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Abstract
Three essays in financial asset pricing are given; one concerning the partial differential equation
(PDE) pricing and hedging of a class of continuous/generalized power mean Asian options, via
their (optimal) Lie point symmetry groups, leading to practical pricing formulas. The second
presents high-frequency predictions of S&P 500 returns via several machine learning models,
statistically significantly demonstrating short-horizon market predictability and economically
significantly profitable (beyond transaction costs) trading strategies. The third compares prof-
itability between these [(mean) ensemble] strategies and Asian option ∆-hedging, using re-
sults of the first. Interpreting bounds on arithmetic Asian option prices as ask and bid values,
hedging profitability depends largely on securing prices closer to the bid, and settling mid-
way between the bid and ask, significant profits are consistently accumulated during the years
2004-2016. Ensemble predictive trading the S&P 500 yields comparatively very small returns,
despite trading much more frequently.

The pricing and hedging of (arithmetic) Asian options are difficult and have spurred several
solution approaches, differing in theoretical insight and practicality. Multiple families of exact
solutions to relaxed power mean Asian option pricing boundary-value problems are explicitly
established, which approximately satisfy the full pricing problem, and in one case, converge
to exact solutions under certain parametric restrictions. Corresponding hedging parameters/
Greeks are derived. This family consists of (optimal) invariant solutions, constructed for the
corresponding pricing PDEs. Numerical experiments explore this family behaviorally, achiev-
ing reliably accurate pricing.

The second chapter studies intraday market return predictability. Regularized linear and non-
linear tree-based models enjoy significant predictability. Ensemble models perform best across
time and their return predictability realizes economically significant profits with Sharpe ratios
after transaction costs of 0.98. These results strongly evidence that intraday market returns
are predictable during short time horizons, beyond that explainable by transaction costs. The
lagged constituent returns are shown to hold significant predictive information not contained in
lagged market returns or price trend and liquidity characteristics. Consistent with the hypoth-
esis that predictability is driven by slow-moving trader capital, predictability decreased post-
decimalization, and market returns are more predictable midday, on days with high volatility
or illiquidity, and during financial crises.

Keywords: Partial differential equations, Asian option pricing and hedging, power means,
mathematical finance, quantile options, (optimal) Lie point symmetry analysis and in-
variant solutions, separation of variables, Fourier-Bessel series, Hankel and Kontorovich-
Lebedev transforms, special functions and integral transforms, Gaussian process regres-
sion; machine learning, statistically significant S&P 500 high-frequency return predic-
tion, economically significantly profitable trading strategies, short-horizon market ineffi-
ciency, financial econometrics, fintech
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Summary for Lay Audience
The pricing of two financial goods (options and stocks) is studied in three essays: One ex-
amines both the pricing and portfolio/risk management of a large family of options which
encapsulates others previously proposed and studied. The second predicts five-minute samples
of S&P 500 returns via several machine learning models: Statistically and economically sig-
nificant results follow through trading strategies that are profitable beyond transaction costs.
The third compares profitability between these strategies and others which follow from the
portfolio/risk management results for options. In a framework with a trader deciding to engage
in such portfolio management/optimization from day to day, given ask and bid option prices,
profitability depends largely on securing prices closer to the bid, and settling midway between
the bid and ask, significant profits are consistently accumulated during the years 2004-2016.
Trading the S&P 500 using the machine learning results yields comparatively very small re-
turns, despite trading much more frequently.

Option pricing and portfolio/risk management are difficult and have spurred several solution
approaches, differing in theoretical insight and practicality. Multiple families of option pricing
formulas are explicitly established, which approximately satisfy the full pricing problem, and
in one case, are exact under certain restrictions. Corresponding risk management parameters
are derived, and numerical experiments explore these families behaviorally, achieving practi-
cal, reliably accurate pricing.

The second chapter predicts five-minute market returns using models of varying sophistication
and complexity. Models that average results of others perform best and yield economically sig-
nificant and reliable profits after transaction costs which nearly equal their standard deviation.
These results strongly evidence that five-minute market returns are predictable, beyond what
can be explained by (trading behaviour due to) transaction costs. Returns of the (500) market
constituents are shown to hold significant predictive information not contained in those of the
S&P 500 alone; or statistics that characterize market solvency. Consistent with the hypothesis
that slow-moving trader capital drives predictability, the latter decreased in the early millen-
nium when various technological and regulatory factors increased market solvency. Similarly,
market returns are more predictable on highly volatile or insolvent days/times and particularly
during financial crises.
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Introduction

The 2007-2008 financial crisis severely undermined public trust in the world financial system.
It was facilitated by investment banks’ trading of esoteric financial products like mortgage-
backed securities (MBSs) and collateralized debt obligations (CDOs): In lay terms, ‘slicing
and dicing’ Americans’ mortgages, and recombining them such that products containing pri-
marily junk debt were incorrectly prime rated. Short-selling by investment banks of these prod-
ucts, containing subprime mortgages, constituted the banks betting against the corresponding
mortgage holders. One problem identified following the crisis was the opacity of financial
derivatives, in particular, to the financial professionals trading them, with an only superficial
knowledge of how the products work. A disconnect exists between the traders and those who
design and analyze such products, often math and physics doctorates with little knowledge of
their real-world application.

Closing this gap is one way of restoring public faith in the financial system, by legitimizing
its activities. This happened in 1973, following the publication of the option-pricing formula
of Black and Scholes [38], regarding the goings-on of the Chicago Board Options Exchange.
Furthermore, the volume of options traded increased significantly as a result of that paper.
However, many derivatives since introduced are much more complicated, including MBSs and
CDOs. So it is important to have financial professionals competent in the analysis and pricing
of these products, who are also cognizant of practicalities concerning their implementation.
My economics Ph.D. research addresses this goal.

Financial options are contracts whose payoffs depend on an underlying asset. A ‘strike price’
is specified, to which some function of the underlying asset’s price path is compared upon
the contract’s expiry, in determining the payoff. The contract allows the holder to ‘exercise’
the option by buying or selling the underlying asset at the strike price. Various options al-
low for different exercise schedules. European options, exercisable only at expiry, and the
American kind, exercisable any time preceding expiry, are classified as ‘vanilla.’ Their pay-
offs depend only on the terminal price of the underlying asset, typically a stock. While these
options comprise the greatest volume in real-world trading, other ‘exotic’ options exist. One
popular example, which chapter 1 aims to price, is the Asian option, whose payoff depends on
the average underlying asset price over the option’s lifetime. This is an important problem, and
many numerical, approximate, and hybrid approaches have been proposed, but an exact pricing
formula, like that of Black and Scholes [38], remains elusive. My research has elicited an ap-
proximate formula that is exact under certain restrictions and a good approximation when these
restrictions are ‘nearly’ satisfied. Numerical experiments illustrating this result indicate suit-
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2

ability for both pricing and hedging. In fact, despite trading far less frequently, some hedging
portfolios in chapter 3 consistently and vastly outperform the profitability of trading strategies
derived from predictive machine learning models. For derivatives generally and Asian options,
in particular, proper pricing encourages their trade, promoting investment, economic growth,
financial institutions’ reputations, and social welfare.

Chapter 2 studies market return intraday predictability. Numerous models were run on S&P
500 return data, for prices sampled at the half-hour, five-minute, and one-minute frequencies,
using the Compute Canada high-performance computing cluster. As such, this constitutes a
big-data, high-frequency trading analysis (the trading strategy being based upon price predic-
tions). Beyond establishing benchmarks via standard linear machine learning models, a wide
selection of nonlinear ones are considered, attempting to optimally construct such architectures
to provide the greatest predictability of S&P 500 returns. The resulting trading strategies are
shown to be statistically and economically significantly profitable, even after accounting for
transaction costs.

In practice, this research offers market participants greater predictability, which is highly sought-
after. Long-term market predictability has been tentatively established via various financial
ratios, which are however not applicable to short-term, and in particular intraday, price moves.
The long-term market predictability results from one form of the efficient markets hypothe-
sis (EMH) (in short, that prices account for ‘all’ information available to the market, with
various forms defined according to the scope of ‘all’). This also implies that over short, near-
instantaneous intervals, prices should remain constant, so long as there are no so-called ‘news
shocks’ which constitute ‘pulses’ of information injected into the market at different moments.
But news shocks also demand a transient adjustment period, during which increased trading
(and pursuant transaction costs) may exacerbate market illiquidity, which offers potential pre-
dictability. In other words, while the information from a news shock is reconciled, the EMH
is temporarily violated, as the information of the news shock has not been factored into prices.
And so it may be possible to predict (better than a fair coin toss, at least) price movements
during such transient periods, using machine learning models trained on high-frequency data,
which is exactly the research objective. Such predictability also yields effective statistical arbi-
trage trading strategies, providing compelling financial incentive. The noted market illiquidity
encompasses inefficiencies that violate the EMH so that the determined predictabilities gauge
such violations’ extent. Prior research has found some predictability using low-frequency data
and linear models, but the non-linear machine learning models, trained on high-frequency data,
suss out undiscovered predictabilities.

Both primary chapters 1 and 2 thus concern illiquid markets (in which Asian options are
traded most frequently, e.g., those of commodities and foreign exchange); the brief, empiri-
cal/numerical ‘bridge’ chapter 3 compares the profitability of trading strategies derived from
each, finding that ∆-hedging Asian options may significantly outperform statistical arbitrage
achieved via machine learning predictions of intraday S&P 500 returns.



Chapter 1

Asian option pricing and hedging with
generalized averaging

Abstract

The pricing and hedging of (arithmetic) Asian options poses a difficult problem, which has
prompted the development of several solution approaches, differing in theoretical informative-
ness and practicality. Multiple families of exact solutions to relaxed power mean Asian option
pricing boundary-value problems are explicitly established, which approximately satisfy the
full pricing problem, and in one case, converge to exact solutions under certain parametric
restrictions. Corresponding hedging parameters/Greeks are derived. This family consists of
(optimal) invariant solutions, constructed for the pricing partial differential equations of a class
of continuous/generalized power mean Asian options, via their (optimal) Lie point symme-
try groups. Numerical experiments explore the behavior of this family, and lead to accurate,
reliable, consistent pricing models suitable for use in practice.

1.1 Introduction

The mathematical and market structure of the problem to be solved are first presented, along
with relevant details on analytical option pricing, in particular for European vanilla and power
mean Asian options, illustrating why certain among the latter are (not) easily priced as in the
vanilla case. A related exotic option, the so-called β-quantile variety, is then discussed. Exist-
ing approaches to (arithmetic) Asian option pricing are then reviewed. Finally, the introduction
concludes with a discussion of the employed methodology and broad results.

1.1.1 Mathematical and market environment. Problem statement

Let a maturity, T > 0, be given, and consider a complete, filtered probability space, (Ω,F ,F, P),
with the natural filtration of F with respect to a standard (real-valued) Brownian motion,
(Wt)t∈[0,T ], F ≡ (Ft)t∈[0,T ]. Let the spot price of a risky, underlying asset (first factor), (S t)t∈[0,T ],
evolve from initial value, S 0 ≥ 0, according to a geometric Brownian motion (GBM); i.e., to

3
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solve the following stochastic differential equation (SDE):

dS t

S t
= µdt + σdWt (1.1)

Here, µ ∈ R and σ > 0 are given. Letting P be the unique risk neutral measure in this
framework,1 it follows that µ = r, the risk-free interest rate according to which a numeraire
bond, (Bt)t∈[0,T ], is defined to evolve from initial value, B0 = 1:

dBt

Bt
= rdt (1.2)

A European call (put) option is a contract which affords the holder the right to buy (sell) one
unit of the underlying asset, S T , at a strike price, K ≥ 0, upon maturity of the contract at time
T . The payoff, F(S T ,T ), of such a contract at maturity is max{S T − K, 0} (max{K − S T , 0}).
Thus, denoting by V(S , t) the no-arbitrage price of the option at time t (dropping the subscript
on S t), the problem of pricing the option contract when it is written at time t = 0, is to solve
for V(S 0, 0), given the asset dynamics (1.1) and (1.2), and subject to the terminal condition,
V(S T ,T ) = F(S T ,T ). Assuming both asset markets to be liquid and frictionless, i.e. that
arbitrary transactions of each are not subject to costs, Black and Scholes [38] demonstrated
that a closed-form solution to this problem exists, and derived their celebrated pricing formulae.

Note that the European payoff is highly sensitive to the terminal value of the underlying as-
set, S T : This payoff is largely subject to vagaries in the market price of the underlying asset
near expiry. This is understandably not an attractive feature of such contracts for many (would-
be) holders, to the extent of such vagaries: There is motivation to reduce payoff sensitivity to
terminal underlying asset price, which may be accomplished, for instance, by averaging the
underlying asset price over the lifetime of the option, i.e., the interval [0,T ].2 Consider the
following family of power means:3

(∀α ∈ R) Aα[S t] ≡ Aα[(S t)t∈[0,T ]] ≡

1
t

t∫
0

S α
τdτ


1
α

(1.3)

(Note that these functionals are evaluated for a sample path of the GBM, (S t)t∈[0,T ], which is
known to be continuous almost everywhere; see Pascucci [245].) For only two variables (say
asset prices S ti at times i ∈ {1, 2}), some level curves of (discrete) power means are plotted in
figure 1.1a. The linear plot corresponds to α = 1, and α then decreases (increases) moving

1The uniqueness of the risk neutral measure for assets evolving according to equation (1.1), follows from the
fundamental theorem of asset pricing; see the extensive account of analytical option pricing by Pascucci [245].

2More generally, an average over some interval, say [t, t̄], with 0 ≤ t ≤ t̄ ≤ T , or a union of such intervals, may
be considered. The solution process then becomes piecewise, treating the option as European over times when the
underlying asset is not averaged, and otherwise as in this paper, i.e., for individual sub-intervals treated as option
lifetimes of their own. This process is best implemented numerically; see Wilmott, Dewynne, and Howison [315].

3The (affinely) extended real line, R ≡ R ∪ {±∞}, includes the real line, R, and two ends; the positive and
negative points at infinity: It is the two-point compactification of R, in contrast to the one-point compactification
(Alexandroff extension) obtained by projectively extending R with a single end/point at infinity; R̂ ≡ R ∪ {∞} �
RP1, (homeomorphic to) the real projective line.
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rightward (leftward) across each plot. Various power means are plotted in figure 1.1b for the
spot price of West Texas Intermediate crude oil, from January 3 through November 20, 2017;
data which was obtained from the United States Energy Information Administration.

(a) Two-dimensional case
(b) With respect to sampled commodity data

Figure 1.1: Behavior of power means (1.3)

A floating-strike European Asian call (put) option is a contract which affords the holder the
right to buy (sell) one unit of the underlying asset, S T , at a floating strike price,AT ≡ Aα[S T ],4

upon maturity of the contract at time T . The payoff, F(S T ,AT ,T ), of such a contract at ma-
turity is max{S T − AT , 0} (max{AT − S T , 0}). Note that this is as for a (non-Asian) European
option, replacing the fixed strike price, K, with the floating one,AT , determined as an average
price path of the underlying asset over the lifetime of the option: Similarly, a fixed-strike Eu-
ropean Asian call (put) option is a contract which affords the holder the right to buy (sell) one
unit of the second factor,AT , at a fixed strike price, K, upon maturity of the contract at time T .
The payoff, F(S T ,AT ,T ), of such a contract at maturity is max{AT − K, 0} (max{K −AT , 0}).
Thus, denoting by V(S ,A, t) the no-arbitrage price of the option at time t (dropping the sub-
scripts on S t andAt), the problem of pricing the option contract when it is written at time t = 0,
is to solve for V(S 0,A0, 0), given the asset dynamics (1.1)-(1.3), and subject to the terminal
condition, V(S T ,AT ,T ) = F(S T ,AT ,T ). Assuming both bond and underlying (first factor)
asset markets to be liquid and frictionless, the difficulty of this problem depends greatly on the
value of the power mean index, α ∈ R: When α = 0, the power mean (1.3) is geometric, and so
the resulting Asian options are also qualified as such. Recall that, for any t ∈ [0,T ], the random
variable, S t, from the GBM, (S t)t∈[0,T ], is lognormally distributed, and that the geometric mean
of lognormally distributed random variables is likewise lognormally distributed: It is then a
straightforward exercise with the resulting correlated GBMs, (S t)t∈[0,T ] and (At)t∈[0,T ], to derive
a closed-form solution for the geometric Asian option pricing problem, using that of Black and

4The subscript, α ∈ R, is often suppressed, but understood as an implicit parameter until explicitly specified.
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Scholes [38]; see Zhang [327].

When α = (−)∞, the power mean (1.3) yields the supremum (infimum), and the resulting (lim-
iting) Asian options are known as lookback call (put) options. It is also a straightforward exer-
cise to derive a closed-form solution for the lookback option pricing problem, leveraging that
of Black and Scholes [38]; see Goldman, Sosin, and Gatto [149] and Wilmott, Dewynne, and
Howison [315].5 When α = (−)1, the power mean (1.3) is arithmetic (harmonic), and so the
resulting Asian options are (may be) also qualified as such. The cases discussed, |α| ∈ {0, 1,∞},
are all those whose corresponding Asian options have apparently been studied before, and one
contribution of the present paper is to propose, and argue for the potential benefits of, the
entire family, indexed by α ∈ R. The analysis for such α is carried up to a point, deriving
generalizations, corrections, and justifications of results of Antoniou [15] for arithmetic Asian
options, prior to focusing on the arithmetic case for the remainder of the paper. Indeed, the
arithmetic case has been most thoroughly studied, partly because it is the most important and
widely traded (including on the Chicago Board Options Exchange), but also because its analy-
sis is much more difficult than the cases of geometric Asian and lookback options.6 Regarding
the harmonic case, it is shown in corollary 1.2.4 that the options with α < 0 may be priced
in terms of their −α counterparts; a sort of duality (parity) result. But it is clearly seen in the
analysis that, among the proposed family of power mean Asian options, the arithmetic (and so
harmonic) case stands out as a particularly simple one, and the case of |α| < {0, 1,∞} is yet
more difficult than the already challenging arithmetic case.

It is natural that a fixed-strike Asian call should be more expensive for higher α, as is its payoff.
Similar monotonicity arguments follow immediately for floating/average-strike puts and calls.
The ensuing analysis can not only verify that such monotonicity constraints are satisfied, but by
precisely how much, depending on the values of α concerned. Particularly, this could inform
empirical work concerning price differentials of arithmetic and geometric Asian options.

There are two primary approaches to analytical (as opposed to numerical) option pricing;
martingale- and partial differential equation (PDE)-based. Both are treated extensively in Pas-
cucci [245]. Martingale-based methods exploit the fundamental theorem of asset pricing: With
respect to the unique risk-neutral measure, say Q, any financial product derived from a GBM
is a martingale, and therefore its value may be computed as the (risk-free rate, r) discounted,
expected value of its payoff. For example, if such a derivative contract has payoff at maturity,
T , equal to F(S T ,T ), then its value, V(S t, t), for any time, 0 ≤ t ≤ T , is computed as follows:

V(S t, t) = e−r(T−t)EQ[F(S T ,T )|Ft] (1.4)

In the case of European (geometric Asian) options, the log-normality of (the geometric mean
of) the underlying asset, S t, allows explicit computation of this expectation. However, the dis-

5Note that the power mean functional (1.3) has not apparently before been used to define payoffs for a cor-
responding family of Asian options, as this paper proposes, other than instrumentally as a means to derive the
pricing formula for lookbacks in the limit |α| → ∞, by Wilmott, Dewynne, and Howison [315].

6Since lookbacks perfectly solve the market timing problem, by allowing the holder access to the optimal
(supremal or infimal) price of the underlying asset over the lifetime of the option, they are always exercised. This
significantly simplifies their analysis, since the payoff is smooth, and in this sense they are not really ‘options.’
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tribution of the arithmetic (and more generally, other power) mean of the underlying asset is
unknown, which is one reason for the much greater difficulty of pricing Asian options con-
tingent on such means. Martingale and PDE-based methods of option pricing are intimately
related through the Feynman-Kac formula, which identifies the martingale (1.4) as the solution
of a corresponding parabolic, pricing PDE [its associated Fokker-Planck-Kolmogorov (FPK)
equation]: In the case of a European (geometric Asian) option, this is the Black-Scholes [38]
equation (a similar one listed by Zhang [327]). But this is not useful for other power mean
Asian options, since such means of the underlying asset are unknown, and in particular are
known not to be lognormal, so that they do not constitute a GBM correlated with that of the
underlying asset, as is the case for geometric Asian options.

Fortunately, the PDE-based approach to option pricing also directly obtains via financial argu-
ments: By constructing a portfolio consisting of one power mean Asian option and a number,
∆, of the underlying asset, it is possible to perfectly hedge, i.e., to remove the dWt term from
the SDE of, the portfolio. No-arbitrage implies that such a portfolio cannot evolve faster than
the risk-free rate, and in the case of European contracts which only allow exercise at matu-
rity, T , the porfolio must evolve at the risk-free rate. Expressed mathematically, the result is a
PDE, the solution of which is the option price, V(S ,A, t); see Antoniou [15] for the (standard)
argument applied to arithmetic Asian options. At this point it is important to observe that the
precise PDE obtained, which may strongly impact solution difficulty using a computer algebra
system (CAS), depends entirely upon how the second factor, to this point taken as the power
mean, At, of the underlying asset, S t, is defined in terms of the former factor and the time
variable, t. Specifically, defining an alternative second factor, A ≡ A(A, t) (again dropping the
subscripts on At and At), the following pricing PDE form obtains via the standard ∆-hedging
argument for the price, V(S , A, t), of a power mean Asian option:

Vt +
1
2
σ2S 2VS S + g(S , A, t)VA + rS VS − rV = 0 (1.5)

(Subscripts denote partial differentiation.) The coefficient of VA, corresponding to three candi-
date definitions of A, are as follows:

g(S , A, t) =


A
αt

[(
S
A

)α
− 1

]
A = A

S α−A
t A = Aα

S α A = tAα

(1.6)

The bottom case is simplest in that it depends only on S , whereas the other two depend also
on A and t. This simplicity is borne out in the derivation of lemma 1.2.1 using a CAS, which
required approximately seconds, six hours, and 24 hours, for respectively the bottom, middle,
and top definitions of A in formula (1.6). But this simplicity is not without cost, which can be
seen by considering limt→0+ At:

At limt→0+ At

At S 0

Aα
t S α

0
tAα

t 0
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The ‘simplest’ case, viewed this way, is the most complex: Practically, it is paramount to price
the option as t → 0+, when the contract is written. The limiting value of zero in this case be-
comes problematic at later stages of the analysis, when it results in complicated indeterminate
expressions which typically vanish or diverge; neither is useful from the standpoint of obtain-
ing an actual option price. So it becomes worthwhile to consider alternate definitions of A, and
in particular the middle one in formula (1.6), which is ‘simpler’ than the top one as described,
and has a nonzero limit as t → 0+, so long as |α| < ∞ and S 0 > 0; the case of S 0 = 0 is
trivial, since all options will (almost always) have zero payoff and therefore zero price. How-
ever, preliminary analyses of the two upper definitions of A in formula (1.6), exposed no major
advantage to the (algebraically) simpler, bottom case, and so shortly after lemma 1.2.1, the
definition A ≡ tAα

t is assumed. For that reason and clarity of exposition, the same assumption
is made for the remainder of the current section. In this case, the pricing PDE (1.5) becomes

Vt +
1
2
σ2S 2VS S + S αVA + rS VS − rV = 0 (1.7)

This PDE is subject to the terminal condition that the option price match its payoff at maturity:

V(S T , AT ,T ) = F(S T , AT ,T ) ≡ max

(AT

T

) 1
α

− K, 0

 (1.8)

(This is the payoff for a fixed-strike call option, assumed without loss of generality as discussed
in section 1.3.) The primary theoretical contribution of this paper, in the case with α = 1 of
an arithmetic Asian option (and so α = −1 by corollary 1.2.4), is a family of exact solutions
to the boundary-value problem (BVP) consisting of PDE (1.7) and terminal condition (1.8),
indexed by the nonnegative real numbers, over the domain (S , A, t) ∈ (0,∞)2 × (0,T ). Further,
this family converges, under parametric restrictions on r, σ, and T , discussed in the preamble
to theorem 1.2.6, to a (single) exact solution to the BVP consisting of PDE (1.7) and terminal
condition (1.8), and the following boundary condition (BC) in the case S = 0:

V(0, At, t) = e−r(T−t) max
{At

T
− K, 0

}
(1.9)

This BC is imposed since, if S = 0 at any time, 0 ≤ t < T , then (almost always) S ≡ 0 for all
times, t ≤ τ ≤ T , and Aτ ≡ At. The payoff is thus a constant, which is its own expectation with
respect to the risk-neutral measure, and BC (1.9) follows from the martingale pricing formula
(1.4). Note also that t → 0+ ⇒ A → 0+, so that the boundary A = 0 is approached when the
pricing problem is solved when the contract is written at time, t = 0. Two additional asymptotic
BCs/transversality conditions, as S → ∞ and A→ ∞, are required to specify the full BVP for
PDE (1.7) in all three variables, S , A, and t, and are discussed by Shreve [279]. However, the
dimension reduction that is achieved in reducing this PDE to the heat equation below, requires
only the terminal condition (1.8) to be fully specified. As such, the BVP solved exactly by the
family derived below, is a relaxation of the full BVP for PDE (1.7), including BC (1.9) and the
asymptotic BCs noted. To summarize and consolidate this discussion, the primary theoretical
contribution of this paper, is a family of exact solutions to the arithmetic Asian option BVP con-
sisting of PDE (1.7) and terminal condition (1.8), over the domain (S , A, t) ∈ (0,∞)2 × (0,T ).
This problem is a relaxation of the full BVP for PDE (1.7), including additionally BC (1.9) and
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the asymptotic BCs discussed by Shreve [279]. Under parametric restrictions on r, σ, and T ,
all members of the exact family of solutions to the relaxed BVP converge to an exact solution
of the full BVP.

Prior to discussing the relationship between the power mean Asian options proposed and β-
quantile options, in which the power mean index α ∈ R is crucial, the BVP for this general
case is presented, and will also be referred to in the general development of section 1.2.1. The
general form of BC (1.9) is

V(0, At, t) = e−r(T−t) max

(At

T

) 1
α

− K, 0

 (1.10)

One of two asymptotic BCs discussed by Shreve [279], as well as by Kemna and Vorst [177],
in the case of an arithmetic Asian option with α = 1, relates to the fact that an (arithmetic)
Asian call option is certainly exercised once At ≥ T Kα (with α = 1) which, similarly to the
case of lookbacks, permits a straightforward exact solution. Furthermore, it provides a BC in
case A = KTα, which features prominently in sections 1.2.1 and 1.2.4. The derivation follows
à la Kemna and Vorst [177]: At time t ≤ T , given At ≥ T Kα, a power mean call option is sure
to be exercised, yielding the following payoff at maturity, T :

(At

T

) 1
α

− K +

 1
T

T∫
t

S α
τdτ


1
α

(1.11)

In order to replicate the latter (S t-dependent) term of this payoff, an investor may sell a dis-
counted proportion of ‘composite’ underlying S α

τ , e−r(T−t)dτ/T, and use the proceeds to purchase
bonds with the risk-free rate r, during an increment [τ, τ + dτ). Over the duration [t,T ], this
accumulates [1 − e−r(T−t)]/rT units of underlying, and payoff (1.11) discounted to time t:

V(S t, At, t)|At≥T Kα =

(At

T

) 1
α

− K

 e−r(T−t) +

[
1 − e−r(T−t)

rT

] 1
α

S t

Of course, this reduces to the formula (1.45) of Kemna and Vorst [177] in case α = 1, and
substituting A = T Kα yields the corresponding BC:

V(S t,T Kα, t) =
[
1 − e−r(T−t)

rT

] 1
α

S t (1.12)

In contrast to the second asymptotic BC presented by Shreve [279] in case α = 1, a BC similar
in spirit to BC (1.12) is derived in the same case by Kemna and Vorst [177]. Namely, it
concerns the behavior of V for large S t, and relies upon Jensen’s inequalities:

lim
S t→∞

VS (S t, At, t) = lim
S t→∞

e−r(T−t) ∂

∂S

 1
T

T∫
t

S α
τdτ


1
α

= lim
S t→∞

e−r(T−t) A
1−α
α

T

T
1
α

T∫
t

S α−1
τ dτ =


∞ α > 1

e−r(T−t) T−t
T α = 1

0 α < 1

(1.13)



10 Chapter 1. Asian option pricing and hedging with generalized averaging

Of course, this reduces to the asymptotic BC of Kemna and Vorst [177] and Shreve [279]
in case α = 1. It reflects the fact that, as S t → ∞ (and so At/AT → 0) for t < T , it becomes
certain that AT ≥ T Kα and the power mean Asian call option will be exercised, yielding the
BC as a derivative (with respect to S t) of the discounted payoff (1.11) at time t. It is also seen
that the arithmetic case with α = 1 chaotically affects this BC: The contribution of remaining
realizations, (∀t ≤ τ ≤ T ) S τ, toward AT , increases V without bound (intuitively for a lookback
call), proportionally to the time to maturity, or does not impact V , respectively as α ⋛ 1.

Prior to discussing the (statistical) relationship between the proposed power mean Asian op-
tions and another class of path-dependent, known as quantile, options, some remarks are col-
lected regarding the financial and economic motivations, applications, and complications of
pricing and hedging power mean Asian options.

1.1.2 Financial and economic motivations and applications
Recall that Asian options are motivated by a desire to mitigate the payoff sensitivity to terminal
underlying asset price. This is particularly acute in illiquid/thin(ly-traded) markets, in which
trading occurs infrequently and may be subject to transaction costs and restrictions on short-
selling, trade quantity and transaction time and date. In such circumstances, with fewer market
participants, there is potential for the actions of a ‘large’ trader to substantively alter the price
of the underlying asset. Whether such market manipulation is incidental or intentional, and in
the latter case whether or not it is directed toward a particular holder of a European (vanilla)
option on the underlying asset, such an holder may prefer not to be subject to such uncertainty.
Asian options address just this concern, and so are popular in illiquid markets, including those
for commodities, currency/foreign exchange, and interest rates; see Kemna and Vorst [177].

Suppose a firm acquires a production input periodically, exposing itself to volatility in the
underlying (input) price on transaction dates. It may want to forgo the benefit of low input
prices on these dates, in exchange for protection against high ones. Taking an Asian option on
the input accomplishes this: The firm guarantees that the payoff is based on a mean of the input
price, rather than that on transaction dates. This scenario accounts for the volume of Asian op-
tions traded in practice. For the same reason, Asian options naturally insure against the risk of
‘large’ traders, i.e., ones trading in sufficiently large quantities of the underlying asset, so as to
substantively alter its price. The ability to self-insure fosters investment, promoting economic
growth and social welfare. And proper option pricing encourages their trade.

Given that Asian options are thus largely motivated by their advantages in illiquid markets,
some comments are in order regarding modeling the dynamics of the underlying asset: As in
formula (1.1), the assumption is made that the latter evolve according to a GBM, the canon-
ical process in stochastic calculus models of mathematical finance. Though this is known to
have undesirable empirical implications, e.g., thin tails due to each underlying price, S t, being
normally distributed, it is chosen for tractability purposes. And so it is taken here, to develop
novel results on GBM-driven power mean Asian options, using classical Lie point symmetry
analysis, which may constitute a foundation for subsequent investigations driven by other pro-
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cesses, e.g., jump-diffusion [by adding a compound Poisson process (CPP) to the GBM (1.1)].
In particular, imagining an illiquid market with finitely many traders transacting at distinct
times, a more appropriate driving model could be a pure jump process without diffusion, i.e.,
a CPP without GBM (1.1). In either case of pure or jump-diffusion processes, the inclusion
of jumps via an added CPP, results in a partial integrodifferential equation in place of pricing
PDE (1.7). This naturally adds many complications, though (non-local/point) Lie symmetry
concepts exist for such equations; see Meleshko [221] and Grigoriev et al. [151]. Thus it may
be a viable, and particularly suitable, course for extending the following GBM-driven results
on power mean Asian options.

Cummins and Geman [86], Geman [136], [137] and [140], Eydeland and Geman [114],
and Pézier and Scheller [249] discuss some basic applications of Asian options as weather,
electricity/energy/power and (portfolio) insurance derivatives; the latter particularly note that
weather are typically modeled as Asian options, as are those on oil. Other discussions of Asian
electricity options are due to Weron [312] and Fanelli, Maddalena and Musti [116]. Studies of
Asian options on general commodities markets include those of Cortazar and Schwartz [83],
Fusai, Marena and Roncoroni [131], and Shen et al. [277]. Majed [213] surveys applications
of Asian options to the petroleum industry, Phélippé-Guinvarch and Cordier [251] consider
Asian options as risk management tools for European hog producers, and Koekebakker, Ad-
land and Sødal [180] develop approximate closed-form prices for Asian options on freight
rates. Ritchken and Sankarasubramanian [259], Cheuk and Vorst [73], and Chacko and Das
[64] and [63] study Asian interest-rate derivatives; Nielsen and Sandmann [234] address
Asian exchange-rate options. Easton [107] prices bonds with embedded Asian options, and
Jørgensen [208] considers Asian options in the context of pension schemes.

Australian options are similar to Asian ones, in that they have payoffs contingent on the arith-
metic average with the underlying asset as numeraire, e.g., max{AT/TS T − K} for a call, or the
reciprocal quantity, e.g., with call payoffmax{TS T/AT −K}. Such options have been traded on the
Australian Securities Exchange since 1992; see Moreno and Navas [225] and Ewald, Menkens
and Ting [113]. Funahashi and Kijima [129] present some further results for Australian, as
well as several other kinds of Asian options.

1.1.3 Relation to β-quantile options
Miura [223] proposed novel, so-called ‘β7-quantile’ options, which are identical to the power
mean Asian options proposed presently, with the exception that they use, rather than power
means (1.3), a similar measure of central tendency; quantiles:

(∀β ∈ [0, 1]) inf

x ≥ 0

∣∣∣∣∣∣∣∣1t
t∫

0

I{S τ<x}dτ ≥ β

 (1.14)

(Here, I{·} denotes an indicator function.) Given β ∈ [0, 1], the corresponding quantile (1.14)
represents a barrier value of the underlying asset, S t, under which the latter is occupied 100β%

7Miura [223] used α-quantile, but here α has already been used in defining the power means (1.3).
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of the duration, [0, t]. As such, β-quantile options are occupation time derivatives; see Pechtl
[248], in which the similarity of (arithmetic) Asian and β-quantile options is also noted. On
one hand, the quantiles (1.14) are preferable to the power means (1.3), as Miura [223] demon-
strated in computing their distribution, whereas that of the power means (1.3), and in particular
the arithmetic case with α = 1, remains unknown; see Dassios [93] and Bertoin, Chaumont,
and Yor [32]. On the other hand, the power means (1.3) are preferable to the quantiles (1.14),
as they imply the continuous pricing PDE (1.5), whereas a pricing PDE implied by the quan-
tiles (1.14) would, at best, retain a Dirac delta functional evaluated at the quantile itself; i.e., a
non-classical/distributional8 term, as opposed to the classical (and continuous) functions (1.6).

The computation by Miura [223] of the distribution of the quantiles (1.14), enabled Aka-
hori [7], Dassios [92], Yor [320], and Embrechts et al. [111], to obtain further results
concerning the same distributions, as well as pricing formulas for β-quantile options. How-
ever, these martingale-based approaches achieve final integral expressions which are not par-
ticularly amenable to numerical implementation; e.g., they require Monte Carlo simulations of
entire price paths of the underlying asset, (S t)t∈[0,T ]; or numerical integration otherwise involv-
ing piecewise and/or (numerically) pathological functions; or numerical inversion of Laplace
transforms; see Ballotta and Kyprianou [25]. More recently, the (still inefficient) approach of
the latter paper has been superseded by Cai [53], which itself nonetheless remains suboptimal.
Overall, the persistent numerical intractability of pricing (and hedging) β-quantile options is
a difficulty which may account for their apparent lack of trading either through exchanges or
over-the-counter markets. The numerical results presented below demonstrate that many sim-
ilar (though perhaps not as difficult) problems related to numerically pricing arithmetic Asian
options, are avoided via the analytical approximation derived in theorem 1.2.8, the accuracy of
which is also studied.

The preceding hypothesis concerning a lack of trading of β-quantile options due to their dif-
ficult (and presently necessarily) numerical pricing, is bolstered by the fact that they serve
unmet risk management needs: As discussed by Cai [53], Cai, Chen, and Wan [54], and Phe-
lan, Marazzina and Germano [250], one motivation of β-quantile options is that they introduce
a barrier-like feature [the quantiles (1.14)] determined precisely by the occupation of the price
path to either side, without the ‘harsh’ feature of classical barrier options (otherwise identical
to the vanilla European options discussed above), that the option loses all value as soon as
(or unless, depending upon the barrier being an ‘out’ or ‘in’ type, respectively) the barrier is
crossed. In particular, this introduces again the specter of (particularly, thin/illiquid) market
manipulation, since a transient price jump, which is effectively ‘smoothed out’ by a β-quantile
option, given that it contributes very little occupation time, can instantly ‘make or break’ the
eventual option value and exercise; a potential concern for both option writers and holders.

Similarly, being based on extreme values, lookback options are at the mercy of transient price
jumps; a short-lived jump to a large maximum or small minimum underlying price will irrevo-

8Although distributional terms may in some cases be simpler to handle than classical ones (see Zemanian
[323] or Friedman [124]), this would certainly complicate, if not invalidate, the use of symmetry analytical
methodology, which has been developed primarily along classical lines; see Meleshko [221].
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cably alter the payoff. In the same way that power mean Asian options constitute generalized
lookback options, i.e., that the particular case of α = (−)∞ corresponds to a lookback call (put),
β-quantile options are an alternate generalization: The particular case of β = 1 (0) corresponds
to a lookback call (put). Given that sample paths of the GBM (1.1) are continuous almost ev-
erywhere, it is clear that the quantiles (1.14) are continuous and nondecreasing in β; the same
follows in α for the power means (1.3) from the power mean inequality (see Bullen [52]).
Ignoring the trivial case that S t = S 0 almost everywhere in [0,T ], which itself occurs with
probability zero, these monotonicity properties are strict, and it follows from the intermediate
value theorem that there is a unique bijection between R and [0, 1], which associates to each
α ∈ R the corresponding β ∈ [0, 1], such that the α-power mean (1.3) equals the β-quantile
(1.14). It then follows that the associated power mean Asian and β-quantile options have the
same payoff, and therefore the same price. Note that this bijection is generally specific to each
price path of the GBM (1.1), (S t)t∈[0,T ], meaning that such an equivalence between power mean
Asian and β-quantile options is only statistical in nature. That is, the foregoing argument is
not to say that either option can directly be used to price the other, through some price path-
independent bijection, but, rather, to demonstrate and formalize the close relation between the
two types of option, in order to argue that the same risk management benefits which motivate
the proposal of β-quantile options, similarly motivate the proposal of power mean Asian op-
tions. And given the discussion regarding the state of the literature on β-quantile options,9 an
investigation into PDE-based pricing of power mean Asian options may be worthwhile.

Power mean Asian options confer the reduction in payoff sensitivity to the underlying asset’s
terminal price achieved by a geometric Asian option, and some of the mitigation of the prob-
lem of market timing perfectly achieved by lookback options. As geometric Asian (lookback)
options are therefore typically less (more) expensive than European contracts, both the power
mean Asian and β-quantile options should have intermediate prices, which could be calibrated
to be close to the European alternative, whilst retaining some of the benefits of both geometric
Asian and lookback options.

1.1.4 Existing approaches to (arithmetic) Asian option pricing

The financial imperative and mathematical difficulty of pricing arithmetic versus geometric
Asian options, principally due to the unknown distribution of the former average, has led the
development of an expansive, rich, and diverse literature on the arithmetic Asian option pricing
problem in particular, extending more than three decades. In the following, this literature is
summarized as it pertains to the canonical Black-Scholes (BS) framework examined presently,
and roughly categorized in a way that allows related methods to be described together. An
extensive survey and comparison of methods for arithmetic Asian option pricing is given by
Boyle and Potapchik [42], and so particular attention will be paid to subsequent developments.

9See Phelan, Marazzina and Germano [250] for an extensive, current overview, which demonstrates modest
improvements in numerical pricing, e.g., via more efficient inversion of Fourier and other integral transforms
preferable to that of Laplace.
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Monte Carlo methods

One of the first major approaches to numerically pricing arithmetic Asian options was via
Monte Carlo (MC) simulations, in order to estimate martingale (1.4). Boyle [43] first applied
MC methods to vanilla option pricing, and Kemna and Vorst [177] in turn first applied them
to arithmetic Asian option pricing, reducing the variance of such estimates by approximating
the arithmetic with the geometric mean as a control variate (Zhang, Yang and Wang [324]
estimate the corresponding ∆-hedging parameter in the same manner). Such (re)simulation
methods however yield biased estimates of price derivatives, i.e., hedging parameters (also
known as the option Greeks, price and risk sensitivities, and comparative statics), which are
central to risk and portfolio management and optimization. Partly to address this shortcoming,
Broadie and Glasserman [48] develop direct pathwise and likelihood ratio methods, which are
much less computationally expensive and yield unbiased hedging parameter estimates. The
likelihood ratio method refers to the Radon-Nikodym derivative which appears in Girsanov’s
theorem and so is a change of measure technique, which Vázquez-Abad and Dufresne [304]
combine with a control variate to significantly reduce MC price estimate variance, particularly
in the more difficult case when the option is significantly out of the money (i.e., S 0 ≪ K).
This is optimized at run-time via a perturbative (estimation variance-)gradient-based update
rule. Glasserman, Heidelberger and Shahabuddin [147] combine importance and stratified
sampling to (asymptotically) optimally reduce MC arithmetic Asian option price estimate vari-
ance. The importance sampling yields an optimal change of drift of the underlying diffusion, so
that stratified sampling can be applied selectively (to high-probability, high underlying value,
‘important’ samples), yielding an efficient and effective procedure. Kebaier [173] achieves
substantial variance reduction by implementing a statistical analogue of Romberg extrapola-
tion. Han and Lai [155] interpret the geometric mean control variate of Kemna and Vorst
[177] as a constant linear martingale control parameter, and generalize to control processes
which yield greater variance reduction. Dingeç and Hörmann [98] reduce Asian option price
estimate variance by combining a quadratic control variate with conditional MC simulation.
Dingeç and Hörmann [99] improve and extend this approach to additionally include estima-
tion, in a single simulation using ‘pathwise derivatives,’ of the ∆- and Γ-hedging parameters, by
combining randomized quasi-MC (QMC) estimation with principal component analysis, in the
latter case to achieve dimensional reduction of the (conditional) integrand in martingale (1.4).
Similar improvements are realized by the ‘conditional pathwise’ QMC method of Zhang and
Wang [325]. Zhang and Lai [328] use multiple control variates to construct an highly efficient
MC algorithm, whereas Mehrdoust [220] complements and hybridizes such an approach with
antithetic variates to similar effect. Rebentrost, Gupt and Bromley [257] develop a quantum
computational MC pricing algorithm, which achieves quadratic reduction in (time-)complexity,
compared to the standard, classical computational implementation.

Despite the many performance improvements achieved, in particular variance-reduction tech-
niques, MC methods remain inherently inefficient, a problem which is significantly exacerbated
by the need to simulate entire price paths of the underlying asset, (S t)t∈[0,T ], as opposed to only
the terminal price, S T , in the case of vanilla, European options. The result of theorem 1.2.6
below restores the need only to simulate S T , which is however itself unnecessary, as theorem
1.2.8 explicitly evaluates the pertinent expectation with respect to S T .
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Series expansions

Another early numerical technique sought to approximate the unknown distribution of the arith-
metic mean, by the known (and lognormal) distribution of the geometric mean, and then to
leverage the explicit pricing formula for geometric Asian options, given early on by Kemna
and Vorst [177]. Formal approximations of this kind often proceed via (generalized) Edge-
worth series expansions of the unknown distribution of the arithmetic mean, about the known,
lognormal distribution of the geometric mean, beginning with Turnbull and Wakeman [303],
Levy [191], and Ritchken, Sankarasubramanian and Vijh [260], and more recently by Li
and Chen [192]. This specification requires matching of two moments, which is the crux of
the difference between the first, second and fourth of these papers (the second is essentially
a simplified, more practical form of the first). Other moment-based methods have attempted
to fit the unknown distribution of the arithmetic average by (orthogonal) Laguerre series ex-
pansions (Dufresne [102]) and (reciprocal) gamma distribution (Milevsky and Posner [222]).
Fusai and Tagliani [132] compare these moment-based methods and propose their own, us-
ing the maximum entropy principle (Jaynes [166]) of selecting the least certain distribution
which matches specified moments; a sort of Occam’s razor requiring the weakest assumptions.
Schröder [269], [271], [272], and [273] makes rigorous, extends, and modifies the original
approach to pricing arithmetic Asian options by Laguerre series, due to Dufresne [102], de-
veloping two rapidly and stably convergent series expansions for integrals of theta functions,
which solve the corresponding functional recursion required for its implementation.

Many, often moment-based, (asymptotic) series expansions have been proposed for pricing
arithmetic Asian options. Ju [170] develops a Taylor expansion (about zero volatility, σ = 0,
up to order σ6) of the ratio of characteristic functions of the arithmetic mean and a lognormal
variable with first two moments matching. The resulting pricing formula is competitive with
its contemporaries in both speed and accuracy. Linetsky [199], [198] and [200] develops
eigenfunction expansions for arithmetic Asian options which involve Whittaker functions, as
well as an integral representation involving a single Whittaker (W) function, summed with
finitely many other terms involving incomplete Gamma functions and Laguerre polynomials.
Dufresne and Li [105] comment that hardly any mathematical properties have been established
regarding generalized Edgeworth series, expanded about a lognormal distribution. In partic-
ular, no convergence results have been found, nor are they expected to be. Instead, Dufresne
and Li [105] establish convergence of Gram-Charlier expansions of the unknown distribution
of the logarithm of the arithmetic mean, considered earlier by Airoldi [5] and [6]. Numerical
applications demonstrate that the quality of the approximation by truncating such expansions,
is parameter-sensitive. A key component in Gram-Charlier series is the (classical orthogonal)
family of Hermite polynomials. Aprahamian and Maddah [20] use orthogonal polynomials to
extend the capability of their moment-matching approach to pricing arithmetic Asian options,
from matching three to any greater number of moments of the arithmetic mean with those of
compound Gamma distributions (Dubey [100]). Willems [313] develops a family of polyno-
mials, orthogonal with respect to the lognormal density as weighting function, and constructs
corresponding expansions of the arithmetic Asian option price. This presents an attractive al-
ternative to analogous Laguerre expansions, as it does not incur the computational overhead of
computing negative moments of the arithmetic mean. Edeki et al. [109] and Edeki, Akinlabi
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and González-Gaxiola [108] respectively apply to the hedging and pricing of arithmetic Asian
options, the Adomian [3] decomposition method. The latter is a special case of the homotopy
analysis method (Liao [193]), an expansion technique not subject to the stringent validity re-
strictions of classical perturbation and asymptotic expansions. Edeki, Ugbebor and Ogundile
[110] apply a related series expansion technique, the projected differential transform method,
to price arithmetic Asian options.

Integral transforms

Much analytical research into arithmetic Asian option pricing has focused on various integral
transforms, most commonly that of Laplace. Using Bessel processes and the Hartman-Watson
(HW) distribution, Geman and Yor [141] develop [in their formula, (3.10)] an exact, closed-
form expression for the Laplace transform (with respect to maturity, T ) of the fixed-strike,
arithmetic Asian call option price, given in terms of an integral of an elementary function and
the Γ function. Carr and Schröder [58] subsequently correct, qualify, and extend some of these
findings. Two principal drawbacks of this particular result and general approach, are that it
is difficult to interpret the underlying pricing mechanism from the integral transform, and the
latter typically requires numerical inversion, which can be computationally expensive. Not-
ing, in particular, difficulties stemming from reliance on the HW distribution, Schröder [268]
and [270] and Carr and Schröder [59] analytically study the Laplace inversion problem cor-
responding to Geman and Yor [141] and arrive at an expression involving integrals of Hermite
functions. Schröder [274] and [275] refines these results and derives (asymptotic) series ex-
pansions to expedite their numerical implementation. Barrieu, Rouault and Yor [29] derive
some asymptotic results for the HW distribution which compensate for some of its numerical
shortcomings. Geman [139] and [138] extends in another direction the results of Geman and
Yor [141] via time-changed (squared) Bessel processes, and also considers the (∆-)hedging
problem for arithmetic Asian options. Fu, Madan and Wang [128] extend the arithmetic Asian
option price Laplace transform (in maturity, T ) of Geman and Yor [141], to a double such
Laplace transform, the second with respect to the strike price, K. An early comparison of MC
simulations, with Richardson extrapolation or biased control variates chosen to counteract bias
implicit in the (sample path) discretization, and numerical inversion of Laplace transforms,
is also provided. Fusai [130] develops [in his Theorem 1] an exact, closed-form expression
for the Laplace transform of the Fourier transform (with respect to the logarithm of the strike
price, log K) of the fixed-strike, arithmetic Asian call option price, given purely in terms of
the Γ function, and proceeds to study both ∆ and Γ hedging parameters. Nwozo and Fadugba
[237] implement an accurate, computationally inexpensive numerical inversion of the double
transform in order to price arithmetic Asian options.

Numerical PDE solvers

Direct analyses of pricing PDE (1.7) began with finite difference (FD) methods. Zvan, Forsyth
and Vetzal [331] demonstrated that standard option pricing FD schemes result in spurious
oscillations when applied to Asian options, which they are able to counter via implementa-
tion with so-called flux limiter functions in corresponding flux limiting schemes. But pricing
PDE (1.7) is also degenerate by the absence of VAA or VS A terms, which hinders the applica-
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tion of FD schemes. Barraquand and Pudet [28] proposed a forward shooting grid method
which is able to overcome this particular difficulty. However, Forsyth, Vetzal and Zvan [121]
demonstrate that this achievement is subject to a number of caveats and constraints on lattice
structure. Tangman, Gopaul and Bhuruth [294] remove oscillatory arithmetic Asian option
prices by combining Runge-Kutta time stepping with exponential time differences. Cen, Le
and Xu [62] achieve both spatial and temporal second-order convergence, as well as spatial
maximum-norm stability, by combining Rannacher time stepping with an optimally adaptive,
moving spatial mesh. Rai and Chakrabarty [253] develop an implicit Crank-Nicolson scheme
on a nonuniform lattice which is better able to address spurious oscillations which arise in the
case of low volatility, σ. Bhatoo et al. [33] implement a central-upwind scheme which is able
to efficiently price and hedge arithmetic Asian options without spurious oscillations, which is
extended to achieve improved accuracy by Bhatoo et al. [34]. Kumar, Tripathi and Kadalbajoo
[184] achieve similar accuracy to the former paper by incorporating radial basis functions into
the finite difference scheme. Patel and Mehra [246] (and [247]) develop an unconditionally
stable, compact finite difference scheme for pricing arithmetic Asian options, which is accu-
rate to fourth order (and uses a moving mesh) spatially, and (up to) second order temporally.
Wang et al. [306] incorporate operator splitting methods into a finite difference scheme, and
demonstrate its ability to match MC simulations.

Alternatively, a more flexible (e.g., nonuniform mesh) and general finite element approach
to pricing arithmetic Asian options is given by Zvan, Forsyth and Vetzal [330]. Foufas and
Larson [122] develop a fast and stable adaptive method which adjusts mesh size locally ac-
cording to price and hedging parameters of interest. Marcozzi [214] implements an accurate
discontinuous Galerkin method, which combines finite elements with finite volume discretiza-
tion, also introduced for the pricing of arithmetic Asian options by Zvan, Forsyth and Vetzal
[332]. The finite volume approach is more naturally suited to the degeneracy of pricing PDE
(1.7), and is also able to counter the spurious oscillations which result. Ramı́rez-Espinoza and
Ehrhardt [255] apply rapidly convergent finite volume schemes to arithmetic Asian option
pricing, as do Chernogorova and Vulkov [72] after first simplifying and approximating the
pricing problem by splitting in two different ways the operator of pricing PDE (1.7) into two
recursive sub-problems.

Both operating on lattices, there is a close relationship between finite difference and multi-
nomial approaches to arithmetic Asian option pricing.10 The essential difficulty in the latter
case is that the number of possible asset paths grows exponentially with the number of time
steps, hindering the efficiency of standard implementations. Hull and White [164] provided
an early improvement (subsequently further improved and effected by Costabile, Massabó and
Russo [84], the ‘adaptive placement’ method of Dai, Wang and Wei [90] and [91], and the
modified Edgeworth binomial model of Wang and Hsu [307]), more efficient than standard
MC pricing, by computing path averages of select ‘representative’ nodes and interpolating as
required for the remainder. Klassen [179] developed an unconditionally stable, rapid imple-
mentation of this method using Richardson extrapolation. Neave [231] (and Neave and Ye
[232] further) reduced computational costs (and increased accuracy) using generating function

10Indeed, finite differences are lattice derivatives.
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and ‘path bundling’ techniques. Chalasani, Jha and Saias [65] achieved in polynomial time the
observance of certain error bounds with corresponding high probability, prior to the guaranteed
observance secured by Aingworth, Motwani and Oldham [4]. Both accuracy and efficiency of
the latter algorithm were improved in the randomized implementations of Akcoglu, Kao and
Raghavan [8], Ohta et al. [238] and Shioura and Tokuyama [278]. Dai, Huang and Lyuu
[87] and Dai and Lyuu [88] maintain efficiency (i.e., sub-exponential-time) in a multireso-
lution trinomial lattice, which necessarily converges to the continuous-time martingale (1.4)
as the number of time steps diverges. This result was improved to quadratic-time by Hsu and
Lyuu [163], and certain caveats and qualifications were removed by Dai and Lyuu [89]. Using
‘state conditional expected value’ forward induction, Abrahamson [1] achieves accuracy com-
petitive with contemporary MC and numerical PDE solvers, but via a simpler and much faster
implementation. Jiang and Dai [168] establish the equivalence (to first order in the time step,
∆t) of certain binomial tree and explicit finite difference methods for pricing arithmetic Asian
options, and using viscosity solutions, the uniform convergence of such prices to martingale
(1.4) as ∆t → 0. The ‘singular points [binomial] method’ of Gaudenzi, Zanette and Lepellere
[134] achieves very tight bounds which vanish as ∆t → 0, and for which estimates are estab-
lished. Significant efficiency and accuracy improvements also follow from the cell averaging
technique of Moon, Jeong and Kim [224], which reduces computational burden by replacing
discrete nodes with continuous ‘cells’ (intervals) and computes (arithmetic) averages over the
latter, in contrast to the selection of and interpolation from representative nodes/paths, adopted
in most other multinomial arithmetic Asian option pricing approaches.

Path integrals

An approach to arithmetic Asian option pricing, which partially unifies all of the discussed,
more established methods, is via (functional) path integration, described in a mathematical
financial context by Linetsky [197]. This is natural, as the expectation computed in martin-
gale (1.4), is indeed a functional integral over all Brownian paths (1.1) satisfying an initial
condition, S (t) = S t. Matacz [218] approximates the (arithmetic) mean (1.3) by a corre-
sponding partial average, which significantly reduces numerical computational demands, by
well-approximating the functional by a single, i.e., one- instead of uncountable-dimensional,
integral. Lim [195] and [196] develops a ‘recursive integration’ method for pricing arithmetic
Asian options, which backward-solves the pricing PDE (1.7), in effect by discretely approxi-
mating the path integral by a finite sequence of one-dimensional integrals. Baaquie, Coriano
and Srikant [22] express pricing PDE (1.7) as a Schrödinger equation, and apply quantum
mechanical methods to the corresponding Hamiltonian and potential, in order to numerically
price arithmetic Asian options via both (Langevin) lattice simulations of the Brownian paths
(1.1), as well as corresponding simulations via the Metropolis(-Hastings), Markov chain MC
algorithm. Bormetti et al. [41] develop a competitive and accurate MC algorithm from the path
integral formulation of martingale (1.4), which they term a ‘path integral with external integra-
tion.’ A second, ‘pure’ MC algorithm (without ‘external integration’) is similarly constructed.
Zhang [326] manipulates the Dirac delta functional, to express the path integral formulation
of martingale (1.4) as an action functional with exponential potential, which is evaluated us-
ing the Feynman-Kac formula and reduced to a spectral expansion for the arithmetic Asian
option price, after further manipulation of Bessel and Whittaker functions. This derivation il-
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lustrates the (Laplace) integral transform (inversion), as well as eigenfunction decomposition
methods, examples respectively of the integral transforms and series expansions already dis-
cussed. Giles [144] (and [146] and Giles, Debrabant and Rössler [145]) introduces multilevel
MC arithmetic Asian option pricing (with improved convergence), which utilizes the (higher-
order) stochastic Euler–Maruyama (Milstein) finite difference scheme, to generate Brownian
paths (1.1). Gerstner and Noll [143] implement a randomized QMC analogue and explore
both schemes, resulting in some cases in significantly improved convergence rates.

Functional (Feynman path) integration is an ongoing area of mathematical research, and a
common, rigorous definition of such integrals has yet to be defined; see, e.g., DeWitt-Morette
and Folacci [96], in particular Cartier and DeWitt-Morette [61]. In any case, path integrals
typically require numerical approximation.

Price bounds

Given the mathematical difficulties associated with all other arithmetic Asian option pricing
methods discussed, various attempts have also been made to derive ever-sharper upper and
lower bounds on such prices. Iwaki, Kijima and Yoshida [165] provided an early bench-
mark for subsequent refinements, including the improved lower (upper) bound of Rogers and
Shi [262] (Thompson [299]). The former, restricted to unit maturities, T = 1 year, is im-
proved on and economized by Chalasani, Jha and Varikooty [66], and generalized to arbitrary
maturities by Chen and Lyuu [69]. Lasserre, Prieto-Rumeau and Zervos [186] obtain mono-
tone sequences of upper and lower arithmetic Asian option price bounds, and establish related
convergence results, corresponding to sequences of increasingly high-dimensional semidefi-
nite programming problems. Furthermore, good bounds are found to follow from even low-
dimensional programs. Novel, tighter upper bounds were subsequently derived by Lord [211]
and Novikov and Kordzakhia [236] and [235]. Recently, Cibelli, Polidoro and Rossi [81] have
derived yet sharper lower and upper bounds using techniques and results of optimal control.

Low volatility, σ, and/or short maturity, T

The approximation achieved in theorems 1.2.6 and 1.2.8 improves (and converges to the11 ex-
act price if r = σ2), as the scale (i.e., non-dimensional variance of S T ), σ2T → 0. Results
related to this asymptotic circumstance have been found across several of the solution method-
ologies for pricing arithmetic Asian options. In many cases, such results indicate that existing
approaches behave poorly in this circumstance: As noted recently by Cibelli, Polidoro, and
Rossi [81], the difficulties posed without qualification by numerically inverting the Laplace
transform of Geman and Yor [141], are substantially exacerbated in cases with low volatility
and/or short maturity. Horvath and Medvegyev [162] document significant computational im-
provements in numerical approximation of (functional) path integrals over the last two decades,
but find that it still lags MC simulations when volatility or option lifetime are sufficiently small.
Ewald, Menkens and Ting [113] acknowledge potential numerical instabilities when solving
their reduced pricing PDE with small volatility values; the same claim is made regarding that

11See, e.g., Wilmott, Dewynne, and Howison [315] and Shreve [279], for a discussion of the uniqueness of
(‘classical’/everywhere smooth) solutions to the full pricing problem.
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of Rogers and Shi [262]. More broadly, Dufresne [103] and [104], Boyle and Potapchik [42],
and Tangman et al. [295] note that the performance of many contemporary arithmetic Asian
option pricing methods suffers in the case of low volatility and/or short maturity.

1.1.5 Broad methodology and results
The theoretical results presented below are principally derived using the Lie point symmetries
of pricing PDE (1.7). Such symmetry analysis of differential equations was introduced by
Lie [194], as a systematic, algorithmic method for manipulating such equations, which can
be harnessed to reduce their order, derive novel solutions from existing ones, and construct
novel solutions, invariant under corresponding Lie point symmetries, which themselves leave
the equations of interest invariant under induced changes of variable. From one viewpoint,
symmetry analysis is a systematic, generalized method of constructing similarity solutions of
differential equations, which map to one another under such equations’ point symmetries (and
to themselves in the case of invariant solutions), and may yield equations of lower order when
substituted into the originals. After providing a relatively general introduction to the basic
tools and terminology of Lie point symmetry analysis, it and its generalizations are discussed
in the broader context of analytical solutions of PDEs, and then a review is given of its existing
applications to arithmetic Asian option pricing and related problems in mathematical finance.

A primer on Lie point symmetry analysis

Take an evolutionary system of PDEs of second order, in the unknown y(x, t) : Rn × R→ Rm:

yt = Φ(t, x, y,∇y,∇ ⊗ ∇y) (1.15)

Here, ∇⊗∇y denotes the (spatial) Hessian (yxi x j) of y, via the tensor product, ⊗. Determination
of the Lie point symmetry group of system (1.15) is equivalent to determining its (first-order)
infinitesimal symmetries, namely, η and ξi for integers 0 ≤ i ≤ n in the following system:

t̃ = t + ϵξ0(t, x, y) + o(ϵ)

x̃i = xi + ϵξi (t, x, y) + o(ϵ)
ỹ = y + ϵη (t, x, y) + o(ϵ)

(1.16)

Infinitesimal symmetries for the derivatives yt, ∇y, and∇⊗∇y must be computed, so that system
(1.15) is invariant under (an augmented) system (1.16): For all integers 1 ≤ i, j ≤ n,

ỹ t̃ = y t + ϵζ
0 (t, x, y, yt,∇y) + o(ϵ) (1.17)

ỹx̃i = yxi + ϵζ i (t, x, y, yt,∇y) + o(ϵ) (1.18)

ỹx̃i x̃ j = yxi x j + ϵζ i j(t, x, y, yt,∇y,∇ ⊗ ∇y) + o(ϵ) (1.19)

Systems (1.16) and (1.17-1.19) together define an extended symmetry group, with the infinites-
imal symmetries of the latter being given by the so-called prolongation formulas:

ζ0 = D t η − yt D t ξ
0 − ∇y · D t ξ

ζ i = Dxiη − yt Dxiξ0 − ∇y · Dxiξ

ζ i j = Dxiζ j − ytx jDxiξ0 − ∇yx j · Dxiξ

(1.20)
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Here, ξ denotes the (spatial) vector (ξi), and D total differentiation with respect to the sub-
script. It then obtains that solutions of the following, so-called determining equation, define all
infinitesimal symmetries of system (1.15), i.e., all systems (1.16) under which it is invariant:12

ζ0 = ξ0Φt + ξ · Φx + η · Φy + ζ · Φ∇y + Z : Φ∇⊗∇y (1.21)

Here, Z denotes the matrix (ζ i j) and : the corresponding ‘dot’ product, 1T
n (Z⊙Φ∇⊗∇y)1n, where

⊙ is the (pointwise) Hadamard product and 1n a column vector of n ones. Equation (1.21)
can be heuristically seen to express the invariance of system (1.15) under systems (1.16) and
(1.17-1.19): Relative to the parameter ϵ ↓ 0, ζ0 expresses the deviation of yt, the left-hand side
of system (1.15). Conversely, each left multiplicand in each summand of the right-hand side
of determining equation (1.21) expresses the deviation of the term with respect to which Φ
is differentiated in the corresponding right multiplicand. Thus, the right-hand side of equation
(1.21) can be interpreted as a total deviation, relative to ϵ ↓ 0, ofΦ, the right-hand side of equa-
tion (1.15). Therefore, equation (1.21) expresses that, relative to ϵ ↓ 0, both sides of equation
(1.15) deviate by the same amount, i.e., this equation is preserved/invariant, as claimed.

Further details and related literature

The rigorous development of the theory of Lie point symmetries alone is quite onerous, with
one authoritative reference being due to Olver [239]. The space spanned by the variables
(t, x, y, yt,∇y,∇ ⊗ ∇y), interpreted as being independent, is known as a (prolonged) jet space.
In this space, the system (1.15) algebraically specifies a manifold, which the point symme-
tries (1.16), as well as the (first-order) contact symmetries (1.17-1.18), and (higher-order)
Lie-Bäcklund symmetries (1.19), map into itself, i.e., map symmetry solutions constituting
points on this manifold into one another. Invariant solutions are fixed points of such symme-
tries. Beyond these three kinds of symmetries, several ‘non-classical’ and approximate symme-
tries of differential equations, and non-local symmetries applicable to integral equations, have
also been proposed. Such symmetries and their analogues for more general functional equa-
tions continue to be actively researched. Primarily considered below are Lie point symmetries
(1.16); a preliminary analysis of non-classical and Lie-Bäcklund symmetries yielded no appar-
ent symmetries of pricing PDE (1.5), beyond those of lemma 1.2.1, which might lead to invari-
ant solutions in addition to those of lemma 1.2.3. Many kinds of symmetries are discussed by
Meleshko [221], in the broader context of analytical solutions of differential equations. Also
discussed are two major alternatives to symmetry analysis: One, the degenerate hodograph
method, generalizes the hodograph method, which attempts to solve a system of differential
equations, with equally many (in)dependent variables, by swapping the roles of such variables.
In the degenerate case, the requirement of there being equally many (in)dependent variables
is dropped, but in the case of pricing PDE (1.5), with only one dependent variable, V , and
three independent variables, S , A, t, the method appears unproductive. The second approach to
constructing analytical solutions of PDEs discussed by Meleshko [221], is the differential con-
straints method: It complements system (1.15) [or, e.g., pricing PDE (1.5)] with an ancillary

12Here, invariant means that system (1.15) is satisfied exactly when ỹt̃ = Φ(t̃, x̃, ỹ, ∇̃ỹ, ∇̃ ⊗ ∇̃ỹ). That is, substi-
tuting for the original variables (t, x, y, yt,∇y,∇ ⊗ ∇y) their transformed analogues, given by systems (1.16) and
(1.17-1.19), the original functional form specified by Φ continues to hold. This function is assumed sufficiently
differentiable for the determining equation (1.21) to be interpreted classically.
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system of differential constraints. Solving the systems so combined, it is possible to generate
solutions of the original system which satisfy the supplemental constraints. The primary ques-
tion is which constraints to impose: This is often determined by the physical or other nature of
a problem, and in fact, the Lie equations (1.16) are one popular such choice, so that Lie point
symmetry analysis is a(n important) special case of the method of differential constraints. In
the case of pricing PDE (1.5), an alternative system of differential constraints is not immedi-
ately apparent from a mathematical or financial perspective, but may present one promising
direction of future research.

Gazizov and Ibragimov [135] apparently first applied Lie point symmetry analysis in math-
ematical finance, in part to determine the (six-dimensional/parameter13) Lie point symmetry
group of the Black-Scholes [38] equation. This provides a systematic, alternative derivation
of the results of the latter, which elucidates why the transformation approach originally taken
was available and successful. Invariant solutions are also constructed, and similar analysis is
applied to a two-factor model. Similar, generalized studies have since been undertaken by
Silberberg [280], Leach and Andriopoulos [187], Yang, Zhang and Qu [316], Singh and
Prabakaran [281], Sophocleous and Leach [287], Polat [252], Liu and Wang [202], Cim-
poiasu and Constantinescu [82], Masebe and Manale [217], Tamizhmani, Krishnakumar and
Leach [293], Hashemi [156], Sinkala [284], Davison and Mamba [94], and Chong and
O’Hara [77]. Several Lie point symmetry analyses have also been applied to bond and other
interest rate derivative pricing problems, including those of Goard [148], Sinkala, Leach and
O’Hara [285], [283] and [282], Dimas et al. [97], Motsepa, Khalique and Molati [226],
Charalambous and Leach [67], Antoniou [16], Bakkaloglu, Aziz and Mahomed [23], Aziz,
Fatima and Khalique [21], Khalique and Motsepa [178], and Kaibe and O’Hara [171]. Addi-
tional Lie point symmetry analyses in mathematical finance have concerned commodity pricing
(Leach and Andriopoulos [188], Sophocleous, Leach and Andriopoulos [288], Paliathanasis,
Morris and Leach [243], and Leach, Morris and Paliathanasis [189]); pricing options with
barrier features, i.e., which pay off contingent on certain underlying price barrier(s) (not) being
crossed (O’Hara, Sophocleous and Leach [241] and Bozhkov and Dimas [44]); option pricing
in the case that the volatility, σ, is specified as a stochastic process (Sophocleous, O’Hara and
Leach [289], Paliathanasis et al. [242], and Antoniou [17]); and portfolio optimization and
selection (Naicker, Andriopoulos and Leach [227], Leach, O’Hara and Sinkala [190], and
Antoniou [18]). Hernández et al. [159] discuss some of these, as well as other Lie point
symmetry analyses in mathematical finance and economics.

To date, there have only been an handful of Lie point symmetry analyses of arithmetic Asian
option pricing problems. Apparently the first was due to Taylor and Glasgow [296], who pro-
vide an expedient derivation of the full, six-dimensional/parameter Lie point symmetry group
of pricing PDE (1.7), in the arithmetic case with α = 1. They further construct the general
symmetry solution, invariant under all but one of the six symmetries (in particular, that permit-
ting arbitrary translation in time, t), and use the resulting terminal value, at maturity t = T , to
define a payoff and propose a corresponding ‘put-type’ Asian option to optimally approximate

13The parameter, ϵ, in the Lie equations (1.16) defining the point symmetries, may vary independently across
alternate symmetries (i.e., solutions to the Lie equations).
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a true (fixed-strike) put payoff, arguing that (asymptotic) smoothness of the solution and its
comparative statics (namely, strictly negative ∆- and positive Γ-hedging parameters) are de-
sirable analytical properties which favor the consideration of such contracts. (The restriction
rT < 1 is also imposed, in order that the solutions remain nonnegative.) Caister, Govinder
and O’Hara [55] and [56] undertake an exhaustive Lie point symmetry group classification of
pricing PDE (1.7), in the arithmetic case with α = 1: After also finding the corresponding six-
dimensional/parameter Lie point symmetry group, they consider the discrete, five-dimensional
subalgebra spanned by the Lie point symmetries, discarding that corresponding to the fact that
pricing PDE (1.7) is linear, i.e., the so-called ‘solution symmetry,’ ϕ∂y, for ϕ(x, t) an arbitrary
solution of system (1.15). Linearly transforming this subalgebra, they optimally decompose it
such that a minimal number of dissimilar [through conjugation by elements, i.e. symmetries,
of the subalgebra] symmetries, as it happens seven, are uniquely similar to each symmetry of
the subalgebra, i.e., partition it into conjugacy classes. Reductions of pricing PDE (1.7) can
then by analyzed with respect to each of these (seven) symmetries, to separately consider all
possible invariant solutions of pricing PDE (1.7) in a systematic manner. In six of these cases,
some further symmetry reductions are performed for the corresponding reductions of pricing
PDE (1.7), and resulting particular solutions, expressed in terms of various [mostly (confluent)
hypergeometric and Bessel] special functions, are reported. For each case, the feasibility of
respecting the terminal BC, i.e., payoff (1.8), is then considered, as well as the reductions’
implications for applying finite difference and Laplace transform methods. Rather than relying
on a CAS, Antoniou [15] provides a manual derivation of the six-dimensional/parameter Lie
point symmetry group of pricing PDE (1.7), in the arithmetic case with α = 1. An invariant
solution corresponding to one symmetry is also partially developed, including fulfillment of
the payoff (1.8). The present analysis principally expands upon the latter paper, generalizing
and correcting its results in the arithmetic case with α = 1, in addition to proposing use of the
general power mean, for arbitrary α ∈ R.

Separately from Lie point symmetry group analysis, another Lie algebraic approach to solving
evolution PDEs is predicated upon the theorem of Wei and Norman [309], which permits the
decomposition of solutions of linear, first-order ordinary operator differential equations, via an
analogue of the scalar multiplication law for exponential functions; (∀a, b ∈ C) ea+b = eaeb.
By rewriting the original PDE in terms of an operator, U(t), the decomposition holds so long
as the coefficient in the operator equation, U′(t) = A(t)U(t), is generated by a solvable Lie
algebra of operators. This method was first applied to mathematical finance in the context
of bond and other interest-rate derivative pricing problems by Lo, Yuen and Hui [207] and
[203], Lo and Hui [205], and Lo [204], and the pricing of barrier options by Lo and Hui
[206]. Parmar [244] has applied the technique to arithmetic Asian option pricing, and claims
to have derived corresponding prices [satisfying the appropriate pricing PDE (1.7) and terminal
payoff BC (1.8)] and risk sensitivities/hedging parameters, for a variety of arithmetic Asian op-
tions, differing according to the subset of [0,T ] over which the arithmetic average is computed.
However, the gravitas of this claim, combined with the failure of a careful attempt via a CAS
to verify Proposition 2 of Parmar [244], i.e., satisfaction by the stated solution, C(S t, It, t), of
the corresponding pricing FPK PDE stated in Proposition 1, even in case of time-independent
parameters r and σ, casts doubt on at least the tested result. (The subsequent results have not
been tested, but as they are generally more complicated than, predicated upon, or ‘proved’ in
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the same manner as Proposition 2, their correctness may also be doubtful. Close scrutiny re-
vealed no major missteps in the proof provided for Proposition 2, assuming the perhaps not so
‘trivial’ results of Proposition 14 (established in appendix A), upon which they are contingent,
to be valid and correctly applied. One apparent issue is the application of Taylor series expan-
sions of solutions of pricing PDE 1.7, not knowing in advance the radii of convergence of such
expansions, if they exist at all. This line of inquiry, with the hope of verifying even some form
of Proposition 2, could be a worthwhile future endeavor. Similar efforts could be made toward
the invariant solutions determined in theorem 1.2.9 or the more general ansätze determined
via invariants (1.27)-(1.29) and (1.48)-(1.50), satisfying respectively the reduced pricing PDEs
(1.30) and (1.51), significantly generalizing the rudimentary type I and II similarity reductions
considered by Parmar [244].)

A primer on Gaussian process regression

The numerical results presented below are principally derived using Gaussian process regres-
sion (GPR) to construct predictors of a certain function, denoted λ(S , A, t;σ, r,T,K), which
allows pricing of arithmetic Asian options via theorem 1.2.8. Essentially, this function (pre-
dictor) is indicating which among a family of invariant solutions derived in theorem 1.2.5 to
choose, given values of the variables, S , A, and t, and parameters, σ, r, T , and K. This becomes
necessary as formula (1.43) does not satisfy pricing PDE (1.7) with α = 1, in contrast to that of
theorem 1.2.6, the expectation of which with respect to S T (which depends on S and t) yields
the result of theorem 1.2.8. An introduction to GPR is provided, which was chosen primar-
ily because the resulting function predictors are smooth, yielding smooth prices via formula
(1.43), which may sensibly be substituted into pricing PDE (1.7) with α = 1, to examine to
what extent the function predictors, say λ̃ ≡ λ̃(S , A, t;σ, r,T,K), correct the ‘bias’ introduced
in computing formula (1.43) as an expectation with respect to S T of formula (1.40), by yielding
prices, say V(S , A, t;σ, r,T,K, λ̃), which (better) satisfy pricing PDE (1.7) with α = 1. (This
task itself is a large one which may best be left for a subsequent paper.) A number of alternate
(machine learning) approaches to function prediction are examined in section 2.2, which are
either linear or (generally) nonsmooth: Linearity (in S , A, and t) is a strong ansatz to impose
on candidate forms for λ̃,14 and as noted, only (almost everywhere, at least) smooth predictors
are sensible for substitution into formula (1.43) and pricing PDE (1.7) with α = 1.

One canonical reference for GPR is the book by Williams and Rasmussen [314]. GPR is
a nonparametric method of function estimation, which assigns to each point in some vari-
able/parameter set, e.g., tuples x ≡ (S , A, t;σ, r,T,K) ∈ [0,∞)7 such that t ≤ T (and assuming
nonnegative interest rates, r), some distribution, Fx, such that any finite collection of points,
say X ≡ {xi|1 ≤ i ≤ p}, is jointly normally distributed:

{Fx| x ∈ X} ∼ Np (µX,ΣX)

14Investigations similar to those reported in section 1.2.4 indicated that λ̃ may be linear in S , but a pertinent
ansatz, λ̃ ≡ S f (A, t) + g(A, t), substituted into formula (1.43) and pricing PDE (1.7) with α = 1, yielded an
apparently still unwieldy system of PDEs for λ̃; perhaps a topic for a subsequent paper.
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This particularly implies that the distribution of any single point is normal, say, xi ∼ N(µi, σii).
By computing the p(p − 1)/2 pairwise covariance values, say σi j, the covariance matrix obtains:

ΣX ≡ (σi j) ≡ (κ(xi, x j)) ≡ KX

Here, denoting byX the pertinent variable/parameter set, κ : X2 → R is a positive (semi)definite
kernel mapping points to their (co)variance values; there are several popular kernel functions,
some of which are discussed in the numerical implementation below, and the choice of kernel
is one hyperparameter to be optimized in the fitting process. (Another secondary reason for
choosing GPR for the numerical applications of the theoretical results, is that hyperparame-
ter optimization is relatively straightforward for GPR; indeed, Gaussian processes are often
utilized in coordination with Bayesian optimization for optimizing hyperparameters of other
machine learning models. This is partly because the normal distributions involved in GPR per-
mit explicit computation of confidence intervals and other salient quantities, without additional
Monte Carlo simulations, for example.) The training of GPR models for fixed hyperparam-
eters (others also being discussed in the applications below) proceeds via iterated Bayesian
inference: Typically beginning with a uniform prior on the mean, mX ≡ µX (which is often
demeaned to vanish identically), and covariance, KX, functions, the likelihood of observed
training points is assessed with respect to the prior, and their product normalized to yield the
posterior via Bayes’s theorem. This can be iterated, regarding the old posterior as the new
prior, up to a specified limited number of times or until some acceptable convergence of the
sequence of posteriors is satisfied. Once this is the case, the final posterior yields predictions
on unobserved testing points via the posterior predictive (normal) distribution, as well as con-
fidence intervals.15

The mathematical derivation and description of this procedure is standard and in terms of
basic facts of linear algebra and multivariate normal distributions; one good reference is again
Williams and Rasmussen [314]. But without addressing nuances concerning different kernels
and other hyperparameters, or exact algorithmic implementation details, it is crucial to note
that the GPR is completely specified by mX (again, often taken to vanish) and KX: Given train-
ing points X with |X| = p as above, the process of finding an optimal posterior results in the
estimation of p(p + 3)/2 parameters [or p(p + 1)/2 with mX ≡ 0]. Testing or otherwise predicting r un-
observed points, up to r(r + 2p + 3)/2 new parameter estimates are required to specify the posterior
predictive (joint normal) distribution of the (un)observed points. So in practice, the nonpara-
metric GPR method is finite-dimensional, as are the (un)observed data, despite the method
often being marketed as one of functional estimation: The fact that any finite set of points (al-
ways the case in practice) are individually normally distributed, reduces the ‘functional’ aspect
to specification of finitely many parameters, similarly as a one-dimensional normal distribu-
tion function is completely specified by two parameters. But generally speaking, the method
is functional both in the sense that the sample space of data points is typically uncountable,
and that even countably infinitely many points are no longer sensibly multivariate-normally
distributed, and specification by even countably infinitely many parameters fails. Finally, note
that GPR is fundamentally motivated (and successful) by the well-known and intuitive fact that

15Confidence intervals of GPR models diverge outside of the training data, making them potentially unsuitable
for forecasting/extrapolation purposes, including that for λ̃ in section 1.2.4.
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some multivariate normal distribution exists to interpolate any finite set of points. (Practically,
some implementations do not interpolate for sufficiently large numbers of data points, or when
the latter are understood to include noise.)

1.1.6 List of contributions
Listed are the major contributions which follow and provide a guide for the succeeding section:

1. Lemma 1.2.1 gives the Lie point symmetries of pricing PDE (1.5), generalizing results of
Taylor and Glasgow [296], Caister, Govinder and O’Hara [55] and [56] and Antoniou
[15].

2. Theorem 1.2.2 gives an optimal system of Lie point symmetries of pricing PDE (1.7),
generalizing results of Caister, Govinder and O’Hara [55] and [56].

3. Lemma 1.2.3 [theorem 1.2.5] determines all invariant solutions of pricing PDE (1.7),
corresponding to the Lie point symmetries of contribution 1., which reduce this PDE to
that of Black and Scholes [38] [the heat equation16 (1.35)], generalizing Antoniou [15].

4. Corollary 1.2.4 provides a parity relation for pricing power mean Asian options with
positive (negative) index α ∈ R in terms of those with negative (positive) index, using
the invariant solutions of contribution 3.

5. Theorem 1.2.6 develops the invariant solutions of contribution 3. in order to satisfy
the terminal payoff BC (1.8), applying Poisson’s formula (1.38) to generally solve the
corresponding Cauchy problem of the heat equation (1.35), in the arithmetic case with
α = 1 and the terminal underlying asset price, S T , as a parameter. These solutions
approximately satisfy BC (1.9) with S = 0, and do so exactly as the scale σ2(T − t)→ 0
and |r − σ2| → 0.

6. Corollary 1.2.7 provides several price sensitivities/hedging parameters/comparative stat-
ics/‘Greeks’ for the invariant solutions of contribution 5., in part as proof of the latter.

7. Theorem 1.2.8 computes the expectation with respect to the terminal underlying asset
price parameter, S T , of the invariant solution of contribution 5. Given that S T has a (ge-
ometric Brownian motion) distribution dependent on the variables S and t, the resulting
expression no longer satisfies pricing PDE (1.7), but does suggest the problem of de-
termining the parameter, λ(S , A, t;σ, r,T,K), such that the composition of the pertinent
(S T -mean) invariant solution (1.43) with the latter does satisfy pricing PDE (1.7).

8. Theorem 1.2.9 determines all invariant solutions of pricing PDE (1.7), corresponding to
the optimal Lie point symmetries of contribution 2., which reduce this PDE to that of
Black and Scholes [38] and thence the heat equation (1.35). The additional parametric
flexibility afforded by the optimal symmetries is seen only to be apparent; the resulting
invariant solutions are equivalent to those of contribution 3.

16A canonical PDE of mathematical physics, the heat equation is much studied, non-degenerate, and more
amenable to finite difference methods.
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9. Theorem 1.2.10 provides all (multiplicative) separation of variables invariant solutions
of PDEs (1.30) and (1.51), corresponding respectively to the Lie point symmetries of
contributions 1. and 2. These are the most general PDEs reduced from the pricing
PDE (1.7) using the corresponding symmetries and, in particular, are more so than the
respective BS PDEs (1.34) and (1.56).

10. Corollary 1.2.11 develops invariant solutions of pricing PDE (1.7) from contribution 9.

11. Theorems 1.2.12-1.2.14 respectively develop Fourier-Bessel series, Hankel and Kontorovich-
Lebedev transform solutions of pricing PDE (1.7) satisfying BC (1.12) in case A = T Kα.

12. Corollary 1.2.15 gives parametric properties of the Kontorovich-Lebedev transform so-
lutions of contribution 11., on divergence of the exponential function in formula (1.109).

13. Section 1.2.2 proposes problems 1 and 2, simplified from that noted in contribution 7.

14. Section 1.2.3 undertakes exploratory analysis of the behavior of the parameter, λ(S 0, 0, 0;σ, r,T,K);
proposes a further simplified problem 3; and addresses the latter in two separate (smooth)
GPRs with training and testing points drawn in varying proportions from a large design
of experiments (1.111), the second (first) (not) imposing a constraint r ≈ σ2 related to
the approximate nature of the invariant solutions of contribution 5. These are compared
with (apparently the first) direct GPR predictions of prices satisfying PDE (1.7), based
on testing and training points simulated by MC à la Longstaff and Schwartz [210].

15. Section 1.2.4 presents much-compacted results similar to those of contribution 14. in
case t > 0, which do not require GPR predictions of a design of experiments, relying
rather on curve or surface estimation of the parameter, λ(S , A, t;σ, r,T,K), exploiting
formula (1.45), valid on the region A ≥ T K and encompassing BC (1.44) in case of
equality. Results shown in figure 1.34b vastly out- (under)perform the MC simulations
noted in contribution 14. for near- (deeply-out-of-)the-money arithmetic Asian option
pricing, i.e., when 0 ≪ A ⪅ T K (0 ⪅ A ≪ T K), yielding complementary contributions.

1.2 Methods
This section develops the majority of results obtained, along with further contextualization in
relation to pertinent literature. First, the theoretical contributions are presented. These are then
applied to the numerical experiments reported afterwards.

1.2.1 Lie point symmetry analysis and consequent results
This subsection begins with the derivation of (optimal) Lie point symmetries of pricing PDE
(1.7), followed by a (naive) derivation of a family of invariant solutions whose reduced (BS)
pricing PDE can be further reduced to the heat equation by standard transformations, and
finally the implementation of the terminal (payoff) BC (1.8). The latter stage yields a family of
invariant solutions satisfying pricing PDE (1.7) and BC (1.8) exactly, and BC (1.9) when S = 0
approximately, with the approximation becoming exact under certain parametric restrictions.
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These solutions depend on the terminal underlying asset price, S T , as a parameter; analytically
computing the expectation of the former with respect to the latter yields a family which can be
used for obtaining numerical prices in the following section.

(Optimal) Lie point symmetries

As may be appreciated from the primer in subsection 1.1.5, Lie point symmetry analysis of
differential equations is very computationally intensive; so much so that, with the linear sys-
tem (1.21) typically involving tens of coupled equations, ‘hand’ computations are practically
infeasible. As such, many mathematical software packages introduced routines for finding
symmetries of differential equations, as early as the eighties. Papers have been devoted solely
to surveying the available software, and one popular program is Maple. The Maple symme-
try package SADE, written by Rocha Filho and Figueiredo [261], was used to compute the
following Lie point symmetries of equation (1.5), as the built-in tools of Maple for Lie point
symmetry analysis often omit point symmetries (e.g., some of those found by Antoniou [19]):

Lemma 1.2.1 The Lie point symmetries of equation (1.5) are as follows:

X1 ≡ ξ
0
1∂t + ξ

A
1 ∂A

X2 ≡ ξA
2 ∂A

X3 ≡ ξA
3 ∂A + ξ

S
3 ∂S + η3V∂V

X4 ≡ ξA
4 ∂A + S ∂S

X5 ≡ ξA
5 ∂A + ξ

S
5 ∂S + η5V∂V

(1.22)

For any solution ϕ of equation (1.5), the operators Xϕ ≡ ϕ(S , A, t)∂V generate a subalgebra.

Here the infinitesimal symmetries ξ0
1, ξA

i , ξS
i and (∀1 ≤ i ≤ 5) ηi, depend on the form of A:

A A Aα tAα

ξ0
1 α 1 1
ξA

1 −A/t −A/t 0
ξA

2
A1−α/t t−1 1

ξA
3 A 0 0
ξA

4 A αA αA
ξA

5 ασ2Aα+1t α2σ2A2t α2σ2A2

ξS
3 S 0 0
ξS

5 2ασ2AαS t 2ασ2AS t 2ασ2AS
η3

1/2 − r/σ2 1 1
η5 2S α + t[α(1 − α)σ2Aα − 2αrAα] 2S α + t[α(1 − α)σ2A − 2αrA] 2S α + α(1 − α)σ2A − 2αrA

The operators Xϕ reflect the superposition principle, due to the linearity of pricing PDE (1.5).
The symmetries are also apparently simpler, in terms of their dependence on S , A, and t, in case
A = tAα: In that case, the translations X1 and X2 respectively reflect the autonomy of pricing
PDE (1.5) with respect to t and A, i.e., the fact that the coefficients of V and its derivatives
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in pricing PDE (1.5) do not depend on t or A. For the latter two definitions of A, dilation
X3 reflects the homogeneity of pricing PDE (1.5). Despite reflecting superficial properties of
pricing PDE (1.5), these symmetries may nonetheless be of value; in particular, they may still
lead to novel invariant solutions of pricing PDE (1.5). With α = 1, the symmetries of system
(1.22) in case A = tAα correspond to those found by Caister, Govinder and O’Hara [55] and
[56] and Antoniou [15], so that the symmetry structure of pricing PDE (1.5) with arbitrary
α ∈ R is as rich as that with α = 1, but not as rich as with α = 0; see Antoniou [19].

Remark Note that, in system (1.22), the Lie point symmetries have been expressed in the
standard operator form; they are of the form X = ξ0∂t + ξ

A∂A + ξ
S∂S + η∂V , with the coef-

ficients being as defined in system (1.16). Under the second prolongation of this operator,
X(2) ≡ X − ζ0∂Vt + ζ

A∂VA + ζ
S∂VS + ζ

S S∂VS S ≡ X(1) + ζS S∂VS S , the determining equation (1.21)
reads simply X(2)Φ = 0. That is, the equation Φ [in this case, equation (1.5) solved for Vt] is
invariant under X(2), which derives from the initial perturbations of the (in)dependent variables
(1.16), as expected; the character of X(2) as a total differentiation operator is also clear. The
prolongations X(n) for n up to the order ofΦ, define [first-order, X(1)] contact and (higher-order)
Lie-Bäcklund symmetries; like the point symmetries X, they constitute (covariant) vector fields
in the jet space parameterized by the (in)dependent variables and derivatives of the latter with
respect to the former, with respect to t and as they appear in Φ. The perturbations, e.g., those of
equations (1.16)-(1.20), which are the coefficients of these symmetries, can then be interpreted
as the corresponding (one-)form/contravariant vector fields. The pricing PDE then constitutes
a submanifold of the pertinent jet space, the tangent bundle of which consists of all general
symmetries X(n), and in particular those of lower order X(i) with 0 ≤ i < n, including the point
symmetries (with i = 0). Solutions of the pricing PDE are realized as its integral curves in the
jet space, and invariant solutions are those tangent to elements of the tangent bundle (proto-
typically, point symmetries), at all points, whereas elements of the tangent bundle need be in
the tangent space of only one point on the pricing PDE manifold. This remark is intended as
an heuristic description of the differential geometry underlying Lie symmetry analysis, to mo-
tivate and contextualize the search for invariant solutions of pricing PDE (1.5); comprehensive
texts include those of Olver [239], Ovsyannikov [240], and Bluman and Kumei [39].

Proceeding in case A = tAα, the commutators of symmetries (1.22) are given in table 1.1:

X1 X2 X3 X4 X5

X1 0 0 0 0 0
X2 0 0 0 αX2 2ασ2[X4 − (α − 1/2 + r/σ2)X3]
X3 0 0 0 0 0
X4 0 −αX2 0 0 αX5

X5 0 −2ασ2[X4 − (α − 1/2 + r/σ2)X3] 0 −αX5 0

Table 1.1: Commutators, [Xi, X j] ≡ XiX j − X jXi, of symmetries (1.22) with A = tAα.

Like the symmetries themselves, this table reduces to Table I of Caister, Govinder and O’Hara
[55] in the case α = 1, except for multiplication by 2σ2 of the commutators ±[X2, X5]. As
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such, slight modifications of formula (8) of Caister, Govinder and O’Hara [55] may be found
by inspection, which reveal that pricing PDE (1.7), for arbitrary α ∈ R, has the same Lie point
symmetry algebra as the arithmetic case:

e1 ≡ 2X2

e2 ≡
1
α

[
X4 −

(
α − 1

2
+

r
σ2

)
X3

]
e3 ≡ −

X5

2α2σ2

e4 ≡ 2X1

e5 ≡ − X3

(1.23)

Indeed, the commutators in table 1.2 match table II of Caister, Govinder and O’Hara [55]:

e1 e2 e3 e4 e5

e1 0 e1 −2e2 0 0
e2 − e1 0 e3 0 0
e3 2e2 −e3 0 0 0
e4 0 0 0 0 0
e5 0 0 0 0 0

Table 1.2: Commutators, [ei, e j] ≡ eie j − e jei, of symmetries (1.23) with A = tAα.

As remarked by Caister, Govinder and O’Hara [55], the (three-dimensional split simple) Lie
algebra spanned by generators {e1, e2, e3} is sl(2,R), represented by the algebra of 2×2 real ma-
trices with zero trace. Each of e4 and e5 span an abelian algebra isomorphic to R, denoted A1,
and the block-diagonal structure of the commutators in table 1.2 implies a (direct sum) com-
plete reduction of the Lie point symmetry algebra of pricing PDE (1.7), for arbitrary α ∈ R; as
in Caister, Govinder and O’Hara [55], sl(2,R)⊕ 2A1. As such, the adjoint ([exp(δei), e j]) table
(III) of Caister, Govinder and O’Hara [55] remains unchanged, in terms of the new symmetries
(1.23), as does the optimal [not necessarily unique, minimal set of algebras dissimilar to one
another, such that all symmetry subalgebras are similar (conjugate) to exactly one member of
the set] system of one-dimensional subalgebras: Given (∀1 ≤ i ≤ 6) ai ∈ C and ϵ ∈ {±1},

(e1)
(e5)
(e4 + a1e5)
(e1 + ϵ e5)
(e1 + ϵ e4 + a2e5)
(e2 + a3e4 + a4e5)
(e1 + e3 + a5e4 + a6e5)

(1.24)

Expressing each of these algebras/generators in terms of symmetries (1.23) and (1.22) in the
case A = tAα, the optimal symmetries follow:
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Theorem 1.2.2 If a, b ∈ C, then equation (1.7) has optimal Lie point symmetries;

Y1 ≡ ∂A

Y2 ≡ V∂V

Y3 ≡ ∂t − a V∂V

Y4 ≡ 2 ∂A − V∂V

Y5 ≡ ∂t + ∂A − a V∂V

Y6 ≡ a∂t + A ∂A +
S
α
∂S −

1
α

(
b +

α − 1
2

+
r
σ2

)
V∂V

Y7 ≡ a∂t +
4 − A2

2
∂A −

AS
α
∂S +

1
α

(
b +

α − 1
2

A +
r
σ2 A −

S α

ασ2

)
V∂V

(1.25)

When α = 1, symmetries (1.25) reduce to those given in formula (13) of Caister, Govinder and
O’Hara [55], recalling these authors take A = tAαT−1, and differently defining the arbitrary
constant b ∈ C.

For 1 ≤ i ≤ 7, invariant solutions are determined for each Lie point symmetry (1.25). As
for Caister, Govinder and O’Hara [55], the symmetry Y2 yields no simplification: Given any
solution, V(S , A, t), of pricing PDE (1.7), the invariance condition, 0 ≡ Y2V = V∂VV = V ,
yields a Lagrange system:

dV
V
=

dS
0
=

dA
0
=

dt
0

Integrating these equations yields characteristics S , A, t, and thus also V(S , A, t), the latter be-
ing the ‘reduced’ solution. As such, as done by Caister, Govinder and O’Hara [55], symmetry
Y2 is ignored from this point onward. The other six symmetries (1.25) similarly yield the La-
grange systems shown in the leftmost column of the body of table 1.3:

All characteristics in table 1.3 follow directly by integrating the corresponding Lagrange sys-
tems, which in turn arise immediately from the symmetries (1.25), except for the two (common)
bottommost values of the transformed dependent variable, u ≡ u(x, τ), itself a function of the
transformed independent variables, x and τ. In this case, the value of u is determined via

αdV
V
=

(
b +

α − 1
2

A +
r
σ2 A

)
2dA

4 − A2 +
S α−1dS
σ2A

=
b
2

d
(
ln

2 + A
2 − A

)
−

(
α − 1

2
+

r
σ2

)
d
[
ln(4 − A2)

]
+

4 − A2

ασ2A

[
d
(

S α

4 − A2

)
−

2AS αdA
(4 − A2)2

]
=

b
2

d
(
ln

2 + A
2 − A

)
−

(
α − 1

2
+

r
σ2

)
d
[
ln(4 − A2)

]
+

4 − A2

ασ2A
dx −

2xdA
ασ2

The result now follows by direct integration, since the characteristics, in particular x, are con-
stants of integration (in particular, with respect to A), so that dx = 0. As before, the charac-
teristics of table 1.3 reduce to their counterparts in table IV of Caister, Govinder and O’Hara
[55], in the arithmetic Asian option case that α = 1, similarly accounting for differences in
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i Lagrange system x τ u
1 dV

0 =
dS
0 =

dA
1 =

dt
0 S t V

3 − dV
aV =

dS
0 =

dA
0 =

dt
1 S A eatV

4 − dV
V =

dS
0 =

dA
2 =

dt
0 S t e

A
2 V

5 − dV
aV =

dS
0 =

dA
1 =

dt
1 S A − t eatV

6 (a , 0) − αdV(
b+ α−1

2 + r
σ2

)
V
= αdS

S =
dA
A =

dt
a e−

t
a S α e−

t
a A Ve

t
aα

(
b+ α−1

2 +
r
σ2

)

(a = 0) − αdV(
b+ α−1

2 + r
σ2

)
V
= αdS

S =
dA
A =

dt
0

A
S α t VS b+ α−1

2 +
r
σ2

7 (a , 0) αdV(
b+ α−1

2 A+ r
σ2 A− Sα

ασ2

)
V
= −αdS

AS =
2dA

4−A2 =
dt
a

S α

4−A2 e−
2t
a 2+A

2−A V
(

2+A
2−A

)− b
2α (4 − A2)

α−1
2α +

r
ασ2 e

2ASα

α2σ2(4−A2)

(a = 0) αdV(
b+ α−1

2 A+ r
σ2 A− Sα

ασ2

)
V
= −αdS

AS =
2dA

4−A2 =
dt
0

S α

4−A2 t V
(

2+A
2−A

)− b
2α (4 − A2)

α−1
2α +

r
ασ2 e

2ASα

α2σ2(4−A2)

Table 1.3: Lagrange systems and characteristics of symmetries (1.25) [excluding Y2]

i Reduced pricing PDE (1.7)
1 0 = uτ + 1

2 σ2x2uxx + r x ux − r u
3 0 = xα uτ + 1

2 σ2x2uxx + r x ux − (a + r )u
4 0 = uτ + 1

2 σ2x2uxx + r x ux − ( xα
2 + r )u

5 0 = ( xα − 1 )uτ + 1
2 σ2x2uxx + r x ux − (a + r )u

6 (a , 0) 0 = (ax − τ)uτ + a
2α

2σ2x2uxx + [aαr − 1 + a
2α(α − 1)σ2]x ux − (ar + b

α
+ α−1

2α +
r

ασ2 )u
(a = 0) 0 = uτ + 1

2α
2σ2x2uxx + [ 1 + α(α + b)σ2 x]ux

+ 1
2 [b(b + α)σ2 − r + (α2−1)σ2

4 − r2

σ2 ]u
7 (a , 0) 0 = (4x − 2

a )τ uτ + 1
2α

2σ2x2uxx + [ αr + 1
2α(α − 1)σ2]x ux − ( r − 2bx

α
+ 8x2

α2σ2 )u
(a = 0) 0 = uτ + 1

2α
2σ2x2uxx + [ αr + 1

2α(α − 1)σ2]x ux − ( r − 2bx
α

+ 8x2

α2σ2 )u

Table 1.4: Reduced pricing PDEs (1.7) of symmetries (1.25) [excluding Y2]

defining A and b.

As in Caister, Govinder and O’Hara [55], the case i = 1 amounts to ignoring dependence of
V on A (and α), resulting in the BS equation for a vanilla European option, the Lie point sym-
metry group and algebra of which are provided by Gazizov and Ibragimov [135]. As such,
this case is ignored from this point onward. The remaining five cases (for i) in table 1.4 all
involve α, though this is only so for the latter two symmetries (1.25) and Lagrange systems and
characteristics of table 1.3. Thus, there is potentially much deviation from (invariant) solutions
to the reduced equations listed in table IV of Caister, Govinder and O’Hara [55] (to which all
of those in table 1.4 reduce in the arithmetic Asian option case with α = 1), due to the power
mean index, α ∈ R.

However, Lie point symmetry analyses for the reduced pricing PDEs listed in table 1.4 have
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so far yielded results identical to those of Caister, Govinder and O’Hara [55]; i.e., no new or
alternate symmetries have been found. As such, barring as these authors do further optimal
symmetry determination for each reduced pricing PDE listed in table 1.4 (perhaps a topic for
a subsequent paper), it appears best to proceed directly, e.g., with separation of variables as
indicated by the symmetry ∂τ: This symmetry reduces the dependence of solutions to be on x
only, yielding an ordinary differential equation in that variable, and a solution of which may
then be multiplied by a suitable exponential function of (reversed) time, τ. This is generally
unsatisfactory, as the maturity, T , does not enter the terminal payoff (1.8) exponentially, so at
best a (generalized Fourier) series solution of the BVP obtains. But proceeding with separa-
tion of variables in Maple, special, e.g., Bessel, Kummer, and Whittaker, function solutions
follow, similar to those reported by Caister, Govinder and O’Hara [55]. These do depend
on the power mean index, α ∈ R, but in fairly complicated manners which obscure the ef-
fect without cross-checking several known properties of the pertinent special functions. (This
might also, however, be a suitable topic for a subsequent paper.) Thus, given the apparent
lack of tractability beyond Caister, Govinder and O’Hara [55], and the inconclusive nature of
their most developed results [e.g., the satisfaction of BC (1.9) and resulting accuracy concerns,
despite modest computational performance depicted in their Figure 1], a naive approach is ap-
plied instead using symmetries (1.22), by which it is seen that one family of invariant solutions
arises naturally by reducing pricing PDE (1.7) to a BS equation, and thence by standard trans-
formations to the heat equation, for which a Cauchy problem is solved by applying Poisson’s
formula (1.38) to the payoff (1.8).

Invariant solutions

As its name suggests, an invariant solution is one invariant under the Lie symmetries of a given
PDE; these symmetries map solutions of the PDE into others (i.e., all solutions are symmetry
solutions), and the invariant ones are those that map to themselves under some symmetry. An
invariant solution is determined by the symmetry under which it is invariant, with a general
(point) symmetry being given by a linear combination of the generators X1 through X5, as well
as the subalgebra generated by the Xϕ. Setting the latter aside, such a linear combination is

X ≡ λ1ξ
0
1∂t +

(
λ1ξ

A
1 + λ2ξ

A
2 + λ3ξ

A
3 + λ4ξ

A
4 + λ5ξ

A
5

)
∂A +

(
λ3ξ

S
3 + λ4S + λ5ξ

S
5

)
∂S + (λ3η3 + λ5η5) V∂V

A solution V of equation (1.5), invariant with respect to X, satisfies XV = 0, which is a first-
order PDE to which the method of characteristics may be applied. The Lagrange system is

dt
λ1ξ

0
1

=
dA

λ1ξ
A
1 + λ2ξ

A
2 + λ3ξ

A
3 + λ4ξ

A
4 + λ5ξ

A
5

=
dS

λ3ξ
S
3 + λ4S + λ5ξ

S
5

=
dV

(λ3η3 + λ5η5) V

Each definition of A needs to be analyzed separately. The case A = tAα has been most thor-
oughly studied and is now assumed.17 The appropriate Lagrange system is

dt
λ1
=

dA
λ2 + λ4αA + λ5α2σ2A2 =

dS
[λ4 + 2λ5ασ2A]S

=
dV

(λ3 + λ5[α(1 − α)σ2A − 2αrA + 2S α])V

(1.26)

17Preliminary investigations of the two remaining cases have yielded results no more general than those given.
Though their analysis is more intricate, such could yield more general and/or flexible solutions.
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Integration of the first equality leads to the following invariant:

τ ≡ t −
2λ1

α
√

4λ2λ5σ2 − λ2
4

arctan
λ4 + 2λ5ασ

2A√
4λ2λ5σ2 − λ2

4

(1.27)

Integrating the second equality in equation (1.26) yields another invariant:

x ≡
λ2 + λ4αA + λ5α

2σ2A2

S α
(1.28)

Solving for S α, and substituting the result into the right-hand side of equation (1.26),

λ3 + λ5[α(1 − α)σ2A − 2αrA + 2
x (λ2 + λ4αA + λ5α

2σ2A2)]
λ2 + λ4αA + λ5α2σ2A2 dA =

dV
V

Integrating this equation yields an expression for V in terms of a function of x and τ, say u:

V = exp

2λ5A + λ4
ασ2

x

 S
1−α

2 −
r
σ2 exp

2λ3 + λ4(α − 1) + 2λ4r/σ2

α
√

4λ2λ5σ2 − λ2
4

arctan
λ4 + 2λ5ασ

2A√
4λ2λ5σ2 − λ2

4

 u(x, τ)

(1.29)

Under the change of variables from V(S , A, t) to u(x, τ), equation (1.7) transforms into the
following PDE in one fewer independent variable, satisfied by u:

0 = uτ +
1
2

(ασ)2x2uxx + (ασ)2xux −

(
1 − α2

4
σ2 + r +

r2

σ2

)
u
2

−
1
x

[
λ1uτ −

(
λ3 +

[
α − 1

2
+

r
σ2

]
λ4

)
u +

(
λ2

4

2σ2 − 2λ2λ5

)
u
x

] (1.30)

Setting λ1 = 0, a BS equation is recovered in two ways: First, the trivial case λ3 = λ4 = λ5 = 0,
which removes dependence of u on A. Second, for arbitrary λ4 and λ5,

λ2 =
λ2

4

4σ2λ5
(1.31)

λ3 =

(
1 − α

2
−

r
σ2

)
λ4 (1.32)

Continuing, the parameters λ4 and λ5 enter only as λ ≡ λ4
2λ5

. Normalizing by λ5,

λ2 =
λ2

σ2

λ3 =

(
1 − α −

2r
σ2

)
λ

(1.33)

This result may be collected in terms of the operatorXλ ≡ λ2

σ2 X2+
(
1 − α − 2r

σ2

)
λX3+2λX4+X5:



1.2. Methods 35

Lemma 1.2.3 Invariant (under operator Xλ) solutions V of equation (1.7), may be written

V(S , A, t) = S
1−α

2 −
r
σ2 u


(
A + λ

ασ2

)2

S α
, t

 e
2Sα

α2σ2A+αλ

Denoting x ≡

(
A+ λ

ασ2

)2

S α , u(x, t) is a solution of the following BS PDE:

0 = uτ +
1
2

(ασ)2x2uxx + (ασ)2xux −

(
1 − α2

4
σ2 + r +

r2

σ2

)
u
2

(1.34)

Aside from generalizing the intermediate result (Theorem 1) of Antoniou [15], the foregoing
considers all invariant solutions of equation (1.7) corresponding to its point symmetries (1.22).
The case with λ4 = 0 , λ5, i.e., of invariant solutions corresponding to generator X5, is analo-
gous to that considered by Antoniou [15]. However, while he states that such a solution is the
best candidate without providing any pursuant justification, the above analysis demonstrates
that such a statement is not necessarily justified; namely, because recovery of the BS equation
(1.34) follows from equation (1.7) for all operators Xλ, not only X0.

Equation (1.34) depends on α only through α2, i.e., is invariant with respect to its sign:

Corollary 1.2.4 Given factors S and Aα respectively defined by equations (1.1) and (1.3), the
price of an arithmetic Asian option defined with respect to the ‘composite’ security S −1(A1 +

λσ−2)2 equals that of an harmonic option defined on S (A−1−λσ
−2)2. Thus, the pricing problem

of an harmonic reduces to that of an arithmetic Asian option. The same applies for any α > 0,
with the (−)α option defined on S (−)α[A(−)α + (−)α−1λσ−2]2.

Though they appear to have received significantly less attention than the geometric and arith-
metic cases, harmonic Asian options do have a financial role: As noted by Parmar [244],
given a set of domestic-foreign exchange rates, the inverse of each is a foreign-domestic rate:
The arithmetic average of the latter is likewise, and finally, the inverse is an average domestic-
foreign rate. That is, the harmonic is a natural way of averaging foreign and other exchange
rates. Further examination of such applications and the pricing of harmonic Asian options has
been undertaken by Vecer [305] and Al-Azemi and Calin [9].

Transformation of equation (1.34) to the heat equation is standard (e.g., see section 5. of
Antoniou [15]). In terms of z ≡ ln

√
x, 4τ ≡ T − t, and υ(z, τ) ≡ u(x, t), equation (1.34) is

υτ =
1
2

(ασ)2υzz + (ασ)2υz −

(
1 − α2

2
σ2 + 2r +

2r2

σ2

)
υ

In terms of v(ζ, τ) ≡ exp
[
−

(
1−α2

2 σ2 + 2r + 2r2

σ2

)
τ
]
υ
(
ασ
√

2
ζ − α2σ2τ, τ

)
,

vζζ = vτ (1.35)

That is, v so defined satisfies the heat equation with unit thermal conductivity. Combined with
lemma 1.2.3, the following result is apparent:
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Theorem 1.2.5 Invariant (under operator Xλ) solutions V of equation (1.7), may be written

V(S , A, t) = S
1−α

2 −
r
σ2 v

√2

 ln
A+ λ

ασ2
√

S α

ασ
+ ασ

T − t
4

 , T − t
4

 e
2Sα

α2σ2A+αλ
−

(
1−α2

2 σ2+2r+ 2r2

σ2

)
T−t

4 (1.36)

Denoting ζ ≡
√

2

 ln
A+ λ

ασ2
√

Sα

ασ
+ ασT−t

4

 and τ ≡ T−t
4 , then v(ζ, τ) solves the heat equation (1.35).

The next step is to solve equation (1.7) subject to the terminal payoff BC (1.8). [Recall that the
fixed-strike call is addressed without loss of generality; see section 1.3 for discussion regarding
addressing the average- (put) via the fixed-strike (call) solution using relevant parity results
from the literature.] Normalizing equation (1.28) by λ5, with λ4 and so λ free and λ2 from
(1.33), AT is given by S T and χ ≡

√
x:

AT = χ
√

S α
T −

λ

ασ2

Substituting this expression into BC (1.8), and evaluating equation (1.36) at t = T ,

v(ζ, 0) = max


χ√

S α
T −

λ
ασ2

T


1
α

− K, 0

 S T
α−1

2 +
r
σ2 e−

2
α2σ2

√
SαT
χ (1.37)

Poisson’s formula specifies the heat equation general solution; see Carslaw and Jaeger [60]:

v(ζ, τ) =
1

2
√
πτ

∞∫
−∞

v(η, 0)e−
(ζ−η)2

4τ dη (1.38)

Since, for τ = 0, η =
√

2
ασ

ln χ, then assuming α > 0,18 and substituting equation (1.37) into
Poisson’s formula (1.38),19

v(ζ, τ) =
S T

α−1
2 +

r
σ2

2
√
πτ

∞∫
0

max


χ√

S α
T −

λ
ασ2

T


1
α

− K, 0

 e−
2

α2σ2

√
SαT
χ e−

(
ζ−

√
2

ασ ln χ
)2

4τ

√
2

ασχ
dχ

Denoting χ̄T ≡
T Kα+ λ

ασ2
√

S α
T

≥ 0, since A ≥ 0 and χ ≥ 0 so that ζ is real, this expression equals

v(ζ, τ) =
T−

1
α S T

α−1
2 +

r
σ2

ασ
√

2πτ

∞∫
χ̄

e−
2

α2σ2

√
SαT
χ −

(
ζ−

√
2

ασ ln χ
)2

4τ
dχ
χ

(
χ
√

S α
T −

λ

ασ2

) 1
α

−
K S T

α−1
2 +

r
σ2

ασ
√

2πτ

∞∫
χ̄

e−
2

α2σ2

√
SαT
χ −

(
ζ−

√
2

ασ ln χ
)2

4τ
dχ
χ

(1.39)

18Recall that the duality of corollary 1.2.4 then permits computation for α < 0.
19Antoniou [15] does not take the relationship between ζ and x into account in equation (6.6), which appears

to render the corresponding section’s subsequent calculations incorrect.
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Due to the αth root in the first integral, it is not clear how to proceed for general α > 0;
e.g., whether the (generalized) binomial theorem would prove effective. The integral can be
evaluated via the binomial theorem for α−1 ∈ N, which may be useful for evaluating the limit
α → 0+. But recall that the arithmetic case, with α = 1, is of the most practical interest, and
consider it going forward. Substituting the appropriately simplified expressions for ζ and τ
from theorem 1.2.5, into the similarly simplified preceding formula for v, the following obtains
for V under the change of variable

√
S Tχ ≡ y−1

(
T K + λ

σ2

)
:

V(S , A, t) =
1
σ

√
2

π(T − t)

(S T

S

) r
σ2

e
2S

Aσ2+λ
−r

(
1+ r

σ2

)
T−t

2

·


(A
T
+

λ

Tσ2

) 1∫
0

e−
2S T y

T Kσ2+λ
−

2
lny Aσ2+λ

T Kσ2+λ

√
S T
S

+σ2 T−t
2

2
σ2(T−t)

dy
y

√
S T

S
e

3
8σ

2(T−t)

−

(
K +

λ

Tσ2

) 1∫
0

e−
2S T y

T Kσ2+λ
−

2
lny Aσ2+λ

T Kσ2+λ

√
S T
S

+σ2 T−t
4

2
σ2(T−t)

dy
y


(1.40)

It is clear that such V satisfies the terminal payoff BC (1.8), since S → S T as t → T , (geo-
metric) Brownian motion having almost surely continuous sample paths, and each integrand
converges to a point mass at (T Kσ2 + λ)/(Aσ2 + λ), when divided by σ

√
π(T − t)/2. The corresponding

integral then converges to exp[−2S T/(ATσ
2 + λ)] or 0, according as the point mass is located at a

value less than or greater than one, respectively, yielding the result.

Consider next the case S = 0, so that S T = S e
(
r−σ

2
2

)
(T−t)+σ

√
T−tZ
= 0 [where Z ∼ N(0, 1)]:

V(0, A, t) =
1
σ

√
2

π(T − t)
e−r

(
1+ r

σ2

)
T−t

2

·

(A
T
+

λ

Tσ2

) 1∫
0

e−
2
[
ln

(
y Aσ2+λ

T Kσ2+λ

)
+σ2 T−t

2

]2
σ2(T−t)

dy
y

e
3
8σ

2(T−t)

−

(
K +

λ

Tσ2

) 1∫
0

e−
2
[
ln

(
y Aσ2+λ
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(1.41)

By similar arguments as for the terminal payoff BC (1.8),

lim
σ2(T−t)→0+

V(0, A, t) = e−r
(
1+ r

σ2

)
T−t

2 max
{A

T
− K, 0

}
(1.42)

If r = σ2, then this limit equals e−r(T−t) max {A/T − K, 0}, i.e., BC (1.9) is satisfied. It is desirable
that the option price, V , should also satisfy BC (1.9), which accounts for the fact that the GBM
factor, S , almost surely remains zero once it reaches that value. I.e., at that point the terminal
average, AT/T = A/T, is determined almost surely, and the corresponding payoff is discounted
to time t. Solution (1.40) can therefore be understood as an exact solution to the pricing PDE
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(1.7) with α = 1 and the terminal payoff BC (1.8), augmented with BC (1.9) for S = 0. The
approximation is better with smaller scale σ2(T − t), but violates BC (1.9) by a constant factor,
exp[(1− r/σ2)(T − t)/2], which of course is smaller with close r and σ2. The preceding observations
may be collected as follows:

Theorem 1.2.6 Solutions V of equation (1.7), invariant under the operator Xλ, and satisfying
the terminal payoff BC (1.8), may be expressed in the form (1.40). In the case S = 0, the value
(1.41) of V(0, A, t) better approximates BC (1.42) with smaller scale σ2(T − t), and better
satisfies BC (1.9) for closer r and σ2.

Remark The BVP consisting of equation (1.7), subject to BCs (1.8) and (1.9), is that ad-
dressed by theorem 7.5.1 of Shreve [279], save that the latter is defined for A ∈ R and subject
to the corresponding asymptotic BC/transversality condition (7.5.10):

lim
A↓−∞

V(S , A, t) = 0

This is taken as a natural boundary (condition) for A, for the purpose of numerical solution
of the pricing PDE (1.7), and so is not needed presently. And indeed, here it is assumed that
A ≥ 0, since firstly, this follows from equation (1.3) and the fact that (almost always) S ≥ 0,
and second, the argument of ln in ζ must be nonnegative in order to yield real values for ζ.

It is straightforward but tedious to verify that solution (1.40) indeed satisfies equation (1.7).
However, doing so yields hedging parameters, often as important as the price itself, which are
approximate in the same sense as discussed for V . They may be listed as follows:
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Corollary 1.2.7 Price sensitivities corresponding to solution (1.40) include the following:
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Solution (1.40) is confirmed by substituting these expressions into equation (1.7) with α = 1:

1
2
σ2S 2Γ + rS∆ + S VA − rV − Θ = 0

Clearly, via the invariant ζ ≡ ζ(S , A, t), symmetry analysis allows for an analytically tractable
family of solutions (1.40) to the relaxed Asian option pricing problem consisting only of pric-
ing PDE (1.7) and terminal payoff BC (1.8). It has also been shown that the supplementary BC
(1.42) is approximately satisfied, more accurately for smaller scale σ2(T − t) and closer r and
σ2. One interesting possibility is to consider the formulas following solution (1.40), subject to
these conditions, as exact solutions and hedging parameters in such circumstances. Also note
that the small scale case is particularly difficult for finite-difference approaches to Asian option
pricing, as observed by Klassen [179]. However, solution (1.40) and its hedging parameters
depend on the terminal value of the first factor, S T , a (lognormally distributed) random vari-
able.20 Therefore, to apply these formulas, their expectation over S T must be taken. This can
be done via MC simulations, yielding another massive benefit over other MC approaches to
Asian option pricing, e.g. Kemna and Vorst [177] and Longstaff and Schwartz [210]: Only
the terminal factor price, S T , needs to be simulated, as for vanilla options, rather than the entire
factor price path, yielding exponential savings of computational resources; see Klassen [179],
e.g., for some discussion of this issue in the context of binomial pricing. However, taking the
expectation of solution (1.40) with respect to S T is analytically tractable, and a sequence of
changes-of-variable yields the following:
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(1.43)

Here, Φ is the cumulative distribution function of a standard normal variable, Z ∼ N(0, 1).

Thus, the expectation with respect to S T of solution (1.40) yields a formula similar to that of
Black and Scholes [38], with the minimal terminal average, A/T, in place of S , and multiplied

20Note that implementations of the terminal payoff BC (1.8) in Antoniou [15] and [19] do not take into account
the distinction between S and S T ; only the former is used, which may partly account for small differences in the
final pricing formula for geometric Asian options in Antoniou [19] and Zhang [327].
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by the moment generating function (MGF) of a lognormal random variable,21 which always
exists since its argument, −2/(Aσ2 + λ) < 0. Though it no longer depends on S T , in contrast to
solution (1.40), it no longer satisfies the pricing PDE (1.7), since the lognormal distribution of
S T , by which it is obtained as the expectation of solution (1.40), depends on both S and t.

In case A = KT (‘at-the-money’22), expression (1.43) for ES T V(S , A, t) ≡ V(S , A, t; λ) is
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(1.44)

In the in-the-money case that A ≥ KT , it is known that23
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T
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)
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(1.45)

Equating expressions (1.44) and (1.45) in the case that A = KT ,
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In terms of the variables S λ ≡

2S
KTσ2+λ

and yS ≡
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S , this expression simplifies to

S λe−S λ
σ2

2r

[
1 − e−r(T−t)

]
=

e
r2

σ2 (T−t)

σ
√
π(T − t)

∞∫
0

e−S λyS−

[
ln yS −

(
r−σ

2
2

)
(T−t)

]2
σ2(T−t)

dyS

yS

·

Φ √T − t
2

σ +

√
2(T − t)r
σ

 e
σ2
4 (T−t) − Φ

( √
2(T − t)r
σ

)
e−r(T−t)


Given variables S and t and parameters σ, r, T , and K, this expression may be numerically
solved for S λ and λ itself. In fact, the same may be done in the in-the-money case, substituting
formula (1.45) into expression (1.43). This permits to generate arbitrarily fine, exact real-
izations of λ̃(S , A, t;σ, r,T,K) satisfying the resulting equations. Such realizations may then
be extrapolated to out-of-the-money cases, and substituted into formula (1.43) to yield price
predictions, V(S , A, t;σ, r,T,K; λ̃): This is pursued in the following subsection on numeri-
cal experiments, specifically in subsection 1.2.4, where it is found to significantly outperform
the Matlab built-in MC routines for arithmetic Asian option pricing, in sufficiently near-the-
money cases which yield useful extrapolations, λ̃(S , A, t;σ, r,T,K).

21This has been studied, e.g., by Tellambura and Senaratne [297].
22Once A = KT , the arithmetic Asian option will be exercised, since A is nondecreasing (since S ≥ 0). For

similar reasons, the cases A ≷ KT are respectively referred to as being ‘in-[out-of-]the-money.’
23See equation (16) of Kemna and Vorst [177].



1.2. Methods 43

Optimal invariant solutions

For completeness the naive procedure used with the Lie point symmetries (1.22), is also applied
to the optimal symmetries (1.25). Eventually, the outcome of the chosen approach [choosing
linear combinations of the Lie point symmetries (1.22) or (1.25) which reduce pricing PDE
(1.7) to a BS equation, and thence to an heat equation to which Poisson’s formula (1.38) ap-
plies] reduces to that of lemma 1.2.3, despite the (only) apparently greater parametric flexibil-
ity: Assign to each optimal Lie point symmetry (1.25) a coefficient, (∀1 ≤ i ≤ 7) µi ∈ C, and
independent parameters, ai and bi, with such parameters being zero when the corresponding
symmetry (1.25) has no a or b, respectively. [In principle, these can be varied independently
across the symmetries (1.25), with the new parameters, a3, a5, a6, a7, b6, and b7, given as func-
tions of the parameters, (∀1 ≤ i ≤ 6) ai ∈ C, defined in the optimal system of one-dimensional
Lie subalgebras (1.24).] The most general (optimal) Lie point symmetry is then

Y ≡ (µ3 + µ5 + a6µ6 + a7µ7)∂t +
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(1.46)

An (optimal Y-)invariant solution V of equation (1.5) with YV = 0 has the Lagrange system

dt
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=
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(1.47)

Integration of the first equality leads to the following invariant:

τ ≡ t −
2(µ3 + µ5 + a6µ6 + a7µ7)√
µ2

6 + 2µ7(µ1 + 2µ4 + µ5 + 2µ7)
arctanh

µ7A − µ6√
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6 + 2µ7(µ1 + 2µ4 + µ5 + 2µ7)
(1.48)

Integrating the second equality in equation (1.47) yields another invariant:

x ≡
A2µ7 − 2Aµ6 − 2µ1 − 4µ4 − 2µ5 − 4µ7

S α
(1.49)

Solving for S α, and substituting the result into the right-hand side of equation (1.47), dV
VdA equals
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Integrating this equation yields an expression for V in terms of a function of x and τ, say u:
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(1.50)

Under the change of variables from V(S , A, t) to u(x, τ), equation (1.7) transforms into the
following PDE in one fewer independent variable, satisfied by u:
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(1.51)

Consider the following system:

0 = µ3 + µ5 + a6µ6 + a7µ7

0 = α ( µ2 − a3µ3 − µ4 − a5µ5) − b6µ6 + b7µ7

−
µ2

6

2µ7
= µ1 + 2µ4 + µ5 + 2 µ7

One solution to this system is the following:

− µ1 =2µ4 + µ5 +
µ2

6

2µ7
+ 2µ7 (1.52)

αµ2 =αµ4 − α(a3 − a5)µ5 − (αa3a6 − b6)µ6 − (αa3a7 + b7)µ7 (1.53)
− µ3 = µ5 + a6 µ6 + a7 µ7 (1.54)

[Another solution consists of µ6 = 0 = µ7 and the corresponding simplifications of equations
(1.53) and (1.54), but is ignored as this removes all dependence of V on A.] Substitution of
expressions (1.52)-(1.54) yields the expected BS and heat equations in the following analogue
of lemma 1.2.3 and theorem 1.2.5:

Theorem 1.2.9 Consider the ten-dimensional family of optimal Lie point symmetries (1.46),
parameterized by γ ≡ (a3, a5, a6, a7, b6, b7, µ4, µ5, µ6, µ7) ∈ C10, and subject to constraints
(1.52)-(1.54). Then solutions V of equation (1.7), invariant under a symmetry of the family,
say Yµ, may be written only in terms of µ ≡ −ασ2 µ6

µ7
:
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Denoting x ≡
A+ µ
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, u(x, t) is a solution of the following BS PDE:
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Denoting ζ ≡
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4 , then given a solution v(ζ, τ) of the heat equation
(1.35) with unit thermal conductivity, the following is aYµ-invariant solution of equation (1.7):
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Thus, identifying λ ≡ µ, and noting that in this case solutions (1.36) and (1.55), including
their respective definitions of ζ, are identical, it is clear that the greater parametric flexibility
obtained using the optimal Lie point symmetries (1.25) instead of symmetries (1.22), is only
apparent: The technique of choosing invariant solutions which permit a reduction of pricing
PDE (1.7) to a BS equation, and thence the heat equation (1.35), yields the same result [i.e.,
Xλ-, or equivalently,Yµ-invariant solution of pricing PDE (1.7)] regardless of whether optimal
Lie point symmetries are utilized.

Separation of variables for reduced pricing PDEs (1.30) and (1.51)

Some more comments regarding the solution technique [of choosing invariant solutions which
permit a reduction of pricing PDE (1.7) to a BS equation, and thence the heat equation (1.35)]
are in order: Considering only finite/non-‘solution’ (i.e., Xϕ) Lie point symmetries, the reduced
pricing PDE (1.30) [(1.51)] remains fully general, using the [optimal] Lie point symmetries
(1.22) [(1.25)]. However, in proceeding in either case to choose invariant solutions which
permit a further reduction to a BS equation, there is a loss of generality: This approach is
computationally expedient, as further reduction of BS to heat equations, and solution of the
corresponding Cauchy problem via Poisson’s formula (1.38), is standard. It is also arguably
financially sensible, given the cornerstone position of BS equations in PDE approaches to
option pricing. But progress can be made in more general cases: By imposing none or some
(but not all24) of the constraints (1.31)-(1.32) [(1.52)-(1.54)], two linearly independent Bessel
or Whittaker function solutions to reduced pricing PDE (1.30) [(1.51)] are obtained.

Theorem 1.2.10 For any c ∈ C, two linearly independent solutions of the reduced pricing PDE
(1.30), are the product of ecτ and either the Whittaker Mκ,ν(z)- or Wκ,ν(z)-function (see section
7.3.1. of Temme [298]), each of the latter with the following parameters and argument:

κ ≡ −
cλ1 − λ3 + λ4

(
1−α

2 −
r
σ2

)
α
√
λ2

4 − 4σ2λ2λ5

(1.57)

ν ≡
1
ασ

√
σ2

4
+ r − 2c +

r2

σ2 (1.58)

z ≡
2
√
λ2

4 − 4σ2λ2λ5

ασ2x
(1.59)

24Lemma 1.2.3 [theorem 1.2.9] yields BS equation (1.34) [(1.56)] via constraints (1.31)-(1.32) [(1.52)-(1.54)].
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Imposition of constraint (1.32) yields the same solution but for a simplified parameter:

κ ≡ −
cλ1

α
√
λ2

4 − 4σ2λ2λ5

(1.60)

Imposition of constraint (1.31) yields two linearly independent solutions of the reduced pricing
PDE (1.30), given by the product of ecτ

/x and either the Bessel Jν(z)- or Yν(z)-function (see
section 9.2. of Temme [298]), each of the latter with the following parameter and argument:

ν ≡ −
1
ασ

√
σ2 + 4r − 8c + 4

r2

σ2 (1.61)

z ≡
2
√

2λ3 + λ4

(
α − 1 + 2r

σ2

)
− 2λ1c

α2σ2
√
λ5x

(1.62)

Two linearly independent solutions of the reduced pricing PDE (1.51), are the product of ecτ

and either the Whittaker Mκ,ν(z)- or Wκ,ν(z)-function, each of the latter with the following pa-
rameter and argument, as well as parameter (1.58):

κ ≡
α
[
c (µ3 + µ5 + a6µ6 + a7µ7) − µ2 + a3µ3 + µ4 + a5µ5

]
+ b6µ6 − b7µ7

α
√
µ2

6 + 2µ7 (µ1 + 2µ4 + µ5 + 2µ7)
(1.63)

z ≡
4
√
µ2

6 + 2µ7 (µ1 + 2µ4 + µ5 + 2µ7)

α2σ2x
(1.64)

Imposition of constraint (1.54) yields an analogous solution with simplified parameters:

κ ≡ −
α
[
µ2 − µ4 + (a3 − a5)µ5 + a3(a6µ6 + a7µ7)

]
− b6µ6 + b7µ7

α
√
µ2

6 + 2µ7 (µ1 + 2µ4 + µ5 + 2µ7)
(1.65)

ν ≡

√
1
4
−

c
α4σ4 (1.66)

Here, the product of each Whittaker function is taken with eCτ, denoting

C ≡
c

2α2σ2 +
1
2

( r
σ
+
σ

2

)2
−
α2σ2

8
(1.67)

Imposition of other combinations of constraints (1.52)-(1.54) yields two linearly independent
solutions of the reduced pricing PDE (1.51), given by the product of ec∗τ/x and either the Bessel
Jν(z)- or Yν(z)-function, each of the latter with parameter and argument listed in table 1.5.

Imposition of constraint (1.53) alone, or together with constraint (1.54), does not yield analo-
gous special function solutions; see Temme [298].

Implicitly this indicates that the reduced pricing PDEs (1.30) and (1.51) may be transformed
into the Whittaker (a form of the confluent hypergeometric) or Bessel differential equations,
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Constraints imposed c∗ ν z

(1.52) c (1.61)
4
√
α[c(µ3+µ5+a6µ6+a7µ7)−µ2+a3µ3+µ4+a5µ5]+b6µ6−b7µ7

ασx
√
αµ7

(1.52), (1.53) c (1.61)
4
√

(c+a3)(µ3+µ5+a6µ6+a7µ7)
ασx
√

µ7

(1.52), (1.54) C − c
2α

(
1
ασ2 +

1
4µ7

)
−

√
1 + c

α3σ2µ7

4i
√
α[µ2−µ4+(a3−a5)µ5+a3(a6µ6+a7µ7)]−b6µ6+b7µ7

ασx
√
αµ7

Table 1.5: Reduced pricing PDE (1.51) Bessel function solutions by constraints imposed.

which are also related to one another in myriad ways; see chapters seven and nine of Temme
[298]. These solutions depend on the constraints imposed among (1.31)-(1.32) and (1.52)-
(1.54), follow via separation of variables, and so consist of products of Whittaker or Bessel
functions dependent on x, and exponential functions of τ. Substituting the appropriate invari-
ants into each result of theorem 1.2.10 yields corresponding solutions of pricing PDE (1.7).

Corollary 1.2.11 For any c ∈ C, two linearly independent solutions of the pricing PDE (1.7),
are the product of the Whittaker Mκ,ν(z)- or Wκ,ν(z)-function with the following expression:

S
1−α

2 −
r
σ2 exp

ct +

(
2λ5A + λ4

ασ2

)
S α

λ2 + λ4αA + λ5α2σ2A2 +
2λ3 + λ4(α − 1) + 2λ4r/σ2 − 2λ1c

α
√

4λ2λ5σ2 − λ2
4

arctan
λ4 + 2λ5ασ

2A√
4λ2λ5σ2 − λ2

4


≡S

1−α
2 −

r
σ2 exp

ct +

(
2λ5A + λ4

ασ2

)
S α

λ2 + λ4αA + λ5α2σ2A2 − 2iκ arctan
λ4 + 2λ5ασ

2A√
4λ2λ5σ2 − λ2

4


(1.68)

The parameters κ and ν are respectively given by formulas (1.57) and (1.58), and the argument,

z ≡
2
√
λ2

4 − 4σ2λ2λ5S α

ασ2 (
λ2 + λ4αA + λ5α2σ2A2) (1.69)

Imposition of constraint (1.32) yields the same solution but for a simplified parameter (1.60),
and multiple (1.68) given in terms of the latter. Imposition of constraint (1.31) yields two
linearly independent solutions of the pricing PDE (1.7), given by the product of the Bessel
Jν(z)- or Yν(z)-function with the following expression:

S
1
2−

r
σ2

A + λ4
2ασ2λ5

exp
[
ct +

4λ5S α − 2λ3 − λ4(α − 1) − 2λ4r/σ2 + 2λ1c
α
(
λ4 + 2ασ2λ5A

) ]

≡
S

1
2−

r
σ2

A + λ4
2ασ2λ5

exp

ct +
4λ5S α

α
(
λ4 + 2ασ2λ5A

) − α (
λ4 + 2ασ2λ5A

)
4λ5S α

z2

4


(1.70)

The parameter ν is given by formula (1.61), and the argument,

z ≡
2
√

2λ3 + λ4

(
α − 1 + 2r

σ2

)
− 2λ1cS

α
2

α2σ2
√
λ5

(
A + λ4

2ασ2λ5

) (1.71)
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Two linearly independent solutions of the pricing PDE (1.7), are the product of the Whittaker
Mκ,ν(z)- or Wκ,ν(z)-function with the following expression:

S
1−α

2 −
r
σ2 exp

[
ct +

2(µ7A − µ6)S α

α2σ2 (
A2µ7 − 2Aµ6 − 2µ1 − 4µ4 − 2µ5 − 4µ7

)]

· exp

2
(
α
[
µ2 − (c + a3)µ3 − µ4 − (c + a5)µ5

]
− [αca6 + b6]µ6 − [αca7 − b7]µ7

)
α
√
µ2

6 + 2µ7(µ1 + 2µ4 + µ5 + 2µ7)

· arctanh
µ7A − µ6√

µ2
6 + 2µ7(µ1 + 2µ4 + µ5 + 2µ7)


≡S

1−α
2 −

r
σ2 exp

ct − 2κ arctanh
µ7A − µ6√

µ2
6 + 2µ7(µ1 + 2µ4 + µ5 + 2µ7)

+
2(µ7A − µ6)S α

α2σ2 (
A2µ7 − 2Aµ6 − 2µ1 − 4µ4 − 2µ5 − 4µ7

)]
(1.72)

The parameters κ and ν are respectively given by formulas (1.63) and (1.58), and the argument,

z ≡
4
√
µ2

6 + 2µ7 (µ1 + 2µ4 + µ5 + 2µ7)S α

α2σ2 (
A2µ7 − 2Aµ6 − 2µ1 − 4µ4 − 2µ5 − 4µ7

) (1.73)

Imposition of constraint (1.54) yields an analogous solution with the simplified parameter ν
(1.66), and the product of each Whittaker function is taken with the following expression:

S
1−α

2 −
r
σ2 exp

Ct − 2κ arctanh
µ7A − µ6√

µ2
6 + 2µ7(µ1 + 2µ4 + µ5 + 2µ7)

+
2(µ7A − µ6)S α

α2σ2 (
A2µ7 − 2Aµ6 − 2µ1 − 4µ4 − 2µ5 − 4µ7

)]
(1.74)

Here, C [κ] is given by [the simplified] formula (1.67) [(1.65)]. Imposition of other combina-
tions of constraints (1.52)-(1.54) yields two linearly independent solutions of the pricing PDE
(1.7), given by the product of either the Bessel Jν(z)- or Yν(z)-function, each of the latter with
parameters and arguments as in tables 1.5 and 1.6, with the following expression:

µ7S
1
2−

r
σ2

µ7A − µ6
exp

[
c∗τ∗ +

2
α
·
ψ∗ + µ7

ασ2 S α

µ7A − µ6

]
(1.75)

Imposition of constraint (1.53) alone, or together with constraint (1.54), does not yield analo-
gous special function solutions.
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Constraints τ∗

(1.52) µ7(At−2a7)−µ6(t+2a6)−2(µ3+µ5)
µ7A−µ6

(1.52), (1.53) µ7(At−2a7)−µ6(t+2a6)−2(µ3+µ5)
µ7A−µ6

(1.52), (1.54) t
Constraints ψ∗

(1.52) α(µ2 − a3 µ3 − µ4 − a5 µ5) − b6 µ6 + b7 µ7

(1.52), (1.53) −α a3(µ3 + µ5 + a6 µ6 + a7 µ7)
(1.52), (1.54) α[µ2 − µ4 + (a3 − a5)µ5] + (αa3a6 − b6)µ6 + (αa3a7 + b7)µ7

Constraints z

(1.52)
4
√
α[c(µ3+µ5+a6µ6+a7µ7)−µ2+a3µ3+µ4+a5µ5]+b6µ6−b7µ7S

α
2

ασ(µ7A−µ6)
√
αµ−1

7

(1.52), (1.53)
4
√

(c+a3)(µ3+µ5+a6µ6+a7µ7)S
α
2

ασ(µ7A−µ6)
√

µ−1
7

(1.52), (1.54)
4i
√
α[µ2−µ4+(a3−a5)µ5+a3(a6µ6+a7µ7)]−b6µ6+b7µ7S

α
2

ασ(µ7A−µ6)
√
αµ−1

7

Table 1.6: Pricing PDE (1.7) Bessel function solutions by constraints imposed.

Consider the following system:

λ2 = −2α2σ2(µ1 + 2µ4 + µ5 + 2µ7)

λ4 = −2α σ2 µ6

λ5 = µ7

(1.76)

Recalling that i arctan x
i ≡ arctanh, it follows that solutions (1.68)-(1.69) and (1.72)-(1.73)

coincide when system (1.76) is satisfied and the corresponding κ parameters match:

0 =2ασ2 (
α
[
c (µ3 + µ5 + a6µ6 + a7µ7) − µ2 + a3µ3 + µ4 + a5µ5

]
+ b6µ6 − b7µ7

)
+cλ1 + λ3 − λ4

(
1 − α

2
−

r
σ2

)
(1.77)

Thus, by imposing three constraints (1.76) on five parameters, µ1 and (∀4 ≤ i ≤ 7) µi, and up to
two further constraints (1.77) on twelve parameters, µ2, µ3, and γ, solutions (1.68)-(1.69) are
indeed realized as special cases of (1.72)-(1.73). This is not preserved in case of respectively
imposing constraints (1.32) and (1.54), since the respective ν parameters (1.58) and (1.66)
differ; or c , C (1.67), respectively in multiples (1.68) and (1.74). Similarly, the solutions
(1.70)-(1.71) correspond to none of those with multiple (1.75) and parameters and argument as
in tables 1.5 and 1.6, since for none of three cases in the latter is c∗ = c (first two rows) and
τ∗ = t (third row), so that c∗τ∗ , ct, respectively in multiples (1.75) and (1.70). So the ‘optimal’
Lie point symmetries (1.25) are unable to yield as special cases most of the solutions obtained
by separation of variables from the symmetries (1.22), and vice versa, by imposing different
combinations of the respectively corresponding constraints (1.31)-(1.32) and (1.52)-(1.54).

To construct solutions to pricing PDE (1.7) which satisfy the terminal payoff BC (1.8), BC
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(1.9) with S = 0 or BC (1.12) with A = T Kα, using those from corollary 1.2.11, it is desirable
that the solutions form an orthogonal basis. Such results for Whittaker functions remain scant,
but Szmytkowski and Bielski [292] have established an orthogonality relation [their formula
(1.3)] for the Whittaker Wκ,ν(z)-function in case (∃υ ∈ R) ν = iυ is imaginary. For the cor-
responding solutions of corollary 1.2.11, this implies a constraint c ≥ (σ/2 + r/σ)2/2 [c ≥ α4σ4/4]
in case of the parameter ν (1.58) [(1.66)]. So restricting c, a corresponding (generalized)
‘Fourier-Whittaker’ series could be constructed, attempting to sum the corresponding solu-
tions of corollary 1.2.11 in order to satisfy the terminal payoff BC (1.8), BC (1.9) with S = 0
or BC (1.12) with A = T Kα. A similar approach could be pursued in case the parameter κ = 0
and W0,iυ(z) ≡ Kiυ(z/2)

√
z/π reduces to a MacDonald function, via the Kontorovich–Lebedev

transform, as noted by Szmytkowski and Bielski [292]: One advantage in this case is that the
inverse transform, used to construct a solution satisfying the terminal payoff BC (1.8), BC (1.9)
with S = 0 or BC (1.12) with A = T Kα, from those of corollary 1.2.11, reduces to an index
transform over c, which enters in a comparatively straightforward manner in such solutions;
see Yakubovich [318]. Two possibilities for combining the Bessel Jν(z)-functions of corollary
1.2.11, overlapping respectively with the series expansion and integral transform approaches
discussed in section 1.1.4, are the use of Fourier-Bessel series25 and the Hankel transform.26

Fourier-Bessel series solutions of pricing PDE (1.7)

Consider the following Fourier-Bessel series:

∞∑
n=1

dnJν

(
jν,n
ζ̄
ζ

)
(1.78)

Here, ( jν,n)n∈N are the zeros of Jν(ζ); (∀n ∈ N) Jν( jν,n) = 0. To optimally approximate a
mapping f : [0, ζ̄]→ R via a Fourier-Bessel series (1.78),27 the optimal coefficients are

(∀n ∈ N) dn =
2
∫ ζ̄

0
ζ f (ζ)Jν

(
jν,n
ζ̄
ζ
)

dζ

ζ̄2J2
ν+1( jν,n)

(1.79)

This requires ν > −1, in order that {Jν( jν,nζ/ζ̄)} constitutes an orthogonal basis with weighting
function, ζ ∈ [0, ζ̄]; see section 9.9. of Temme [298]. The principal difficulty is to determine
the mapping f so that the terminal payoff BC (1.8), BC (1.9) with S = 0 or BC (1.12) with
A = T Kα, are satisfied. The first possibility necessarily renders the terminal underlying asset

25The (Neumann) Bessel Yν(z)-functions are not used for such purposes, since they are unbounded as z → 0;
see section 9.3. of Temme [298].

26The Y-transform is of the same form as the Hankel transform (1.93), with Neumann Yν(z)-function kernel
in place of the Bessel Jν(z)-function; see chapter IX of Bateman [30]. However, the inverse H-transforms have
Struve Hν(z)-function kernels, rather than Neumann Yν(z)-functions; see Rooney [264], chapter XI of Bateman
[30], and chapter 12 of Abramowitz and Stegun [2]. The inverse Y- and H-transform pair is thus less apparently
suited to combining the Neumann Yν(z)-function solutions of corollary 1.2.11, compared to application of the
(self-inverse) Hankel transform (1.93) to the corresponding Bessel Jν(z)-function solutions, but may be worth
exploring in future investigations.

27In case of choosing f to satisfy the terminal payoff BC (1.8) for a fixed-strike (K) Asian put option, the upper
bound, ζ̄ ≡ K, since f vanishes for greater values of its argument.
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price, S T , as a parameter, the expectation over which, evaluated via MC simulations or analyti-
cally as in theorem 1.2.8, is then required for computing numerical prices; the second presents
asymptotic complications as S → 0 [as does BC (1.13) as S → ∞], due to the multiplicative
dependence on S of the multiples (1.70) and (1.75) and the arguments of table 1.6 and (1.71).
As such, only BC (1.12) with A = T Kα is considered: In the case of solutions (1.70)-(1.71),[

1 − e−r(T−t)

rT

] 1
α

S = V(S ,T Kα, t) ≡ S
1
2−

r
σ2 ect

∞∑
n=1

dn

T Kα + λ4
2ασ2λ5

Jν (z)

· exp
[
4λ5S α − 2λ3 − λ4(α − 1) − 2λ4r/σ2 + 2λ1c

α
(
λ4 + 2ασ2λ5T Kα

) ]

(1.80)

[Here it is understood that the free parameters, λ1, λ3, λ4, and λ5, may be chosen differently for
each solution n; c may not, since it determines ν (1.61), understood to be fixed in the Fourier-
Bessel series (1.78).] The Bessel functions Jν

(
jν,n
ζ̄
ζ
)

in the Fourier-Bessel series (1.78) are
chosen to have the same form as in solutions (1.70)-(1.71), whence the following is required:

jν,n
ζ̄
ζ ≡

2
√

2λ3 + λ4

(
α − 1 + 2r

σ2

)
− 2λ1cS

α
2

α2σ2
√
λ5

(
T Kα + λ4

2ασ2λ5

) (1.81)

Enforcing this (without loss of generality) by specifying ζ ≡ S
α
2 , expression (1.80) reads[

1 − e−r(T−t)

rT

] 1
α

ζ
1
α+

2r
ασ2 = ect

∞∑
n=1

dn

T Kα + λ4
2ασ2λ5

Jν

(
jν,n
ζ̄
ζ

)
· exp

[
4λ5ζ

2 − 2λ3 − λ4(α − 1) − 2λ4r/σ2 + 2λ1c
α
(
λ4 + 2ασ2λ5T Kα

) ] (1.82)

In order to be interpreted as a Fourier-Bessel series (1.78), the exponential function of ζ must
factor out of the sum and into f , i.e., it must not depend on n. Two constraints on the free
parameters, λ1, λ3, λ4, and λ5, recalling ζ ≡ S

α
2 , are thus as follows:

jν,n
ζ̄
≡

2
√

2λ3 + λ4

(
α − 1 + 2r

σ2

)
− 2λ1c

α2σ2
√
λ5

(
T Kα + λ4

2ασ2λ5

) (1.83)

I ≡
4λ5

α
(
λ4 + 2ασ2λ5T Kα

) (1.84)

(Here, I denotes an expression independent of the summation index n.) Formula (1.82) reads

f ≡
2

α2σ2I

[
1 − e−r(T−t)

rT

] 1
α

ζ
1
α+

2r
ασ2 e−ct−Iζ2

=

∞∑
n=1

dne−
j2ν,n

4Iζ̄2 Jν

(
jν,n
ζ̄
ζ

)
≡

∞∑
n=1

DnJν

(
jν,n
ζ̄
ζ

)
(1.85)
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Thus f (ζ; t) is represented by a Fourier-Bessel series (1.78) determining via formula (1.79) [for
Dn] the coefficients in expression (1.80):

(∀n ∈ N) dn = e
j2ν,n

4Iζ̄2
2
∫ ζ̄

0
ζ f (ζ; t)Jν

(
jν,n
ζ̄
ζ
)

dζ

ζ̄2J2
ν+1( jν,n)

(1.86)

Linearly combining these coefficients with solutions (1.70)-(1.71) as in formula (1.80) yields
an expression satisfying BC (1.12) with A = T Kα which, multiplied by ect(rT )1/α/[1 − e−r(T−t)]1/α, gives a
further solution to (the linear) pricing PDE (1.7), as is readily seen by direct substitution: (This
multiplication is made necessary by the corresponding dependence on t of f (1.85), which is
however fortunately separable from ζ.)

S
1
2−

r
σ2 ect

∞∑
n=1

dn

A + λ4
2ασ2λ5

Jν

(
S

α
2

jν,n
ζ̄

λ4 + 2ασ2λ5T Kα

λ4 + 2ασ2λ5A

)
· exp

IS α −
j2
ν,n

4Iζ̄2

 λ4 + 2ασ2λ5T Kα

λ4 + 2ασ2λ5A

 (1.87)

Recall that the free parameters, λ1, λ3, λ4, and λ5, are required to satisfy constraints (1.83)-
(1.84), so that one simple possibility is to fix both λ4 and λ5 to be independent of n, so that
I is also, and choose λ1 and λ3 such that constraint (1.83) is satisfied. Substituting formulas
(1.85)-(1.86) into (1.87), and denoting Λ ≡ λ4/2ασ2λ5 and h(A;Λ) ≡ (Λ + T Kα)(Λ + A)−1,

2h(A;Λ)
ζ̄2

[
1 − e−r(T−t)

rT

] 1
α

S
∞∑

n=1

e
j2ν,n

4Iζ̄2 [1−h(A;Λ)]

J2
ν+1( jν,n)

·

ζ̄∫
0

ζ
(
ζ

S
α
2

) 1
α+

2r
ασ2

e−I[ζ2−S αh(A;Λ)]Jν

[
jν,n
ζ̄
ζ

]
Jν

[
jν,n
ζ̄

S
α
2 h(A;Λ)

]
dζ

(1.88)

In the case of solutions with multiples (1.75) and parameters and arguments as in tables 1.5
and 1.6, the following is analogous to expression (1.80):

[
1 − e−r(T−t)

rT

] 1
α

S = V(S ,T Kα, t) ≡ S
1
2−

r
σ2

∞∑
n=1

µ7dn

µ7T Kα − µ6
Jν (z) exp

[
c∗τ∗ +

2
α
·
ψ∗ + µ7

ασ2 S α

µ7T Kα − µ6

]

(1.89)

[Again it is understood that the free parameters, µ2, µ3, and γ, as applicable, may be chosen
differently for each solution n; and again c may not, since it determines each parameter ν
in table 1.5.] The Bessel functions Jν

(
jν,n
ζ̄
ζ
)

in the Fourier-Bessel series (1.78) are chosen
to satisfy condition (1.81) for each argument z in table 1.6, again enforced (without loss of
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generality) by specifying ζ ≡ S
α
2 , so that expression (1.89) reads[

1 − e−r(T−t)

rT

] 1
α

ζ
1
α+

2r
ασ2 =

∞∑
n=1

µ7dn

µ7T Kα − µ6
Jν (z) exp

c∗τ∗ + 2
α
·
ψ∗ + µ7

ασ2 ζ
2

µ7T Kα − µ6


Taking I ≡ 2

α2σ2

(
T Kα −

µ6
µ7

)−1
, an expression independent of the summation index n, this reads

f ≡
2

α2σ2I

[
1 − e−r(T−t)

rT

] 1
α

ζ
1
α+

2r
ασ2 e−Iζ2

=

∞∑
n=1

dnec∗t−
j2ν,n

4Iζ̄2 Jν

(
jν,n
ζ̄
ζ

)
Here, c∗ is as in table 1.5; i.e., in the cases of the first two rows of the latter, the solution (1.85)
results. In case of the third row, c∗ depends on only one free parameter, µ7: If the latter varies
with n, then the coefficients (1.86) are not separable in t, and extraction of a solution of pricing
PDE (1.7) is not immediate as in the other cases. If µ7 is taken independent of the summation
index n, then so too must be µ6 since I ≡ I(µ6, µ7) is similarly invariant and depends on only
the two free parameters, µ6 and µ7. But given that there remain nine free parameters in the
corresponding constraint (1.83), this may be imposed and a solution of the form (1.85) again
follows, with exp([C − c(1/ασ2 + 1/4µ7)/2α]t) independent of the summation index n and in place of
ect. Thus, imposing only two constraints (1.83)-(1.84) in all but the latter case, in which three
are imposed (additionally requiring that µ6 and so µ7 be independent of the summation index
n) and nine are left ‘free,’ the remaining parametric flexibility is only apparent, i.e., solutions
of the form (1.85) necessarily follow and permit only three degrees of freedom, independent
of the summation index n: The invariant I ∈ C, the upper bound ζ̄ ≥ 0, and the parameter
c ∈ C, chosen such that the corresponding parameter ν > −1 of table 1.5. In the case with three
constraints imposed, the further degree of freedom, µ7 ∈ C independent of the summation
index n, is also permitted. These results may be gathered as follows.

Theorem 1.2.12 Linearly combining the Fourier-Bessel coefficients (1.86) with Bessel Jν(z)-
function solutions of corollary 1.2.11, the free parameters of whose arguments z must satisfy
constraints (1.83)-(1.84), yields expression (1.87) which satisfies BC (1.12) with A = T Kα.
Division of this expression by the following function yields a solution of pricing PDE (1.7):

g(t) ≡ e−c∗t

[
1 − e−r(T−t)

rT

] 1
α

(1.90)

Here, c∗ is c in the case of solutions (1.70)-(1.71) or as in table 1.5; in the case of the third row
of the latter, µ7 ∈ C (and so µ6 ∈ C) is required to be independent of the summation index n.
The parameters c ∈ C must be such that ν > −1 of table 1.5.

Given a solution prescribed by theorem 1.2.12, say, V ≡ V(S , A, t), it follows that

(gV)t +
1
2
σ2S 2(gV)S S + S α(gV)A + rS (gV)S − r(gV) = g′V =

r
α[1 − er(T−t)]

gV

Thus, as |α| → ∞ in the case of lookbacks, and/or T → ∞ in the case of perpetual options, the
expression gV with g ≡ g(t) given by formula (1.90), both satisfies BC (1.12) with A = T Kα
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and pricing PDE (1.7). Consideration of the remaining BCs, however, presents difficulties,
again due to the asymptotic nature of BC (1.9) with S = 0 [and BC (1.13) as S → ∞], together
with the multiplicative dependence upon S of solutions prescribed by theorem 1.2.12. Regard-
ing the terminal payoff BC (1.8), the primary difficulty, which may prohibit its satisfaction, is
that g → 0 as t → T . Nonetheless, the solutions prescribed by theorem 1.2.12 may be useful,
properly combined with formula (1.90), for pricing in cases with S ≫ 0 or t ≪ T .

Note also that the solutions prescribed by theorem 1.2.12 are assumed to satisfy S ≡ ζ
2/α ∈

[0, ζ̄ 2/α], so that ζ̄ → ∞ should be taken for α > 0; but some sufficiently large value, e.g., 1/ϵ
for the machine epsilon, ϵ, may yield effectively ‘exact’ numerical computations. For similar
purposes, c∗(t) may also be chosen such that g(t) = 1:

c∗(t) ≡
1
αt

ln
1 − e−r(T−t)

rT
(1.91)

The expression gV ≡ V then both satisfies BC (1.12) with A = T Kα and pricing PDE (1.7),
when the dependence of c∗ on t in formula (1.91) is ignored in computing Vt. Effectively, this
yields solutions of pricing PDE (1.7) along slices of fixed time t, which collectively satisfy BC
(1.12) with A = T Kα; the mapping (1.91) indicates how the solutions prescribed by theorem
1.2.12 are selected for each time slice t. Only values of c∗ (1.91) may be accepted which also
satisfy ν > −1; in the case of c∗ = c and ν (1.61), for solutions (1.70)-(1.71) or those with
multiple (1.75) corresponding to the first two rows of tables 1.5 and 1.6,

−1 < −
1
ασ

√
σ2 + 4r −

8
αt

ln
1 − e−r(T−t)

rT
+ 4

r2

σ2

≡

1
αt

ln
1 − e−r(T−t)

rT
>

1 − α2

8
σ2 +

r
2
+

r2

2σ2

(1.92)

For those with multiple (1.75) corresponding to the third rows of tables 1.5 and 1.6,

−1 < −

√
1 +

8
α2σ2

[
1
2

( r
σ
+
σ

2

)2
−
α2σ2

8
−

1
αt

ln
1 − e−r(T−t)

rT

]
This immediately simplifies also to condition (1.92). The behavior of mapping (1.91) is not
immediately clear, e.g., whether it always has an interior extremal point t ∈ (0,T ), and if so,
whether that point is unique. Some preliminary investigations, plotted in figure 1.2, suggest
that the mapping C∗, defined by moving all terms to the left of the second inequality (1.92), may
be convex or concave for relevant parameters considered elsewhere, but, e.g. in the case r → 0,
may only have a boundary extremal point at t = 0 (shown in blue in figure 1.2). Both the plots
of figure 1.2 and the form of mapping (1.91) exhibit some similarity to the Lambert W function,
but whilst mapping (1.91) is smooth for t ∈ (0,T ), both the first- and second-derivative tests
yield similarly nonlinear equations, whose further consideration might be sensibly pursued in
a subsequent paper. Note also that scaling T away from 0.25 proportionally scales the plots of
figure 1.2, so alternate values of this parameter were not pursued/presented.
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Figure 1.2: Behavior of the function C∗(α, r, σ, 0.25, t) defined by the inequality (1.92)

Added to this difficulty, is sensibly choosing I (1.84) from a financial perspective, in a manner
suitable from a numerical one: Clearly, I > 0 so that 0 ≤ f (1.85), which however results in the
multiples of the Fourier-Bessel coefficients (1.86), exp[ j2ν,n/4Iζ̄2] → ∞ as n → ∞ for any finite
bound ζ̄ > 0. This, as well as the sensitivity of f (1.85) to both I and ζ, complicates numerical
implementation of the solutions prescribed by theorem 1.2.12, to the extent that such analysis
may best be left to another study. Choosing similarly ‘representative’ parameters as in figure
1.2, but with r = 0.01 = σ2 to address some of the noted sensitivity of f (1.85), figure 1.3
depicts the form of the latter.

Here, the value c = 7/640 is such that −1/2 = ν (1.61), so that
√
πzJ−1/2(z) ≡

√
2 cos z and

(∀n ∈ N) j−1/2,n = (n − 1/2)π, which expedites the nonetheless difficult numerical implemen-
tation of the solutions prescribed by theorem 1.2.12, which of course in this case reduce to
Fourier cosine series; see section 9.11. of Temme [298]. Also, the Fourier-Bessel series (1.78)
approximation for f (1.85) additionally assumes that f (ζ̄) = 0, which also implies I > 0; I = 1
was chosen in figure 1.3 as it yielded values of a single order of magnitude. The combined
formula (1.88) sacrifices the ability to analyze separately the impact of f (1.85) and dn (1.86)
in formula (1.87), but is somewhat more amenable to numerical computation than the latter, as
it simultaneously removes some asymptotic hindrances from the separate formulas, as is clear
from its form. And it also reduces the influence of the remaining free parameters, λ4 and λ5, to
the single Λ ≡ λ4/2ασ2λ5. Clearly this latter should lie outside of [−T Kα, 0], to avoid nonnegative
values of h(A;Λ) ≡ (Λ + T Kα)(Λ + A)−1.

Recall that, by imposing three constraints (1.76) on five parameters, µ1 and (∀4 ≤ i ≤ 7) µi,
and up to two further constraints (1.77) on twelve parameters, µ2, µ3, and γ, solutions (1.68)-
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Figure 1.3: Behavior of the function f (ζ, t; 1, 0.1, 0.01, 0.25, 1, 7/640)

(1.69) are realized as special cases of (1.72)-(1.73). Thus, a ‘Fourier-Whittaker’ analogue of
the Fourier-Bessel series (1.85) need only be considered for solutions (1.72)-(1.73). As noted,
Szmytkowski and Bielski [292] have established an orthogonality relation for the Whittaker
Wκ,iυ(z)-function in case the second parameter is imaginary. However, such a Fourier-Whittaker
series expansion would additionally require that the collection of such functions not only be
orthogonal, but also be complete, i.e., a basis, e.g., for L2(0,∞). This rests on the zeros (eigen-
values) of such (eigen)functions, as for jν,n in the Fourier-Bessel series (1.78), and more specif-
ically, [n(−1/2)]π in the case of Fourier (co)sine series. There has apparently been little devel-
opment on this topic, and such has focused on the case of real second parameter; see Esparza,
Lopez and Sesma [112] and section 17.3 of Buchholz [51]. Thus this avenue is not pursued.

Hankel transform solutions of pricing PDE (1.7)

Let (∀1 ≤ i ≤ 7) {µi,β}, {a3,β}, (∀5 ≤ j ≤ 7) {a j,β}, {b6,β}, {b7,β}, and {cβ}, denote directed sets (in
C), which may be chosen arbitrarily to define a corresponding family of solutions of pricing
PDE (1.7), say, {mβJνβ(zβ)}, with each multiple mβ, parameter νβ, and argument zβ computed
according to such choices from formulas (1.70)-(1.71) and (1.75), and those of tables 1.5 and
1.6. Taking (∀0 < β, κ) νβ ≡ ν ≥ −1/2, zβ ≡ κβ, consider the Hankel transform,

Hν[g(β)](κ) ≡

∞∫
0

√
κβJν(κβ)g(β)dβ (1.93)
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(See section 9.4. of Temme [298].) Given any mapping g ∈ L2(0,∞), the Hankel transform
(1.93) exists and has (self-)inverse g. In the case of solutions (1.70)-(1.71), the requirement
that zβ ≡ κβ can be addressed without loss of generality by taking κ ≡ S α/2 and

β ≡
2
√

2λ3 + λ4

(
α − 1 + 2r

σ2

)
− 2λ1c

α2σ2
√
λ5

(
T Kα + λ4

2ασ2λ5

) (1.94)

As in the case of, and for the same reason as in, the preceding section on Fourier-Bessel series
solutions of pricing PDE (1.7), only BC (1.12) with A = T Kα is considered. Similarly,

f ≡
2

α2σ2I

[
1 − e−r(T−t)

rT

] 1
α

κ
1
2+

1
α+

2r
ασ2 e−ct−Iκ2

=

∞∫
0

√
κβ

e−
β2
4I

√
β

Jν(κβ)g(β)dβ ≡

∞∫
0

√
κβJν(κβ)G (β)dβ

(1.95)

[Again it is understood that the free parameters, λ1, λ3, λ4, and λ5, may be chosen differently
for each solution β; c may not, since it determines ν (1.61), understood to be fixed in the Hankel
transform (1.93).] Thus f (κ; t) is represented by a Hankel transform (1.93) determining via the
corresponding self-inverse transform (for G ) the weighting function for solutions (1.70)-(1.71):

g(β; t) ≡
√
βe

β2
4I

∞∫
0

√
κβJν(κβ) f (κ; t)dκ (1.96)

Integrating with respect to this weight function the solutions (1.70)-(1.71) yields the following
expression satisfying BC (1.12) with A = T Kα which, multiplied by ect(rT )1/α/[1 − e−r(T−t)]1/α, gives a
further solution to (the linear) pricing PDE (1.7), as is readily seen by direct substitution:

S
1
2−

r
σ2 ect

∞∫
0

g(β; t)
A + λ4

2ασ2λ5

Jν

(
S

α
2 β
λ4 + 2ασ2λ5T Kα

λ4 + 2ασ2λ5A

)

· exp
[(

IS α −
β2

4I

)
λ4 + 2ασ2λ5T Kα

λ4 + 2ασ2λ5A

]
dβ

(1.97)

Recall that the free parameters, λ1, λ3, λ4, and λ5, are required to satisfy constraints (1.84) and
(1.94), so that one simple possibility is again to fix both λ4 and λ5 to be independent of β, so
that I is also (instead of n as in the case of Fourier-Bessel series), and choose λ1 and λ3 such
that constraint (1.94) is satisfied. Substituting formulas (1.95)-(1.96) into (1.97), and denoting
Λ ≡ λ4/2ασ2λ5 and h(A;Λ) ≡ (Λ + T Kα)(Λ + A)−1,

h(A;Λ)
[
1 − e−r(T−t)

rT

] 1
α

S

∞∫
0

∞∫
0

κβ
(
κ

S
α
2

) 1
α+

2r
ασ2

e
β2
4I [1−h(A;Λ)]−I[κ2−S αh(A;Λ)]Jν[κβ]Jν

[
S

α
2 h(A;Λ)β

]
dκdβ

(1.98)

Precisely in the same manner, and for precisely the same reasons, as in the case of Fourier-
Bessel series solutions of pricing PDE (1.7), imposing only two constraints (1.84) and (1.94) in
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all Bessel Jν(z)-function solutions of corollary 1.2.11 but that corresponding to multiple (1.75)
and the third row of tables 1.5 and 1.6, in which three are imposed (additionally requiring that
µ6 and so µ7 be independent of the integration index β) and nine are left ‘free,’ the remaining
parametric flexibility is only apparent, i.e., solutions of the form (1.97) necessarily follow and
permit only four degrees of freedom, independent of the integration index β: The invariant
I ∈ C, the parameter c ∈ C, chosen such that the corresponding parameter ν ≥ −1/2 of table 1.5,
and the two parameters, λ4, λ5 ∈ C.28 In the case with three constraints imposed, the further
degree of freedom, µ7 ∈ C independent of the integration index β, is also permitted.

Theorem 1.2.13 Integrating with respect to weight function (1.96) the Bessel Jν(z)-function
solutions of corollary 1.2.11, the free parameters of whose arguments z must satisfy constraints
(1.84) and (1.94), yields expression (1.97) which satisfies BC (1.12) with A = T Kα. Division
of this expression by function (1.90) yields a solution of pricing PDE (1.7). In the case of the
third row of table 1.5, µ7 ∈ C (and so µ6 ∈ C) is required to be independent of the integration
index β. The parameters c ∈ C must be such that ν ≥ −1/2 of table 1.5.

Similar comments to those following theorem 1.2.12 in the preceding section, apply to theorem
1.2.13, which are analogous nearly to the point of being verbatim, and so will not be explicated.

Kontorovich–Lebedev transform solutions of pricing PDE (1.7)

Unlike the undeveloped ‘Fourier-Whittaker’ discussed in the section on Fourier-Bessel series
solutions of pricing PDE (1.7), some progress may be directly made via the Kontorovich–Lebedev
transform. Recalling from the discussion following corollary 1.2.11, that solutions (1.68)-
(1.69) follow as special cases of (1.72)-(1.73) by imposing formulas (1.76)-(1.77), consider

c ≡

 (σ2 + r
σ )2

2 Unconstrained
α4σ4

4 (1.54) constrained

Take (∀c ≤ c) νc given by formula (1.66) [(1.58)] in case constraint (1.54) is [un]imposed, and

µ2,c ≡

b6µ6−b7µ7
α

+ µ4 + a3µ3 + a5 µ5 + c (µ3 + µ5 + a6µ6 + a7µ7) Unconstrained
b6µ6−b7µ7

α
+ µ4 − (a3 − a5)µ5 − a3( a6µ6 + a7µ7) (1.54) constrained

(1.99)

It then follows that 0 = κ (1.65) [(1.63)] in case constraint (1.54) is [un]imposed, and W0,νc(z) ≡
Kνc(z/2)

√
z/π reduces to a MacDonald function, since (∀c ≤ c) νc ≡ iκ is imaginary. Consider

G(κ) ≡ Kκ[g(β)] ≡

∞∫
0

g(β)Kiκ(β)dβ (1.100)

28The latter two equations of system (1.76) map between solutions of the form (1.97), corresponding either to
the [optimal] Lie point symmetries (1.22) [(1.25)].
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Yakubovich [318] defines this Kontorovich–Lebedev transform29 on a weighted Lp-space de-
noted Lp

ν (0,∞), with norm ∥ · ∥Lp
ν (0,∞) : Lp

ν (0,∞)→ [0,∞) given by his formula (1.19):

g 7→


∞∫

0

|βνg(β)|p
dβ
β


1
p

In particular, given any mapping g ∈ L2
1(0,∞), the Kontorovich–Lebedev transform (1.100)

exists in L2(0,∞) and has the following inverse with kernel 2κ sinh(πκ)/π2:

g(β) ≡
2
π2β

∞∫
0

G(κ)Kiκ(β)κ sinh(πκ)dκ (1.101)

[See the Plancherel theorem 2.4 of Yakubovich [318]; the Parseval equality (2.48) also holds.]
For the same reason as in the preceding sections on Fourier-Bessel series and Hankel transform
solutions of pricing PDE (1.7), only BC (1.12) with A = T Kα is considered, setting

β ≡
2
√
µ2

6 + 2µ7 (µ1 + 2µ4 + µ5 + 2µ7)S α

α2σ2 (
T 2K2αµ7 − 2T Kαµ6 − 2µ1 − 4µ4 − 2µ5 − 4µ7

) ≡ βµS α (1.102)

Solutions are sought such that the following holds:[
1 − e−r(T−t)

rT

] 1
α

S = V(S ,T Kα, t) ≡ S
1−α

2 −
r
σ2

∞∫
0

e
c∗t+

µ7T Kα−µ6√
µ2

6+2µ7(µ1+2µ4+µ5+2µ7)
β

G(κ)W0,iκ (2β) dκ

(1.103)

Here, c∗ = C (1.67) [c] in case constraint (1.54) is [un]imposed. Denote

I ≡
µ7T Kα − µ6√

µ2
6 + 2µ7 (µ1 + 2µ4 + µ5 + 2µ7)

(1.104)

(This expression is required to be independent of the index of integration κ.) Rewriting S [c∗]
in terms of β (1.102) [κ] and recalling W0,νc(z) ≡ Kνc(z/2)

√
z/π, formula (1.103) simplifies to

g(β; t) ≡

√
2

π3β3

[
1 − e−r(T−t)

rT

] 1
α
(
β

βµ

) 1+α
2α +

r
ασ2

e−Iβ− 1
2 ( r

σ+
σ
2 )2

t =
2
π2β

∞∫
0

e
α2σ2

2 κ2tG(κ)
κ sinh(πκ)

Kiκ (β) κ sinh(πκ)dκ

≡
2
π2β

∞∫
0

G (κ; t)Kiκ (β) κ sinh(πκ)dκ

(1.105)
29The K-transform is as the Kontorovich-Lebedev transform (1.100), but restricting (∀c ≤ c) νc ∈ C to be such

that |νc| ≤
1/2, rather than to be purely imaginary; see chapter X of Bateman [30]. Inversion of the K-transform,

however, is much more complicated than formula (1.101) for the Kontorovich-Lebedev transform, and so is not
pursued presently; see Nasim [229].
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Thus g(β; t) is represented by an inverse Kontorovich-Lebedev transform (1.101) determining
via the dual transform formula (1.100) [for G (κ; t)] the weight function in expression (1.103):

G(κ; t) = κ sinh(πκ)e−
α2σ2

2 κ2t

∞∫
0

g(β; t)Kiκ(β)dβ (1.106)

Integrating with respect to weight function (1.106) any of the Whittaker W0,νc-function solu-
tions of corollary 1.2.11 yields the following expression satisfying BC (1.12) with A = T Kα

which, multiplied by ec∗ t(rT )1/α/[1 − e−r(T−t)]1/α, gives a further solution to (the linear) pricing PDE (1.7),
as is readily seen by direct substitution:

S
1−α

2 −
r
σ2

∞∫
0

e
c∗t+

2(µ7A−µ6)Sα

α2σ2(A2µ7−2Aµ6−2µ1−4µ4−2µ5−4µ7)G(κ; t)W0,iκ


4
√
µ2

6 + 2µ7 (µ1 + 2µ4 + µ5 + 2µ7)S α

α2σ2 (
A2µ7 − 2Aµ6 − 2µ1 − 4µ4 − 2µ5 − 4µ7

)
 dκ

(1.107)
Denote µ ≡ {µ1, µ4, µ5, µ6, µ7} and

H(A; µ) ≡
µ7A − µ6

µ7T Kα − µ6
·

T 2K2αµ7 − 2T Kαµ6 − 2µ1 − 4µ4 − 2µ5 − 4µ7

A2 µ7 − 2A µ6 − 2µ1 − 4µ4 − 2µ5 − 4µ7
(1.108)

Substituting formulas (1.105)-(1.106) into (1.107),

2
π2

[
1 − e−r(T−t)

rT

] 1
α

S

∞∫
0

∞∫
0

κ sinh(πκ)
β

(
β

βµS α

) 1+α
2α +

r
ασ2

e[H(A;µ)−1]IβW0,iκ[2β]

·W0,iκ


4
√
µ2

6 + 2µ7 (µ1 + 2µ4 + µ5 + 2µ7)S α

α2σ2 (
A2µ7 − 2Aµ6 − 2µ1 − 4µ4 − 2µ5 − 4µ7

)
 dβdκ

(1.109)

Theorem 1.2.14 Integrating with respect to weight function (1.106) the Whittaker W0,νc(z)-
function solutions of corollary 1.2.11, yields expression (1.107) which satisfies BC (1.12) with
A = T Kα. Division of this expression’s integrand by function (1.90) yields a solution of pricing
PDE (1.7). The parameters µ1, µ2, µ3 and γmust satisfy constraints (1.99), (1.102) and (1.104).

In this case, the term ec∗t cannot be extricated from integration in formula (1.107), as c∗ = C
(1.67) [c] depends on κ ≡ −iνc through formula (1.66) [(1.58)] in case constraint (1.54) is
[un]imposed. This results in the required multiplication within the integrand of formula (1.107)
to yield a solution to pricing PDE (1.7), whereas such multiplication was without the integrand
in each of theorems 1.2.12 and 1.2.13; in this sense theorem 1.2.14 yields a comparatively
weak result. As in the case following theorem 1.2.13, similar comments to those following
theorem 1.2.12 apply to theorem 1.2.14, which will not be expounded.
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However, some progress can be made due to the added parametric flexibility of the five-
dimensional µ, as opposed to the one-dimensional Λ. Consider the following quantities:

m ≡ µ1 + 2µ4 + µ5

M ≡ {µ6, µ7,m}

q ( M) ≡
√
µ2

6 + 2mµ7 + 4µ2
7 ≥ 0

p1(x; M) ≡ µ7x − µ6

p2(x; M) ≡ µ7x2 − 2µ6x − 2m − 4µ7

In terms of these quantities, the expressions

βµ ≡
2

α2σ2

q ( M)
p2(T Kα; M)

I ≡
p1(T Kα; M)
q ( M)

H(A; M) ≡ H(A; µ ) ≡
p1(A ; M)
p1(T Kα; M)

p2(T Kα; M)
p2(A ; M)

To yield real values, the argument of the second Whittaker W0,νc(z)-function in formula (1.109)
must be nonnegative; see figure 1.4. This argument being a nonnegative number divided by
p2(A; M), so too must the latter be nonnegative. Thus the domain A ∈ (0,T Kα) must contain
neither pole of H(A; M), say, A± ≡ µ−1

7 [µ6 ± q(M)]. In case µ7 < 0 (> 0), there is (are) one
(two) case(s); A+ ≤ 0 < T Kα ≤ A− (A± ≤ 0 and A± ≥ T Kα). In the first (second) case
with µ7 > 0, I > 0 (< 0) and [∀A ∈ (0,T Kα)] H(A; M) > 1 (< 1), since H(T Kα; M) = 1,
H(A; M)→ 0+ as A→ (−)∞, H(A; M) has only two stationary nonreal points µ−1

7 [µ6 ± iq(M)],
and A > 0 ≥ µ6/µ7(≥ T Kα > A), the only zero of H(A; M); so that e[H(A;µ)−1]Iβ → ∞ as β → ∞
in formula (1.109). In case µ7 < 0, the condition A+ ≤ 0 < T Kα ≤ A− implies that −2q(M) ≤
µ7T Kα. Two cases arise according to whether µ6 ≶ µ7T Kα in which, respectively, I ≷ 0 and
[∀A ∈ (0,T Kα)] H(A; m) ≷ 1 so that, in either case, e[H(A;µ)−1]Iβ → ∞ as β → ∞ in formula
(1.109). In case µ6 = µ7T Kα, I = 0 and the corresponding exponential term is identically one.
In case µ7 = 0, the following simplified expressions result, denoting P1(x; µ6,m) ≡ µ6x + m:

βµ ≡ −
|µ6|

α2σ2P1(T Kα; µ6,m)

I ≡ −
µ6

|µ6|

H(A; µ6,m ) ≡
P1(T Kα; µ6,m)
P1(A ; µ6,m)

The case µ6 = 0 removes all dependence on A and so is ignored. In case µ6 < 0 (> 0), I = (−)1
and m(+µ6T Kα) ≤ 0 in order that βµ ≥ 0, as well as the argument of the second Whittaker
W0,νc(z)-function in formula (1.109), and [∀A ∈ (0,T Kα)] H(A; µ6,m) > 1 (< 1) so that, in
either case, e[H(A;µ6,m)−1]Iβ → ∞ as β→ ∞ in formula (1.109). These results are summarized.

Corollary 1.2.15 In case µ7 ≥ 0 or µ7 < 0 and µ6 , µ7T Kα, e[H(A;µ)−1]Iβ → ∞ as β → ∞ in
formula (1.109); in case µ6 = µ7T Kα < 0, the latter expression is identically one.
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Thus unfortunately in no case does e[H(A;µ)−1]Iβ → 0 as β → ∞ in formula (1.109), but the
particular case µ6 = µ7T Kα < 0 does not result in e[H(A;µ)−1]Iβ → ∞ as β → ∞. Though
the Whittaker W0,νc(z)-function arising in theorem 1.2.14 and plotted in figure 1.4 apparently
decays rapidly in x ≡ 2β, it appears yet difficult to directly numerically evaluate expression
(1.109) without referring to the (particularly, asymptotic) theory of this function; see Buchholz
[51]. As such, that task is left for another study.

Figure 1.4: Behavior of the Whittaker W0,νc(z)-function of theorem 1.2.14

Similarly, several less popular/well-studied integral transforms involving Bessel or Whittaker
functions could be implemented, perhaps yielding more numerically straightforward pricing
formulas, as well as satisfying more or other BCs than (1.12) with A = T Kα. This too may be
worthwhile/interesting for future study. Referring parenthetically to sections of Brychkov and
Prudnikov [49], such transforms involving Whittaker functions include those of Varma (7.1)
and Meijer (7.2), and the generalized transforms of Whittaker (7.3) and Stieltjes (7.4). (Trans-
forms involving Whittaker functions potentially allow to combine the most general [optimal]
invariant solutions determined, satisfying the reduced pricing PDE (1.30) [(1.51)].) In addition
to the well-known Hankel and Kontorovich-Lebedev transforms addressed in the preceding
two subsections, a number of others are detailed in chapter 6 of Brychkov and Prudnikov
[49], and may also potentially be used to effectively combine the Bessel function separation
of variables solutions of corollary 1.2.11. In particular, Lo and Hui [206] applied the Weber
transform (see section 6.10 of Brychkov and Prudnikov [49]) to price barrier options, as well
as Fourier-Bessel series expansions for the same purpose.
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1.2.2 Novel numerical problems and experiments
One interesting possibility is to take formula (1.43) as an ansatz, and solve for λ ≡ λ(S , A, t) ≥
030 such that the pricing PDE (1.7) is satisfied. But perhaps a more pressing issue is as follows:

Problem 1 Denoting λ ≡ λ(S , A, t; r, σ,T,K) and ES T V(S , A, t) ≡ V(S , A, t; λ), solve

min
λ≥0

∥∥∥V(S , A, t; λ) − Ṽ(S , A, t)
∥∥∥

Here, ∥ · ∥ denotes a norm, e.g., the sup norm ∥ · ∥∞, and Ṽ an ‘exact’ reference value for V, e.g.,
MC estimates via Longstaff and Schwartz [210], respecting acceptable confidence bounds.

One way to address this function estimation problem is via a nonparametric or machine learn-
ing regression model, e.g., a support vector machine, gradient-boosted regression tree, random
forest, or neural network. The latter three models are discussed in section 2.2, and an author-
itative reference for all four and other such techniques is provided by Hastie, Tibshirani, and
Friedman [157]. Training, validation, and/or testing sets can be generated via Ṽ for some
experimental design on the variables, S , A, t, and parameters, σ, r, T , and K, upon the latter of
which V and Ṽ implicitly depend. One goal of such an approach is to train a surrogate model,
V , for the ‘exact’ model, Ṽ , given a comparatively small number of evaluations of the latter,
much more computationally expensive, model. This approach is first pursued in the following
numerical exercises, as a demonstration of some practical capabilities and limitations of for-
mula (1.43) in pricing arithmetic Asian options. The following related problem is addressed:

Problem 2 Given a solution λ̃ ≡ λ̃(S , A, t;σ, r,T,K) to and notation of problem 1, solve

min
λ≥0

∥∥∥λ − λ̃∥∥∥
That is, for some experimental design on the variables, S , A, t, and the parameters, r, σ, T ,
and K, problem 1 is solved pointwise, i.e., individually for each scalar λ̃(S , A, t;σ, r,T,K) ≥ 0.
The estimated function, say λ̂, for problem 2, is then substituted into V to generate an estimate
for Ṽ , namely, V(S , A, t; λ̂). Fortunately, to this end the Matlab Financial Instruments Toolbox
has built-in methods for arithmetic Asian option pricing by the approaches of Cox, Ross, and
Rubinstein [85], Kemna and Vorst [177], Haug [158], Levy [191], Turnbull and Wakeman
[303], and Longstaff and Schwartz [210], the latter of which is used to generate λ̃ values with
which to determine λ̂ and assess estimates V of the MC-simulated Ṽ values.

1.2.3 Results for t = 0 (⇒ A = tAα = 0)
The pricing of a fixed-strike, Asian call option is considered at the contract’s inception, i.e.,
when t = 0, which implies that A = tAα = 0. In the case that K = 0, it is known that31

V(S 0, 0, 0) = S 0e−rT erT − 1
rT

(1.110)

30The argument of ln in ζ from theorem 1.2.5 must be nonnegative in order to avoid non-real values for ζ.
31See, e.g., equation (4.16) of Klassen [179].
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[This also follows from formula (1.45) with K = 0.] The resulting experiments occupy much
of the remaining (methods) section 1.2, as the surrogate model, V(S 0, 0, 0;σ, r,T,K; λ̂), is
constructed over the large variable and parameter space (1.111). The analysis in case t > 0,
described at the end of subsection 1.2.1, is carried out in subsection 1.2.4, and is comparatively
(and advantageously) short, as only the variables, S and t, and parameters, σ, r, T , and K, of
interest, need be considered. But this complements the analysis in case t = 0 ⇒ A = 0, since
the results of subsection 1.2.4 are strongest near-the-money, i.e., when 0 ≪ A ≤ KT . For case
t = 0, exploratory analyses of the behavior of the (implied) function(s) λ̃(S 0, 0, 0;σ, r,T,K),
and solutions to the following problem 3, related to problem 2, are first developed.

Preliminary studies of the function λ(S 0, 0, 0;σ, r,T,K)

With K = 0, departures of each parameter from the values r = σ = 0.1, T = 0.25, and
S 0 = 100, are considered in figures 1.5a through 1.5d. Values computed from equation (1.43)
[(1.110)] are shown in dark [light] blue for values of λ ∈ (0, 100]. It is clear that there are two
families of solutions, λ(σ) and λ(S 0), for all (but the smallest) values of S 0 (σ) considered.
Similarly, there are two families of solutions, λ(r) and λ(T ), for the considered values of r (T )
up to about 0.3 (1.5).

Figure 1.6 presents departures from the same parameter values for positive K, with the ‘true’
values being computed from the Matlab built-in implementation of MC Asian option pricing
à la Longstaff and Schwartz [210]. Again, there are two families of solutions, λ(K), for up to
slightly-out-of-the-money calls, when the true price vanishes. But as figure 1.6 illustrates, at
this point all sufficiently small λ are solutions, i.e., for some K > 100, for each K ≥ K there is
some λK ≥ 0, such that all λ ∈ [0, λK] are solutions.

Though exact solutions are only known in the case K = 0, that of at-the-money options (with
K = 100) is a relevant reference point, and so figures 1.7a through 1.7d present analogous re-
lations to 1.5a through 1.5d, using the same Matlab built-in MC Asian option pricing method
for the ‘true’ reference values. The new set is clearly similar to the old, and the same comments
apply regarding paired families of solutions, λ(·), subject to similar parametric restrictions.

Design of experiments (1.111) and solutions of problem 3

The preliminary investigations suggest that problems 1 and 2 may be solved exactly for param-
eters not ‘significantly’ deviant from the values r = σ = 0.1, T = 0.25, and K = S 0 = 100,
as discussed. These parameters comfortably include most considered in the papers, e.g., of
Kemna and Vorst [177], Klassen [179], Li and Chen [192], and Turnbull and Wakeman
[303]. To assess the ability of formula (1.43) to price arithmetic Asian options, the following
full-factorial experimental design was used to generate training and testing data:
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(a) With respect to r (b) With respect to σ

(c) With respect to T (d) With respect to S 0

Figure 1.5: Behavior of the function V(σ, r,T, 0, S 0; 0, 0, λ)

σ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

r {10−4, 10−3, 10−2, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 1}
T ∈ {1-5 days, 2-4 weeks, 2-3 months, 2-4 quarters, 2-5 years, and 15, 25, and 35 years}
K { 0 , 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 400, 600, 800, 1000, 2500, 5000, 7500, 10000}

S 0 {10−3, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 400, 600, 800, 1000}
(1.111)

Note that T is converted to years, with 252 (trading/business/working) days per year, 63 days
per quarter, 21 days per month, and five days per week. For each of the 627000 resulting
experiments, the following is addressed in the notation of problem 1:

Problem 3 Given σ, r,T,K, and S 0, solve subject to λ ≥ 0 and λ0 = 104,

V(S 0, 0, 0; λ) = Ṽ(S 0, 0, 0)
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Figure 1.6: Behavior of the function V(0.1, 0.1, 0.25,K, 100; 0, 0, λ) with respect to K

If a solution is not found, solve the relaxed problem, subject to the same initial condition,

min
λ≥0

∣∣∣V(S 0, 0, 0; λ) − Ṽ(S 0, 0, 0)
∣∣∣

The initial condition, λ0 = 104, was chosen to encourage convergence to the larger of the
two solutions λ as applicable and discussed above. Numerical solution of this problem is
computationally difficult, largely due to evaluation of the lognormal MGF in equation (1.43):
This is best done symbolically using variable-precision arithmetic (VPA), which cannot how-
ever presently be economized using the Matlab compiler, for example. Without compila-
tion, evaluation times and parallelization complications are prohibitive for running 627000
experiments, even across tens of processors and hundreds of gigabytes’ (GB) memory. So the
regular, non-symbolic integral() method was used in Matlab, instead of the far-superior
vpaintegral(). Compiling, all 627000 experiments completed in under two hours, paral-
lelizing where possible and using 48 processors and 186 GB memory, whereas using vpainte-
gral() without compilation would take weeks and be subject to a number of possible fail-
ures/outages/interruptions/etc. Still, 440882 of the 627000 experiments, or about 70%, were
solved exactly using fsolve(). Of these, 9546 were dropped for having solution at the initial
condition, λ0 = 104: As exemplified in figure 1.6, these most likely are cases in which there are
‘interval’ solutions, rather than two distinct families, as observed elsewhere. Including these
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(a) With respect to r (b) With respect to σ

(c) With respect to T (d) With respect to S 0

Figure 1.7: Behavior of the function V(σ, r,T, 100, S 0; 0, 0, λ)

‘initial solutions,’ without further knowledge of their containing intervals which are also solu-
tions, may unnecessarily introduce discontinuities and/or inaccuracies into functional estimates
of λ(S 0, 0, 0;σ, r,T,K). This could be addressed, e.g., by lowering λ0 until the initial condition
is not a solution, indicating where one of the two distinct families merges with the interval
solution, but as these cases represent only about 2% of the 440882 solved ‘exactly,’ they were
simply dropped. Of the 186118 cases so unsolved, 176903 were solved using fmincon(), only
5662 of which were as accurate as the ‘exactly’ solved ones (up to $0.04 resulting absolute de-
viation from the ‘true’ prices32). Again, as these and the 9215 cases unsolved using either
method together constitute only about 3% of the exactly solved experiments, both collections
were simply dropped. This leaves 171241 of the 627000 experiments, or about 27%, which
were solved inexactly using fmincon(), i.e., without the $0.04 tolerance. The 431336 exactly
solved cases without solution λ0 were taken for training/testing data.

32This allowance is likely not tolerable in practice, but was accepted in light of the numerical example’s illus-
trative purpose and the increased computational burden of a tighter tolerance. But this could be done, in particular
to also improve the pursuant training/testing accuracies of the functional estimates of λ(S 0, 0, 0;σ, r,T,K).
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To further explore the parameter values across these five subsets of the 627000 experiments,
parallel coordinate plots for each are shown in figures 1.8a through 1.10a. For reference, all
experiments are included (undistinguished) in figure 1.10b. It is notable that, with the plot
settings (line width and transparency) used, figures 1.8b and 1.10b are indistinguishable: This
suggests that, in some sense, the 171241 (27%), solved inexactly without the $0.04 tolerance,
are ‘representative’ of the 627000 experiments. Some of these may be due to the difficulties of
computing the lognormal MGF discussed above, but others may simply not be exactly solvable,
due to the approximate nature of formula (1.43). Examples of this are apparent in figures 1.5c
and 1.7c, where the two surfaces are disjoint for all λ ≥ 0 and sufficiently large T , typically
between 1-2 years.33 This is consistent both with the notable absence of parameter combina-
tions including both large r and T values in figure 1.8a and the worsening of the approximation
by formula (1.43) for larger T values. By similar reasoning, it is sensible that figures 1.8a and
1.9b are much the same. Regarding the exactly solved cases with optimal λ0, it is clear from
figure 1.9a that these mostly involve smaller σ and T values. As both of these factors reduce
the option’s risk premium, the option price will fall to zero and therefore be insensitive to λ0

for sufficiently large K, as seen in figure 1.6. It is also apparent that figure 1.10a is restricted to
smaller values of σ, and so σ2, which is consistent with not being able to accurately evaluate
the lognormal MGF without VPA, and therefore to solve problem 3, despite the theoretically
improved approximation by formula (1.43) for smaller σ values. Note also that there is not
much difference across the parallel coordinates plots in terms of K and S 0, indicating little
influence of those parameters on the (ease of) solubility of problem 3, in agreement with their
lack of influence on the quality of approximation by formula (1.43). Finally, note that the
training/testing data with parameter tuples in figure 1.8a comfortably include most of those
analyzed in the papers noted at the end of section 1.2.2.

(a) Suboptimal λ0 (b) Without $0.04 tolerance

Figure 1.8: Experiments with suboptimal λ0 and without $0.04 tolerance

33It is noted in the paragraph preceding section 14.2.1 of Wilmott, Dewynne, and Howison [315], that options
typically mature within nine months, i.e., satisfy T ⪅ 0.75.
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(a) Optimal λ0 (b) Within $0.04 tolerance

Figure 1.9: Experiments with optimal λ0 and within $0.04 tolerance

(a) Unsolved experiments (b) All experiments

Figure 1.10: All experiments, and those unsolved

Predicting the function λ(S 0, 0, 0;σ, r,T,K) in a general variable/parameter space (1.111)

Step-wise generalized linear models (GLMs) were fitted to the generated training data, for a
variety of distributions [Gamma, (inverse) Gaussian, and Poisson] and sensible correspond-
ing link functions [identity, logarithm, logit, probit, (complementary) double logarithm, and
(squared) inverse], but the resulting mean absolute error (MAE) values were at best two orders
of magnitude, whereas the Gaussian process regressions34 (GPRs) achieve near-zero training
MAE values (as specified further below), with hyperparameters tuned via Bayesian optimiza-
tion (see, e.g., Snoek, Larochelle, and Adams [286]). Similar results were observed when
constraining the predicted λ values to be nonnegative, which the GPRs do not do, but mostly
respect for the testing data anyway (also specified further below). One reason for choosing
GPRs for the following numerical demonstrations, not only over GLMs, but other alternatives

34Schober et al. [267] and Raissi et al. [254], e.g., have directly solved differential equations using GPRs.
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including various additional machine learning techniques listed following problem 1, is that
they have only an handful of hyperparameters, the tuning of which by Bayesian optimization is
itself described in terms of GPs. And despite the few number of hyperparameters (considering
only, e.g., standard basis and kernel functions) and straightforward tuning of such, the result-
ing models are highly nonlinear and so are able to capture much of the observed variation in
the training and testing data, including a low prediction rate of nonpositive λ values. A cubic
spline interpolation, although it fits any training data ‘perfectly’ (with purely numerical errors),
and yields a (very intricate) twice-differentiable approximation that may be substituted into the
PDE (1.7), not surprisingly hardly generalizes to testing data: Training on half of the data with
odd (sorted) maturity ranks, and testing on the other half, the associated testing MAE value
was 1244.5, and systematic prediction of large negative λ values was observed in some cases.
Other varieties of splines and wavelet techniques, best suited to curve- or surface-fitting, were
not considered for the function λ of five arguments.

Authoritative references for GLMs and GPRs are respectively McCullagh and Nelder [219]
and Williams and Rasmussen [314]. In an initial round of numerical experiments, the 431336
exactly solved cases without solution λ0 were taken for training/testing data, as noted ear-
lier. These were pseudorandomly partitioned into pairs consisting of 1%, 10%, 25%, and 50%
training data. GPRs were fit in each case, using expected improvement acquisition functions
modified to avoid any local over-exploitation of hyperparameter space, and re-partitioning of
and 25% holdout from the training data for validation/to avoid over-fitting. Each regression
was given between 21 and 28 days’ computation time, using 48 CPUs and 186 GB memory.

Some results of these numerical experiments are shown in figures 1.11-1.14. Naturally, the
number of hyperparameter optimization iterations completed in the available computational
time decreases with the number of training observations, apparently by somewhat more than a
factor of proportionality, as shown in the left-hand column of figures 1.11-1.14. Each of these
plots are similar, and the minimal observed and predicted losses naturally decrease with the
number of training observations, with the exception of the bottom figure, in which only 30
hyperparameter optimization iterations were completed in the available computational time.
Shown in the middle column are plots of predicted versus true λ values on the training data:
These are clearly very good for the first three rows, although do naturally worsen with the
number of training observations, which culminates in a notable loss in training accuracy on
the bottom row. This is because the GPR is increasingly constrained, having to match (as best
as possible) evermore training observations. Conversely, the predictions shown in the third
column for the testing data, gradually improve with the number of training observations. This
is natural, because the size of the testing set shrinks both absolutely (meaning fewer possible
observations to test) and relative to the training set: The GPR is performed on increasingly
many training observations, allowing a more through exploration of the predictor space, and
also tested on fewer observations, which culminates in the performance on both sets being vi-
sually similar in the case on the bottom row of a 50-50 training/testing split. It is clear from
the initial graphical analysis that the GPRs are able to faithfully mimic some features of the λ
functions. But as observed also in earlier figures, the response of V to λ is quite pronounced,
so small inaccuracies in estimating λ may not carry over to the same in estimating V . Thus,
in addition to quantifying some of the graphical observations for estimating λ, it remains to
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investigate how V itself is estimated, that being the ultimate goal of the numerical exercises.

(a) GPR convergence (b) Training (c) Testing

Figure 1.11: Quality of λ predictions, training on 1% of a general parameter space

(a) GPR convergence (b) Training (c) Testing

Figure 1.12: Quality of λ predictions, training on 10% of a general parameter space

Tabulated as follows are a number of results concerning the estimates of λ (λ̃) and V (Ṽ):

These numbers are mostly reflective of the visual observations from the figures noted above:
MAE values, for both λ̃ and Ṽ , increase (decrease) with the training percentage on the training
(testing) data. Similarly, negative λ̃ values (failed Ṽ evaluations) increase (decrease) with the
training percentage on the training (testing) data, remaining (very) small, on the order of (a
percent of) a percent.35 The low prediction rate of negative λ values, noted above, validates
the use of GPRs over alternate methods which permit enforcement of this constraint, and the
near-zero rate of failure on predicting prices V , indicate a wide applicability of the preceding
methodology. As argued earlier, it may prove a valuable preliminary tool for exploring prices
over wide parameter intervals, prior to accurate estimation for specific parameter values chosen
from the preliminary analysis, e.g., to optimize price values in some manner. While training the
model first requires expensive MC simulations, or generation of accurate training/testing data

35Aside from these two degenerate cases, in computing the MAE values for λ̃ and Ṽ , another class was ex-
cluded: All price predictions which exceeded by more than 2% the largest ‘true’ price in the entire data set. This
tolerance was chosen, since the introduction to section 14.3 of Wilmott, Dewynne, and Howison [315] notes that
the error of assuming a deterministic interest rate is typically 2%. Included in table 1.7, the incidence rates of this
third case are generally low/inconsequential.
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(a) GPR convergence (b) Training (c) Testing

Figure 1.13: Quality of λ predictions, training on 25% of a general parameter space

(a) GPR convergence (b) Training (c) Testing

Figure 1.14: Quality of λ predictions, training on 50% of a general parameter space

via other approaches, it can rapidly (approximately) price options for parameter combinations
not ‘too’ without the parameter space of this data, evaluating hundreds of thousands of op-
tions in seconds or minutes. So a relatively small time can be spent generating training/testing
data and building the model, which provides (limited) insight into novel option parameters,
which can in turn be used to narrow the parameter values of interest down to a smaller range
for further valuation via more accurate, but expensive methods. Also, it may well be that a
more ‘targeted’ model built on a smaller parameter space will perform better as a direct pricing
tool, but the present goal is to explore a reasonably large parameter space, partly as a means of
qualitatively understanding the behavior of formula (1.43). And of course, the various machine
learning techniques listed following problem 1 may also outperform the GPRs and prove more
practical direct pricing tools, but there are many alternative models including these and oth-
ers, whose hyperparameter optimization is, at least in the case of neural networks, much more
nuanced and difficult than for GPRs, as mentioned earlier. An exploration along these lines
could be productive, but may be best left for another study. Similarly, consideration of basis
and kernel functions aside from the ‘standard’ built-ins of Matlab, could improve the present
results, but would also be a much larger effort best addressed separately.

To understand better the nature of the numerical approximation achieved above, plots anal-
ogous to the two right-hand columns of figures 1.11-1.14, but for Ṽ , are provided below.

Shown in blue in the two right-hand columns of figures 1.11-1.14 are the cases with V , 0,
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Train
%

λ̃ train
MAE

λ̃ test
MAE

Ṽ train
MAE

Ṽ test
MAE

Ṽ train (%)
> 1.02Vmax

1 0.0378 12.980 0.114 101.56 0
10 0.2057 4.818 18.270 46.85 0.1044
25 0.2235 3.395 13.086 25.65 0.0956
50 4.7723 5.091 61.875 62.16 0.3057

Train
%

λ̃ < 0
train (%)

λ̃ < 0
test (%)

Ṽ train
error (%)

Ṽ test
error (%)

Ṽ test (%)
> 1.02Vmax

1 0.2548 5.4618 0 0.0955 0.6021
10 0.6215 1.9937 0.0046 0.0410 0.2285
25 0.6532 1.3488 0.0139 0.0340 0.1573
50 2.4738 2.5449 0.0719 0.0709 0.3091

Table 1.7: Performance measures of V and λ predictions in a general parameter space

(a) Training (b) Testing

Figure 1.15: Quality of V predictions, training on 1% of a general parameter space

which comprise 43.96% of all cases. Though it may visually appear that these are better fit,
on average, than for all cases, this is an artifact of their comprising such a reduced percentage
of all cases: The corresponding MAE values from table 1.7, restricted to cases with V , 0,
are somewhat worse than those for all cases. But this, too, may be a similar artifact, resulting
in prioritized training of the majority of cases with V = 0. Considering that such options are
literally worthless, this may well not yield the most useful results for valuable options. Also,
noting from figure 1.6 that there may be many solutions λ yielding V = 0, aside from the de-
fault values already eliminated (λ0 = 104), rather than the two distinct solution curves noted in
figures 1.5 and 1.7, sensible training to estimate such λ values may prove much more difficult,
e.g., without a condition to further restrict attention to solutions with neighborhood V > 0 val-
ues, i.e., to where V ‘attaches’ itself to the plane V = 0. For these reasons, cases with V = 0 are
eliminated from consideration in a second, much more restricted set of experiments pursued
below, where it is eventually shown that an even more stringent condition, say, V ≥ V > 0, for
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(a) Training (b) Testing

Figure 1.16: Quality of V predictions, training on 10% of a general parameter space

(a) Training (b) Testing

Figure 1.17: Quality of V predictions, training on 25% of a general parameter space

some judiciously chosen lower bound V , may ultimately prove yet more effective.

Predicting the function λ(S 0, 0, 0;σ, r,T,K) in case r ≈ σ2

It is visually apparent that option values are more closely fitted for smaller bounds on |r − σ2|,
shown in yellow in figures 1.15-1.18.36 This corresponds to one condition regulating the qual-
ity of the approximation in theorem 1.2.8, and motivated a further set of numerical experiments
similar to the preceding, but restricted to cases with |r−σ2| ≤ 10−4. Also eliminating the small

36Similar figures were generated with various bounds on σ2T (since here t = 0), but a similar pattern was not
apparent. There may not be sufficient variability across the generated cases for it to appear, but an alternate set of
experiments could be designed to address this question specifically, perhaps in a companion paper.
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(a) Training (b) Testing

Figure 1.18: Quality of V predictions, training on 50% of a general parameter space

number of cases resulting in negative λ̃ values, failed computations of Ṽ , and/or predicted
prices exceeding by more than 2% the largest ‘true’ price in the data set, with corresponding
frequencies listed in table 1.8, this resulted in 4508 cases for training and testing. As a result,
with only six days’ computational time limit and the same computational power noted above,
training on each of 1, 10, 25, 50, and 75% of the cases, GPRs were fit with thousands of hy-
perparameter optimizations, apparently converging quite quickly. Plots analogous to figures
1.11-1.14 are shown below, in which the quality of training for higher percentages of cases is
clear, and in contrast to the above experiments, where the few 30 hyperparameter optimization
rounds completed in three weeks’ computational time, apparently were not enough to fit the
training data to a similar quality as for the three lesser percentages.

(a) GPR convergence (b) Training (c) Testing

Figure 1.19: Quality of λ predictions, training on 1% of a parameter space satisfying r ≈ σ2

In addition to these improved results (noting also the much greater agreement with the testing
cases, as well as the lower hyperparameter optimization loss values), the predictions of V are
significantly better, as shown in plots analogous to figures 1.15-1.18.

It is interesting to observe that, in figures 1.24b-1.28b, the progressive worsening of the results
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(a) GPR convergence (b) Training (c) Testing

Figure 1.20: Quality of λ predictions, training on 10% of a parameter space satisfying r ≈ σ2

(a) GPR convergence (b) Training (c) Testing

Figure 1.21: Quality of λ predictions, training on 25% of a parameter space satisfying r ≈ σ2

with decreased training percentage, appears to occur in a structured manner: Namely, there are
localized deviations for true values 0, 200, 400, 600, and 800 and greater, which are mostly, but
not completely obscured in the case of only 1% training. These values coincide with parame-
ter values of S 0 and K, which may indicate difficulty predicting option prices in cases where
AT ≈ S 0T and VT ≈ S 0 − K. This can occur when r ≈ 0 ≈ σ, so that (∀0 ≤ t ≤ T ) S t ≈ S 0.
Since such options are not of much practical interest, a failure to predict their prices correctly
is not particularly damning. Shown in blue in figures 1.24b-1.28b, are cases in which r , σ2:
Though these do appear to occupy some of the deviations in these plots, particularly as over-
rather than underestimates of the true option prices, the pattern may not conclusively demon-
strate the increased accuracy of the formula in theorem 1.2.8 for r ≈ σ2, but this isn’t too
surprising, recalling that the current experiments were determined by restricting to cases al-
ready satisfying this requirement.

As noted above, the following results concerning the estimates of λ (λ̃) and V (Ṽ), also are
much improved over their analogues in table 1.7.

While the rates of negative λ̃ values and failed Ṽ evaluations are similarly low as in the prior ex-
periments, vanishing in half of the instances in the latter case, the corresponding MAE values,
whilst behaving sensibly as before with respect to the training percentage, are much lower, re-
flecting the graphical improvements already observed. Consideration of similar mean average
percentage error (MAPE) values is uninformative, due to the percentage errors for near-zero
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(a) GPR convergence (b) Training (c) Testing

Figure 1.22: Quality of λ predictions, training on 50% of a parameter space satisfying r ≈ σ2

(a) GPR convergence (b) Training (c) Testing

Figure 1.23: Quality of λ predictions, training on 75% of a parameter space satisfying r ≈ σ2

values being many orders of magnitude higher than the median. This problem is taken into
account in defining the tabulated qp% values:

qp% ≡ min
0≤q≤max V

{q : MAPEV≥q ≤ p%}

In words, qp% is the smallest nonnegative number (when it exists), such that the MAPE re-
stricted to values of V bounded below by qp%, is no more than p%. The introduction to section
14.3 of Wilmott, Dewynne, and Howison [315] notes that the error of assuming a determinis-
tic interest rate is typically 2%, and so corresponding q2% values are computed and tabulated
above: Rather than judging the V estimates as compared to ‘accurate’ MC values, or bench-
marks obtained via other accepted methods within the BS framework, it may be sensible to
allow a 2% deviation from such values, as this is the minimal error potentially incurred by use
of the BS framework, which in particular assumes a fixed, constant interest rate. And as it is
more crucial to accurately price expensive options, the q2% values indicate the cheapest option
prices which may be sufficiently accurately predicted, on average, via the above methodology.

Note that the qp% values address which true option values are sufficiently accurately predicted,
rather than which predicted option values are sufficiently accurate: Some of the true values
near zero in figures 1.24b-1.28b have large predictions which are obviously not within 2% of
the true value, and which were indeed the reason for defining qp%, as the predictions in the
current and preceding experiments quite clearly tend to exceed rather than undershoot the true
values. This is in line with the observation from figures 1.5-1.7, that the functions λ apparently
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(a) Training (b) Testing

Figure 1.24: Quality of V predictions, training on 1% of a parameter space satisfying r ≈ σ2

(a) Training (b) Testing

Figure 1.25: Quality of V predictions, training on 10% of a parameter space satisfying r ≈ σ2

occur near, but not along, curves where at least one derivative of V , i.e. one first-order option
sensitivity/Greek vanishes. Similarly defining ‘q̃p%’ values in terms of a lower bound on the
predictions of V , yields much higher bounds in some cases, which also do not monotonically
decrease in testing with the training percentage, as do the q2% values tabulated above. To em-
phasize, the qp% values indicate which true option values are sufficiently accurately priced, on
average, rather than which sufficiently large predicted option values should be regarded as suf-
ficiently accurate, also on average. This detracts somewhat from the practical utility of the qp%

values, but another set of experiments, bounding the included true option prices further away
from zero, rather than requiring them to be strictly positive, may help: In addition to avoiding
training a model to correctly identify worthless options, which led to their exclusion in the
current set of experiments, training would also not be wasted on sufficiently cheap ones. And
it would help bound the grotesquely large (percentage) errors for such options, in which case
the ‘q̃p%’ values might be as informative, and therefore more practically useful, than the qp%
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(a) Training (b) Testing

Figure 1.26: Quality of V predictions, training on 25% of a parameter space satisfying r ≈ σ2

(a) Training (b) Testing

Figure 1.27: Quality of V predictions, training on 50% of a parameter space satisfying r ≈ σ2

values. But how to do this bounding, e.g., uniformly across training and testing, and/or across
training percentages, and/or with larger or lesser bounds than the qp% values, is not clear, and
so is left as one topic for a deeper exploration in a dedicated paper. But it is conjectured that
such an exercise, while valuable in its generation of meaningful ‘q̃p%’ values for practical use,
is not likely to otherwise significantly alter the results of the preceding experiments, in any
case only slightly modifying as it does the training/testing parameter space.

In prediction from a fitted GPR, the result is a sum of two terms (an additive noise term from the
fitted GPR being dropped): One is a linear combination of constants, training predictors (here,
σ, r, T , K, and S 0), and squares of the latter. The highest order of training predictors included
(zeroth, first, or second) is determined by the basis function (respectively, constant, linear, or
quadratic), which in turn is determined during the hyperparameter optimization. The weights
are determined in fitting the GPR, and in any case this first additive predictive term is constant
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(a) Training (b) Testing

Figure 1.28: Quality of V predictions, training on 75% of a parameter space satisfying r ≈ σ2

with respect to the predictors for which a prediction is to be computed. The second term is a
linear combination of kernel/covariance functions, the weights of this combination again being
determined during fitting. The kernel function used, and its internal parameters, are determined
as part of hyperparameter optimization. It may also implement automatic relevance determi-
nation (ARD); see, e.g., Neal [230]. In either case, all of the considered kernel functions are
smooth (see, e.g., Williams and Rasmussen [314]): (Squared) exponential, Matern 3/2 and 5/2,
and rational quadratic. As such, the resulting predictions λ̃(σ, r,T,K, S 0) are also smooth, and
may sensibly be substituted into PDE (1.7) via formula (1.43) in theorem 1.2.8. Doing so ana-
lytically is impractical, as the explicit expression for λ̃ itself is cumbersome to write, including
as it does the sum of thousands of terms (of like form) involving many more parameters, the
latter typically long decimal numbers. And this is simply to write λ̃ explicitly: Deriving its
PDE from the two noted formulas (discussed in the preceding section), and substituting its al-
ready formidable expression therein, appears unlikely to simplify appreciably. But the point,
and another major reason for choosing GPRs over neural networks, e.g., is that numerical
derivatives may be sensibly computed for λ̃, and so substituted into its PDE to assess the extent
to which the latter is satisfied. This likely would not work for an hyperparameter optimized
neural network, as many of the (e.g., so-called ‘hard’) activation functions are non-smooth,
a problem severely compounded by the highly ‘composite’ nature of neural networks, i.e.,
their prediction via often long series of composed linear combinations of activation functions,
further composed over numerous network layers. This is, of course, in addition to the much
greater challenge of hyperparameter optimizing the significantly more flexible/parameterized
neural networks, noted above.

Direct GPR predictions of the function V(S 0, 0, 0;σ, r,T,K, S 0)

One further concern, is how the preceding results compare to direct GPR predictions of V ,
or equivalently, what is the impact upon such of intermediate application of formula (1.43) to
GPR predictions of λ, supposing the two GPR applications to be of equal quality. To this end,
in the case r ≈ σ2 already studied, analogous experiments were run, but predicting V instead
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Train
%

λ̃ train
MAE

λ̃ test
MAE

Ṽ train
MAE

Ṽ test
MAE

Train q2% Test q2%

1 0.0037 12.576 0.031 51.78 0.01 999.24
10 0.2519 1.673 0.921 6.92 0.92 201.58
25 0.2346 1.766 0.765 4.07 4.78 40.04
50 0.2272 1.248 0.750 2.96 4.78 33.07
75 0.2631 1.635 1.058 2.09 20.01 20.03

Train
%

λ̃ < 0
train (%)

λ̃ < 0
test (%)

Ṽ train
error (%)

Ṽ test
error (%)

Ṽ train (%)
> 1.02Vmax

Ṽ test (%)
> 1.02Vmax

1 2.5000 0.7042 0 0.2641 0 10.717
10 0.4283 1.3602 0 0.0729 0 0.413
25 0.6843 0.9078 0.0855 0 0 0.469
50 0.7867 1.4373 0.0437 0 0 0.218
75 0.8398 1.0610 0 0 0 0.177

Table 1.8: Performance measures of V and λ predictions in a parameter space with r ≈ σ2

of λ.37 Plots analogous to figures 1.19-1.23 are shown below:

(a) GPR convergence (b) Training (c) Testing

Figure 1.29: Quality of direct V predictions, training on 1% of a parameter space with r ≈ σ2

It appears the results these figures depict and those of the preceding subsection are of compa-
rable quality, and the following values, analogous to their applicable counterparts in table 1.8,
provide further detail:

The Ṽ testing MAE values are uniformly better, but the training values are neither uniformly
better nor worse, though they are quite small in both cases. Similarly, both cases had no in-
stances of predictions being discarded as exceeding by at least 2% the maximum ‘true’ price
in the data set, but the testing values were much improved in the case of direct prediction of
V; in fact, all but one such value were zero. Perhaps the most notable improvement in this
case, is in regard to the q2% training, and particularly testing values: In the former case, these

37Incidentally, to the best of the author’s knowledge, this also constitutes the first use of GPRs as a surrogate
model for (direct) prediction of (arithmetic) Asian option prices.
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(a) GPR convergence (b) Training (c) Testing

Figure 1.30: Quality of direct V predictions, training on 10% of a parameter space with r ≈ σ2

(a) GPR convergence (b) Training (c) Testing

Figure 1.31: Quality of direct V predictions, training on 25% of a parameter space with r ≈ σ2

values were worse (larger) for the lowest three training percentages, but dropped to 2.18 for
the greatest two, as compared to 20.01 in the case of 75% training data, when predicting V
indirectly through direct predictions of λ. The arguably more important testing q2% values,
however, were uniformly (and substantially) improved when directly predicting V , falling to
3.29 for the greatest two training percentages, as compared to 20.03 in the case of 75% training
data, when predicting V indirectly through direct predictions of λ. Thus, direct GPR prediction
of V yields more accurate predictions for lower option prices, in particular, within 2% of the
‘true’ values, in the range [3.29,20.03]. Direct prediction of V is therefore likely practically
preferable, particularly with regard to cheaper options. However, this same approach yields
significantly more negative predictions of V , in all but one case between one and five percent
of the time, compared to similarly many cases of errors being no more than 1.5% when pre-
dicting V through λ, pooling errors due to negative predictions of λ and failed predictions of
V for positive predictions of λ. But for modest data set sizes, the additional few percentages
of easily-detected ‘wasted’ MC simulations for ‘true’ V values, may not be considerable. And
direct prediction of V is not bound to respect the constraint, r ≈ σ2, of the preceding subsec-
tion, so in general, this approach is again likely practically preferable. A similar study with a
more general parameter space, similar to that of section 1.2.3, would be needed to verify this
conjecture for direct prediction of V , and may be a suitable topic for another paper.
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(a) GPR convergence (b) Training (c) Testing

Figure 1.32: Quality of direct V predictions, training on 50% of a parameter space with r ≈ σ2

(a) GPR convergence (b) Training (c) Testing

Figure 1.33: Quality of direct V predictions, training on 75% of a parameter space with r ≈ σ2

1.2.4 Results for t > 0

Formula (1.45) yields an alternate procedure for estimating the function λ(S , A, t;σ, r,T,K),
in particular, when t > 0, i.e., after the contract is written: It permits to generate arbitrarily
fine curves/surfaces from this function, in the case A ≥ KT , which may then be extrapolated
and used to predict prices for values A < KT . Naturally, the extrapolation worsens the further
out-of-the-money an option is, and so this approach may be unreliable for values of A near
zero, e.g., when t = 0 and necessarily A = 0. This approach is thus complementary to that of
the preceding sections, but has the advantage of being much smaller and more rapid: Rather
than build a GPR for a large variable/parameter space, as done there, only values A ≥ KT
need to be considered for given σ, r, K, T , S , and t, in order to solve for λ(S , A, t;σ, r,T,K)
such that V(S , A, t;σ, r,T,K; λ) equals the corresponding values stipulated by formula (1.45).
Various curve-fitting techniques may be applied to extrapolate the function λ(S , A, t;σ, r,T,K),
but a small investigation indicated that cubic splines are best: Among all other applicable de-
fault options in Matlab R2019b, and Taylor series taken of sufficiently large order to converge
for nonnegative values of A, cubic splines performed best. Other Matlab built-ins performed
poorly, and the Taylor series often required up to 100 terms for convergence on all A ≥ 0,
resulting in effectively linear fits, only a small ‘penalty’ off of the first-order fit. But it is
certainly possible that even better results could obtain from a more thorough treatment of this
curve-fitting problem, which could be of interest in a separate paper. The results presented here
are similar to those of section 1.2.3, i.e. for similarly ‘representative’ values of the parameters
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Train
%

Ṽ train
MAE

Ṽ test
MAE

Ṽ < 0
train (%)

Ṽ < 0
test (%)

Ṽ train (%)
> 1.02Vmax

Ṽ test (%)
> 1.02Vmax

Train q2% Test q2%

1 0.511 9.29 5 3.5871 0 0 2.56 400.08
10 0.688 3.21 2.9979 3.4005 0 0.049 4.74 23.53
25 1.832 2.43 0.3422 1.3470 0 0 8.75 13.28
50 0.443 0.85 2.2290 3.0052 0 0 2.18 3.29
75 0.419 0.73 2.9540 2.5641 0 0 2.18 3.29

Table 1.9: Performance measures of direct V predictions in a parameter space with r ≈ σ2

and variables, as a study across the space of such values is no longer needed. Respectively
displayed in figures 1.34a and 1.34b, are predictions of λ(100, A, t; 0.1, 0.1, 0.25, 100) and cor-
responding prices from theorem 1.2.8.

(a) Extrapolations of λ(100, A, t; 0.1, 0.1, 0.25, 100) (b) Corresponding and Monte Carlo prices

Figure 1.34: Prices matching cubic spline-extrapolations of λ(100, A, t; 0.1, 0.1, 0.25, 100)

Two sheets are observed in the λ(100, A, t; 0.1, 0.1, 0.25, 100) surface, corresponding to the
pairs of surface intersection curves noted in figures 1.5 through 1.7. These two sheets appar-
ently also bifurcate from a single sheet for values A ≫ KT . As such, various curves were sep-
arately fitted, for each value of t considered, only to values corresponding to one or the other
sheet, neglecting the common sheet from which these bifurcate. The corresponding prices
are respectively seen to constitute upper and lower predictions. These match one another for
near- and deeply-out-of-the-money options, indicated by regions of light blue shading in fig-
ure 1.34b. In the former case, these values match those stipulated by formula (1.45) when
A = KT = 25, and make apparent the inadequacy of the MC estimates in this region: Applying
the built-in implementation of Longstaff and Schwartz [210] in Matlab, with a default 1000
sample paths and using antithetic variates, a ‘jaggedness’ is prominent for A = 25, despite
using a time grid with, at coarsest, a time step of size 0.0025. In fact, this jaggedness remains
apparent wherever the MC prices are positive, potentially indicating a serious problem, at the
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very least, in the built-in Matlab implementation of Longstaff and Schwartz [210].38 Barring
issues with this specific implementation, this plot alone glaringly illustrates shortcomings of
MC estimates of arithmetic Asian option prices: Even with 1000 sample paths and antithetic
variates, such estimates’ deviation is apparently up to the level of ±$20, or roughly ±25%,
judging from the values near A = 25 and t = 0. And the MC estimates for at least near-the-
money options apparently underestimate those (commonly) predicted from both extrapolated
sheets of λ(100, A, t; 0.1, 0.1, 0.25, 100) in figure 1.34b: Given that the latter match the exact
values of formula (1.45) when A = 25, where the MC jaggedness is particularly exacerbated,
the extrapolated price predictions resulting from theorem 1.2.8 may be sensibly regarded as
correct, in contrast to the MC estimates. Furthermore, their overestimation of such estimates
may partly exonerate the observed overestimation in figures 1.15 through 1.18; to some extent,
this may indicate the ability of the GPR to correct bias in the MC training data. The implicit
treatment of such data as inexact/noisy, and the use of an inexact GPR for training sets of more
than (a default) 10000 data points, is also further justified by this one indication of both the
bias and variance of MC estimates of arithmetic Asian option prices.

Further out-of-the-money, the price predictions corresponding to extrapolated values of λ(100,
A, t; 0.1, 0.1, 0.25, 100) begin to diverge and bound the MC estimates; their arithmetic mean is
an improvement on both. But as indicated, this is expected from the nature of extrapolation,
and although further study may (perhaps significantly) improve such extrapolation, it appears
appropriate to regard the proposed method as complementary to MC estimation, more (less)
useful for nearer- (deeper-out-of-)the-money options. And in all cases, it is certainly faster.

In some ways, the proposed method of this subsection may be more striking than the gen-
eral GPR constructed earlier, as it is clearly superior to MC price estimation for sufficiently
near-the-money options, and is much easier to implement, smaller, and faster. But as it per-
forms worst when A = 0, in particular when t = 0, it is naturally complementary to the GPR
approach, in a similar manner as it is to MC estimation. Finally, note that the results discussed
for the method of this subsection appear robust to various unilateral parameter and variable
changes: Doubling or halving the maturity, taking r = σ2 = 0.01, and considering individually
K = 10 = S , the resulting plots are qualitatively identical to figures 1.34a and 1.34b. Up
to scaling the axes, results analogous to figure 1.34a are identical at a glance, and ‘essential’
features of the λ(100, A, t; 0.1, 0.1, 0.25, 100) surface are preserved: Though the differential ge-
ometry, e.g., curvature, of the surface may vary, as well as the curve determining its bifurcation,
the bifurcation into two sheets itself and the surface ‘shape’ perceived at a glance are the same.

1.3 Results

Recall that there are four primary European Asian options, one for each choice between put/call
and fixed-/average-strike, with payoffs tabulated as follows:

38To confirm proper usage, it was verified that prices with A ≥ 25 match those of formula (1.45); apparently
this formula is also used in the built-in Matlab implementation of Longstaff and Schwartz [210].
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Option Payoff
Fixed-strike put max{0,K − A }
Fixed-strike call max{0, A − K }

Average-strike put max{0, A − S T }

Average-strike call max{0, S T − A }

The preceding only considered fixed-strike European Asian call options, but pricing formulas
for the other three cases follow directly from that in theorem 1.2.6 and the put-call parity and
fixed-average symmetry relations in section 4.3.4 of Kwok [185]. Furthermore, appropriately
differentiating such parity and symmetry relations, hedging parameter formulas for the three
cases not considered above follow directly from those in corollary 1.2.7. In short, despite con-
sidering only one of the four tabulated cases in the foregoing, the pricing and hedging results
of the latter immediately yield corresponding results for the three remaining cases. The same
holds for the S T -independent result of theorem 1.2.8.

Extending the results obtained to non-constant, deterministic rates of interest, r(t), and volatil-
ity, σ(t), is in principle straightforward, but likely to be very computationally burdensome.
See, e.g., chapter 8 of Wilmott, Dewynne, and Howison [315] for the general procedure, and
also for the inclusion of dividends, to which similar comments can be made: Accommodating
a constant, continuously-compounded dividend rate, q, or non-constant but deterministic rate,
q(t), can in principle be approached as in the preceding, but is likely to further complicate the
computations involved. In particular, these comments hold with regard to the approach taken
via Lie point symmetries of the pricing PDE (1.7), since the ‘time’ symmetry (1.27) was not
used to generate the invariant solution, u(x, t), given in lemma 1.2.3. In fact, additional symme-
tries could arise for appropriate functional forms r(t), σ(t), and/or q(t). Note that, implicit in the
present discussion is the assumption that such functions reflect continuous dividend payments
and/or averages: In the discrete case, which uses Dirac delta functionals, δ(t), the classical
BS equation is solved in a ‘sequential’ manner which requires numerical implementation and
is otherwise not much more complicated, mathematically speaking, than a BS European op-
tion. Chapters 8-12 of Wilmott, Dewynne, and Howison [315], e.g., give an overview of this
methodology and its application to a variety of exotic options.

Regarding future work, there are a number of possible directions not already thoroughly dis-
cussed: One already discussed prior to problem 1, is the possible analytical solution of the PDE
for λ(S , A, t;σ, r,T,K, S 0), substituting formula (1.43) into pricing PDE (1.7). As noted there,
this appears to be quite involved, an assertion supported by the many numerical experiments
conducted to shed light on the behavior of λ. Another question of interest is the S T -independent
hedging parameters/Greeks implied by those of corollary 1.2.7: The pricing formula (1.43) of
theorem 1.2.8 cannot sensibly be differentiated to obtain these parameters, at least not without
distinguishing between S within/out the PDF for S T , in precisely the same sense that formula
(1.43) does not satisfy pricing PDE (1.7), at least with λ held constant with respect to all of S ,
A, and t. But the expectation with respect to S T of the parameters of corollary 1.2.7 can in prin-
ciple be analytically taken, to generate analogous hedging parameters to the pricing formula
(1.43) of theorem 1.2.8. However, whilst some simplifications would arise through the latter
formula, and the overall process would differ little if at all from that in obtaining it, the com-
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putations are likely to be much lengthier and more error-prone, even using Maple or another
CAS, due both to the length of the parameters of corollary 1.2.7 and, in particular, the pres-
ence of powers of ln y in the corresponding multiplicative integral terms. Having obtained such
formulas, numerical experiments could be conducted in much the same way as for the pricing
formula (1.43), as before with the ‘true’ values being computed from the Matlab built-in im-
plementation of MC Asian option hedging à la Longstaff and Schwartz [210]. It is expected
that such results would be qualitatively similar to those already obtained. But one interesting
possibility would be to ascertain whether the various ‘λ̃’ values, across pricing and hedging ex-
periments, correspond as expected from analytical substitution of λ(S , A, t;σ, r,T,K, S 0) into
formula (1.43) and then pricing PDE (1.7). That is, whether the ‘λ̃’ values for hedging experi-
ments, correspond in some appropriate way to derivatives of those for the pricing experiments
already conducted. But whether and how to do this is not yet clear, and judging by the com-
plexity of the hedging parameters of corollary 1.2.7, compared to the pricing formula (1.40), it
may be reasonable to expect similarly complicated results in relation to pricing formula (1.43).
And noting the work devoted to numerical experiments for this formula alone, those for the
four hedging parameters of corollary 1.2.7 may well be expected to require at least four, if not
many more, times the effort and space. For these reasons, such experiments may best be left to
a companion paper.

Similarly, note that other hedging parameters, e.g., the ‘Vega,’ Vσ, rho, Vr, ‘Vera,’ Vrσ, ep-
silon/psi, Vq, supposing inclusion of a constant continuously-compounded dividend rate, q, as
discussed above, and higher-order and cross-partials of V with respect to S , A, t, σ, r, and/or q,
may be obtained just as were the hedging parameters of corollary 1.2.7. But unlike the latter,
these additional parameters are not needed to verify the satisfaction of pricing PDE (1.7) by for-
mula (1.40), which was indeed the ultimate purpose of corollary 1.2.7. The latter nonetheless
provided arguably the most practically essential parameters, ∆ and Γ, along with the important
Θ and novel, say ‘Asian Greek,’ VA. As discussed above, these represent a starting point for
hedging formulas analogous to the pricing formula (1.43), numerical experiments similar to
those already performed for the latter, and of course, the same comments apply to the addi-
tional hedging parameters excluded from corollary 1.2.7.

Finally, a comment is in order regarding the fact that the numerical experiments were per-
formed only for t = 0, implying that A = 0 and S = S 0: The case for arbitrary t ∈ [0,T ] can
be considered as an option struck at time t with maturity T − t and the same parameters σ,
r, and K, with initial price S t. This is accommodated by the numerical experiments, since a
broad range of maturities and initial prices were considered, but At ≡

∫ t

0
S tdt is nonzero unless

S t = 0 for some t ≈ 0. It is conjectured that numerical experiments with a similarly broad range
of A values would likely not substantively change the results obtained, and the choice to set
t = 0 = A was motivated by the priority to price an option when it’s written, but this is another
possible avenue for future work: Adding additional variability to A could only provide further
insight into the nature of the pricing formula (1.43). But to emphasize, taking A = 0 does not
remove its influence on the results obtained: Whilst it may vanish from the pricing formula
(1.43), the structure of the latter was obtained based on the dynamics of A and how it enters
the payoff (1.8). In fact, the noted form, At ≡

∫ t

0
S tdt, was chosen over alternatives at an early
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stage, partly for the simplification (both algebraically and numerically) that necessarily A = 0
if t = 0, when it is most crucial, in practice, to price an option. Lastly, note also that an increase
in A increases both the likelihood of exercise and the resulting payoff, and so should increase
V , which is also suggested by the presence of A/T in the first of the two summands multiplying
the lognormal MGF in pricing formula (1.43): Having seen that more expensive (specifically,
than about $20 in the case of 75% training) options are more likely to be priced sufficiently ac-
curately, cases with positive A are therefore in some sense less urgent than those studied, with
A = 0. And the effect of increasing A may be similar to that of S 0, seen to be apparently linear
in figures 1.5d and 1.7d; or of decreasing K, also apparently linear in the planar portion above
the horizontal V = 0 in figure 1.6, and the apparent similarity between corresponding plots in
figures 1.5 and 1.7, save for a positive constant subtracted from the former, and neglecting the
plots concerning S 0 (figures 1.5d and 1.7d).

1.4 Conclusions
The pricing and hedging of (arithmetic) Asian options continues to pose a difficult problem.
This has prompted the development of many different solution approaches, which vary in terms
of their theoretical utility and practicality. The present paper contributes to both aspects by ex-
plicitly establishing multiple families of exact solutions, parameterized by tuples of complex
numbers, to relaxed power mean Asian option pricing problems. The solutions approximately
satisfy the full problem, and in one case converge to exact solutions under certain paramet-
ric restrictions. A number of hedging parameters/Greeks are derived in verifying this family,
which may well be useful in their own right. The family consists of (optimal) invariant solu-
tions, constructed first for the pricing PDE of an Asian option with generalized power mean,
via this equation’s (optimal) Lie point symmetry group. Prior to particularizing to the case of
an arithmetic average, and subsequently in this case, the results substantially correct, general-
ize, extend, and make more rigorous those of Taylor and Glasgow [296], Caister, Govinder
and O’Hara [55] and [56], and Antoniou [15]. They also offer useful simplifications for im-
plementing numerical analysis of the pricing and hedging problems. Finally, a lengthy series
of numerical experiments explores the behavior of the family of invariant solutions, estimating
mappings from the problem variables and parameters to particular family members, such that
accurate prices generated via MC simulations are reliably predicted, and for near-the-money
options, variant MC simulations are vastly outperformed. In this way, it is possible to consis-
tently price sufficiently expensive options, which are naturally of priority in practice.



Chapter 2

Intraday market predictability: A
machine learning approach

Abstract

This chapter analyses and demonstrates the predictability of intraday market returns. Conduct-
ing apparently the largest existing study of five-minute market returns using state-of-the-art
machine learning models trained on the cross-section of lagged market index constituent re-
turns to forecast five-minute market returns, it is shown that regularized linear models such
as lasso and elastic nets along with nonlinear tree-based models such as random forests yield
significant predictability. Ensemble models that combine individual model predictions perform
the best across time and their return predictability translates into economically significant prof-
its with Sharpe ratios after transaction costs of 0.98. These results provide strong evidence
that intraday market returns are predictable during short time horizons, beyond what can be
explained by transaction costs. It is further shown that the lagged constituent returns hold
significant predictive information that is not contained in lagged market returns or in lagged
price trend and liquidity characteristics. Consistent with the hypothesis that predictability is
driven by slow-moving trader capital, predictability decreased after decimalization, and market
returns are more predictable during the middle of the day, on days with high volatility or high
illiquidity, and in years of financial crisis.

2.1 Introduction
The predictability of the aggregate market is a central topic in financial economics. While
long-horizon (i.e., monthly or quarterly) market predictability has been extensively studied,
intraday (i.e., within a trading day) market predictability has received relatively less attention.
Traders require time to incorporate new information about cash flows and discount rates, and
over short time horizons equity prices can differ from their adjusted fundamental values, partic-
ularly when market frictions are high. This process may introduce short-horizon predictability
in equity returns and raises several interesting questions. First of all, if markets are predictable
at short horizons what is the magnitude of this predictability? Secondly, is intraday return pre-
dictability economically profitable, and if so, does this profitability survive transaction costs?
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Finally, if markets are predictable it is interesting to know which characteristics, e.g., lagged
liquidity or price trends, are in fact important for predicting intraday returns.

Motivated by these questions, intraday market predictability is studied using a cross-section
of lagged returns of the market and its constituent stocks as predictor variables.1 This paper is
apparently the first to conduct such a study, and it is speculated that the lack of previous studies
on this topic may be due to statistical challenges associated with the high-dimensional inputs
and the computational difficulties of estimating models using large panels of high-frequency
data. The first issue is surmounted by using a variety of cutting-edge machine learning models
necessary to accommodate the long list of predictors and rich functional forms. Considered are
candidate methods from Gu, Kelly and Xiu [152] and Hastie, Tibshirani and Friedman [157],
including linear models with regularization and dimension reduction using lasso (LAS), elas-
tic net (EN), and principal component regression (PCR), and nonlinear tree-based models like
random forests (RF) and gradient-boosted regression trees (GBRT) along with artificial neural
networks (ANN). Also considered are the ensemble mean and median of these models. The
baseline model uses all the five-minute returns in an expanding estimation window. Training
machine learning models on such a large data panel is computationally challenging and this
second issue is overcome using the Apache Sparkling Water and H2O.ai computing frame-
work, which allows us to efficiently estimate machine learning models on large datasets. For
example, in October, 2016, the estimation window covers 285 months and contains roughly
450,000 five-minute returns for each S&P constituent, requiring approximately 48 hours to es-
timate all models.

The null hypothesis throughout this chapter is that markets are not predictable, since any pre-
dictability should be removed by active traders. The alternative hypothesis is that the informa-
tion in lagged returns is not instantly reflected in market prices, and as a result, lagged returns
are predictive of short-term market returns. These hypotheses are tested by examining the sta-
tistical predictability and the economic significance thereof for each of the machine learning
models considered. If models can forecast returns and consistently profit in so doing, then mar-
kets are likely to be predictable on short-horizons. The second alternative hypothesis is that
there is predictability beyond that explained by transaction costs. This is tested by evaluating
the economic significance of model predictions after accounting for realistic transaction costs.
If model predictions remain profitable after such costs, then there is likely incorrect pricing
beyond that explained by transaction costs.

To examine if there is statistical predictability of intraday market returns over five-minute time
intervals, the estimated models are trained on lagged returns with an expanding estimation win-
dow from 1993 to 2016. For non-ensemble models, linear as well as nonlinear, out-of-sample
R2 (R2

OOS) values range up to 2.00% for LAS, followed by 1.95% for EN, and 1.71% for the
nonlinear RF model. The ensemble mean (median) model yields R2

OOS of 2% (2.01%), illus-
trating the strength of combined forecasts. However, most of this predictability is concentrated
in the pre-decimalization period from 1993 to 2000. In the early post-decimalization period

1While individual stocks are likely more predictable than the market, market predictability is studied first to
avoid issues related to data mining and concerns about lack of liquidity.



2.1. Introduction 91

from 2001 to 2004, the LAS, EN, and RF models still have positive R2
OOS values of 0.91%,

0.81%, and 0.85%, respectively. The ensemble mean and median models have respective post-
decimalization R2

OOS values of 1.04% and 1.01%. However, during the late decimalization
period from 2005 to 2016, model predictability is found to significantly decrease due to de-
creased transaction costs, but remains positive for the LAS, PCR, and ensemble models.

Next, to examine the economic significance of model predictions, a market-timing strategy
that buys (sells) the market on positive (negative) predictions is considered. The results demon-
strate that a small intraday R2

OOS value can yield large economic profits, especially given the
numerous trading opportunities available at a five-minute interval. Using the baseline model
from 1993 to 2016, all models are found to have positive returns. The LAS, EN, RF, and GBRT
models have the highest non-ensemble statistical predictability and so too high annualized re-
turns (Sharpe ratios2) of 191%, 188%, 198%, and 192% (2.71, 2.68, 2.90, and 2.84). The
ensemble mean and median have annualized returns (Sharpe ratios) of 205% and 204% (2.90
and 2.82). Again, most returns are concentrated in the pre-decimalization period. However,
in the late post-decimalization period from 2005 to 2016, all models still earn economically
significant profits, with ANN earning the lowest returns (Sharpe ratios) of 16% (0.83). The
consistently positive returns and high Sharpe ratios provide further evidence that intraday mar-
kets are predictable.

Lastly, economic significance is analyzed after transaction costs. To do this the market-timing
strategy is modified to only trade when the signal is strong, i.e., when the model prediction
exceeds the transaction cost. Using the baseline model from 1993 to 2016, all models, with
the exception of ANN, are found to have positive returns even after accounting for transac-
tion costs. The PCR, RF, and ensemble mean and median models have Sharpe ratios of 0.68,
0.77, 0.67, and 0.98, respectively, vastly exceeding the Sharpe ratio of 0.48 for the benchmark
buy-and-hold SPDR S&P 500 (SPY) portfolio. Again, most returns are concentrated in the
pre-decimalization period. In the late post-decimalization period from 2005 to 2016, the PCR
and RF models have annual returns (Sharpe ratios) of 9% and 8% (0.88 and 0.81) after trans-
action costs. The ensemble mean and median have respective annual returns (Sharpe ratios) of
4% and 5% (0.35 and 0.68) after transaction costs. As a comparison, from 2005 to 2016 the
SPY returned 7% with a Sharpe ratio of 0.46. Thus, in this recent sample PCR, RF, and the
ensemble median models continue to earn significantly higher Sharpe ratios than the market
does even after transaction costs, providing strong evidence that markets are predictable even
after accounting for transaction costs.

It is hypothesized that the demonstrated significant predictability of intraday market returns
through time is driven by slow-moving trader capital, i.e., by infrequent portfolio rebalancing
(Bogousslavsky [40] and Duffie [101]), at a high frequency. If some traders rebalance their
portfolios infrequently, they may be slow to incorporate shocks to individual stock returns into
the aggregate market, particularly when traders face severe volatility or illiquidity. To analyse
this further, it is examined whether the results differ within the trading day, in periods of high
versus low volatility or illiquidity, and during periods of financial crisis. First, since traders are

2Of annualized returns to their volatility values.
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most active at the beginning and end of each day, predictability is expected to be low during
those times. The results show that predictability is indeed stronger when traders are less active
and exhibits an inverse-U shape. Second, during periods of high volatility and high illiquidity,
traders encounter significant market frictions. Consistent with the hypothesis, predictability
and its economic significance are found to increase when market volatility and illiquidity are
high. Finally, predictability is also expected to be relatively high during crisis periods due to
attending, significant market frictions. The results demonstrate that predictability is indeed
stronger during the subprime mortgage and EU debt crises.

The baseline predictor variables used here are the cross-section of lagged intraday returns for
the market constituents. A natural comparison to these cross-sectional models are autore-
gressive models for the market return itself, since the predictability results could simply be
capturing intraday momentum. For example, Heston, Korajczyk and Sadka [160] find signif-
icant auto-correlation of half-hour returns at daily intervals and Gao et al. [133] find that the
first half-hour return of the SPY predicts the last. Thus, as an additional analysis, results of
the cross-sectional model are validated by contrast against results obtained with AR(1), AR(p)
where the lag-order p is chosen to minimize the validation error, and AR(500) models esti-
mated using ordinary least-squares (OLS), LAS, EN, and PCR. The baseline cross-sectional
models are confirmed to significantly outperform the autoregressive models, indicating that
the cross-section of lagged constituent returns has significant predictive information that is not
contained in lagged market returns.

As a final additional analysis intraday market predictability is evaluated using additional lagged
stock characteristics as predictors. This analysis includes market beta, momentum, illiquidity,
extreme returns, trading volume, volatility, skewness, and kurtosis, all estimated over the pre-
vious day.3 Also considered is the lagged bid-ask spread. In most cases adding additional
variables is found to decrease model predictability, indicating that these characteristics do not
help lagged returns predict the market portfolio returns. These findings have important im-
plications for the possible economic mechanisms that drive such predictability. For example,
could the predictability be caused by intraday momentum, as argued by Heston, Korajczyk
and Sadka [160] and Gao et al. [133]? This explanation seems unlikely given that price trend
variables fail to improve model predictability. A big picture implication of the findings is that
a careful exploration of the economic mechanisms driving predictability is warranted.

The chapter is related to at least three existing strands of literature. First, the results are
naturally related to the recent literature examining intraday return predictability using lagged
returns and trading volume. Chordia, Roll and Subrahmanyam [78] and [79] study the pre-
dictability of short-run stock returns, finding that intraday returns cannot be predicted by past
prices, but that order imbalances do forecast short-horizon returns. Heston, Korajczyk and
Sadka [160] find significant autocorrelation of returns at daily intervals, for up to 20 days.
Gao et al. [133] demonstrate that the first half-hour return of the SPY market exchange-traded
fund (ETF) predicts the last half-hour return. Bogousslavsky [40] theoretically establishes
that seasonality in intraday returns may be caused by traders’ infrequent rebalancing. Chinco,

3Gu, Kelly and Xiu [152] demonstrate that price trend and liquidity have the strongest predictive ability.
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Clark-Joseph and Ye [74] use a LAS model on the cross-section of NYSE lagged returns to
show that one-minute returns are predictable. These studies use linear models to forecast
returns, whereas the present models use information from the entire cross-section of lagged
returns as well as other characteristics, and permit more flexible functional forms accommo-
dating variable interactions and other nonlinear effects. Furthermore, Ke, Kelly and Xiu [172]
and Renault [258] show that text data forecasts intraday returns.

The chapter also relates to the rapidly expanding literature applying machine learning tech-
niques in financial economics.4 The chapter is most closely related to Gu, Kelly and Xiu [152],
which applies an extensive array of machine learning techniques to the problem of predicting
equity risk premiums (see also Fischer and Krauss [120], Long, Lu and Cui [209] and Marković
et al. [215]).5 Bianchi, Büchner and Tamoni [35] consider the prediction of bond, rather than
stock, risk premiums, and other financial applications of machine learning include their use for
derivatives pricing (Ye and Zhang [319]), hedge fund selection and return prediction (Chen,
Wu and Tindall [68]), credit risk management (Barboza, Kimura and Altman [26]), portfolio
management and optimization (Yun et al. [321] and Day and Lin [95]), cryptocurrency (Dutta,
Kumar and Basu [106] and Alessandretti et al. [10]), stochastic discount factors (Korsaye,
Quaini and Trojani [183]), and factor models (Bryzgalova, Pelger and Zhu [50], Chen, Pelger
and Zhu [71], Feng, Polson and Xu [119], Gu, Kelly and Xiu [153], and Kelly, Pruitt and Su
[175]).

Finally, the present study is similar in spirit to the literature on aggregate market return pre-
dictability, which focuses on long horizons over months, quarters and years.6 Fama [115] es-
tablished the general view that return predictability at long horizons is driven by time-varying
expected returns, consistent with market efficiency. The research differs fundamentally, since
the established predictability and its economic value is driven by market frictions at high fre-
quencies.

The chapter is organized as follows: Section 2.2 introduces the considered machine learn-
ing methods and explains the evaluation of intraday predictability. Section 2.3 presents results
for statistical predictability, economic significance before and after transaction costs, and a
robustness check using different training window sizes. Section 2.4 examines if the results
differ across the time of day, across levels of volatility and illiquidity, or during crisis periods,
whether autoregressive models can also forecast returns, and whether predictability can be im-
proved by including additional input variables. Section 2.5 concludes. The appendices contain
further details on the data used, variable cleaning, the stock characteristics used as inputs,
and on the implementation of the machine learning methods, in general, and hyperparameter

4See Weigand [310] for a recent concise summary of asset pricing via machine learning and Heston and Sinha
[161] and Hajek and Barushka [154] for reviews of the history of financial applications of machine learning.

5Other papers similar to that of Gu, Kelly and Xiu [152], which are also concerned with the use of machine
learning for predicting returns, include those of Chong, Han and Park [76], Feng, He and Polson [118], Kelly,
Pruitt and Su [176], Sutherland, Jung and Lee [291], and Xue et al. [317].

6See, among others, Ang and Bekaert [13], Campbell and Thompson [57], Chen, Da and Zhao [70], Kelly and
Pruitt [174], Neely et al. [233], and Welch and Goyal [311]. See Koijen and Van Nieuwerburgh [181] and Rapach
and Zhou [256] for recent surveys.
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optimization, in particular.

2.2 Methodology
Given T high-frequency price observations, indexed by 1 ≤ t ≤ T , and denoting by pt the
natural logarithm of the tth observed price, the corresponding logarithmic return is given by

rt ≡ pt − pt−1 (2.1)

Of particular interest in this chapter is the market return, denoted by rM
t , and whether or not

it can be predicted. To assess this, one of the largest empirical studies of market prediction
in the high-frequency literature is conducted. The primary dataset is the trade and quotes
(TAQ) database, containing intraday transaction data for all stocks on the New York stock ex-
change (NYSE), American stock exchange (AMEX), NASDAQ, and other American regional
exchanges, from February, 1993, to October, 2016. The goal is to predict five-minute changes
in the aggregate market, which is proxied by the SPDR S&P 500 (SPY) ETF. The baseline
predictor variables are lagged returns of the SPY and S&P 500 constituents. The latter are
obtained from the center for research in security prices (CRSP) and updated monthly.7

Given a vector of lagged characteristics of the SPY and S&P 500 constituents, Xℓ
t , indexed

by integers, 0 ≤ ℓ ≤ 500, the objective of the present chapter is to use state of the art machine
learning methods to approximate the empirical model given by f : Rn×K → R:

rM
t+1 = f

(
Xℓ

t

)
(2.2)

(Here, n ∈ N denotes the number of observations.) In the baseline model, the covariates are
lagged returns, such that Xℓ

t = rℓt , resulting in K = 501 covariates. Additionally considered are
models that include other firm-level characteristics, such that Xℓ

t = [ rℓt zℓt ], where [.] denotes
matrix concatenation, and z0

t (zℓt with ℓ ≥ 1) is the market beta (of firm ℓ ≥ 1), illiquidity, kurto-
sis, maximum, minimum, momentum, skewness, volatility, trading volume, or bid-ask spread.
Models so expanded have K = 1002 covariates (501 each characteristics and lagged returns).8

Introduced subsequently are several methods for estimating the function f in the empirical
model (2.2). Considered are individual (non)linear models and so-called ensemble ones that
weigh together multiple such individuals. Finally, it is explained how, given an estimator of f ,
predictability can be assessed both statistically and economically.

2.2.1 Linear models
Consider the optimization problem

inf
β∈RK

m[y − Xβ] (2.3)

7Appendix B.1 provides further details on the databases used.
8The only exception to this is the expanded model with zℓt equal to market beta which only has K = 1001

covariates, since the SPY market beta z0
t = 1. Appendix B.2 details these characteristics’ calculation.
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Here, in the machine learning literature terminology, the market returns are targets, denoted
y, an n × 1 column vector, and the predictors, e.g., lagged returns or other characteristics, are
denoted X, an n × K matrix in case of K predictors. In equation (2.3), m[·] denotes a metric or
loss for the fit of the model and β denotes the relevant parameters in the model. For example,
in the case of OLS regression the metric is taken to be the Euclidean/ℓ2 norm, i.e., m ≡ ∥ · ∥2,
and the solution to optimization problem (2.3) is given by the classical OLS estimator,

β̂ ≡ (XT X)−1XT y

Given many predictors, the simple linear regression model easily becomes inefficient, leading
to in-sample over-fitting which is detrimental to the objective of out-of-sample prediction. Pre-
sented are two approaches to deal with this; regularization and principle component regression.

Regularization

One primary objective of regularization techniques (Friedman, Hastie and Tibshirani [125]) is
to avoid over-fitting in statistical models. This is often accomplished by adding a penalty term
to the optimization problem (2.3):

inf
β∈RK
{m[y − Xβ] + λn[β]} (2.4)

Here, the functional n[·], often a norm, penalizes non-zero parameters and the regularization
parameter λ regulates the impact of the penalty as a multiplicative scale. A classical example
is ridge regression, in which optimization problem (2.4) is modified to

inf
β∈RK

{
∥y − Xβ∥22 + λ∥β∥

2
2

}
The smoothness of ridge regression (Marquaridt [216]) resulting from using the ℓ2 norm is
computationally advantageous, but may result in many ‘near-but-non-zero’ coefficients and so
may not reduce the dimensionality of the optimization problem in a sufficient manner. Consid-
ered instead are lasso regression (Tibshirani [300]) and elastic nets (Zou and Hastie [329]).

In the case of lasso regression (LAS) the optimization problem (2.4) is modified to

inf
β∈RK

{
1
2
∥y − Xβ∥22 + λ∥β∥1

}
Hence LAS employs the computationally difficult (i.e., non-smooth) ℓ1 norm, but has the re-
sulting advantage that many coefficients are driven to zero exactly, leaving out only those of
sufficient predictive importance. The resulting β, is non-zero only for those predictors which
most significantly determine the target and may therefore be of much lower dimension than the
original problem which is indeed one of the primary objectives of the use of regularization.

In the case of an elastic net regression (EN) the optimization problem (2.4) is modified to

inf
β∈RK

{
1
2
∥y − Xβ∥22 + αλ1∥β∥1 +

1 − α
2

λ2∥β∥
2
2

}
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Hence EN convexly combines ridge and lasso penalties to balance these two competing prop-
erties; smoothness and perfect elimination of unimportant predictors. Here, α ∈ [0, 1] is the
coefficient of the convex combination of ℓ1 and ℓ2 norms of the regression coefficients, β, and
in general, each may have its own regularization parameter, respectively, λ1 and λ2. In the
particular cases of α ∈ {0, 1}, elastic nets respectively reduce to ridge and lasso regressions.9

For expository convenience, explicit regularization problems have been presented primarily
with respect to OLS regression, excepting the general additive problem (2.4). But all consid-
ered forms of regularization may be extended further, naturally to generalized linear models,
but also to all other considered machine learning techniques. Throughout, the common theme
in lasso (ridge) regression problems is to add penalty terms involving regularization-parameter
scaled ℓ1 (ℓ2) norms of particular models’ (hyper-)parameters, and in the case of elastic nets, to
similarly add convex combinations of such penalty terms. In other words, the discussion cap-
tures the spirit of these regularization techniques, as applied to all considered machine learning
methods, which are most easily explicated for OLS regression.

Principal component regression

Principal component regression (PCR) is a dimension-reduction technique used to summarize
variation within a dataset using a small number of linear combinations thereof (Jolliffe [169]).
Given a dataset X, consisting of n observations of K predictors, PCR solves

sup
w∈RK

wTΣw
wT w

Here, w ∈ RK are the predictor weight vectors and Σ is the covariance of the predictors. The
motivation for PCR is clear from this formulation: Since an eigenvector of Σ, w, solves the
eigenvalue problem, Σw = λw, for a corresponding eigenvalue of Σ, λ, the best eigenvector
solution of this problem is obviously that for which the corresponding eigenvalue, λ, is largest.
This follows since the Raleigh quotient to be optimized, wTΣw/wT w, which measures nor-
malized variation/variance of the dataset along the weight vector, w, simplifies in this case to
λ. So in applying PCR, it is necessary only to compute an eigenvalue decomposition of Σ,
sort its eigenvalues, and take as many corresponding eigenvectors as are desired principal com-
ponents, to yield the principal directions. Normalizing each by its corresponding square-root
eigenvalue, the desired principal components are obtained.

In the context of optimization problem (2.3), PCR is first applied to the predictors, X. Sup-
posing κ ≪ K components are desired, the projected predictors, Z ≡ (X − µ)W, are used in a
linear regression yielding the classical OLS estimator given by

β̂ ≡ (ZT Z)−1ZT y

Here, µ is the mean of the predictors and W ≡ [ w(1) w(2) · · · w(κ) ] is the matrix of princi-
pal components to be used. The resulting (demeaned) projected predictors, Z, are thus only of

9Appendix C explains how the hyperparameters α, λ1, and λ2, or in the case of LAS only λ, are selected.
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dimension κ ≪ K, yielding a potentially significant reduction in the number of predictors and
resulting regression model complexity, while preserving, to the extent possible, the richness of
variation in the original data.10

2.2.2 Nonlinear models

More generally, the fundamental problem to be addressed is the solution of

inf
f∈F

m[y − f(X)] (2.5)

Here, F denotes the set of functions from which candidate predictors, f : Rn×K → Rn, are
drawn and m denotes a metric or loss for the fit of the model. Several linear models have been
considered and now are two classes of nonlinear ones, those each based on decision trees and
artificial neural networks.

Tree-based models

Random forests and gradient-boosted regression trees constitute two classes of ensemble meth-
ods, which collect multiple simple estimators (in both cases, decision trees) in order to produce
more robust estimates.

Decision trees are nonparametric, hierarchical sequences of decisions, which optimally con-
struct, based on the training and validation data, sequences of decisions to classify or regress
arbitrary input predictors. Individual decision trees train in logarithmic time with the number
of training points, but over-fitting is common, as more decisions (greater ‘depth’) are needed to
better model training data, which may not generalize well. Individual trees often behave chaot-
ically, too, in that the optimal structure may change drastically in response to the addition or
removal of a handful of training data. Ensembles of trees mitigate the resulting large variance
of individual decision trees, and avoid over-fitting by restriction to simple individuals across
the ensemble, but inherit from such individuals some degree of the advantages of interpretation
and efficient training. The fundamentals and many refinements of decision tree training are
provided by Breiman et al. [47].

Random forest (RF) models (Breiman [46]) independently and pseudorandomly generate de-
cision trees, which are separately trained and whose predictions are then averaged to yield
the ensemble prediction. In RF prediction robustness improvements are achieved via variance
reductions implicit in the law of large numbers. Given predictors X, denote an individual de-
cision tree’s estimator, say that of the ith tree generated in an ensemble, by gi(X). Supposing
there are N decision trees in the ensemble, the prediction of RF is simply

fRF(X) ≡
1
N

N∑
i=1

gi(X)

10Selecting the value of κ can be a complex problem. Appendix C explains how this hyperparameter is set.
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That is, RF amounts to considering the (arithmetic) average of the predictions of individual
trees in the forest.11

Each individual decision tree in the ensemble is trained on data drawn pseudorandomly with re-
placement from the training data. I.e., each individual tree is trained on a bootstrapped sample
of the training data, and aggregated in making predictions via the average of those from each
individual, and so random forests constitute one instance of bootstrap aggregated (bagged)
predictors (Breiman [45]). This bagging yields many individuals with uncorrelated prediction
errors and less variance on average, whereas individuals tend to have high variance and over-
fit. The construction may however introduce estimator bias, which is the problem addressed
by gradient-boosted regression trees. The bagging implicit in random forests also addresses
the NP-completeness of the problem of training a globally optimal individual decision tree,
which necessitates the use of heuristics, including typical greedy implementations, in training
such individuals and bagging mitigates much of the bias that such heuristics introduce during
individuals’ training.

By the law of large numbers upon which random forests are justified, results improve with
the number of trees in the forest, but non-linearly and plateau at some point, beyond which
computing effort is unnecessarily expended. The more features considered when splitting any
tree node, the greater the variance but the lesser the bias, and vice versa. For similar statis-
tical reasons, these same three hyperparameters are of greatest interest in the construction of
gradient-boosted regression trees.

As their name suggests, gradient-boosted regression trees (GBRT) implement boosting, a sec-
ond case of ensemble methods. As opposed to averaging methods, the simple estimators are
sequentially (and so not independently) generated in a manner which progressively eliminates
bias from the ensemble (a standard reference is Schapire and Freund [266]). Boosting refers
to the notion of developing a strong learner (a predictor with metric, m, approaching zero on
arbitrary data) from a weak one (a predictor which performs marginally better than random
guessing). Schapire [265] first affirmatively answered this hypothesis boosting question, and
the adaptive resampling and combining, or arcing, algorithm of Freund and Schapire [123] is
regarded as the canonical method for achieving such boosting in machine learning. Gradient
boosting refers to the generalization of this and other boosting algorithms to the case of arbi-
trary differentiable loss functions, first achieved explicitly by Friedman [126] and [127].

In the case of GBRT, the ensemble prediction is a weighted combination of individual pre-
dictions, with weights γi determined as part of training leading to the following representation:

fGBRT(X) ≡
N∑

i=1

γigi(X)

11The crucial hyperparameters to optimize for RF are the number of trees in the forest, the maximum number
of predictors or features considered at each node of each tree, and the maximum number of nodes between the
leaves and root of any tree, known as the depth. Appendix C explains how these are selected.
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Specifying f0 ≡ 0 and denoting fGBRT ≡ fN , the following holds for 1 ≤ i ≤ N

fi(X) = fi−1(X) + γigi(X)

At each stage, i, of training, the decision tree predictor, gi, is greedily chosen to solve

inf
g∈G
L[y, fi−1(X) + γigi(X)] (2.6)

Here, L is some loss function, typically expressed as a sum of losses, say L, between corre-
sponding targets, y j ∈ y ≡ {y j}, and predictors, x j· ∈ X ≡ {x j·}, as

L[y, fi−1(X) + γigi(X)] ≡
n∑

j=1

L[y j, fi−1(x j·) + γigi(x j·)] (2.7)

Note that the solution to optimization problem (2.6) is conditional on the current ensemble,
fi−1, as opposed to the independent generation of individual decision tree predictors, gi, in RF.

In the case where the loss, L, is differentiable, gradient boosting solves optimization problem
(2.6) via gradient descent as

fi(X) = fi−1(X) − γi

n∑
j=1

∂fL[y j, fi−1(x j·)]

Here, the weights, γi, are chosen to optimize a loss similar to that of formula (2.7) given by

inf
γ>0

n∑
j=1

L
(
y j, fi−1(x j·) − γ∂fL[y j, fi−1(x j·)]

)
Thus, the weights can be seen as step sizes/learning rates in this gradient descent procedure.12

The seminal paper by Friedman [127] combines gradient boosting with bagging: Each consec-
utive decision tree is trained on a random sample of the training data, as in the case of random
forests, but as for gradient-boosted regression trees, the sampling is done without replacement,
so that consecutive trees are trained on exponentially decreasing shares of the training data.

Artificial neural networks

As their name suggests, artificial neural networks (ANNs) are motivated by the neural networks
found in animal brains, and theoretical neuroscientific models thereof (see Bishop [37] and
[36]). The most general-purpose and well-known neural network architecture is feedforward
in which an input layer consisting of the inputs, y0 ≡ xi·, is followed by a sequence of hidden

12In addition to the hyperparameters discussed for RF, there are in the case of GBRT the loss function, L, used
for training and the additional uniform multiplier/scale, ν, which may be factored out of the step sizes, γi, as
an explicit learning rate, additionally permitting ‘shrinkage’ regularization (Fawcett [117]). A smaller learning
rate typically leads to better testing performance, but requires more training steps/additional decision trees in the
ensemble, to maintain a given training error. Appendix C provides further details.
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layers, each consisting of a number of neurons. Initially, the inputs are weighted by a set of
learned parameters and added to another, the so-called bias, to yield an input for each neuron
in the succeeding layer. Denoting by k1 the number of neurons in this layer and k0 ≡ K the
number of inputs, there are thus k1(k0 + 1) parameters which yield this layer’s inputs as

(∀1 ≤ j ≤ k1) x1
j ≡ y0w1

j + b1
j

Here, w1
j is the learned column vector of weights for the row vector of inputs, y0, and b1

j the
corresponding learned additive bias. To introduce non-linearity into the output of a neuron
y1

j ≡ ϕ
1
j(x1

j) where ϕ1
j is the so-called activation function of neuron j.

More concisely the mapping may be written as

x1 ≡ y0W1 + b1

y1 = Φ1(x1)
(2.8)

Here, W1 is the matrix with columns w1
j , b1 is the row vector with entries b1

j , and Φ1 is the
mapping from the row vector x1, with entries x1

j , to the row vector y1, with entries, y1
j . In

succeeding hidden layers, if applicable, the process is iterated as follows:

(∀2 ≤ ν ≤ N) xν ≡ yν−1Wν + bν

yν = Φν(xν)
(2.9)

Here, N is the total number of hidden layers. Finally, the output layer yields the predictions,

xN+1 ≡ yNWN+1 + bN+1

yN+1 = ΦN+1(xN+1)
(2.10)

In the present application, the output layer is linear and the number of neurons, kN+1, is naturally
set to one, resulting in

fANN(X) ≡ yNWN+1 + bN+1 (2.11)

Hence, the neurons are simply linearly aggregated into the forecast.

Collecting all weights and biases across layers, the feedforward network has a total param-
eter count of

∑N
ν=0 kν+1(kν + 1) as there are

∑N
ν=0 kν+1 biases and

∑N
ν=0 kν+1kν weights and such

networks may indeed be highly parametric. Classically, these are optimized via stochastic gra-
dient descent, but several adaptive/‘momentum’-based generalizations have been proposed.13

13In ANN, the optimization algorithm employed for training, the loss function it uses, the ℓ1 and ℓ2 regular-
ization parameters, the number of epochs and batches, and the level of dropout (Srivastava et al. [290]), the
percentage of training data discarded in each epoch to avoid over-fitting/regularize the optimization problem, all
constitute hyperparameters which impact the quality of predictions from a model with trained parameters. How-
ever, the actual network architecture, characterized by the number of hidden layers, the number of neurons in each
layer, and the activation function associated with each neuron, often have an even greater impact. Appendix C
provides further details on these hyperparameters.
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2.2.3 Ensemble methods

Ensemble methods seek to combine multiple predictors’ results, for both variance reduction
and ‘crowd wisdom’ purposes. For example, various measures of central tendency or location
parameters, including the median and alternate (weighted) means, such as the harmonic, geo-
metric and arithmetic mean, may act as ensemble aggregation methods and represent an ‘aver-
age’ prediction based on all the predictors’ outputs.14 For regression problems, the two most
prominent machine learning ensemble aggregation methods are boosting and bagging, as re-
spectively outlined for GBRT and RF models. Abstractly, given any of these ensemble aggrega-
tion methods, say, AM ∈ {Bag, boost, (weighted) arithmetic/geometric/harmonic mean,median},
etc., and a set of predictors’ outputs, e.g., {fLAS(X), fEN(X), fPCR(X), fRF(X), fGBRT(X), fANN(X)},
the ensemble prediction is

fAM(X) ≡ AM ({fLAS(X), fEN(X), fPCR(X), fRF(X), fGBRT(X), fANN(X)})

The sequel considers the (arithmetic) average and the median as aggregation methods and as
such does not introduce any additional hyperparameters.

It should be noted that regularization may also be applied to the ensemble aggregation meth-
ods just as it may be in the particular cases of GBRT and RF models.15 The machine learning
ensemble aggregation methods are more flexible than straightforward computation of some
measure of central tendency or location parameter of the various models’ predictions, as the
former permit regularization and hyperparameter tuning. Which ensemble aggregation method
to use is itself a hyperparameter optimization problem, albeit a small one which may be largely
mitigated by simply computing many ensembles, e.g., boosting, bagging, and a variety of ‘pop-
ular’ measures of central tendency or location parameters. The justification for any particular
aggregation method may come from either the statistical (variance-reduction and bias) proper-
ties of bagging or boosting, or laws of large numbers, central limit theorems, or other asymp-
totic results applicable to the computed measures of central tendency or location parameters.
Also relevant are considerations of how the ensemble aggregation is to be interpreted, e.g., as
a ‘representative vote/consensus/average’ from a ‘panel of experts’ or (bootstrap) aggregation
of independent, weak learners; or a dependent sequence of weak learners progressively cor-
recting their predecessors’ biases; respectively for measures of central tendency or location
parameters, bagging, or boosting.

2.2.4 Evaluation criteria

The predictability of market returns is assessed by using two types of criteria: purely statistical
criteria based on a relevant metric for out of sample model fit and economic criteria based on
the obtained returns from trading on a given model’s predictions.

14Timmermann [301] provides an overview of forecast combinations and Genre et al. [142] show that forecast
combinations using a simple average often outperform methods that rely on estimated combination weights.

15In fact, Koren [182] aggregated model predictions using GBRT, in the winning solution of the Netflix Prize.
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Statistical significance

To evaluate the predictive performance of the high-frequency market return forecasts, the out-
of-sample R2 metric proposed by Gu, Kelly and Xiu [152] is calculated. Given the market
return, rM

t+1, and a corresponding model prediction given the history up to time t, r̂M
t+1, the out-

of-sample R2 is calculated as

R2
OOS ≡ 1 −

∑
t∈Test

(
rM

t+1 − r̂M
t+1

)2

∑
t∈Test

(
rM

t+1

)2 (2.12)

Note that the R2
OOS metric is only calculated over the test samples, indexed by times t in the set

Test. The denominator of R2
OOS is the sum of squared market returns without demeaning. As

discussed by Gu, Kelly and Xiu [152], the historical mean underperforms a zero forecast. The
historical mean return is noisy, resulting in artificially high estimates of R2. Hence, zero rather
than the historical mean is taken as a benchmark.16

Following Gao et al. [133] and Chinco, Clark-Joseph and Ye [74], also considered are the
estimated coefficients from running a simple predictive regression given by

ErM
t+1 = α + βr̂M

t+1 (2.13)

Here, rM
t+1 is the market return and r̂M

t+1 the model prediction for five-minute time interval t + 1.

Economic significance

In addition to evaluating predictive performance, the ability of each model to time the market is
assessed. A trading strategy is implemented that takes a long (short) position in the market if the
model predicts a positive (negative) return. The profitability can be expressed as π ≡

∑
t∈Test πt

where the individual daily profits, πt, are defined as

πt

(
r̂M

t+1

)
≡


−rM

t+1 if r̂M
t+1 < 0,

rM
t+1 if r̂M

t+1 > 0,
0 otherwise

(2.14)

Reported are annualized excess arithmetic returns and Sharpe ratios of this trading strategy
across the test sample. The Sharpe ratio is calculated as the monthly excess return divided by
the corresponding standard deviation and scaled by

√
12.

The economic significance of the trading strategy could be completely driven by small re-
turn fluctuations such as the bid-ask bounce discussed by Roll [263], which is not useful to
traders. To assess the models’ ability to predict larger returns, a trading strategy is consid-
ered that accounts for transaction costs. Given national best bid (ask) price, Bidt (Askt), and

16Benchmarking against the historical mean, the R2 increases by approximately 0.01% across methods.
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midquote Mt =
Bidt+Askt

2 , transaction costs are estimated by the relative national-best bid-offer
(NBBO) spread, given by

Spreadt =
Askt − Bidt

Mt
(2.15)

Following Chinco, Clark-Joseph and Ye [74], the economic significance of returns after trans-
action costs are evaluated by implementing a trading strategy that only trades when model
predictions exceed the transaction costs. The returns of this trading strategy are

ϕt

(
r̂M

t+1

)
≡


−rM

t+1 − Spreadt if
∣∣∣r̂M

t+1

∣∣∣ > Spreadt and r̂M
t+1 < 0,

rM
t+1 − Spreadt if

∣∣∣r̂M
t+1

∣∣∣ > Spreadt and r̂M
t+1 > 0,

0 otherwise
(2.16)

Again, reported are annualized excess returns and Sharpe ratios for this trading strategy. For
models to be profitable, their predicted returns must be properly directed and exceed transaction
costs, that is r̂M

t+1 > 0 and |r̂M
t+1| > Spreadt for a long position to be implemented. This simple

trading strategy presents a significant hurdle for model validation and provides a benchmark
for returns available to traders. A simple strategy is used to avoid data mining concerns, but
more sophisticated strategies can yield higher returns.

2.3 Empirical results
The sequel presents results for the eight models considered: lasso (LAS), elastic net (EN),
principal component regression (PCR), random forest (RF), gradient-boosted regression trees
(GBRT), artificial neural networks (ANN), and the ensemble (arithmetic) average (MEAN) and
median (MED). Results for OLS are omitted from the analysis, it being found that the simple
linear model is highly inaccurate, resulting in a negative out-of-sample R2 in most periods. All
models are estimated using Sparkling Water from H2O.ai, which combines the machine learn-
ing algorithms of H2O with the big data capabilities of Apache Spark, and permits efficient
estimation of machine learning models on much larger datasets than the existing literature.
Models are trained using all intraday and overnight observations, however results are reported
from 9:35 to 3:55 only excluding the opening and closing returns to avoid concerns regarding
the accuracy of these auction-based prices and overnight/weekend effects. For each model,
hyperparameters are tuned in the validation set using random search on mean squared error.

The predictive performance of each model is evaluated by out-of-sample R2, R2
OOS, and the

predictive regression coefficients and t-statistics. Economic significance is evaluated by the ex-
cess returns and Sharpe ratios of the market timing trading strategy with and without transaction
costs. In each case, model performance is examined over the entire testing sample from April,
1993, to October, 2016. The results are also presented for significant sub-periods, including
the 1/8 tick size sample from 1993 to 1996, the 1/16 tick size sample from 1997 to 2000, the
early post-decimalization sample from 2001 to 2004, and the late post-decimalization sample
from 2005 to 2016. Considered finally are the results’ robustness to using models trained on 1,
4, 7, 10, 16, 22, 34, and 58 months of returns instead of the baseline expanding window.
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2.3.1 Market predictability
Table 2.1 reports coefficients from the predictive regression (2.13) along with Newey-West
t-statistics with 79 lags, R2

OOS percentages, and the ratio of R2
OOS to mean transaction cost

[R2
OOS/(Bid-Ask Spread scaled by 1,000)] for the eight machine learning techniques consid-

ered. Panel A presents results for the entire testing sample from April 1993 to October 2016.
Across models, slope coefficents are roughly 1 with most t-statistics exceeding 40. The magni-
tude of the intercept and slope coefficients are not exactly zero and one respectively, since the
relationship between realized and predicted returns is non-linear (e.g., due to the prevalence
of zero return observations in five-minute returns). Table 2.1 shows that all models predict the
market better than a naive forecast of zero, since each of them have a positive R2

OOS. The LAS
and EN models have R2

OOS of 2% and 1.95%, respectively. These regularized linear models
have the highest R2

OOS among non-ensemble models. Among non-linear models, RF performs
best with an R2

OOS of 1.71%. Surprisingly, ANN performs poorly despite doing well in Gu,
Kelly and Xiu [152]. This difference is likely because these authors forecast using an ensemble
of neural networks, whereas the present analysis is limited by computational time to a single
neural network prediction each period, which typically has higher variance forecasts. Across
all models, the ensemble mean and median perform best with respective R2

OOS values of 2%
and 2.01%. Note that most models have an R2

OOS exceeding 1.6%, which is the R2
OOS docu-

mented by Gao et al. [133] for 30-minute returns and roughly twice the monthly R2
OOS reported

by Gu, Kelly and Xiu [152]. Having a similar level of R2
OOS at a higher frequency (like five-

minutes in this chapter) than at a lower frequency is interesting since more trades can be carried
out based on the predictability. The findings differ from those of Chordia, Roll and Subrah-
manyam [78], who use linear models and find that lagged returns cannot forecast five-minute
equity returns. The results reveal that by including lagged returns of market constituents using
high-dimensional models, market returns are predictable using only lagged returns.

Next, the predictability is decomposed by time period based on observed structural breaks
caused by changes to tick size and transaction costs. Panel B presents results for the early
sample from 1993 to 1996, coinciding with a 1/8 tick size. This sample has the strongest
predictability, with R2

OOS exceeding 6% across all models and slope t-statistics exceeding 30.
This finding makes sense intuitively, since predictability should be high when a large tick size
prevents traders from bringing prices to their fundamental values. Also, trading volumes were
relatively low and transaction costs were high during this time period, which further increased
market frictions. Panel C presents results for the period with 1/16 tick size from 1997 to 2000.
This period has the second highest predictability with R2

OOS exceeding 3% for all models except
PCR. The R2

OOS/Cost ratio decreased by roughly 90% relative to the previous period, demon-
strating that most of the decreases in predictability were due to factors other than the decreases
in transaction costs, and possibly due to technological improvements for traders (i.e., faster
computer driven trading).17

Beginning in 2001, exchanges adopted decimal ($0.01) trading ticks, which is the tick size
in the remainder of the sample. For this reason, 2001 to 2016 is referred to as the post-

17The simple intuition for this is the following: if the decrease in R2
OOS could be fully explained by a decrease

in transaction costs, then the R2
OOS/Cost ratio should remain the same across periods.
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Figure 2.1: R2
OOS and trading costs

Plot of the post-decimalization R2
OOS for the SPY using the lasso (LAS), elastic net (EN), principal component

regression (PCR), random forest (RF), gradient-boosted regression trees (GBRT), neural network (ANN), mean
ensemble (MEAN), and median ensemble (MED). Also plotted is the mean transaction cost scaled by 1,000.

decimalization period. Panel D reports results for the early post-decimalization period from
2001 to 2004. Coefficients are statistically significant at the 1% level across all models, and
while the R2

OOS are lower than pre-decimalization, they remain relatively high. Furthermore,
the R2

OOS/Cost ratio decreased by roughly 50% relative to the previous period, indicating that
much of the decrease in predictability can be explained by decreases in transaction costs. The
highest non-ensemble R2

OOS are for the LAS, EN, and RF models at 0.91%, 0.81%, and 0.85%,
respectively. The ensemble mean and median reach an R2

OOS of 1.04% and 1.01%, respectively.
These R2

OOS percentages remain in line with the market predictability results of Gao et al. [133]
and Gu, Kelly and Xiu [152] for the 30-minute and monthly time horizons, respectively. It
should be noted that from 2001 to 2004 there was a significant decrease in transaction costs
with no change to tick size. Figure 2.1 plots the mean transaction cost (Bid-Ask Spread scaled
by 1,000) against the R2

OOS for each model during the post-decimalization period. Consistent
with the present hypothesis, the decrease in transaction costs in the early post-decimalization
period significantly decreased the R2

OOS across all models.

Finally, panel E reports results for the late post-decimalization period from 2005 to 2016. The
LAS and PCR models have positive R2

OOS of 0.02% and 0.04%, respectively, during this period.
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Interestingly, the PCR model has a positive R2
OOS during this period despite having the lowest

R2
OOS in all previous periods. This is likely because the subprime and European debt crises

occurred (late) post-decimalization, and as a result of asset correlation increasing to near one
in these crisis periods, returns had a strong factor structure.18 The EN, RF, GBRT, and ANN
models have negative R2

OOS of -0.04%, -0.01%, -0.39%, and -0.45%, respectively, indicating
that they perform worse than a naive constant prediction of zero. The poor performance of the
non-linear models suggests they may be over-fitting a simpler predictive relationship during
this recent period. The ensemble mean and median, however, have the highest R2

OOS of 0.04%
and 0.06% respectively, benefiting from the strong performance of PCR during crisis periods.
Thus, models which generally perform poorly may sometimes improve ensemble models.

At a first glance, it may appear that after 2005 all of the predictability is gone. However,
it is argued that this is not the case. In particular, figure 2.1 shows that the R2

OOS for the two
ensemble methods stays consistently positive, although it is small in magnitude, and the ensem-
ble median R2

OOS is positive in every year except for 2015. Relative to the previous period, the
R2

OOS decreased by roughly 95%, but the R2
OOS/Cost ratio only decreased by 33-66%, indicating

that some of the decrease in predictability can be explained by decreases in transaction costs.
Given the substantial decrease in transaction costs for five-minute returns, a high R2

OOS is un-
reasonable, and a small but positive R2

OOS is expected. As argued by Campbell and Thompson
[57] and Rapach and Zhou [256], even a small R2 can generate economically large portfolio re-
turns. This is especially true given the number of trading opportunities at a five-minute interval.

In summary, the first set of results demonstrate that the market is remarkably predictable at the
five-minute frequency. This predictability is highest prior to the decimalization of exchanges in
2001. Post-decimalization, markets became faster in integrating lagged intraday information.
However, the R2

OOS remains positive for the LAS, PCR, and ensemble models, demonstrating
that some predictability persists even after the decimalization of exchanges and indicating that
decreases in transaction costs also decreased other market frictions.

2.3.2 Economic significance

As noted, even a small predictability at five-minute intervals can result in large and econom-
ically significant returns. This section therefore evaluates the economic significance of the
trained models’ predictions by implementing the simple trading strategy specified in equation
(2.14). Since the models are optimized to minimize forecasting error, the economic signifi-
cance of forecasts provides an indirect evaluation of model performance. Table 2.2 presents
the annualized excess returns, Newey-West t-statistics with one lag and Sharpe ratios, denoted
SR in the table, of the market timing strategy. Columns (1) - (8) present results for the eight
machine learning models and columns (9) and (10) report the intraday SPY returns as well as
the benchmark buy-and-hold SPY returns, respectively, for comparison.

Panel A of table 2.2 reports the results for the entire sample from 1993 to 2016. Rankings
across methods are mostly consistent with their R2

OOS percentages, and all models have positive

18In section 2.4.3 it is confirmed that the PCR model indeed performs well during both of these crisis periods.
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returns and Sharpe ratios. Among the non-ensemble models, LAS, EN, RF, and GBRT have the
highest R2

OOS and also have high returns (Sharpe ratios) of, respectively, 191%, 188%, 198%,
and 192% (2.71, 2.68, 2.90, and 2.84), indicating that dimension reduction is important for
predicting returns. In particular, the tree-based RF and GBRT have the highest non-ensemble
returns (Sharpe ratios), showing that modeling non-linearities and interaction effects is impor-
tant for return prediction. The ANN model has lower returns (Sharpe ratios) of 172% (2.66)
due to its high variance predictions. PCR has positive but relatively low excess returns of 75%
matching its low R2

OOS over the entire sample. Consistent with their R2
OOS percentages, the en-

semble mean and median have the highest returns (Sharpe ratios) of, respectively, 205% and
204% (2.90 and 2.82), illustrating that combining forecasts yields higher economic predictabil-
ity. It is noteworthy that every model significantly out-performs the benchmark buy-and-hold
SPY strategy, which yields excess returns (Sharpe ratios) of 7% (0.48).

Next, panel B of table 2.2 reports results for the 1/8 tick period from 1993 to 1996. The ex-
cess returns (Sharpe ratios) of all models exceed 300% (5). The large economic returns are
consistent with the large R2

OOS observed for this period. Panel C reports results for the 1/16
tick period from 1997 to 2000. While table 2.1 showed that the R2

OOS decreased relative to the
previous period, surprisingly returns and Sharpe ratios increased during this period for nearly
all models. This volatile period contains both the Asian crisis and the dot-com bust, and in
section 2.4.3 it is shown that the economic significance of model predictions increase during
financial crises. PCR has a highly negative R2

OOS during this period resulting in a low predictive
return, suggesting that there is not a strong factor structure during this period.

Considered finally are the results in the post-decimalization period. Panel D reports results
for the early post-decimalization period from 2001 to 2004 and shows that, consistent with the
finding that the R2

OOS decreased post-decimalization, excess returns and Sharpe ratios, although
significant and larger than the benchmark buy-and-hold SPY returns, are lower than in previ-
ous periods. Panel E reports results for the late post-decimalization period from 2005 to 2016.
Table 2.1 showed that this period had a substantial decrease in R2

OOS, and consequently returns
and Sharpe ratios are significantly lower than in previous periods. However, returns and Sharpe
ratios remain high relative to the benchmark buy-and-hold SPY. In particular, all models have
returns exceeding 16% and most models have Sharpe ratios exceeding one. In comparison, the
buy-and-hold SPY returns (Sharpe ratios) were 7% (0.46).

Figure 2.2 plots the cumulative excess returns for each model and of the SPY from 2001 to
2016. Every model has higher cumulative returns than the market portfolio with the RF and
ensemble models having significantly higher cumulative returns. In summary, the consistency
of the results across models supports the hypothesis that the intraday market is predictable and
demonstrates that the predictability is economically significant. Next it is shown that profitabil-
ity remains even with (large) transaction costs.

2.3.3 Economic significance after transaction costs
The established economic significance does not account for transaction costs, which are sub-
stantial when trading at a five-minute frequency. If models are only accurate for small return
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Figure 2.2: Cumulative returns by model

Plot of the post-decimalization cumulative excess returns of the market-timing strategy for the SPY using the lasso
(LAS), elastic net (EN), principal component regression (PCR), random forest (RF), gradient-boosted regression
trees (GBRT), neural network (ANN), mean ensemble (MEAN), and median ensemble (MED).

fluctuations but cannot forecast large returns, then they are not useful to traders. This section
shows that the predictability of the market portfolios is economically significant even after
accounting for transaction costs. It is additionally documented that after 2005, R2

OOS, excess
returns, and transaction costs significantly decreased at the same time, so it is not obvious if
model predictions remain profitable after accounting for transaction costs in this recent sample.

Table 2.3 presents the annualized excess returns and Sharpe ratios of the market timing strat-
egy with transaction costs along with the average percentage of executed trades. Panel A of
table 2.3 reports the results for the entire sample from 1993 to 2016. Columns (1) - (8) present
results for the eight machine learning models and columns (9) and (10) report the intraday SPY
and the benchmark buy-and-hold SPY returns respectively. As expected, all returns are signif-
icantly lower due to transaction costs and infrequent trading. However, even after accounting
for transaction costs, every model (with the exception of ANN) has positive returns. Among
non-ensemble models, PCR and RF have the highest returns (Sharpe ratios), respectively yield-
ing 5% and 6% (0.68 and 0.77). The two ensemble models have high returns (Sharpe ratios),
both yielding 6% (0.67 and 0.98). As a benchmark, a buy-and-hold SPY strategy has 7% return
and a Sharpe ratio of 0.48. Thus, even after transaction costs, the PCR, RF, and ensemble mod-



2.3. Empirical results 109

els outperform holding the market.19 These findings demonstrate that such models can predict
large returns that exceed the transaction costs very well. The results are similar in magnitude
to the strategies in Gao et al. [133] and Chinco, Clark-Joseph and Ye [74] that have after-
transaction cost annualized returns of 4.46% (Sharpe ratio of 0.98) and 4.92%, respectively.
Consistent with the previous sections, ANN predictions have a high variance and hence fail to
forecast large returns. Similarly, the linear LAS and EN models had high R2

OOS, but the sta-
tistical predictability did not translate well into economic profitability, earning returns (Sharpe
ratios) after transaction costs of 3% and 1% (0.42 and 0.20), respectively. It is shown in sec-
tion 2.4.3 that LAS and EN had highly negative returns during the subprime crisis, since these
models generally perform worse when predictors are highly correlated (Wang et al. [308]).20

Next, panel B of table 2.3 reports results for the 1/8 tick period from 1993 to 1996. The models’
returns are low since they only trade roughly 1% of the time. However, the large and positive
Sharpe ratios of at least 0.8 indicate model predictions are economically significant even af-
ter paying transaction costs. The LAS, EN, GBRT, and ensemble models have Sharpe ratios
exceeding two and so the benchmark buy-and-hold SPY Sharpe ratio of 1.6. Panel C of table
2.3 reports results for the 1/16 tick period from 1997 to 2000, where models trade less than
0.25% of the time due to large transaction costs. Whereas table 2.2 showed that pre-transaction
cost returns are higher than in the previous period, table 2.3 shows that after accounting for
transaction costs returns (Sharpe ratios) are lower than in the previous period. LAS, EN, PCR,
RF, ANN, and the ensemble models, though, continue to have higher Sharpe ratios than the
buy-and-hold benchmark Sharpe ratio of 0.71.

Finally, panels D and E report results for the post-decimalization period from 2001 to 2016,
where models trade much more frequently due to lower transaction costs. Panel D reports re-
sults for the early post-decimalization period from 2001 to 2004 and shows that excess returns
(Sharpe ratios) increase for the LAS, EN, RF, GBRT, and ensemble models relative to the pe-
riod before 2001 due to the significantly lower transaction costs. All models, except ANN,
earn much higher returns (Sharpe ratios) than the benchmark -0.01% (-0.07) for the buy-and-
hold SPY. Panel E of table 2.3 reports results for the late post-decimalization period from 2005
to 2016. Previous sections documented that this period had substantially lower R2

OOS returns,
and Sharpe ratios relative to previous periods. However, due to the decrease in transaction
costs, the after-transaction cost returns and Sharpe ratios are still high. During this period, the

19When regressing the trading strategy returns after transaction costs onto the benchmark buy-and-hold SPY it
is found that the alphas are positive and statistically significant at the 10% level for all models except ANN. The
betas, on the other hand, are mostly small, and if they are large and significant, they tend to be negative indicating
that the trading strategy if anything hedges systematic risk. Thus, there is strong evidence that the trading strategy
out-performs the benchmark portfolio and little evidence that the models are simply buying systematic risk.

20Unreported results confirm that when correlations among constituent returns increase LAS and EN perform
worse while PCR performs better. Intuitively, LAS and EN may encounter difficulties when stocks are highly
correlated. For example, if several highly correlated stocks are relevant for prediction, then LAS may only select
one from the group and shrinks the rest to zero (Zou and Hastie [329]). EN mitigates this issue by using the ridge
penalty. However, the ridge penalty forces the estimated coefficients of highly correlated predictors to be close
together, which is problematic since the coefficients on the predictor stocks likely have different magnitudes or
different signs (Wang et al. [308]). Conversely, PCR has stronger predictability when correlations increase, since
the model creates new predictors that summarize the variation of the constituent stocks.
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Figure 2.3: Cumulative returns after transaction costs by model

Plot of the post-decimalization cumulative excess returns of the market-timing strategy with transaction costs
for the SPY using the lasso (LAS), elastic net (EN), principal component regression (PCR), random forest (RF),
gradient-boosted regression trees (GBRT), neural network (ANN), mean ensemble (MEAN), and median ensem-
ble (MED).

benchmark buy-and-hold SPY earned 7% returns with a 0.46 Sharpe ratio. The PCR and RF
models out-perform the benchmark with returns (Sharpe ratios) of 9% and 8% (0.88 and 0.81),
respectively, which was shown in section 2.4.3 to be partially due to their strong performance
during the subprime crisis. The ensemble median also beat the buy-and-hold SPY with returns
(Sharpe ratios) of 5% (0.68).21

Figure 2.3 plots the cumulative excess returns after transaction costs for each model and of the
SPY from 2001 to 2016. After accounting for transaction costs, the PCR, RF and ensemble
models have higher cumulative returns relative to the market, despite only trading infrequently.
Even accounting for the drop in R2

OOS after 2005, the after-transaction cost returns remain con-
sistently large. That is, even after accounting for transaction costs, the considered models earn

21These results are robust to assuming fixed transaction costs of, say, 0.01% or 0.1% instead of the bid-ask
spread (the median post-decimalization spread was 0.008%). In particular, with 0.01% fixed transaction costs
economic profitability generally increases across models and though the models seldom trade with a 0.1% fixed
transaction cost Sharpe ratios remain positive for the LAS, EN, and ensemble models. This verifies that the results
are not driven by models that only trade when the spread is low.
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economically significant returns with low variance. Demonstrated are economic gains available
to traders using such model forecasts supporting the hypothesis that markets are predictable at
the five-minute frequency. However, the market is notably less predictable post-decimalization,
particularly after 2005, as expected, evidenced by the lower returns and Sharpe ratios.

2.3.4 Robustness to training sample size

The baseline model uses an expanding window for training and one month each for validation
and for out-of-sample testing. If the documented predictive relationship is stable, then fore-
casting accuracy should be increasing in training sample size, since more observations yield
lower variance forecasts. However, financial time series are notorious for containing structural
breaks, time-varying volatility, and other nonstationarities (Timmermann [302]). A shorter
training sample may therefore outperform a longer one if the empirical model in equation (2.2)
changes due to this nonstationarity, in which case using a longer training sample may yield
biased forecasts. Tested are the importance of various training periods by evaluating R2

OOS and
after-transaction cost Sharpe ratios using 58-, 34-, 22-, 16-, 10-, 7-, 4-, and 1-month samples
for training and compare the results with the baseline training duration.

Panel A of table 2.4 reports the post-decimalization R2
OOS of the eight machine learning mod-

els using different training window lengths. This sample includes several possible structural
breaks, including the subprime and EU debt crises. Across nearly all models, R2

OOS is in-
creasing in training size, indicating that the predictive relationship is mostly stable. However,
the R2

OOS do not increase monotonically, which demonstrates that non-stationarities do have
some effect on forecasts. This is particularly apparent comparing the 58-month estimation
window to expanding, suggesting that results could be improved by starting the expanding
window later in the sample. Furthermore, the R2

OOS are positive for the ensemble models across
nearly all training periods and positive for most individual models. Panel B of table 2.4 reports
the after-transaction cost Sharpe ratios using different training window lengths for the post-
decimalization period. Consistent with the results for the R2

OOS, model Sharpe ratios are mostly
increasing in training size across models.

The results in table 2.4 first of all show that the predictability findings for intraday market
returns are largely robust to using different training window specifications. Secondly, they
importantly show that predictability increases with the training window size. Chinco, Clark-
Joseph and Ye [74] theorize that market predictability could be driven by very short-term sparse
signals. The results indicate instead that predictability may be consistently exploiting ineffi-
ciencies across time and is not necessarily driven by infrequent signals.

2.4 Additional analysis

The hypothesis for intraday predictability is based on slow-moving trader capital. This section
examines whether the results differ within the trading day, in periods of high versus low volatil-
ity or illiquidity, and during periods of financial crisis. Finally, the baseline model performance
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is compared to that of autoregressive models for the market return and it is considered whether
forecasting accuracy may be improved by including additional lagged variables.

2.4.1 Time-of-day patterns
This section tests the intraday implications of slow traders on intraday predictability. Since
traders are most active at the beginning and end of each day, predictability is expected to be
low during those times. Also, since intraday trading volume exhibits a ‘U’ shape, predictability
is expected to exhibit an inverse-U shape.

Panel A of table 2.5 reports the R2
OOS of each half-hour interval in the post-decimalization pe-

riod. For every model, the R2
OOS is low in the first half hour and last hour of the day, when

traders are most active. On the other hand, these models have high R2
OOS between 10:00 -

15:00, demonstrating that nearly all of the predictability occurs during the middle of the day
when traders are less active. Panel B of table 2.5 reports after-transaction cost Sharpe ratios of
each half-hour interval in the post-decimalization period. For most models, the Sharpe ratios
are highest between 10:00 - 15:00, demonstrating that the increased R2

OOS translates into eco-
nomically meaningful returns after transaction costs. The Sharpe ratio for the intraday SPY in
column (9) does not display the same pattern, showing that the models are not simply buying
the SPY portfolio.

Figure 2.4 plots the R2
OOS and mean trading volume of each half-hour interval in the post-

decimalization period. Across all models (except ANN), there is a remarkably similar inverse-
U pattern, suggesting that these models are approximating the same function. Every model’s
R2

OOS jumps up between 14:00 - 14:30, suggesting that this is the least active time for traders.
Every model’s R2

OOS jumps down between 15:00 - 15:30, suggesting that traders are active at
this time, which is consistent with the finding of Lou, Polk and Skouras [212], that institutional
investors tend to initiate trades near the close. The discovery that predictability is stronger
when traders are less active is consistent with the hypothesis that the predictability is driven by
slow traders.

Gao et al. [133] find that returns in the first half hour forecast returns in the last half hour.
The results in table 2.5 show that the predictability of the models are orthogonal to their find-
ings and complement their paper meaningfully. Economically, there are likely several sources
of risk and trading behaviors driving intraday patterns in returns.

2.4.2 Volatility and illiquidity effects
During periods of high volatility or illiquidity (i.e., periods of low liquidity), traders encounter
higher market frictions. According to the slow trader hypothesis, predictability should be
higher when volatility or illiquidity is higher. This hypothesis is tested by first sorting days
into three equal groups (tertiles) based on their daily realized volatility and Amihud [12] mea-
sure of illiquidity, respectively. The predictability is then studied individually for each tertile.

Panel A of table 2.6 reports the R2
OOS of each volatility group during the post-decimalization
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Figure 2.4: R2
OOS and trading volume

Plot by time of day of the post-decimalization R2
OOS for the SPY using the lasso (LAS), elastic net (EN), principal

component regression (PCR), random forest (RF), gradient-boosted regression trees (GBRT), neural network
(ANN), mean ensemble (MEAN), and median ensemble (MED). Also plotted is the mean SPY trading volume.

period. Consistent with the hypothesis, R2
OOS is strictly increasing in volatility across every

model (except PCR). Likewise, panel B of table 2.6 shows that after-transaction cost Sharpe
ratios are increasing in volatility for most models. Note that column (9) shows that the intraday
SPY Sharpe ratio decreases in volatility, so model Sharpe ratios relative to the benchmark are
strongly increasing across the volatility tertiles.22

Panel A of table 2.7 reports the R2
OOS of each illiquidity group during the post-decimalization

period. Interestingly, R2
OOS is small for low- and mid-, but very large for high-illiquidity days.

This suggests that most of the predictability occurs during days when the market is illiquid and
when it’s more expensive for traders to rebalance their portfolios. Panel B of table 2.7 reports
after-transaction cost Sharpe ratios of each illiquidity group during the post-decimalization pe-
riod. For most models, Sharpe ratios are increasing in illiquidity.

22To examine this further, a volatility timing strategy was considered that trades only when the previous day’s
volatility is in a given tertile group using only past information to create the groups, i.e., with no look-ahead bias.
The results show that Sharpe ratios are increasing in volatility for all models except LAS and EN, demonstrating
that the ex-post volatility analysis could be converted into a tradeable volatility timing strategy.
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In summary, predictability and economic significance increase when market volatility and illiq-
uidity are high. These findings are similar to Gao et al. [133] who show that 30-minute pre-
dictability is higher on high volatility and illiquidity days. The results are consistent with their
findings and with the hypothesis that market predictability is driven by slow-moving capital
from traders that face market frictions. These findings also support the argument in Chordia,
Roll and Subrahmanyam [78] and [79] that prices can be separated from fundamentals and are
predictable in short horizons due to insufficient liquidity.

2.4.3 Impact of financial crisis

The recent 2005 to 2016 period contains the subprime mortgage and European debt crises.
These crisis periods are associated with significant market frictions. According to the hypoth-
esis, predictability should be higher during these crisis periods. This is tested in this section
by studying several interesting sub-periods of the late post-decimalization period illustrating
crisis and non-crisis periods.

Panel A of table 2.8 reports the R2
OOS of crisis and non-crisis periods. Across most models,

the R2
OOS during the subprime and EU crises are higher than during the 2010 - 2011 and 2014

- 2016 periods. However, the R2
OOS was high during the earliest 2005-2007 period, possibly

due to technological factors (i.e., less sophisticated trading). PCR had the highest R2
OOS during

the subprime crisis and a positive R2
OOS during the EU debt crisis. This finding confirms the

assertion in section 2.3.1 that PCR has stronger predictability when equities are more corre-
lated and follow a strong factor structure, as is the case during a financial crisis. From 2014
- 2016, model predictability is negative across models. This may be because the period was
relatively stable, but could also be caused by reduced trader frictions.23 These results demon-
strate that the predictability is higher during a financial crisis. In the slow moving theory of
capital, traders may not invest in arbitrage opportunities if they have insufficient capital or can
invest in assets with higher expected returns (Duffie [101]). These results suggest that during
financial crises, the market portfolio may be particularly predictable due to slow moving cap-
ital, findings similar to Gao et al. [133], who demonstrate increased 30-minute predictability
during the subprime crisis.

The economic significance of crisis and non-crisis periods is somewhat mixed. Panel B of
table 2.8 reports the pre-transaction cost Sharpe ratios of crisis and non-crisis periods. The
pre-transaction cost Sharpe ratios are mostly consistent with the R2

OOS results, with the excep-
tion of the 2010 - 2011 period which earned higher Sharpe ratios than expected given the low
R2

OOS. Panel C of table 2.8 reports the after-transaction cost Sharpe ratios. Surprisingly, the re-
sults differ from the findings in panels A and B for the 2005 - 2007 period and the EU debt crisis
period. It appears that high transaction costs during these periods removed most of the predic-
tive profits. Similarly, the 2010 - 2011 period had the highest after-transaction cost Sharpe
ratios, potentially due to reduced transaction costs after the subprime crisis. Interestingly, the
LAS and EN models had extremely low returns during the financial crisis, likely because these

23It will be interesting to study if predictability increases during the ongoing Coronavirus crisis once high-
frequency data becomes available for this period.
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models often perform poorly with highly correlated predictors (cf. section 2.3.3).

2.4.4 Comparison to autoregressive models
A natural comparison to the cross-sectional models with lagged intraday returns for the mar-
ket constituents are autoregressive models for the market return itself, since the predictability
results could simply be capturing intraday momentum. For example, Heston, Korajczyk and
Sadka [160] find significant auto-correlation of half-hour returns at daily intervals and Gao et
al. [133] find that the first half-hour return of the SPY predicts the last. This section evaluates
the predictability of linear models estimated on up to 500 lagged SPY returns using the same
specifications as the baseline machine learning models. Considered are a simple AR(1) that
uses the SPY return with one lag (i.e., the baseline model without constituent returns) and an
AR(p) model where the number of lagged returns (up to 500) is chosen to minimize the valida-
tion mean squared error. Also considered are the linear LAS, EN, and PCR models to perform
dimension reduction on the 500 lagged SPY returns.

Panel A of table 2.9 reports the R2
OOS of the linear autoregressive models together with the lin-

ear baseline models for comparison. During the overall period from 1993 to 2016, LAS and
EN generally have the highest R2

OOS among AR models of 0.6% and 0.58%, suggesting that
certain market return lags contain predictive information. However, these regularized models
only slightly improve on the simplest AR(1) model’s R2

OOS of 0.55%, indicating that the most
recent lag is the most important for prediction. This is reinforced by the AR(p), which uses
a median of 29 lags and performs worse than the AR(1) model with an R2

OOS of 0.53%. The
AR(500) model without dimension reduction, i.e. estimated with OLS, performs poorly due
to the high-dimensional inputs as expected. In comparison, the baseline LAS and EN models
significantly outperform every AR model with an R2

OOS of 2% and 1.95% respectively. Addi-
tionally, the baseline PCR’s R2

OOS of 0.31% is higher than the AR(500) PCR model’s R2
OOS of

-0.07%. These results demonstrate that there is significant predictive information embedded in
the lagged returns of the S&P 500 constituents.

Panel B of table 2.9 reports the after-transaction cost Sharpe ratios of the linear autoregres-
sive models together with the linear baseline models for comparison. During the overall period
from 1993 to 2016, every AR model has a negative Sharpe ratio except for the AR(1), which
has a Sharpe ratio of zero. In contrast, the baseline linear models all have positive Sharpe
ratios, with the PCR’s Sharpe ratio of 0.68 even outperforming the buy-and-hold S&P 500’s
Sharpe ratio of 0.48. These results demonstrate that using the lagged returns of the S&P 500
constituents is necessary for improving the economic significance of the predictions. Panel B
also shows that this holds true for all considered sub-periods.

2.4.5 Effect of additional variables
Finally, it is considered whether including additional lagged characteristics of the S&P 500
constituents may improve forecasting accuracy. Due to computational constraints (both in
terms of memory requirements and training time), only considered are results using the four-
month training sample during the post-decimalization period. Characteristics that proxy short-



116 Chapter 2. Intraday market predictability: A machine learning approach

term changes in liquidity and trading trends are considered. The characteristics include firm-
level market beta, momentum, maximum, minimum, volatility, illiquidity, trading volume, kur-
tosis, and skewness calculated over preceding days as well as the lagged observed bid-ask
spread.

Table 2.10 reports R2
OOS when including different characteristics during the post-decimalization

period. The first row reports R2
OOS for the baseline model using lagged returns only. Panel A

shows that the LAS model is improved by including illiquidity, momentum, or skewness, in-
dicating that there may be some index constituents with useful characteristics for predicting
the market return. PCR is also slightly improved by adding momentum and volume. However,
for most models including any single characteristic reduces the R2

OOS. One possibility for the
poor performance of the price trend and liquidity characteristics is that they are estimated over
the preceding day and potentially noisy. However when the lagged bid-ask spread is included,
which is not estimated, the R2

OOS also decreases across most models. These results may suggest
that including additional characteristics simply adds noise to the model without providing ad-
ditional predictive information. While adding these characteristics generally does not improve
market forecasts beyond the baseline model, it remains possible that such characteristics may
help predict individual stock returns.

Panel B of table 2.10 reports the after-transaction cost Sharpe ratios when including differ-
ent characteristics during the post-decimalization period. This panel shows, similarly to panel
A, that including some characteristics may slightly improve the Sharpe ratios of certain models.
For example, LAS, EN, PCR, RF, ANN, and the ensemble median can be slightly improved by
including some characteristics. In particular, the median ensemble after including the bid-ask
spread achieves a Sharpe ratio of 0.44. But these results are not robust and could be by chance.

One concern is that the increased data dimension from additional characteristics may increase
the estimation error. However, the predictability of only the characteristics was analyzed, re-
moving lagged returns from the model, and again found no evidence of predictability. In
summary, little evidence is found that including other characteristics can improve predictions.
Among the tested characteristics, only lagged returns consistently predict market returns.

2.5 Conclusion

This chapter apparently conducts the largest existing study of intraday market return pre-
dictability using state-of-the-art machine learning models trained on the cross-section of lagged
market index constituent returns and other characteristics to forecast five-minute market returns
over the longest possible time period. The chapter demonstrates that there is significant sta-
tistical predictability of intraday market returns and establishes that this return predictability
translates into economically significant profits even after accounting for transaction costs. Fur-
thermore, the lagged constituent returns are shown to hold significant predictive information
that is not contained in lagged market returns or in lagged price trend and liquidity character-
istics.
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Specifically, the chapter shows that regularized linear models such as lasso and elastic nets and
nonlinear tree-based models such as random forests yield the largest positive out-of-sample R2

percentages. Linear models such as principal component regression had high out-of-sample R2

percentages during the subprime and EU debt crises, providing returns that hedge these crisis
states. Ensemble models that combine individual model predictions perform the best across
time and the return predictability from these models translates into economically significant
profits with Sharpe ratios after transaction costs of 0.98. This Sharpe ratio is much higher than
what is obtained from holding the index intraday and significantly exceeds the Sharpe ratio of
the benchmark buy-and-hold strategy.

Across time, it is shown that the statistical predictability has suffered somewhat as transac-
tion costs were reduced post-decimalization. It is argued that this strongly suggests that pre-
dictability could be a result of slow-moving trader capital. Consistent with the hypothesis of
slow traders, market returns are also shown to be more predictable during the middle of the
day when trading activity is lower, on days with high volatility or high illiquidity where prices
can be driven further away from their fundamental values, and during years of financial crisis
which are plagued by market frictions. Nevertheless, the best ensemble models retain some
predictability and trading based on these models’ signals remains profitable throughout the
sample, even after adjusting for transaction costs.

The results provide strong evidence that market returns are predictable over short horizons.
The empirical findings suggest that further investigation into the economic mechanisms driv-
ing such short-horizon predictability is warranted. The late-informed investor explanation in
Gao et al. [133] is supported by the evidence. Another explanation of Chinco and Fos [75]
theorizes that computational complexity of traders’ rebalancing introduces noise. It is believed
this can explain some of the predictability results, wherein models appear able to capture the
systematic behaviour of traders’ rebalancing. In particular, this could explain the persistent
profitability of the studied models in recent years. However, verifying these economic mecha-
nisms requires further investigation which is left for future research.
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Table 2.1: Market predictability

(1) (2) (3) (4) (5) (6) (7) (8)

LAS EN PCR RF GBRT ANN MEAN MED

Panel A: Overall Period (1993 - 2016)
Intercept -0.64 -0.59 -0.31 -0.45 -0.36 -0.32 -0.64 -0.67
t-stat -4.02 -3.72 -1.98 -2.84 -2.28 -1.98 -4.04 -4.24
Slope 1.38 1.29 0.65 1.22 0.90 0.83 1.53 1.54
t-stat 47.26 46.06 24.14 54.11 43.23 42.49 58.28 58.97
R2

OOS 2.00 1.95 0.31 1.71 1.64 1.40 2.00 2.01
R2

OOS/Cost 0.12 0.11 0.02 0.10 0.09 0.08 0.12 0.12

Panel B: 1/ 8 Tick Size Period (1993 - 1996)
Intercept -0.22 -0.17 -0.16 -0.14 -0.32 0.16 -0.21 -0.26
t-stat -1.16 -0.90 -0.95 -0.84 -1.68 0.79 -1.29 -1.59
Slope 1.55 1.45 0.92 1.70 1.18 1.17 1.59 1.65
t-stat 36.53 35.80 44.92 41.48 38.60 41.24 42.96 41.07
R2

OOS 9.27 9.32 6.52 6.78 8.95 7.41 9.16 9.14
R2

OOS/Cost 1.08 1.09 0.76 0.79 1.05 0.87 1.07 1.07

Panel C: 1/16 Tick Size Period (1997 - 2000)
Intercept -1.71 -1.67 -0.61 -1.28 -1.22 -1.04 -1.67 -1.73
t-stat -3.91 -3.82 -1.40 -2.88 -2.71 -2.23 -3.80 -3.93
Slope 1.42 1.38 0.18 1.27 1.05 0.92 1.62 1.56
t-stat 35.52 35.31 2.77 46.73 41.86 38.57 43.56 45.09
R2

OOS 3.72 3.69 -0.76 3.48 3.45 3.21 3.60 3.66
R2

OOS/Cost 0.07 0.07 -0.01 0.06 0.06 0.06 0.07 0.07

Panel D: Early Post-Decimalization Period (2001 - 2004)
Intercept -0.65 -0.57 -0.42 -0.25 -0.30 -0.14 -0.55 -0.57
t-stat -1.40 -1.24 -0.91 -0.55 -0.68 -0.32 -1.19 -1.24
Slope 1.14 0.99 0.59 0.87 0.63 0.61 1.36 1.38
t-stat 10.52 9.67 4.67 16.09 13.46 10.87 15.12 14.65
R2

OOS 0.91 0.81 0.03 0.85 0.48 0.38 1.04 1.01
R2

OOS/Cost 0.03 0.03 0.00 0.03 0.02 0.01 0.03 0.03

Panel E: Late Post-Decimalization Period (2005 - 2016)
Intercept -0.10 -0.03 -0.12 -0.07 0.08 0.07 -0.14 -0.20
t-stat -0.43 -0.11 -0.52 -0.30 0.35 0.29 -0.60 -0.84
Slope 0.58 0.38 0.64 0.48 0.13 0.10 0.68 0.82
t-stat 3.70 3.17 4.80 4.85 1.53 1.25 4.02 4.59
R2

OOS 0.02 -0.04 0.04 -0.01 -0.39 -0.45 0.04 0.06
R2

OOS/Cost 0.01 -0.01 0.01 0.00 -0.12 -0.14 0.01 0.02

Reported are coefficients from the predictive regression (2.13) along with Newey-West t-statistics with 79
lags, R2

OOS percentages, and R2
OOS scaled by transaction cost for the SPY using the lasso (LAS), elastic net

(EN), principal component regression (PCR), random forest (RF), gradient-boosted regression trees (GBRT),
neural network (ANN), and ensemble mean (MEAN) and median (MED). The predictors used are lagged
returns for the market and all the S&P 500 constituents. Results are reported for the full, 1/16 tick size, 1/8
tick size, early post-decimalization, and late post-decimalization samples.
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Table 2.2: Excess Returns and Sharpe ratios

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

LAS EN PCR RF GBRT ANN MEAN MED Intraday SPY Hold SPY

Panel A: Overall Period (1993 - 2016)
Return 1.91 1.88 0.75 1.98 1.92 1.72 2.05 2.04 -0.03 0.07
t-stat 4.81 4.92 4.62 4.50 4.26 5.11 4.60 4.91 -1.11 2.19
SR 2.71 2.68 1.97 2.90 2.84 2.66 2.90 2.82 -0.24 0.48

Panel B: 1/ 8 Tick Size Period (1993 - 1996)
Return 3.74 3.73 3.15 3.47 3.47 3.39 3.83 3.88 -0.01 0.11
t-stat 5.73 6.00 10.73 6.43 6.35 8.13 6.77 6.72 -0.37 2.62
SR 5.63 5.60 8.49 6.81 5.73 6.90 6.63 6.19 -0.17 1.19

Panel C: 1/16 Tick Size Period (1997 - 2000)
Return 5.61 5.57 0.33 5.72 5.61 5.11 5.79 5.83 -0.14 0.12
t-stat 25.49 26.00 1.35 16.05 18.06 18.92 17.92 20.74 -1.78 1.62
SR 12.35 12.20 1.01 11.30 12.73 10.35 11.73 11.28 -0.89 0.71

Panel D: Early Post-Decimalization Period (2001 - 2004)
Return 1.61 1.51 0.31 1.74 1.61 1.37 1.85 1.77 -0.04 -0.01
t-stat 5.12 5.74 3.32 5.37 6.31 4.06 4.46 4.60 -0.63 -0.12
SR 4.55 4.62 1.56 4.29 4.84 4.42 4.67 4.64 -0.35 -0.07

Panel E: Late Post-Decimalization Period (2005 - 2016)
Return 0.18 0.17 0.29 0.33 0.29 0.16 0.30 0.27 0.01 0.07
t-stat 4.48 3.89 7.75 6.02 4.84 3.27 6.22 4.96 0.32 1.37
SR 1.36 1.41 2.10 2.06 2.03 0.83 1.80 1.73 0.09 0.46

Reported are the annualized excess returns, t-statistics, and Sharpe ratios for the SPY market-timing strategy. Models
include the lasso (LAS), elastic net (EN), principal component regression (PCR), random forest (RF), gradient-
boosted regression trees (GBRT), neural network (ANN), mean ensemble (MEAN), and median ensemble (MED).
The independent variables are lagged returns of S&P 500 constituents. Results are reported for the full, 1/16 tick
size, 1/8 tick size, early post-decimalization, and late post-decimalization samples.
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Table 2.3: Excess Returns and Sharpe ratios with transaction costs

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

LAS EN PCR RF GBRT ANN MEAN MED Intraday SPY Hold SPY

Panel A: Overall Period (1993 - 2016)
Return 0.03 0.01 0.05 0.06 0.02 -0.07 0.06 0.06 -0.03 0.07
t-stat 1.71 0.77 3.29 2.70 1.10 -3.87 3.38 4.27 -1.11 2.19
SR 0.42 0.20 0.68 0.77 0.24 -0.66 0.67 0.98 -0.24 0.48
% Trades 11.63 12.73 11.45 12.39 14.86 19.26 11.21 11.00

Panel B: 1/ 8 Tick Size Period (1993 - 1996)
Return 0.04 0.05 0.04 0.01 0.07 0.03 0.05 0.04 -0.01 0.11
t-stat 4.79 4.86 2.68 1.22 2.82 2.77 4.98 4.28 -0.37 2.62
SR 2.50 2.60 1.48 0.80 2.27 1.20 2.70 2.34 -0.17 1.19
% Trades 0.47 0.60 1.53 0.27 1.25 0.75 0.52 0.48

Panel C: 1/16 Tick Size Period (1997 - 2000)
Return 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 -0.14 0.12
t-stat 1.83 1.67 1.48 1.88 0.46 1.38 2.15 2.42 -1.78 1.62
SR 1.01 0.95 0.75 0.97 0.21 1.14 1.04 0.98 -0.89 0.71
% Trades 0.11 0.12 0.07 0.13 0.20 0.25 0.08 0.10

Panel D: Early Post-Decimalization Period (2001 - 2004)
Return 0.14 0.13 0.00 0.11 0.06 -0.06 0.17 0.17 -0.04 -0.01
t-stat 3.17 3.05 0.05 2.09 0.85 -1.29 3.17 3.70 -0.63 -0.12
SR 2.00 1.97 0.02 1.20 0.49 -0.61 2.20 2.19 -0.35 -0.07
% Trades 10.57 11.31 7.23 12.76 15.01 17.54 10.05 10.05

Panel E: Late Post-Decimalization Period (2005 - 2016)
Return -0.01 -0.04 0.09 0.08 0.00 -0.14 0.04 0.05 0.01 0.07
t-stat -0.58 -1.41 3.07 1.95 -0.18 -4.44 1.41 2.32 0.32 1.37
SR -0.18 -0.49 0.88 0.81 -0.05 -0.98 0.35 0.68 0.09 0.46
% Trades 19.45 21.35 19.88 20.29 24.12 32.18 18.78 18.37

Reported are the annualized excess returns, t-statistics, and Sharpe ratios for the SPY market-timing strategy with
transaction costs. Models include the lasso (LAS), elastic net (EN), principal component regression (PCR), random
forest (RF), gradient-boosted regression trees (GBRT), neural network (ANN), mean ensemble (MEAN), and median
ensemble (MED). The independent variables are lagged returns of S&P 500 constituents. Results are reported for the
full, 1/16 tick size, 1/8 tick size, early post-decimalization, and late post-decimalization samples.
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Table 2.4: Market predictability (percentage R2
OOS) and profitability (Sharpe

ratio) by training duration post-decimalization

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Post-Decimalization Out-of-Sample R2

Training months LAS EN PCR RF GBRT ANN MEAN MED
Expanding 0.30 0.22 0.04 0.26 -0.12 -0.19 0.35 0.35
58 month 0.33 0.30 -0.06 0.25 -0.13 -0.15 0.38 0.39
34 month 0.23 0.26 0.09 0.23 -0.29 -0.20 0.36 0.38
22 month 0.29 0.27 0.07 0.22 -0.42 -0.30 0.33 0.34
16 month 0.19 0.18 0.08 -0.01 -0.39 -0.36 0.28 0.30
10 month 0.07 0.05 0.07 -0.06 -0.36 -0.29 0.22 0.24
7 month 0.05 0.05 0.00 -0.03 -0.36 -0.42 0.20 0.21
4 month 0.05 0.05 -0.08 -0.22 -0.63 -0.65 0.12 0.14
1 month -0.09 -0.09 -0.33 -0.68 -1.35 -0.40 -0.08 -0.04

Panel B: Post-Decimalization Sharpe Ratio after Transaction Costs
LAS EN PCR RF GBRT ANN MEAN MED

Expanding 0.34 0.06 0.72 0.90 0.12 -0.90 0.69 1.04
58 month 0.26 0.21 -0.16 0.85 0.23 -0.73 0.80 0.81
34 month -0.07 -0.21 0.19 0.69 -0.30 -0.72 0.45 0.56
22 month -0.13 -0.26 0.43 0.19 -0.30 -1.27 0.50 0.37
16 month -0.10 -0.28 0.41 0.06 -0.24 -1.04 0.41 0.57
10 month -0.11 -0.14 0.27 -0.43 -0.64 -0.54 0.50 0.55
7 month -0.04 -0.06 0.28 -0.03 -0.22 -0.63 0.59 0.61
4 month -0.41 -0.40 0.02 -0.30 -0.66 -0.89 0.34 0.15
1 month -0.16 -0.15 -0.40 -1.50 -2.13 -1.29 -0.29 0.09

Reported are the out-of-sample predictive R2 percentages and annualized Sharpe ratios for
the SPY market-timing strategy with transaction costs. Models include the lasso (LAS), elas-
tic net (EN), principal component regression (PCR), random forest (RF), gradient-boosted
regression trees (GBRT), neural network (ANN), mean ensemble (MEAN), and median en-
semble (MED). Compared are R2 values across 1-, 4-, 7-, 10-, 16-, 22-, 34-, and 58-month
training windows. The independent variables are lagged returns of S&P 500 constituents.
Reported are results for the post-decimalization subsamples.
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Table 2.5: Market predictability (percentage R2
OOS) and profitability (Sharpe ratio) by time

post-decimalization

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Post-Decimalization Out-of-Sample R2

Time LAS EN PCR RF GBRT ANN MEAN MED
9:35 - 10:00 -0.06 -0.21 0.21 -0.20 -1.26 -0.72 0.12 0.19

10:00 - 10:30 0.34 0.26 0.05 0.09 -0.27 -0.17 0.33 0.36
10:30 - 11:00 0.38 0.40 0.10 0.55 0.29 -0.02 0.56 0.49
11:00 - 11:30 0.41 0.32 0.03 0.35 0.20 -0.07 0.49 0.47
11:30 - 12:00 0.32 0.24 -0.02 0.29 -0.22 -0.11 0.38 0.38
12:00 - 12:30 0.47 0.41 -0.01 0.48 0.32 -0.21 0.54 0.51
12:30 - 13:00 0.39 0.26 0.24 0.48 -0.20 -0.46 0.40 0.45
13:00 - 13:30 0.31 0.33 0.10 0.43 -0.05 -0.28 0.38 0.31
13:30 - 14:00 0.37 0.26 0.01 0.34 -0.04 -0.07 0.38 0.39
14:00 - 14:30 0.99 0.96 0.19 0.62 0.65 0.62 0.90 0.84
14:30 - 15:00 0.42 0.35 0.17 0.47 0.01 0.12 0.44 0.47
15:00 - 15:30 -0.16 -0.27 -0.26 -0.08 -0.32 -0.77 -0.13 -0.09
15:30 - 15:55 0.10 -0.01 -0.26 0.13 0.11 -0.11 0.17 0.14

Panel B: Post-Decimalization Sharpe Ratio after Transaction Costs
Time LAS EN PCR RF GBRT ANN MEAN MED Intraday SPY

9:35 - 10:00 -0.20 -0.35 0.23 0.26 -0.64 -0.63 0.55 0.21 -0.25
10:00 - 10:30 0.57 0.47 0.60 0.08 0.19 -0.19 0.50 0.69 -0.02
10:30 - 11:00 0.18 0.23 0.35 0.07 0.17 0.03 0.62 0.31 -0.21
11:00 - 11:30 -0.11 -0.30 -0.08 0.00 0.18 -0.17 0.08 -0.08 -0.29
11:30 - 12:00 0.13 0.15 0.21 0.52 0.08 -0.23 0.40 0.32 0.12
12:00 - 12:30 0.00 -0.09 0.44 0.38 0.20 -0.50 0.28 0.24 -0.04
12:30 - 13:00 0.22 0.32 0.40 0.39 -0.52 -0.89 0.18 0.62 0.47
13:00 - 13:30 0.13 0.11 0.55 0.74 0.23 -0.29 0.18 0.57 0.16
13:30 - 14:00 0.17 0.00 0.09 0.39 -0.26 -0.59 0.34 0.34 -0.31
14:00 - 14:30 0.01 0.19 0.51 0.44 0.64 -0.17 0.27 0.34 -0.23
14:30 - 15:00 0.31 0.17 0.49 0.52 0.24 -0.30 0.35 0.59 0.43
15:00 - 15:30 -0.13 -0.30 -0.30 -0.34 -0.51 -0.99 -0.59 -0.39 0.27
15:30 - 15:55 -0.11 -0.28 -0.44 0.43 0.40 0.27 -0.05 -0.11 -0.09

Reported are the out-of-sample predictive R2 percentages and annualized Sharpe ratios for the SPY market-
timing strategy with transaction costs. Models include the lasso (LAS), elastic net (EN), principal com-
ponent regression (PCR), random forest (RF), gradient-boosted regression trees (GBRT), neural network
(ANN), mean ensemble (MEAN), and median ensemble (MED). Compared are results across 30-minute
windows throughout the trading day. The independent variables are lagged returns of S&P 500 constituents.
Reported are results for the post-decimalization subsamples.
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Table 2.6: Market predictability (percentage R2
OOS) and profitability (Sharpe ratio)

by volatility in the post-decimalization period

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Post-Decimalization Out-of-Sample R2

Volatility LAS EN PCR RF GBRT ANN MEAN MED
Low 0.09 -0.02 -0.03 0.02 -0.41 -0.76 0.12 0.17
Mid 0.19 0.11 -0.09 0.11 -0.11 -0.37 0.24 0.25
High 0.34 0.26 0.07 0.31 -0.09 -0.11 0.40 0.39

Panel B: Post-Decimalization Sharpe Ratio after Transaction Costs
Volatility LAS EN PCR RF GBRT ANN MEAN MED Intraday SPY
Low 0.47 0.09 0.20 0.23 -0.81 -1.79 -0.03 0.44 2.88
Mid 0.40 0.39 0.43 0.28 0.26 -1.08 0.81 0.89 -0.20
High 0.14 -0.15 0.73 1.04 0.23 -0.33 0.60 0.87 -0.93

Reported are the out-of-sample predictive R2 percentages and annualized Sharpe ratios for the SPY
market-timing strategy with transaction costs. Models include the lasso (LAS), elastic net (EN), prin-
cipal component regression (PCR), random forest (RF), gradient-boosted regression trees (GBRT),
neural network (ANN), mean ensemble (MEAN), and median ensemble (MED). Compared are re-
sults across three groups sorted on realized volatility. The independent variables are lagged returns
of S&P 500 constituents. Reported are results for the post-decimalization subsamples.

Table 2.7: Market predictability (percentage R2
OOS) and profitability (Sharpe ratio) by

illiquidity in the post-decimalization period

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Post-Decimalization Out-of-Sample R2

Illiquidity LAS EN PCR RF GBRT ANN MEAN MED
Low 0.00 -0.08 0.06 -0.06 -0.41 -0.46 0.04 0.04
Mid 0.01 -0.04 0.02 0.02 -0.43 -0.34 0.05 0.07
High 0.76 0.66 0.04 0.69 0.37 0.11 0.85 0.83

Panel B: Post-Decimalization Sharpe Ratio after Transaction Costs
Illiquidity LAS EN PCR RF GBRT ANN MEAN MED Intraday SPY
Low -0.25 -0.43 0.42 0.11 -0.34 -1.08 0.24 0.26 0.33
Mid -0.02 -0.21 0.93 0.83 0.11 -0.47 0.23 0.59 -0.22
High 1.03 0.85 0.18 1.03 0.47 -0.56 1.50 1.22 -0.07

Reported are the out-of-sample predictive R2 percentages and annualized Sharpe ratios for the market-
timing strategy with transaction costs. Models include the lasso (LAS), elastic net (EN), principal
component regression (PCR), random forest (RF), gradient-boosted regression trees (GBRT), neural
network (ANN), mean ensemble (MEAN), and median ensemble (MED). Compared are results across
three groups sorted on Amihud [12] illiquidity. The independent variables are lagged returns of S&P
500 constituents. Reported are results for the post-decimalization subsamples.
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Table 2.8: Market predictability (percentage R2
OOS) and profitability (Sharpe ratio) by crisis period

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Post-Decimalization Out-of-Sample R2

LAS EN PCR RF GBRT ANN MEAN MED
2005-2007 0.07 -0.05 0.00 0.02 -0.14 -0.39 0.11 0.10
Subprime 0.04 -0.02 0.08 0.02 -0.37 -0.48 0.06 0.07
2010-2011 -0.02 -0.05 0.03 -0.03 -0.67 -0.39 -0.03 0.02
EU crisis 0.08 -0.01 0.01 0.03 -0.30 -0.70 0.06 0.10
2014-2016 -0.07 -0.17 -0.04 -0.14 -0.36 -0.41 -0.03 0.00

Panel B: Post-Decimalization Sharpe Ratio before Transaction Costs
LAS EN PCR RF GBRT ANN MEAN MED Intraday SPY Hold SPY

2005-2007 1.44 1.13 1.66 1.86 1.93 2.26 2.32 1.85 -0.93 0.56
Subprime 1.06 0.96 3.11 3.78 2.67 0.94 2.22 1.91 0.07 -0.40
2010-2011 2.18 2.07 2.22 1.87 2.32 1.14 2.42 3.22 0.20 0.54
EU crisis 3.07 2.88 2.82 3.08 2.30 0.84 3.52 3.08 1.34 2.29
2014-2016 0.79 0.94 1.70 1.68 1.88 0.51 0.91 1.35 0.61 0.68

Panel C: Post-Decimalization Sharpe Ratio after Transaction Costs
LAS EN PCR RF GBRT ANN MEAN MED Intraday SPY Hold SPY

2005-2007 0.21 -0.04 0.22 -0.17 -0.48 -1.11 -0.36 -0.35 -0.93 0.56
Subprime -1.09 -1.55 1.38 2.00 -0.12 -0.52 0.73 0.87 0.07 -0.40
2010-2011 0.77 0.30 1.97 1.07 0.38 -1.35 0.69 1.82 0.20 0.54
EU crisis 0.63 -0.22 0.68 0.14 -1.05 -2.68 -0.09 0.57 1.34 2.29
2014-2016 -0.58 -0.38 0.64 0.12 0.17 -2.18 -0.06 0.40 0.61 0.68

Reported are the out-of-sample predictive R2 percentages and annualized Sharpe ratios for the SPY market-timing
strategy without and with transaction costs. Models include the lasso (LAS), elastic net (EN), principal component re-
gression (PCR), random forest (RF), gradient-boosted regression trees (GBRT), neural network (ANN), mean ensemble
(MEAN), and median ensemble (MED). The independent variables are lagged returns of S&P 500 constituents. Re-
ported are results for the late post-decimalization subsample which includes the subprime crisis, during 2008-2009,
and the European debt crisis, during 2012-2013.
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Table 2.9: Market predictability (percentage R2
OOS) and profitability (Sharpe ra-

tio) for autoregressive models

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Out-of-Sample R2

Autoregressive Models Baseline Models

AR(1) AR(p) OLS LAS EN PCR LAS EN PCR
1993-2016 0.55 0.53 -0.49 0.58 0.60 -0.07 2.00 1.95 0.31
1993-1996 0.22 0.37 -4.51 0.12 0.40 -0.04 9.27 9.32 6.52
1997-2000 1.87 1.95 1.07 1.78 1.79 -0.01 3.72 3.69 -0.76
2001-2004 0.17 0.08 -0.81 0.30 0.27 -0.13 0.91 0.81 0.03
2005-2016 -0.10 -0.20 -0.67 -0.02 -0.03 -0.08 0.02 -0.04 0.04

Panel B: Sharpe Ratio after Transaction Costs

Autoregressive Models Baseline Models

AR(1) AR(p) OLS LAS EN PCR LAS EN PCR
1993-2016 0.00 -0.63 -1.25 -0.27 -0.38 -0.03 0.42 0.20 0.68
1993-1996 -0.49 -0.71 -0.56 -0.68 -0.68 0.14 2.50 2.60 1.48
1997-2000 0.72 0.73 0.41 0.49 0.65 0.33 1.01 0.95 0.75
2001-2004 0.10 -0.39 -2.08 0.63 0.27 0.38 2.00 1.97 0.02
2005-2016 -0.04 -0.91 -1.70 -0.50 -0.62 -0.10 -0.18 -0.49 0.88

Reported are the out-of-sample predictive R2 percentages and annualized Sharpe ratios for the
SPY market-timing strategy with transaction costs. Models include the AR(1), AR(p), lasso
(LAS), elastic net (EN), and principal component regression (PCR). The independent variables
are 500 lagged returns of S&P 500. Results are reported for the full, 1/16 tick size, 1/8 tick size,
early post-decimalization, and late post-decimalization samples.
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Table 2.10: Market predictability (percentage R2
OOS) and profitability (Sharpe ratio)

with additional characteristics in the post-decimalization period

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Post-Decimalization Out-of-Sample R2

LAS EN PCR RF GBRT ANN MEAN MED
Base 0.05 0.05 -0.08 -0.22 -0.63 -0.65 0.12 0.14
BETA -0.98 -1.41 -2.44 -1.92 -1.54 -4.10 -0.39 -0.03
ILLIQ 0.09 -0.44 -8.73 -2.70 -7.74 -3.22 -0.62 0.05
KURT -0.64 -2.27 -1.1E+18 -2.12 -1.62 -4.25E+23 -1.18E+22 -0.01
MAX 0.03 -0.50 -0.10 -0.56 -1.14 -1.27 -0.02 0.09
MIN -0.37 -0.36 -0.10 -5.53 -0.68 -1.38 -0.25 0.01
MOM 0.07 -1.24 -0.07 -0.42 -2.59 -1.05 -0.08 0.08
SKEW 0.06 -1.13 -4.8E+12 -0.72 -1.59 -1.8E+15 -5.5E+13 -0.01
VOL -0.02 -0.35 -0.16 -1.69 -2.26 -1.09 -0.07 0.07
VOLUME -1.95 -2.24 -0.06 -3.05 -7.49 -1.35 -0.47 -0.24
SPREAD -1.51 -1.20 -3.67 -0.12 -0.42 -1.40 -0.08 0.13

Panel B: Post-Decimalization Sharpe Ratio after Transaction Costs
LAS EN PCR RF GBRT ANN MEAN MED

Base -0.41 -0.40 0.02 -0.30 -0.66 -0.89 0.34 0.15
BETA -0.27 -0.30 0.14 -0.80 -2.18 -1.38 -0.17 -0.08
ILLIQ -0.29 -0.36 -0.48 -1.12 -2.77 -1.29 -0.95 -0.18
KURT -0.47 -0.46 0.22 -0.90 -1.74 -1.19 -0.07 0.11
MAX -0.21 -0.31 -0.27 -0.71 -1.76 -1.00 -0.53 0.02
MIN -0.18 -0.18 -0.06 -0.47 -1.28 -0.99 -0.20 0.06
MOM -0.29 -0.32 0.12 -0.80 -1.72 -0.92 -0.18 0.07
SKEW -0.26 -0.37 0.27 -0.62 -1.58 -1.00 -0.10 0.32
VOL -0.53 -0.61 -0.21 -0.94 -2.33 -1.14 -0.17 -0.12
VOLUME -0.24 -0.27 0.28 -1.02 -2.75 -1.11 -0.68 0.08
SPREAD -0.21 -0.25 -0.03 0.16 -0.56 -1.00 0.17 0.44

Reported are the out-of-sample predictive R2 percentages and annualized Sharpe ratios for the SPY
using the lasso (LAS), elastic net (EN), principal component regression (PCR), random forest (RF),
gradient-boosted regression trees (GBRT), neural network (ANN), mean ensemble (MEAN), and me-
dian ensemble (MED). In addition to lagged returns (LAG), the independent variables include market
beta (BETA), illiquidity (ILLIQ), kurtosis (KURT), maximum (MAX), minimum (MIN), momentum
(MOM), skewness (SKEW), volatility (VOL), or volume (VOLUME) of S&P 500 constituents cal-
culated over the previous day as well as the percent bid-ask spread (SPREAD). See appendix B.2 for
details on how these characteristics are calculated.



Chapter 3

Asian ∆-hedging and S&P 500 ensemble
predictive trading profitability

Abstract

A profitability comparison between Asian option ∆-hedging, using the results of chapter 1, and
machine learning (mean) ensemble predictive trading the S&P 500, using the results of chapter
2, is presented. Interpreting the upper- and lower-bounds on arithmetic Asian option prices,
given in section 1.2.4, as hypothetically respectively representing ask and bid values, it is found
that hedging profitability depends largely on the ability of the option holder to secure prices
closer to the bid value, and that, settling midway between the bid and ask, significant profits
are consistently accumulated during the years 2004-2016. This is managed with infrequent
rebalancing of a self-financing portfolio, according to a backward-difference estimate of the ∆-
hedging parameter. In contrast, ensemble predictive trading the S&P 500 yields comparatively
very small returns, despite trading much more frequently. Given the robustness of the latter
profitability to transaction costs, demonstrated in chapter 2, the same robustness follows as a
corollary of the superior hedging returns achieved.

3.1 Introduction
As one means of ‘bridging the gap’ between the lengthier chapters 1 and 2, a profitability
comparison is presented between Asian option ∆-hedging and machine learning mean ensem-
ble predictive trading the S&P 500, using the results of both chapters. The hedging strategy
achieves far superior returns (on average) with infrequent periods (days) hedging a single arith-
metic Asian option via a portfolio self-financed by short-selling the underlying (S&P 500), and
rebalancing every five minutes according to a backward-difference estimate of the ∆-hedging
parameter. Ensemble predictive trading the S&P 500 much more frequently (every five minutes
of each day) and in greater quantity (one S&P 500 ‘share’), further enforcing the superiority of
the arithmetic Asian option ∆-hedging strategy.

This brief chapter proceeds as follows: The arithmetic Asian option ∆-hedging strategy, and
the methodology for its computation, are presented in section 3.2, using results from chapter
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1. Results for the final (and otherwise arbitrarily chosen) trading-day of available S&P 500
returns data, December 30, 2016, are presented in section 3.3, followed by results over the
period including calendar years 2004-2016. Conclusions follow in section 3.4.

3.2 Methods
Suppose a trader decides at the beginning of each day, say, d ∈ {1, 2, . . . ,D}, whether to hedge
a single fixed-strike arithmetic Asian call option on an S&P 500 underlying, self-financing a
hedging portfolio by short-selling enough underlying units to cover the option purchase. (The
option is taken to have maturity at the end of the day, in part to avoid complications arising from
discontinuities in the underlying price between days.) For the remainder of the day, the trader
is committed to rebalancing the portfolio every five minutes to contain the same single option,
and ∆ units of the underlying, depositing or borrowing/withdrawing from a risk-free bond
account as required. At the beginning of day d, the trader observes the underlying price, S d,0,
and considers whether to hedge an Asian option with price, Vd,0, taken according to whether
Vd,0 ≤ V . I.e., the trader is unwilling to short-sell more than V worth of underlying to self-
finance the portfolio, choosing instead to do nothing for the remainder of the day, and preserve
any existing profits or losses. In case the trader hedges on day d, the portfolio is balanced at
each five-minute period, say, m ∈ {1, 2, . . . ,M}, such that the following number of underlying
units are held:

∆ ≡ VS ≈
Vd,m − Vd,m−1

S d,m − S d,m−1
≡ ∆d,m (3.1)

The trader observes the underlying price history, including {S d,m, S d,m−1}, and option prices,
{Vd,m,Vd,m−1}, computed (by an exogenous ‘nature’ or ‘oracle’) using formula (1.43) as in sec-
tion 1.2.4. This again yields both upper- and lower-bound option prices, which are interpreted
respectively as ask and bid values. Both prices yield their own ∆-estimates via the backward-
difference formula (3.1). This method for estimating the option ∆-hedging parameter is pre-
ferred to a similar procedure as in section 1.2.4, applied to the corresponding parameter of
corollary 1.2.7, for two reasons: First, this procedure proved very numerically sensitive, to the
extent that initial λ0-value guesses were most often accepted outright, indicating a (nearly) flat
price V along underlying S curves. Second, and not unrelated, the hedging parameters of corol-
lary 1.2.7 depend explicitly on the terminal underlying price, S T , and so must be evaluated nu-
merically via MC simulations, which drastically increase running time and add uncertainty to
such hedging parameter estimates. [Nor is it attractive to attempt analytical derivation of a cor-
responding ∆-hedging parameter as in theorem 1.2.8: Though this certainly appears feasible, it
would likely require much more effort and prove much more error-prone than the derivation of
formula (1.43), which was already quite arduous using even Maple to simplify where possible.]

Each day, d, the risk-free interest rate, rd, and volatility of the underlying S&P 500, σd, are
moment-matched (for a lognormal distribution) to the index data that day. These data are
described in appendix B, but only the five-minutely sampled index/‘market’ prices including
years 2004-2016 are used; i.e., the individual S&P 500 constituents are not explicitly consid-
ered, though they may implicitly account heavily for the corresponding mean predictive trading
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strategy taken from chapter 2 and presently compared with a simpler, (advantageously) far less
liquid, and much more profitable (on average) arithmetic Asian option ∆-hedging strategy. The
superiority of the latter is further enforced by the fact that it doesn’t require recourse to the in-
dividual constituents of the S&P 500, nor does it require three months of such historical data to
render trading decisions; only the present and immediately past option and underlying prices
are needed to compute the ∆-hedging parameter (3.1). [The three-month predictions were
used, as they give the mean ensemble predictive trading strategy the least advantage over arith-
metic Asian option ∆-hedging, compared to the longer prediction windows considered (with
improved results) in chapter 2.] Of course, each option is computed using the corresponding
underlying price, as well as the daily index price history to compute (via the trapezoidal rule)
the arithmetic average, Ad,m. But this is done exogenous to the trader, by an ‘oracle’ able to
divine the daily risk-free rate, rd, and underlying volatility, σd.

3.3 Results
Shown in figures 3.1-3.3 are a number of results for the otherwise-arbitrarily-chosen, last trad-
ing day of available five-minutely S&P 500 price data, December 30, 2016. On that day, and
all days in the years including 2004-2016 studied subsequently, the strike price is set to half of
the daily starting price, i.e., Kd = S d,0/2 on day d. This is done in order to avoid similar numer-
ical difficulties which arise for such strike values when attempting to estimate the arithmetic
Asian ∆-hedging parameter as done for the price itself in section 1.2.4, described following
equation (3.1). Namely, initial λ0 guesses tend to be accepted immediately, resulting in price
discontinuities. This is due to the extreme sensitivity of prices V to λ demonstrated in fig-
ures 1.5-1.7, and both numerical challenges may be related to the small (annualized) scales,
σ2

d(T − t), involved in options with daily maturities, and are apparently exacerbated for larger
strike values which remove call options further from the money, where the estimation quality
demonstrated in figures 1.34 deteriorates and the option price flattens to zero. (The desirable
behavior is demonstrated in figure 1.2.3 with λ0,ask = 10 = 10λ0,bid; the difficulty occurs when
such curves ‘bend and flatten’ past some time, no longer updating beyond the initial guesses,
taken as the preceding values to somewhat mitigate the challenge.) Naturally, the tendency for
this problem to arise in estimating V increases as the time to maturity, T − t, falls, and lower
strike values ensure eventual exercise earlier in the day, allowing the exact option price (1.45)
to be used, which also immediately yields exact hedging parameters, in particular,

∆ ≡ VS =
1 − e−r(T−t)

rT
(3.2)

Figure 3.1a presents the S&P 500 price and its daily average on December 30, 2016, along
with bid, ask, and their mean option (plus strike) prices; the time when eventual exercise is
guaranteed is indicated vertically. The option prices converge to the exact value, known past
this time, in a manner similar to figure 1.34b: The fact that the upper bound/ask price tracks
more closely the underlying, than the bid and even their mean, accounts for the profits achieved,
rather than losses, from ∆-hedging portfolios including a single arithmetic Asian call option
purchased at the lesser prices, displayed in figure 3.1b. These are clearly realized during the
period when the bid (and mean) price is increasing most rapidly. Supposing the trader is able
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to settle at the beginning of the day to purchase one option at the mean bid-ask price, one
key takeaway is that the resulting ∆-hedging strategy dramatically dominates that applying the
mean ensemble predictions of chapter 2: The latter, though profitable on the day considered,
are three orders of magnitude lower, despite trading on the same order of units of underlying
[one every five minutes, as opposed to the (differences of) the ∆-hedging ratios shown in figure
3.2b]. Interestingly, the most profitable ‘bid’ ∆-hedging strategy trades quite erratically in the
underlying prior to certain exercise, again most notably (and naturally) when the bid itself is
increasing most rapidly. The much greater apparent fit of the ‘ask’ ∆-hedging ratios with the
values once exercise is certain, perhaps indicate that the upper (ask) option price is tighter
than the lower (bid) bound, more so than the closer tracking of the underlying observed and
noted in figure 3.1a. Essentially, the bidder is able to profit by capitalizing at the beginning of
the day with an artificially low bid, compared to a more reasonable ask, and so once settling
midway with a willing seller. Note also that the interpretation, valid for European options in the
BS framework, of the ∆-hedging parameter as the probability of exercise, is clearly not valid
for arithmetic Asian options: The true values (3.2) decay exponentially to zero as the time to
maturity, T − t, vanishes. Figure 3.3b shows the range of figure 3.2b within the unit interval.

(a) Option prices converge to S&P 500 average (b) Profitability comparison with ensemble trading

Figure 3.1: Profitability comparison for December 30, 2016

To further compare the arithmetic Asian ∆-hedging and ensemble trading strategies, consider
the ‘charm’ of Haug [158] in the case that the exact option price (1.45) is used:

∆t ≡ VS t = −
e−r(T−t)

T
< 0 (3.3)

This may otherwise be approximated by a backward finite difference, as for formula (3.1):

∆t ≈
∆d,m − ∆d,m−1

td,m − td,m−1
(3.4)

Here, of course, td,m(−1) denotes the time, measured in years from an arbitrary but common
starting date, at the beginning of five-minute time interval m(−1) on day d. Restricting at-
tention to the sign of the charm (3.4), figure 3.4a compares the arithmetic Asian bid and ask
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(a) Local ensemble trading profits (b) Asian ∆-hedging parameter behavior

Figure 3.2: Further profitability comparison for December 30, 2016

(a) With λ0,ask = 10 = 10λ0,bid (b) Within local range [0,1]

Figure 3.3: Yet further profitability comparison for December 30, 2016

∆-hedging with the ensemble trading strategy on December 30, 2016, in terms only of whether
the underlying is purchased or sold during each five-minute interval following the initial self-
financing by short-selling the underlying and prior to the certainty of eventual exercise, when
the exact formula (3.3) is applied and all three strategies sell off underlying for the remainder
of the day. Indeed, the mean ensemble trading strategy sells one unit of underlying every five
minutes throughout the day, resulting in the modest profits depicted in figure 3.2a. In the pe-
riod shown in figures 3.4, the arithmetic Asian bid (ask) ∆-hedging strategy sells underlying
48.72% (66.67%) of the time, versus 100% for the mean ensemble trading strategy, and the
bid and ask strategies simultaneously buy and sell underlying only 28.21% of the time. But as
discussed and displayed in figures 3.2b and 3.4b, it is clear that the arithmetic Asian bid (ask)
∆-hedging strategy sells underlying often in multiple (small fractional) units, as opposed to the
uniform unit sold every five minutes by the mean ensemble strategy, resulting in the compara-
tively (moderately) large profits (losses) given in figure 3.1b.
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(a) Sign (b) Numerator magnitude

Figure 3.4: Charm prior to certain exercise on December 30, 2016

Considering the inclusive period 2004-2016 (for convenience as the data is differently format-
ted during the period 1993-2003), figure 3.5a demonstrates sustained profits (losses) of the bid
and mean (ask) arithmetic Asian ∆-hedging strategy, as in figure 3.1b for December 30, 2016,
assuming the trader is unwilling to balance the ∆-hedging portfolio at a cost of more than
$200 each day. That is, at the beginning of each day, the trader computes the cost of balancing
the ∆-hedging portfolio, and only considers proceeding so long as it does not exceed $200.
This is one way of gauging the risk preferences of the trader. To the nearest (ten thousand)
dollar(s), the trader never (always) balances during the period 2004-2016 when observing a
maximum allowable balancing cost up to (exceeding) $36 ($190000). Shown in figure 3.6a are
ask (bid) profit paths in blue (red), from light to dark shades determined by a log-linear space
between these two prices: Perhaps most apparent is that (intuitively) many of the profit steps
occur at common times, and there may be greater path volatility in earlier years. To better illus-
trate the effect of maximum allowable balancing cost, cumulative profits for the entire period
2004-2016 are shown in figures 3.6c-3.6e, respectively bounding above the plotted allowable
balancing costs at $190000, $3000, and $70: These bounds are chosen to illustrate both the
behavior over the entire log-linear range of (1000) allowable balancing costs, as well as earlier
periods of high volatility in greater detail. A number of conclusions follow: The ask (bid)
profit paths are mostly negative (positive), as expected, such that the mean profit is positive
between allowable borrowing costs of roughly $46.5 and $650, peaking over a ‘sweet spot’
between $52 and $64.5, in which there is comparatively little volatility in both bid and ask,
and especially the mean profits. Thus, a trader settling each period midway between the bid
and ask value, performs well when moderately risk-averse, spending only up to about $650 on
daily balancing, and particularly so when more acutely risk-averse, restricting daily balancing
to be under roughly $65, but not so risk-averse as to avoid balancing altogether (i.e., below
$37) or achieve negative profits (below $46.5). Traders able to settle at the bid price, however,
are best served to be risk-loving, not restricting daily balancing costs to be any value below
roughly $1100; traders settling at the ask price are similarly most poorly served.
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(a) 2004-2016, 13 S&P 500 (b) S&P 500 cross correlations (c) ∆-hedge, December 22, 2015

(d) 2004-2009, 3 S&P 500 (e) 2004-2008, 0.5 S&P 500 (f) Early 2004, 0.2 S&P 500

Figure 3.5: Profitability comparison with ensemble trading and multiples of the S&P 500

The remaining five figures 3.5 further examine aspects of the primary one, figure 3.5a: Not-
ing that (13 times) the S&P 500 apparently tracks quite well the bid curve in the latter figure,
versions on the reduced time scales from January 2004 to the jumps roughly occurring near
the ends of 2009, 2008, and February 2004, are respectively shown in figures 3.5d-3.5f. The
visual similarity is retained in each figure, and validated in figure 3.5b, which indicates the
sample cross-correlation between (multiples of) the S&P 500 and the ask, bid, and mean arith-
metic Asian ∆-hedging strategies, over the entire period 2004-2016, for lags between plus and
minus three years: All strategies exhibit statistically significant sample cross correlations with
the S&P 500 at all such lags; the bid and mean strategies’ cross correlation functions are very
similar, as the profitability of the latter clearly tends near half that of the former, with the ask
profitability being nearly an order of magnitude less (in absolute value) than that of the bid.
The bid and mean cross correlations also persist at higher values than the ask for large negative
lags, but peak at smaller values (near 0.7), whereas the bid is minimized near -0.9! Finally,
figure 3.5c provides insight into the loss, exceeding 600 USD, of the bid (and about half that
on the mean) strategy on December 22, 2015, compared with little variation in the S&P 500,
ask profitability, and bid and ask arithmetic Asian option prices on the same day: The bid (and
mean) profitability depends otherwise on only the ∆-hedging parameter value (and the bond
account, which is also so directly determined). The corresponding plot in figure 3.5c clarifies
the problem: The S&P 500 values varied little between 11:40, 11:45, 11:50, and 11:55 on
December 22, 2015, particularly as compared to the arithmetic Asian bid prices estimated at
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(a) Varying maximum allowable balancing cost (b) Up to 899 USD

(c) Cumulative profits (d) Up to 3000 USD (e) Up to 70 USD

Figure 3.6: Profitability by maximum allowable balancing cost

the same times, resulting in backward-difference ∆-hedging parameter estimates (3.1) orders of
magnitude larger than others issued that and most other days. I.e., the trader blindly accepts the
anomalous orders to buy and sell hundreds or thousands of ‘shares’ in the S&P 500 between
11:40 and 11:55 on December 22, 2015, despite the amounts ‘typically’ issued being orders
of magnitude smaller. In this case, this is done at a small fraction of a percentage loss, which
for the thousands of shares traded and hundreds of dollars per share, yields the loss exceeding
600 USD (300 USD) of the bid (mean) strategy, negating about 25% of the total profitability
accrued to the strategy over the preceding four years, or about one third of the strategy lifetime.
As such, the foregoing analysis in part acts as a cautionary tale for both applying (in particular,
first-order) finite differences to estimate hedging parameters, and ‘mindless’ automated trad-
ing. But with the other jumps in figure 3.5a apparently being due to similar phenomena, and
noting that the same phenomenon yields very large gains on rare days, it is conceivable that
the strategy may be less profitable long-term, if some ‘safeguard’ were introduced to ignore
outlier trade orders; particularly, since the bid and mean strategies tend not to trade on many
days, and as such significantly accrue greater wealth due to compounding at the risk-free inter-
est rate on such days. But such ‘slow and steady’ strategies which filter outlying trade orders,
compared to the ‘high risk, high reward’ ones studied in figures 3.5, may be appropriate in
some circumstances and chosen by certain risk(-averse) preferences: They are not presently
modeled, both since there are myriad ways to enact such filtering, and the strategies currently
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studied are ‘pure’ ∆-hedging, in that the only decision is whether to self-finance the strategy
at the beginning of each day; but this is one possible direction of further study. Additionally,
plausible profitability curves for the ‘safe and steady’ strategies can readily be imagined from
those of figures 3.5, simply by visually ‘removing’ the jumps and scaling toward the abscissa,
to account for reduced profitability or loss due to the compounding of smaller such values.

As far as the arithmetic Asian ∆-hedging strategy is concerned, it is clear that profitability
depends heavily on both the ability of the trader to secure options on a daily basis nearer to
the bid than the ask price, and to be willing to accordingly balance at ‘moderately large’ costs,
e.g., between roughly $46.5 and $650 during the entire period 2004-2016. And figure 3.5a
makes clear that, when achieved, such profits dwarf those of the mean ensemble trading strat-
egy, despite trading in comparable quantities of the underlying and much less frequently to
boot. It is seen in chapter 2 that the latter profits are robust to trading costs, so that those of the
arithmetic Asian ∆-hedging strategy certainly are also. To conclude the results and present an
alternate perspective of those given in chapter 2, a graphical analysis is conducted of the mean
ensemble trading strategy (without transaction costs), shown in figure 3.7a (and overlaid with
its profitability in figure 3.9c and net periods holding the underlying in figure 3.10a) during
the period 2004-16, and several realized monthly statistics of the underlying (S&P 500) price
path considered as predictors in chapter 2, overlaid by the trading strategy in figures 3.7b-3.9b:
Illiquidity, kurtosis, extrema, momentum, skewness, volatility, and volume. Monthly statistics
are used, as that is the prediction window by which the trading strategy is determined in chapter
2, and perhaps to some extent as a result, and apparent in figure 3.7a, trades typically change
direction only once every two months over the period 2004-2016; see also the corresponding
histogram in figure 3.10b. Momentum refers to the sum of lagged (over the preceding month)
underlying returns, as a notion of whether the underlying has recently altogether been ‘up’ or
‘down.’ Illiquidity is computed according to Amihud [12], and is intuitively seen to decrease
in time in figure 3.7b. An alternate viewpoint of the mean ensemble trading strategy is ex-
plored in figures 3.10b and 3.10c: The waiting times between changes in trading direction are
shown as a histogram in the former, both when buying or selling and restricted to the former,
from which the latter are immediately inferred. A Poisson arrival process for the changes in
trading direction has exponential waiting times, fitted to the three histograms’ data in figure
3.10c, along with nonparametric kernel estimates and similarly peaked gamma distributions.
Visually, the fitted curves do not appear immediately inconsistent with one another or the corre-
sponding histograms, possibly intuiting similarly simple dynamics for trading strategy decision
changes, determined via a mean ensemble of several machine learning predictions in chapter
2. In particular, the memoryless property of the idealized exponential waiting time distribution
may offer a clue as to why hyperparameter optimized recursive (in particular, long short-term
memory) neural networks did not fit the high-frequency S&P 500 returns data addressed in
chapter 2 better than the other models considered, and which results are as such not included
therein.

Finally, to better assess the correlation between the mean ensemble trading strategy and real-
ized monthly underlying statistics overlaid in figures 3.7b-3.9b, corresponding sample cross-
correlation functions are plotted in figures 3.11. Those for maximum, minimum, volatility,
volume, and especially momentum, all have typical ‘peaked bell curve’ forms, and the oth-
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(a) Ensemble trading strategy (b) Realized monthly illiquidity (c) Realized monthly kurtosis

Figure 3.7: Mean strategy and realized monthly illiquidity and kurtosis

(a) Realized monthly extrema (b) Realized monthly momentum (c) Realized monthly skewness

Figure 3.8: Realized monthly extrema, momentum and skewness

ers are apparently somewhat periodic; that for illiquidity notably is much greater for negative
lags, perhaps at least partly because illiquidity itself decreases in time. Beyond these rough
observations, it is notable that, even with forward and backward lags of up to three years, the
trading strategy is apparently overwhelmingly more often than not significantly correlated with
each of the realized monthly statistics considered (with 95% confidence intervals about the null
hypothesis of no correlation being shown in blue in each plot). The scale of all correlations is
also remarkable; at least 15% in either direction in all cases, and in some markedly more so.
Again, particularly the case of momentum in figure 3.11e, with a peak correlation over 0.5 at
approximately one month’s backward lag, consistent with predictability of the trading strategy.
Similarly for volatility in figure 3.11g with correlation about -0.4, maximum in figure 3.11c at
about 0.35, volume in figure 3.11h at about -0.3, and minimum in figure 3.11d at about -0.25.
In other words, observing one month in advance each of the realized underlying statistics over
the preceding month, the trading strategy is more likely to buy than sell, as in decreasing or-
der of importance, momentum is positive, volatility is low, maximum is positive, volume is
small, and minimum is negative. In short, persistent positive returns over the preceding month,
with a large spread and yet small volatility and trading volume, are highly conducive to buy-
ing the underlying, and ideally profitability. This may initially appear contrary to the fact that
these same realized monthly statistics were found not to be useful predictors of profitability
in chapter 2. Notwithstanding the fact that many other predictors are involved there (i.e., the
lagged individual constituents of the S&P 500), the present results are in fact not surprising:
They consider the correlation of the various realized monthly statistics with the mean ensem-
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(a) Realized monthly volatility (b) Realized monthly volume (c) Profitability

Figure 3.9: Mean strategy profitability and realized monthly volatility and volume

(a) Underlying held (b) Waiting times histogram (c) Waiting times fitted curves

Figure 3.10: Mean strategy net holding and waiting times

ble trading strategy, the correlation of which with its own profitability is found in chapter 2
to be (significantly) a fraction of a percentage, so that correlation between the trading strategy
and the realized monthly statistics is unlikely to reach to profitability of the former. Also, as
noted, figures 3.11 demonstrate significant correlation with an overwhelming majority of lags,
forward and backward, up to three years: Clearly, much of the variation of the trading strategy
cannot be explained by the top five correlated statistics lagged one month behind. Nonetheless,
figures 3.11 plausibly provide a natural interpretation of the mean ensemble trading strategy
derived in chapter 2, and the small but significant correlation between that and its profitability,
provides some evidence that ‘intuitive’ trading strategies backed by such technical analyses
may, albeit barely, ‘beat the market.’

3.4 Conclusions

A profitability comparison between Asian option ∆-hedging, using the results of chapter 1,
and machine learning (mean) ensemble predictive trading the S&P 500, using the results of
chapter 2, is presented. Interpreting the upper- and lower-bounds on arithmetic Asian option
prices, given in section 1.2.4, as hypothetically respectively representing ask and bid values, it
is found that hedging profitability depends heavily on both the ability of the trader to secure
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(a) Illiquidity (b) Kurtosis (c) Maximum

(d) Minimum (e) Momentum (f) Skewness

(g) Volatility (h) Volume

Figure 3.11: Mean trading strategy and realized monthly statistical sample cross correlations

options on a daily basis nearer to the bid than the ask price, and to be willing to accordingly
balance at ‘moderately large’ costs, e.g., between roughly $46.5 and $650 during the entire
period 2004-2016. And when achieved, such profits dwarf those of the mean ensemble trading
strategy, despite trading in comparable quantities of the underlying and much less frequently to
boot. The latter profits being robust to trading costs, so too are those of the arithmetic Asian ∆-
hedging strategy. An array of primarily graphical analyses of sample correlations between the
mean ensemble trading strategy derived in chapter 2 and a variety of realized monthly statis-
tics of the underlying S&P 500, provide a natural interpretation of the strategy, and the small
but significant correlation between that and its profitability, evidence that ‘intuitive’ trading
strategies backed by such technical analyses may ‘beat the market.’



Conclusion

The preceding three essays in financial asset pricing concern illiquid markets; one on the par-
tial differential equation pricing and hedging of power mean Asian options, via their (opti-
mal) Lie point symmetry groups, leading to practical pricing formulas. Another presents high-
frequency machine learning predictions of S&P 500 returns, statistically significantly demon-
strating short-horizon market predictability, and economically significantly profitable (beyond
transaction costs) trading strategies. The third compares the profitability of the latter mean en-
semble strategies and Asian option ∆-hedging. Interpreting bounds on arithmetic Asian option
prices as ask and bid values, hedging profitability depends largely on securing prices closer to
the bid value, and settling midway between the bid and ask, significant profits are consistently
accumulated during the years 2004-2016. In contrast, ensemble predictive trading the S&P 500
yields comparatively very small returns, despite trading much more frequently.

The pricing and hedging of (arithmetic) Asian options poses a difficult problem, which has
prompted the development of several solution approaches, differing in theoretical informative-
ness and practicality. Multiple families of exact solutions to relaxed power mean Asian option
pricing boundary-value problems are explicitly established, which approximately satisfy the
full pricing problem, and in one case, converge to exact solutions under certain parametric
restrictions. Corresponding hedging parameters/Greeks are derived. This family consists of
(optimal) invariant solutions, constructed for the pricing partial differential equations of a class
of continuous/generalized power mean Asian options, via their (optimal) Lie point symmetry
groups. Numerical experiments, in particular, an exhaustive series of Gaussian process re-
gressions, explore the behavior of this family, and lead to accurate, reliable, consistent pricing
models suitable for use in practice.

The second chapter analyses and demonstrates the predictability of intraday market returns.
Conducting apparently the largest existing study of five-minute market returns using state-of-
the-art machine learning models trained on the cross-section of lagged market index constituent
returns to forecast five-minute market returns, it is shown that regularized linear models such
as lasso and elastic nets along with nonlinear tree-based models such as random forests yield
significant predictability. Ensemble models that combine individual model predictions perform
the best across time and their return predictability translates into economically significant prof-
its with Sharpe ratios after transaction costs of 0.98. These results provide strong evidence
that intraday market returns are predictable during short time horizons, beyond what can be
explained by transaction costs. It is further shown that the lagged constituent returns hold
significant predictive information that is not contained in lagged market returns or in lagged
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price trend and liquidity characteristics. Consistent with the hypothesis that predictability is
driven by slow-moving trader capital, predictability decreased after decimalization, and market
returns are more predictable during the middle of the day, on days with high volatility or high
illiquidity, and in years of financial crisis.

The third chapter presents a profitability comparison between Asian option ∆-hedging, using
the results of chapter 1, and machine learning (mean) ensemble predictive trading the S&P 500,
using the results of chapter 2. Interpreting the upper- and lower-bounds on arithmetic Asian
option prices, given in section 1.2.4, as hypothetically respectively representing ask and bid
values, it is found that hedging profitability depends largely on the ability of the option holder
to secure prices closer to the bid value, and that, settling midway between the bid and ask, sig-
nificant profits are consistently accumulated during the years 2004-2016. This is managed with
infrequent rebalancing of a self-financing portfolio, according to a backward-difference esti-
mate of the ∆-hedging parameter. In contrast, ensemble predictive trading the S&P 500 yields
comparatively very small returns, despite trading much more frequently. Given the robustness
of the latter profitability to transaction costs, demonstrated in chapter 2, the same robustness
follows as a corollary of the superior hedging returns achieved.

Collectively, in addition to developing extensive, original results for a newly-defined class
of power mean Asian options, and in so doing apparently also conducting the first Gaussian
process regression pricing of arithmetic Asian options, apparently the largest existing study of
five-minute market returns was conducted. The two contributions are tied together via a de-
tailed profitability comparison of derived hedging/trading strategies of each, further emphasiz-
ing that both are particularly informative for illiquid markets. These results provide theoretical
insights with practical implications, aiming for use and added credibility (and profitability!)
in financial practice. For derivatives generally and Asian options, in particular, proper pricing
encourages their trade, promoting investment, economic growth, financial institutions’ repu-
tations, and social welfare; as do accurate machine learning predictions of intraday market
returns, which yield profitability by statistical arbitrage and theoretical insights into the market
predictability associated with trader (in)activity.
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[35] Daniele Bianchi, Matthias Büchner, and Andrea Tamoni. Bond risk premia with machine learning. forthcoming in The Review of Financial Studies, 2020.
[36] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.
[37] Christopher M Bishop et al. Neural networks for pattern recognition. Oxford university press, 1995.
[38] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of political economy, 81(3):637–654, 1973.
[39] George W Bluman and Sukeyuki Kumei. Symmetries and differential equations, volume 81. Springer Science & Business Media, 2013.
[40] Vincent Bogousslavsky. Infrequent rebalancing, return autocorrelation, and seasonality. The Journal of Finance, 71(6):2967–3006, 2016.
[41] G Bormetti, Guido Montagna, N Moreni, and Oreste Nicrosini. Pricing exotic options in a path integral approach. Quantitative Finance, 6(1):55–66, 2006.
[42] Phelim Boyle and Alexander Potapchik. Prices and sensitivities of asian options: A survey. Insurance: Mathematics and Economics, 42(1):189–211, 2008.
[43] Phelim P Boyle. Options: A monte carlo approach. Journal of financial economics, 4(3):323–338, 1977.
[44] Y Bozhkov and S Dimas. Enhanced group analysis of a semi linear generalization of a general bond-pricing equation. Communications in Nonlinear Science and Numerical

Simulation, 54:210–220, 2018.
[45] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.
[46] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[47] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classification and regression trees. belmont, ca: Wadsworth. International Group, 432:151–166, 1984.
[48] Mark Broadie and Paul Glasserman. Estimating security price derivatives using simulation. Management science, 42(2):269–285, 1996.
[49] IUriı̆ Brychkov. Integral transforms of generalized functions.
[50] Svetlana Bryzgalova, Markus Pelger, and Jason Zhu. Forest through the trees: Building cross-sections of stock returns. Available at SSRN 3493458, 2019.
[51] Herbert Buchholz. The confluent hypergeometric function: with special emphasis on its applications, volume 15. Springer Science & Business Media, 2013.
[52] Peter S Bullen. Handbook of means and their inequalities, volume 560. Springer Science & Business Media, 2013.
[53] Ning Cai. Pricing and hedging of quantile options in a flexible jump diffusion model. Journal of applied probability, 48(3):637–656, 2011.
[54] Ning Cai, Nan Chen, and Xiangwei Wan. Occupation times of jump-diffusion processes with double exponential jumps and the pricing of options. Mathematics of Operations

Research, 35(2):412–437, 2010.
[55] NC Caister, KS Govinder, and JG O’Hara. Optimal system of lie group invariant solutions for the asian option pde. Mathematical methods in the applied sciences, 34(11):1353–1365,

2011.
[56] Nicolette C Caister, JOHN G O’HARA, and Keshlan S Govinder. Solving the asian option pde using lie symmetry methods. International Journal of Theoretical and Applied

Finance, 13(08):1265–1277, 2010.
[57] John Y Campbell and Samuel B Thompson. Predicting excess stock returns out of sample: Can anything beat the historical average? The Review of Financial Studies, 21(4):1509–

1531, 2008.

141



142 BIBLIOGRAPHY
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[108] SO Edeki, GO Akinlabi, and O González-Gaxiola. Adomian decomposition method for analytical solution of a continuous arithmetic asian option pricing model. Telkomnika,

17(2):866–872, 2019.
[109] Sunday O Edeki, Tanki Motsepa, Chaudry Masood Khalique, and Grace O Akinlabi. The greek parameters of a continuous arithmetic asian option pricing model via laplace adomian

decomposition method. Open Physics, 16(1):780–785, 2018.
[110] Sunday O EDEKI, Olabisi O UGBEBOR, and Paul O OGUNDILE. Analytical solutions of a continuous arithmetic asian model for option pricing using projected differential

transform method. Engineering Letters, 27(2), 2019.
[111] P Embrechts, LCG Rogers, M Yor, et al. A proof of dassios’ representation of the |alpha-quantile of brownian motion with drift. The Annals of Applied Probability, 5(3):757–767,

1995.
[112] Javier Esparza, Jose L Lopez, and Javier Sesma. Zeros of the whittaker function associated to coulomb waves. IMA journal of applied mathematics, 63(1):71–87, 1999.
[113] Christian-Oliver Ewald, Olaf Menkens, and Sai Hung Marten Ting. Asian and australian options: A common perspective. Journal of Economic Dynamics and Control, 37(5):1001–

1018, 2013.
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Appendix A

Exponential operator formulas

This appendix establishes all results claimed to follow ‘trivially’ from Taylor’s theorem in
Proposition 14 of Parmar [244]. In fact, it is seen that the proofs by Taylor’s theorem are
rather nontrivial (those involving the Laplacian, ∇2, are not attempted in this manner), but a
formal operator approach yields them readily, including a vast generalization of the first three.

By Taylor’s theorem, given (real analytic) f ∈ Cω(R,R)1 and x, t ∈ R,

1. If |t| < R, the radius of convergence of the Taylor series expansion of f (x) ∈ Cω(R,R),

f (x + t) =

 ∞∑
n=0

tn

n!
∂n

x

 f (x) = et∂x f (x) (A.1)

This remains valid, replacing t by functions f (t) : R → R, e.g., c0(t) ≡ −
∫ t

0
[σ2(s)/2 +

r(s)]ds, as in (the proof of) Proposition 2 of Parmar [244]; as long as | f (t)| < R. Given
that the radii of convergence of Taylor series expansions of solutions of pricing PDE
(1.7), e.g., as simplified to the reducing pricing PDEs (1.30) or (1.51), are not known
in advance, if they exist at all, this condition cannot be taken for granted. Having done
so may partly explain why the otherwise apparently correct proof of Proposition 2 of
Parmar [244] yields a solution which careful scrutiny revealed to be invalid, i.e., not to
satisfy pricing PDE (1.7).

2. Note that (∀0 ≤ ℓ ∈ Z) (x∂x)0xℓ ≡ 1xℓ ≡ xℓ, and if (x∂x)kxℓ = ℓkxℓ for some 0 ≤ k, ℓ ∈ Z,
then (x∂x)k+1xℓ = x∂xℓ

kxℓ = ℓk+1xℓ. Denoting by f (x) ≡
∑∞

k=0 akxk the convergent power
series expansion at x ∈ R of f ∈ Cω(R,R),

etx∂x f (x) =
∞∑

n,k=0

tn(x∂x)n

n!
akxk =

∞∑
n,k=0

(tk)n

n!
akxk =

∞∑
k=0

ak(etx)k = f (etx) (A.2)

Only this result is used by Lo, Yuen and Hui [207] and [203] and Lo and Hui [206]; the
entirety of the exponential function implies that the validity of formula (A.2) requires

1The proofs require f ∈ Cω(R,R) to have convergent Taylor series expansions for all x ∈ R, i.e., to be real
analytic, so that simply smooth f ∈ C∞(R,R) will not do. [Indeed, result 1 is equivalent to f ∈ Cω(R,R).] E.g.,
the differentiability class of bump functions, C∞(R,R) ⊃ C∞0 (R,R) ⊈ Cω(R,R).
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only that f ∈ Cω(R,R), in contrast to the preceding and subsequent results, in which
concerns regarding the radius of convergence of the Taylor series expansion of f arise.

3. Note that (∀0 ≤ ℓ ∈ Z) (x2∂x)0xℓ ≡ 1xℓ ≡ (ℓ)0xℓ+0,2 and if (x2∂x)kxℓ = (ℓ)kxℓ+k for some
0 ≤ k, ℓ ∈ Z, then (x2∂x)k+1xℓ = x2∂x(ℓ)kxℓ+k = (ℓ)k+1xℓ+k+1. Then if |tx| < 1,

etx2∂x f (x) =
∞∑

n,k=0

tn(x2∂x)n

n!
akxk =

∞∑
n,k=0

(k)n(tx)n

n!
akxk =

∞∑
k=0

ak

( x
1 − tx

)k
= f

( x
1 − tx

)
(This follows since the hypergeometric functions (∀b ∈ C) F(k, b; b; tx) = (1− tx)−k; see
section 5.1. of Temme [298].)

More generally, denote gℓ(x, t) ≡ etxℓ∂x f (x) and note that ∂tgℓ(x, t) = xℓ∂xgℓ(x, t) and
gℓ(x, 0) = f (x), yielding a characteristic, t + cℓ(x), with

cℓ(x) ≡

ln x 1 = ℓ
x1−ℓ

1−ℓ 0 ≤ 1 , ℓ ∈ N

Thus, given the general solutions, gℓ(x, t) ≡ Gℓ[t + cℓ(x)], it follows that Gℓ[cℓ(x)] =
gℓ(x, 0) = f (x), and thence Gℓ(x) ≡ f [c−1

ℓ (x)], so that gℓ(x, t) = f (c−1
ℓ [t + cℓ(x)]). This

clearly reduces to results 1-3 in the respective cases of ℓ ∈ {0, 1, 2}, and in general,

(∀0 ≤ 1 , ℓ ∈ Z) etxℓ∂x f (x) = f
([

(1 − ℓ)t + x1−ℓ
] 1

1−ℓ
)

(A.3)

This formal operator approach is thus vastly more expedient than the initial proofs via
induction and power series. It also readily yields the modified argument of f ∈ Cω(R,R),
which is not apparent upon examining terms of the sequences {(∀1 ≤ k−1, ℓ ∈ N) (xℓ∂x)k}:

aℓ,2 ≡ (xℓ∂x)2 = ℓ x2ℓ−1∂x + x2ℓ ∂2
x

aℓ,3 ≡ (xℓ∂x)3 = ℓ(2ℓ − 1) x3ℓ−2∂x + 3ℓ x3ℓ−1∂2
x + x3ℓ ∂3

x

aℓ,4 ≡ (xℓ∂x)4 = ℓ(2ℓ − 1)(3ℓ − 2)x4ℓ−3∂x + ℓ(11ℓ − 4)x4ℓ−2∂2
x + 6ℓx4ℓ−1∂3

x + x4ℓ∂4
x

And though the coefficients of aℓ,k+1 are linearly determined by those of aℓ,k, the addi-
tion of a new (nonzero) coefficient with each sequence element yields an unwieldy and
opaque recurrence relation which does not well lend itself to the general formula (A.3),
nor in nearly so straightforward a fashion as the foregoing operator approach, which is
also used for the remaining result.

4. Given 1 ≤ n ∈ N, x ∈ Rn, and f ∈ C∞(Rn,R), denote g(x, t) ≡ et∇2
f (x) and note

that ∂tg(x, t) = ∇2g(x, t), i.e., the (n-dimensional case of) the heat equation (1.35) with
unit thermal conductivity. Furthermore, the initial condition, g(x, 0) = f (x), yields the

2Here, the Pochhammer symbol, (ℓ)k ≡
∏k−1

n=0 ℓ + n, is also known as an ascending factorial.



148 Chapter A. Exponential operator formulas

(n-dimensional case of) the Cauchy problem addressed in section 1.2.1, with general
solution given by (the n-dimensional case of) Poisson’s formula (1.38):

g(x, t) = (4πt)−
n
2

∫
Rn

g(χ, 0)e−
(x−χ)T (x−χ)

4t dχ = (4πt)−
n
2

∫
Rn

f (χ)e−
(x−χ)T (x−χ)

4t dχ (A.4)

This remains valid, replacing t by functions f (t) : R → R satisfying f (0) = 0, e.g.,
c+(t) ≡

∫ t

0
σ2(s)ds, as in (the proof of) Proposition 2 of Parmar [244]. But as in the

discussion following Taylor series (A.1), the validity of this, along with analogous ap-
plication of the formulas (A.3) in case of ℓ ∈ {0, 1, 2}, as in (the proof of) Proposition
12 of Parmar [244], may be subject to unknown, stringent conditions on the variables
and parameters of solutions of pricing equation (1.7), if such conditions exist at all. This
point is emphasized by the great ease of deriving formulas (A.3) and (A.4) via formal op-
erator theoretic arguments, as opposed to the more rigorous [and subject to the stronger
condition f ∈ Cω(Rn,R) ⊊ C∞(Rn,R)] approach via Taylor’s formula (A.1), used to
derive results 1-3, and seen to be much more intricate and less intuitive. Thus, these
additional oversights may also partly explain [in the case of formula (A.4)] the failure of
the solution ‘derived’ in Proposition 2 of Parmar [244] to satisfy pricing PDE (1.7).



Appendix B

Data

Further details are provided on the trade and quote (TAQ) data cleaning procedures and calcu-
lation of the additional characteristics used in the empirical analysis is described.

B.1 Trade and quotes cleaning

The TAQ data require substantial cleaning due to contamination from market microstructure
noise. Used are the Monthly TAQ Second database up to 2003 and the Daily TAQ Millisec-
ond/Microsecond database from 2004-2016, with noisy observations filtered following proce-
dures similar to Barndorff-Nielsen et al. [27]. Returns are primarily calculated using prices
from the trades database. Bid and ask observations from the quotes database are also used for
cleaning trades and calculating transaction costs. For both trades and quotes, entries with time
stamps outside of the trading day (9:30 AM to 4:00 PM) are removed. Entries with a zero or
negative bid, ask, or price are also removed. For each stock, only entries from the exchange
with the highest volume in each month are kept.

For only the quotes database, the national-best bid-ask (NBBO) is constructed following proce-
dures from Keintz (https://support.sas.com/resources/papers/proceedings16/11201-2016.pdf)
using quotes from all exchanges at a second interval. All entries with a negative spread (ask
minus bid) and quotes larger than 50 times the median spread on each day, are removed.

For only the trades data, entries with corrected trades (CORR , 0) are deleted. Entries with
an abnormal sale condition are removed, only keeping entries with COND equal to E, F, @,
*, @E, @F, *E and *F. Multiple trades with the same second timestamp are replaced with an
entry with the median price. Finally, quotes are used to discipline the trade prices: Entries are
removed if their price is above the ask plus spread or below the bid minus spread.

The cleaned second-by-second price, bid and ask data is then aggregated into five-minute in-
tervals and merged with the daily center for research in security prices (CRSP) data file by the
CUSIP key. Merging the TAQ and CRSP data is challenging, because their tickers often differ.
Additionally, tickers change in time due to mergers, acquisitions, and other corporate events.
Instead, the TAQ and CRSP databases are merged using CUSIPs. The CUSIP identifier of each
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stock is obtained by merging trades with the TAQ master files. Finally, each stock is indexed
by CRSP PERMINOs, which are unique and do not change in time.

B.2 Additional firm characteristics

In addition to returns with one lag, other lagged characteristics of the SPY and S&P 500 con-
stituents are considered. These characteristics proxy short-term changes in liquidity and price
trends. High-frequency analogs are created of characteristics from the asset pricing literature
that have been shown to predict returns, including firm-level market beta, momentum, illiq-
uidity, maximum, minimum, and trading volume. Also considered are higher order moments,
including volatility, skewness, and kurtosis. These characteristics are all calculated over pre-
ceding days. The particular variables used are the following:

Market beta: The market beta is motivated by the capital asset pricing model of Sharpe [276]
and Lintner [201]. At time 1 ≤ t ≤ T , given (SPY market) return of stock 1 ≤ ℓ ≤ 500, rℓt (rm

t ),
it is based on a single factor model given by

rℓt = α
ℓ + βℓ(rm

t ) + ϵℓt

This is computed for each five-minute interval using a rolling window of preceding days, yield-
ing one overnight and 78 intraday observations. BETA of stock ℓ during each five-minute in-
terval, t, is the least-squares estimate, β̂ℓ.

Momentum: Motivated by Jegadeesh and Titman [167], the MOM of stock ℓ during each five-
minute interval, t, is the cumulative return for the preceding day, yielding one overnight and 78
intraday observations; that is,

∑T
t=1 rℓt with T = 79.

Illiquidity: Motivated by Amihud [12], the ILLIQ of stock ℓ, during each five-minute inter-
val, t, is the ratio of the absolute stock return, |rℓt |, to the dollar trading volume, averaged in a
day excluding the overnight volume, i.e., over the T = 78 previous trading intervals in the day.
Given the corresponding five-minute trading volume (price times number of shares traded) in
dollars at time t, VOLDℓ

t , this yields

ILLIQℓ ≡
1
T

T∑
t=1

|rℓt |

VOLDℓ
t

Maximum (minimum) return: Motivated by Bali, Cakici and Whitelaw [24], the MAX (MIN)
of stock ℓ during each five-minute interval, t, is defined as the maximum (minimum) five-
minute return within the preceding day (i.e., the previous 79 observations), that is, max1≤t≤T rℓt
(min1≤t≤T rℓt ).

Trading volume: Motivated by Chordia, Subrahmanyam and Anshuman [80], the VOLUME
of stock ℓ during each five-minute interval, t, is defined as the average number of shares traded
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within the preceding day excluding the overnight volume (i.e., the previous 78 observations):

VOLUMEℓ ≡
1
T

T∑
t=1

SharesTradedℓt

Volatility: Motivated by Ang et al. [14], the VOL of stock ℓ during each five-minute interval, t,
is the standard deviation of five-minute returns within the preceding day (i.e., the previous 79
observations):

VOLℓ ≡

√√
1
T

T∑
t=1

(rℓt − r̄ℓ)2 ≡ sd(rℓt )

Here, r̄ℓ ≡ 1
T

∑T
t=1 rℓt denotes the corresponding arithmetic mean.

Skewness (kurtosis): Motivated by Amaya et al. [11], the SKEW (KURT) of stock ℓ dur-
ing each five-minute interval, t, is the skewness (kurtosis) of five-minute returns within the
preceding day (i.e., the previous 79 observations):

SKEWℓ ≡
1
T

T∑
t=1

(rℓt − r̄ℓ)3

sd(rℓt )3

KURTℓ ≡
1
T

T∑
t=1

(rℓt − r̄ℓ)4

sd(rℓt )4





Appendix C

Hyperparameters

Discussed in greater detail are the most relevant hyperparameters tuned for each of the consid-
ered models. First, applicable to all models, inherent in regularization is the particular binary
problem of whether to regularize or not. Generally, the hyperparameter optimization problem
is that of tuning the regularization parameters, λ in the case of lasso (LAS) regularization, with
the binary problem of whether this parameter is zero or not. In elastic net (EN) regulariza-
tion, the convex combination coefficient α ∈ [0, 1] is another hyperparameter to be optimized,
with the endpoints {0, 1} respectively corresponding to the discrete choices of only ridge or
only lasso regularization, respectively. In principal component regression (PCR) the number
of principal components, 1 ≤ κ ≤ K, can be considered a hyperparameter to be optimized.1

There are two crucial hyperparameters for random forest (RF) models: (1) the number of deci-
sion trees (or base learners) in the forest, and (2) the maximum depth of each of these trees, i.e.,
the maximum path length from any tree root to any of its leaves. More trees in the forest yield
greater prediction variance reduction at increased computational cost. Restricting maximum
tree depth limits the complexity, both saving computational time and avoiding over-fitting.
Similar goals may be achieved less directly, e.g., by limiting the number of training samples
per leaf, which generally decreases with increased tree size. The same hyperparameters are im-
portant for gradient-boosted regression tree (GBRT) models, in addition to the explicit learning
rate, ν, which may be factored out from the step sizes or weights γi. A smaller learning rate
typically leads to better testing performance, but requires more training steps/additional deci-
sion trees in the ensemble, to maintain a given training error. Though these are the principal
hyperparameters to consider for RF and GBRT models, several other, generally less important
ones do exist. For example, bounding above the number of predictors determining node splits
in base learners is relatively important for RF models in particular. Greater bounds permit
more complexity, resulting in bias reduction at the expense of increased prediction variance
and computational cost. Note that base learner complexity may be directly limited by bound-
ing above the number of node splits or the total number of tree nodes, i.e., the tree size, itself.

For artificial neural networks (ANN), in particular, the loss function used for training is im-
portant. Standard choices include (the implemented) mean squared error (MSE), as well as

1Other heuristics for determining κ are to accept the smallest value which achieves some level of total explained
variance or to increase κ so long as the increase in variance explained exceeds a given threshold.
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mean absolute error, logarithmic hyperbolic cosine, and a variety of others adapted to more
specific scenarios.2 Model overfitting is guarded against by adding ℓ1 and ℓ2 regularization to
the loss function. Other important factors involved in training include the number of iterations,
or epochs, and the level of dropout, the percentage of training data discarded in each epoch to
avoid over-fitting and regularize the optimization problem (Srivastava et al. [290]).

While the optimization algorithm employed for training, the loss function it uses, the number of
epochs, and the level of dropout, all constitute important hyperparameters impacting the qual-
ity of predictions from ANN models with trained parameters, the actual network architecture,
i.e. the number of hidden layers, the number of neurons in each hidden layer, and the particular
activation function associated with each neuron, may often have an even greater impact on the
results. The activation functions used are the rectified linear unit (ReLU), ϕ(x) = max{0, x}
(Nair and Hinton [228]); the maxout, ϕ(x1, x2) = max{x1, x2} (Goodfellow et al. [150]); and
the hyperbolic tangent, ϕ(x) = tanh x. A hyperparameter grid is used, fixing three hidden
layers. Models are estimated using stochastic gradient descent (SGD) optimization with the
ADADELTA (Zeiler [322]) adaptive learning rate method for faster estimation. Dropout and
early stopping are used as regularization to prevent overfitting.

Table C.1 summarizes the set of hyperparameters that are tuned for each of the models con-
sidered. To tune these at a particular time, the corresponding data is partitioned into train-
ing, testing, and validation sets and the optimization problem (2.5) is repeatedly solved using
training predictors and targets, validating at each iteration to determine whether to terminate
training and minimize over-fitting. All training decisions aim to minimize the loss metric, m[·],
modifying internal parameters, such as β for linear models, according to some optimization
algorithm, e.g., classical SGD in the case of ANN models. Validation MSE is considered when
tuning the hyperparameters. For LAS and EN, λ is selected using coordinate descent (Fried-
man, Hastie and Tibshirani [125]). For PCR grid search is used. For all other algorithms,
random search is used with 50 models, which is more efficient than grid search (Bergstra and
Bengio [31]). Contrary to Gu, Kelly and Xiu [152], ensembles of neural networks are not used
due to computational limitations.

2Of particular interest is the Huber loss function, a combination of the ℓ1 and ℓ2 norms that permits control
of the sensitivity to outliers, used in Gu, Kelly and Xiu [152]. Preliminary results show that this metric may
outperform the MSE metric used for both the ANN and the GBRT models.
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Table C.1: Model hyperparameters

LAS λ

EN λ,
α = {0, 0.25, 0.5, 0.75, 1}

PCR κ = 1-99 by 2
RF #trees = 100-700 by 100,

tree depth = 1-40 by 5,
#minimum rows = {1, 25, 50},
columns randomly selected = floor(#number of features * {.05, .15, .25, .333, .4})

GBRT #trees = 100-700 by 100,
tree depth = 2-40 by 3,
learning rate = 0.01 - 0.1 by 0.03,
sample rate = 0.5-1 by 0.2,
column sample rate = 0.1 - 1 by 0.2

ANN Activation Functions = Relu, Maxout, Tanh; with and without dropout,
Hidden nodes = {1000,500,10}, {100,50,10}, {16,14,12},{20,15,10},{25,17,10},{15,10,5},
epochs = {50,100},
dropout ratio = {0, 0.1, 0.2},
max w2 = {10, 100, 1000, 3.4028235e+38},
ℓ1 = {0, 0.00001, 0.0001},
ℓ2 = {0, 0.00001, 0.0001},
rho (rate time decay) = {0.9, 0.95, 0.99, 0.999},
epsilon (rate time smoothing) = {1e-10, 1e-8, 1e-6, 1e-4}

Sets of tuned hyperparameters for each model considered.
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