy fraction using 

density fractionation is approximate (von Lützow et al., 2007). The heavy fraction of 

organic matter was not analyzed in my study because it is composed of strongly bound 

mineral-associated organic matter that cannot be completely separated and therefore it is 
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not typically available for microbial degradation, and it is relatively insensitive to 

environmental change (Golchin et al., 1994; Cerli et al., 2012; Song et al., 2012).  

Nevertheless, by analyzing changes only in the light fraction, the results from my 

experiment were limited to just the active pool, and responses of the passive pool (which 

are relevant to longer-term soil carbon sequestration) remained unknown.  

The extracellular enzyme assays I used to assess microbial activity also have potential 

limitations. In the field, many factors determine enzyme activities in soil, and these 

include soil structure, temperature, soil moisture, and pH, as well as substrate availability, 

and as biotic factors including plant community composition (Sinsabaugh, 2010). Many 

of these factors can only be replicated in vitro to a certain extent, for example by 

maintaining a similar pH to the soil pH by using buffer. However, this same buffer can 

alter the structural composition of soil samples, which can impact measured enzyme 

activities. In addition, the enzymes measured are temperature sensitive, and the 

measurement of enzyme activities in the laboratory is only indicative of total potential 

activity in soil (Allison and Vitousek, 2005; Koch et al., 2007, Allison et al., 2010), and 

not actual activity. Moreover, laboratory assays measure the entire pool of enzymes, even 

if there are enzymes associated with organic matter or mineral particles that would not 

encounter their substrates in situ, and the use of a soil slurry in the laboratory provides 

ample water, whereas enzyme diffusion (and thus contact with substrate) can be limited 

in the field when soil moisture is low (Steinweg et al., 2012). Therefore, while the use of 

enzyme assays can provide a quick estimation of microbial functional activity, actual 

EEAs in the field likely differ.  

Lastly, a further limitation of my thesis was the lack of microbial biomass estimates to 

complement the enzyme assay data. While my project was originally intended to include 

microbial biomass estimates obtained via a differential cell staining technique to 

determine active fungal and bacterial biomass, timing constraints forced us to omit these 

analyses. Estimates of fungal and bacterial biomass could have been used to infer to what 

extent changes in EEAs were driven by changes in microbial biomass versus changes in 

enzyme production per unit microbial biomass.  
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3.3 Directions for Future Research 
Because the global carbon and nitrogen cycles are highly intertwined, and ecosystem 

functioning relies strongly on these cycles, understanding changes in soil nitrogen as a 

result of climate change and nitrogen addition treatments would further enhance the 

understanding of carbon cycling in the experiment. Northern temperate grasslands are 

often nitrogen-limited, and there is therefore a high potential for changes in soil nitrogen 

dynamics in response to long-term warming and nitrogen addition. Previous short-term 

results from the experiment (i.e. the initial years for the old plots) indicated no treatment 

effects on net nitrogen mineralization rates (Turner and Henry, 2010), but found that soil 
15N retention varied with warming and nitrogen addition (Turner and Henry, 2009). 

 

Long-term global change experiments typically see greater deviation in treatment 

responses from the controls over time (Komatsu et al., 2019). Another long-term 

experiment by Melillo et al. (2017) examined the effect of warming on soil carbon losses 

from soil and found that responses over time occurred in phases. Initially, soil carbon 

losses increased, but they leveled out after ten years. However, after another seven years 

of continuous warming, soil carbon losses began to increase again, suggesting that long-

term responses can continue to change. Therefore, a further assessment of soil carbon in 

my experiment in another 10 years could yield further insights. In addition, although my 

study examined the effects of two global change drivers on soil carbon and microbial 

activities, community responses are more frequently observed with greater than three 

global change drivers (Komatsu et al., 2019). A long-term multifactorial experiment 

observing the effects of water addition/drought treatments in addition to warming and 

nitrogen would therefore be further informative. For example, the negative effects of 

water addition on labile carbon and nitrogen pools can be mitigated by nitrogen addition 

(Khalili et al., 2016) and the soil drying effect caused by warming may be relieved by 

water addition (Allison and Treseder, 2008).  

3.4 Conclusions 
Experiments examining warming and nitrogen addition treatment effects on soil carbon 

quantity and composition and microbial activities are common, but many experiments 
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have been conducted over relatively short time periods, and in addition to not addressing 

potential long-term cumulative effects, the results of short-term studies can be affected by 

interannual weather variation (Henry et al., 2015). My add-on to a pre-existing 

experiment was established to control for the effects of weather variability in short-term 

experiments and understand the extent to which cumulative effects on soil carbon and 

microbial activities may occur over time. The results from my study suggest that short-

term soil carbon and microbial responses are not representative of the cumulative effects 

that can occur over longer periods. Warming and nitrogen treatment effects were more 

pronounced in old plots compared to new plots, and these long-term changes can have 

implications for future ecosystem functioning. Results from long-term studies examining 

soil responses to elements of global change in a variety of ecosystems can be applied to 

global change models, allowing the models to make more accurate predictions of how 

ecosystems might respond to future environmental conditions (Burns et al., 2013). 

Whether a soil system acts as a net carbon source or sink depends on many ecological 

factors, and as global temperatures continue to increase and atmospheric nitrogen 

deposition persists, results from this study will contribute to the understanding of how 

temperate soils in herbaceous systems may respond to global change.  
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Appendices 

Appendix A: Absorbance peak intensities measured with Fourier-transform infrared 

spectroscopy (FTIR) for the free light fraction (FLF) < 282 µm from the nitrogen and age 

effects plots (ambient temperature plots only) for various indicator peaks (n=10). Boxplot 

details as described in Figure 2.3. 
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Appendix B: Absorbance peak intensities measured using Fourier-transform infrared 

spectroscopy (FTIR) for the free light fraction (FLF) > 282 µm from nitrogen and age 

effects plots (ambient temperature plots only) for various indicator peaks (n=10). Boxplot 

details as described in Figure 2.3. 
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Appendix C: Absorbance peak intensities measured using Fourier-transform infrared 

spectroscopy (FTIR) for the occluded light fraction (OLF) from nitrogen and age effects 

plots (ambient temperature plots only) for various indicator peaks (n=10). Boxplot details 

as described in Figure 2.3. 
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Appendix D: Absorbance peak intensities measured using Fourier-transform infrared 

spectroscopy (FTIR) for the free light fraction (FLF) < 282 µm from warming and age 

effects plots (unfertilized plots only) for various indicator peaks (n=10). Boxplot details 

as described in Figure 2.3. 
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Appendix E: Absorbance peak intensities measured using Fourier-transform infrared 

spectroscopy (FTIR) for the free light fraction (FLF) > 282 µm from warming and age 

effects plots (unfertilized plots only) in response to warming treatments and plot age for 

various indicator peaks (n=10). Boxplot details as described in Figure 2.3. 
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Appendix F: Absorbance peak intensities measured using Fourier-transform infrared 

spectroscopy (FTIR) for the occluded light fraction (OLF) from warming and age effects 

plots (unfertilized plots only) for various indicator peaks (n=10). Boxplot details as 

described in Figure 2.3. 
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