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Abstract 

 

Objective: We sought to determine whether the sensorimotor rhythms (SMR) elicited during 

motor imagery (MI) of complex and familiar actions could be more reliably detected with 

electroencephalography (EEG), and subsequently classified on a single-trial basis, than those 

elicited during relatively simpler imagined actions. 

 

Methods: Groups of healthy volunteers, including experienced pianists and ice hockey players, 

performed MI of varying complexity and familiarity. Their electroencephalograms were 

recorded and compared using brain-computer interface (BCI) approaches and spectral analyses. 

 

Results: Relative to simple MI, significantly more participants produced classifiable SMR for at 

least one of the more complex imagined actions. During MI of performance of a complex 

musical piece, the EEG of the experienced pianists was classified significantly more accurately 

than during MI of performance of a simpler musical piece. The accuracy of EEG classification 

was also significantly more sustained during complex MI. 

 

Conclusion: MI of complex actions results in more robust EEG responses than MI of relatively 

simpler actions, and familiarity with actions can enhance this response in some cases. 

 

Significance: The accuracy of SMR-based BCIs in non-communicative patients may be 

improved by employing familiar and complex actions. Increased sensitivity to MI may also 

improve diagnostic accuracy for severely brain-injured patients in a Vegetative State. 

 

 

 

  



1. Introduction 

 

Patients with disorders of consciousness (DOC) are behaviourally characterized by 

varying levels of arousal and awareness measured primarily by their ability to exhibit reliable 

responses to external stimulation (Jennett, 2002; Bernat, 2006; Owen, 2008). Of the various 

conditions included in the DOC (e.g., coma, the Minimally Conscious State, etc.), the Vegetative 

State (VS) is one of the most poorly understood (Jennett, 2002; Owen, 2008). After emerging 

from coma, VS patients retain cycles of eye opening and closing similar to the sleep-wake cycles 

of fully awake and aware individuals (Multi-SocietyTask Force on PVS, 1994a, b; Royal 

College of PhysiciansWorking Group, 1996; cf. Cruse et al., 2013). Critically, despite producing 

spontaneous movements, VS patients are unable to exhibit any purposeful outward responses to 

verbal commands, and are thereby diagnosed as ‘unaware’ (Jennett, 2002; Owen, 2008). Many 

VS patients have diffuse brain injury that may include insult to the peripheral motor system; 

these circumstances could lead to an inaccurate diagnosis of VS in a patient who retains 

awareness and cognitive function, but lacks the ability to respond purposefully in a behavioural 

assessment (Owen, 2008). In fact, researchers have reported that some patients who are 

diagnosed as VS can follow (e.g., Owen et al., 2006; Monti et al., 2010; Bardin et al., 2011; 

Cruse et al., 2011; Goldfine et al., 2011; Naci & Owen, 2013), or attempt to follow (e.g., 

Bekinschtein et al., 2011; Cruse et al., 2012), commands by modulating their brain activity, 

despite being unable to follow commands with their external behaviour. These findings raise the 

possibility that assistive devices known as brain-computer interfaces (BCIs) could improve 

diagnostic accuracy in this group by detecting ‘covert’ signs of awareness, as well as by 

potentially offering the patient a means of communication (e.g., Monti et al., 2010; Lulé et al., 

2013).  

 

BCIs are devices that can allow a person (the ‘user’) to operate a computer without 

producing a motor output. Using machine-learning techniques, subject-specific patterns of brain 

activity can be learned by a computer and subsequently classified into a predefined 

communicative output. For example, the computer may output the response “yes” when the user 

produces brain activity pattern A, and output the response “no” when the user produces brain 

activity pattern B (e.g., Mason & Birch, 2003; Sorger et al., 2009; Lulé et al., 2013; Naci et al., 

2013). The computer algorithm must be trained on a series of trials in which the desired output 

from the user is known (the ‘training phase’ of machine-learning classification), and then tested 

on trials in which the desired output from the user is not known (the ‘testing phase’ of machine-

learning classification) based on predefined features of the data (e.g., power in a given frequency 

band of the electroencephalogram, EEG). From the testing phase of classification, one can obtain 

an accuracy value based on the number of successfully identified brain responses and, by 

extension, correctly executed communicative outputs from the BCI. Crucially, from a clinical 

perspective, when classification accuracy is significantly above chance, the individual is 

demonstrably capable of producing consistent and appropriate patterns of brain activity in 

response to commands, thus providing a means to identify covert command-following in the 

absence of a behavioural response (Cruse et al., 2011; Owen, 2013). Since classification must be 

both accurate and reliable for successful communication and other BCI output functions, such as 

computer mouse cursor control, classification accuracy and task sensitivity are two of the most 

important measurements of any BCI. 

 



A particular EEG signal called the sensorimotor-rhythm (SMR) is a practical option for 

BCIs intended for use by VS patients (Chatelle et al., 2012; Naci et al., 2012; Grosse-Wentrup & 

Schölkopf, 2013). Using as few as four surface electrodes placed on the head over the 

sensorimotor cortical areas (sites CP3, CP4, FC3, and FC4 from the modified international 10-20 

system; Sharbrough et al., 1991), one can acquire the SMR as a person kinesthetically imagines 

moving a body part. Power decreases known as event-related desynchronizations (ERDs) and 

power increases known as event-related synchronizations (ERSs) in the mu (7-13 Hz) and beta 

(13-30 Hz) frequency bands are typically used as the signal features for classification with SMR-

based BCIs (Pfurtscheller & Neuper, 1997; Neuper & Pfurtscheller, 2001; Neuper et al., 2009). 

Unlike other EEG-based BCI paradigms (e.g., the P300 speller described in Farwell & Donchin, 

1988), the imagination tasks used with SMR-based BCIs impose low sensory demands on the 

user. Furthermore, of particular importance for patients diagnosed as VS who, by definition, are 

unable to fixate their eyes, SMR BCIs need not involve visual stimulation (Chatelle et al., 2012; 

Naci et al., 2012; Grosse-Wentrup & Schölkopf, 2013). 

 

Despite the potential benefits of bedside EEG-based BCIs for patients diagnosed as VS 

and their families, there is substantial intra- and inter-subject variability in BCI performance 

(Wolpaw et al., 2002; Pfurtscheller et al., 2006; Naci et al., 2012; Grosse-Wentrup & Schölkopf, 

2013). In many studies of healthy volunteers and people with severe motor impairments, some 

individuals are simply unable to reliably regulate the brain signals necessary to operate a BCI 

without training (e.g., Guger et al., 2003; Wolpaw & McFarland, 2004; Cruse et al., 2011; 

Hammer et al., 2012). In the current work, we propose modifications to the traditional SMR-

based BCI design that may optimize BCI performance for behaviourally non-responsive patients 

in particular. These modifications apply to the nature of the task used to generate the SMR and 

the nature of the comparisons made during signal classification (see also Curran & Stokes, 2003; 

Curran et al., 2004). 

 

In published SMR-based BCI research to date, users are typically instructed to imagine 

moving their hands, feet, or tongue to generate an SMR (e.g., Neuper & Pfurtscheller, 2001; 

Kübler et al., 2005; Cruse et al., 2011). With only a few exceptions, users are asked to imagine 

very simple actions, such as repeatedly squeezing one of their hands into a fist. However, actions 

that are more complex could result in a more robust and consistent SMR (Curran & Stokes, 

2003; Curran et al., 2004). Indeed, there is evidence that complex imagined actions are 

associated with more robust brain responses than simpler imagined actions. For instance, there is 

converging evidence from functional magnetic resonance imaging (fMRI), functional near-

infrared spectroscopy (fNIRS), and transcranial magnetic stimulation (TMS) studies that 

complex motor imagery is associated with greater hemodynamic change and higher amplitude 

motor-evoked potentials than simple motor imagery (e.g., Kuhtz-Buschbeck et al., 2003; 

Roosink & Zijdewind, 2010; Holper & Wolf, 2011). In the latter studies and in this paper, 

“complex” motor imagery is defined as tasks that involve sequences of movements (e.g., Kuhtz-

Buschbeck et al., 2003; Roosink & Zijdewind, 2010; Holper & Wolf, 2011), and/or more than 

one body part (e.g., Holper & Wolf, 2011). Based on these findings, we hypothesized that 

actions involving more than one body part and more complex action sequences would result in 

more robust SMRs and, consequently, higher classification accuracy than traditional SMR-based 

BCI imagery tasks. 

 



Additionally, it has been proposed in previous work that asking users to imagine actions 

which they are familiar with could improve SMR classification (Curran & Stokes, 2003; Curran 

et al., 2004). In this paper, we chose to explore the role of action familiarity in modulation of the 

SMR by drawing from samples of experienced athletes and musicians, given that the effects of 

long-term motor learning have been studied extensively in these groups already (see Münte et 

al., 2002, and Nakata et al., 2010, for reviews). While imagining actions involving the sport or 

instrument of their expertise, experienced athletes and musicians produce more focused patterns 

of brain activation (e.g., Lotze et al., 2003; Milton et al., 2007; Olsson et al., 2008; Wei & Luo, 

2010) and report more objectively accurate imagery than novices (e.g., Louis et al., 2012; see 

also Rieger, 2012). Based on the latter findings, it was expected that familiar imagery would 

result in a more reliable SMR, and thus higher classification accuracy, than traditional SMR-

based BCI imagery. If supported, this hypothesis could be extended to future work with brain-

injured patients by selecting imagery tasks based on the skills and hobbies that the patient had 

prior to their injury. Furthermore, based on the findings reviewed previously regarding the 

influence of action complexity on brain responses to motor imagery, it was also hypothesized 

that actions that were both familiar and complex would further enhance the SMR and increase 

classification accuracy - thereby improving the ability to detect covert awareness in future work 

with behaviourally non-responsive patients.  

 

Another convention in SMR-based BCI research to date is that comparisons are almost 

exclusively made between the SMRs generated for various imagined movements (e.g., left hand 

versus right hand, etc.; Neuper & Pfurtscheller, 2001; Guger et al., 2003; Kübler et al., 2005; 

Pfurtscheller, Brunner, et al., 2006; Cruse et al., 2011). Although these types of comparisons 

render acceptable classification accuracy in most healthy people (e.g., Guger et al., 2003; Bai et 

al., 2008), as discussed in Cruse et al. (2012), these types of comparisons may not be appropriate 

for VS patients. Indeed, as part of the standard behavioural assessment tool for VS patients, the 

Coma Recovery Scale - Revised (CRS-R; Kalmar & Giacino, 2005), awareness is assessed by a 

patient’s ability to produce one type of action following a command. If, on three out of four 

occasions, the patient is able to successfully follow that command, the patient is diagnosed as, at 

least, minimally conscious (Kalmar & Giacino, 2005; see also Cruse et al., 2012). In this work, 

we therefore performed comparisons that are more similar to behavioural assessments of 

awareness than previous SMR-based BCI paradigms. Specifically, contrasts were made between 

one imagined action of interest and periods of rest (mind-wandering), rather than between two 

distinct imagined actions. In addition to providing a potential BCI-based assessment of 

awareness that is more similar to the standard behavioural method than previous BCIs, we 

propose that this technique is more practical for behaviourally non-responsive patients because 

maintaining more than one imagined action in working memory may impose excessive cognitive 

demands on some patients. 

 

As a final consideration, it is important to note that behavioural assessments of awareness 

such as the CRS-R (Kalmar & Giacino, 2005) are based on the reliability of a patient’s ability to 

follow commands. Patients are evaluated across multiple assessment sessions and multiple 

attempts to follow the same command in each session in order to ensure that an accurate 

assessment of awareness is obtained. If neuroimaging-based methods are to be used in clinical 

assessments of awareness, these methods should maximize the likelihood of detecting a reliable 

command-following response to reduce the risk of misdiagnosing awareness. SMR-based BCIs 



naturally provide an additional measure of reliability that is not automatically available with 

standard behavioural assessments, i.e., the statistical significance of the classification of the brain 

response. As described above, when two brain states produced by a patient can be differentiated 

with statistical significance, it may be inferred that the patient possesses a covert ability to follow 

commands. Thus, increasing the accuracy of BCI classification not only increases the accuracy 

of potential communication devices, but also increases the number of patients in whom covert 

command-following may be detected when it is present.  

 

The research question in this work was whether having users perform motor imagery 

tasks involving more complex and familiar movements than previous investigations would 

improve classification accuracy and result in more users (and, in future work, patients diagnosed 

as VS) with SMRs that could be detected reliably. This question was addressed in three studies 

of healthy, young adults with an experimental set-up suitable for future clinical work with VS 

and other non-communicative patients. In Study 1 (Complexity), participants imagined simple 

hand actions (squeezes) of the sort typically used with SMR-based BCIs alongside other more 

complex bimanual actions not commonly used with BCIs. It was predicted that, in accordance 

with prior evidence of increased brain activity during complex motor imagery (Kuhtz-Buschbeck 

et al., 2003; Roosink & Zijdewind, 2010; Holper & Wolf, 2011), classification accuracy (versus 

rest) would be higher when the participant was imagining complex actions than when imagining 

relatively simpler actions. In Study 2 (Familiarity), groups of experienced pianists, experienced 

ice hockey players, and age-matched controls were instructed to imagine completing hand 

squeezes and actions from hockey and piano. It was predicted that classification accuracy 

between rest and imagery would be highest for the athletes and musicians in the action with 

which they were most familiar (i.e., pianists imagining playing the piano, and hockey players 

imagining playing hockey; see Lotze et al., 2003; Fourkas et al., 2008; Olsson et al., 2008; Wei 

& Luo, 2010). In Study 3 (Complexity and Familiarity), the experienced pianists from Study 2 

imagined playing one simple piece of music and one relatively more complex piece of music on 

the piano. It was expected that classification accuracy would be highest for the complex piece 

versus rest comparison. Implications and modifications for future BCI work with VS patients are 

discussed. 

 

2. Methods 

 

2.1. Ethics Statement 

All participants gave informed written consent.  The Psychology Research Ethics Board 

of the Western University (London, ON, CAN) provided ethical approval for the studies. 

 

2.2. Participants and Stimuli 

 

2.2.1.  Study 1 (Complexity) 

Sixteen healthy, right-handed young adults participated in the complexity study (five 

men; age range=17-20 years; median age of 18 years). For the simple imagined movement phase 

of the complexity study (Study 1), the participants were instructed to imagine repeatedly 

squeezing their left hand, right hand, or both hands following the auditory cues of “left”, “right”, 

and “both”, respectively. For the complex imagined movements phase of Study 1, the 

participants were instructed to imagine either playing the guitar, clapping their hands, or juggling 



using both hands. These tasks were cued with the words “guitar”, “clap”, and “juggle”, 

respectively. In each task phase, participants were also asked to cease the previously-cued mental 

imagery and mind-wander following the cue “relax”. The order of the simple and complex 

imagined movement phases were counter-balanced across participants. All auditory instruction 

stimuli were 1 second in length. 

 

2.2.2.  Study 2 (Familiarity) 

Forty-eight healthy, right-handed young adults participated in the familiarity study. 

Sixteen participants were experienced ice hockey players (seven men; age range=18-29 years; 

median age of 20 years); sixteen participants were experienced pianists (six men; age range=18-

29 years; median age of 20 years); and sixteen participants had either limited or no experience 

playing the piano or hockey (eight men; age range=18-28 years; median age of 18 years). All 

hockey players had played regular, competitive ice hockey for at least ten years, and all pianists 

had formal musical training and had played and practiced piano regularly for at least ten years. 

There were no significant differences in mean age of first play experience, mean years of total 

play experience, or mean self-reported hours of regular play per week between the groups of 

athletes and musicians, pairwise ps>.51 (Bonferroni correction; see Table 1). As shown in Table 

1, the three groups also did not differ significantly in mean age, sex, handedness (Oldfield, 

1971), or imagery ability (Gregg et al., 2010; ps>.34). All participants were instructed to imagine 

making a slap shot (a bimanual action from hockey), playing a musical piece on the piano using 

both hands, or squeezing their right hand into a fist following the auditory cues of “hockey”, 

“piano”, and “right hand”, respectively. As in Study 1, participants were asked to mind-wander 

following the cue “relax”, and all instructions were 1 second in length. 

 

2.2.3.  Study 3 (Complexity and Familiarity) 

The experienced pianists (n=16) from Study 2 completed Study 3 in the same EEG 

recording session. In Study 3, the pianists were instructed to imagine playing ascending and 

descending C-major scales and B-major arpeggios over two octaves using both hands following 

the auditory cues of “scale” and “arpeggio”. The pieces of music were selected based on the 

curriculum of the Royal Conservatory of Music (RCM), which is a prominent music education 

institution in Canada. In the RCM curriculum, piano students are evaluated on scales and the key 

of C-major from the 1st grade level, arpeggios from the 4th grade level, and the key of B-major 

from the 7th grade level (Royal Conservatory of Music, 2008). Given the different grade levels at 

which the C-major scale and B-major arpeggio are evaluated in the RCM curriculum, one can 

conclude that the B-major arpeggio represents a more difficult, i.e., complex, action than the C-

major scale. It is also important to note that all the pianists in this study reported high familiarity 

with both pieces and were able to recall both pieces from memory. Finally, the pianists were also 

instructed to mind-wander following the auditory cue of “relax”, and all instructions in Study 3 

were 1 second in length. The Study 3 procedure was always conducted following the Study 2 

procedure in order to prevent pianists from selecting the particular musical pieces from Study 3 

for the piano action in Study 2. 

 

2.3. Procedure 

Before the EEG recording session, each participant completed a series of short 

questionnaires. All participants completed the Edinburgh Handedness Inventory (Oldfield, 1971) 

and the Movement Imagery Questionnaire - Revised Second Version (Gregg et al., 2010). 



Participants in Studies 2 and 3 also completed a questionnaire regarding their experiences 

playing hockey, piano, and other sports and instruments. At the conclusion of Studies 2 and 3, 

participants rated the vividness of their imagined actions using a 5-point Likert scale (see Table 

1).  

 

All auditory cues were pre-recorded by one female speaker and presented to the 

participant using ER-1 insert earphones (Etymōtic Research Inc., Elk Grove Village, IL). Each 

trial began with an auditory cue and was followed by 5 to 8 seconds of silence before the onset 

of the next auditory cue. The duration of the silent interval was selected randomly from a 

uniform distribution on each trial. Studies 1 and 2 were completed in four blocks of 48 trials (12 

trials of each instruction per block); Study 3 was completed in three blocks of 48 trials (16 trials 

of each instruction per block) as there were only three (rather than four) trial types in the latter 

task; and each block of 48 trials was approximately six minutes in duration. All trials were 

presented in a pseudorandom order so that no more than two cues of the same type were 

presented consecutively, and the first trial of each block was always an imagined action trial 

(rather than a ‘relax’ trial). Participants were provided with short breaks between blocks in order 

to reduce fatigue. Participants were also instructed to imagine completing each action repeatedly 

from the offset of the auditory cue to the onset of the next auditory cue in order to account for 

potential differences in the duration of the imagined actions. To reduce ocular artefacts, 

participants were instructed to keep their eyes closed throughout the tasks. 

 

2.4. Electrophysiological Data Acquisition and Pre-Processing 

In all three studies, EEG was recorded using the g.Gamma active electrode system (g.tec 

Medical Engineering GmbH, Austria). In Study 1, EEG was recorded with a four-channel 

montage housed in an electrode cap; the electrodes were placed at sites CP3, FC3, CP4, and FC4 

(Sharbrough et al., 1991). In Studies 2 and 3, EEG was recorded from the same four scalp sites 

as in Study 1, and additional electrodes were placed at sites TP7, FT7, CPz, FCz, TP8, and FT8 

(Sharbrough et al., 1991). The reported analyses for Studies 2 and 3 consist of data from only the 

four electrodes used in Study 1, as this montage has been previously shown to provide robust 

SMR recordings (Guger et al., 2003; Cruse et al., 2012). In all three studies, bipolar surface 

electromyographic (EMG) recordings were obtained from both forearms on the ventral surface 

(placed over the flexor digitorum profundus) in order to detect overt movements. Online, the 

EEG data were filtered from 0.5 to 60 Hz with a 60 Hz notch filter using an infinite impulse 

response (IIR) digital Butterworth filter set using the g.USBamp graphical user interface (GUI). 

The EMG data were filtered from 5 to 250 Hz with a 60 Hz notch filter using the g.USBamp 

GUI. The EEG recordings were referenced to the right earlobe with a forehead (Fpz) ground, and 

the right elbow (olecranon) was used for the EMG ground. The EMG and EEG data were 

sampled at 600 Hz with impedances kept below 5 kΩ for the EEG recording.  

 

Offline, the EEG data were down-sampled to 100 Hz, filtered between 0.5 and 40 Hz 

using the EEGLAB function ‘pop_eegfilt’, and segmented into 6-second epochs time-locked to 

the onset of the auditory cue. The EEGLAB filter function consisted of a two-step least-squares 

finite impulse response (FIR) filter; in the first step, data were filtered with a high-pass cut-off of 

0.5 Hz, and in the second step, data were filtered with a low-pass cut-off of 40 Hz. The EMG 

data were rectified and then filtered with a 10 Hz high pass filter using the same EEGLAB least-

squares FIR filter function described previously. Trials containing physiological artefacts, 



including overt hand movements as evident from the EMG, were identified by visual inspection 

and removed. After artefact rejection, the median number of trials included in each imagery and 

rest condition per participant was: Study 1 - 40 (range: 29-48); Study 2 - 43 (range: 27-48); and 

Study 3 - 43 (range: 28-48). Finally, the EEG data were re-referenced offline to form two bipolar 

channels (FC3-CP3, FC4-CP4) that are subsequently identified as C3’ and C4’, respectively; this 

bipolar approach is known to detect changes in mu and beta power with high accuracy across 

many people (Cruse et al., 2012).  

 

2.5. EEG Single-Trial Classification Procedure 

A machine-learning algorithm was used for single-trial classification of the EEG data as 

described in Cruse et al. (2011, 2012). For these analyses, the log bandpower values of four 

frequency bands at electrodes C3’ and C4’ were the classification features. Based on previous 

work (Cruse et al., 2011, 2012), the frequency bands were 7-13 Hz (mu), 13-19 Hz (low-beta), 

19-25 Hz (mid-beta), and 25-30 Hz (high-beta), for a total of eight features per classification 

analysis (two electrodes x four frequency bands). For the single-trial analyses, the spectral power 

in each band was estimated with a sliding window of 1-second (as recommended by Pfurtscheller 

& Lopes da Silva, 1999) moving in 50 ms steps using a short-time Fourier transform (MATLAB 

function ‘spectrogram’).  

 

Classification of each imagined action (e.g., squeezing the right hand in Study 1, etc.) and 

the corresponding rest condition was performed using a naïve Bayes classifier (MATLAB’s 

‘naivebayes’ object). Each classification analysis was conducted using ten-fold cross-validation. 

For the cross-validation procedure, each participant’s trials for one type of imagined action and 

the rest condition from the same experiment were separated into ten approximately equal groups. 

The naïve Bayes classifier was trained on the features of nine of these groups (‘training’), and 

then the class of each trial in the tenth group was predicted in order to calculate the classifier’s 

accuracy (‘testing’). Specifically, during training, the naïve Bayes classifier estimated the 

parameters of a probability distribution per training feature per class; the parameters were the 

mean and standard deviation of a normal distribution, the training features were bandpower per 

frequency band at each electrode, and the two classes were the rest and imagery trial types. 

Using Bayes’ Theorem during testing, the features of the test trials were used to calculate the 

posterior probabilities for each class, and then each test trial was placed in the class with the 

highest posterior probability (for more information regarding naïve Bayes classification, see 

Jiang et al., 2007). The classification procedure was repeated ten times so that each trial served 

as a test trial in exactly one of the ten cross-validation folds. The average classification accuracy 

across the ten folds was then calculated at each time-point, and the time-course of the cross-

validated classification accuracy was smoothed with a sliding-window of 500 ms to control for 

outliers (cf. Cruse et al., 2012).  

 

To determine the statistical significance of the classification accuracy, a permutation test 

with 1000 repetitions that controlled for familywise error was used (Maris, 2004; see also Cruse 

et al., 2012). For each permutation, the class labels of imagery or rest were randomly shuffled 

across trials, and the cross-validated classification procedure described previously was repeated. 

The maximum smoothed accuracies across all time-points from each of the 1000 repetitions were 

used to form a distribution representing the expected classification results if the classifier were 

operating at chance (the null hypothesis). The classification accuracy obtained for the 



participant’s original data (i.e., the data with the correct trial labels) was then evaluated against 

this distribution to calculate a familywise error-corrected significance value for the original 

classification results at each time-point. Finally, to control for the multiple comparisons of 

bandpower (i.e., one comparison for each time point of imagery versus rest), a control of False 

Discovery Rate (FDR) approach was used (implemented via MATLAB’s ‘fdr’ function; 

Benjamini & Hochberg, 1995; Verhoeven et al., 2005). The control of FDR approach is known 

to reduce the risk of Type I error without requiring as stringent reductions in power as 

Bonferroni procedures (see Verhoeven et al., 2005). 

 

2.6. EEG Spectral Analyses 

In addition to the single-trial classification analyses of the data, the EEG data from all 

three studies were analyzed using the same spectral analysis procedure reported in Cruse et al. 

(2012). For each time-point at C3’ and C4’, spectral power estimates were calculated using a 

Hanning window (1-second) time-frequency transformation via the ‘ft_freqstatistics’ function of 

the open-source MATLAB toolbox, FieldTrip (Oostenveld et al., 2011). The time-frequency data 

at both electrodes were then compared between the imagined movements and rest using cluster-

based permutation testing (cf. Maris & Oostenveld, 2007; Cruse et al., 2012) implemented via 

FieldTrip. For the cluster-based testing, the time-frequency data for a given imagery condition 

and rest (or another imagery condition; see section 2.7 for a description of the comparisons for 

each study) were log-transformed and then compared at each data point by a paired-samples t-

test. All significant data points (p<.025) were then arranged into groups, i.e., clusters, based on 

their temporal and spectral proximity to each other, and the sum of the t values was calculated 

for each cluster. To determine the familywise error-corrected significance value for each 

summed t-value cluster, a Monte Carlo randomization test that controlled for familywise error 

was used. In the randomization test, the condition labels were randomly permuted to remove 

task-related differences, and the clustering procedure was repeated 1000 times. The maximum 

summed t-value clusters from each repetition were used to form a distribution, and this 

distribution was then used to test the null hypothesis that the original summed t-value cluster 

(i.e., the summed t-value cluster computed from the data with the correct trial labels) occurred by 

chance.  

 

2.7. Group-level Statistical Analyses 

For the single-trial analyses of the EEG data (see Table 2 and Figure 1), all group-level 

statistical analyses were conducted using IBM SPSS Statistics version 21.0, and where 

applicable, the Dunn-Sidak correction was used for the follow-up tests. For the spectral analyses 

of the EEG data (see Figures 2-4), all statistical analyses were conducted using the cluster-based 

permutation testing described previously (cf. Maris & Oostenveld, 2007; Cruse et al., 2012) via 

custom MATLAB script using the open-source toolbox, FieldTrip (Oostenveld et al., 2011). 

 

For the group comparisons of single-trial analyses of the Study 1 and Study 3 data, 

several parametric and non-parametric repeated-measures statistical tests were used. Two paired-

samples t-tests were used to compare maximum classification accuracy and the time at which 

maximum classification accuracy occurred relative to the onset of the instruction in both Studies 

1 and 3. Wilcoxon Signed Rank Tests were used to compare the number of time-points for which 

a significant classification was obtained in both studies, and this test was also used to compare 

the self-reported vividness ratings of the imagined actions from the pianists between Study 2 and 



Study 3. An exact (rather than asymptotic) calculation of the p-value was used with the test of 

time-points in Study 1 to account for the positive skew of the count data (given that many 

participants had zero significant time-points, especially in the simple complexity condition). 

Finally, the number of trials included in each complexity condition of each study was compared 

using the Friedman test. 

 

To further illustrate the difference in terms of the significance of the single-trial analyses 

between the complexity levels in Studies 1 and 3, participants were assigned to a binary category 

based on whether or not at least one imagined movement in each complexity condition was 

classified significantly from rest for the participant (0 = no significant classifications). The 

number of participants with at least one significant classification and the number of participants 

with no significant classifications in each complexity level were then compared using Fisher’s 

Exact Test.  

 

For Study 2, three 3 (Group: Pianist, Hockey, Control) x 3 (Action: Play Piano, Slap-

shot, Squeeze) mixed analyses of variance (ANOVAs) were used to compare the averaged 

maximum classification accuracies, the time at which the maximum accuracy occurred, and the 

total number of trials included in each condition (N.B., the trial numbers were rank-transformed 

to meet the statistical assumptions of the ANOVA). Additionally, a Kruskal-Wallis test was 

performed to compare the self-reported imagery vividness ratings between the groups. Given the 

lack of significant differences in classification accuracy in Study 2, no comparisons were made 

for the number of significant time points in the imagery versus rest comparisons.  

 

The group spectral analyses were conducted with the time-frequency data averaged 

across all trials in each condition per participant. For Study 1, the time-frequency data for each 

participant were averaged across all of the imagined actions in each complexity level, and the 

cluster-based permutation testing was conducted between each complexity level and rest, and 

between the two complexity levels (Figure 2). For Study 2, comparisons were made separately 

for each familiarity group between each imagery condition and rest (Figure 3). Finally, for Study 

3, comparisons were made between each of the two imagery conditions and rest, and between the 

two imagery conditions (Figure 4). Although we were primarily concerned with the imagery 

versus rest comparisons because we posit that these comparisons are more practical for future 

BCI work with brain-injured patients, we conducted post-hoc comparisons between the imagery 

conditions in the spectral analyses of the Studies 1 and 3 data to attempt to identify the 

neurophysiological correlates of the complexity effect observed in the single-trial analyses of 

Study 3. We did not make comparisons between the familiar and control imagery conditions in 

Study 2 because there was no evidence of an effect of action familiarity in the single-trial 

analyses. 

 

3. Results 

 

3.1. Study 1 (Complexity) 

In terms of the single-trial analyses of the EEG data, there was a trend for classification 

accuracy (imagery versus rest) to be higher for the complex imagined actions, t(15)=-1.963, 

p=.068, d=0.49 (Simple: M=60.68%, SE=0.74%; Complex: M= 62.74%, SE=0.93%). There was 

no significant difference for the time at which the maximum classification accuracy occurred 



between the two complexity conditions, p=0.29. From the familywise permutation tests, there 

were significantly more time-points at which significant classifications were obtained in the 

complex condition than in the simple condition, Z=-2.197, exact p=.026, r=.55 (Simple: median 

of 0 significant time-points [range: 0-26]; Complex: median of 14.5 significant time-points 

[range: 0-31]). It is also worth noting that there was no significant difference in the number of 

trials in each complexity level, p=.29. 

 

There was some variability between and within subjects for the single-trial analyses of 

the Study 1 EEG data. While at least one simple imagined action type was classified significantly 

from rest for only four of the 16 participants (25%), at least one complex imagined action type 

was classified significantly from rest for significantly more participants (11 of 16, or 69%), 

Fisher’s exact p=.032 (two-tailed). Of the eleven participants who produced significant responses 

for the complex imagery versus rest comparisons, three participants produced significant 

responses for all three of the complex actions; five participants produced significant responses 

for two of the three complex actions; and three participants produced a significant response for 

only one of the complex actions. In the simple imagery comparisons, two of the four participants 

produced significant responses for all three of the simple actions; one participant produced 

significant responses for two of the simple actions; and one participant produced a significant 

response for only one of the simple actions. Furthermore, there were some participants in the 

sample who did not produce any significant brain responses for any of the imagined actions (four 

of the sixteen participants, or 25% of the sample). Only one participant in the sample produced 

significant brain responses for every imagined action in the simple and complex task phases. The 

inter- and intra-subject variability in classification accuracy is summarized in Table 2 and 

detailed in the supplementary data tables (Table A1). 

 

From the group spectral analyses of the EEG data (Figure 2), there were statistically 

significant ERDs over the left hemisphere in the low-beta band in the complex imagery versus 

rest comparison (ps<.014). In the simple imagery versus rest comparison, there was an ERD over 

the right hemisphere in the mid-beta band that approached statistical significance (p=.050). 

Additionally, there were no significant clusters in the simple imagery versus complex imagery 

comparisons (ps>.10).  

 

Even though the role of action familiarity was not explicitly examined in Study 1, there 

was one interesting finding in this experiment that emphasized the importance of this factor and 

its potential influence on single-subject performance. In Figure 1, we depict the time-course of 

the single-trial classification accuracies for one of two experienced guitarists who participated in 

Study 1. In line with the group trends already reported, these participants did not produce 

significantly classifiable SMRs for any of the simple imagined actions; the averaged, maximum 

classification accuracy obtained for these participants on the simple imagined actions was 

57.58% (SE=1.01%), and the classification results for the simple imagery versus rest 

comparisons were not statistically significant at any time-point for either participant. Both 

participants produced SMRs for the instruction to imagine clapping (one of the actions in the 

complex imagery condition) that were significantly classifiable from rest for a short time; 

significant classification results occurred for 6-7 time-points, and the smoothed maximum 

classification accuracy for each participant was 64.79% (SE=3.52%) and 64.47% (SE=4.04%; 

shown in Figure 1). Most interestingly, however, both participants produced a markedly robust 



SMR for the instruction to imagine playing the guitar that was significantly classifiable from rest 

for most of the epoch (68-69 time-points) with very high accuracy (maximum accuracies of 

81.10%, SE=3.44%, as shown in Figure 1, and 71.28%, SE=3.97%, no figure provided).  

 

3.2. Study 2 (Familiarity) 

In terms of the single-trial analyses of the EEG data, there were no significant differences 

in accuracy for any of the imagined action versus rest comparisons, or for any group on any of 

the imagined action versus rest comparisons, ps>.44. The main effect of group on accuracy 

approached significance (p=.054), and this was driven by the relatively low overall classification 

accuracy of the hockey players (M=59.70%, SE=1.03%) compared to the control group 

(M=63.52%, SE=1.24%; pairwise p=.054). There were no significant differences in terms of the 

time at which maximum classification accuracy occurred for any imagined action or any group 

by imagined action type, ps>.64, and there was also no significant difference in the number of 

trials included in any of the imagined action types or rest conditions on average or by group, 

ps>.41. The three groups also did not differ in their self-reported vividness ratings of the 

imagined actions, p=.34, and in motor imagery ability as measured by the MIQ-RS (ps>.545; 

Gregg et al., 2010; see Table 1). 

 

From the group spectral analyses of the EEG data (Figure 3), there were significant ERDs 

for the familiar imagery versus rest comparisons for both the experienced pianists (ps<0.015) and 

the experienced hockey players (ps<0.019). Although the ERDs were significant bilaterally 

(rather than unilaterally) and over a longer period of time for the pianists, the significant ERDs 

were similar between the hockey players and pianists for the familiar imagery, in that both ERDs 

featured significant clusters in both the mu and low-beta bands. However, the pianists also had 

significant ERDs for the hockey imagery (ps<.017) and simple imagery (ps<0.017) versus rest 

comparisons, and the hockey players had an ERD that approached statistical significance 

(p=.036) in the simple imagery versus rest comparison. Furthermore, the control group (which 

consisted of age-matched individuals without significant experience playing hockey or piano) 

also produced significant ERDs for both the piano (p=.021) and hockey imagery (p=.002) versus 

rest comparisons, though these ERD clusters were smaller in their spatiotemporal extent than 

those generated by pianists. There were no significant clusters in any of the other comparisons 

(ps>0.08). Thus, much like the single-trial analyses, the spectral analyses do not provide strong 

evidence that there was an advantage in terms of SMR detection for any group regardless of their 

familiarity (or lack thereof) with the imagined actions.  

 

3.3. Study 3 (Complexity and Familiarity) 

In terms of classification accuracy, there was a significant advantage for the complex 

imagined action (Complex: M=69.60%, SE=2.03%) compared to the simple imagined action for 

the pianists-only study (Simple: M=66.34%, SE=1.96%; t(15)=-2.589, p=.021, d=0.65). 

Furthermore, there was an advantage for the complex imagined action compared to the simple 

imagined action in that significantly more time-points were classified significantly from rest in 

the former comparison, Z=-2.510, p=.009 (two-tailed), r=.63 (Simple: median of 9.0 significant 

time-points [range:0-76]; Complex: median of 32.0 significant time-points [range:0-74]). There 

was no significant difference between the number of participants with significant imagery versus 

rest comparisons in the two complexity levels, Fisher’s exact p=0.25. It is important to note that 

there was no significant difference in terms of when the maximum classification accuracy 



occurred relative to the onset of the auditory cue for the two imagined actions, p=.72, and it is 

also worth noting that the differences between the complexity conditions were not driven by a 

difference in the number of trials in any condition, p=.16, or by a difference between the self-

reported vividness of the imagined actions in Study 3 compared to Study 2, p=.10. 

 

The results of the group spectral analyses are shown in Figure 4 for each comparison. 

Compared with rest, significant ERDs (ps<.017) occurred in the mu and low-beta bands over the 

left hemisphere and in the low-, mid-, and high- beta bands over the right hemisphere beginning 

approximately one second after the offset of the instruction to imagine playing the simple piece. 

For the complex imagery versus rest comparison, a similar response was observed with the same 

time-course, although the ERDs were significant (ps<.011) over both hemispheres throughout 

the mu band, and throughout the low- and mid-beta bands. In a comparison of the two imagery 

conditions, there was more of a desynchronization bilaterally for the complex imagery in the mu 

and low-beta bands that approached statistical significance (ps=.044 [C3’] and .038 [C4’]).  

 

4. Discussion 

 

In this paper, we presented a series of three experiments in which movement complexity 

and familiarity with movements were manipulated in a SMR-based imagery paradigm. The 

purpose of this work was to increase the likelihood of detecting reliable and robust SMRs, and 

thereby improve how well covert command-following can be detected in behaviourally non-

responsive patients. In future work, we will apply these manipulations to SMR paradigms used 

with BCIs intended for communication with severely brain-injured patients, including 

individuals diagnosed as VS.  

 

In Study 1, imagery of a range of bimanual sequences of actions (“complex imagery”) 

resulted in SMRs that were classified from rest with similar accuracy as imagery of the simple 

hand squeezes typically used with SMR-based BCIs. There was a group trend that the complex 

actions used in this task were classified with higher accuracy than the simple hand squeezes 

typically used with SMR-based BCIs, although this result did not reach statistical significance 

(p=.068). Furthermore, we found a significant advantage for the complex actions in that the 

SMRs for these actions were classified significantly from rest for a longer period of time than the 

simple actions. We also found that significantly more single subjects produced significantly 

classifiable SMRs for at least one of the complex actions than for at least one of the simple 

actions. Overall, the findings of Study 1 align with our prediction based on previous work that 

there would be an enhancement of the brain response for the complex imagery (e.g., Kuhtz-

Buschbeck et al., 2003; Roosink & Zijdewind, 2010; Holper & Wolf, 2011), and support our 

hypothesis that motor imagery that involves more than one body part and sequences of actions is 

likely to improve the ability to detect covert command-following or communication in future 

work. 

 

Another interesting finding from Study 1 was the between- and within-subject variability 

for the various imagined actions. Nearly half of the sample (seven or eight of the sixteen 

participants; see Table 2) produced a SMR that was significantly classifiable from rest for each 

of the complex imagined actions, while only one to four participants produced a SMR that was 

significantly classifiable from rest for each of the simple imagined actions. We posit that, at the 



group-level, the advantage of the complex imagery was not statistically significant for 

classification accuracy because of this variability. In other words, there was no advantage for the 

complex imagery at the group-level because most participants (eight of the eleven participants 

with significant complex imagery versus rest comparisons) only produced significant responses 

for one or two of the complex imagined actions, rather than for all three of these actions. The 

latter observation is well-illustrated anecdotally by the classification results of two guitarists who 

participated in Study 1 (see section 3.1 and Figure 1). There was a marked improvement in 

classification accuracy when the guitarists imagined playing the guitar as part of the complex 

imagery phase of the experimental procedure (maximum accuracy: 81.10%, SE=3.44%; see 

Figure 1 and section 3.1) compared with all of the other imagined actions (maximum accuracy 

range=54.27-64.79%). Indeed, both guitarists only produced a significantly classifiable brain 

response for one of the other two complex imagined actions, and for none of the simple imagined 

actions. 

 

We designed Studies 2 and 3 to follow up on the group trend of the advantage for the 

complex actions in Study 1 and to explore the role of action familiarity in the imagery paradigm. 

Study 2, which included groups of experienced pianists, experienced ice hockey players, and 

age-matched controls, did not meet our expectations in that there was no advantage for any of the 

imagined actions for any group, regardless of their familiarity with the imagined actions (e.g., 

pianists imagining playing piano, etc.). Compared to novices, experienced athletes and musicians 

utilize fewer regions of the brain when imagining actions involving the sport or instrument with 

which both groups have familiarity (e.g., Lotze et al., 2003; Fourkas et al., 2008; Olsson et al., 

2008; Wei & Luo, 2010). Although expert brain responses to familiar imagery are fairly 

consistent within and across individuals (e.g., Langheim et al., 2002), these responses did not 

result in an enhancement of the SMR in Study 2.  

 

Interestingly, in Study 3, we found an advantage in SMR classification for specific, 

familiar actions (performance of two musical pieces), such that classification accuracy was 

higher and significant over a longer period of time when the experienced pianists from Study 2 

imagined playing the more complex musical piece. Moreover, the mu and beta ERDs from the 

spectral analyses of Study 3 were statistically significant for the longest period of time and 

associated with the largest log-ratio differences in power of all the imagery conditions with 

significant ERDs across all three experiments (see Figures 2-4). As an exploratory post-hoc test, 

we also compared the classification accuracy for the pianists on the instruction to imagine 

playing a musical piece of their choice on the piano (versus rest) in Study 2 with the 

classification accuracy for imagined performance of each of the two specific musical pieces 

(versus rest) in Study 3. This analysis resulted in a significant effect of movement type, 

F(15)=16.016, p=.001, ηp
2=.361, that was driven by the significantly lower classification 

accuracy for the piano imagery in Study 2 compared to the complex piano imagery in Study 3 

(p=.003; Complex Musical Piece [Study 3]: M=69.60%, SE=2.03%; Musical Piece of Choice 

[Study 2]: M=63.31%, SE=1.49%; other pairwise ps>.06). This finding provides additional 

support for our claim that it is the imagery of a specific, complex, and familiar action that leads 

to an advantage in SMR classification, rather any of these three properties individually. 

 

A combination of factors likely contributed to the finding that the specific, complex, 

familiar imagery from Study 3 resulted in the most robust brain responses in this work. The 



finding that the complex imagery resulted in an enhancement of the SMR compared to the 

simple imagery within Study 3 aligns well with previous work (e.g., Kuhtz-Buschbeck et al., 

2003; Roosink & Zijdewind, 2010; Holper & Wolf, 2011). Moreover, there was more potential 

variability in the brain responses between participants in the piano imagery for Study 2 versus 

Study 3 due to variations in the particular pieces that each person chose to imagine in Study 2; 

this variability likely resulted in less consistent and less robust brain responses between 

individuals, regardless of their familiarity with the piano. On a related note, it is highly unlikely 

that the specificity of the instructions alone underlies the advantage of the Study 3 imagery, 

given that all of the other imagery tasks in this work also involved specific instructions (e.g., 

imagine squeezing your right hand, etc.). Playing the piano involves highly temporally and 

spatially complex movements (see Zatorre et al., 2007, for a review), and analogous finger-

sequencing actions that do not require prior knowledge of the piano are also associated with 

more robust brain responses than less temporally and spatially complex actions (e.g., Bengtsson 

et al., 2004). It is thus possible that the piano performance imagery was simply more conducive 

to an enhanced SMR than the other imagined actions in this work, but that this advantage was 

only evident when the actions were well-specified and performed by individuals who were 

highly familiar with the actions. Although the particular imagined actions from Study 3 are not 

appropriate for non-musicians, these findings nevertheless provide some criteria that can be 

generalized to other imagery tasks for future work with SMR-based BCIs. 

 

In summary, the three experiments in this work provide three important findings 

regarding the roles of action familiarity and complexity in the EEG correlates of motor imagery. 

Firstly, allowing an individual to imagine performing a task that involves bimanual sequences of 

actions can result in more robust brain responses from some individuals, as illustrated in Figure 

1, and these modified imagery tasks do not impair performance compared to the hand-squeeze 

imagery typically used with SMR-based BCIs. Secondly, a familiar action may not always lead 

to a more robust SMR during motor imagery than other actions (Study 2), but, thirdly and lastly, 

an action that is both familiar and involves sufficiently complex and well-specified actions can 

lead to an enhanced and more sustained SMR during motor imagery (Study 3). Furthermore, we 

speculate that the role of action familiarity in modulation of the SMR is that individuals must 

have some experienced executing an action in order to perform motor imagery of that action 

reliably (see Olsson & Nyberg, 2010), but other factors, such as the complexity of the particular 

imagined action, determine how robust the brain response will be for that action. In fact, in 

studies of short-term motor learning, brain responses to motor imagery are enhanced following 

overt practice of novel actions (e.g., Lacourse et al., 2005; Baeck et al., 2012). For this reason, 

although this work only examined familiar imagery among highly experienced athletes and 

musicians, we propose that it is worthwhile to select an imagery task based on a person’s skills 

and interests to attempt to ensure a reliable brain response during motor imagery, regardless of 

the person’s level of expertise in executing the action. Most importantly, we posit that the subtle 

but important changes in task instructions proposed here may provide benefits to those 

individuals who are unable to control a conventional SMR-based BCI (e.g., Figure 1), given the 

substantial variability between and within subjects in previous work (e.g., Hammer et al., 2012). 

 

We therefore conclude that these results provide a framework for modifications of SMR-

based BCI paradigms that may be used to detect covert command-following in, and even 

communicate with, behaviourally non-responsive patients. Based on the findings from the 



healthy individuals used in this work, we propose that the imagery tasks used with patients 

diagnosed as VS in SMR-based BCI paradigms should be customized to each patient whenever 

possible. Indeed, during conventional behavioural assessment with the CRS-R, the type of 

command that a patient is asked to follow should be based on the patient’s physical capacity in 

order to maximize the likelihood of detecting a response (Kalmar & Giacino, 2005). Based on 

the findings of Study 3 and the interesting results depicted in Figure 1, it may be useful to confer 

with care-givers in order to select an imagery task that involves more than one sensory modality 

(e.g., auditory imagery) and a specific sequence of actions with which the patient has had some 

experience. Furthermore, the supplementary motor area (SMA) and other premotor cortical areas 

are active in both musicians and non-musicians when listening to complex rhythms (e.g., 

Bengtsson et al., 2009) and imagining familiar melodies (e.g., Halpern & Zatorre, 1999; for a 

review, see Zatorre et al., 2007). Thus, imagery that involves music and rhythm may also 

generalize well to non-musicians and behaviourally non-responsive patients (see also Schaefer et 

al., 2011). In general, customizing the BCI imagery task to suit each patient when possible and 

utilizing other sensory modalities and sequences of actions in the imagery task should maximize 

the likelihood of the patient producing a robust, reliable SMR. By extension, this enhanced SMR 

may increase the chances of correctly identifying patients who are able to follow the imagery 

commands, and may even allow for some patients to exploit the imagery response for 

communication. With the appropriate reliability checks, successful use of a SMR-based BCI 

could become part of a neuroimaging-based assessment of awareness in VS patients, and thereby 

improve the currently low rate of diagnostic accuracy for this group (Childs et al., 1993; 

Andrews et al., 1996; Schnakers et al., 2009). 
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Figure Legends 

 

Figure 1. Mean smoothed, cross-validated classification accuracy from the EEG single-trial 

analyses across time for one subject (an experienced guitar player) from Study 1 by imagery 

versus rest comparison. Time is measured relative to the offset of the auditory instruction cue. 

Shaded regions depict ±1 standard error of the mean (smoothed), and stars denote time-points 

with statistically significant classification results for the corresponding accuracy time course. 

 

Figure 2. Averaged, group (n=16) time-frequency plots from the spectral analyses of the EEG 

data for Study 1 (Complexity) averaged across the three imagined actions in each imagery 

condition. The range of power values (log ratio difference) that are plotted is ±0.6121. 

Significant clusters (ps<.014) are outlined with solid lines; dashed lines highlight a cluster with 

p=.050. Plots on the left and right reflect the left- and right-hemisphere EEG channels (C3’ and 

C4’, respectively), as indicated. Frequency (Hz) is indicated on the vertical axis, and time is 

measured relative to the offset of the instruction. 

Figure 3. Averaged, group time-frequency plots from the spectral analyses of the EEG data for 

Study 2 (Familiarity) by imagery versus rest comparison per familiarity group (n=16 per group). 

The range of power values (log ratio difference) that are plotted is ±0.6121. Significant clusters 

(ps<.021) are outlined with solid lines; dashed lines highlight a cluster with p=.036 (C3’ for the 

simple imagery minus rest comparison for the hockey players). Plots on the left and right in each 

pair reflect the left- and right-hemisphere EEG channels (C3’ and C4’, respectively), as 

indicated. Frequency (Hz) is indicated on the vertical axis, and time is measured relative to the 

offset of the instruction. 

Figure 4. Averaged, group (n=16) time-frequency plots from the spectral analyses of the EEG 

data from Study 3 (Complexity and Familiarity) by comparison. The range of power values (log 

ratio difference) that are plotted is ±0.6121. Significant clusters (p<.017) are outlined with solid 

lines; dashed lines highlight clusters with p=.044 (C3’) and p=.038 (C4’). Plots on the left and 

right reflect the left- and right-hemisphere EEG channels (C3’ and C4’, respectively), as 

indicated. Frequency (Hz) is indicated on the vertical axis, and time is measured relative to the 

offset of the instruction.
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