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Abstract 

We present molecular dynamics (MD) simulations of two protein targets for drug design: 

Triosephosphate isomerase (TIM) and Methyl CpG binding protein 2 (MeCP2). First, we 

studied three TIM proteins: TcTIM, TbTIM and a chimeric protein (Mut1). The first two are 

homologous enzymes with high sequence similarity, albeit different biophysical parameters. 

The chimeric protein has TbTIM’s sequence and 13 single point mutations, which are sufficient 

to obtain TcTIM-like behaviour in reactivation experiments. We analyzed the residue 

interaction networks observed in the all-atom MD simulations, as well as their electrostatic 

interactions and the impact of simulation length on them. A conserved salt bridge between 

catalytic residues Lys 14 and Glu 98 was observed in all three proteins, but key differences 

were found in other interactions concerning the catalytic amino acids. Although TcTIM forms 

less hydrogen bonds than TbTIM and Mut1, its hydrogen bond network spans almost the entire 

protein, connecting the residues in both monomers. Some of these interactions appeared only 

after the first microsecond of the simulation, and convergence in the number of hydrogen bonds 

was only reached during the last of the 3 μs of the simulation. Second, we performed MD 

simulations of the methyl DNA binding domain (MBD), which is the only domain in MeCP2 

with an available structure. After characterizing its structure both in solution and in the 

presence of a surface in order to compare with high-speed atomic force microscopy 

experiments (HS-AFM), we built the rest of the protein structure by ab initio modelling using 

Modeller. This model was simulated in both all-atom and coarse-grained force fields. Two 

main conformations were sampled in the coarse-grained simulations: a globular structure 

similar to the one observed in the all-atom force field and a two-globule conformation. A 

similar two-globule conformation has been observed in the HS-AFM experiments. Our results 

are in good agreement with available experimental data. They predicted 4.1% of α-helical 

content, the experimental result is 4%. Finally, we compared the model predicted by AlphaFold 

to our Modeller model. Together, these simulations represent the first attempt to characterize 

the structure and dynamics of the full-length MeCP2 protein. 
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Summary for Lay Audience 

We present molecular dynamics (MD) simulations of two proteins. The aim of an MD 

simulation is to provide the time-evolution of a system by solving iteratively its equations of 

motion. We first studied two Triosephosphate isomerase (TIM) proteins, one from 

Trypanosoma cruzi (TcTIM), the parasite that causes Chagas’ disease, and one from 

Trypanosoma brucei (TbTIM), causative agent of the African sleeping sickness, as well as a 

chimeric protein with some characteristics of both of them. Our simulations allowed us to study 

the electrostatic interactions between these proteins and explain why they behave differently 

even though they are extremely similar. Next, we focused our study on the Methyl CpG binding 

protein 2 (MeCP2). This protein is essential for growth and synaptic activity of neurons. Its 

malfunction is associated to Rett syndrome, the most common cause of cognitive impairment 

in females. This protein is an intrinsically disordered protein (IDP), a type of protein which 

does not have a unique tertiary structure. IDPs are highly flexible and conventional methods 

to study proteins are often not directly applicable to them. This is why the full-length structure 

of MeCP2 has not been solved yet. The only available structure solely contains ~17% of its 

amino acids, which represents the most ordered domain of this protein. We first performed MD 

simulations on this structure, and then used ab initio modelling to complete the rest of the 

protein. Since all-atom simulations of this model were not enough to guarantee adequate 

sampling of its conformational space, coarse-grained modeling was used to complement the 

atomistic picture. The coarse-grained simulations sampled a conformation that had not been 

observed in the all-atom simulations but that was in good agreement with a conformation 

previously observed in experimental data. Furthermore, our simulations predicted an α-helical 

content of 4.1% (experimental value: 4%). Together, our simulations represent the first effort 

to characterize the structure and dynamics of the full-length MeCP2 protein. 
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1 Introduction 

This thesis focuses on the study of a globular protein (triosephosphate isomerase) and an 

intrinsically disordered protein (Methyl CpG binding protein 2). Molecular dynamics 

simulations were used to characterize their structure and dynamics. In this chapter, a brief 

introduction to proteins is made. Sections 1.4 and 1.5 briefly discuss the relevance of these 

two proteins.  

 

1.1 Proteins 

Cells are rich in highly complex molecules termed macromolecules, and proteins are the 

most abundant of them1. In fact, biochemical methods for protein detection suggest that 

each human cell may express up to 15,000 distinct proteins2. They are functionally diverse 

and involved in virtually all life processes in biological organisms, including the catalysis 

of metabolic processes, energy transfer, gene expression, transport of solutes across 

membranes, cellular communication, molecular recognition, defense mechanisms and 

forming intracellular and extracellular structures1. Given the numerous roles of proteins, 

the overall health of an organism depends on their normal function, and any significant loss 

of it may lead to the development of a pathological process. Consequently, proteins 

constitute ~80% of current pharmaceutical targets1. 

Proteins have evolved to perform their function in a specific cellular environment. They 

have therefore adapted to its biophysical characteristics, including temperature, pH, 

salinity and pressure. Proteins denature at both high (typically ~60 °C) and low (typically 

~-20°C) temperatures3, and their pH-optimum of activity corresponds to their pH-optimum 

of stability4. The term “denaturation” refers to the phenomenon of loss of the three-

dimensional structure a protein has under physiological conditions, by either heat or 

cooling (Figure 1.1)5. There is an ongoing debate between two opposing views that explain 

cold denaturation: hydrophobic hydration and hydrophilic hydration. Each theory claims 

that the dominant energetic contribution to cold denaturation comes from one of these two 

types of residues, and the problem remains an open question in the scientific community3,6. 
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Figure 1.1 Protein denaturation. The protein loses the three-dimensional structure it 

has under physiological conditions. Green: stabilizing interactions, such as disulfide 

bridges, hydrogen bonding and ionic bonds. Adapted with permission from Killian et 

al7. Copyright 2021 American Chemical Society. 

The structural organization of proteins is commonly described in terms of four different 

aspects of covalent structure and folding patterns1. The levels of this hierarchy are known 

as primary, secondary, tertiary and quaternary structure (Figure 1.2). The primary structure 

is the ordered sequence of amino acids composing the protein chain. The secondary 

structure refers to the initial folding of the sequence into helices and sheets. The overall 

chain folds further into a three-dimensional compact tertiary structure, which constitutes 

the third level of the hierarchy. All proteins have these three levels of structural hierarchy, 

but there are some proteins that include more than one chain. In such cases, the spatial 

arrangement of the different subunits constitutes its quaternary structure1. 
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Figure 1.2 Structural hierarchy in proteins. The primary structure is the amino acid 

sequence of the protein chain, the secondary structure is the initial folding of the chain 

into helices and sheets and the tertiary structure is the three-dimensional structure of 

the entire chain. If the protein includes more than one chain, the quaternary structure 

constitutes the spatial arrangement of the different subunits. From Wikipedia, under 

a CC BY 4.0 license8. 

 The amino acid chain is the primary and central component of the protein. It is formed by 

linking amino acids via peptide bonds. A peptide bond forms when the carboxyl group of 

one amino acid condenses with the amino group of another amino acid to eliminate water. 

The succession of peptide bonds generates a backbone, from which the side chains are 

projected. All amino acids have in common a central carbon atom (Cα) to which a hydrogen 

atom, an amino group (NH2) and a carboxyl group (COOH) are attached.  They are 

distinguished by the side chain attached to the Cα through its fourth valence (Figure 1.3). 

There are 21 amino acids specified by the genetic code but a few others occur in rare cases 

by post-translational modifications. Of those, nine are termed “essential” amino acids since 

humans and other vertebrates cannot synthesise them from metabolic intermediates9. 
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Figure 1.3 Proteins are built by amino acids linked via a peptide bond, generating a backbone. 

All amino acids have in common a central carbon atom (Cα) to which a hydrogen atom, an 

amino group (NH2) and a carboxyl group (COOH) are attached. They are distinguished by 

the side chain (Ri) attached to the Cα through its fourth valence. From Wikipedia, under a 

CC BY-SA 3.0 license10. 

Amino acids are divided into three different classes (plus some special cases) according to 

the chemical nature of their side chain: hydrophobic, polar or charged (Figure 1.4). There 

are two amino acids with acidic side chains: aspartic and glutamic acid. At neutral pH they 

are fully ionized, containing a negatively charged carboxylate group (-COO-). Three amino 

acids have basic side chains. Two of them are fully ionized and positively charged at neutral 

pH: lysine and arginine. Histidine is only weakly basic and can be either positively charged 

or neutral, depending on the ionic environment provided by the nearby residues in the 

protein. Polar amino acids have zero net charge at neutral pH and contain at least one atom 

with electron pairs available for hydrogen bonding to water. Hydrophobic amino acids have 

a side chain that does not bind or give off protons. They do not participate in hydrogen or 

ionic bonds and instead promote hydrophobic interactions11. Four amino acids are 

considered to be special cases: 1) Cysteines can form a disulfide bond (-S-S-) when the 

sulfhydryl group (-SH) in two of them becomes oxidized to form a covalent cross-link. 

Disulfide bridges stabilize the folding of proteins, making them less susceptible to 

degradation9. 2) Selenocysteine requires an elaborate synthetic and translational apparatus 
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that does not resemble the canonical enzymatic system employed for the rest of the amino 

acids12. Finally, 3) glycine and proline are both special but in opposite ways. Glycine 

contains a single hydrogen as its side chain (Figure 1.4) and it therefore has a huge 

conformational flexibility. In contrast, proline is geometrically limited due to the fusion of 

its backbone and sidechain. This fusion prevents the N atom from participating in 

hydrogen-bonding and also provides some steric hindrance to the α-helical conformation1. 



6 

 

 

Figure 1.4 The genetic code specifies 21 amino acids which are divided into four groups 

according to the chemical nature of their side chain. From Wikipedia, under a CC BY-SA 3.0 

license13. 
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The main driving force for the folding of globular proteins is the hydrophobic effect14,15. It 

plays an important role in the stability of biomolecules and is associated to cold 

denaturation3. It is comprised by two energetic components: one enthalpic and one 

entropic. The enthalpic hydrophobic effect is associated with the expulsion of disordered 

water from hydrophobic regions. The entropic component is the result of an increase in 

water disorder when hydrophobic surfaces aggregate and lessen the surface area around 

which water molecules are more aligned16. The hydrophobic effect results in the burial of 

the hydrophobic side chains in the core of the protein, creating a hydrophilic surface. The 

hydrophobic core is densely packed and in the few cases where space remains, one or more 

water molecules will hydrogen-bond to internal polar groups9. These are firmly bound and 

can be regarded as integral parts of the protein structure. In order to bring the hydrophobic 

side chains into the core, the main chain must also fold into the interior of the protein. It is, 

however, highly polar, with one hydrogen bond donor (NH) and one acceptor (C’=O) for 

each peptide unit. These polar groups are neutralized by the formation of hydrogen bonds, 

giving rise to the secondary structure of proteins: α-helices and β-sheets (Figure 1.5)9. 

The secondary structure provides a solid framework to the protein. It is relatively rigid and 

is therefore the best-defined part of a protein structure when it is determined by both X-ray 

and nuclear magnetic resonance (NMR) techniques. 
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Figure 1.5 The most common secondary structures in proteins are the (A) α-helix and (B) β-

sheet. They are stabilized by the formation of hydrogen bonds between the side chains of the 

amino acids that form them. 

Motifs are combinations of secondary structure elements with a specific geometric 

arrangement that are frequently found in protein structures. Some of them can be associated 

with a specific function such as DNA binding, but others have no specific biological 

function on their own. Several motifs combine into domains, which is the fundamental unit 

of tertiary structure9. A domain can fold independently into a stable tertiary structure and 

is structurally independent of the other domains. Polypeptide chains that are more than 200 

amino acids long generally consist of two or more domains11. The process by which a 

polypeptide chain acquires its correct three-dimensional structure and reaches the 

biologically active native state is called protein folding9.  

 

1.2 Protein structure and function 

Initial efforts to crystallize proteins focused on hemoglobin, and although the first 

photographs of hemoglobin crystals date from 1909, it took another 50 years before the 

three-dimensional structure of this protein was solved17. At least 42 scientists have received 

Nobel Prizes in Physics, Chemistry or Medicine for contributions that included the use of 

X-rays or neutrons and crystallography. Recording X-ray diffraction images of 
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macromolecular crystals turned out to be very challenging because of how easy they 

deteriorate, they are sensitive to over-drying when exposed to air, and are temperature 

sensitive17.  

The thermodynamic hypothesis of protein folding, also known as “Anfinsen’s dogma”, is 

a theoretic milestone. It states that the native structure of a protein represents a free energy 

minimum determined by the totality of interatomic interactions and hence by the amino 

acid sequence5. However, how the correct folding of a protein is selected from the 

astronomically large number (1047 ) of possible conformations to give the native state in a 

timescale of seconds or less, remained a paradox, known as Levinthal’s paradox, for a long 

time18. It is now clear that folding pathways drive the protein efficiently towards a topology 

close to that of the native state19. Moreover, proteins actually assume a large number of 

nearly isoenergetic conformations and its motion can be discussed in terms of energy 

landscapes, which describe the potential energy of the protein as a function of 

conformational coordinates20. 

For a long time, it was assumed that all proteins have a well-defined and stable three-

dimensional structure that is fully determined by the amino acid sequence. Early 

experiments showed that proteins lost their function upon losing their structure and thus it 

was believed that the native and functional state of a protein was necessarily a stable 

structure. Results that ran counter this assumption were considered to be mistakes due to 

either the experimental setup or the experimenter21. As experimental evidence of 

disordered proteins accumulated, it became impossible to ignore them, but they were often 

considered as being functionally irrelevant. Many terms have been used to describe these 

proteins, and it was not until 2005 that the field started to use consistent terminology and 

the term “intrinsically disordered” became predominant21. 

 

1.3 Intrinsically disordered proteins 

Intrinsically disordered proteins (IDPs) are a class of proteins that contain extensive 

disorder, either local or global, that is important for function22,23. In contrast to globular 
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proteins, IDPs do not have a well-defined secondary or tertiary structure and can adopt a 

wide range of configurations (Figure 1.6). The structure-function paradigm, supported by 

numerous reports of structures determined using X-ray crystallography and NMR 

spectroscopy, slowed the acceptance of the biological role of highly dynamic and 

disordered protein states. Additionally, the lack of common terminology precluded the 

appearance of the idea that this class of proteins constitutes a separate and important 

category of proteins21. 

IDPs play a key role in signalling and regulatory functions, including the regulation of 

transcription, translation and the cell cycle23. Their inherent flexibility enables them to 

interact promiscuously with different targets on different occasions, they offer accessible 

sites for post-translational modification and their extremely fast association rates allow 

signals to rapidly turn on23. Studies have shown that about 10-35% of prokaryotic and 15-

45% of eukaryotic proteins contain disordered regions of at least 30 amino acids in 

lenght24,25.  

 

Figure 1.6 In contrast with globular proteins, IDPs lack a well-defined secondary or tertiary 

structure. (A) A spinach thylakoid soluble phosphoprotein (PDBid: 2FFT), an IDP and (B) 

human hemoglobin (PDBid: 1SI4), a globular protein. 

The structural characterization of IDPs faces many challenges, they are extremely difficult 

to prepare intact and often degrade during purification23, and since they do not have a single 

well-defined structure, crystal-structure analysis can only indicate their presence through 

the absence of electron density. Solution state NMR, residual dipolar couplings (RDCs), 
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small angle X-ray scattering (SAXS) and paramagnetic relaxation enhancement (PRE) are 

some of the tools that can provide detailed information on residual secondary structure, 

transient long-range contacts and dynamics of disordered proteins, nevertheless, describing 

their ensemble of conformations remains a challenge26,27.  

One way to complement experimental studies is to use computer simulations and statistical 

thermodynamics as tools for atomic-level characterizations and thermodynamic 

descriptions. Since 1994 the Critical Assessment of Structure Prediction (CASP), a large-

scale community experiment, has ben held every two years28. CASP provides an avenue 

for objective testing and assessment of protein structure modeling methods. In CASP14, 

the neural network-based model AlphaFold29, demonstrated accuracy competitive with 

experimental structures in a majority of cases. However, the regions with very low 

confidence in the predictions overlap with intrinsically disordered regions30. 

Achieving an accurate characterization of IDPs via simulations is also challenging, because 

they rely on the accuracy of the force field. Protein force fields were developed to target 

globular proteins and their applicability to IDPs is not straightforward31. In fact, studies 

have shown that prediction of native-state structures and folding rates appear to be more 

robust than the detailed kinetics and the properties of unfolded states, which share some 

characteristics with disordered proteins32–34. A community-based blind test based on 

CASP, the Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment, 

was established in 2020. With the objective to determine the state-of-the-art in prediction 

of intrinsically disordered regions, the experiment evaluated 43 methods on a dataset of 

646 proteins from DisProt35. Interestingly, the best methods used deep learning techniques 

and notably outperformed physicochemical methods36. 

Force fields have two major shortcomings in describing IDP structures. The first one is that 

they present variations in their structural propensities, as force fields tend to overpopulate 

either α-helical or β-sheet structures34,37. This problem has been addressed via explicit 

optimization of backbone torsion parameters against NMR data38. These improvements can 

be found in the latest published force fields, including CHARMM22*32, CHARMM3639, 

Amber ff03*40 and Amber ff99SB*-ILDNP41 amongst others. The second problem is the 
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prediction of structures that are too compact. This issue has been addressed by either 

strengthening protein-water interactions (Amber ff03ws force field42), or by using a water 

model with an increased Lennard-Jones well-depth (TIP4P-D water model43). In spite of 

these advances, studies that compare different force fields for protein folding and to sample 

the structural ensembles of IDPs have found large differences across force fields32,34,44,45. 

Although the accuracy of force fields for IDP simulations is not well-characterized, 

improving the existing force fields is an ongoing effort in the scientific community46–48. 

IDPs have relatively flat energy landscapes and consequently, extensive simulations are 

needed to ensure that the conformational space has been adequately sampled.  

 

1.4 Triosephosphate isomerase - TIM 

The protein described in this section was studied in this work. 

Triosephosphate isomerase (TIM) is an enzyme that catalyzes the interconversion of 

dihydroxyacetone phosphate (DHAP) into D-glyceraldehyde 3-phosphate (GAP), an 

essential step in the glycolytic pathway49. TIM is considered a “perfect” catalyst because 

the rate of the overall reaction is diffusion controlled50. Its first crystal structure revealed 

for the first time the TIM barrel topology, an eightfold repeat of (βα) units in such a way 

that β-strands in the inside are surrounded by α-helices on the outside (Figure 1.7)51. This 

is now one of the most common structural motifs in proteins, it is present in ~10% of all 

known proteins and is the most common enzyme fold in the Protein Data Bank (PDB) 

database51–53. 
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Figure 1.7 The TIM barrel is an eightfold repeat of (βα) units in such a way that β-strands in 

the inside are surrounded by α-helices on the outside. Schematic view of the TIM barrel from 

(A) the top and (B) its side. Colored by region. 

 

The four catalytic residues are strictly conserved throughout the TIM family52. They are 

located in three of the eight βα-loops, being loop 1 (N11, K13), loop 3 (H95) and loop 6 

(E167)51. This last loop is highly flexible and it moves from open to close, sampling 

multiple conformational states54. TIM is completely active only in the dimeric form, even 

though the catalytic residues of each active site are provided by the same subunit. Regions 

1, 4 and 8 become more rigid when the dimer is formed, which in turn rigidifies the two 

separate active sites, providing full catalytic power51,55. 

TIM activity is of critical importance for the proper functioning of cells and it is essential 

for maintaining life under anaerobic conditions. Consequently, it has been used as a target 

for drug design when dealing with human parasites56–58. In particular, the TIM proteins of 

Trypanosoma cruzi (TcTIM), the parasite that causes Chagas’ disease, and Trypanosoma 

brucei (TbTIM), causative agent of the African sleeping sickness, have been the object of 

many studies59–62. These two homologous enzymes have high similarity yet significant 

differences in their biophysical parameters. A study by Bolaños et al.63 showed that it is 

sufficient to mutate 13 amino acids on TbTIM to obtain TcTIM-like behaviour in 

reactivation experiments. Circular dichroism indicated that the chimeric proteins had a 
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TIM fold, however, the role that these mutations have on the structure and dynamics of the 

proteins is not well understood. 

 

1.5 Methyl CpG binding protein 2 - MeCP2 

The protein described in this section was studied in this work. 

Methyl CpG binding protein 2 (MeCP2) is a transcriptional regulator essential for growth 

and synaptic activity of neurons64. The malfunction of this protein is associated to the Rett 

syndrome, one of the most common causes of mental retardation in females65,66. This X-

linked neurologic disorder often causes death in infancy or severe neonatal encephalopathy 

in males67. 

MeCP2 is composed of six different domains: the N-terminal domain (NTD), the methyl-

CpG binding domain (MBD), the intervening domain (ID), the transcriptional repression 

domain (TRD) and the C-terminal domain (CTD), which is subdivided into CTD-α and 

CTD-β68. MeCP2 is an IDP and its physical characteristics make its structural 

characterization a challenge. Out of the six domains, only the MBD domain has structural 

information available, and it only accounts for ~17% of the 486 amino acids in the protein 

(Figure 1.8)69. 

 

Figure 1.8 Three-dimensional structure of the MBD domain, the only ordered domain in 

MeCP2 and with a known structure. PDBid: 1QK969. Colored by secondary structure: α-

helix (pink), β-sheet (cyan) and random coil (green). 
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Circular dichroism (CD) of recombinant human MeCP2 showed that the protein consists 

of ~35% β-strand/turn, 5% α-helix and almost 60% is unstructured70. Further CD studies 

of isolated NTD, ID, TRD and CTD domains confirmed their lack of stable secondary 

structure71. Additionally, it was experimentally demonstrated that the NTD, CTD and TRD 

domains can undergo a coil to helix transition, with the TRD showing the greatest tendency 

for helix formation71. 

Due to the lack of a three-dimensional structure of the full-length protein, only two 

computational studies have been reported, and they both focus on the MBD domain72,73. A 

better understanding of the tertiary structure of MeCP2 is needed in order to discern the 

molecular links between MeCP2 domain organization, the multifunctionality of the 

protein, and the cellular pathogenesis of the Rett syndrome. 
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2 Molecular dynamics simulations 

In this work, molecular dynamics simulations were used to study two different proteins. 

The following chapter gives an overview of this method.  

 

2.1 Introduction 

The field of molecular dynamics (MD) simulations began with the work of Alder and 

Wainwright on hard-sphere liquids in the late 1950’s1, followed in 1964 by Rahman’s work 

on a MD simulation of liquid argon with a Lennard-Jones potential2. Stillinger and 

Rahman’s study of liquid water3, published in 1971, finished preparing the stage, and in 

1975 the first simulation of a macromolecule of biological interest was published4. The 

simulation concerned BPTI, a small, highly stable protein, whose X-ray structure became 

available the same year5. Although this simulation was done in vacuum with a crude 

molecular mechanics potential and lasted for only 9.2 ps, the results were essential in 

changing our view of proteins as relatively rigid structures. This work is part of what led 

to the Nobel Prize in Chemistry to Karplus, Warshel and Levitt in 2013. As a result of 

methodology improvements as well as the ever increasing computing power, MD 

simulations have become a standard tool in the study of biomolecules6.  

An MD simulation produces a dynamical trajectory for a system composed of N atoms by 

integrating Newton’s equations of motion. A set of initial conditions, a model to represent 

the forces acting between atoms, and boundary conditions are needed. The most common 

choice is periodic boundary conditions (PBC). Then, one needs to solve the classical 

equations of motion: 

 𝑚𝑖�̈�𝑖 = 𝒇𝑖 = ∑ 𝒇𝑖𝑗
𝑁
𝑗=1
(𝑗≠𝑖)

  𝒇𝑖 = −
𝜕

𝜕𝒓𝑖
𝑢(𝒓), (1) 

where 𝑚 is the mass of atom 𝑖, �̈�𝑖 is its acceleration, and the sum is over all 𝑁 atoms, 

excluding 𝑖 itself. We need to calculate the forces 𝒇𝑖  acting on each atom, which are in turn 

derived from a potential energy 𝑢 = 𝑢(𝒓) where 𝒓 = (𝒓1, 𝒓2, … , 𝒓𝑁) represents the 
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complete set of 3𝑁 atomic coordinates. Newton’s third law implies that the force exerted 

by the atom 𝑗 on atom 𝑖 is  𝒇𝑖𝑗 = −𝒇𝑗𝑖 , so each atom pair needs to be examined only once. 

The potential energy function can be written as 

𝑢(𝒓) = ∑ 𝑘𝑖
𝑏𝑜𝑛𝑑

𝑏𝑜𝑛𝑑𝑠

(𝑏𝑖 − 𝑏0)
2 + ∑ 𝑘𝑖

𝑎𝑛𝑔𝑙𝑒

𝑎𝑛𝑔𝑙𝑒𝑠

(𝜃𝑖 − 𝜃0)
2   

+ ∑ 𝑘𝑖
𝑑𝑖ℎ𝑒

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

[1 + 𝑐𝑜𝑠(𝑛𝑖𝜑𝑖 − 𝜑0)]  + ∑ 𝑘𝑖
𝑖𝑚𝑝

(𝜓𝑖 − 𝜓0)
2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

+ ∑∑4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] + ∑∑
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
𝑗≠𝑖𝑖𝑗≠𝑖

.

𝑖

 

(2) 

The exact form of Equation 2 is determined by the force field, which contains all the 

necessary strength parameters 𝑘𝑖 and constants therein (𝑏0, 𝜃0, 𝜑0, ψ0, etc). Charges are 

usually determined by quantum chemical calculations by fitting partial atomic charges to 

the quantum electrostatic potential, while force constants and idealized bond lengths and 

angles are often taken from crystal structures and adapted to match normal mode 

frequencies for certain peptide fragments7. All common force fields group these terms into 

bonded (first four terms) and non-bonded (last two terms) interactions. These are illustrated 

in Figure 2.17–9. 

 

Figure 2.1 Schematic view of force field interactions. Covalent bonds are indicated by heavy 

solid lines and nonbonded interactions by a light, dashed line. A) Atoms 1 and 2 represent the 

bond length, atoms 2, 3 and 4 the angle θ, and atoms 4 and 5 show a nonbonded interaction 

with a distance 𝒓𝒊𝒋. B) Atoms 1 and 4 represent the dihedral angle 𝝋 around the central bond 

between atoms 2 and 3. This dihedral represents the angle at which two adjacent planes meet. 
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In Equation 2, the first term represents the oscillations about the equilibrium bond length 

𝑏0. It is represented with a harmonic potential where 𝑘𝑖
𝑏𝑜𝑛𝑑 represents the force constant 

of the bond. This constant is generally very high, indicating that it takes a large amount of 

energy to stretch or compress a chemical bond. The harmonic potential is a good 

approximation for small deviations (smaller than 10%) from the reference bond length. 

Additionally, the use of the harmonic function implies that the bond cannot be broken, so 

no chemical processes can be studied. Since large deviations from the reference bond 

length are rare in simulations of biological macromolecules, other potential energy 

functions are rarely used8. 

The second term in Equation 2 represents the oscillations of three atoms about an 

equilibrium bond angle 𝜃0. The value of the force constants 𝑘𝑖
𝑎𝑛𝑔𝑙𝑒

 is typically lower than 

those for bond stretching, indicating that it takes less energy to deviate a bond angle from 

its reference value9. 

The third term is the dihedral term (also known as the torsional term) and it represents the 

torsional rotation of four atoms around a central bond. Torsional motions are typically 

hundreds of times less stiff than bond stretching motions. They play a crucial role in 

determining the local structure of a macromolecule and the relative stability of different 

molecular conformations. In the potential energy function 

𝑢(𝜑
𝑖
) =  ∑ 𝑘𝑖

𝑑𝑖ℎ𝑒

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

[1 + 𝑐𝑜𝑠(𝑛𝑖𝜑𝑖
− 𝜑

0
)] (3) 

𝑘𝑖
𝑑𝑖ℎ𝑒  determines the height of the potential energy barrier, 𝑛𝑖 the number of minima 

between 0 and 2π, and φ0 is the phase factor which determines their position. There is no 

unique way to determine the balance between the torsional, and the van der Waals and 

Coulomb components in the potential energy profile observed upon rotation of a dihedral 

angle. It is common practice between force field developers to combine Equation 3 with 

non-bonded energy terms to produce the desired torsion profile9. 
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The term ∑ 𝑘𝑖
𝑖𝑚𝑝

(Ψ𝑖 − Ψ0)
2

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠  is introduced in order to preserve the planarity of 

groups with flat geometry, such as sp2 hybridized carbons in carbonyl groups or in aromatic 

rings. It provides a penalty function for bending out-of-plane8. 

The fifth term in Eq. 2 represents the van der Waals component of the potential and is also 

known as the Lennard-Jones 12-6 potential. Here, 𝜀𝑖𝑗 represents the depth of the well, and 

𝜎𝑖𝑗 the distance at which the potential energy between atoms 𝑖 and 𝑗 becomes zero. It is 

possible to define a set of parameters (𝜀𝑖𝑗 and 𝜎𝑖𝑗) for each different pair of atoms, but for 

convenience, most force fields give individual atomic parameters (𝜀𝑖 and 𝜎𝑖) together with 

rules on how to combine them (see section 2.5). The Lennard-Jones potential has an 

attractive and a repulsive term. The attractive one originates from the dispersion forces 

generated by instantaneous dipoles, which arise from fluctuations in the electronic charge 

distributions of all atoms. The repulsive term is due to the Pauli exclusion principle9.  

The molecular electronic density can be obtained with high accuracy by means of high-

level quantum mechanics calculations, however, reducing such density to a manageable 

description to be used in MD simulations is not trivial. The usual choice is to assign a 

partial atomic charge to each nucleus. This is a convenient representation as it allows the 

use of Coulomb’s law to compute their contribution to the total energy, 

𝑢(𝒓) = ∑∑
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
𝑗≠𝑖𝑖

 , (4) 

where 𝑟𝑖𝑗 is the distance between nuclei 𝑖 and nuclei 𝑗, and 𝑞𝑖 and 𝑞𝑗 are the partial atomic 

charges. The most common way to calculate them consists in performing an ab initio 

calculation and then derive them from the quantum mechanical potential. Unfortunately, 

they cannot be derived unambiguously because atomic charges are not experimental 

observables and the methods developed to determine them do not always produce the same 

distribution of partial charges8. 
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2.2 Integration algorithms 

Having computed all forces between the particles, one can integrate Newton’s equations 

of motion. There are many methods to perform step-by-step numerical integration of these 

equations, but many of them are too costly or not stable enough for long simulations10. 

There are several requirements for a good integrator. The speed of the algorithm is relevant 

but not crucial because the fraction of time spent integrating the equations of motion, 

compared to computing the interactions, is relatively small. Accuracy for large time steps 

is more important, because the longer the time step one can use, the fewer evaluations of 

the forces are needed per unit of simulation time. Algorithms that use large time steps 

achieve this by storing information in increasingly higher-order derivatives of the particle 

coordinates and consequently, they require more memory storage. Another important 

criterion is energy conservation, which can occur short-term and long-term. The 

sophisticated higher-order algorithms have very good energy conservation for short times 

(i.e., during a small number of time steps). However, they often have energy drifts for long 

times. In contrast, Verlet-style algorithms tend to have only moderate short-term energy 

conservation but little long-term drift11.  

Newton’s equations of motion are time reversible but many algorithms are not. As a 

consequence, if one were to reverse the momenta of all particles at a given instant, the 

system would not trace back its trajectory even if the calculation was done with infinite 

numerical precision. Many seemingly reasonable algorithms differ in another crucial 

aspect from Hamilton’s equation of motion. True Hamiltonian dynamics leave the 

magnitude of any volume element in phase space unchanged (a property known as 

symplecticity), but many numerical schemes, in particular those that are not time-

reversible, do not preserve the area in phase space. This in turn is not compatible with 

energy preservation and thus non-area-preserving algorithms will have serious long-term 

energy drift problems11. 

The Verlet algorithm12 is fast, requires very little memory, has a fair short-term energy 

conservation and exhibits little long-term energy drift. This is due to the fact that this 

algorithm is time reversible and area preserving. Its disadvantage is that it is not particularly 

accurate for long time steps and so one needs to compute the forces on all particles rather 
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frequently. To derive it, we start with a Taylor expansion of the coordinate of a particle 

around time 𝑡, 

 𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + 𝑣(𝑡)∆𝑡 +
𝑓(𝑡)

2𝑚
∆𝑡2 +

∆𝑡3

3!
𝑟 + 𝑂(∆𝑡4)  (5) 

similarly, 

 
𝑟(𝑡 − ∆𝑡) = 𝑟(𝑡) − 𝑣(𝑡)∆𝑡 +

𝑓(𝑡)

2𝑚
∆𝑡2 −

∆𝑡3

3!
𝑟 + 𝑂(∆𝑡4) 

(6) 

Adding these two equations we get: 

 
𝑟(𝑡 + ∆𝑡) + 𝑟(𝑡 − ∆𝑡) = 2𝑟(𝑡) +

𝑓(𝑡)

𝑚
∆𝑡2 + 𝑂(∆𝑡4) 

(7) 

which gives 

 
𝑟(𝑡 + ∆𝑡) ≈ 2𝑟(𝑡) − 𝑟(𝑡 − ∆𝑡) +

𝑓(𝑡)

𝑚
∆𝑡2 

(8) 

The estimate of the new position has an error that is of the order of ∆𝑡4, where ∆𝑡 is the 

time step used in the simulation. The Verlet algorithm does not use the velocity to compute 

the new position. However, one can derive the velocity from knowledge of the trajectory 

using: 

 𝑟(𝑡 + ∆𝑡) − 𝑟(𝑡 − ∆𝑡) = 2𝑣(𝑡)∆𝑡 + 𝑂(∆𝑡3) (9) 

which then gives, 

 𝑣(𝑡) =
𝑟(𝑡+∆𝑡)−𝑟(𝑡−∆𝑡)

2∆𝑡
+ 𝑂(∆𝑡2). (10) 

The expression for the velocity is only accurate to order ∆𝑡2. Having the new positions, 

those at time 𝑡 − ∆𝑡 may be discarded. The current positions become the old ones and the 

new positions become the current ones11. 
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The Verlet algorithm as defined above is hardly ever used in practise. Instead, the velocity-

Verlet algorithm is employed. It has the same properties as the Verlet algorithm but evolves 

explicitly the velocities with an accuracy in the order of 𝑂(∆𝑡4). In this algorithm, the new 

positions are calculated from  

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + 𝑣(𝑡)∆𝑡 +
𝑓(𝑡)

2𝑚
∆𝑡2 

(11) 

and the velocity is updated by: 

𝑣(𝑡 + ∆𝑡) = 𝑣(𝑡) +
𝑓(𝑡+∆t)+𝑓(𝑡)

2𝑚
∆t. (12) 

Note that in this algorithm, we can compute the new velocities only after we have computed 

the new positions, and from these, the new forces. 

There are still ongoing efforts to develop new algorithms that allow the use of longer time 

steps while preserving the dynamics. In particular, several multiple step algorithms have 

been proposed in recent years13–15. These algorithms exploit the time scale separation 

between faster (which can be integrated more frequently) and slower (updated at a lower 

rate) degrees of freedom. 

 

2.3 Thermostats and Barostats 

Integration of Newton’s equations of motion produces the microcanonical ensemble. In 

this ensemble the number of particles N, the volume V and the total energy E are constant 

(NVE ensemble). Experiments, however, are typically conducted at constant temperature 

and/or constant pressure and, therefore, it is desirable to perform MD simulations in 

ensembles such as the canonical (NVT) or the isothermal-isobaric ensemble (NPT). This 

can be achieved with the use of thermostats and barostats9.  

Thermostats can be roughly divided into global and local. Global ones act instantaneously 

with the same strength on all particles of the system. Local thermostats, on the other hand, 

act on individual atoms or pairs and dissipate energy on a spatially localized scale. 
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Nevertheless, the addition of one may significantly affect the thermal fluctuations in the 

system and cause energy drifts that sometimes have their origin in the accumulation of 

numerical errors16. 

One of the best known artifacts in MD simulations is the so-called “flying ice cube”17. Over 

the simulation time there is a gradual loss of the vibrational, internal kinetic energy and an 

increase in translational external kinetic energy. Eventually the system freezes and 

becomes a flying ice cube. This artifact is a violation of the equipartition principle and is 

due to velocity rescaling, a technique applied by global thermostats including the 

commonly used Berendsen weak-coupling method18 and Nosé-Hoover19,20. This problem 

can be solved in three different ways. The first one is velocity reassignment instead of 

rescaling. This essentially means using a local thermostat such as the Andersen21, 

Langevin22,23 or the DPD methods24,25. The second way of addressing this problem is to 

remove the motion of the center of mass and the third one is to use better algorithms for 

rescaling. Modern simulation protocols remove the center of mass motion periodically 

throughout the simulation and use sufficiently large coupling times for global thermostats. 

The velocity rescale algorithm of Bussi, Donadio and Parrinello26,27 is a modification of 

the Berendsen weak coupling method, has been shown to perform well and is widely 

popular16. 

Simulations using the NPT ensemble are typically needed for membrane systems. This 

ensemble is achieved through the use of a barostat. The most popular ones include the 

Langevin piston28, the Parrinello-Rahman method29, the Martyna-Tuckerman-Tobias-

Klein algorithm30,31 and the Berendsen barostat18. The Berendsen method is conceptually 

simple and is very commonly used but is not entirely correct since it does not produce the 

correct canonical distribution32. In contrast, the Parrinello-Rahman barostat produces the 

correct distribution, but is computationally more expensive16. 
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2.4 Force fields 

A force field is a mathematical expression of the potential energy of a system of particles. 

It consists of an analytical form of the interatomic potential energy (Equation 2) and its set 

of parameters. The fundamental assumption is the Born-Oppenheimer approximation33, 

which neglects the motion of atomic nuclei when describing the electrons in a molecule. 

The physical basis of this approximation is that the electrons and the nucleons have more 

than a 1000-fold mass difference, which in turn causes the nuclei to move ~1000 times 

more slowly than electrons. The Born-Oppenheimer approximation makes possible to 

separate the motion of the nuclei and the electrons, and therefore to write the system as a 

function of the nuclear coordinates only and thus enables the use of classical mechanics.  

There are two other assumptions at work: additivity and transferability. Additivity means 

that the potential energy of any system can be written as a sum of potentials with a simple 

physical interpretation (bond stretching, angle bending, van der Waals interactions, etc.). 

Additive force fields are characterized by point charges in each of the atoms, centered on 

the atomic nucleus. Many popular atomistic force fields are additive, the most widely used 

are AMBER34,35, CHARMM36,37, GROMOS38,39 and OPLS40. Additive force fields are 

generally parametrized using a mean-field approximation such that the electronic 

distribution of molecules cannot change their response to variations in the local electric 

field. Polarizable force fields have three primary methods to treat polarization classically 

via the induced point dipole, fluctuating charge and the Drude oscillator. The requirement 

to solve the magnitude of all the induced dipoles self-consistently is computationally 

demanding, and it is typically the limiting factor in the efficiency of all polarizable 

models41. The inclusion of explicit electronic polarization allows one to transfer gas-phase 

ab initio potentials to condensed phases, and is recommended in cases where permanent 

polarization does not account for most of the simulated effect, such as in evaluating the 

redox potential of proteins and to study proton transport in membrane channels42. Recent 

efforts in developing new polarizable force fields have been made to improve water43, 

RNA44 and urea crystals and aqueous solutions45 simulations. 

The term transferable means that the force field parameters derived from a small set of 

molecules can be applied to molecules with similar chemical structures, and that the force 
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field is transferable to different state points (e.g., pressure, temperature) and to different 

properties (e.g., thermodynamic, structural)9,46. While a force field that uses special types 

of interactions for specific molecules may be very accurate for a particular application, it 

could be considered not transferable and would therefore have very limited predictive 

power for unrelated applications. There are two types of parameter transfers. The first one 

is internal, in which the force field parameters are transferred within a molecule, such as 

using the parameter derived for a residue, in a protein. This type of transfer is valid in most 

cases. The other one is external, parameters derived from a molecule are used in a similar 

but different molecule. For example, parameters derived for alkanes may be used for 

halogen-substituted alkanes. External transfers can introduce considerable errors simply 

because some of the molecular properties may not be strictly transferable47. 

Beyond the three main assumptions made by force fields, they can differ in the way they 

treat the interactions between particles. There are two main differences in the bonded 

contributions of the force fields. The first one is the use of “improper” dihedrals, which can 

be used to maintain chirality or planarity at an atom center with bonds to three other atoms. 

While AMBER34,35 and OPLS40 apply the dihedral term in Equation 2 to planar groups, 

CHARMM36,37 adds a separate term for improper dihedral energy that has a quadratic 

dependence on the value of the improper dihedral. The second difference is that the 

CHARMM36,37 force field adds an Urey-Bradly angle term. This term treats the two 

terminal atoms in an angle with a quadratic term that depends on the distance between the 

atoms48. 

Similar to the bonded terms, there are two key differences between force fields in the 

treatment of non-bonded interactions. The first one lies in the combination rules for the 

determination of the Lennard-Jones parameters 𝜀𝑖𝑗 and 𝜎 𝑖𝑗 between dissimilar atoms. The 

subscript ij associated with these parameters is used to make explicit their dependence on 

the atom types for both atom i and atom j. OPLS40 uses the geometric mean to calculate 𝜀𝑖𝑗 

and 𝜎 𝑖𝑗, i.e. 𝑘𝑖𝑗 = (𝑘𝑖𝑘𝑗)
1/2

, whereas AMBER34,35 and CHARMM36,37 use the geometric 

mean for 𝜀𝑖𝑗 and the arithmetic mean, 
1

2
(𝜎𝑖 + 𝜎𝑗), for 𝜎 𝑖𝑗, also known as the Lorentz-

Berthelot rules of mixing49. The Lorentz-Berthelot rules work reasonably well in most 
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cases but there are some instances in which they fail in a rather striking manner, see for 

example the discussion in Refs. (16) and (50). For example, they may lead to incorrect 

thermodynamic properties for simple binary mixtures and they give surface-gas 

interactions that are 10 times stronger than they should be16. The second difference is the 

handling of 1,4 non-bonded interactions. These are the interactions between atoms 1 and 4 

in the 1-2-3-4 dihedral. Amber scales 1,4 Lennard-Jones interactions by ½ and Coulomb 

interactions by 1 1.2⁄ , OPLS40 applies a factor of ½ to both interactions, and CHARMM36,37 

does not scale them except for a few atom type pairs48. 

The lack of consensus on the best way to treat both bonded and non-bonded interactions 

suggests that there is no single best solution to this problem. Both OPLS40 and AMBER34,35 

have undergone revisions of their Φ and Ψ dihedral parameters, giving rise to a number of 

descendants from their original force field40,51. CHARMM36,37 has followed a different 

approach, by adding a new “correction map” (CMAP) term to the potential energy 

equation48. This term is a grid-based correction for the Φ-, Ψ-angular dependence of the 

energy37. 

 

2.5 Time scales 

In MD simulations one would ideally like to choose a time step as large as possible, in 

order to sample phase space rapidly and save on computer expense. However, if a too large 

time step is chosen, the motion of particles becomes unstable due to the truncation error in 

the integration process and the total energy of the system may increase rapidly with time. 

This behavior is called exploding and is caused when a large time step propagates the 

positions of atoms to be partially overlapping, creating a strong repulsive force between 

them52. In order to have numerical stability and accuracy in the conservation of energy, the 

time step must be chosen at least an order of magnitude smaller than the smallest 

vibrational period of the system52. 

In protein simulations, the fastest intramolecular vibrational motions are the C-H, N-H and 

O-H stretches (Figure 2.2). For these, a time step of ∆t = 0.5 – 1 fs is needed. In most 
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simulations, these bond vibrations are not of interest per se and constraints can be applied 

to the bond lengths and angles, making it possible to extend the time step to 2 fs49. 

SHAKE53 and LINCS54,55 are the constraint algorithms most widely used. 

 

Figure 2.2 Range of timescale for atomistic MD simulations  

Having fixed the time step, the timescales accessible in MD simulations will depend on the 

size of the system, and the hardware and software used to run the simulations. Roughly one 

billion arithmetic operations are needed at each time step for a system with one hundred 

thousand atoms. A single high-end processor core would take thousands of years to 

complete a millisecond long simulation. Fortunately, software that parallelizes MD force 

calculations across multiple computer processors as well as GPUs has existed for nearly 

three decades, becoming much more efficient and scalable in the past several years. The 

widely used MD codes NAMD56, GROMACS57 and AMBER58 can now deliver a 

performance of over 100 ns/day on commodity computer clusters in systems of ~10,000 

atoms, with the number of processors needed scaling roughly linearly with the number of 

atoms in the system59. A typical simulation (a moderately sized, solvated, globular protein) 

has ~50,000 atoms. 

There is a special-purpose supercomputer named Anton, designed by D. E. Shaw Research, 

that has made possible to reach the millisecond-scale in all-atom simulations. Anton is able 

to achieve this speed because it was specifically designed for MD simulations. It is the 

result of an algorithm/hardware co-design process in which the choice of algorithms 
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impacted the design of the hardware, and vice versa60. While time on an older (2016) Anton 

machine has been generously granted to the scientific community, access is still extremely 

limited and is only available to some faculty at a U.S. academic or non-profit research 

institution. 

 

2.6 Coarse-graining methods 

One way to substantially accelerate simulations at the cost of reduced accuracy, is the use 

of coarse-grained models. In these, the original system is replaced by a simpler one, with 

less degrees of freedom, effectively averaging over some chosen properties of microscopic 

entities to form larger basic units61. Reducing the number of interactions that must be 

computed smoothens the energy landscape, making them faster than all-atom simulations 

(Figure 2.3)49. The specific acceleration attained by a CG model depends on the details of 

the model used.  

 

Figure 2.3 All-atom vs coarse-grained energy landscape. The flattening of the energy surface 

in the coarse-grained model enables its efficient exploration. From Chem Rev, 2016 (Open 

Access article under an ACS AuthorChoice License)62. 
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There are four conditions that degrees of freedom must meet in order to be eliminated in a 

physically correct manner, such that a computationally efficient yet accurate CG model is 

obtained: 

1. they must be non-essential to the property of interest, 

2. they must be large in number or computationally costly, so that the computational 

gain is substantial enough to offset the loss in accuracy, 

3. the interactions governing the degrees of freedom to be eliminated must be largely 

decoupled from those which will be kept, 

4. their elimination should allow a simple and efficient representation of the 

interactions governing the remaining degrees of freedom63. 

There are two fundamentally different approaches to designing a force field for CG models 

for particle simulations, one is “physics-based” and the other is “knowledge-based”.  In 

general, a physics-based CG force field can be described by a similar formula as an all-

atom force field (Equation 2). However, during the coarse-graining process, some atoms 

are removed and their degrees of freedom are averaged out. One must then introduce 

explicitly the internal correlations between groups of atoms (now represented as united 

atoms) in the form of multibody terms. Most approaches keep the distinction between local 

energy terms and so-called contact potentials62. This philosophy of modeling is also known 

as structure-based, systematic, hierarchical or bottom-up64,65. It often requires a time-

consuming parametrization procedure and has complex potential forms, resulting in lower 

performance and thus less sampling66. Nevertheless, force fields such as the PLUM 

model67 allow an accurate sampling of local conformations and can achieve a realistic α/β 

content. The theoretical justification of structure-based coarse-graining is the Henderson 

theorem68, which defines a one-to-one relationship between a set of radial distribution 

functions and a set of pair potentials for CG sites. 

In contrast, knowledge-based force fields are derived from the statistical analysis of 

structural features observed in databases of experimental structures. Depending on the level 

of coarse-grained representation, definition of the model force field and the complexity of 

the databases being used, the final formula that defines the force field will be composed 

from a significantly larger number of terms than an all-atom force field. Moreover, some 

terms describe specific conditional combinations of bonds, angular and non-bonded 
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interactions62. This method of modeling can also be found in the literature as building-

block, thermodynamics-based or top-down. These models are often cheaper, due to simpler 

potential forms and requiring only partial parametrization. However, their structural 

accuracy is limited as the representation of the atomistic detail is suboptimal66. 

One of the most widely used CG models is the knowledge-based Martini69–71 force field. It 

was initially developed for lipids but since then, it has been extended to include proteins, 

carbohydrates, DNA, RNA and small molecules. The Martini69–71 model relies on a four-

to-one mapping scheme, where on average four non-hydrogen atoms are mapped to a single 

CG bead (Figure 2.4). It has four main types of particles: polar, nonpolar, apolar and 

charged. These types are in turn divided into subtypes according to their hydrogen-bonding 

capabilities or their degree of polarity. This gives a total of 18 particle types71. The model 

was reparametrized in April 2021, and in contrast with previous versions, it defined a new 

particle type specific for water. Although this new bead type enables the optimization of 

water properties independently from other targets, structure-based CG models are more 

suitable for applications that require finer details70. 

 

Figure 2.4 Mapping between the chemical structure and the coarse grained model for 

DPPC, cholesterol and benzene. The coarse-grained bead types which determine their 

relative hydrophilicity are indicated. Reprinted with permission from Marrink et al71. 

Copyright 2021 American Chemical Society. 
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Coarse-grained representations have been successfully used to study protein folding 

mechanisms72, conformational changes upon ligand binding, membrane proteins69 and the 

self-assembly of protein/membrane and protein/detergent complexes73. 
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3 About this thesis 

3.1 Significance and aims 

The primary aim of this work was to improve the understanding of the applicability of 

different computational techniques to study globular and IDP proteins. To accomplish this, 

two proteins were chosen as study targets: Triosephosphate isomerase (TIM) and Methyl 

CpG binding protein 2 (MeCP2). Both proteins are targets for drug design. 

TIM is an extensively studied globular protein and is often considered a “textbook” protein. 

Its first crystal structure revealed the TIM barrel topology for the first time, which is an 

eightfold repeat of (βα) units1. This structural motif is the most common enzyme fold and 

is present in ~10% of all known proteins1–3. There is plenty of experimental data available 

on this protein as well as a few computational studies4–12. TIM is essential for maintaining 

life under anaerobic conditions and has been used as target for antiparasitic drugs13–15. 

In contrast, MeCP2 is a protein whose full-length structure is not even known. The only 

available structure contains solely ~17% of its amino acids16. MeCP2 was the first of the 

methylated DNA binding protein (MBP) family to be identified17. It selectively binds CpG 

dinucleotides and mediates transcriptional repression through interaction with histone 

deacetylase and the corepressor SIN3A18,19. The malfunction of this protein causes the 

neurodevelopmental disorder Rett syndrome20,21. Less is known about MeCP2 structure 

compared to its functions because it is an intrinsically disordered protein (IDP). Circular 

dichroism has shown that almost 60% of the protein is unstructured22, and five out of its 

six domains lack a stable tertiary structure23. The knowledge gap between structure and 

function of this protein could potentially be bridged using computer simulations. 

The findings should be useful for improving the general understanding of the use of 

computational techniques for the study of biomolecules, as well as providing new insights 

into the structure of TIM and MeCP2.  
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3.2 Thesis outline 

Chapters 4 and 6 represent individual, first author publications, in their unmodified forms. 

While chapter 5 is not a first author publication, I carried out every computational 

component of the work.  

Chapter 4 describes a study of the globular protein TIM. All-atom simulations of three TIM 

proteins (TcTIM, TbTIM and a chimeric protein) were performed. The residue interaction 

networks of the amino acids in these trajectories were analyzed, as well as their electrostatic 

interactions and the impact of simulation length on them. Our findings provide new insights 

on the mechanisms that give rise to the different biophysical behaviors of these highly 

similar proteins and underline the importance of long simulations. 

The study of MeCP2 starts in chapter 5. We present simulations of the MBD domain in 

solution and in the presence of a surface, in order to compare them with the experimental 

setup of high-speed atomic force microscopy (HS-AFM). Chapter 6 contains the next step, 

which was to complete the rest of the protein by ab initio modelling. Since an all-atom 

simulation of this model is not enough to guarantee adequate sampling of its 

conformational space, coarse-grained modeling was used to complement the atomistic 

picture. The coarse-grained simulations sampled a conformation that had not been 

observed in the all-atom simulation but that was in good agreement with HS-AFM data. 

Together, chapters 5 and 6 provide a detailed conformational ensemble of MeCP2, which 

is compatible with experimental data and can be the basis of further studies.  

The major conclusions from this thesis and possible future directions are discussed in 

chapter 7. 
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4.1 Abstract 

Homodimeric triosephosphate isomerases (TIM) from Trypanosoma cruzi (TcTIM) and 

Trypanosoma brucei (TbTIM) have a markedly similar amino acid sequences and three-

dimensional structures. However, several of their biophysical parameters, such as their 

susceptibility to sulfhydryl agents and their reactivation speed after being denatured, have 

significant differences. The causes of these differences were explored with microsecond-

scale molecular dynamics (MD) simulations of three different TIM proteins: TcTIM, 

TbTIM and a chimeric protein, Mut1. We examined their electrostatic interactions and 

explored the impact of simulation length on them. The same salt bridge between catalytic 

residues Lys 14 and Glu 98 was observed in all three proteins, but key differences were 

found in other interactions that the catalytic amino acids form. In particular, a cation-π 

interaction between catalytic amino acids Lys 14 and His 96, and both a salt bridge and a 

hydrogen bond between catalytic Glu168 and residue Arg100, were only observed in 

TcTIM. Furthermore, although TcTIM forms less hydrogen bonds than TbTIM and Mut1, 

its hydrogen bond network spans almost the entire protein, connecting the residues in both 

monomers. This work provides new insight on the mechanisms that give rise to the 

different behaviour of these proteins. The results also show the importance of long 

simulations. 

 

4.2 Introduction 

One of the most common structural motifs in proteins is the triosephosphate isomerase 

(TIM) barrel, which is present in ~10% of all known proteins and is the most common 

enzyme fold in the Protein Data Bank (PDB) database1–4. TIM is an enzyme which takes 

part in the fifth step of glycolysis by interconverting glyceraldehyde 3-phosphate into 

dihydroxyacetone phosphate. The TIM barrel consists of an eightfold repeat of (βα) units 

in such a way that β-strands in the inside are surrounded by α-helices on the outside. TIM 

is present in almost all organisms and is usually found as a dimer, although it can form a 

tetramer in some extremophile organisms5–8. It is completely active only in the dimeric 

form even though each monomer contains the catalytic residues (N12, K14, H96 and 

E168). The catalytic residues are strictly conserved throughout the whole TIM family1,9,10. 
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TIM is essential for maintaining life under anaerobic conditions and, consequently, it has 

been used as a target for drug design when dealing with human parasites11–13.  

There are multiple instances in which homologous enzymes with high similarity have 

significant differences in their biophysical parameters14–17. This is exemplified by the 

triosephosphate isomerases of Trypanosoma cruzi (TcTIM), the parasite that causes 

Chagas’ disease, and Trypanosoma brucei (TbTIM), causative agent of the African 

sleeping sickness. They have a sequence identity of 73.9% and a sequence similarity of 

92.4%18 (Fig. 4.1). Previous works have found significant differences in their susceptibility 

to sulfhydryl agents, reactivation speed after being denatured with chemical agents such as 

guanidine hydrochloride, and their proteolysis susceptibility with subtilisin16,18–20. 

Interestingly, a study of TcTIM and TbTIM by Rodríguez-Bolaños et al.21 showed that it 

is sufficient to mutate 13 amino acids on TbTIM to obtain TcTIM-like behaviour in 

reactivation experiments. Circular dichroism indicated that the chimeric proteins had the 

same fold as the native, however, the role that these mutations have on the structure and 

dynamics of the proteins is not well understood.  

For many years, studies have focused on the interaction between TIM proteins and 

benzothiazoles, which have been found to deactivate the enzyme13,22,23. While there is a 

plethora of experimental data, there are very few MD simulations of TcTIM and TbTIM in 

the absence of ligands. Some of the simulations are only 40-60 ns long, and thus cannot 

capture phenomena that occur in longer timescales24–26. There is only one study in the 

microsecond scale. In that Dantu and Groenhof use a combination of QM/MM and crystal 

unit cell simulations27. However, this study focuses on the effect of binding of substrates 

in loops 5, 6 and 7. The most comprehensive study on TIM so far used conventional MD 

and enhanced sampling techniques to characterize the motion of loops 6 and 728. This study 

showed that loop 6 does not follow a simple two-state rigid-body transition as previously 

thought. However, it did not explore in detail the interactions between the two monomers. 

The simulations that report the root-mean-square fluctuation (RMSF) of TIM proteins have 

consistently found the highest RMSF values in loops 5 and 622,24,25, which is in good 

agreement with our work.  
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Here we present microsecond-scale all-atom simulations of TcTIM, TbTIM and a chimeric 

TbTIM with the 13 mutations as identified by Rodríguez-Bolaños et al21. A conserved salt 

bridge between catalytic residues Lys 14 and Glu 9829,30 was observed in all three proteins. 

In contrast, a cation-π interaction between catalytic amino acids Lys 14 and His 96, and 

both a salt bridge and a hydrogen bond between catalytic Glu 168 and Arg 100 were only 

observed in TcTIM. Furthermore, TcTIM and TbTIM exhibited different hydrogen bond 

networks, with the chimeric protein behaving similar to TbTIM. The hydrogen bond 

network observed in these proteins helps to explain why regions 1, 4 and 8 become more 

rigid when the dimer is formed. 

 

Figure 4. 1 Alignment of TcTIM and TbTIM sequences with the secondary structure elements 

marked as lines (loops), β-strands (arrows) and α-helices (cylinders). The colors in each motif 

correspond to the 3D structure below it. The differences in the amino acids are highlighted 

in gray and the catalytic residues in red. 
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4.3 Materials and methods 

All-atom MD simulations were performed on three TIM proteins: 1) the TIM from T. 

brucei (TbTIM), 2) the TIM from T. cruzi (TcTIM), and 3) a chimeric protein: [TcTIM:2; 

TbTIM:1,3-8; Q18E, E23P, D26E, S32T, I33F, N34D] henceforth referred to as Mut1. 

Each protein was simulated as a dimer. The initial structures were taken from the Protein 

Data Bank (PDB ids: 1TCD31 and 5TIM32) and any missing side chains were completed 

using the whatif web server33. Mut1 was built using TbTIM as template and mutating the 

required amino acids using Pymol34. 

Each protein was placed in a dodecahedral box in which the distance from the edges of the 

box to every atom in the protein was at least 1 nm. The box was solvated with explicit 

water and 150 mM of NaCl was added to reproduce physiological conditions. Counterions 

were added to keep the overall charge neutrality of the systems, 6 Cl- ions for the TcTIM 

and 10 Cl- ions for both 5TIM and Mut1. All simulations were performed using 

GROMACS 2016.335 with the TIP3P water model36 and the CHARMM36m force field37. 

Each system was first energy minimized using the method of steepest descents and pre-

equilibrated at constant particle number, temperature and volume, for 100 ps. The pre-

equilibration was followed by a production run with a time step of 2 fs. The Lennard-Jones 

potential was truncated using a shift function between 1.0 and 1.2 nm. Electrostatic 

interactions were calculated using the particle-mesh Ewald method (PME)38,39 with a real 

space cut-off of 1.2 nm. The temperature was set to 310 K with the V-rescale algorithm40 

and pressure was kept at 1 atm using the Parrinello-Rahman barostat41. Bonds involving 

hydrogens were constrained using the Parallel Linear Constraint Solver (P-LINCS) 

algorithm42. The root-mean-square deviation (RMSD) was used to monitor equilibration. 

Since the RMSD for TcTIM kept increasing during the first microsecond, the simulations 

were extended to 3 μs. We will return to this issue later in Results. 

Trajectory analyses were performed using Gromacs built-in tools35, MDAnalysis43,44 and 

the VMD plug-ins Salt bridges45 and RIP-MD46. RIP-MD generates residue interaction 

networks (RINs) from MD trajectory files. In a RIN, the nodes of the network represent 

amino-acid residues and the connections between them depict non-covalent interactions. 
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These include hydrogen bonds, salt bridges, cation-π, π–π, arginine–arginine, and Coulomb 

interactions. RIP-MD starts with a MD trajectory and the parameters defining the 

interactions as input. It then searches for interactions between all atoms in each snapshot 

of the trajectory. Finally, it generates a consensus RIN where edges exist if they are present 

in at least a given percentage of the snapshots. For our study, we used a 30% threshold. 

 

4.4 Results 

We performed MD simulations on three different TIM proteins: TcTIM, TbTIM and Mut1. 

Figure 4.2 shows that the RMSD of all three systems increase throughout the first 1500 ns, 

after which they stabilized. For this reason, the simulations were extended to 3 μs and all 

reported averages were calculated during the last microsecond of the trajectories. 

 

Figure 4.2 Root-mean-square deviation with respect to the crystal structure. RMSD increases 

throughout the first 1500 ns before stabilizing. 

The root-mean-square fluctuations (RMSF) of most of the residues in the three proteins are 

very similar (Fig. 4.3). The main differences appear at the highest peaks, which are located 

at residues 133-137 (loop 5) and 173-178 (loop 6) in both monomers. The amino acids in 

loop 6 correspond to the catalytic loop. This loop has a “phosphate gripper” motif47 which 

is likely engaged in substrate binding and product release, as its opening and closing motion 

has a rate constant that closely matches the turnover time for catalysis48,49. TcTIM is the 

only protein with peaks at loops 5 and 6 in monomer A and TbTIM is the only protein with 

a peak in loop 5 monomer B. All three proteins have a peak in loop 6 monomer B, albeit 



63 

 

the peak in TbTIM is almost two times larger than in the other two systems. TcTIM is the 

only protein in which the first residues of monomer B have a very low RMSF value, 

indicating an interaction with monomer A. 

In a previous computational study of TcTIM25, loops 5 and 6 were reported to have the 

largest fluctuations. This study used GROMOS96 (43a2)50, a united-atom force field and 

the SPC water model51. The fact that the same results were obtained with two very different 

force fields (GROMOS and CHARMM) underlines their robustness and their 

independence of the chosen force field. All the other main peaks correspond to amino acids 

located in loops with the exception of residues 236-239, which span the short helix in 

region 8. 

 

Figure 4.3 Root mean square fluctuations for the last microsecond. Since each protein was 

simulated as a dimer, the color bar at the bottom distinguishes the residues in monomer A 

(purple) from those in monomer B (yellow). The main peaks are located at loops 5 and 6 in 

each monomer. 

The number of contacts between monomers, defined as amino acids whose Cβ atoms (Cα 

for glycine) are within 0.8 nm distance, is shown in Figure 4.4. Even though a protein 

residue-residue contact is not uniquely defined, this definition captures all possible 

interactions between two residues and it has been used in a number of previous studies52–

55. The number of contacts changes for both TcTIM and Mut1 during the first microsecond 
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before stabilizing. In contrast, the number of contacts between TbTIM’s monomers 

fluctuated throughout the entire simulation. The average number of contacts between 

monomers during the last microsecond is 119 for TcTIM, 89 for TbTIM and 116 for Mut1. 

This is in good agreement with previous experiments, since the number of contacts between 

monomers can be related to its thermal stability and TcTIM has higher thermal stability 

than TbTIM21. 

 

Figure 4.4 Number of contacts between monomers. Residues are considered to be in contact 

if their respective Cβ atoms (Cα for glycine) are less than 0.8 nm apart. The number of 

contacts in TcTIM and Mut1 decreases over the first microsecond, increases over the next 

200 ns and then stabilizes. In TbTIM, they decrease during the first half of the simulation 

and increase again after 1500 ns. Solid lines are Bézier curves that interpolate the data. 

In order to identify if the systems were in the open or closed conformations, the minimum 

distance between loop 6 (residues 170-180) and loop 7 (residues 211-216) was measured 

(Fig. 4.5, S4.1). Five different states were sampled in TcTIM, with distances 0.18, 0.28, 

0.50, 0.67 and 0.80 nm. Only the first three states were observed in TbTIM and Mut1. It 

was previously reported that loop 6 can sample multiple conformational states with the tip 

of the loop moving ~0.7 nm between the fully open and fully closed conformations28. This 

is in good agreement with the difference between the two extremes observed in the current 

TcTIM simulation. TbTIM fluctuated the most between states, and while Mut1 also 

showed many fluctuations, its loop in monomer B remained in the fully closed 

conformation for the last microsecond of the simulation. The cross-correlation between the 

open-close conformation of the two monomers decayed to zero during the simulation, 

indicating that the movement of these loops is independent between monomers. 
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Figure 4.5 Minimum distance between loops 6 and 7 in TcTIM for monomer A (purple) and 

monomer B (yellow). Dashed lines mark the five different states sampled by the loops. Inset: 

cross-correlation between the loop state of the two monomers. Right: alignment of the open 

(gray) and closed (black) conformations. Loop 6 is shown in red for the closed conformation 

and in blue for the open conformation, loop 7 is shown in orange (closed) and purple (open). 

 

Electrostatic interactions  

We used the RIP-MD46 plugin for VMD45 to analyze the last 2 μs of each trajectory and 

to compute the following electrostatic interactions between all residues: salt bridges, 

cation-π interactions, π-π interactions and hydrogen bonds. No arginine-arginine 

interactions were found in the simulations. We will describe these interactions in the 

section below in more detail, but Table 1 summarizes the parameters defining them. 

 

Table 4.1 Summary of interactions defined in RIP-MD 

Hydrogen 

bonds 

dist (donor, acceptor) ≤ d 

θ (𝑪 − 𝑯⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝒂𝒄𝒄𝒆𝒑𝒕𝒐𝒓⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) ≥ a 

d = 3 Å 

a = 120° 

Salt bridges Contacts between NH/NZ groups of Arg/Lys  d = 6 Å 
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and OE/OD in Asp/Glu ≤ d  

Cation-π  

interactions 

dist (aromatic ring, cation) ≤ d 

θ (𝑛𝑜𝑚𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟 𝑟𝑖𝑛𝑔⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑟𝑖𝑛𝑔 𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑐𝑎𝑡𝑖𝑜𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) = a 

d = 6 Å 

a ϵ [0°, 60°] or  

a ϵ [120°, 180°] 

π-π 

interactions 

dist (aromatic ring, aromatic ring) ≤ d d = 7 Å 

 

Arg-Arg dist (guanidine, guanidine) ≤ d d = 5 Å 

 

From the three proteins, only TcTIM had cation-π interactions (Fig. S4.2). These 

interactions were defined between the geometric center of the ring in the aromatic residue 

and the charged atom in the second residue, with a cutoff distance of 0.6 nm. This threshold 

was chosen because 99% of significant cation-pi interactions occur within a distance of 0.6 

nm56. The only cation-π interaction between monomers occurs between amino acids Tyr 

103 in monomer A and Arg 99 in monomer B. Figure 4.6 shows the distance that defines 

this cation-π interaction throughout the simulation. The distance fluctuates throughout time 

but remains within the limits that define the cation-π interaction during most frames in the 

last 1,500 ns of the simulation. 
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Figure 4.6 Cation- π interaction between Tyr 103 in monomer A and Arg 99 in monomer B 

in TcTIM. This interaction is defined by the distance between the geometric center of the 

aromatic residue in tyrosine and the charged atom in arginine, with a cutoff distance of 0.6 

nm. This interaction was only observed in TcTIM. Right: these amino acids are located in 

region 4. A red line marks the threshold that defines the cation-π interaction. 

Π-π interactions were defined with the distance between the geometric centers of the rings 

in the aromatic amino acids, with a cutoff distance of 0.7 nm. The distance between two 

interacting aromatic rings is geometry dependent and varies between 0.45 and 0.7 nm57. 

All three systems presented π-π interactions (Fig. S4.3). Out of the 14 π-π interactions in 

TcTIM, four occurred at the interface between monomers. TbTIM only presented five π-π 

interactions and the mutant had four, two of which occurred at the interface. Interestingly, 

two of the π-π interactions in the mutant correspond to interactions in TcTIM and the other 

two to interactions in TbTIM.  

 

Residue interaction networks  

In RIP-MD46, salt bridges are treated as a contact between two heavy atoms of opposite 

charge with a distance threshold of 0.6 nm46,58. The same salt bridges were observed in the 

three proteins: between Glu 78 (Glu 77 in TbTIM) and Arg 99 (Arg 98 in TbTIM) of both 

monomers (Fig. S4.4). Residue Arg 55 forms a salt bridge with residue 27 from the same 

monomer, in both monomers in TcTIM. Since RIP-MD46 does not provide the time 

dependence of the salt bridges, we used the Salt Bridge VMD plugin45 to calculate them. 
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This plugin uses a different cutoff distance (0.32 nm) to define a salt bridge, however, as 

long as the interacting atoms are within the threshold in one frame, the program outputs 

the distance between them as a function of time. Figure 4.7 illustrates the fluctuations of 

the distance between atoms that form salt bridges. The interaction between Glu 27 and Arg 

55 in TcTIM fluctuates considerably and the salt bridge is defined in only a portion of the 

frames. In contrast, the salt bridge between Glu 98 and Lys 14 stays well within the limit 

that defines this interaction throughout the whole simulation. 

 

Figure 4.7 Salt bridges in TcTIM between Glu27 monomer A and Arg55 monomer A (A), and 

between Glu98 monomer A and Lys14 monomer A (B). These interactions were computed 

using the Salt Bridges plugin for VMD
45

. Right: 3D location of the amino acids. Residues 

Glu27 and Lys14 are shown in red (region 1), Arg55 in green (region 2) and Glu98 in yellow 

(region 4). A red line marks the threshold that defines the salt bridge interaction. 

Hydrogen bonds were defined using a cutoff radius of 0.3 nm for atoms whose acceptor-

hydrogen-donor angle is greater than 120°59. The average number of hydrogen bonds over 

the last microsecond was 345 for TcTIM and 369 ± 1% for TbTIM and Mut1 (Fig. 4.8). 
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Figures S4.5-S4.15 show the hydrogen bond networks in the three proteins. For clarity, 

hydrogen bonds formed between neighboring amino acids (less than 4 residues apart) have 

been removed from the graphs. Even though TcTIM forms less hydrogen bonds than 

TbTIM, they connect amino acids in a network that involve more interactions between 

monomers and extends throughout the whole protein (Fig. S4.16). 

 

Figure 4.8 Total number of intramolecular hydrogen bonds in each simulation. Solid lines 

are Bézier curves that interpolate the data. Hydrogen bonds were defined with a cutoff radius 

of 0.3 nm for atoms whose acceptor-hydrogen-donor angle is greater than 120°
59

. 

Species-specific inhibition of TIMs can be achieved by targeting a non-conserved amino 

acid (Cys15) that lies at the dimer interface and which is important for catalysis11. The 

susceptibility of TcTIM to thiol agents is approximately 40 times higher than that of 

TbTIM60. Figure S4.17 shows the amino acids that form hydrogen bonds with Cys15 

(Cys14 in TbTIM). Hydrogen bonds were determined with a cutoff angle of 30° for the 

hydrogen-donor-acceptor angle and a cutoff radius of 0.3 nm; OH and NH groups were 

regarded as donors, and O and N as acceptors. The residues that participate in hydrogen 

bonds with this cysteine change after the first microsecond in all three systems. In 

particular, those formed with residues Gly 73 and Ala 74 in TcTIM, with residue Ala 236 

in TbTIM and with residues Phe 75 and Ser 80 in Mut1. Interestingly, TbTIM’s Cys14 

interacts with residues in region 8 from the same monomer, while TcTIM and Mut1’s 

Cys15 interact with residues from region 3 in the other monomer. Fluctuations in the 

hydrogen bond network for Cys14/15 can only be noticed in simulations longer than 1 μs. 
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Only the hydrogen bond between Cys15 monomer B and Phe75 monomer A in TcTIM was 

identified as such by RIP-MD45, the other interactions were identified as Cα contacts. 

 

4.5 Discussion 

Biological relevance  

TIM has four catalytic residues: Asn12, Lys 14, His 96 and Glu 1682,10. TcTIM is the only 

protein with cation-π interactions and one of them is between two of the catalytic residues: 

His 96 and Lys 14 (Fig. S4.2). Cation-π interactions can enhance binding energies by 2–5 

kcal/mol, making them competitive with hydrogen bonds61. Another interaction only found 

in this protein occurs between catalytic Glu 168 and residue Arg 100, they form both a salt 

bridge and a hydrogen bond (Fig. S4.4, S4.5). In contrast, a salt bridge between catalytic 

Lys 14 (13 in TbTIM) and residue Glu 98 (97 in TbTIM) was observed in all three proteins 

(Fig. S4.4). This is a conserved salt bridge that has been observed in several crystal 

structures29,30. Lys 14 is also involved in the main network of hydrogen bonds in TcTIM. 

It forms a hydrogen bond with its neighbor, catalytic Asn 12, which in turn forms a 

hydrogen bond with residue Thr 76 from the other monomer and with the other catalytic 

residue, His 96 (Fig. S4.5). Similarly, Mut1 forms a hydrogen bond between two of the 

catalytic residues, Lys 14 and Asn 12, which in turn forms a hydrogen bond with residue 

76 from the other monomer. However, unlike TcTIM, these residues are not connected to 

others in the network (Fig. S4.9). In both Mut1 and TbTIM, catalytic Asn 12 (Asn 11 for 

TbTIM) forms a hydrogen bond with residue Val 234 (Val 233 in TbTIM) and Lys 14 (Lys 

13 in TbTIM) forms one with Gly 236 (Gly 235 in TbTIM) (Fig. S4.10, S4.11, S4.13, 

S4.15). Catalytic Glu 168 forms three hydrogen bonds in TcTIM: with Arg 100, Val 128 

and Glu 130, but it only forms the last two bonds in TbTIM and Mut1 (Fig. S4.5, S4.11, 

S4.12, S4.14, S4.15). 

Regions 1, 4 and 8 are known to become more rigid when the dimer is formed30. Region 1 

forms several hydrogen bonds with region 3 of the opposite monomer. TcTIM forms six 

of these bonds at the interface, while TbTIM and Mut1 form only two (Fig. S4.5, S4.6, 
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S4.9). Of all regions, region 4 had the highest number of salt bridges, comprising 13 

residues in TcTIM, 11 in TbTIM and 10 in Mut1 (Fig. S4.4). Salt bridges between Arg 99 

(Arg 98 in TbTIM) and Glu 78 (Glu 77 in TbTIM) involving both monomers were found 

at the interface of all three proteins. Only TcTIM formed salt bridges in region 8, two in 

each monomer.  

The same salt bridge between residues Arg 192 (Arg 191 in TbTIM) and Asp 228 (Asp 

227 in TbTIM) was observed in the two native proteins but not in Mut1 (Fig. S4.4). Since 

it has been shown that this conserved bridge is important for the efficient folding of TIM62, 

we expect that Mut1 will have a low recovery of activity in denaturation and refolding 

experiments.  

TcTIM had a high RMSF value in loops 5 and 6 monomer A, but a low value in the same 

loops in monomer B (Fig. 4.3). Five amino acids in monomer B are involved in salt bridges, 

but only one in monomer A. Three amino acids from region 6 form salt bridges in monomer 

A, and four in monomer B. One of them is catalytic Glu 168. Similarly, TbTIM forms more 

salt bridges in monomer A loop 5, than in monomer B. Six residues from loop 5 monomer 

A form salt bridges but only three in monomer B. Only one residue in loop 6 monomer B 

forms a salt bridge (Fig. S4.4). Mut1 has a similar number of residues from loop 5 involved 

in salt bridges in both monomers, which explains why neither one of them has a high RMSF 

value. Salt bridges can vary in strength from weak (0.5 kcal/mol) to strong (3–5 kcal/mol) 

and play an important role in structure stabilization63. This may explain why the chimeric 

protein has a lower catalytic efficiency than its parent protein14.  

The RMSF of TcTIM residues (Fig. 4.3) showed low values for the end of each monomer. 

This is explained by the network of hydrogen bonds (Fig. S4.7, S4.8) Amino acids at the 

end of the chain are connected to other residues forming a chain of hydrogen bonds that is 

not observed in the other two proteins. Furthermore, TcTIM has more interactions between 

monomers than the other two proteins. Some of these interactions were found in the mutant 

but not on TbTIM. This may explain why TcTIM has higher thermal stability even though 

it forms less hydrogen bonds than TbTIM26. Based on this, we expect that Mut1 would 

have a thermal stability higher than TbTIM but lower than TcTIM. 
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The need for long simulations  

While the RMSD helped to identify the need to increase the simulation time of all three 

systems, it is not the only quantity where this issue can be noticed. When the RMSF of the 

first 200 ns of the simulation is compared with the RMSF of the last 200 ns of each 

simulation, noticeable differences can be observed (Fig. 4.9, S4.18, S4.19). One of the two 

main peaks in TcTIM and in the RMSF of TbTIM do not even appear at the beginning of 

the simulations. Furthermore, fluctuations in many amino acids decrease, which help to 

highlight the relevance of the main peaks. In contrast, when one compares the last 200 ns 

of the simulation with the last microsecond of the trajectory, differences are considerably 

smaller. An exception to this appears in loop 6 monomer B of TbTIM, which is only 

observed when the average is calculated over the last microsecond of the simulation. 

 

Figure 4.9 Changes over time in the root mean square fluctuations of the residues of TcTIM. 

A) RMSF of the first 200 ns of the simulation vs the last 200 ns, and B) RMSF of the last 

microsecond of the trajectory vs the last 200 ns. The peak in loop 5 of monomer A does not 

appear at the beginning of the trajectory and fluctuations in the minor peaks decrease at 

longer times. The color bar at the bottom of figure B distinguishes the residues in monomer 

A (purple) from those in monomer B (yellow). 

One way to monitor convergence of simulations is to plot the average of a quantity over 

different time intervals. If the average changes with different time windows, then the 

system is not properly equilibrated. Figure 4.10 shows the number of intramolecular 

hydrogen bonds for the TcTIM trajectory. Horizontal lines mark the averages taken over 
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different time windows. The average for the first 500 ns is 7% higher than that of the last 

500 ns. The average over the last microsecond of the trajectory equals the average over the 

last 500 ns (345 hydrogen bonds), which indicates that the trajectory has stabilized over 

the last microsecond. 

 

Figure 4.10 Number of hydrogen bonds in TcTIM. Convergence (horizontal lines) is reached 

around 2 μs. Averaging over the last 500 ns or over the last microsecond of the simulation 

produces the same average (345 hydrogen bonds; the lines overlap). Blue: moving average. 

In order to find how the hydrogen bond networks changed with time, we used the Gromacs 

built-in cluster tool to generate clusters for the first and last 500 ns of the simulations. The 

clusters were generated using the gromos method with a RMSD cutoff of 0.2 nm. We then 

used RIP-MD46 to analyze the RINs in the representative structure of the most populated 

cluster. Figures S4.20 and S4.21 show the most significant changes in TcTIM. At the 

beginning of the simulation there is little connectivity between the main hydrogen bond 

networks of each monomer, when residues 75, 78 and 99 in monomer B interact with 

residues 15 and 103 in monomer A, these two networks merge into one (Fig. 4.11). 
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Figure 4.11 Changes in the hydrogen bond network of TcTIM. Interface between monomers 

(A) at the beginning and (B) at the end of the simulation. Residues Phe 75, Glu 78 and Arg 99 

in monomer B (blue) change their interaction with residues in monomer A (orange). 

Changes in protein dynamics are in turn reflected in the interactions between amino acids. 

Some interactions appeared after the first 500 ns of the simulation, e.g., the π-π interaction 

between residues 187 and 210 in monomer A of TbTIM, and others became more stable 

only after the first microsecond of the simulation, e.g., the π-π interaction between residues 

36 and 224 of monomer B in TcTIM (Fig. 4.12). 
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Figure 4.12 π-π interactions in TcTIM between residues His 36 and Tyr 224 of monomer B 

(A) and in TbTIM between residues His 187 and Tyr 210 in monomer A (B). A red line marks 

the threshold that defines the π-π interaction. At the right side of each graph, conformation 

changes between the first frame (green and blue) and the last frame (red and purple) of each 

simulation are shown. The interaction in TcTIM was not observed during the first 500 ns of 

the simulation. The interaction in TbTIM was observed since the beginning but it only 

become stable after the first microsecond. 

 

4.6 Conclusions 

We have performed molecular dynamics simulations on three different TIM proteins: 

TcTIM, TbTIM and a chimeric protein, Mut1. We examined the different electrostatic 

interactions that occur in these proteins: salt bridges, cation-π interactions, π-π interactions 

and hydrogen bonds, and also explored the impact of simulation length on them. Some of 

these interactions appeared only after the first microsecond of the simulation, and 

convergence of the number of hydrogen bonds was only reached in the last of the 3 μs of 
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the simulation. Although TcTIM forms less hydrogen bonds than TbTIM and Mut1, they 

form a network that spans almost the entire protein, connecting the residues in both 

monomers. Key differences were found in the interactions that the catalytic amino acids 

form, such as a cation-π interaction between catalytic amino acids Lys 14 and His 96, only 

observed in TcTIM, but a salt bridge between catalytic residue Lys 14 and Glu 98 was 

observed in all three proteins. Further experiments will be required to confirm our 

hypothesis on the thermal stability of Mut1. 

 

4.7 Supplemental information 

 

Figure S4.1 Minimum distance between loops 6 and 7 in TbTIM (A) and Mut1 (B) for 

monomer A (purple) and monomer B (yellow). Dashed lines mark the two different states 

sampled by the loops. Inside: cross-correlation between the loop state of the two monomers. 

Right: alignment of the open (gray) and closed (black) conformations. Loop 6 is shown in red 
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for the closed conformation and blue for the open conformation, loop 7 is shown in orange 

(closed) and purple (open). 

 

Figure S4.2 Cation-π interactions for TcTIM throughout the last 2 s of the simulation. 

Amino acids in monomer A are shown in green and residues in monomer B in red. Each node 

is coloured according to the color scheme for regions in Fig. 4.1 of the main text. The catalytic 

residues are written in red text. 

 

Figure S4.3 π-π interactions for TcTIM, TbTIM and Mut1 throughout the last 2 s of the 

simulations. Amino acids in monomer A are shown in green and residues in monomer B in 
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red. Each node is coloured according to the color scheme for regions in Fig. 4.1 of the main 

text. 

 

Figure S4.4 Salt bridges for TcTIM, TbTIM and Mut1 throughout the last 2 μs of the 

simulations. TcTIM forms more salt bridges than the other two proteins. Amino acids in 

monomer A are shown in green and residues in monomer B in red. Each node is coloured 

according to the color scheme for regions in Fig. 4.1 of the main text. The catalytic residues 

are written in red text. 
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Figure S4.5 Main hydrogen bond network in TcTIM throughout the last 2 s of the 

simulation. Each node is coloured according to the color scheme for regions in Fig. 4.1 of the 

main text. The catalytic residues are written in red text. 
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Figure S4.6 Hydrogen bonds in TcTIM throughout the last 2 s of the simulation. These 

hydrogen bonds are found in both monomers. Amino acids in monomer A are shown in green 

and residues in monomer B in red. Each node is coloured according to the color scheme for 

regions in Fig. 4.1 of the main text. 
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Figure S4.7 Hydrogen bonds in TcTIM throughout the last 2 s of the simulation. These 

hydrogen bonds are found in both monomers. Amino acids in monomer A are shown in green 

and residues in monomer B in red. Each node is coloured according to the color scheme for 

regions in Fig. 4.1 of the main text. 
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Figure S4.8 Hydrogen bonds in monomer B throughout the last 2 s of the TcTIM simulation. 

Each node is coloured according to the color scheme for regions in Fig. 4.1 of the main text. 

 

Figure S4.9 Hydrogen bonds involving amino acids at the interface between monomers in 

Mut1 and TbTIM throughout the last 2 s of the simulations. Amino acids in monomer A are 

shown in green and residues in monomer B in red. Each node is coloured according to the 

color scheme for regions in Fig. 4.1 of the main text. The catalytic residues are written in red 

text. 
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Figure S4.10 Hydrogen bonds in Mut1 throughout the last 2 s of the simulation. These 

hydrogen bonds are found in both monomers. Amino acids in monomer A are shown in green 

and residues in monomer B in red. Each node is coloured according to the color scheme for 

regions in Fig. 4.1 of the main text. The catalytic residue is written in red text. 
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Figure S4.11 Hydrogen bonds in monomer A throughout the last 2 s of the Mut1 simulation. 

Each node is coloured according to the color scheme for regions in Fig. 4.1 of the main text. 

The catalytic residues are written in red text. 

 

Figure S4.12 Hydrogen bonds in monomer B throughout the last 2 s of the Mut1 simulation. 

Each node is coloured according to the color scheme for regions in Fig. 4.1 of the main text. 

The catalytic residue is written in red text. 
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Figure S4.13 Hydrogen bonds in TbTIM throughout the last 2 μs of the simulation. These 

hydrogen bonds are found in both monomers. Amino acids in monomer A are shown in green 

and residues in monomer B in red. Each node is coloured according to the color scheme for 

regions in Fig. 4.1 of the main text. The catalytic residues are written in red text. 
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Figure S4.14 Hydrogen bonds in monomer A throughout the last 2 μs of the TbTIM 

simulation. Each node is coloured according to the color scheme for regions in Fig. 4.1 of the 

main text. The catalytic residue is written in red text. 
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Figure S4.15 Hydrogen bonds in monomer B throughout the last 2 μs of the TbTIM 

simulation. Each node is coloured according to the color scheme for regions in Fig. 4.1 of the 

main text. The catalytic residues are written in red text. 

 

Figure S4.16 Main hydrogen bond networks throughout the last 2 μs for A) TcTIM and B) 

TbTIM. Amino acids in monomer A are shown in green and residues in monomer B in red. 

Hydrogen bonds in TcTIM connect amino acids in a network that involves many interactions 
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between monomers and extends throughout the whole protein, in contrast with TbTIM, 

whose networks are contained within each monomer and involve fewer residues. 

 

Figure S4.17 Hydrogen bonds in Cys 14/15 monomer A (left) and monomer B (right) in: A) 

TcTIM, B) TbTIM and C) Mut1. This cysteine forms hydrogen bonds with region 3 of the 
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other monomer in TcTIM and Mut1 and forms hydrogen bonds in region 8 of the same 

monomer in TbTIM. 

 

Figure S4.18 Changes over time in the root mean square fluctuation (RMSF) of the TbTIM 

simulation. RMSF of the first 200 ns of the simulation vs the last 200 ns (A), and RMSF of the 

last microsecond of the trajectory vs the last 200 ns (B). The color bar at the bottom of figure 

B distinguishes the residues in monomer A (purple) from those in monomer B (yellow).  There 

are no significant peaks in the RMSF of the beginning of the trajectory. The last 200 ns of the 

simulation failed to capture the peak at loop 6 monomer B.   

 

Figure S4.19 Changes over time in the root mean square fluctuation (RMSF) of the Mut1 

simulation. RMSF of the first 200 ns of the simulation vs the last 200 ns (A), and RMSF of the 

last microsecond of the trajectory vs the last 200 ns (B). The color bar at the bottom of figure 

B distinguishes the residues in monomer A (purple) from those in monomer B (yellow). 
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Fluctuations at the minor peaks decreased with time and the peak at loop 6 monomer B (red 

arrow) increased. 

 

Figure S4.20 Main hydrogen bond networks for TcTIM in the most populated cluster of the 

first 500 ns of the simulation. There is a different network for each monomer. Amino acids in 

monomer A are shown in green and residues in monomer B in red. 
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Figure S4.21 Hydrogen bond networks for TcTIM in the most populated cluster of the last 

500 ns of the simulation. The residues in both monomers are connected through a single 

network of hydrogen bonds. Highlighted in blue are the residues at the interface of the 

hydrogen bond network (Fig. 4.11 in the main text). Amino acids in monomer A are shown 

in green and residues in monomer B in red. 
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5.1 Abstract 

Methyl-CpG binding protein 2 (MeCP2) is a chromatin regulatory protein essential for 

brain development and activity in vertebrates. Specific missense and nonsense mutations 

in MeCP2 lead to the neurodevelopmental disorder, Rett syndrome (RTT). To understand 

the structure and dynamics of MeCP2 and gain insight into the molecular basis of RTT, we 

characterized MeCP2 properties using high speed atomic force microscopy and solution-

state approaches. MeCP2 is an intrinsically disordered protein that displays highly dynamic 

behavior. MeCP2 transitions between a fully extended dumbbell-like structure with the 

methyl DNA binding domain (MBD) and C-terminal domain (CTD) at the extremities, and 

a compact structure where the MBD and CTD interact in cis. The MBD within the full 

length protein equilibrates between unfolded and well folded states. MBD−CTD 

interactions stabilize the MBD in its folded state and are essential for MeCP2 plasticity. 

The R106W, R133C, F155S and T158M RTT mutations all showed aberrant MBD 

dynamics compared to wild type. Our results indicate that MBD−CTD interactions in cis 

and the unfolding/refolding transition of the MBD are important features of MeCP2 

structure that become dysregulated in RTT. 

 

5.2 Introduction 

MeCP2 is a 53 kD nuclear protein found in large amounts in the lung, spleen, and especially 

the brain of vertebrates. MeCP2 is named for its ability to selectively bind methylated DNA 

(1), although it can bind to unmethylated DNA (2, 3). MeCP2 has important roles in both 

neurodevelopment and adult brain function, with specific effects on transcription 

documented in the hypothalamus, cerebellum, and hippocampus (4). The importance of 

MeCP2 to normal brain function is further underscored by the finding that loss-of-function 

mutations in the X-linked MeCP2 gene cause Rett syndrome (RTT), a severe 

neurodevelopmental disorder. Girls with RTT develop normally until the age of 6−18 

months, and then begin to lose language and fine motor skills. Further regression results in 

a host of serious neurological and cardiac symptoms, including intellectual disability, 

motor impairment, seizures, and characteristic hand wringing (4). Consequently, there has 
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been intense interest in deciphering the molecular mechanisms through which MeCP2 

influences cellular function in the normal and disease states. Much attention has been 

focused on the role of MeCP2 as a methyl DNA binding transcriptional repressor (5). In 

support of this idea, MeCP2 directly interacts with the nuclear co-repressor NCoR/SMRT 

in vitro and in vivo and many RTT mutations disrupt this interaction (5). However, 

transcriptomics studies in mouse models have shown that loss of MeCP2 alters the 

expression of a large number of genes, roughly half of which are upregulated and half 

downregulated, and the magnitude of these changes are small (6). To explain these results, 

MeCP2 has been proposed to be a global regulator of transcription acting through effects 

on chromatin architecture (6). 

Less is known about MeCP2 structure compared to its functions. Full-length MeCP2 

contains 486 amino acids and is a monomer in solution (7). Early studies identified two 

functional domains, the methyl DNA binding domain (MBD, residues 78−163) and the 

transcription repression domain (TRD, residues 207−309) (8). This led to the proposed 

domain organization shown in Fig. 5.1A, where residues 1−77 were labeled the N-terminal 

domain (NTD), residues 164−206 the intervening domain (ID) and residues 310−486 the 

C-terminal domain (CTD). Structure-based evidence for the same domain architecture was 

obtained after limited protease digestion of the purified protein, which also revealed the 

CTD could be subdivided into the CTD-α (residues 310−355) and CTD-β (residues 

356−486) (7). MeCP2 is an intrinsically disordered protein (IDP). When analyzed by 

circular dichroism (CD), over 60% of the protein sequence was estimated to be disordered 

(7, 9). Characterization of MeCP2 by hydrogen/deuterium exchange (H/DX) demonstrated 

that the entire polypeptide chain exhibited very fast exchange kinetics indicative of a 

disordered structure, with the exception of the MBD, which showed slower exchange 

kinetics and was more structured (10). CD studies of the isolated NTD, ID, TRD, and CTD 

confirmed that they lack stable secondary structure (9). The 3D structure of the isolated 

MBD has been determined by NMR (11), and of the MBD bound to methylated DNA by 

X-ray crystallography (12). Thus, while we have an atomic level insight into how MeCP2 

recognizes methylated DNA, the extensive disorder present throughout the protein 

sequence has prevented a rigorous understanding of how full length MeCP2 functions as a 

structural unit. The importance of understanding the structure of full length MeCP2 is 
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further underscored by the presence of RTT missense mutations in all five domains of the 

protein (13). 

Here we have characterized the structure and dynamics of full length MeCP2 using high 

speed atomic force microscopy (HS-AFM) (14–16).  HS-AFM previously has been 

employed to visualize myosin V walking on actin filaments (17), the structural changes of 

F1-ATPase (18), and the conformational dynamics of the ClpB chaperone (19), and holds 

great promise for determining the structure and motions of intrinsically disordered proteins 

(20–22). Our HS-AFM analyses indicate that MeCP2 rapidly interconverts between many 

different structures, one of which has the shape of a dumbbell. The two more ordered parts 

of the dumbbell correspond to the MBD and CTD and are connected by the long flexible 

intrinsically disordered ID/TRD. The rapid conformational sampling of MeCP2 visualized 

by HS-AFM was not random, but rather was driven by transient intramolecular 

MBD−CTD interactions. Weak interaction of the isolated MBD and CTD in solution was 

documented by analytical ultracentrifugation and NMR. The MBD within the full length 

protein was unstable, undergoing an unfolding/refolding transition that could be observed 

and quantified by HS-AFM. The unfolding/refolding transition of the MBD was influenced 

by MBD−CTD interactions and was differentially altered by four missense mutations that 

cause RTT. Taken together our results provide novel insight into the structure and 

dynamics of MeCP2 and their possible misregulation in RTT. 

 

5.3 Materials and methods 

Protein expression and purification 

Full-length human MeCP2 isoform e2, MeCP2-GFP, MeCP2 R294X, MeCP2 lacking 

amino acids 311‒328 or 370‒415 in the CTD, isolated MBD74-171, isolated CTD300-486, 

CTD363-402 and full-length MeCP2 bearing RTT point mutations in the MBD (R106W, 

R133C, F155S, T158M) were expressed in Escherichia coli and purified using the Intein 

Mediated Purification with an Affinity Chitin-binding Tag (IMPACT) system followed by 

Heparin column (New England Biolabs) using a modification of the protocol described 
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previously (7). The MBD construct contained an added sequence, EFLEGSSC, on its C-

terminal ends as a result of previously described cloning methods. Escherichia coli 

BL21RP cells were transformed with the ptyb1 plasmid vectors containing MeCP2 

constructs using heat shock. The clones with the best inducing expression were selected 

for each construct and stored at −80°C. Bacteria were grown in lysogeny broth (LB) at 

37°C to an optical density of 0.5 absorbance unit, induced with 0.4 mM isopropyl 1-thio-

D-galactopyranoside and incubated at 30°C for 2–3 h prior to harvest. Expression hosts 

were pelleted in an Avanti J-26 XPI preparative centrifuge (Beckman Coulter) in a JLA-

8.100 rotor at 5,000 g for 10 min. Pellets were resuspended in wash buffer (25 mM Tris, 

pH 7.5, 100 mM NaCl) and repelleted under the same conditions. Clean pellets were 

resuspended in column buffer (25 mM Tris-HCl, pH 7.5, 500 mM NaCl) supplemented 

with 0.5% Triton X-100, 0.2 mM PMSF, and Protease Inhibitor Mixture Set II and Set III 

(Calbiochem), followed by two rounds of sonication, 90 s each, using a Branson Sonifier 

450 with a large tip at 50% duty cycle and a power output of 7. The lysate was transferred 

to Oakridge tubes and spun at 21,000 g for 25 min at 4°C in the preparative centrifuge in a 

JA-17 rotor (Beckman Coulter). The supernatant was mixed with 7 ml chitin beads (New 

England Biolabs) previously equilibrated in column buffer and incubated overnight at 4°C 

on a rotator on a low revolution rate. Chitin beads with supernatant mixture was applied on 

an empty chromatography column (Life Sciences), and supernatant was allowed to flow 

through. The column was washed with five column volumes of column buffer followed by 

five column volumes of column buffer containing 900 mM NaCl to remove bacterial DNA 

non-specifically bound to MeCP2. The chitin beads were washed with an additional 5 

column volumes of 500 mM NaCl column buffer and incubated with column buffer 

containing freshly added 50 mM DTT for 72 hours to complete cleavage. Protein was 

eluted from the chitin column with column buffer, diluted from 500 mM to 300 mM NaCl, 

and loaded onto a HiTrap Heparin HP column (GE Healthcare) using HPLC. Proteins were 

eluted from the heparin column via step gradient from 300 mM NaCl to 1 M NaCl buffer 

using 100 mM NaCl steps in 25 mM Tris (pH 7.5), 10% glycerol background buffer. Peak 

fractions were pooled and dialyzed into 10 mM Tris (pH 7.5), 10 mM NaCl, 2% glycerol 

and 0.25 mM EDTA. The concentration of labeled protein was determined using a Pierce 

BCA test (Thermo Scientific). 
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     For the samples subjected to analytical ultracentrifugation analysis, we used site-

directed mutagenesis to replace with alanines (MonoC) all native Cysteines but Cys412 in 

the CTD (300−486) domain. Next, we expressed and purified the construct as described 

above and labeled the protein with Alexa 488-maleimide (Molecular Probes). The excess 

fluorophore was removed using HiTrap Desalting column (GE Healthcare).  The 

concentration of labeled protein was determined using a BCA test, ensuring the fluorophore 

alone had no signal at 488 nm. The proteins were 90% clean as observed by SDS-PAGE, 

imaged with Typhoon 9500.   

 

HS-AFM imaging 

The HS-AFM imaging of protein molecules was performed as described (23). A glass 

sample stage (diameter, ~2 mm; height, ~2 mm) with a thin mica disc (1 mm in diameter 

and 0.05 mm thick) glued onto the top by epoxy was attached onto the top of the Z-scanner 

using a drop of nail polish. A freshly cleaved mica surface was prepared by removing the 

top layers of mica using Scotch tape. Then, a drop (~2 μl) of each diluted sample (2–5 nM) 

in Buffer A (2 mM MgCl2, 10 mM Tris-HCl, pH 7.5) was deposited onto the mica surface. 

After incubation for ~3 minutes, the mica surface was rinsed with 20 μl of Buffer A to 

remove unattached protein molecules. The sample stage was then immersed in a liquid cell 

containing ~60 μl of Buffer A. The HS-AFM observation was performed in the tapping 

mode using a laboratory built apparatus (23). The short cantilevers (BL-AC7DS-KU4) 

were custom-made by Olympus (Tokyo, Japan); resonant frequency ~1 MHz in water, 

quality factor ~2 in water, and spring constant 0.1−0.15 N/m. The cantilever’s free 

oscillation amplitude A0 was set at 1−2 nm and set point amplitude As was set at ~0.9 × A0, 

so that the loss of cantilever’s oscillation energy per tap was adjusted at 1−3 kBT on 

average. The images were captured at a rate of 14.9 frames per sec (fps) or 10 fps for a 

scan area of 125 × 125 nm2 with a pixel size of 80 × 80.  
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Analysis of AFM images 

To measure topographical parameters of MeCP2 constructs from AFM images, a pixel-

search software program was used (24). AFM images were first edited with a low-pass 

filter to remove spike noises and next with a flatten filter to make the overall xy-plane flat. 

The (X, Y, Z) coordinate of globular domains (MBD and CTD) in their folded states were 

measured semi-automatically using the following procedures. First, we selected manually 

the most probable highest point on each domain and several molecule-free positions in 

close proximity to each domain. Second, each highest point (X, Y, Z) was automatically 

determined by searching a 5 × 5 pixel area (~8 × 8 nm2) around the manually selected point. 

The (X, Y, Z) coordinate of the end region of IDR1 was also measured semi-automatically 

using the following procedure. First, we determined manually an end region of IDR1 and 

chose several molecule-free positions in close proximity to the end region. Next, the pixel 

search program automatically found a pixel position (X, Y) having the largest height value 

Z, as described above. The heights of globular domains (HMBD and HCTD) and the end of 

IDR1 (He) were obtained by subtracting respective average heights of the substrate surface 

from the corresponding Z values. To measure the end-to-end distance of IDR1 (RIDR1), the 

direct distance D between the N-terminal end and the highest point within the MBD was 

measured. The value of  RIDR1 was estimated as RIDR1 = D – HMBD/2 – He/2.  Similarly, the 

end-to-end distance of IDR2 (RIDR2) was estimated as RIDR2 = D – HMBD/2 – HCTD/2, where 

D represents the direct distance between the highest points of MBD and CTD. The height 

of IDR (HIDR) was obtained by subtracting the average height of the substrate surface from 

the Z values at positions along the ridgeline of the IDR. Note that the entire IDR1 is fully 

disordered judging from its height (0.4–0.5 nm). However, the CTD appeared to show 

partial order-disorder transitions with a small height change, so that IDR2 contains a region 

that is not fully disordered. Therefore, DIDR2 does not represent the length of a fully 

disordered IDR. 
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Transition rate determination 

The mutants, R294X, F155S, and MeCP2-GFP, exhibited folding/unfolding transitions in 

their MBD. The autocorrelations G(τ)s of their time-series data of HMBD were best fitted to 

single-exponential functions. However, the decay constants λ of these G(τ)s is the sum of 

respective rate constants of the low-to-high transition (kL→H = 1/τL) and high-to-low 

transition (kH→L = 1/τH); τL and τH are the lifetimes of partially unfolded and well-folded 

states, respectively. To determine the values of kL→H and kH→L, we used the two Gaussian 

components of each HMBD frequency distributions that overlap in a medium height region. 

The ratio kH→L/kL→H (or τL/τH) was estimated from the area ratio (AL/AH) of the 

corresponding two Gaussian components, i.e., kH→L/kL→H (≡ τL/τH) = AL/AH. For the cases 

of WT MeCP2 and d311‒328 and d370‒415 deletion mutants, their G(τ)s were best fitted 

to double-exponential functions. The values of rate constants of the stable (S)-to-unstable 

(U) (kS→U), U-to-S (kU→S), high-to-low (kH→L) and low-to-high (kL→H) state transitions 

were estimated as described in Supplementary Text S1.  

 

Molecular dynamics simulations 

Three systems were set up for molecular dynamics simulations: (i) the MBD domain alone, 

(ii) the MBD with the half the NTD domain (36 amino acids) and (iii) the MBD with the 

full NTD domain. The sequences used for these three cases are as follows: 

MBD (PDBid: 1QK9): 

ASASPKQRRSIIRDRGPMYDDPTLPEGWTRKLKQRKSGRSAGKYDVYLINPQGK

AFRSKVELIAYFEKVGDTSLDPNDFDFTVTGRGSGSGC 

MBD with half NTD: 

GKHEPVQPSAHHSAEPAEAGKAETSEGSGSAPAVPEASASPKQRRSIIRDRGPMY

DDPTLPEGWTRKLKQRKSGRSAGKYDVYLINPQGKAFRSKVELIAYFEKVGDTS

LDPNDFDFTVTGRGSGSGC 
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MBD with NTD: 

MVAGMLGLREEKSEDQDLQGLKDKPLKFKKVKKDKKEEKEGKHEPVQPSAHH

SAEPAEAGKAETSEGSGSAPAVPEASASPKQRRSIIRDRGPMYDDPTLPEGWTRK

LKQRKSGRSAGKYDVYLINPQGKAFRSKVELIAYFEKVGDTSLDPNDFDFTVTG

RGSGSGC 

The initial structure for the MBD was taken from the Protein Data Bank (PDBid: 1QK9) 

and the residues for the NTD domain were generated using the CNS-SOLVE software (25). 

The peptide was placed in a dodecahedral box in which the distance from the edges of the 

box to every atom in the protein was at least 1 nm. The box was solvated with explicit 

water and an excess ion concentration of 150 mM was added to reproduce physiological 

conditions. The simulations were performed using GROMACS 2016.3 software (26) with 

the TIP3P water model (27) and the Amber99SB*-ILDNP force field (28). The system was 

energy minimized and equilibrated in the NVT (constant particle number, volume and 

temperature) ensemble. Equilibration was followed by a production run in the NPT 

(constant particle number, pressure and temperature) ensemble with a time step of 2 fs. The 

particle-mesh Ewald method (29) was used with a cutoff of 1.2 nm. The temperature was 

set to 310 K with the V-rescale algorithm (30) and pressure was kept at 1 atmospheric 

pressure using the Parrinello-Rahman barostat (31). The MBD domain was simulated for 

3 μs and the MBD with NTD systems for 1 μs. At least three separate sets of simulations 

starting from different initial conditions were run to ensure that the results were 

independent of the starting conformations. 

A second set of systems was built for the case where the mica surface exists, using 

configurations from each of the above proteins systems after the first 100 ns of simulation. 

Each protein was placed in a cubic box with a minimum distance of 1 nm between its atoms 

and the edges of the box. A surface of size of each of the boxes was generated and a charge 

was added to the surface atoms to reproduce the experimental surface charge of –0.48 

e/nm2. The surface structure was modeled using graphene structure to ensure 

commensurability with periodic boundary conditions. The box was solvated with explicit 

water and an excess ion concentration of 150 mM. The system was energy minimized and 
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equilibrated with NVT dynamics. Equilibration was followed by a production run in the 

NVT ensemble with a time step of 2 fs. The temperature was set to 310 K with the V-

rescale algorithm. The systems were run for 1 μs and repeated as above.  

 

Analytical ultracentrifugation 

Sedimentation and diffusion transport in the ultracentrifugation cell are described by the 

Lamm equation, which can be solved using adaptive finite element methods (32). Whole 

boundary data obtained in SV experiments are fitted by linear combinations of such 

solutions using advanced optimization routines (33−35) that are typically implemented on 

a supercomputer (36). Sedimentation velocity experiments were performed using a 

Beckman XL-A analytical ultracentrifuge equipped with the Aviv fluorescence detector 

(37) at the Center for Analytical Ultracentrifugation of Macromolecular Assemblies at the 

University of Texas Health Science Center at San Antonio, using an An60Ti 4-hole rotor 

and standard 2-channel epon centerpieces with 1.2 cm pathlength (Beckman-Coulter). The 

CTD was fluorescently labeled with Alexa 488. The MBD was not labeled. Samples were 

prepared in 20 mM Tris-HCl, containing 100 mM NaCl, 0.5 mM EDTA, and 0.1 mM 

PMSF. A titration was performed where a constant amount of labeled CTD (200 nM) was 

mixed with 100, 200 and 400 μM of unlabeled MBD. The experiment was performed in a 

4-hole An60Ti rotor, at 50,000 rpm, 20ºC, and fluorescence detection, collecting 964 scans 

for each sample before reaching equilibrium (~22 hours). All data were analyzed with 

UltraScan-III ver. 4.0, release 2655 (38). Hydrodynamic corrections for buffer density and 

viscosity were estimated by UltraScan to be 1.0017 g/ml and 1.0046 cP. The partial specific 

volumes of CTD (0.727 ml/g) and MBD (0.7252 ml/g) were estimated by UltraScan-III 

based on their amino acid sequence analogous to methods outlined in Laue et al. (39). 

SV data were analyzed according to the workflow described in (40). Optimization was 

performed by 2-dimensional spectrum analysis (2DSA) (33) with simultaneous removal of 

time- and radially-invariant noise contributions (41). After inspection of the 2DSA 

solutions, a global genetic algorithm-Monte Carlo analysis was performed to quantify the 

relative concentrations of free and complexed CTD (35), and to obtain a model that 
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described all four titrations equally well. The calculations are computationally intensive 

and are carried out on high-performance computing platforms (36). All calculations were 

performed on the Lonestar cluster at the Texas Advanced Computing Center (TACC) at 

the University of Texas at Austin or on XSEDE clusters at TACC (Jetstream, Stampede 2) 

or the San Diego Supercomputing Center (Comet). Integral distributions of sedimentation 

coefficients were evaluated with the enhanced van Holde–Weischet method (42) to 

determine if shifts of sedimentation distributions occurred as a function of mass action. 

 

NMR spectroscopy 

The sub-domain of CTD, containing residues 363-402 (CTD2), was expressed in minimal 

media in the presence of ammonium N15-chloride, purified as described above and 

concentrated using Amicon Ultra 15 mL centrifugal filter (Millipore). 1H,15N heteronuclear 

single quantum coherence (HSQC) spectra were collected on 15N-labeled MeCP2 CTD (aa 

363−402) at 100 M, free and in the presence of MBD. Spectra were collected at 25C on 

a 600 MHz Varian INOVA spectrometer equipped with a cryogenic probe. Data were 

processed using NMRPipe. 

 

5.4 Results 

Visualization and characterization of full length MeCP2 and its dynamics by HS-

AFM  

To determine the structural features of MeCP2, we first imaged full-length wild type (WT) 

MeCP2 using HS-AFM (16). The HS-AFM images document the highly dynamic behavior 

of MeCP2; we see rapid interconversion between ensembles of different structures, 

including a typical dumbbell-like structure (Fig. 5.1B). In the dumbbell structure, two 

intrinsically disordered regions (IDRs) mostly with a height of 0.4−0.5 nm (Fig. 5.1C) were 

observed: a short IDR1 at one end and a longer IDR2 connecting the two more ordered 

ends of the dumbbell. The two-dimensional end-to-end-distances of IDR1 (RIDR1) and 
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IDR2 (RIDR2) were <RIDR1> = 12.5 ± 3.6 and <RIDR2> = 18.5 ± 8.0 nm (mean ± s.d.) (Fig. 

5.1D). The broad distribution of RIDR2 values reflects the conformational distortions of the 

IDR2 resulting from the high degree of flexibility of this long segment. The globule 

between the IDR1 and IDR2 had a peak height of 1.4 nm in its height distribution (Fig. 

5.1E), indicating it is well folded. Interestingly, this well folded globule itself is dynamic 

and undergoes unfolding/refolding transitions over time (Figs. 5.1E and 5.2A). The ordered 

region at the other end of MeCP2 had a height of 0.8 nm, indicating it is partially or 

“loosely” folded (Fig. 5.1F). We next assigned the N- and C-terminal ends of the MeCP2 

molecule. HS-AFM images of a construct with GFP fused at the C-terminal end of MeCP2 

indicated that the GFP tag was at the opposite end from the well folded globule (Fig. 5.2B, 

and Figs. S5.1 and S5.2A). In contrast, the TRD−CTD construct lacked the well folded 

globule (Fig. 5.2C and Fig. S5.3). From these results we conclude that IDR1 is the NTD, 

the well folded globule that undergoes folding/unfolding transitions is the MBD, IDR2 is 

composed of the ID, TRD and possibly a part of the CTD-α, and the loosely folded region 

is the CTD or CTD-β (see Fig. 5.2D). A summary of the HS-AFM results is shown in Fig. 

5.2D. 

The unfolding/folding transitions of the MBD within WT MeCP2 were further 

characterized by calculating the autocorrelation function of time-series of MBD height data 

(ACFMBD). Notably, it showed a two-exponential decay (Fig. 5.2C and Supplementary Text 

S5.1), suggesting that MBD structural transitions are more complex than a simple 

equilibrium between two states, as detailed below in the next section. To determine if 

absorption onto mica influenced the observed folding/unfolding transition of the MBD, 

atomistic molecular dynamics simulations (MD) both in solution and in the presence of a 

surface (to model the HS-AFM experiments) were performed. Results indicated that the 

solution structure of the MBD was not perturbed by the mica surface over the time scale 

of the simulation (Fig. 5.2F and Supplementary Movie S5.1). This is consistent with 

previous H/DX studies indicating that the MBD samples folded and unfolded states in 

solution (8).  
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Figure 5.1 Structural features of WT MeCP2. (A) Domain diagram. (B) Typical HS-

AFM images captured at 10 fps. (C) Height histograms for IDR1 (top) and IDR2 

(bottom). (D) End-to-end distance histograms for IDR1 and IDR2. These distances 

were also measured for images in which the MBD and CTD appeared clearly as 

globules. (E) Height histogram of the globule locating between IDR1 and IDR2. This 

globule was identified as the MBD, as shown in Fig. 5.2D. (F) Height histogram for 

the loosely folded globule. This globule was identified as the CTD or a part of the 

CTD, as shown in Fig. 5.2D. 
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Figure 5.2 Domain identification and dynamic conformational changes of MBD in 

WT MeCP2. (A) HS-AFM images captured at 10 fps showing transitions of MBD 

between well folded (WF) and loosely folded (LF) conformations. (B) AFM image of 

MeCP2−GFP fusion. (C) AFM image of TRD−CTD. Arrowheads point individual 

molecules.  (D) Schematic of MeCP2 dynamics. (E) ACFMBD in WT MeCP2 (dots) and 

the best result of its fitting to a sum of two exponential functions (solid line) (see 

Supplementary Text S1). (F) Root mean square fluctuations (RMSF) of MBD height 

of three MeCP2-derived peptides in solution and in the presence of a surface, as 

observed by molecular dynamics simulation. The systems include MBD, MBD plus 

C-terminal half of NTD, and MBD plus NTD.  

 

Intramolecular MBD−CTD interactions influence MeCP2 structural dynamics 

Previous studies have shown that the intrinsic fluorescence intensity of MeCP2 due to 

W104 in the MBD is affected by removal of the CTD, suggestive of MBD−CTD 

interactions (43). To examine this question directly, we performed HS-AFM imaging of 

the RTT nonsense mutant, R294X, lacking the CTD. Remarkably, the MBD of R294X 

existed predominantly in the unfolded state (Fig. 5.3A, B), despite no mutations in the 
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MBD. This behavior was reflected in its ACFMBD, which had a single-exponential decay 

(Fig. 5.3C). These results suggest that MBD−CTD interactions occur within the full-length 

MeCP2 in cis, shifting the MBD towards its well-folded conformation for a longer time. 

Further support for this conclusion came from three HS-AFM observations: (i) some of the 

HS-AFM images of full-length MeCP2 showed the MBD and CTD in contact to form a 

compact structure (Fig. 5.3D), (ii) removal of residues 311−328 in the CTD-α largely 

shifted the MBD equilibrium toward the unfolded state, and the equilibrium change was 

moderate when residues 370−415 in the CTD-β were removed (Supplementary Fig. S5.4), 

and (iii) the MeCP2-GFP fusion showed a MBD height distribution expected for the mostly 

unfolded state (Supplementary Fig. S5.2B) and the ACFMBD with a single-exponential 

decay (Supplementary Fig. S5.2C), indicating that the GFP-dependent immobilization of 

MeCP2 on mica prevented MBD−CTD interactions.  
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Figure 5.3 MBD–CTD interactions in cis and trans. (A) HS-AFM images of R294X 

RTT mutant captured at 10 fps. (B) Height histogram for MBD in R294X RTT 

mutant. The most probable fitting curve is shown with the solid black line. The red 

lines represent the Gaussian components in double-Gaussian fitting. (C) ACFMBD in 

R294X (dots) and the best result of its fitting to a single exponential function (solid 

line). (D) HS-AFM images of WT MeCP2 showing transient MBD−CTD association 

(at 8.3 s and 13.4 s). (E) Sedimentation coefficient distributions of CTD (red) and three 

titration points with different concentrations of MBD (green, 100 µM; blue, 200 µM; 

black, 400 µM). Inset: Integral distribution of sedimentation coefficient plot for the 

same experiment. (F) Superimposed 1H,15N HSQC spectra of the uniformly 15N-

labeled CTD363-402 region in the absence (black) and presence of MBD (red). 
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To determine if the MBD and CTD interact in solution as free domains, we purified the 

isolated CTD and MBD and characterized mixtures of the two using analytical 

ultracentrifugation (AUC) and NMR. The sedimentation coefficient distribution of the 

fluorescently labeled CTD (~20 kD) increased progressively when the CTD was titrated 

with increasing amount of unlabeled MBD (~10 kD), as would be expected for the 

formation of a reversibly associating complex (Fig. 5.3E, inset) (44). Global genetic 

algorithm analysis (33,38) of the same data fits all experimental concentrations 

simultaneously and indicated that the free CTD (1.35S) was progressively converted to a 

MBD−CTD complex (1.85S) with increasing amount of MBD (Fig. 5.3E and 

Supplementary Fig. S5.5A). From the titration curves, the KD for the MBD−CTD 

interaction was estimated to be 1.29 ± 0.66 mM (Supplementary Fig. S5.5B), although the 

data were limited. To further test for MBD−CTD interactions in trans, we collected 

heteronuclear single quantum coherence (HSQC) spectra of uniformly 1H, 15N-labeled 

CTD363-402 in the absence and presence of the MBD (Fig. 5.3F). The large chemical shift 

changes of CTD363-402 in the presence of the MBD provided further evidence that the two 

domains directly interact in solution. Furthermore, appearance of a number of resonances 

downfield of 9 ppm in the 1H dimension revealed that the MBD−CTD interaction induces 

partial CTD folding. Altogether, we conclude from the HS-AFM and solution-state studies 

that weak MBD−CTD interactions occur in both cis and trans. The cis interaction is 

facilitated by the highly flexible ID/TRD. The effective CTD concentration in the close 

vicinity of the MBD was estimated to be ~50 μM from the end-to-end distance distribution 

of the IDR2 (Fig. 5.1D and Supplementary Text S5.2). From this value and the estimated 

KD of ~1.3 mM, the MBD in ~4% of MeCP2 molecules is bound to the CTD in the steady 

state.  

The ACFMBD of WT MeCP2 decayed with two rate constants, λS = 0.077 s-1 and λU = 3.77 

s-1 (Fig. 5.2E), whereas the ACFMBD of the R294X RTT mutant showed a single-

exponential decay with a rate constant of 3.50 s-1 (Fig. 5.3C), nearly identical to the value 

of λU = 3.77 s-1. These results suggest that when not interacting with the CTD, the MBD is 

in an unstable (U) state undergoing fast transitions between folded (high) and unfolded 

(low) conformations (L ↔ H). The transient MBD−CTD interaction converts the MBD 

from the U state to a stable (S) state (U → S). In the S state, the folded (high) conformation 
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of the MBD is sustained even after the dissociation of CTD (i.e., structural plasticity), and 

decays slowly to the U state (S → U). According to this model, the rate constants for L → 

H, H → L, U → S, and S → U transitions in the WT were determined as kL→H = 0.45 s-1, 

kH→L = 3.32 s-1, kU→S = 0.059 s-1, and kS→U = 0.018 s-1 (Supplementary Text S1 and Table 

S1).  

 

Aberrant dynamics of RTT mutant MBDs 

We next determined whether the unfolding/refolding transition of the MBD was influenced 

by RTT mutations in the MBD (Fig. 5.4). Unfolding/refolding of the WT MBD occurred 

at the sub-second to a second time scale in the U state, while in the S state stabilized by 

transient MBD−CTD interaction the well-folded conformation is sustained for the tens of 

seconds time scale as described above. On average, in the WT the MBD occupied the well 

folded (1.4 nm height) conformation ~80% of the time and the unfolded (0.8 nm height) 

conformation about ~20% of the time (Fig. 5.1E). HS-AFM imaging of full-length MeCP2 

bearing RTT point mutations in the MBD (R106W, R133C, F155S, and T158M) (Fig. 5.4) 

revealed that abnormal MBD dynamics is a common feature of all RTT mutants analyzed, 

although the nature of the defect was mutant-specific. The R133C and T158M mutants 

behaved most similarly, showing predominantly lower MBD height distributions compared 

to the WT MBD (Fig. 5.4C, D). This indicates that the MBDs of these two mutants spend 

most of their time in the unfolded state, i.e., the mutations destabilize the well folded MBD 

structure. The F155S mutant existed in two populations, an unfolded state and a misfolded 

state with a peak height of only 1.0 nm (Fig. 5.4E, F and Supplementary Table S5.1). By 

contrast, the R106W mutation stabilized the MBD in a well folded conformation as 

indicated by the predominance of a MBD species with ~1.4 nm height (Fig. 5.4B). These 

results argue that the inherent transitioning of the WT MBD between its well folded and 

unfolded states (and stable and unstable states) is required for proper MeCP2 function, and 

when compromised may contribute to RTT.   
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Figure 5.4 Structural features of MBD and CTD in MeCP2 bearing RTT point 

mutations in MBD, and their comparison to the WT. Left panels, typical HS-AFM 

images captured at 10 fps (A) or 15 fps (B–E). Middle panels, MBD height histograms. 

The black lines are most probable fitting curves, while the red lines (A, E) show 

Gaussian components in double-Gaussian fitting. The black lines are most probable 

fitting curves. Right panels, height histograms for C-terminal globule. (F) ACFMBD in 

F155S (dots) and the best result of its fitting to a single component exponential 

function (solid line). (G) NMR structure of MBD.  
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5.5 Discussion 

As expected from its intrinsically disordered nature, the conformation of MeCP2 is highly 

dynamic. In its most elongated state MeCP2 resembles a dumbbell. The MBD and CTD 

form the ends of the dumbbell and the long intervening ID/TRD is maximally extended 

(Fig. 5.1B). In its most compact state, the MBD and CTD are in contact, and the ID/TRD 

appears to be folded upon itself or interacting with other parts of the protein (Fig. 5.3D). 

Collectively, our data indicate that the conformational motions of MeCP2 (i) result from 

equilibration between the extended and compact structures, (ii) are driven by MBD−CTD 

interactions, and (iii) are facilitated by the flexible, intrinsically disordered ID/TRD 

segment. The MBD−CTD interaction is direct and not an artifact of MeCP2 being adsorbed 

to the mica surface. Indeed, the isolated MBD and CTD interact when free in solution as 

judged by analytical ultracentrifugation and NMR (Fig. 5.3E, F). Moreover, Ghosh et al. 

(43) showed that removal of the CTD reduced the fluorescence emission maxima of W104 

in the MBD, indicating changes in the local tryptophan environment upon CTD deletion 

and implying that MBD−CTD interactions occur within MeCP2 under solution conditions 

(43).  

The MBD is the only MeCP2 domain with classical tertiary structure. The NMR and X-

ray structures of the MBD reported a three-stranded antiparallel β-sheet packed against an 

11-residue α-helix (Fig. 5.4G) (11, 12). Extending from the C-terminal end of the α-helix 

is a short 3-10 helix followed by an Asx-ST motif. The first and second β-strands are 

connected by an elongated nine residue loop that fits in the major groove of DNA (12). 

Our HS-AFM experiments have revealed that the MBD transitions between its well folded 

conformation and an unfolded state, indicating that the MBD within full length MeCP2 is 

only marginally stable. These results are in close agreement with previous H/DX analyses 

of full length MeCP2 in solution. Whereas a stably folded protein exhibits slow exchange 

kinetics, a moderate level of exchange occurred throughout the MBD (10), demonstrating 

that the MBD samples unfolded and folded states. The R106W, R133C, F155S, and T158M 

RTT mutants each affected the MBD folding/unfolding equilibrium, although in different 

ways. The R133C and T158M mutants greatly destabilized the folded state of the MBD 

(Fig. 5.4C, D). The chief characteristic of the F155S mutant was that the MBD was 



121 

 

misfolded and more unstable (Fig. 5.4E). All three of these mutations are located in 

positions that would be expected to disrupt proper folding of the MBD (Fig. 5.4G). 

Strikingly, the stability of the MBD was enhanced by the R106W mutation, such that the 

unfolded state of the MBD could only rarely be detected in this mutant (Fig. 5.4B). When 

analyzed by H/DX, the isolated MBD bearing the R106W mutation showed very similar 

exchange kinetics as wild type except for increased protection of the residues in the β1 

strand surrounding the mutation (10). These observations suggest that the β-sheet found in 

the MBD is stabilized by the R106W mutation (Fig. 5.4G), perhaps through gain of pi-pi 

interaction with W104, resulting in a decreased propensity of the MBD to unfold. Taken 

together, our results imply that misregulation of the MBD unfolding/folding transition—in 

either direction—may contribute to RTT.  

The unfolding/refolding transition of the MBD appears to be integral to the mechanism of 

MeCP2 binding to unmethylated and methylated DNA. In the H/DX experiments 

performed with full length WT MeCP2, the protection observed throughout the MBD was 

enhanced by DNA binding and enhanced further by methylated DNA binding (10). This 

would be expected if the MBD was transitioning between unfolded and folded states and 

binding to DNA and methylated DNA sequentially stabilized the folded conformation. This 

observation is consistent with the results of  Ghosh et al. (43), who found that binding to 

unmethylated and methylated DNA successively increased the Tm of MeCP2 in thermal 

melting experiments. Despite having a stable well folded structure (Fig. 5.4B) that is almost 

identical to wild type (10), the R106W mutant does not bind normally to either 

unmethylated or methylated DNA in vitro (43, 45), is not retained in chromatin in vivo 

(46), and has a severe RTT phenotype (43) consistent with disrupted MBD function. These 

results are difficult to reconcile with a classical one-step mechanism of protein-DNA 

recognition mediated by a stable DNA binding domain. At the same time, the R133C, 

F155S, and T158M mutations all destabilize the well folded MBD state (Figs. 5.4C−E), 

and all show impaired binding to methylated DNA (43, 45), indicating the importance of 

the MBD fold for methylated DNA recognition. One possible explanation is that the MBD 

initially engages with DNA when it is unfolded and subsequently assumes the MBD fold 

to create a stable complex with methylated DNA. We note that the properties of the RTT 

mutants identified in our studies have implications for disease treatment. Based on the HS-
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AFM behavior of the RTT mutants, small molecules that stabilize the MBD fold may prove 

useful for treating patients with the R133C, F155S, and T158M mutations, while patients 

with the R106W mutation may benefit from small molecules that destabilize the MBD. 

The inter-domain interactions of MeCP2 are likely to be functionally important. MeCP2 

condenses chromatin fibers into unique higher order structures characterized by edge-to-

edge clustering of neighboring nucleosomes (47), although how it accomplishes this is 

unknown. Both the MBD and CTD bind to DNA and nucleosomes (48). We therefore 

speculate that the MBD and CTD bind to different nucleosomes when in the extended 

MeCP2 conformation, and subsequent MBD−CTD interactions help bring the nucleosomes 

together to condense the fiber. The plasticity observed in our experiments (Supplementary 

Text S5.1) may help stabilize such structures once formed. MeCP2 recruits the 

transcription factors to methylated DNA in vivo (49). The interaction sites for some of 

these factors, such as transcription co-repression complex NCoR, are located near the 

TRD−CTD boundary (50). In these cases, the transcription factors will be brought into 

physical proximity with methylated DNA upon MBD−CTD contact. If the MBD and CTD 

in the extended MeCP2 conformation bind to two linearly distant genomic loci that are in 

close proximity in three dimensions, MBD−CTD interactions and recruitment of the 

CCCTC-binding transcription factor, CTCF (51), may facilitate formation of chromatin 

loops. Taken together, the function of MeCP2 in transcription factor recruitment may 

involve more than a simple tethering process. In a broader sense, we speculate that the 

conformational dynamics of MeCP2 provides the structural basis for its multi-

functionality. We note that the situation in which two structured domains are separated by 

a long intrinsically disordered region is predicted to be common among IDPs (51). 

Consequently, it seems likely that the intramolecular domain-domain interactions observed 

in our studies may be shared by many disordered proteins. We postulate that 

conformational malleability driven by domain-domain interactions in cis and structural 

flexibility of the intervening polypeptide chain is a common feature of many IDPs and is 

essential for mediating their functionality in three dimensions. 
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5.6 Supplemental information 

The pixel-search program for AFM images can be accessed at the following URL:  

https://elifesciences.org/content/4/e04806/article-data#fig-data-supplementary-material 

 

Movies from the molecular dynamics simulations can be accessed at the following URL: 

https://doi.org/10.5281/zenodo.5774094  

 

S5.1. Analysis of folding/unfolding dynamics of MBD 

The state transitions of MBD contained in the WT MeCP2 are considered to take place 

according to the model shown below: 

 

The transition from the unstable (U) state to the stable (S) state is triggered by transient 

interactions between the MBD and the CTD, whereas the transition from S to U state takes 

place autonomically. The U state is in dynamic equilibrium between the unfolded state 

(low state L) and the well-folded state (high state H). In the S state, the MBD is well folded 

and its height is identical to that in the H state (1.4 nm). The time course of MBD height 

variations and state transitions are schematized below.  

 

 

 

https://elifesciences.org/content/4/e04806/article-data#fig-data-supplementary-material
https://doi.org/10.5281/zenodo.5774094
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Let’s define NU as an average number of transitions (L ↔ H) occurring during the single 

U state. The following relationship holds: 

1/kU→S  (lifetime of U state) = NU × (1/kL→H + 1/kH→L).  (S1) 

Eq.(S1) can be rewritten as 

NU = kL→H × kH→L / [kU→S × (kL→H + kH→L)].  (S2) 

The total time during which the MBD assumes the unfolded (low) conformation in the 

single U state (TL) is identical to NU/kL→H on average, while the total time during which 

the MBD assumes the well-folded (H) conformation in the single U and S states (TH) is 

NU/kH→L + 1/kS→U on average.  

The area ratio (αWT ≡ AL/AH = 0.24) of two Gaussian components of MBD height 

distribution in WT MeCP2 (Fig. 5.1E in the main text) is identical to TL/TH. Therefore, we 

obtain 

αWT = (NU/kL→H) / (NU/kH→L + 1/kS→U) = 

kS→U × (kH→L/kL→H) / [kU→S + kS→U + kU→S × (kH→L/kL→H)].    (S3) 

For the case of WT MeCP2, the autocorrelation function of time-series of MBD height data 

(Fig. 5.2D in the main text) was best fitted to the sum of two exponential functions, A × 

Exp(−λSt) + B × Exp(−λUt), from which we obtained the values of λS = 0.077 s−1 and λU = 

3.77 s−1. Since the two different transitions, L ↔ H in the U state and U ↔ S, take place 

independently, the autocorrelation function of this kinetic system is expressed as a sum of 

two exponential functions, consistent with the above result. The decay rates in the 

autocorrelation function, λS and λU, are therefore, expressed as 

λS = kU→S + kS→U    (S4) 
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and 

λU = kL→H + kH→L.  (S5) 

The conformational transitions L ↔ H in the U state of the WT MeCP2 are considered to 

be identical to those occurring in the MBD contained in R294X, because R294X lacks the 

CTD and thus its MBD always stays in the U state. In fact, its autocorrelation function of 

time-series of MBD height data showed a single-exponential decay (Fig. 5.3C in the main 

text). Moreover, its decay rate (λU = 3.50 s−1) was close to the value, λU = 3.77 s−1, estimated 

for the WT MeCP2. Therefore, the lifetime ratio [τL/τH = kH→L/kL→H] in the U state of MBD 

in WT MeCP2 can be approximately obtained from the area ratio (α294X ≡ AL/AH = 7.43) of 

two Gaussian components of the MBD height distribution in R294X (Fig.5.3B in the main 

text), i.e.,  

kH→L/kL→H = α294X.  (S6) 

Thus, kL→H and kH→L are expressed as 

𝑘L→H =
𝜆U

1+𝛼294X
,  (S7) 

and 

𝑘H→L =
𝛼294X ∙𝜆U

1+𝛼294X
.  (S8) 

From Eqs.(S3), (S4), and (S6), we finally obtained the following relationships for kU→S and 

kS→U in the WT MeCP2: 

𝑘U→S = 𝜆s ∙
(𝛼294X− 𝛼WT)

𝛼294X(1+𝛼WT)
 ,  (S9) 

and 

𝑘S→U = 𝜆s ∙
𝛼WT(1+𝛼294X)

𝛼294X(1+𝛼WT)
 .  (S10) 
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Using these equations and the values of λS = 0.077 s−1, λU = 3.77 s−1, αWT = 0.25, and α294X 

= 7.43, we obtained kU→S = 0.059 s−1 (τU = 16.9 s), kS→U = 0.018 s−1 (τS = 55.6 s), kL→H = 

0.45 s−1 (τL = 2.22 s), and kH→L = 3.32 s−1 (τH = 0.30 s) for the MBD in WT MeCP2. For 

R294X, we obtained kL→H = 0.42 s−1 (τL = 2.38 s), and kH→L = 3.09 s−1 (τH = 0.32 s). 

In the MeCP2−GFP fusion, the GFP moiety is firmly attached to the mica surface, which 

largely suppresses Brownian motion of CTD on mica. Therefore, MBD−CTD interactions 

are hampered. In fact, the MDB height distribution in this construct (Fig. S5.2B) was 

similar to that of R294X (Fig. 5.3B in the main text), and the area ratio (αGFP ≡ AL/AH) was 

10.24. The autocorrelation function of time-series of MBD height variations in the 

MeCP2−GFP fusion was best fitted to a single exponential function with a decay rate of 

λU = 3.08 s−1 (Fig. S5.2C). From these results and Eqs. (S7) and (S8), we obtained kL→H = 

0.27 s−1 and kH→L = 2.81 s−1, which are roughly identical to the corresponding values 

estimated for R294X. Similarly, we obtained the values of rate constants for d311−328, 

d370−415, and F155S. These results are summarized in Supplementary Table S5.1. 

 

S5.2. Effective concentration of CTD around MBD 

The MBD and CTD are linked with the highly flexible IDR2 chain. Therefore, the effective 

concentration (Ceff) of the CTD around the MBD must be high. We here estimate the value 

of Ceff, as shown below.  

 

1. The first approximation 

We assume that IDR2 encompasses residues 164−309 (ID/TRD), although it may also 

contain a part of the CTD-α. From the number of residues contained in the ID/TRD, Naa = 

146, the stretched IDR2 length (contour length) is estimated to be L = 52.6 nm, using the 

relationship of L = (Naa – 1) × daa, where daa (= 0.36 nm) is an average distance between 

adjacent residues. In this first approximation, we further assume that the IDR2 is extremely 

flexible, so that the probability of finding the CTD is nearly uniform over the spherical 
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space of radius L, centered at the MBD. The effective concentration Ceff can be simply 

calculated as 

𝐶eff = 10−3/(
4𝜋

3
𝐿3 ∙ 𝑁A),  (S11) 

where NA is the Avogadro constant. Here we neglected the dimensions of MBD and CTD, 

as they are much smaller than L. Eq. (S11) gives Ceff ≈ 2.7 μM for L = 52.6 nm. 

2. The second approximation  

In reality, the CTD is not uniformly distributed around the MBD. In fact, the two-

dimensional distance RIDR2 between the two globular domains (MBD and CTD) showed a 

Gaussian distribution with a peak at 18.5 nm (i.e., mean RIDR2, <RIDR2>), ~3-times shorter 

than the full-stretched length L. Supposing that IDR2 is neither extended nor compacted 

by contact with the mica surface, the mean end-to-end distance of IDR2 in solution (i.e., 

not on mica) is given by <R> = <RIDR2>/√2 = 13.08 nm. However, our measurements of 

two-dimensional end-to-end distances <R2D> for various fully disordered IDRs have 

indicated that mica–IDR interactions extend <R2D> by a factor 1.24. This is due to frictional 

forces locally exerted from mica against fast Brownian motion of the IDR chain, which 

would increase the IDR chain’s undulation wavelength and/or decrease the undulation 

amplitude, resulting in swelling of its two-dimensional dimensions [Kirk, J. and Ilg, P. 

(2017) Chain dynamics in polymer melts at flat surfaces. Macromolecules, 50, 

3703−3718]. Therefore, <R> is estimated to be 13.08/1.24 = 10.55 nm. An fully disordered 

IDR is considered to behave as an ideal Gaussian chain. In this case, the distribution 

function of R is given by 

𝑃(𝑅)𝑑𝑅 = 4𝜋𝑅2 [
3

2𝜋〈𝑅2〉
]
3/2

𝑒𝑥𝑝 [−
3

2

𝑅2

〈𝑅2〉
] 𝑑𝑅, (S12) 

although an region in IDR2 close to (or contained in) the CTD-α may not be fully 

disordered. The two globular domains associate with each other when they approach within 

a certain range of distance, (r ≤ r0). However, the distance r between the two domains is a 

complex function of R, when we consider the actual dimensions of the two globules. To 

avoid this complexity, we assume that MBD–CTD association occurs when R becomes R0 
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or shorter (i.e., R ≤ R0). In this approximation, the probability of finding the CTD in the 

volume (R ≤ R0) is given by 

𝑝 = ∫ 𝑃(𝑅)𝑑𝑅
𝑅0

0
. (S13) 

Therefore, the effective concentration of the CTD in the volume in close proximity to the 

MBD is given as 

𝐶eff = 𝑝 × 10−3/(
4𝜋

3
𝑅0

3 ∙ 𝑁A). (S14) 

For R0 = 1 nm, Eq.(S13) provides p = 0.32 × 10−3, and Eq.(S14) provides Ceff ≈ 120 μM. 

Note that Ceff (R0) slowly decays with increasing R0. Therefore, the approximate value of 

~120 μM holds for the range of 0 < R0 < 2.0 nm. When we consider the actual dimensions 

of the two globules, the value of Ceff is reduced. Since the CTD binding site on the MBD 

is localized at its certain surface area, the CTD available for MBD binding is reduced 

approximately to a half. Therefore, the likely value of Ceff is approximately ~50 μM. 

 



129 

 

 

Figure S5.1 Domain diagrams of wild type MeCP2 and its mutants used in this study. 
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Figure S5.2 Structural features of MeCP2 fused to GFT at the C-terminus of the 

former. (A) Typical HS-AFM images captured at 15 fps (top). The images (bottom) 

were obtained by increasing the brightness contrast on the corresponding images 

(top). (B) MBD height histogram. Note that the MBD is mostly in the lower (unfolded) 

state, in contrast to the case of WT MeCP2. (C), Autocorrelation function of MBD 

height variation over time. The best result of its fitting to a single exponential function 

is shown in the solid line (also see Supplementary Text S1). 
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Figure S5.3 Structural features of TRD–CTD. (A) Typical HS-AFM images captured 

at 15 fps. Four individual molecules are marked with arrow heads with different 

colors. (B) Height histogram for highest pixel positions in the molecules. 
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Figure S5.4 Structural features of d311−328 and d370−415 mutants and their 

comparison to the wild type. (A−C), Typical HS-AFM images captured at 10 fps. 

(D−F), Height histograms for MBD and CTD, and Autocorrelation functions of MBD 

height variations over time. (G), Schematic showing MBD structure stabilization by 

interaction between MBD and residues 311−328. 
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Figure S5.5 Analysis of ultracentrifugation data. (A) Two-dimensional representation 

of the global genetic algorithm Monte Carlo analysis. Solutes are represented by 

colored spots, whose color intensity is proportional to their concentration. The 

position of the spots indicates their approximate buoyant molar masses and their 

anisotropies. An isotropic particle has an anisotropy of one, higher values indicate 

increasingly non-globular structure. An anisotropy of 2 or higher indicates 

significantly elongated shape in solution. Molar masses are approximate since partial 

specific volumes used to transform sedimentation and diffusion coefficients for each 
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species are only estimated. Additional uncertainty is present for the low concentration 

complex because only a small amount of signal is available. (B) Estimation of Kd value 

for the CTD−MBD complex. A limited number of data points were available for the 

fit of the binding isotherm, producing a relatively large error in the estimate. 

 

Table S5.1 Decay rates of auto-correlation functions calculated from time-series of 

MBD height data and rate constants for structural transition dynamics of MBD. 

 

All values are of mean ± s.e. 

 

Other supplementary materials for this manuscript include the followings:  

Movie S5.1. Four movies from molecular dynamics simulations of MBD and half NTD 

domain (top) and MBD and the full NTD domain (bottom). Systems in the presence of a 

surface are shown on the left-hand side and systems in solution are on the right. The 

simulations were performed in explicit water but water has been removed from the movies 

for clarity. Importantly, the structures in the systems remain the same both in the presence 

and absence of the surface. The movies are from the end of independent 1 μs simulations. 
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6.1 Abstract 

The malfunction of the Methyl CpG binding protein 2 (MeCP2) is associated to the Rett 

syndrome, one of the most common causes of cognitive impairment in females. MeCP2 is 

an intrinsically disordered protein (IDP), making its experimental characterization a 

challenge. There is currently no structure available for the full-length MeCP2 in any of the 

databases, and only the structure of its MBD domain has been solved. We used this 

structure to build a full-length model of MeCP2 by completing the rest of the protein via 

ab initio modelling. Using a combination of all-atom and coarse-grained simulations, we 

characterized its structure and dynamics as well as the conformational space sampled by 

the ID and TRD domains in the absence of the rest of the protein. The present work is the 

first computational study of the full-length protein. Two main conformations were sampled 

in the coarse-grained simulations: a globular structure similar to the one observed in the 

all-atom force field and a two-globule conformation. Our all-atom model is in good 

agreement with the available experimental data, predicting amino acid W104 to be buried, 

amino acids R111 and R133 to be solvent accessible, and having 4.1% of α-helix content, 

compared to the 4% found experimentally. Finally, we compared the model predicted by 

AlphaFold to our Modeller model. The model was not stable in water and underwent 

further folding. Together, these simulations provide a detailed (if perhaps incomplete) 

conformational ensemble of the full-length MeCP2, which is compatible with experimental 

data and can be the basis of further studies, e.g., on mutants of the protein or its interactions 

with its biological partners. 

 

6.2 Introduction 

Methyl CpG binding protein 2 (MeCP2) is a transcriptional regulator essential for growth 

and synaptic activity of neurons1. The malfunction of this protein is associated to the Rett 

syndrome, one of the most common causes of cognitive impairment in females2,3. The 

MeCP2 gene is X-linked in mammals. Mutations that affect the protein function were 

initially thought to be lethal in males4, but these are now frequently identified in cognitively 

impaired male patients5. 
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MeCP2 is an intrinsically disordered protein (IDP), and little is known about its molecular 

architecture during normal cellular processes and in disease6. IDPs are characterized by a 

low proportion of bulky hydrophobic amino acids and high proportions of charged and 

hydrophilic amino acids. Consequently, they cannot bury sufficient hydrophobic core to 

fold spontaneously into stable, highly organized three-dimensional structures; instead, they 

fluctuate through an ensemble of conformations7. The physical characteristics of IDPs 

makes their structural characterization a challenge as these proteins are more sensitive to 

degradation.  

MeCP2 contains 486 amino acids, is a monomer in solution and is composed of six 

different domains8. Residues 78-162 specifically bind to methylated CpG dinucleotides 

and have been termed the methyl-CpG binding domain (MBD)9. Another functionally 

annotated region corresponds to the transcriptional repression domain (TRD) whose main 

function is to repress the transcription of genes10. Biophysical and protease digestion 

experiments identified three other domains: the N-terminal domain (NTD), the intervening 

domain (ID) and the C-terminal domain (CTD), which can be subdivided into CTD-α and 

CTD-β8 (Fig. 6.1).  

 

 

Figure 6.1 MeCP2 is composed of six domains: The N-terminal domain (NTD), the 

methyl-CpG binding domain (MBD), the intervening domain (ID), the transcription 

repression domain (TRD) and the C-terminal domain (CTD) which can be subdivided 

into CTD-α and CTD-β. The only available structure1 contains solely the MBD 

domain, which is the only ordered region in the protein. 

 

There is currently no structure available for the full-length MeCP2 in any of the protein 

databases. MBD is the only domain for which the secondary structure is known, and it only 



145 

 

accounts for ~17% of the amino acids1; MBD is also the only ordered domain. Circular 

dichroism (CD) of recombinant human MeCP2 has shown that the protein consists of ~35% 

β-strand/turn, 5% α-helix and almost 60% is unstructured2. Characterization of MeCP2 by 

hydrogen/deuterium exchange has indicated disorder in the entire polypeptide chain with 

the exception of the MBD domain3. Further CD studies of isolated NTD, ID, TRD and 

CTD domains confirmed their lack of stable secondary structure4. It has been 

experimentally demonstrated that the NTD, CTD and TRD domains can undergo a coil to 

helix transition, with the TRD showing the greatest tendency for helix formation4. 

To date, two computational studies of MeCP2 have been reported, and both focus on the 

ordered MBD domain only. Kucukkal and Alexov reported comparative MD simulations 

of the R133C mutant and wild-type MBD5, and Yang et al. studied the effects of Rett 

syndrome-causing mutations on the binding affinity of MBD to CpG dinucleotides6. The 

scarcity of computational studies is due to the lack of a three-dimensional structure of the 

full-length protein. Nevertheless, computer simulations have been able to predict the 

structures of IDPs. For example, using a coarse-grained model, ab initio simulations of 

pKID successfully modeled its coupled folding and binding to KIX7, and a combination of 

homology and ab initio modelling provided valuable insight into the three-dimensional 

structures of intrinsically disordered e7 proteins8. In this work, we used the known structure 

for the MBD domain as a starting point with the rest of the protein built by ab initio 

modeling. Using a combination of all-atom and coarse-grained simulations, the folding of 

the full-length MeCP2 and the conformational ensemble it could sample were studied. 

 

6.3 Materials and methods 

Ab initio modelling 

Modeller9 version 9.19 was used to build a model for the full-length MeCP2 protein. Using 

the BLAST algorithm10, we searched the UniProt database11 for homologues of MeCP2 

with a 3D structure. Unfortunately, the only known structures belong to homologues of the 

MBD domain, which accounts for only ~17% of MeCP2 amino acids and whose structure 
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has already been determined. Thus, we used the Protein Data Bank 1QK9,1 which contains 

the MBD domain structure, as a template.  Twenty different models were generated with 

Modeller9. There was little variation between the different models and thus the first model 

was chosen as the starting structure for the simulations (Fig. S6.1). With the aim of having 

a different starting structure for our coarse-grained simulations, a second model was built 

by refining the loops of the first model using the loopmodel class in Modeller. There is no 

structural information on this protein besides its known disorder and the structure of the 

MBD domain, and thus no quality assessment predictors were used to evaluate the 

generated models. The evaluation will come from the data obtained during the simulations. 

The AlphaFold12 model for human MeCP2 (UniProt code: P51608) was downloaded from 

the database hosted by the European Bioinformatics Institute (https://alphafold.ebi.ac.uk). 

Three simulations were performed with this model as the initial structure, using the 

procedure described in the next section. 

 

All-atom simulations 

The following procedure was used in all of the all-atom MD simulations: The initial 

structure was placed in a dodecahedral box in which the distance from the edges of the box 

to every atom in the protein was at least 1 nm. The box was solvated with water and 150 

mM of NaCl was added to reproduce physiological conditions. Counterions were added to 

maintain the overall charge neutrality of the system. Simulations were performed using 

GROMACS 2016.313 with the TIP3P water model14 and the Amber99SB*-ILDNP force 

field15. The only exception is the set of five replicas for the ID and TRD domains that were 

run with the CHARMM36IDPSFF force field that is parameterized specifically for 

intrinsically disordered proteins16. This IDPs-specific force field has been shown to 

produce good results when compared to other force fields in a recent study of amyloid-β17, 

an extensively studied IDP. Table S6.1 contains the details of the all-atom simulations: 

three simulations of Modeller models, three simulations of the AlphaFold model and 12 

simulations of sections of the ID and TRD domains of different lengths. 

https://alphafold.ebi.ac.uk/


147 

 

Each system was first energy minimized using the method of steepest descents and pre-

equilibrated in the canonical ensemble, i.e., at constant particle number, temperature and 

volume, for 100 ps. Pre-equilibration was followed by a production run with a time step of 

2 fs. The Lennard-Jones potential was truncated using a shift function between 1.0 and 1.2 

nm. Electrostatic interactions were calculated using the particle-mesh Ewald method 

(PME)18,19 with a real space cut-off of 1.2 nm. The temperature was set to 310 K with the 

V-rescale algorithm20 and pressure was kept at 1 atm using the Parrinello-Rahman 

barostat21. Bonds involving hydrogens were constrained using the Parallel Linear 

Constraint Solver (P-LINCS) algorithm22.  

Some systems (marked as “resized” in Table S6.1) were moved into a smaller simulation 

box after an initial run in which the protein became more compact. The final configuration 

of the initial simulation was placed into a new simulation box in which the distance from 

the edges of the box to every atom in the protein was again at least 1 nm. The new box was 

solvated with water, 150mM of NaCl and counterions. Each new system was energy 

minimized and pre-equilibrated in the canonical ensemble before moving to the production 

run. All parameters mentioned above were kept the same. Trajectory analysis was 

performed using Gromacs built-in tools13 and MDAnalysis23,24.  

 

Coarse-grained simulations 

The intermediate-resolution implicit solvent coarse-grained protein model PLUM25 by 

Bereau and Deserno was used to further explore the conformational landscape of MeCP2. 

This model represents the backbone with near-atomistic resolution, with beads for the 

amide group N, central carbon Cα and carbonyl group C’. The side chains are represented 

by single beads located at the first carbon Cβ of the all-atom model. The N and C’ beads 

can hydrogen bond through a directional potential which depends on the implicit positions 

of hydrogen and oxygen atoms within them. The PLUM model has been successfully used 

to study a variety of scenarios such as the aggregation of polyglutamine26, β-barrel 

formation at the interface between virus capsid proteins27, folding of transmembrane 
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peptides28, and it has been shown to be able to reproduce the secondary structure of small 

IDPs involved in biomineralization29.  

Simulations using this model were carried out in GROMACS 4.5.513 specifically modified 

to support the PLUM model. All interaction parameters were taken from the original work 

of Bereau and Deserno25. The simulations were run in the canonical ensemble (NVT) with 

a Langevin thermostat with friction constant 𝛤 = 𝜏−1 and an integration timestep of 𝛿𝑡 =

0.01𝜏, where τ is the natural time unit in the simulation. The reduction in degrees of 

freedom removes friction and speeds up the motion through phase space and thus this time 

unit is not equivalent to the time step in an all-atom simulation25. Table S2 contains the 

simulation details. 

 

6.4 Results  

The all-atom protein is largely unstructured 

A full-length MeCP2 all-atom protein model, henceforth referred to as MeCP2_1, was 

simulated for 1,550 ns. The protein started with an extended conformation (Fig. 6.2) in 

order to minimize bias towards any particular fold. After an initial simulation of 150 ns, 

the protein had become more compact and it was moved to a smaller box to increase 

efficiency. Figure 6.2 shows a drastic decrease in the radius of gyration (Rg) during the first 

20 ns of the simulation, when it went from 8.35 nm to 4.56 nm. Although Rg continued to 

fluctuate, it never surpassed 5 nm. Moving the protein to a smaller box allowed a reduction 

in the number of water molecules from ~793,000 to ~120,000 (Table S6.1). 
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Figure 6.2 Radius of gyration (Rg) of the full-length MeCP2 in the initial simulation 

box. The protein becomes more compact during the first 20 ns. The inset shows the 

initial structure. MBD, the only ordered domain, is clearly visible. 

 

The protein was then run in the new box for an additional 1,400 ns. The protein remained 

highly flexible; its root-mean-square deviation (RMSD) from the initial structure continued 

to show small fluctuations throughout the trajectory, as expected for an IDP (Fig. 6.3A). 

The most populated cluster in the last 400 ns of the simulation is largely unstructured with 

only small motifs of secondary structure (Fig. 6.3B). Shown in Fig. 6.3B red are the 

residues with a root mean square fluctuation (RMSF) larger than 0.6 nm. Figure 6.3C 

shows the RMSF of each amino acid throughout the last 400 ns of the trajectory. The 

residues with the highest RMSF are located in the NTD and CTD-β domains, at the 

opposite ends of the protein, and in two solvent-exposed loops. 
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Figure 6.3 All-atom MD simulation of the full-length MeCP2. A) RMSD of the protein 

in the smaller simulation box. B) Most sampled cluster throughout the last 400 ns of 

the simulation. Red: residues with an RMSF higher than 0.6 nm. C) RMSF of the 

protein throughout the last 400 ns of the simulation. The different domains are 

marked following the color code in Fig 1. 

 

The last 400 ns of the 1,400 ns trajectory were clustered using the method of Daura et al.30 

with a 0.5 nm cut-off. The secondary structure was computed for the most representative 

structure in each of the 11 clusters obtained (Table S6.3). The weighted averages show that 

20 residues had an α-helix conformation (4.1%), 113 residues were in β-strands or turns 

(23.2%) and 338 residues were in random coil (69.7%). This is very similar to experimental 

data of Adams et al., in particular the amount of α-helix compared to the experimentally 

(by CD) determined 4%31. 

We also computed the secondary structure of the protein throughout the last 400 ns of the 

simulation using DSSP32,33. The secondary structure elements in the MBD domain are very 

stable, appearing in at least 80% of all frames (Fig. 6.4). Adams et al31 reported the 

secondary structure for the MBD domain on its own to be 10% α-helix, 51% β-strands or 

turns and 38% unstructured, and the NMR structure (PDBid: 1QK91) contains 12% α-helix, 
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20% β-strands or turns and is 69% unstructured. The MBD domain in our simulation had 

15% α-helix, 28% β-strands or turns, and is 57% unstructured. Overall, our simulation is 

in good agreement with the experimental data. The most disordered domains are the ID 

domain (Fig. S6.4) and the CTDα domain (Fig. S6.6). The NTD domain has two short β-

strands and two helices, with one of them present in 60% of the simulation frames (Fig. 

S6.3). The TRD domain formed a helix in residues 241 to 244 in 70% of the simulation 

and two β-strands were observed in 6% of the frames (Fig. S6.5). The residues in the α-

helix correspond to 4% of the TRD residues and the unstructured residues to 87% of the 

TRD amino acids. This is in good agreement with the 3% of α-helix and 85% of 

unstructured residues measured by Adams et al31. Five helices are observed in the CTDβ 

domain, with two of them present 80% of the simulation (Fig. S6.7).  

Even though some of the secondary structure elements appeared in only a small fraction of 

the frames, these could become stable upon interaction with another protein, DNA or a 

small molecule. In fact, most domains in MeCP2 can bind to DNA; the MBD domain binds 

to symmetrically methylated 5′CpG3′ pairs with a preference for A/T-rich motifs34,35, an 

autonomous DNA binding domain has been identified in the ID domain36, the TRD domain 

possesses a non-specific DNA binding site31,36 and there is a distinct non-specific binding 

site for unmethylated DNA in the CTDα domain36. 

 

Figure 6.4 Percentage of frames in the last 400 ns of the MBD domain with every type 

of secondary structure. The secondary structure of the MBD domain observed in the 

MeCP2_1 simulation, 15% α-helix, 28% β-strands or turns, and 57% unstructured, 

is in good agreement with experimental data31. 

Principal component analysis (PCA) of the trajectory underlines the structural 

rearrangements that the protein undergoes during the first 600 ns of the simulation (Fig. 
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S6.8A). After this time, the protein explores a much smaller portion of the conformational 

space. In contrast, the TRD domain begins to sample more conformational space in the 

second half of the simulation (Fig. S6.8B).  

The experiments by Ghosh et al.37 showed that the single tryptophan of MeCP2, which is 

located at position 104 in the MBD domain, is strongly protected from the aqueous 

environment. Using the STRIDE web server38, we computed the relative solvent accessible 

surface area (rSA) of residue W104 in the four most populated clusters (Table S6.4). The 

first four clusters contain 98% of all frames in the last 400 ns simulation. Although there 

is no consensus on where to set the threshold to determine if an amino acid is buried, it is 

typically set between 10% and 20%39,40. The weighted average for the four clusters gave a 

rSA of 8.1% and thus it can be considered to be buried inside the protein, in agreement 

with the experimental data.37 

R133C is one of the most common disease-causing mutations in the MBD domain37. The 

x-ray structure of an MBD-DNA complex has revealed that Arg 133 is involved in the 

DNA interaction surface41, and the study by Lei et al.42 found that this residue, together 

with Arg 111, forms hydrogen bonds with DNA. In order to see if these two residues are 

solvent accessible in our simulation, we computed their rSA (Tables S6.5 and S6.6). 

Residue R111 had a rSA of 12.7% in the most populated cluster, which can be considered 

to be buried. However, this amino acid had a high rSA value in the second most populated 

cluster, giving a weighted average of 20.4%. Therefore, this residue is actually solvent 

accessible. Residue R133 had a weighted average rSA of 53.7% and thus is also solvent 

accessible. Kucukkal and Alexov5 reported an average number of hydrogen bonds with 

water of 1.68 for residue R133 and 0.47 for residue R111 in their MBD-only simulations. 

We obtained an average of 2.96 for R133 and 1.59 for R111 in the last 800 ns of the 

simulation. It is thus evident, that these residues are more solvent accessible when the full-

length protein is considered. Kucukkal and Alexov5 did not report the total number of salt 

bridges observed in their simulations, however, they reported the loss of two salt bridges 

(R133-E137 and K119-D121) upon mutation of residue R133. We computed all salt 

bridges in the same manner as them, using the Salt Bridges plugin for VMD43. A total of 

499 salt bridges were identified but most of them appeared in only a small fraction of the 
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frames and only 35 were stable during the last 400 ns of the simulation (Table S6.7). Most 

of these salt bridges occur between the NTD and the MBD domains. Salt bridge K119-

D121 is only present in very few frames (Fig. S6.9A). Lys119 formed hydrogen bonds with 

neighbouring residues 115-117 and Asp121 with Lys109 and Arg111. The salt bridge 

R133-E137 can be observed at the beginning of the simulation but is lost in the last 400 ns 

of the simulation. This is consistent with the study by Kucukkal and Alexov5 who observed 

this salt bridge in their 220 ns simulation (Fig. S6.9B), but it underlines the need for 

sufficiently long sampling times. 

 

Coarse-grained simulations sample two different conformations 

In order to investigate other possible folds of the protein, we ran four coarse-grained 

simulations using the PLUM model25. Three different configurations were used as starting 

points: A) the structure of the all-atom simulation after 800 ns, B) the initial structure built 

with Modeller, and C) model “B” with its loops refined (Fig. 6.5).  

 

Figure 6.5 Coarse-grained simulations of MeCP2 using the PLUM model25. 

Simulations started from three different conformations: structure of the all-atom 

simulation after 800 ns (A), the initial structure built with Modeller9 (B) and structure 

“B” with refined loops (C). 
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The configuration at 800 ns in the MeCP2_1 simulation (Fig. 6.5A) was used as the starting 

point for a coarse-grained simulation, henceforth referred to as CG1. Similar to the RMSD 

in the all-atom simulation, the RMSD of the protein converges to 3.5 nm but continues to 

fluctuate. The large RMSD value indicates that the overall topology of the structure 

changed. A cluster analysis was used help to identify the differences. 

 

Figure 6.6 RMSD from the initial structure of the protein (the MeCP2_1 model after 

800 ns of simulation) in the CG1 PLUM simulation. 

 

We clustered the conformations sampled in the entire trajectory using the method of Daura 

et al.30 with a 2.0 nm cut-off. Two main conformations were revealed: 1) a single globule 

and 2) two globules connected by a loop (Fig. 6.7). The first two clusters had a single 

globule configuration but the third had two distinct globules connected by a loop. In this 

structure, the connecting loop starts at residue 228 and ends in residue 242. A similar 

conformation can be observed in the eight cluster. The minimum distance between the 

amino acids of the two globules throughout the simulation shows that the two-globule 

conformation was sampled at the beginning of the simulation, around 700 ns and at 2,600 

ns of simulation. The first two times this conformation was sampled, the linker between 
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the two globules was long enough to stabilize it for ~100 ns. In contrast, the two-globule 

conformation sampled at 2,600 ns had a shorter linker and it coalesced into a single globule 

after 20 ns. 

 

Figure 6.7 Minimum distance between the two globules in the CG1 PLUM simulation. 

A two-globule conformation is sampled at the beginning of the simulation at 700 ns 

and once again at 2,600 ns. The single globule and two-globule conformations have 

their different domains marked following the color code in Fig. 1. 

 

Two different replicas (simulations CG2 and CG3) were run for the model built with 

Modeller (Fig. 6.5B). Their RMSD converged in the first 200 ns but the simulations were 

extended to 500 ns (Fig. 6.8A). Since the reference structure for the RMSD calculation is 

the initial frame i.e., the unfolded structure, a high RMSD value is to be expected. 

Simulation CG2 sampled conformations similar to those observed in the all-atom 

MeCP2_1 simulation, albeit more compact (Fig. 6.8B). Simulation CG3 collapsed into a 

globule which appears to be an energetic minimum since the system could not sample any 

other conformations (Fig. 6.8A). Interestingly, the loop that remained solvent-exposed for 

this entire simulation, spans residues 168 to 201 and corresponds to the ID domain (Fig. 

6.1). 
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Figure 6.8 (A) RMSD from the initial structure (Modeller model) of the CG2 and CG3 

PLUM simulations. Brown: Most populated cluster in the entire CG3 PLUM 

simulation. (B) Radius of gyration of the CG2 PLUM simulation. Blue line: The 

average Rg of the MeCP2_1 system. Green: The average structure of the most 

populated cluster in the MeCP2_1 simulation. Magenta: The average structure of the 

second most populated cluster in the last 400 ns of the CG2 PLUM simulation. 

 

A fourth coarse-grained simulation (CG4) started from the Modeller model with its loops 

refined (Fig. 6.5C). Since the starting structure had not been energy minimized, a high 

RMSD value is to be expected. This simulation sampled two-globule conformations similar 

to those observed in the CG1 simulation albeit with the connecting loop located between 

residues 161 and 205. Interestingly, the location of this loop matches the ID domain (Fig. 

6.1).  The protein underwent two main transitions during the simulation. It became more 

compact during the first 40 ns, it sampled two-globule conformations from 40 to 315 ns, 

and it sampled a single globule for the rest of the simulation (Fig. 6.9). 



157 

 

 

Figure 6.9 (A) RMSD from the initial structure (Modeller model with refined loops) 

and (B) minimum distance between the two globules of simulation CG4. The protein 

becomes more compact and at 40 ns (red line) it starts to sample two-globule 

conformations. After 270 ns (blue line) the two globules merge together and a single 

globule is sampled. 

 

A cluster analysis with the method of Daura et al.30 and a 2.5 nm cutoff of all coarse-

grained trajectories concatenated found 23 different clusters (Table S6.8). The first eight 

clusters contain 95.3% of all structures sampled. Four of these clusters are single globules 

and four are two-globule conformations. Only the single globule conformations had 

overlap between trajectories. 

To further understand the conformational space sampled by all coarse-grained trajectories, 

we performed a single Principal Components Analysis (PCA) on all simulations. Even 

though each simulation sampled different conformations, these get closer to one another 

over time, when projected onto the first two eigenvectors (Fig. 6.10). This implies that the 

protein tends toward a similar, limited conformational ensemble in all four simulations. 
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Figure 6.10 Principal Component Analysis. Projection of all coarse-grained 

trajectories on the first two eigenvectors, each trajectory is depicted with a different 

colour. Simulations CG2 and CG3 started from the same conformation. The starting 

points of all simulations are marked in red and the end points in yellow. 

 

All-atom two-globule conformations transition into a single globule 

Given that the two-globule conformation had only been sampled by the coarse-grained 

force field, new all-atom simulations were run starting from this conformation. Modeller9 

was used to generate the initial structures via homology modeling. Three templates were 

used to generate the models: One for the first globule (NTD and MBD domains), one for 

residues in the connecting loop (ID and TRD domains) and one for the second globule 

(CTD domain).  

Model MeCP2_2 was built using the two globules from the most populated cluster with a 

two-globule conformation in the first 500 ns of simulation CG1. The first template 

contained residues 1-235, the second template had an extended peptide with residues 230-

249, and the third one contained residues 311-486 from the second globule (Table S6.9). 

The peptide used in the second template was generated using Pymol44. Using a longer 
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peptide for the second template produced single-globule models, with the two globules 

merged into one and a long loop forming a hoop. 

In order to study whether the secondary structure in the MBD domain would have any 

impact on the stability of the two-globule conformation, we generated another model using 

an all-atom configuration as a template for the first globule. We used the final structure 

after 400 ns of simulation as the first template for model MeCP2_3. The loop in Model 

MeCP2_2 was used as the second template and the second globule (residues 311-486) from 

simulation CG1 as the third template (Table S6.9). 

Model MeCP2_2 collapsed into a single globule after only 20 ns of simulation and did not 

sample any other conformations, therefore, we did not continue the production run beyond 

60 ns. Model MeCP2_3 did not dwell into the same local minimum and its production run 

was extended to 600 ns. It sampled the two-globule conformation for a longer time but 

eventually the two globules melted into one, albeit with a more extended structure than the 

previous model and retaining the secondary structure (Fig. 6.11). It is possible that this 

conformation was not stable enough because the connecting loop was not in a water-soluble 

conformation. Simulations of the connecting loop could help us shed some light on this 

matter. 

 

Figure 6.11 RMSD to the initial structure of models (A) MeCP2_2 and (B) MeCP2_3. 

Green: The most populated cluster in each trajectory. Model MeCP2_2 samples two-
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globule conformations during the first 125 ns (blue line), it then undergoes a 

transition to a single globule. 

 

Comparing all simulations 

Using the PLUMED plugin45 for GROMACS13, we computed the α-helical content of the 

all-atom simulations, as well as acylindricity and asphericity of all simulations. 

The α-helical content was computed by generating a set of all possible six residue sections 

in the protein and calculating the RMSD distance between each residue configuration and 

an idealized α-helical structure. This is done by calculating the following sum of functions 

of the RMSD distances, 

𝑠 = ∑
1 − (

𝑟𝑖 − 𝑑0

𝑟0
)
𝑛

1 − (
𝑟𝑖 − 𝑑0

𝑟0
)
𝑚

𝑖

, 

where the sum runs over all possible segments of an α-helix. This collective variable was 

first defined by Pietrucci and Laio46 and all parameters were set equal to those used in their 

original paper: 𝑑0 = 0.0, 𝑟0 = 0.08 nm, 𝑛 = 8 and 𝑚 = 12.  

Model MeCP2_3 sampled conformations with a wider array of values for both the α-helical 

content and the Rg than the MeCP2_1 simulation (Fig. 6.12). The trajectory analyzed for 

this all-atom simulation does not include the 150 ns from the bigger simulation box in 

which the protein underwent initial folding. 
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Figure 6.12 α-helical content of the protein structure vs radius of gyration in the all-

atom and two-globule all-atom simulations. Comparison between the all-atom 

simulation (MeCP2_1, left) that started from an extended structure and the one that 

started from a two-globule conformation (MeCP2_3, right). Orange: Individual 

measurements of α-helical content. Purple: Individual measurements of Rg. 

 

In 1971, Šolc showed that the shape of polymers can be quantified using the eigenvalues 

(L1, L2 and L3) of the tensor of gyration47. The symmetry of a polymer, or in this case, of 

a peptide, can be described by asphericity, 

𝒃 = 𝑳𝟏 −
𝟏

𝟐
(𝑳𝟐 + 𝑳𝟑) 

and acylindricity, 

𝒄 = 𝑳𝟐 − 𝑳𝟏. 

Figure 6.13 shows the results. All simulations sampled similar values; however, the coarse-

grained simulations sampled a wider array of values. From the four coarse-grained 

simulations, simulation CG1 is the most akin to the all-atom simulations. 
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Figure 6.13 Acylindricity and asphericity vs radius of gyration in the all-atom, coarse-

grained and two-globule all-atom simulations. The coarse-grained simulations 

sampled structures with lower asphericity, higher acylindricity and higher radius of 

gyration than the all-atom simulations. Orange: Individual measurements of 

asphericity and acylindricity. Purple: individual measurements of radius of gyration. 

 

The ID and TRD domains are highly flexible 

In order to thoroughly explore the conformations that the flexible ID and TRD domains 

that form the connective loop can sample, all-atom simulations were run on the ID and 

TRD domains (residues 164-310). Five replicas were run with two different force fields: 

Amber99SB*-ILDNP15 (simulations A1-A5 in Table S6.1) and CHARMM36IDPSFF16 

(simulations C1-C5 in Table S6.1), using the loop in model MeCP2_3 as the initial 

structure. 

Figure 6.14 shows Rg and end-to-end distance of all structures sampled by the ten 

simulations. One of these simulations sampled very compact structures but the other nine 

sampled an array of structures with end-to-end distances between from 3 nm to 23 nm, and 

radius of gyration from 2.5 nm to 6.5 nm. Table S6.10 shows the most sampled 

conformations in all ten simulations. Overall, the Amber force field sampled more compact 

structures than the Charmm force field, in agreement with previous studies48–50. 
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Figure 6.14 Radius of gyration vs end-to-end distance of five all-atoms simulations of 

the ID and TRD domains run with Amber99SB*-ILDNP (A) and 

CHARMM36IDPSFF (B). The peptide is unstructured and can sample a large 

number of conformations, from compact (low radius of gyration and end-to-end 

distances) to extended structures (large end-to-end distances). Each simulation is 

shown in a different color. 

 

In order to understand the role of length in the connecting loop between globules, we 

simulated the two connecting loops found in the coarse-grained simulations. Two all-atom 

simulations were performed, one in which the loop spanned residues 228 to 242 (observed 

in simulation CG1, see Table S6.2), and another with the loop containing residues 161 to 

205 (observed in CG4, see Table S6.2). The initial structures were taken from the most 

representative structure of the two-globule conformation in the corresponding coarse-

grained trajectory. Modeller9 was used to add the missing side-chains and to obtain all-

atom structures. The shorter loop (residues 228-242) sampled conformations with the 

radius of gyration lower than 1.5 nm, whereas the longer loop (residues 161-205) had 

conformations with the radius of gyration of up to 2.5 nm (Fig. 6.15).  
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Figure 6.15 Radius of gyration vs end-to-end distance in all-atom simulations of the 

two connecting loops found in the coarse-grained simulations. A) Loop with residues 

228-242. B) Loop with residues 161-205. The shorter loop sampled more compact 

structures. 

 

Comparing these two simulations with those of the entire ID and TRD domains (Fig. 6.14) 

further underlines the relationship between the length of the loop and its compactness for 

these particular sequences and range of lengths. The shorter loops observed between the 

two globules may result in insufficient spacing to stabilize the two-globule conformations 

sampled in the coarse-grained trajectories, which would explain why they eventually 

merged into a single globule. Moreover, the two-globule all-atom simulations may be 

unstable due to the poor initial conditions of the loop generated with Modeller. We 

hypothesize that a stable two-globule conformation would feature a longer separating loop 

than observed in our simulations. 

 

Comparing the simulations with AlphaFold prediction 

Last year, the field of bioinformatics had a major breakthrough when the deep learning 

model AlphaFold was able to successfully predict the three-dimensional structure of 

proteins from their sequence12. Since then, the model has been used to predict 98.5% of the 

proteins in the human proteome51; all the structures are available to the community in a 
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database hosted by the European Bioinformatics Institute (https://alphafold.ebi.ac.uk). 

Nevertheless, predicting the structure of IDPs remains a challenge, as the vast number of 

low and very low confidence regions from the structures predicted by AlphaFold overlap 

with regions predicted to be disordered52. 

The model we built with Modeller9 (MeCP2_1) has the N- and C-terminal ends extended 

into the solvent, and its radius of gyration is large (8.4 nm). In contrast, the model predicted 

by AlphaFold12 is much more compact (𝑅𝑔 = 4.9 nm) and with an overall spherical shape 

(Fig. 6.16). The per-residue confidence score (pLDDT) of almost all residues is either low 

or very low; only the MBD domain was predicted with confidence (pLDDT > 70). Since 

the model had such low confidence, we used it as the initial structure for three all-atom 

MD simulations (Table 6.1). 

 

Figure 6.16 Comparison of the models generated by A) Modeller9 and B) AlphaFold12, 

with their respective MBD domains aligned with each other. The model generated by 

AlphaFold is much more compact than the one generated by Modeller. 

 

Three replicas of the AlphaFold12 model were run for 400 ns each. Each simulation 

sampled a different folding path and converged to a different conformation (Fig. S6.10). 

Using the PLUMED plugin45 for GROMACS13, their α-helical content, acylindricity and 

https://alphafold.ebi.ac.uk/
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asphericity were determined (Fig. S6.11). The conformations sampled by all three 

AlphaFold12 simulations have similar asphericity and acylindricity values. They sampled 

conformations that are more spherical and less cylindrical than the conformations sampled 

by the MeCP2_1 Modeller9 simulation. Since the starting structure has a low radius of 

gyration (𝑅𝑔 = 4.9 nm) we argue that it introduced a bias in the folding path towards more 

compact structures. Each AlphaFold12 replica had a different α-helical content, and only 

one of them sampled values to similar those observed in the Modeller9 simulation.  

The AlphaFold prediction was not stable in water and, the only exception being the MBD 

domain, underwent further folding of all of its domains. Although AlphaFold does a 

remarkable job predicting the presence of disorder, it cannot solve IDP structures53. These 

simulations should serve as a cautionary tale on the use of predicted models for IDPs; as 

explained by Strodel in her review54, extensive simulations are recommended to equilibrate 

the protein and sample its conformational space. 

 

6.5 Conclusions 

In this work we have presented a multiscale study of MeCP2, comprising six all-atom and 

four coarse-grained simulations of the full-length protein, as well as twelve all-atom 

simulations of the ID and TRD domains. Together, they represent the first computational 

attempt to study the full-length MeCP2 protein. 

The initial model was built starting from the NMR structure of the MBD domain1 and 

building the rest of the protein by ab initio modeling. Two main different conformations 

were sampled in the coarse-grained simulations: a globular structure similar to the one 

observed in the all-atom force field and a two-globule conformation. This second 

conformation was not stable in the all-atom force field, probably because the length of the 

connecting loop was not long enough to be water-soluble. The conformational ensemble 

sampled by the 1,550 ns all-atom simulation is in good agreement with the available 

experimental data1,31. Our model had 4.1% of α-helix content compared to 4% found 

experimentally31. In addition, our model predicted amino acid W104 to be buried, and 
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amino acids R111 and R133 to be solvent accessible, in accordance with 

experiments37,41,42. Finally, we used the model predicted by AlphaFold12 to run three all-

atom simulations. The model was not stable in water and underwent further folding. This 

model is more compact than the one predicted with Modeller9, and consequently, it 

sampled conformations more compact and spherical than those sampled in our Modeller 

simulations. We recommend caution when using structures of intrinsically disordered 

proteins predicted by AlphaFold.  

With a total of 3 μs of atomistic simulations and 4.7 μs of coarse-grained trajectories of 

full-length MeCP2 models, extensive conformational space of this protein was sampled. 

Our longest atomistic simulation (MeCP2_1) converged after 800 ns to a very stable 

structure. When compared to CG, it is reasonable to assume that the all-atom models are 

more accurate, so the drift of the CG models towards more compact structures is likely to 

be an artifact. The results show that no single method (atomistic or CG simulations, or 

AlphaFold modelling) is sufficient on its own for predicting the conformational ensemble 

of a large IDP such as MeCP2. Our simulations add structural and dynamical detail to the 

low-resolution information previously available from experiments and could help study 

disease-associated mutations in their structural context.  

We finish by speculating on how the one- and two-globule conformations that were 

observed in CG simulations and also transiently in MD simulations, could be investigated 

experimentally – as discussed above, IDPs pose formidable challenges to both experiments 

and simulations. One possible way might be high-speed atomic force microscopy (HS-

AFM) that has very recently been demonstrated to be able to characterize the structure and 

dynamics of IDPs (polyglutamine tract  binding  protein-1 and four of its variants as well 

as two other IDPs) by Kodera et al55. In particular, for some of their systems they reported 

temporarily appearing two-globule conformations and order-disorder transition with an 

associated change in the (relatively short) linking intrinsically disorder region between the 

globules. Given that MeCP2 has a long and very flexible disordered region spanning the 

ID and TRD domains, it is tempting to speculate that fluctuations between the one- and 

two-globule conformation might be directly detectable or/and inducible in HS-AFM. This 

seems feasible since force spectroscopy56 and MD simulations57 have shown that for 
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intrinsically disordered regions forces in the range of a few tens of pN may cause 

significant stretching and that the free energy barriers are very low. In HS-AFM, the forces 

are higher up to about 100 pN and there is frictional interaction, albeit very small, with the 

substrate55,58. Thus, the two-globule state that was only marginally stable in current 

simulations might also be observable in HS-AFM. Such experiments would potentially 

also allow investigation of the properties of the linker and the globules. 

 

 

 

6.6 Supplemental information 

 

 

Figure S6.1 Alignment of ten of the rejected models of the full-length MeCP2 protein 

built with Modeller18. 
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Table S6.1 Details of all-atom simulations. 

System Water 

molecules 

Na/Cl 

each 

Counterions 

(Cl) 

Duration 

(ns) 

Starting 

structure 

MeCP2_1 793,027 2,205 37 150 Built with 

Modeller 

MeCP2_1 resized 119,575 337 37 1000 MeCP2_1 

MeCP2_2 113,980 324 37 60 Built with 

Modeller 

MeCP2_3 458,344 1,277 37 60 Built with 

Modeller 

MeCP2_3 resized 119,989 339 37 600 MeCP2_3 

Loop Amber 324,046 0 31 10 loop in 

MeCP2_3 

Loop A1 resized 71,863 0 31 100 Loop Amber 

Loop A2 resized 44,741 0 31 100 Loop Amber 

Loop A3 resized 224,502 0 31 100 Loop Amber 

Loop A4 resized 129,396 0 31 100 Loop Amber 

Loop A5 resized 131,425 0 31 100 Loop Amber 

Loop Charmm 324,046 0 31 10 loop in 

MeCP2_3 

Loop C1 resized 186,560 0 31 100 Loop 

Charmm 
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Loop C2 resized 281,911 0 31 100 Loop 

Charmm 

Loop C3 resized 54,506 0 31 100 Loop 

Charmm 

Loop C4 resized 293,861 0 31 100 Loop 

Charmm 

Loop C5 resized 102,059 0 31 100 Loop 

Charmm 

Loop 228-242 4,665 0 0 100 Loop in two-

globule, CG1 

Loop 161-205 13,658 0 12 100 Loop in two-

globule, CG4 

AlphaFold R1 144,569 411 37 400 AlphaFold 

model 

AlphaFold R2 144,569 411 37 400 AlphaFold 

model 

AlphaFold R3 144,569 411 37 400 AlphaFold 

model 

 

Table S6.2 Details of coarse-grained simulations. These were run using the PLUM 

model with implicit water. 

System Duration (ns) 

CG1 3,000 
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CG2 500 

CG3 500 

CG4 700 

 

 

Figure S6.2 RMSD of the TRD domain in the all-atom full-length protein simulation. 

 

Table S6.3 Secondary structure content in the last 400 ns of the all-atom MeCP2_1 

simulation clustered with a 0.5 nm cutoff and the Daura et al. method39. 

Cluster # # frames α-helix β-strand/turn coil/bend 

1 23,559 22 121 333 

2 11,556 16 99 353 

3 2,920 26 110 338 

4 1,189 15 112 342 
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5 499 31 109 327 

6 137 8 120 340 

7 58 14 109 343 

8 58 21 109 338 

9 19 23 101 345 

10 3 15 115 343 

11 3 22 91 350 

Total/Average 40,001 20 113 339 

 

 

Figure S6.3 Percentage of frames in the last 400 ns of the NTD domain with every 

type of secondary structure. 
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Figure S6.4 Percentage of frames in the last 400 ns of the ID domain with every type 

of secondary structure. 

 

 

Figure S6.5 Percentage of frames in the last 400 ns of the TRD domain with every 

type of secondary structure. 

 

 

Figure S6.6 Percentage of frames in the last 400 ns of the CTDα domain with every 

type of secondary structure.  
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Figure S6.7 Percentage of frames in the last 400 ns of the CTDβ domain with every 

type of secondary structure. 

 

 

Figure S6.8 Principal Component Analysis. Projection of the MeCP2_1 simulation on 

the first two eigenvectors, coloured by time. (A) Projection of the entire protein. (B) 

Projection of the TRD domain. The protein samples the largest portion of this 2D-

space during the first 600 ns of the simulation. In contrast, the TRD domain begins to 

sample more conformational space in the second half of the simulation. 
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Table S6.4 Relative solvent accessible surface area (rSA) of residue W104 in the four 

most populated clusters of the all-atom simulation. 

Cluster # weight rASA 

1 23,559 7.4 

2 11,556 9.6 

3 2,920 6.6 

4 1,189 11.4 

 Weighted average: 8.1 

 

Table S6.5 Relative solvent accessible surface area (rSA) of residue R111 in the four 

most populated clusters of the all-atom simulation. 

Cluster # weight rASA 

1 23,559 12.7 

2 11,556 37.4 

3 2,920 5.8 

4 1,189 44.3 

 Weighted average: 20.4 

 

 



176 

 

Table S6.6 Relative solvent accessible surface area (rSA) of residue R133 in the four 

most populated clusters of the all-atom simulation. 

Cluster # weight rASA 

1 23,559 50.3 

2 11,556 56.7 

3 2,920 65.5 

4 1,189 63.0 

 Weighted average: 53.7 

 

Table S6.7 Salt bridges in the last 400 ns of the full-length all-atom MeCP2_1 

simulation. 

Interacting 

residues 

Protein domains 

Glu11 – Lys27 NTD – NTD 

Asp15 – Arg162 NTD – MBD 

Asp17 – Lys135 NTD – MBD 

Lys22 – Glu214 NTD – TRD 

Glu55 – Lys109 NTD – MBD 

Glu55 – Arg111 NTD – MBD 

Glu55 – Arg133 NTD – MBD 

Glu66 – Arg91 NTD – MBD 
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Glu66 – Arg85 NTD – MBD 

Glu76 – Arg85 NTD – MBD 

Asp97 – Lys171 MBD – ID 

Arg111 – Asp121 MBD – MBD 

Asp154 – Arg167 MBD – ID 

Asp156 – Arg167 MBD – ID 

Arg168 – Glu205 ID – ID 

Glu235 – Lys254 TRD – TRD 

Glu235 – Lys347 TRD – CTDα 

Arg253 – Glu315 TRD – CTDα 

Arg253 – Glu365 TRD – CTDβ 

Arg255 – Glu258 TRD – TRD 

Asp260 – Lys337 TRD – CTDα 

Lys266 – Glu282 TRD – TRD 

Arg270 – Glu394 TRD – CTDβ 

Lys271 – Glu404 TRD – CTDβ 

Glu290 – Lys307 TRD – TRD 

Arg294 – Glu318 TRD – CTDα 

Glu298 – Lys307 TRD – TRD 
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Lys304 – Asp407 TRD – CTDβ 

Lys321 – Glu397 CTDα – CTDβ 

Arg344 – Glu365 CTDα – CTDβ 

Arg420 – Glu473 CTDβ – CTDβ 

Glu432 – Arg453 CTDβ – CTDβ 

Arg453 – Glu457 CTDβ – CTDβ 

Glu455 – Arg458 CTDβ – CTDβ 

Glu457 – Arg471 CTDβ – CTDβ 

 

 

Figure S6.9 Salt bridge interaction between residues Lys 119 and Asp 121 (A) and 

between residues Arg 133 and Glu 137 (B). 
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Table S6.8 Clusters sampled in the coarse-grained simulations. The first eight clusters 

contain 95.3% of the sampled structures. 

Cluster # # Structures Sampled in Representative structure 

1 22,293 CG1, CG2, CG4 

 

2 5,810 CG1, CG2, CG3, 

CG4 

 

    

3 4,986 CG1 

 

4 3,492 CG1, CG3 

 

    

5 3,027 CG1, CG4 
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6 2,768 CG4 

 

    

7 1,257 CG4 

 

    

8 1,165 CG1 

 

 

Table S6.9 Templates used to generate models MeCP2_2 and MeCP2_3. The blue 

templates were taken from the coarse-grained simulation CG1, the green template 

was generated with Pymol52, the red template was taken from an all-atom simulation 

of the NTD+MBD domains66 and the purple template was taken from model 

MeCP2_2. 

 Template 1 Template 2 Template 3 Final Model 

 

MeCP2_

2 
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MeCP2_

3 
  

 

 

Table S6.10 Conformations sampled by the ID+TRD domains simulations. The five 

most populated clusters are shown for each simulation. 

 

 

 

Figure S6.10 RMSD of the three AlphaFold simulations. Right: Alignment of the most 

sampled structure from 200 to 300 ns (light colours) and the most sampled structure 
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in the last 100 ns (dark colours) of each replica. Both structures are very similar to 

each other in the three simulations, ratifying the convergence of the simulations. 

 

 

Figure S6.11 Prediction of protein disorder for MeCP2. Residues beyond the red 

threshold line are predicted to be disordered. The different domains are marked 

following the color code in Fig 1. 

 

Figure S6.12 Autocorrelation of the radius of gyration of MeCP2_1. Red: exponential 

fit 𝒚 = 𝒂 ∙ 𝒆−𝒃𝒕 with 𝒂 = 𝟏. 𝟎𝟑𝟎𝟐𝟕 and 𝒃 = 𝟏𝟎. 𝟑𝟒 ns. 
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Figure S6.13 Distribution of structures sampled in the MeCP2_1 simulation. 
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7 Conclusions and future directions 

7.1 Conclusions 

7.1.1 Conclusions 

Using a computational approach, we characterized the structure and dynamics of two 

biologically relevant proteins: a globular protein and an IDP. This work illustrates the 

challenges faced when dealing with an IDPs, as well as the importance of having long 

simulations. The primary conclusions of this thesis are presented below. 

 

7.1.2 All-atom MD simulations can be enough to provide insight into 
globular proteins 

Most of the structures of globular proteins have been solved, either by experimental 

methods or by homology modeling with high confidence in the prediction1. This makes, in 

principle, performing all-atom MD simulations very straightforward. Furthermore, often 

there is no lack of experimental data to which to compare the results obtained in silico. The 

challenge lies in that oftentimes there is so much information already available, that one 

has to be creative in order to provide new insights, standard analyses are not enough. 

Chapter 4 showed how state-of-the-art techniques such as residue interaction network 

analysis can be successfully applied to explain the mechanisms that give rise to different 

behaviours in two highly similar homologous enzymes. It also underlines the need for long 

simulations. As the results showed, some of the previously reported results from shorter 

trajectories were transient and no longer observed after the first microsecond of simulation. 

 

7.1.3 MD simulations can be a complimentary technique to 

experimental procedures 

High-speed atomic force microscopy (HS-AFM) is one of the few techniques that can be 

used to evaluate the structure and dynamics of intrinsically disordered proteins2. An 

important question that arises when using this technique is whether the molecular 
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behaviour observed in the protein under study is affected by the tip-sample and surface-

sample interactions. It has been shown that the transferred energy from the AFM tip to 

sample is partitioned amongst all degrees of freedom of the molecule, so that the transferred 

energy per degree of freedom is negligibly small; importantly, it dissipates quickly, over a 

time much shorter than 1 μs3. However, there is no direct way to assess the impact of 

surface-sample interaction. By performing MD simulations of the MBD domain of MeCP2 

in solution and in the presence of a surface, we were able to show that the surface-sample 

interaction did not affect the secondary structure of the protein, validating the experimental 

results. The surface used in the simulation had the same surface charge density as the 

surface in the experimental setup. 

 

7.1.4 MD simulations can provide new insights when it’s difficult to 
obtain experimental data 

The structural characterization of a large IDP such as MeCP2 is a challenge. Indeed, our 

results show that no single method is sufficient on its own for predicting the conformational 

ensemble of MeCP2. A combination of all-atom and coarse-grained simulations, as well as 

backmapping to atomic structures, and extensive simulation times were needed. 

Thankfully, we do have some structural information against which we could validate our 

models. The all-atom model MeCP2_1 was in good agreement with all available 

experimental data, and the coarse-grained simulations sampled a structure similar to those 

observed in HS-AFM experiments. Our simulations help to put together a more complete 

picture where experiments had only looked at individual features and they provide 

predictions for new experiments.  

 

7.2 Future directions 

We studied two native TIM enzymes (TcTIM and TbTIM) as well as a chimeric protein in 

chapter 4. We examined their electrostatic interactions and found some significant 

differences in the hydrogen bonds of the three proteins. This led us to hypothesize that the 
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thermal stability of the chimeric protein is higher than TbTIM but lower than TcTIM, 

which would need to be validated by experiments. 

In chapter 6, we characterized the structure and dynamics of the full-length MeCP2 protein. 

Our results can be the basis of further studies such as studying disease-associated mutations 

in their structural context or its interactions with its biological partners. 
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