
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

6-2014

Network and Energy-Aware Resource Selection
Model for Opportunistic Grids
Izaias Faria
Universidade Federal de Santa Catarina, izaias.faria@posgrad.ufsc.br

Mario Dantas
Universidade Federal de Santa Catarina, mario.dantas@ufsc.br

Miriam A M Capretz
Western University, mcapretz@uwo.ca

Wilson Higashino
Western University, whigashi@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons, and the Theory and Algorithms Commons

Citation of this paper:
Faria, Izaias; Dantas, Mario; Capretz, Miriam A M; and Higashino, Wilson, "Network and Energy-Aware Resource Selection Model for
Opportunistic Grids" (2014). Electrical and Computer Engineering Publications. 45.
https://ir.lib.uwo.ca/electricalpub/45

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub/45?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages

Network and Energy-Aware Resource Selection
Model for Opportunistic Grids

Izaias de Faria1, M.A.R. Dantas1, Miriam A.M. Capretz2, Wilson A. Higashino2,3

Research Laboratory of Distributed Systems (LaPeSD)
1Dep. of Informatics and Statistic (INE), Federal University of Santa Catarina (UFSC), Florianópolis, Brazil

izaias.faria@posgrad.ufsc.br, mario.dantas@ufsc.br
2Dep. of Electrical and Computer Engineering, Western University, London, Canada

{mcapretz, whigashi}@uwo.ca
3Instituto de Computação, Univ. Estadual de Campinas, Campinas, Brazil

Abstract—Due to increasing hardware capacity, computing

grids have been handling and processing more data. This has led
to higher amount of energy being consumed by grids; hence the
necessity for strategies to reduce their energy consumption.
Scheduling is a process carried out to define in which node tasks
will be executed in the grid. This process can significantly impact
the global system performance, including energy consumption.
This paper focuses on a scheduling model for opportunistic grids
that considers network traffic, distance between input files and
execution node as well as the execution node status. The model
was tested in a simulated environment created using
GreenCloud. The simulation results of this model compared to a
usual approach show a total power consumption savings of
7.10%.

Keywords— opportunistic grids; energy consumption; resource
selection model.

I. INTRODUCTION

Grid systems were proposed as the next generation
computing platform and global infrastructure for solving large-
scale problems [1]. Grids enable sharing of resources used by
scientific researches which have a high cost of ownership [2].
Moreover, they enable on-demand and real-time processing
and analysis of data generated by these scientific instruments.
This capability significantly enhances the possibilities for
scientific and technological research and innovation, industrial
and business management, application software service
delivery and commercial activities.

Currently, private and public institutions have a large
number of computing resources, such as personal computers
and workstations, with great capacity for data processing and
storage. These computers are idle most of the time and, even
when they are in use, usually only a small percentage of their
computing capacity is effectively used as confirmed by
Beauvisage [3]. Opportunistic Grids are computing systems
that provide the means to use an installed base of ordinary
computers to execute high performance computing
applications, thus leveraging their available idle computing
power [4]. The focus of opportunistic grid middleware is not
on the integration of dedicated computer clusters (e.g. Beowulf
[5]) or supercomputing resources, but on taking advantage of
the idle computing cycles of ordinary computers and

workstations that can be spread across a number of several
administrative domains.

As systems scale and energy consumption increases, these
technologies have the potential to damage our ecosystems. In
the past few years’ energy consumption has become one of the
main problems that the computer industry has faced due to
increasing investment for maintaining the computers [6] and
the reduction in performance due to increasing temperatures
[7]. Energy consumption is not only determined by hardware
efficiency, but it is also dependent on the resource management
system (RMS) deployed on the infrastructure.

Scheduling of tasks on multiprocessors (done by the RMS)
is usually focused on optimizing common performance criteria
such as total completion time and turnaround time. This
problem is generally well understood and has been studied for
decades. Many research results exist for different variations of
this scheduling problem; some of them provide theoretical
insights, while others give hints for implementing real systems.
This paper presents an approach to improve energy efficiency
in opportunistic grids, using a resource-selection model based
on the cost of transporting bits across the network and the cost
of the actions required for resource selection.

The following sections of the paper are organized as
follows: Section II provides the required background
knowledge and concepts of scheduling in opportunistic grids.
Related work is then discussed in Section III. The proposed
model is formally presented in Section IV. The simulation
environment and experimental results are presented in Section
V. Finally, Section VI concludes the paper and presents future
research directions.

II. BACKGROUND

A. Resource Management System (RMS)

A grid [8] is a very large-scale, generalized distributed
network-computing system that can scale to Internet-size
environments with machines distributed across multiple
organizations and administrative domains. The emergence of a
variety of new applications demands that grids support
efficient data and resource management mechanisms. The
RMS is a module central for the grid operation which is
responsible for managing the pool of resources available to the

I. De Faria, M. A. R. Dantas, M. A. M. Capretz, W. A. Higashino. Network and Energy-Aware Resource Selection Model for Opportunistic Grids. Proc. of the 2014 IEEE 23rd International WETICE Conference, 2014, pp. 167-172..

http://dx.doi.org/10.1109/WETICE.2014.31

Copyright: http://www.ieee.org/documents/ieeecopyrightform.pdf

grid, such as processors, network bandwidth, and disk storage.
In order to support a variety of applications efficiently, the
RMS must address issues such as fault-tolerance and stability
[9].

In a grid, the resource pool can include resources from
different providers, therefore requiring all resource providers to
trust the RMS. Additionally, the RMS is responsible for
handling the various resources while adhering to the different
usage policies. Fig.1 shows the interaction of the RMS with the
resource pool.

Fig. 1. RMS interaction with Resource Pool

Applications may request resources either directly or
indirectly from the grid. Such resource requests are considered
as tasks by the grid. In practice, a grid RMS may be required to
handle different tasks using different policies. In general,
requiring the RMS to support multiple policies can compel the
scheduling mechanisms to solve a multi-criteria optimization
problem.

Ideally, a scheduler should ensure that tasks are executed
making optimum use of available resources and finish in the
shortest time possible, while respecting time constraints or
other policies applied to the tasks. Due to the heterogeneous
and dynamic nature of the grid, the end-user must establish the
requirements to be met by the target resources (discovery
process) and criteria to rank the matched resources (selection
process). The attributes needed for resource discovery and
selection must be collected from information services. Usually,
resource discovery is based only on static attributes such as
operating system and architecture, while resource selection is
based on dynamic attributes such as disk space and processor
load.

B. Scheduling strategies

Ideally, the development of scheduling algorithms should
be focused on a specific set of applications, because if the
details of the applications to be scheduled are unknown, the
algorithm can negatively influence the performance. Because
the computational grid environment has certain special features
such large number and heterogeneity of resources and dynamic
performance, resource allocation in this environment becomes
challenging. Taking into account the challenges and known
strategies in resource scheduling in computational grids,
certain specific algorithms are more widely used in such
environments, such as:

Workqueue (WQ): When a resource becomes available,
the choice of which task shall be submitted for execution is
made at random. The goal is forto assign a greater number of
tasks to faster machines, causing slower machines to work with
lighter loads [10].

Workqueue with Replication (WQR): WQR is similar to
WQ in that tasks are sent to run on the machines that are
available. The moment a machine finishes executing a task, it
receives a new execution. The difference between WQ and
WQR occurs when a machine becomes available and there are
no other tasks in line to be executed. At this time WQR
initiates replication of tasks that are still running. Once the
original task or one of its replicas completes execution, the
others are disrupted [10].

Sufferage (Suff) [11]: determines how much each task
could be impaired if it were not scheduled on the processor that
would run it most efficiently. The sufferage value of each task
is the difference between its best and second-best Completion
Time (CT), considering all processors in the grid. The task
with the highest sufferage value have execution priority.

XSufferage (XSuff): XSufferage is a modification of
Sufferage, the main difference being the method used to
calculate Sufferage. XSufferage considers the transfer of input
data in its calculation of task execution times. In other words, it
uses CPU-related information and the estimated task execution
time used by Sufferage plus the bandwidth available on the
network that connects the grid resources.

This paper proposes an algorithm derived from the WQ
strategy. The algorithm proposed in Section 4 is focused on
resource allocation; as soon as an execution is over, the
algorithm allocates resources for the next execution in line.
Unlikely WQR the proposed algorithm does not consider
execution replicas. Also the strategy of the proposed model
considers the cost of the transfer of input files for the execution
node similar to the XSuff strategy.

C. Metrics

The general purpose of consumption metrics is to provide
an overview of the energy efficiency of the infrastructure. In
the present article, these metrics seek to prove the validity of
the proposed algorithm.

The calculation model used in this work is based on the
Baliga et al. [12] model, which considers the energy per bit as
a fundamental measure of consumption. The energy Ec needed
to carry a bit over the network can be expressed as:

where, Ples, Pes and Pg are respectively the energy consumed by
small Ethernet switches, Ethernet switches and routers. Cles, Ces
and Cg represent the capabilities of these pieces of equipment
in bits per second.

The first factor 3 in equation 1 takes into account the
energy requirement for redundancy (with a numerical value of
2) as well as cooling and other overheads (assumed to have a
value of 1.5). The second factor of 3 is related to the
combination of the energy consumed by enterprise network
switches and the LAN network grid.

D. Simulation

Simulation is a practical way to analyze algorithms on
large-scale distributed systems of heterogeneous resources.
Unlike using the real system in real time, simulation avoids the
overhead of coordinating real resources; therefore, it does not
add unnecessary complexity to the analytical mechanism.
Simulation is also effective in working with very large
problems that would otherwise require the involvement of a
large number of active users and resources.

Among the available simulators, GridSim [13] and
GreenCloud [14] were selected for this research. Some of the
main features of GridSim include modelling heterogeneous
computational resources, scheduling tasks based on time- or
space-sharing policies, differentiated network service, and
simulation of workload traces from real systems. This
simulator facilitates integrated studies of novel on-demand data
replication strategies and task scheduling approaches.

GreenCloud is known for advanced energy-aware studies in
the area of cloud computing. GreenCloud extracts, aggregates,
and makes available information about the energy consumed
by the computing and communication elements of data center.
In particular, it focuses on accurate capture of the
communication patterns of current and future data center
architectures. In the present article GreenCloud has been
chosen because it is designed to capture details of the energy
consumed by data center components.

III. RELATED WORK

Montero et al. [15] analyzed the relevance of resource
proximity in the resource-selection process to reduce the cost
of file staging. They also studied opportunistic migration when
a new resource became available on the grid. In this situation,
the performance of the new host, the remaining execution
times of applications, and the proximity of the new resource to
needed data are considered critical factors in deciding whether
task migration is feasible and worthwhile. Along with the
opportunistic grid environment and the proximity of the new
resource to needed data it is also relevant to consider the
resource status because depending on these, the execution
migration process can become unfeasible.

Ponciano and Brasileiro [16] investigated energy-aware
scheduling, sleeping and wake-up strategies in opportunistic
grids. Sleeping strategies are used to reduce grid energy
consumption during idle periods; wake-up strategies are used
to choose a set of resources to fulfill a workload demand; and
scheduling strategies are used to decide which tasks to
schedule on the available machines. These strategies could also
be taken into account in the resource selection process to
enable a wider set of selection options.

Nesmachnow et al. [17] introduced a new formulation of
the scheduling problem for multicore heterogeneous
computational grid systems. In this formulation energy-
consumption minimization, along with the makespan metric,
was considered. The authors also adopted a two-level model, in
which a meta-broker agent receives all user tasks and schedules
them on the available resources belonging to different local
providers. HTCondor [18] used a similar model in which a

scheduler chooses resources to execute tasks and has a module
that enables users to set machines to a low-power state
(hibernation). However the HTCondor scheduler does not
consider machines in hibernating state in the selection process,
but only idle resources.

Yu et al. [19] presented a survey of workflow scheduling
algorithms for grid computing. They categorized existing grid
workflow scheduling algorithms as either best-effort-based
scheduling or QoS-constraint-based. Best-effort scheduling
algorithms target community grids to which resource providers
provide free access. Because the service-provisioning model of
the community grids is based on best effort, quality of service
and service availability cannot be guaranteed. Additionally, Yu
also discussed several techniques for using scheduling
algorithms in dynamic grid environments.

Batista et al. [20] presented simulation of an opportunistic
computational grid made up of digital receivers. The goal was
to distribute different types of applications to run efficiently on
the heterogeneous digital receivers that made up this
environment. Three scheduling policies were compared: Based
on Capacity (BC) and Best Arrangement (MA), proposed in
[23], and WorkQueue (WQ). Simulations and analyses showed
that an increase in the number of users and the system load
required a more efficient scheduling policy, because it
generated a greater overhead in the system.

IV. PROPOSED NETWORK AND ENERGY-AWARE RESOURCE

SELECTION MODEL AND ALGORITHM

A. Energy Efficiency Model (EEM)

The energy consumption of a submission refers to an
estimate of energy that will be expended by the environment
to initiate the task execution in a grid node. Besides the energy
necessary to transport the bits of the input files over the
network, the execution machines can be in different states, at
different levels in the network, and at different distances from
the node with the input files. All these factors must be
considered to calculate the energy consumption of a
submission. The total consumption C of a submission is
measured in watts and can be calculated as:

C = (Ec * A) + (Ec * E) + P + T + W (2)

where Ec is the cost of transporting a bit over the network [12],;
A is the size of the input file in bits; E is the size of the
executable in bits; P is the consumption of the computer where
the task is executed; T is the cost to turn on the machine if it is
off; and W is the cost to awaken the machine if it is
hibernating. Note that Ec is directly proportional to the distance
(in levels) from the execution node to the input-file node. In
other words, as this distance grows, so does the transportation
cost.

The total consumption C must be calculated for each
execution node, but not all values are different; in certain cases,
it is possible that two or more nodes have the same total energy
consumption for a submission. In such cases, network latency
is used as a decisive factor to choose the best available

resource by assuming weights for energy consumption and
network latency:

Ε = (Pc * C) + (Pl * L) (3)

where E is the choice factor, the closer to zero the better,
which means less energy consumption added to network
latency (considering weights); Pc is the weight associated with
energy consumption; C is the energy consumption associated
with the change of status and data transfer over the network
presented in Equation (2); Pl is the weight assigned to network
latency; and L is the average latency between the execution
node and the node containing the input files.

B. Algorithm

To select the most economically viable resource, an
algorithm is proposed here. The proposed algorithm is based
on the WQ strategy [10], but unlike this strategy, the algorithm
uses information about the environment such as energy
consumption of resources and node status. Fig. 2 shows the
algorithm, which continues to run until there are no more tasks
in the execution queue. First, it assembles a list of resources
that meet the requirements of the submission, taking into
account resources in idle state, turned off and hibernating.

Fig. 2. Resource selection algorithm

If resources that satisfy the execution requirements are
found, then the selected nodes are input to the proposed model
to determine the least costly resource, considering the cost of
data transfer to the execution node and its state. If the node is
off the cost of turning the node on must be considered;
similarly, if the node is hibernating, the cost to awaken the
node must be considered. The algorithm then sends an order to
the node according to its state, and finally the resource is
allocated for execution. If no resources that satisfy the
requirements of the execution are available in the pool, the
execution is kept in the scheduler queue.

V. ENVIRONMENT AND EXPERIMENTAL RESULTS

A. Simulation environment

This research used HTCondor [18] in its default configuration
as a scheduler for its environment.The network topology is
depicted in Fig. 3. It represents an environment where
resources from other sub-networks are available to the grid.

In this research, 30 personal computers scattered through three
sub-networks were used, where PC 1 was the master node and
PC 9 was used to store the input files; hence, these were not
considered execution nodes. Fig. 3 also shows the network
topology by level and the corresponding switches. The
environment has eight access switches and one aggregation
switch. Table I shows the computers divided by levels where
the first digit refers to the Aggregation switch, and the other
digits refer to the Access switches; for example, PC 1 is on
level 1.1, which means Aggregation switch 1, sub-network 1,
and so on.

Table II gives the specifications of the equipment shown in
Fig. 3 as well as the power consumption and capacity of the
switches. The computers are assumed homogeneous to show
the efficiency of the proposed algorithm. The information
presented in Table II was taken from equipment specifications
and the models chosen were popular models of switches for
corporate networks.

Fig. 3. Network topology

 To simulate the study environment, a modified version of
GreenCloud [14] was used. This modified version was able to
monitor the energy consumption of the proposed model.
Besides GreenCloud, GridSim was used to simulate network
traffic [13]. These tests did not consider the time for actions
such as booting or awakening machines. This simulation
focused on finding the best cost/efficiency trade-off
considering data traffic in the network, node status, and
network latency.

TABLE II. EQUIPMENT SPECIFICATION

B. Experimental results

 These tests used an environment with random status for the
pool machines. The only restriction on status was to have at
least one node in hibernating status for each test. Table III
shows the default pool. The master node, nodes that store the
input files, and the nodes that are in busy state are not
considered by the scheduler in the scheduling process.

TABLE I. NETWORK TOPOLOGY BY LEVELS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Level 1.1 1.1 1.2.2 1.2.1 1.3.1.1 1.3.1.2 1.1 1.2.2 1.1 1.3.1.1 1.2.1 1.3.1.1 1.2.1 1.2.2 1.3.1.1 1.3.1.1 1.2.2 1.3.1.2 1.3.1.2 1.1 1.2.1 1.3.1.2 1.3.1.2 1.2.1 1.3.1.2 1.2.2 1.3.1.1 1.3.1.1 1.2.2 1.3.1.2

Aggregation Switches 1
Access Switches 1 1 2 2 3 3 1 2 1 3 2 3 2 2 3 3 2 3 3 1 2 3 3 2 3 2 3 3 2 3

PCNetwork Topology

TABLE III. DEFAULT POOL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Test 1
Test 2
Test 3

Master
Entry Files

Idle

PC
Initial State

Busy Hibernating

 To analyze the effectiveness of the proposed model, two
sets of tests were performed. Each test was executed ten times
to analyze the allocation strategy of both sets. In the first set,
the standard version of HTCondor was used. Three tests with
different input-file sizes were carried out, the first with 10 MB,
the second with 100 MB and third with 1 GB. As for the
weights, the assumption used was 60% for power consumption
and 40% for network latency. Table IV shows the resource
allocation after the tests in selection order, and Table V shows
the energy consumption in watts for each submission.

TABLE IV. SET 1 ALLOCATED RESOURCES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Test 1 1 2 3 4 5 6 7 8 9 10
Test 2 1 2 3 4 5 6 7 8 9 10
Test 3 1 2 3 4 5 6 7 8 9 10

Busy Hibernating Idle
Master

Entry Files

Set 1
PC

TABLE V. SET 1 ALLOCATED RESOURCE CONSUMPTION

1 2 3 4 5 6 7 8 9 10
1 64.9135 64.9135 65.1736 64.9135 65.1736 64.9135 64.9135 65.1736 65.1736 65.1736 650.4355
2 66.601 73.135 75.736 73.135 75.736 73.135 73.135 75.736 75.736 66.601 728.686
3 155.35 181.36 181.36 155.35 155.35 181.36 155.35 181.36 155.35 181.36 1683.55

Total Consumption (Watts)
Consumption (Watts)

Test

 As is well known, HTCondor uses a simple matching
algorithm, and therefore the first available resource is always
selected. Nodes with a status other than idle are not considered
for resource allocation; in this case, even when a less costly
resource is available, it will not be selected unless it is in idle
state.

 In the second set of tests, the model proposed in this article
was used. Table VI shows the allocation of resources in
selection order, and Table VII shows the energy consumption
for each submission in the pool for Set 2.

TABLE VI. SET 2 ALLOCATED RESOURCES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Test 1 3 2 1 8 5 4 9 6 10 7
Test 2 1 5 4 8 6 10 2 9 3 7
Test 3 1 3 9 4 7 10 5 2 8 6

Busy Hibernating Idle
Master

Entry Files

Set 2
PC

TABLE VII. SET 2 ALLOCATED RESOURCE CONSUMPTION

1 2 3 4 5 6 7 8 9 10
1 64.2601 64.9135 64.9135 64.9135 64.9135 65.1736 65.1736 65.1736 65.1736 65.1736 649.7821
2 66.601 66.601 73.135 73.135 73.135 73.135 73.135 73.135 73.135 75.736 720.883
3 111.01 111.01 155.35 155.35 155.35 155.35 155.35 155.35 176.35 176.35 1506.82

Test
Consumption (Watts)

Total Consumption (Watts)

 As shown in Table VII, the proposed model chose the most
energy-efficient resource available in the pool. It is also
apparent that , during test 3 the model chose to wake up nodes
four times (nodes 2, 8, 14, and 20) instead of sending the
submission to more distant nodes. That happened because
waking up the nodes was less costly than sending the
submission to another sub-network considering that the input
file was 1 GB in size. According to the results of Tests 1, 2,
and 3, the proposed model obtained respectively 0.10%,
1.10%, and 10.50% energy savings over HTCondor. The total
energy-consumption values are shown in Fig. 4.

 Fig. 4 shows that in tests 1 and 2, the proposed model
achieved a slightly superior performance than the standard
HTCondor. By analyzing the values of both tests, it was clear
that in the worst-case scenario, the algorithm obtained the same
power-consumption performance.

 As input files size grows, the performance of the proposed
model remains superior to the standard HTCondor. The biggest
advantages of the proposed model can be observed during test
3, where HTCondor disregards the machines next to node 9
(input-file storage node) due to their status, although they are
less costly to use than machines farther from node 9. In this
test, the proposed model obtained a better result because it
considered machines in different states, such as node 2, which
was hibernating before selection and had to be awakened.

 Another relevant conclusion from the results is the
influence of network data traffic on resource selection. The
greater the distance to be traveled, from the input-file node to
the execution node, the higher will be the energy consumption
in the grid before the start of execution. This underlines the fact
that the scheduler must consider not only the first match from
the list of available resources as the HTCondor scheduler does,
but should also be concerned about resources in different states
and data traffic over the network. In this case, latency can
influence resource selection, especially as data size grows.

Fig. 4. Total consumption HTCondor vs. Proposed model

 The proposed model makes it possible to give weights to
power consumption and to network traffic. In the present case,
the proposed model was applied assuming 60% of energy
consumption and 40% network latency as resource-selection
criteria. These values can be changed, which possible implies a
change in the resources selected. Comparing the total energy
expended in both scenarios, the proposed model attained a total
savings of 7.10% compared to the standard HTCondor
matching algorithm.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a network and energy-aware resource
selection model for an opportunistic grid. To validate the
model, an algorithm has been proposed that selects a resource
based on the cost associated with transfer of bits over the
network, resource status, and network traffic. The main goal of
the proposed approach was to reduce the total energy
consumption of the grid. The proposed model aims to do so by
reducing the cost associated with the process prior to the
execution of tasks in the grid, by choosing the least costly
resource in the pool. This usually implies choosing the closest
execution node to the input-file server considering network
traffic and node status.

 The proposed model was evaluated through the
GreenCloud simulator. The results showed that the model is
capable of choosing the best available resource and in the
worst case has the same performance than the original
HTCondor approach. The model reached successfully a level
of saving around 7.10% when compared with the HTCondor
scheduling. Due to the influence of network latency in cloud
environments, the authors are planning to port the model and
algorithm to such environments and to adapt the proposed
model to implement migration of executing tasks. Moreover,
tests in a real scenario will also be considered in future work.

REFERENCES

[1] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal. High-Performance
Computing: Paradigm and Infrastructure. Wiley Series on Parallel and
Distributed Computing. John Wiley & Sons, Hoboken, NJ, USA,
October 2006. ISBN 978-0-471-65471-1.

[2] The Large Hadron Collider, CERN, January 2004. URL http:==lhc-new-
homepage. web.cern.ch/lhc-new-homepage/.

[3] T. Beauvisage, “Computer usage in daily life”. In Proc. Intl. Conf. on
Human Factors in Computing Systems (Apr. 2009), pp. 575–584.

[4] A. Goldchleger, F. Kon, A. Goldman, M. Finger, and G. C. Bezerra.
Integrade: object-oriented grid middleware leveraging idle computing
power of desktop machines. Concurrency and Computation: Practice &
Experience. vol. 16, pp. 449-459, 2004.

[5] Beowulf, http://www.beowulf.org/. January 2014.

[6] P. Kurp,“Green computing”. Communications of the ACM, vol. 51, no.
10, pp. 11-13, 2008.

[7] K. Sharma and S. Aggarwal,“Energy-Aware Scheduling on Desktop
Grid Environment with Static Performance Prediction”. Proceeding of
the 2009 Spring Simulation Multiconference(SpringSim ’09), Article
No. 105, 2009.

[8] I. Foster, C. Kesselman C (eds.), The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann: San Francisco, CA, 1999.

[9] P.K. Sinha. Distributed Operating Systems: Concepts and Design. IEEE
Press: New York, NY, 1997.

[10] D.P. da Silva, W. Cirne, and F.V. Brasileiro, “Trading Cycles for
Information: Using replication to Schedule Bag-of-Tasks Applications
on Computational Grids”. In: Euro-Par Parallel Processing, 2003, pp.
169-180.

[11] T. Casavant and J. Kuhl, “A Taxonomy of Scheduling in General-
purpose Distributed Computing Systems”. IEEE Transactions on
Software Engineering, vol. 14, Fev 1988, pp. 141-154.

[12] J. Baliga, R.W.A. Ayre, K. Hinton and R.S. Tucker, “Green Cloud
Computing: Balancing Energy in Processing, Storage, and Transport”
Proceedings of the IEEE , vol.99, no.1, pp.149-167, Jan. 2011.

[13] Gridsim, http://www.buyya.com/gridsim/, January 2014.

[14] GreenCloud, http://greencloud.gforge.uni.lu/, January 2014.

[15] R.S. Montero, E. Huedo, and I.M. Llorente. “Grid Resource Selection
for Opportunistic Job Migration”. 9th International Euro-Par Conference
Klagenfurt, Austria, August 26-29, 2003 Proceedings, pp 366-373.

[16] L. Ponciano and F. Brasileiro, “On the impact of energy-saving
strategies in opportunistic grids”, in Energy Efficient Grids, Clouds and
Clusters Workshop (E2GC2), 2010, Brussels, Belgium. Proceedings of
the 11th ACM/IEEE International Conference on Grid Computing,
2010. pp. 282–289.

[17] S. Nesmachnow, B. Dorronsoro, J.E. Pecero, P. Bouvry, “Energy-aware
Scheduling on Multicore Heterogeneous Grid Computing Systems”.
Journal of Grid Computing, vol 11, no. 4, pp 653-680, 2013.

[18] HTCondor. http://research.cs.wisc.edu/htcondor/. January 2014.

[19] J. Yu, R. Buyya, K. Ramamohanarao, “Workflow Scheduling
Algorithms for Grid Computing”, Metaheuristics for Scheduling in
Distributed Computing Environments Studies in Computational
Intelligence, vol 146, pp. 173-214, 2008.

[20] B.G. Batista, F.C. Teixeira, M.J. Santana, R.H.C. Santana, "Scheduling
algorithms for opportunistic computational grid based on television
digital receiver.", IEEE International Conference on High-Performance
Computing and Simulation (HPCS), 2013, pp. 584-591.

	Western University
	Scholarship@Western
	6-2014

	Network and Energy-Aware Resource Selection Model for Opportunistic Grids
	Izaias Faria
	Mario Dantas
	Miriam A M Capretz
	Wilson Higashino
	Citation of this paper:

	Western University
	Scholarship@Western
	6-2014

	Network and Energy-Aware Resource Selection Model for Opportunistic Grids
	Izaias Faria
	Mario Dantas
	Miriam A M Capretz
	Wilson Higashino
	Citation of this paper:

