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ABSTRACT

Variable selection is a difficult problem in statistical model building. Identification

of cost efficient diagnostic factors is very important to health researchers, but most

variable selection methods do not take into account the cost of collecting data for the

predictors. The trade off between statistical significance and cost of collecting data

for the statistical model is our focus. A Branching LARS (BLARS) procedure has

been developed that can select and estimate the important predictors to build a model

not only good at prediction but also cost efficient. BLARS method is an extension

of the LARS variable selection method to incorporate various costs of factors, where

branch and bound search method is employed to accelerate the search process. Both

additive and non-additive costs will be addressed. The R package branchLars which

implements BLARS will be described. We will show that a “cheaper” model could be

selected by sacrificing a user selected amount of model accuracy.

Keywords: Variable selection, Cost efficient, BLARS, LARS, Lasso, Branch and

bound
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Chapter 1

INTRODUCTION

1.1 Introduction

Variable selection is a difficult problem in statistical model building, especially when

a large number of variables are under consideration. If many insignificant variables

are selected, the statistical model will lose its predictive power and the results will

be hard to interpret. In practice, a desirable variable selection procedure should

select variables consistently and result in a parsimonious model (simpler models are

preferred). With large data sets, computation time for variable selection should also be

taken into account. Computational efficiency is another indicator for a good variable

selection approach. These are the guidelines when we develop a new variable selection

method.

We have benefited from great improvements in variable selection in recent years.

Many new approaches, such as lasso (Tibshirani, 1996) and LARS (Efron et al.,

2004), can efficiently select variables and estimate significant variable effects, and

result in more accurate parsimonious models. We integrate these new methods into

our variable selection strategy for their merits, but we add in a cost element which

is rarely considered in the literature. It is of practical importance to select a model

which is not only good at prediction but also cost efficient. This thesis will address

the issue of cost-efficient variable selection. It was motivated by an ongoing study I

was involved in, the Assertive Community Treatment (ACT) project.
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1.1.1 ACT Project

The study was conducted in Southwestern Ontario to investigate Assertive Commu-

nity Treatment (Lehman and Steinwachs, 1998) for patients with severe mental illness

(SMI). The objectives of the study are to assess what factors influence outcomes of

clients with SMI receiving care from ACT and to demonstrate the utility of a com-

munity mental health services outcomes evaluation framework. A total of 233 SMI

patients were recruited. Long term outcome is the overall Colorado Client Assess-

ment Record (CCAR) (Ellis et al., 1984) Score which is revised for use in Southwest

Ontario. There are about 19 potential predictive factors, such as Diagnostic Type,

Total service use, Working Alliance Inventory, Empowerment, Adherence to Medi-

cation, and Present State Exam-insight Score. Data were collected from 6 sources:

client self-reports, ACT clinicians, client records, hospital archive, ACT team’s staff

activity records, and ACT coordinators. Obviously there are great differences in the

costs of collecting the data for different predictive variables or from different sources.

The cost of collecting the data has two components here. The first component is

the monetary cost for human labour, time, material, equipment, compensation paid

to the clients in some research activities, etc. For example, in order of decreased

monetary cost, clinicians are paid for their labour to diagnose the type of mental

illness of the patients and make the comprehensive treatment plan for the patients;

the ACT team staffs are paid to make regular contact calls to help patients adhere

to medication and make records for that; ACT patients are compensated for their

time by filling out questionnaires. Another component is the level of difficulty to

get an answer or a value for a potential predictor. The clients we dealt with are the

patients with SMI. They may refuse to answer some questions or refuse to give certain

types of information. Some results reported from the clients may need to be double

checked or traced. In this sense, the client self-reported data are harder to get than

the data simply obtained by chart extraction. This results in some variables being
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more “expensive” than others.

We consider an overall cost for each predictive factor, which is a combination of

the above two components. One predictor costs more than another if this predictor

is more expensive overall. Our role in the ACT project is to assess what cost-efficient

factors influence outcomes of clients with SMI receiving care from ACT. We want to

find the factors not only with higher prediction accuracy but are also cheaper and

easier to collect the data so that we can reduce the burden of ACT team, patients,

and health care system.

1.1.2 Improvement in Variable Selection Methods

Several automatic variable selection and estimation techniques have emerged in the

past two decades, such as lasso (Tibshirani, 1996), boosting (Freund and Schapire,

1997) and forward stagewise regression (Hastie et al., 2001). Compared with older

automatic selection algorithms, such as forward selection and backward elimination,

these new methods result in more parsimonious fits (simpler models are preferred) and

have higher prediction accuracy (Tibshirani, 1996). The lasso (which stands for “least

absolute shrinkage and selection operator”) is a popular technique for simultaneous

variable selection and variable effect estimation. It achieves its goal by minimizing

the residual sum of squares subject to a constraint to the sum of the absolute value

of the coefficients. It shrinks some coefficients and sets others to 0 because of the

constraint, which adds a little bias but reduces the variance of the predicted values,

thus improving the overall prediction accuracy. Efron et al. (2004) introduced Least

Angle Regression, abbreviated LARS (the “S” suggests “lasso” and “stagewise”). Both

lasso and stagewise linear regression are variants of LARS. The key characteristic of

LARS is its computational efficiency. A simple modification of the LARS algorithm

implements the lasso but uses less computation time than Tibshirani’s (1996) original

lasso algorithm. Zou (2006) derived a necessary condition for the lasso to be consistent

and proposed a new version of the lasso, called the adaptive lasso, which adds weights
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in a data adaptive way to the lasso penalty term. These weights cause less shrinkage

to more important predictors, which leads to consistent variable selection results.

1.1.3 The Problems We are Facing

Although the methods described in the previous section have good performance in

choosing statistically important factors, they do not take into account the cost of

collecting data for the predictors. Identification of cost efficient diagnostic factors

is of great interest to health researchers because of the heavy burden on the public

health system. Due to the development and improvement of new technology, such as

nuclear medicine imaging and DNA microarray analysis, the costs of health care are

escalating. In practice, inexpensive factors may have similar statistical importance

as costly factors, so inexpensive factors could replace costly factors as diagnostic

or prognostic variables by sacrificing minimal prediction accuracy while reducing the

health cost burden. This requires statisticians to search for new strategies in statistical

model building to contain the effect of the cost of collecting data for diagnostic factors.

The costs may be different when collecting different variables. For example, the

diabetes data used by Efron et al. (2004) consists of 10 variables: age, sex, body

mass index (BMI), average blood pressure (BP), and S1 to S6 representing 6 serum

measurements. Variables S1 to S6 have higher costs than the other variables since

the data collection involves professional laboratory work, while BP and BMI have

relatively lower cost due to the simpler measuring instruments, and age and sex may

be assigned zero cost since they can be obtained from a registration form. For another

example, collecting genetic information costs much more than collecting regular blood

test results. Selecting different sets of variables in a diagnostic or prognostic model

may result in “expensive” or “cheap” models, and the decision makers should make an

overall judgement about the most efficient combination of variables. A model is more

cost-efficient than another one if it costs less but gives almost the same prediction

accuracy, or it costs much less but gives only slightly less prediction power. A health
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researcher, as well as a decision maker, may prefer a more cost-efficient model in

many situations. If there is a budget constraint on a research project or we are at

the screening stage of diagnosing a disease, a more accurate but costly model is not

necessarily better than a less accurate but cheaper model.

1.2 Background and Related Work

1.2.1 Recent Automatic Variable Selection Techniques

Many variable selection and estimation techniques emerged in the past two decades,

which brought great improvement both in model prediction accuracy and in computa-

tional efficiency. We give some details on these methods in the following subsections.

1.2.1.1 Least Absolute Shrinkage and Selection Operator (lasso)

Suppose we have a random sample (X,y), where y = (y1, y2, . . . , yn)T is the response

vector and X = (xij), i = 1, 2, . . . , n, j = 1, . . . , p, is the n×p design matrix consisting

of p predictors with the jth predictor xj = (x1j, . . . , xnj)
T . Without loss of generality,

we assume that the predictors have been standardized to have mean 0 and unit length,

and that the response has mean 0.

The lasso (Tibshirani, 1996) is a constrained version of ordinary least squares

(OLS). With β = (β1, β2, . . . , βp)
T , the lasso estimate is defined as

β̂(lasso) = arg min
β

∥∥∥∥∥y −
p∑

j=1

xjβj

∥∥∥∥∥

2

subject to
∑p

j=1 |βj| ≤ t.

Here t ≥ 0 is a tuning parameter, which controls the amount of shrinkage that is

applied to the estimates. lasso tends to shrink the OLS coefficients toward 0, more so

for small values of t. The lasso estimate can also be written as

β̂(lasso) = arg min
β





∥∥∥∥∥y −
p∑

j=1

xjβj

∥∥∥∥∥

2

+ λ

p∑
j=1

|βj|


 , (1.2.1)
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where λ ≥ 0 is a regularization or tuning parameter (Efron et al., 2004). The second

term is often referred to as the l1 penalty. lasso continuously shrinks the coefficients

toward 0 as λ increases, and some coefficients are shrunk exactly to 0 if λ is sufficiently

large. Shrinkage often improves prediction accuracy and helps to select a more parsi-

monious model, though there is a trade off between bias and variance. See Tibshirani

(1996) and Efron et al. (2004) for detailed discussions.

A fast and effective way of selecting the tuning parameter λ is important in prac-

tice. The selection criteria in the literature include Cp, AIC, BIC, and Cross-validation

(Hesterberg et al., 2008). Efron et al. (2004) suggested selecting the tuning param-

eter and the optimal model based on Cp. Others claim that AIC is asymptotically

valid if no fixed-dimension correct model exists while BIC is preferred if there exist

fixed-dimension correct models (Shao, 1997; Yang, 2005). Zou et al. (2007) proved,

without any special assumption on the predictors, that the number of nonzero co-

efficients is an unbiased estimate for the degrees of freedom of the lasso, which can

be used in model selection criteria such as BIC. The authors discussed Cp, AIC, and

BIC model selection criteria, and suggested using BIC as the model selection criterion

when sparsity of the model is the major concern.

1.2.1.2 Least Angle Regression (LARS)

Efron et al. (2004) proposed another variable selection method referred to as LARS.

Let µ̂ = Xβ̂ be the LARS estimates of the response, and β̂ be the estimate of the

vector of coefficients. The LARS procedure works roughly as follows. Beginning at

µ̂0 = 0 and setting all coefficients to zero, find the predictor, say x1, which is most

correlated with the response. Then take the largest step possible in the direction

of x1 (or u1, the unit vector along x1) until another predictor, say x2, has as much

correlation with the current residual as x1 does. At this point, the LARS estimate is

updated to µ̂1 = µ̂0 + γ̂1u1, where γ̂1 is chosen such that the current residual y− µ̂1

bisects the angle between x1 and x2. Instead of continuing along x1, LARS proceeds
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in the direction of u2, the unit bisector of the two predictors x1 and x2, until a third

variable x3 earns its way into the “most correlated” set. Now the LARS estimate is

updated to µ̂2 = µ̂1 + γ̂2u2, where γ̂2 is chosen such that the current residual y− µ̂2

has equal angles with x1, x2, and x3. LARS then proceeds along u3, the equiangular

unit vector, i.e. along the “least angle direction”, until a fourth variable enters, etc.

LARS builds up estimates in successive steps, each step adding one covariate to

the model, so only p steps are required for the full set of solutions, where p is the

number of predictors. A Cp value could be calculated for each LARS step, and Efron

et al. (2004) suggested that the optimal LARS model is the one with the minimum Cp.

LARS is computationally very efficient and it requires the same order of magnitude

of computational effort as an ordinary least squares fit.

Efron et al. (2004) showed that lasso is a variant of LARS, so that a simple

modification of the LARS algorithm could be used to implement the lasso. Using this

modification, the LARS algorithm can generate the full set of lasso variable selections

as λ varies. The LARS method is implemented in an R (R Development Core Team,

2008) package called lars (Hastie and Efron, 2007). The function lars in this package,

by default, computes the complete lasso solution simultaneously for a sequence of

values of the shrinkage parameter.

1.2.1.3 Adaptive Lasso

Lasso variable selection has been shown to be consistent under certain conditions,

but there exist certain scenarios where the lasso is inconsistent for variable selection

(Zou, 2006). Meinshausen and Bühlmann (2006) also showed that the optimal λ for

prediction leads to inconsistent variable selection results, and many noise features are

included in the prediction model. A new version of the lasso, called the adaptive lasso,

could be used to fix this problem. The adaptive lasso was proposed by Zou (2006)

where adaptive weights are used for penalizing different coefficients in the l1 penalty.

Suppose yi = xiβ
∗ + εi, i = 1, . . . , n, where ε1, . . . , εn are independent identically
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distributed random variables with mean 0 and variance σ2. The adaptive lasso esti-

mates β̂
∗(n)

are given by

β̂
∗(n)

= arg min
β





∥∥∥∥∥y −
p∑

j=1

xjβj

∥∥∥∥∥

2

+ λn

p∑
j=1

ŵj|βj|


 (1.2.2)

The known weights vector ŵ = (ŵ1, ŵ2, . . . , ŵp)
T is data-dependent, where ŵj, j =

1, . . . , p, has the form |β̂j|−ν for ν > 0 and β̂j is a root-n-consistent estimator to β∗j .

The author suggested using the ordinary least squares estimates β̂(ols) when collinear-

ity is not a concern. In principal, β̂(ols) can also be replaced with other consistent

estimators. To find an optimal pair of (ν, λn), two-dimensional cross-validation can

be used to tune the adaptive lasso. If ν = 1 and ŵ = |β̂(ols)|−1, the correspond-

ing adaptive lasso is the same as nonnegative garrote but without the constraints

βjβ̂j(ols) ≥ 0, j = 1, 2, . . . , p, where nonnegative garrote is consistent for variable

selection (Zou, 2006). Nonnegative garrote (Breiman, 1995) is a regression procedure

that minimizes
∑

k

(
yn −

∑

k

ckβ̂kxkn

)2

under the constraints

ck ≥ 0,
∑

k

ck ≤ s,

where β̃k(s) = ckβ̂k are the new predictor coefficients and {β̂k} are the original OLS

estimates. As the garrote is drawn tighter by decreasing s, more of the {ck} become

zero and the remaining nonzero β̃k(s) are shrunken (Breiman, 1995).

With a proper choice of λn, the adaptive lasso enjoys the oracle property; namely,

the adaptive lasso estimates are consistent in variable selection and are asymptotic

normal
√

n(β̂
∗(n)

A − β
∗(n)
A ) →d N(0,Σ∗), where Σ∗ is the covariance matrix knowing

the true subset model and A = {j : β∗j 6= 0}. Furthermore, the adaptive lasso can

be solved by the same efficient algorithm (LARS) for solving the lasso. This method

also applies to generalized linear models.
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1.2.1.4 Unified Lasso Estimation via Least Squares Approximation

A method of least squares approximation (LSA) was proposed by Wang and Leng

(2007) to change many different regression models into one unified theoretical frame-

work: a unified lasso estimation. LSA can transfer many different types of lasso

objective functions into their asymptotically equivalent least-squares problems. Then

the standard asymptotic theory can be established and the LARS algorithm can be

applied. In particular, if the adaptive lasso penalty and a BIC-type tuning parameter

selector are used, the resulting LSA estimator can be very efficient.

Suppose Ln(β) is a loss function when fitting some regression model, where β =

(β1, . . . , βp)
T ∈ <p is a parameter vector of interest. The least-squares approximation

(LSA) to the loss n−1Ln(β) was derived as:

1

n
Ln(β) = (β − β̃)T Σ̂−1(β − β̃)

where β̃ ∈ <p is the unpenalized estimator obtained by minimizing Ln(β), and Σ̂

is a covariance matrix estimate. The original lasso problem can be rewritten as the

following asymptotically equivalent least squares problem:

Q(β) = (β − β̃)T Σ̂−1(β − β̃) +

p∑
j=1

λj|βj| (1.2.3)

This objective function indicates an l1-penalized least squares problem. It only re-

quires the existence of a consistent covariance matrix estimate Σ̂, which is the case

for most existing regression models. Thus we could change many different regression

models into one unified lasso estimation and solve the above l1-penalized least squares

problem.

The LARS algorithm is an effective way to implement lasso and the R package

lars is publicly available. Since both β̃ ∈ <p and Σ̂ in Equation (1.2.3) are standard

outputs of many commonly used statistical packages, together with the lars package,

the LSA method can be easily implemented for different regression models. The
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LSA method uses β̃ and Σ̂ as its standard inputs. The computation consists of one

single unpenalized full model fitting for obtaining β̃ and Σ̂, and one additional LARS

processing for lasso solutions. The LSA estimator is very efficient as long as the tuning

parameters are selected appropriately.

Generalized cross validation (GCV) has been extensively used to tune regulariza-

tion parameters λj, j = 1, . . . , p. However, if a finite dimensional model truly exists,

the GCV approach tends to produce overfitted models (Wang et al., 2007). A BIC-

type selection criterion was suggested for tuning regularization parameter λ when

using the LSA method:

BICλ = (β̂ − β̃)T Σ̂−1(β̂ − β̃) + log n× dfλ/n

where dfλ is the number of nonzero coefficients in β̂, a simple estimate for the degrees

of freedom. The optimal value of λ is the one minimizing BIC, which could then be

used to find the corresponding optimal regression model.

1.2.1.5 Relaxed Lasso

For some sequences of problems where the number of predictors p = pn is growing

fast with the number of observations n so that pn À n, many noise variables are

potentially selected by lasso, and lasso tends to have a low accuracy of predictions

in terms of squared error loss. A two-stage procedure, named the relaxed lasso, was

proposed by Meinshausen (2007), which is not only computationally efficient but also

has sparser estimates and more accurate predictions.

The relaxed lasso estimator was defined as a generalization of both soft- and hard-

thresholding, where model selection and shrinkage estimation are controlled by two

separate parameters λ ∈ [0,∞) and φ ∈ (0, 1].

β̂
λ,φ

= arg min
β

n−1

n∑
i=1

(Yi −XT
i {β · 1Mλ

})2 + φλ‖β‖1
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where Mλ = {1 ≤ k ≤ p | β̂k

λ 6= 0} is the set of predictor variables selected by the

lasso estimator β̂λ, and 1Mλ
is the indicator function on the set of variables Mλ so

that for all k ∈ {1, . . . , p},

{β · 1Mλ
}k =





0, k /∈Mλ

βk, k ∈Mλ

Only predictor variables in the set Mλ are considered for the relaxed lasso estimator.

The parameter λ controls the variable selection part, as in ordinary lasso estimation,

while the relaxation parameter φ controls the shrinkage of coefficients. The lasso

and relaxed lasso have identical estimates if φ = 1, but for φ < 1, the shrinkage

of coefficients in the selected model using relaxed lasso is reduced compared with

ordinary lasso estimation.

The simple relaxed lasso algorithm has two stages. All ordinary lasso solutions are

computed at the first stage resulting a set of m models M1, . . . ,Mm and a sequence

of m penalty values λ1, . . . , λm. At stage two, on each set Mk of variables, compute

all lasso solutions by varying the penalty parameter between 0 and λk to get the set

of relaxed lasso solutions β̂
λ,φ

for λ ∈ Λk. The relaxed lasso solutions for all penalty

parameters φ ∈ (0, 1] and λ ≥ 0 are given by the union of these sets. The computation

can be speeded up by a similar two-stage but refined algorithm.

The parameters λ, φ can be chosen by cross-validation which retains the fast rate.

Meinshausen demonstrated that the relaxed lasso (adaptive φ) produces sparser mod-

els with equal or lower prediction loss than the regular lasso estimator (φ = 1) for

high-dimensional data.

1.2.1.6 Regularization Paths for Generalized Linear Models via Coordinate Descent

Suppose there is a response variable y ∈ < and a predictor vector X ∈ <p, and the

regression function can be approximated by a linear model E(y|X = x) = β0 + xT β.
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There are n observation pairs (xi, yi), i = 1, . . . , n. The elastic net solves the problem

min(β0,β)∈<p+1 [R(β0,β)] ,

where

R(β0,β) =
1

2n

n∑
i=1

(yi − β0 − xT
i β)2 + λPα(β),

and

Pα(β) = (1− α)
1

2
‖β‖2

l2
+ α ‖β‖l1

=

p∑
j=1

[
1

2
(1− α)β2

j + α|βj|]

is the elastic-net penalty (Zou and Hastie, 2005). This penalty is particularly useful

in the p À n situation and any situation where there are many correlated predictor

variables. When α = 0, Pα is the ridge-regression penalty. It shrinks the coefficients

of correlated predictors towards each other, allowing them to borrow strength from

each other. When α = 1, Pα is the lasso penalty. It shrinks many coefficients to zero.

For heavily correlated predictors, it tends to pick up one of them but ignore the rest.

Generalized linear models with convex penalties, including l1 (the lasso), l2 (ridge

regression) and mixtures of the two (the elastic net), can be estimated using a fast

algorithm proposed by Friedman et al. (2008). The algorithm uses cyclical coordinate

descent, computed along a regularization path. At each coordinate descent step,

supposing that β0 and βl for l 6= j have been estimated as β̃0 and β̃l, the process

partially optimizes with respect to βj. It computes the gradient at βj = β̃j, which

only exists if β̃j 6= 0. If β̃j > 0, we have

∂R

∂βj

|β=β̃ = − 1

n

n∑
i=1

xij(yi − β̃0 − xT
i β̃) + λ(1− α)βj + λα

A similar expression exists for β̃j < 0. The process then coordinate-wise updates

the β̃j based on some explicit coordinate-wise minimization formula. The authors
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provided several updates methods, such as naive updates, covariance updates, sparse

updates, and weighted updates. Take weighted updates for example,

β̃j ← S(
∑n

i=1 wixij(yi − ỹ
(j)
i ), λα)+∑n

i=1 wix2
ij + λ(1− α)

,

where ỹ
(j)
i is the partial residual for fitting βj

ỹ
(j)
i = β̃0 +

∑

l 6=j

xilβ̃l,

and S(z, γ) is the soft-thresholding operator

sign(z)(|z| − γ)+ =





z − γ, if z > 0 and γ < |z|
z + γ, if z < 0 and γ < |z|
0, if γ ≥ |z|

After a complete cycle through all the variables, the process iterates on only the active

set (nonzero coefficients) till convergence. The process stops when another complete

cycle does not change the active set.

This method can work on very large datasets and can also deal efficiently with

sparse features. A publicly available R package glmnet implements the algorithm.

This coordinate-wise algorithm is considerably faster than many competing methods

in some specific situations, such as LARS when p À n.

1.2.2 Cost-efficient Variable Selection

There has been relatively little work on cost efficient variable selection. To incorpo-

rate cost in a predictive model, Lindley (1968) suggested adding the cost of obtaining

the covariates to the objective loss function in univariate multiple regression where a

Bayesian approach was used. Brown et al. (1999) worked on variable selection in mul-

tivariate linear regression using a non-conjugate Bayesian decision theory approach,

where a terminal cost, a function of the cost of retaining the selected variables, was

included in the loss function. Their approach balances prediction accuracy against
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costs, and omits covariates when they cost too much relatively to their predictive

benefit. We now give more details on each of these approaches.

1.2.2.1 The Choice of Variables in Multiple Regression

Lindley (1968) used a loss function

{y − f(XI)}2 + cI ,

where y is the true value of the dependent variable, I denotes a subset of the inte-

gers 1, 2, . . . , r containing s members, the observed values are denoted by XI whose

components xi have i ∈ I, the prediction f(XI) is a function from Rs to R, and cost

cI ≥ 0.

Squared error was used in the loss structure and an additive cost of observing the

x’s in I of amount cI was assumed, that is, cI =
∑

i∈I ci. A Bayesian solution involves

minimization of expected loss, where expectation is with respect to the probability

distribution. Lindley suggested that, given the xi’s are independent, a variable is

worth observing if its variation or its regression parameter is large enough compared

with the cost of observation.

1.2.2.2 The Choice of Variables in Multivariate Regression

Brown et al. (1999) used a Bayesian decision theoretic formulation to predict an

r-variate response. A non-conjugate prior distribution for the parameters of the re-

gression model was employed. The formulation consists of a scalar loss function and

a terminal cost, a function of the cost of retaining the selected p variables.

A quadratic loss was proposed as

L (Yf , Ŷf ) = (Yf − Ŷf )′L(Yf − Ŷf )

= tr{(Yf − Ŷf )′L(Yf − Ŷf )},
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where L is any r×r positive definite matrix of weight constants, superscript f denotes

a future observation, Ŷf is the Bayes predictor of Yf assuming all variables have

been measured in the learning data {Yl,Xl
q} but that only the selection γ of the Xl

q

is available for prediction. With L = I, the identity matrix, the minimized quadratic

loss of the Bayes predictor could be simplified as some tr{R(γ)}. Then the overall

loss is

tr{R(γ)}+ g(γ),

where g(γ) is a general terminal cost using a particular γ subset of the q regres-

sors. The simplest form of g(γ) is additive with a cost ci of including variable Xf
i in

prediction.

Predictions were judged by the quadratic loss penalized by a cost on the regressor

variables. Brown et al. (1999) claimed that variables should be omitted not because

their coefficients were believed to be zero, but because they cost too much relative to

their predictive benefit.

1.2.3 Branch and Bound Search Method

An optimization problem P can be written as:

min f(β)

S

β ∈ D,

where β contains the set of parameters of interest, f(β) is the objective function, S is a

set of constraints on β, and D is the domain of β (Hooker, 2007). In our applications,

β = (β1, β2, . . . , βp) is a vector and D is a Cartesian product D1 × D2 × . . . × Dp,

with βj ∈ Dj. A feasible solution β̂ is a vector that satisfies all the constraints in S

and β̂ ∈ D. The feasible set is the set of all feasible solutions. An optimal feasible

solution β̂
?

is one with f(β̂
?
) ≤ f(β̂) for all feasible β̂. An infeasible problem is one
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with no feasible solution. A problem is unbounded if there is no lower bound on f(β̂)

for feasible values of β̂. An optimization problem can be either infeasible, unbounded,

or have an optimal solution.

Branching search (Hooker, 2007) uses a recursive divide-and-conquer strategy that

is guided by the difficulty of the problem. If the original problem P is difficult to

solve, the branching algorithm branches on P and creates a series of subproblems

P1, P2, . . . , Pm. Each Pk, k = 1, . . . , m is obtained by adding constraints to the original

problem P in such a way that the feasible set of P is equal to the disjoint union of the

feasible sets of each Pk. Each Pk is solved, and its possible optimal solution becomes a

candidate solution for P . If one Pk is too hard to solve, the search produces branches

on Pk similarly. Problem Pk is said to be enumerated when it has been solved, or all

of its subproblems have been enumerated. The process generates a search tree whose

leaf nodes correspond to subproblems that can be either solved, shown infeasible, or

shown unbounded. The optimal solution of P is the best candidate solution found.

The branch and bound search is a process that combines branching with relaxation.

A relaxation Rk of Pk is created by dropping some constraints so that Rk is easier

to solve than Pk. Since the feasible region of Rk contains the feasible region of Pk,

the optimal value of a relaxation Rk is a lower bound on the optimal value of Pk.

The branch and bound process makes use of this lower bound to accelerate the search

by avoiding solution of the generally harder problem Pk. Suppose some subproblems

have been solved resulting in a best candidate solution found so far, and if the optimal

value of Rk, say v, is greater than or equal to the objective value of the best candidate

solution found so far, then there is no need to solve Pk or branch on Pk since its optimal

value can not be better than v. Problem Pk is regarded as having been enumerated

even though it is not actually solved. In this case the search tree is said to be“pruned”

at Pk.
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1.3 Thesis Focus

Our goal in this thesis is to develop a selection procedure that can simultaneously

select and estimate the important predictors to build a model that is not only good at

prediction but also cost efficient. Our model is an extension of the lasso to incorporate

variable costs penalized in the objective loss function. The proposed total loss includes

the residual sum of squares, the lasso type penalty, and the cost of collecting data for

the predictors, where the first two parts compose the lasso loss. LARS algorithm is

employed since it can implement the lasso efficiently. A modified branch and bound

method is proposed to search for a model which minimizes total loss. This method

is referred to as the Branching LARS (BLARS) search procedure. Since the adaptive

lasso can be solved by LARS using a transformation to the design matrix, we can

easily adjust BLARS by using an adaptive lasso type penalty instead of a lasso type

penalty, but we focus on lasso type penalty when we develop the BLARS procedure.

1.4 Thesis Organization

Introduction and other relevant background information has been highlighted in Chap-

ter 1. We derive the theoretical basis of the BLARS method and discuss details of the

implementations dealing with additive costs in Chapter 2. We address non-additive

costs in Chapter 3. The software implementation, the R package branchLars, is dis-

played in Chapter 4. These chapters contain examples using the diabetes data from

Efron et al.(2004). The BLARS method is applied to the data from the ACT project

in Chapter 5. Chapter 6 provides a conclusion of materials discussed in the thesis

and possible future work that can be implemented.
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Chapter 2

COST-EFFICIENT VARIABLE SELECTION WITH

ADDITIVE COSTS

2.1 Introduction to Additive Cost Variable Selection

The cost of collecting data for predictors cannot be avoided in the practice of risk

factor identification and statistical model selection. Since the costs of health care

are escalating, identification of cost efficient diagnostic factors is of great interest to

health researchers. A health researcher may prefer a more cost-efficient statistical

prediction model in many situations as addressed in Chapter 1.

In this chapter we are going to develop a new strategy called Branching LARS

(BLARS) to take into account the effect of the cost of collecting data for diagnostic

factors in statistical model building such that the model is not only good at prediction

but also cost-efficient. There has been relatively little work in this area in the past.

The simplest cost structure is additive cost, which means the total cost of obtaining

data for a selected set of variables is the sum of the cost of getting data for each

variable in the set, i.e. CostJ =
∑

j∈J costj, where costj is the cost of collecting data

for the jth variable in the selected set J . The total cost cannot decrease with increased

number of variables in the selected set. This cost structure applies to the situation

when we collect the data for the variables individually and independently. We mainly

deal with additive cost in this chapter as a starting point for its simplicity.

The rest of this chapter is organized as follows. We describe the model framework

in Section 2.2, where BLARS algorithm, the order of selection of variables, and tuning

parameter and model selection criteria will be addressed. Section 2.3 gives an example
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of data analysis using BLARS with additive cost structure. Conclusion and discussion

are given in Section 2.4.

2.2 Model Framework for Additive Cost Variables

Suppose we have a random sample (X,y), where y = (y1, y2, . . . , yn)T is the response

vector and X = (xij), i = 1, 2, . . . , n, j = 1, . . . , p, is the n×p design matrix consisting

of p covariates of interest with the jth predictor xj = (x1j, . . . , xnj)
T . We want to select

and simultaneously estimate the coefficients of covariates such that the loss function

is minimized. The total loss consists of 3 parts: the residual sum of squares of the

model, the lasso type l1 penalty, and the cost incurred by collecting data for those

variables in the model. We assume that the predictors have been standardized to

have mean 0 and unit length, and that the response has mean 0. With additive costs,

the proposed optimization problem P can be written as

min f(β,α) =

∥∥∥∥∥y −
p∑

j=1

xjβj

∥∥∥∥∥

2

+ λ

p∑
j=1

|βj|+ nγ

p∑
j=1

αjcj, (2.2.1)

with domain D:

αj ∈ {0, 1}, for j = 1, . . . , p,

β ∈ <p,

and constraints S:

αj = 0 ⇒ βj = 0, for j = 1, . . . , p,

where β is the regression coefficient vector that we want to estimate; cj ≥ 0 is the

cost associated with the jth variable; γ ≥ 0 is a user-defined weight imposed on costs,

reflecting the level of reluctance to use high cost variables; λ ≥ 0 is the regularization

or tuning parameter. The indicator variable αj equals 0 or 1, indicating whether to

include the cost cj of collecting the variable xj. The full vector α determines the

variables to be selected in the regression design matrix. Note that additive costs may

be unrealistic; we discuss more general cost structures in Chapter 3.
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Figure 2.1: General Search Tree.

2.2.1 BLARS Method

The sum of the first two terms in the objective function (2.2.1) is the lasso objective

function as in (1.2.1). The third term complicates the problem, but if we fix the

value of α, then the third term becomes a constant and the problem reduces to lasso

variable selection and estimation, and LARS may be used to solve it. A naive approach

would be to try all 2p different values of α, compare the results and select the best

solution. Figure 2.1 displays the general search tree with all leaf-nodes corresponding

to subproblems that have fixed α values. In practice this approach is not feasible

when p is large. The branch and bound search method can provide a solution to this

problem, where relaxation is used to make the searching process easier and faster.

At each step in the BLARS process, we fix the value of one αj to be 0 or 1. (The

choice of j is discussed in section 2.2.2 below; for simplicity in this discussion we will

assume numerical order, fixing α1 first, then α2, etc.) At step 1, we branch on the

problem P and create two subproblems: P1(left) with α1 = 0 and P1(right) with α1 = 1.
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We continue to branch on the subproblems and create second-level subproblems by

fixing α2 = 0 and α2 = 1 respectively. Suppose at some step k, we have fixed the

value of α1, α2, . . . , αk, then the subproblem Pk of P has the objective (2.2.1), the

same domain D and constraints S, but with the given value of αj, j = 1, . . . , k. The

relaxed problem Rk has the same objective (2.2.1), the same domain D and given

value of αj, j = 1, . . . , k, but constraints Sk:

αj = 0 ⇒ βj = 0, for j = 1, . . . , k,

i.e. we drop the constraints on βj for j > k. Since the feasible region of Rk contains

the feasible region of Pk, the optimal objective value of the relaxed problem Rk will

be a lower bound on the optimal objective value of the subproblem Pk. Without any

constraints from j = k + 1 to j = p, to minimize the total loss, we set all αj = 0 for

j = k + 1, . . . , p to solve the relaxed problem Rk, since cj ≥ 0.

Note that for l < k and the same fixed values of αj, j = 1, . . . , l, Rl is also a

relaxation of Rk, so we may be able to prune certain relaxed problems, speeding up

the overall search even more. Furthermore, in cases where Pk(right) is optimized with

βk = 0, the same β̂ will optimize Pk(left) because we force βk = 0 for Pk(left).

Another way to describe this search is as follows. At step k, we let α+ be equal to

(α1, . . . , αk, 1, . . . , 1). This vector indicates which variables are passed to lars function

for optimization. Once we have the lars result in hand, we set each of αk+1, . . . , αp

to 0 if the corresponding β̂k is zero, and 1 otherwise. This gives α to use in the

cost calculations. We also calculate α− as (α1, . . . , αk, 0, . . . , 0) to use in the cost

calculations for the bound. Figure 2.2 shows one situation of the kth step of the

BLARS search process.

In the algorithm below, we use the following notation. For 0 ≤ k ≤ p, the solution

of a relaxation Rk is denoted by Solutionk; the corresponding objective value uses

α− to give the lower bound for Pk and is referred to as Boundk. (We suppress the

dependence on α−, but in fact there are potentially 2k different relaxations called
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Lossk (left)

Boundk (left)

Lossk (right)

BestSoFar

�
k-1=1�

k=0 �k=1
(Boundk(left) ≥ BestSoFar)

pruned

Boundk (right)
(Boundk(right) < BestSoFar)�

k+1=0 �k+1=1
Figure 2.2: One Step of BLARS

Rk, and a corresponding number of other entities subscripted with k.) The real

total loss of the model selected by Rk computed using α is denoted by Lossk. The

lars solution from the previous step is denoted by PreSolution with corresponding

objective value PreBound. Note that P0 = P , and plain lars is sufficient to solve

R0 since there are no restrictions on it. The best total loss seen so far is BestLoss.

A recursive function is called to return the best model minimizing the total loss

with respect to a pre-fixed pair of tuning parameters (λ and γ). The recursive step of

the BLARS algorithm is shown in Figure 2.3. This is invoked as shown in Figure 2.4.

2.2.2 The Order of Selection of Covariates

The order of the variables entering the searching process is an important factor af-

fecting the efficiency of the algorithm. Earlier pruning will avoid searching more

paths.

Intuitively, we could use the order of the LARS entries or order the variables

by their costs. LARS adds one variable into the model at each step based on the
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BLARS(k,BestLoss,PreSolution,PreBound, α+) :
Solve Rk(right):

Solution(right) ← PreSolution

Bound(right) ← PreBound + γck.
If Bound(right) > BestLoss, then

Solution(right) ← “pruned”
Loss(right) ←∞.
α ← α+

Else:
Loss(right) ← Bound(right) + nγ

∑
j>k:βj 6=0 cj .

If Loss(right) < BestLoss, then
BestLoss ← Loss(right)

If k < p, then
(Solution(right), Loss(right))

← BLARS(k + 1,BestLoss,Solution(right),Bound(right),α
+)

Compute α from Solution(right).
Solve R(left):

If αk = 0, then
Solution(left) ← Solution(right)

Loss(left) ← Loss(right)

Else:
α+

k ← 0 and select design matrix based on α+.
Call lars to get Solution(left), Bound(left) and α.
If Bound(left) > BestLoss, then

Solution(left) ← “pruned”
Loss(left) ←∞.

Else:
Loss(left) ← Bound(left) + nγ

∑
j≥k+1:βj 6=0 cj .

If Loss(left) < BestLoss, then
BestLoss ← Loss(left)

If k < p, then
(Solution(left), Loss(left))

← BLARS(k + 1,BestLoss,Solution(left),Bound(left), α
+)

If Loss(right) < Loss(left), then
Return (Solution(right),Loss(right))

Else:
Return (Solution(left),Loss(left))

Figure 2.3: The Recursive Step of the BLARS Algorithm.
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Solve R0 to find Solution0 and Bound0.
Loss0 ← Bound0 + nγ

∑
j:βj 6=0 cj .

Call BLARS(k = 1,BestLoss = Loss0,PreSolution = Solution0,

PreBound = Bound0, α = (1, . . . , 1)) and return the result.

Figure 2.4: The Initialization Step of the BLARS Algorithm.

correlation of the variables with the updated response. The most correlated covariate

is added first and the least correlated one is the last. If we let the most correlated

covariate enter the BLARS searching process first, the lasso loss (the first two terms

in the objective function (2.2.1)) may decrease dramatically, and the tree is more

likely to be pruned at the node where we force this variable out of the model, i.e.

the node where we let α1 = 0. Using this ordering method, the computing time may

be reduced because the tree has more chance to be pruned at upper level left-path

nodes. On the other hand, when the cost difference of the predictors is large (usually

associated with a higher value of γ), the cost effect may dominate. Ordering variables

by descending order of the costs could be a better approach in this case. If we let the

most expensive covariate enter the BLARS searching process first, the gain by the

decrease of the lasso loss may be clearly surpassed by the loss by the increase of the

cost, and the tree is more likely to be pruned at the node where we force this variable

in the model, i.e. the node where we let α1 = 1. Using this ordering method, the

computing time may be reduced because the tree has more chance to be pruned at

upper level right-path nodes.

To get a quantitative analysis, we compared 6 ordering methods by assessing how

many times the search method called the lars function in the searching process for

different combinations of λ and γ values using the diabetes data (used by Efron et

al. 2004). The 6 methods are to order the potential covariates in descending order
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of the correlations with the updated response, i.e. the order of the LARS entries

(Lars Descending), ascending order of the correlations (Lars Ascending), descending

order of the costs (Cost Descending), ascending order of the costs (Cost Ascending),

descending order of the absolute value of the OLS estimates (OLS Descending) and

ascending order of the absolute value of the OLS estimates (OLS Ascending) respec-

tively. We change the order at the beginning of the searching process and only once

when using the order of Cost Descending, Cost Ascending, OLS Descending or OLS

Ascending. For the order of Lars Descending or Lars Ascending, we may change the

order of the variables more than once. At the beginning, we change the variables in

descending or ascending order of the LARS entries based on an initial lars call. Since

we need to call the lars function many times in the searching process, the order of

the LARS entries may alter after a later lars call. When this happens, we change

the order of the variables accordingly to further reduce the searching time. Figure

2.5 shows the number of lars calls for 4 different λ values. Corresponding to different

range of γ, either the Lars Descending or the Cost Descending ordering method has

the best result.

We suggest using the order of the LARS entries when γ is relatively small or

equivalently the cost difference of the covariates is not too big, and when γ is large

but λ is also relatively large; and use the descending order of the cost for other

situations. In practice, we may need to fit BLARS for multiple γ values. In this case

we should start with small γ and use the order of the LARS entries; subsequently we

can occasionally try both ordering methods to make a comparison and switch to the

descending order of the cost at the point where the cost method is the better choice.

2.2.3 Tuning Parameter and Model Selection Criteria

The parameter γ is a user-defined weight imposed on costs, reflecting the level of

reluctance to use high cost variables. When γ = 0, we ignore the costs and selection

becomes the standard lasso variable selection. The higher the γ value, the more
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Figure 2.5: Computing times for different ordering methods.
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reluctant is the user to select high cost variables. Thus when the user assigns a higher

value to γ, the BLARS process will be less likely to select higher cost variables. The

assignment of a γ value is thus based to a large extent on the opinions and judgments

of the user or the decision maker. Sometimes the user has to use a higher γ because

of budget constraints. Once γ is fixed, the optimal value of λ and the corresponding

optimal statistical model could be selected by any model selection criterion. In the

example in Section 2.3, we use BIC for the lasso, which was proposed by Zou et al.

(2007), as the tuning parameter and model selection criterion for its simplicity and

effectiveness.

BIC(µ̂) =
‖y − µ̂‖2

nσ2
+

log(n)

n
d̂f(µ̂) (2.2.2)

where d̂f(µ̂) equals the number of nonzero coefficients, which is an unbiased estimate

for the degrees of freedom of the lasso showed by Zou et al. (2007).

2.2.4 Pruning Based on Previous Fits

Proposition 1. Given a fixed value of λ in the BLARS minimization procedure, the

value of
∑p

j=1 αjcj in the optimal model cannot increase when we increase the value

of γ.

Proof. The first two terms in (2.2.1) depend only on β, while the last term depends

only on α. Since γ > 0, an increase in
∑p

j=1 αjcj would imply a decrease in the first

two terms, implying a better solution at the original γ value.

In practice, when we fix a value of λ and increase the value of γ from γ1 to γ2,

we could ignore all those variables that have higher cost than the sum of the costs of

the variables selected using γ1 in the BLARS search process. More generally, we may

prune a branch simply because
∑p

j=1 αjcj of this branch is larger than the one in the

optimal model for γ1.
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Table 2.1: Additive Cost of Variables Used in Example.

Predictors AGE SEX BMI BP S1 S2 S3 S4 S5 S6

Costs 0 0 5 10 50 50 50 50 50 50

2.3 An Example for Additive Cost Variable Selection

We apply the BLARS algorithm to the diabetes data used by Efron et al. (2004).

The data consists of 10 variables: age, sex, body mass index (BMI), average blood

pressure (BP), and S1 to S6 representing 6 serum measurements.

The cost of collecting a variable may include the cost of material, equipment, time,

human labour, etc. One way to assign a cost would be to use the dollar amount we

have to pay to get that variable; a more sophisticated analysis might include the time

required or the discomfort of the test. For the purpose of illustration, we assign the

costs to the 10 variables as shown in Table 2.1. S1 to S6 have the highest costs since

the collection involves professional laboratory work; BP and BMI have relatively lower

cost due to the simpler measuring instruments; while age and sex are assigned zero

cost since they may be obtained from a registration form.

2.3.1 Cost Efficient Variable Selection with Additive Costs

Table 2.2 displays the variable selection results for some combinations of λ and γ.

The corresponding order of the variables in the BLARS search process is showed in

Table 2.3. When γ = 0, the BLARS results are equivalent to the lasso results. For

a fixed value of λ, BLARS tends to select fewer or cheaper variables as γ increases.

For a fixed value of γ, BLARS tends to select fewer variables as λ increases, as does

the usual lasso selection method. Figure 2.6 shows the search tree when λ = 20 and

γ = 0.3. Values of αk are shown for each variable. The red path is the chosen optimal
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Table 2.2: Coefficients Resulting from Cost-efficient Variable Selection with Additive
Cost.

Estimated Coefficients

λ γ AGE SEX BMI BP S1 S2 S3 S4 S5 S6

20 0 0 -18.85 5.63 1.02 -0.14 0 -0.82 0 46.92 0.23

0.3 0 -18.39 5.72 1.06 -0.13 0 -0.84 0 47.99 0

1 0 -19.02 5.61 1.05 0 0 -0.97 0 42.75 0

7 -0.02 -10.41 6.34 0.95 0 0 0 0 49.45 0

15 0.07 -7.50 8.34 1.38 0 0 0 0 0 0

30 0.43 -1.04 9.79 0 0 0 0 0 0 0

200 0 0 0 5.16 0.51 0 0 -0.26 0 37.86 0

0.3 0 0 5.16 0.51 0 0 -0.26 0 37.86 0

1 0 0 5.35 0.50 0 0 0 0 39.83 0

7 0 0 5.79 0 0 0 0 0 43.45 0

15 0 0 6.97 0.89 0 0 0 0 0 0

30 0 0 8.08 0 0 0 0 0 0 0

path.

Corresponding to Table 2.2, the error sum of squares (SSE), cost, and their per-

centage contribution to the total loss are shown in Table 2.4. For fixed λ and increasing

γ, at first the percentage of SSE in total loss is decreasing, but as the percentage of

cost increases, fewer and cheaper variables are selected and the percentage of SSE in

the total loss increases again.

We show the computational efficiency of BLARS in Tables 2.5 and 2.6. There

are 10 potential predictors, hence 210 = 1024 different α values. If no variable is

selected with an initial lars call for some λ values, the search process stops there. For
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Table 2.3: Initial order of variables in BLARS.

Ordering

λ γ Method Order of entry from first to last

20 0.3 lars BMI S5 BP S3 SEX S6 S1 S4 S2 AGE

1 lars BMI S5 BP S3 SEX S6 S1 S2 S4 AGE

7 lars BMI S5 BP S3 S4 SEX S1 S6 S2 AGE

15 lars BMI S5 BP S4 S3 S6 SEX S1 AGE S2

30 cost S1 S2 S3 S4 S5 S6 BP BMI AGE SEX

200 0.3 lars BMI S5 BP S3 SEX S6 S1 S4 S2 AGE

1 lars BMI S5 BP S3 S4 SEX S1 S6 S2 AGE

7 lars BMI S5 BP S3 S6 S4 S1 SEX AGE S2

15 lars BMI S5 BP S4 S3 S6 SEX S1 AGE S2

30 lars BMI S5 BP S4 S3 S6 AGE S1 S2 SEX
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root

BMI=0 BMI=1

S5=0 S5=1

BP=0 BP=1

S3=0 S3=1

SEX=0 SEX=1

S6=0 S6=1

S1=0 S1=1

S2=0 S2=1

S1=0 S1=1

S4=0 S4=1

S2=0 S2=1

S2=0 S2=1

S4=0 S4=1

SEX=0 SEX=1

S1=0 S1=1

Figure 2.6: Search Tree for λ = 20 and γ = 0.3 with Additive Cost.
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Table 2.4: Effect of γ on SSE and Additive Cost.

SSE Percentage of SSE Cost (nγ
∑

αjcj) Percentage of Cost

λ γ (thousand) in total loss (thousand) in total loss

20 0 1275 97.09% 0 0%

0.3 1279 95.55% 22 1.63%

1 1290 93.75% 51 3.69%

7 1346 85.32% 201 12.75%

15 1573 92.64% 99 5.86%

30 1703 95.14% 66 3.70%

200 0 1411 86.35% 0 0%

0.3 1411 85.55% 15 0.92%

1 1429 85.37% 29 1.72%

7 1472 79.79% 170 9.22%

15 1640 85.39% 99 5.18%

30 1760 89.06% 66 3.36%
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Table 2.5: Computational Efficiency of BLARS with Additive Cost, for Fixed Choices
of λ and γ.

Number of Times Ordering Proportions of Full Search

λ γ to Call lars Method (Times/1023)

20 0.3 16 lars 1.56%

1 20 lars 1.96%

7 34 lars 3.32%

15 46 lars 4.50%

30 63 cost 6.16%

200 0.3 5 lars 0.49%

1 6 lars 0.59%

7 14 lars 1.37%

15 17 lars 1.66%

30 18 lars 1.76%

general situations, we would need to call the lars function up to 1023 times to make

a full search (there is no need to call lars when all αj = 0.) When using the BLARS

approach, the number of times lars is called is much reduced. For fixed γ, computing

time decreases with λ, as simpler models are selected. For fixed λ, computing time

increases with γ. When λ is small and γ is large, we may order the variables by cost

to reduce the computing time. With fixed λ, Proposition 1 allows us to use the results

of fits with small γ for additional efficiencies (Table 2.6).

2.3.2 Optimal Models Using Additive Costs

We choose the optimal tuning parameter and optimal model based on the BIC for

lasso (Zou et al., 2007). Figure 2.7 displays the BIC values for models with different
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Table 2.6: Computational Efficiency of BLARS with Additive Cost Using Smaller γ
Values to Save Search Time for Larger Ones.

Number of Times Ordering Proportions of Full Search

λ γ to Call lars Method (Times/1023)

20 0.3 16 lars 1.56%

1 20 lars 1.96%

7 29 lars 2.83%

15 34 lars 3.32%

30 10 cost 0.98%

200 0.3 5 lars 0.49%

1 6 lars 0.59%

7 14 lars 1.37%

15 15 lars 1.47%

30 13 lars 1.27%
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Table 2.7: Optimal Models Chosen by Lasso and BLARS with Additive Cost.

Estimated Coefficients

Method AGE SEX BMI BP S1 S2 S3 S4 S5 S6

Lasso 0 -18.85 5.63 1.02 -0.14 0 -0.82 0 46.92 0.23

BLARS 0 -20.88 5.63 1.09 0 0 -1.02 0 43.01 0

λ and γ. For each λ, BIC is a step function of γ. Each jump in BIC corresponds

to one model change, while BIC remains the same when selected variables are the

same but γ is increasing. The minimum BIC corresponds to a low level of λ and

γ, which is displayed more clearly in Figure 2.8. BIC is decreasing at the beginning

with increasing γ for a fixed λ; it reaches the minimum for a range of γ values and

then increases. The optimal value of λ based on BIC depends on the value of γ.

For this data set, if we are free to choose γ, the optimal λ should be around 10

and the minimum BIC should be below 1.065 based on Figure 2.8, with the γ value

ranging roughly from 0.5 to 2.4. This optimal solution was found to be λ = 9.22 and

BIC = 1.063. We compare the corresponding optimal model (only for γ in the rough

range from 0.5 to 2.4) with the model selected by the lasso based on BIC criterion

in Table 2.7. The optimal model using BLARS contains two less predictors: S1 and

S6, which is due to the cost effect. The total cost is decreased by 46.5%, and this

“cheaper” model is selected by sacrificing a 1.01% increase of SSE.

2.4 Conclusion and Discussion

The BLARS method for cost-efficient variable selection with additive cost structure

has been developed in this chapter, and it has been shown that, through assigning a

γ value, a “cheaper” model could be selected by sacrificing a user selected amount of
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model accuracy.

We solved a discrete optimization problem (2.2.1) where the indicator variable

αj equals 0 or 1. Naively, one might think that the optimization problem could be

approached with a conventional method which assumes that the αj can take on any

value between 0 and 1; once the estimates are obtained, they could be rounded to

0 or 1. Unfortunately, such an approach will fail because the constraints in (2.2.1)

introduce a discontinuity at αj = 0. Therefore, a discrete optimization method such

as branch and bound is necessary.

We have used an additive cost in this chapter. However, additive costs may be

unrealistic. For example, there may be grouping effects, e.g. when one variable is

selected some other variables become free or cheaper, such as in microarray gene ex-

pression data analysis where gene expression data are obtained from one experiment.

Another grouping cost may come from the situation where higher order or interaction

terms are considered in a model: these cost nothing once the variables have been

measured. We will address more general cost structure in the next chapter.
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Chapter 3

COST-EFFICIENT VARIABLE SELECTION WITH

NON-ADDITIVE COSTS

3.1 Introduction to Non-additive Cost Variable Selection

We have developed the BLARS cost-efficient variable selection method in Chapter 2

which exclusively deals with an additive cost structure. However, additive cost may

not be realistic in practice since the data for the predictors are seldom collected fully

independently. For instance, when we collect a number of blood test results, some

results are obtained using the same blood sample. In this situation, there is a cost

for collecting the blood sample, and then an additional cost for each blood test result

involving different laboratory work. The total cost for obtaining these blood test

results is not simply the sum of the individual costs as in Chapter 2, but is the sum

of two parts: the unique cost of the blood sample and the sum of additional cost for

each blood test result.

The more general cost structure is a non-additive cost, such as the grouping effect

of costs. For example, blood test results were obtained using the same blood sample.

Suppose the cost of collecting the blood sample is C1 (fixed cost for group) and the

additional cost for each test result is C2j (marginal cost), where j = 1, . . . , p and p is

the total number of blood test results in this group. The cost for each test result is

C1 + C2j before any of them being selected into the BLARS model. When one test

result (say x1) is included in the BLARS model, the other test results become cheaper

(the cost is only C2j instead of C1 + C2j for j = 2, . . . , p) if they are also selected in

the BLARS model. Another grouping effect occurs when higher order or interaction
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terms are considered in a model. These terms become free once the variables involved

in the terms have been selected. We will deal with this more general non-additive

cost in this chapter.

The rest of this chapter is organized as follows. We describe the model framework

for non-additive cost variables in Section 3.2, where the improved BLARS process,

the combined order of covariates in selection, and non-additive cost structure will

be addressed. An example of data analysis using BLARS with non-additive cost

structure is showed in Section 3.3. Section 3.4 gives conclusion and discussion.

3.2 Model Framework for Non-additive Cost Variables

Similarly as in Chapter 2, suppose we have a random sample (X,y), where y =

(y1, y2, . . . , yn)T is the response vector and X = (xij), i = 1, 2, . . . , n, j = 1, . . . , p, is

the n×p design matrix consisting of p covariates of interest with the jth predictor xj =

(x1j, . . . , xnj)
T . By location and scale transformation we assume that the predictors

have been standardized to have mean 0 and unit length, and that the response has

mean 0. We want to select and simultaneously estimate the coefficients of covariates

such that the loss function is minimized. With non-additive costs, the proposed

optimization problem P can be written as

min f(β,α) =

∥∥∥∥∥y −
p∑

j=1

xjβj

∥∥∥∥∥

2

+ λ

p∑
j=1

|βj|+ nγC(α1c1, . . . , αpcp), (3.2.1)

with domain D:

αj ∈ {0, 1}, for j = 1, . . . , p,

β ∈ <p,

and constraints S:

αj = 0 ⇒ βj = 0, for j = 1, . . . , p,
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where β is the regression coefficient vector that we want to estimate; λ ≥ 0 is the regu-

larization or tuning parameter; γ ≥ 0 is a user-defined weight imposed on costs, reflect-

ing the level of reluctance to use high cost variables. The p-vector α = (α1, . . . , αp)

contains 0’s and 1’s. Thus, every αj is an indicator variable. The cost cj of collecting

the variable xj is included in the total cost C if αj = 1 but is not included if αj = 0.

The cost function C(α1c1, . . . , αpcp) is non-decreasing when adding more αk = 1 to

the existing non-zero set of {αj}. The constraints indicate that α is used to determine

the variables to be selected in the regression design matrix.

3.2.1 Improved BLARS Process

The BLARS method combines LARS with branch and bound search method, where

relaxation is used to make the searching process easier and faster. Although BLARS

was developed based on an additive cost, the algorithm is also suitable to deal with

non-additive cost, and it will be usable whenever costs are a non-decreasing function

of the set of selected variables.

When dealing with non-additive cost, we make some changes and improvements

for the BLARS process described in Chapter 2. First, after each step in the BLARS

process, we reassess the cost of each potential predictor based on variables selected

in the model in the previous steps, since the costs of the remaining undetermined

variables may be changed due to the grouping effect of the costs. Second, we use a

combined ordering method to order the variables entering the searching process to

make the BLARS process more computationally efficient. This ordering method com-

bines the LARS entries with the Cost ordering method, and the details are showed

in Section 3.2.2. Third, since many variables may become free due to the grouping

effect of the costs and these variables no longer have the cost effect we are concern-

ing about, we put these zero-cost variables in the last positions to enter the BLARS

searching process, and actually we stop the search when all the remaining undeter-

mined variables have zero-cost. Note that different zero-cost variables may appear at
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some BLARS step since different sets of variables are selected at different nodes of

the search tree. Furthermore, based on Proposition 2, we may prune a branch if the

value of C of this branch is larger than the one in the optimal model for a smaller γ.

Proposition 2. Given a fixed value of λ in the BLARS minimization procedure, the

value of C(α1c1, . . . , αpcp) in the optimal model cannot increase when we increase the

value of γ.

Proof. The first two terms in (3.2.1) depend only on β, while the last term depends

only on α. Since γ > 0, an increase in C(α1c1, . . . , αpcp) would imply a decrease in

the first two terms, implying a better solution at the original γ value.

3.2.2 The Combined Order of Covariates in Selection

The order of the variables entering the searching process is an important factor af-

fecting the efficiency of the selection program. Earlier pruning will avoid searching

more paths.

In Chapter 2, we compared several ordering methods by assessing how many times

the search method calls the lars function in the searching process for different com-

binations of λ and γ values using the diabetes data (used by Efron et al. 2004). We

found that corresponding to different range of γ, ordering the potential covariates ei-

ther in descending order of the correlations with the updated response, i.e. the order

of the LARS entries (LARS ) or descending order of the costs (Cost) has the best

result.

We combine the LARS with the Cost ordering method in this chapter to make

the search process more efficient. First we calculate a bin value for the costs of the

potential predictors. The proposed formula is:

bin = 0.25
1

γ

1

n− 1

n∑
i=1

(yi − ȳ)2,
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where γ is the user-defined weight imposed on the costs, and ȳ is the mean value

of the response y. Then the cost of each potential predictor falls into one range:

k × bin ≤ cj < (k + 1) × bin, where k ≥ 0 is an integer and j = 1, . . . , p. This is

shown in Figure 3.1. We order the variables in different bins by the Cost method,

while order the variables in the same bin by the LARS method. Thus for the case in

Figure 3.1, x5 and x6 are the first two variables entering the BLARS search process

since they have the highest costs, but which one is the first depends on the LARS

entries. The variables in the lowest bin, such as x1, x2, x3 in Figure 3.1, are the last

ones entering the BLARS search process, and we further order these three variables

based on the LARS entries; however, we always put the variables with 0 cost in the

last positions and we do not even need to search through them due to the zero-cost.

-
Cost0 1bin 2bin 3bin

s

x1
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x2
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Figure 3.1: The Bin of the Costs

3.2.3 Non-additive cost

We used an additive cost in the previous chapter. However, there may be non-additive

cost, such as grouping effects of cost. Figure 3.2 shows the grouping effect of the costs.

Take group 1 as an example. Suppose x1, x3, x4 belongs to group 1 with group cost C1

and individual additional cost 0, C3, 0 respectively. If x1 is selected, x4 becomes free

and x3 is cheaper (cost only C3) if they are also selected. The total cost is C1 + C3 if
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all the variables in group 1 are selected but C1 if only x1 and x4 are selected. Another

grouping cost may come from the situation where higher order or interaction terms

are considered in a model. For instance, if x1 and x2 have been selected into the

BLARS model, then the squared terms x2
1 and x2

2 and the interaction term x1 : x2

become free it they are selected. It is clear that BLARS will be usable whenever costs

are non-decreasing function of the set of included variables.

Selection

Selection

C1 0

x1

C1 C3

x3

C1 0

x4

Group 1

C1 + C3

C1

C2 0

x2

C2 C5

x5

Group 2

Figure 3.2: The Grouping Effect of the Costs

In BLARS, we deal with non-additive cost by updating the cost of each of the

undetermined variables (the variables that have not entered the search process) after

each step based on which variables have been selected into the model. For example,

the cost for each variable in Figure 3.2 is C1, C2, C1 + C3, C1, C2 + C5 for x1 to x5

respectively before they enter the search process. Suppose after a number of steps,

x1, x2 and x3 have entered the search process and x1 and x2 have been selected into

the model, then we update the cost for x4 and x5 to be 0 and C5 respectively. Each

time after we update the costs for the undetermined variables we need to reorder them

based on their new costs using the Cost-combine-LARS ordering method described

in section 3.2.2.
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3.3 An Example for Non-additive Cost Variable Selection

We apply the BLARS to the diabetes data used by Efron et al. Efron et al. (2004).

The data consists of 10 variables: age, sex, body mass index (BMI), average blood

pressure (BP), and S1 to S6 representing 6 serum measurements. Suppose the 6 blood

test results are obtained using the same blood sample. For the purpose of illustration,

we assign the non-additive costs to the 10 variables as shown in Table 3.1.

Table 3.1: Non-additive Cost of Variables Used in Example.

Predictors AGE SEX BMI BP S1 S2 S3 S4 S5 S6

Group Number 1 2 3 4

Group Cost 0 5 10 20

Additional Costs 0 0 0 0 30 30 30 30 30 30

3.3.1 Cost Efficient Variable Selection with Non-additive Costs

We choose the tuning parameter λ = 20 and λ = 200 as examples to illustrate the

cost efficient variable selection process. γ is a user-defined weight imposed on costs,

reflecting the level of reluctance to use high cost variables. Table 3.2 displays the

variable selection results for some combinations of λ and γ. When γ = 0, the BLARS

results are equivalent to the standard lasso results. For a fixed value of λ, BLARS

tends to select fewer or cheaper variables as γ increases. For a fixed value of γ, BLARS

tends to select fewer variables as λ increases, as does the usual lasso selection method.

Figure 3.3 shows the search tree when λ = 20 and γ = 0.5 with non-additive cost.

Values of αk are shown for each variable. The red path is the chosen optimal path.

Corresponding to Table 3.2, the effect of γ on the error sum of squares (SSE) and

cost are shown in Table 3.3. For fixed λ and increasing γ, at first the percentage
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Table 3.2: Coefficients Resulting from Cost-efficient Variable Selection with Non-
additive Cost.

Estimated Coefficients

λ γ AGE SEX BMI BP S1 S2 S3 S4 S5 S6

20 0 0 -18.85 5.63 1.02 -0.14 0 -0.82 0 46.92 0.23

0.5 0 -18.39 5.72 1.06 -0.13 0 -0.84 0 47.99 0

1 0 -19.02 5.61 1.05 0 0 -0.97 0 42.75 0

7 -0.02 -10.41 6.34 0.95 0 0 0 0 49.45 0

15 0.07 -7.50 8.34 1.38 0 0 0 0 0 0

35 0.43 -1.04 9.79 0 0 0 0 0 0 0

200 0 0 0 5.16 0.51 0 0 -0.26 0 37.86 0

0.5 0 0 5.16 0.51 0 0 -0.26 0 37.86 0

1 0 0 5.35 0.50 0 0 0 0 39.83 0

7 0 0 5.79 0 0 0 0 0 43.45 0

15 0 0 6.97 0.89 0 0 0 0 0 0

35 0 0 8.08 0 0 0 0 0 0 0
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root

BMI=0 BMI=1

S5=0 S5=1

BP=0 BP=1

S3=0 S3=1

S6=0 S6=1

S1=0 S1=1

S4=0 S4=1

S2=0 S2=1

S2=0 S2=1

S1=0 S1=1

S4=0 S4=1

S2=0 S2=1

S2=0 S2=1

S4=0 S4=1

S1=0 S1=1

Figure 3.3: Search Tree for λ = 20 and γ = 0.5 with Non-additive Cost.
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of SSE in total loss is decreasing, but as the percentage of cost increases, fewer and

cheaper variables are selected and the percentage of SSE in the total losses increases

again.

Table 3.3: Effect of γ on SSE and Non-additive Cost.

SSE Percentage of SSE Cost (nγC) Percentage of Cost

λ γ (thousand) in total loss (thousand) in total loss

20 0 1275 97.09% 0 0%

0.5 1279 95.14% 28 2.06%

1 1290 94.36% 42 3.07%

7 1346 85.32% 201 12.75%

15 1573 92.64% 99 5.86%

35 1703 94.55% 77 4.30%

200 0 1411 86.35% 0 0%

0.5 1411 85.26% 21 1.27%

1 1429 85.37% 29 1.72%

7 1472 79.79% 170 9.22%

15 1640 85.39% 99 5.18%

35 1760 88.56% 77 3.89%

The computational efficiency of BLARS dealing with non-additive cost are showed

in Tables 3.4 and 3.5. There are 10 potential predictors, we usually need to call the

lars function up to 1023 times to make a full search for general situations. When using

the BLARS approach, the number of times the lars is called is much reduced. With

fixed λ, we could take the sum of costs of previously selected variables using a lower

γ as an input value for a new BLARS call with a higher γ to reduce the computing

time (Table 3.5). Another time-saving approach is to ignore some variables that have
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a higher cost than the sum of the costs of the variables selected previously using a

lower γ. For instance, when λ = 20 and γ = 15, the process selects the first four

variables and the sum of the costs for each patient is 15; if we increase γ, we could

delete the variables S1 to S6 (have cost ≥ 30) from the design matrix and still get

the same results, but the times to call lars function drops dramatically (only 3 times

compared with the previous 38 when γ = 35 in Table 3.4).

Table 3.4: Computational Efficiency of BLARS with Non-additive Cost, for Fixed
Choices of λ and γ.

Number of Times Proportions of Full Search

λ γ to Call lars (Times/1023)

20 0.5 16 1.56%

1 19 1.86%

7 31 3.03%

15 39 3.81%

35 38 3.71%

200 0.5 9 0.88%

1 13 1.27%

7 23 2.25%

15 27 2.64%

35 25 2.44%

3.3.2 Full Model

We could include squared terms and two-way interaction terms in the design matrix.

Excluding the SEX2 term, we have 64 potential predictors.

We choose the tuning parameter λ = 60 as examples to illustrate the cost efficient
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Table 3.5: Computational Efficiency of BLARS with Non-additive Cost Using Smaller
γ Values to Save Search Time for Larger Ones.

Number of Times Proportions of Full Search

λ γ to Call lars (Times/1023)

20 0.5 16 1.56%

1 17 1.66%

7 24 2.35%

15 27 2.64%

35 9 0.88%

200 0.5 9 0.88%

1 13 1.27%

7 19 1.86%

15 18 1.76%

35 9 0.88%
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variable selection process. Table 3.6 displays the variable selection results for some

combinations of λ and γ. Corresponding to Table 3.6, the effect of γ on the error sum

of squares (SSE) and cost are shown in Table 3.7. For fixed λ and increasing γ, at

first the percentage of SSE in total loss is decreasing, but as the percentage of cost

increases, fewer and cheaper variables are selected and the percentage of SSE in the

total losses increases again.

Table 3.8 and Table 3.9 show the computational efficiency of BLARS dealing with

non-additive cost for the 64-term design matrix with λ = 60. Since there are 64

potential predictors, we need to consider 264 − 1 potential models. Running lars on

all of those for a full search is clearly infeasible. When using the BLARS approach,

the number of times the lars is called is reduced dramatically.



52

T
ab

le
3.

6:
C

o
effi

ci
en

ts
of

F
u
ll

M
o
d
el

s
R

es
u
lt
in

g
fr

om
C

os
t-

effi
ci

en
t

V
ar

ia
b
le

S
el

ec
ti
on

.

E
st

im
at

ed
C

o
effi

ci
en

ts

λ
γ

A
G

E
S
E

X
B

M
I

B
P

S
3

S
5

S
6

A
G

E
2

B
M

I2
S
62

60
0

0
-1

1.
35

5.
40

0.
88

-0
.7

1
42

.7
1

0.
08

6
0.

00
3

0.
06

8
0.

01
7

0.
5

0
-1

1.
35

5.
40

0.
88

-0
.7

1
42

.7
1

0.
08

6
0.

00
3

0.
06

8
0.

01
7

1
0

-1
1.

42
5.

42
0.

88
-0

.7
3

43
.6

6
0

0.
00

2
0.

06
9

0

7
0

-4
.9

5
6.

00
0.

81
0

48
.6

8
0

0.
00

3
0.

06
5

0

15
0.

05
4

-1
.8

6
8.

22
1.

20
0

0
0

0.
00

07
0

0

35
0.

35
0

0
9.

63
0

0
0

0
0.

00
61

0
0

λ
γ

A
G

E
:S

E
X

A
G

E
:B

M
I

S
E

X
:B

M
I

A
G

E
:B

P
S
E

X
:B

P
B

M
I:
B

P
A

G
E

:S
5

A
G

E
:S

6

60
0

0.
82

0
0

0.
00

8
0.

01
9

0.
06

4
0.

07
0

0.
00

4

0.
5

0.
82

0
0

0.
00

8
0.

01
9

0.
06

4
0.

07
0

0.
00

4

1
0.

79
0

0
0.

01
0

0.
07

0
0.

07
2

0.
15

4
0

7
0.

88
0

0
0.

01
2

0.
05

8
0.

06
7

0.
15

2
0

15
0.

53
0

0.
58

0.
02

8
0.

08
3

0.
05

0
0

0

35
0.

52
0.

03
3

1.
62

0
0

0
0

0



53

Table 3.7: Effect of γ on SSE and Non-additive Cost for Full Models.

SSE Percentage of SSE Cost (nγC) Percentage of Cost

λ γ (thousand) in total loss (thousand) in total loss

60 0 1221 91.33% 0 0%

0.5 1221 89.48% 28 2.02%

1 1234 88.87% 42 3.02%

7 1281 80.83% 201 12.69%

15 1520 89.15% 99 5.83%

35 1663 91.76% 77 4.27%

3.3.3 Optimal Values Using Non-additive Costs

We choose the optimal tuning parameter and optimal model based on the criterion

of BIC for the lasso (Equation 2.2.2) proposed by Zou et al. (2007). The optimal

value of λ based on BIC depends on the value of γ. For the 10-variable design matrix,

the optimal λ value is 19.98 for lasso selection (γ = 0) based on BIC. For γ = 1, the

optimal λ was found to be 9.21. Compared with the lasso solution (γ = 0), the optimal

model using BLARS with γ = 1 contains two less predictors: S1 and S6, which is

due to the cost effect, and the total cost decreased by 38.7%. This “cheaper” model is

selected by sacrificing a 1.0% increase of SSE, and 5.6% decrease in
∑p

j=1 |βj|. Table

3.10 displays the optimal lasso model and the optimal BLARS model with several γ

values.

For the 64-variable design matrix and γ = 1, the optimal λ was found to be

λ = 72.25. The optimal model contains 10 variables. We display the optimal models

using BLARS and the optimal lasso model (γ = 0) based on BIC criterion in Table

3.11. Compared with the lasso solution, the total cost using BLARS with γ = 1
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Table 3.8: Computational Efficiency of BLARS for Full Model with Non-additive
Cost, for Fixed Choices of λ and γ.

Number of Times Proportions of Full Search

λ γ to Call lars Times/(264 − 1)

60 0.5 39 10−18

1 76 10−18

7 96 10−17

15 132 10−17

35 319 10−17

Table 3.9: Computational Efficiency of BLARS for Full Model with Non-additive Cost
Using Smaller γ Values to Save Search Time for Larger Ones.

Number of Times Proportions of Full Search

λ γ to Call lars Times/(264 − 1)

60 0.5 39 10−18

1 76 10−18

7 66 10−18

15 64 10−18

35 58 10−18
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Table 3.10: Optimal Main-effect Models Chosen by Lasso and BLARS with Non-
additive Cost.

Estimated Coefficients

Method γ AGE SEX BMI BP S1 S2 S3 S4 S5 S6

Lasso 0 0 -18.85 5.63 1.02 -0.14 0 -0.82 0 46.92 0.23

BLARS 1 0 -20.88 5.63 1.09 0 0 -1.02 0 43.01 0

7 0 -10.00 6.33 0.94 0 0 0 0 49.17 0

15 0 0 7.91 1.19 0 0 0 0 0 0

35 0.40 0 9.71 0 0 0 0 0 0 0

decreased by 24.0%, by excluding the cost of S6 in the terms S62 and AGE:S6. The

SSE also decreased by 1.0%, but
∑p

j=1 |βj| increased by 6.1%.
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3.4 Conclusion and Discussion

BLARS will be usable whenever costs are a non-decreasing function of the set of

selected variables. That includes both additive and non-additive cost structures. This

chapter improved the BLARS method so that it is not only more efficient but also

suitable for dealing with non-additive cost. The example displayed the cost-efficient

variable selection results for both a main effect model and a full model.

To make our BLARS method more practical, it is helpful to build a software

implementation. With an R package, the cost-efficient variable selection process will

become a routinely available procedure for health researchers once they have the cost

information on collecting the data. We name the R package branchLars, and describe

it in Chapter 4.
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Chapter 4

SOFTWARE IMPLEMENTATION

4.1 Introduction to the R package branchLars

The BLARS methods dealing with both additive cost and non-additive cost have been

developed in the previous chapters. Having a software implementation for BLARS

will make it more practical, and the health researchers can routinely apply the cost-

efficient variable selection strategy in statistical model building provided that they

have the information on the costs of collecting the data. We built the R package

branchLars which implements the BLARS algorithm. It will be described in detail in

this chapter.

The R package branchLars depends on the R packages lars and Rgraphviz. Since

the lars function is called in the BLARS process, the R package lars should be installed

in advance. We also want to display the BLARS search tree visually for a pre-fixed

pair of λ and γ to give the user an imaginable idea of the BLARS searching process,

and the R package Rgraphviz helps to realize this object. We presume the R package

Rgraphviz has also been installed in advance.

The rest of this chapter is organized as follows. Section 4.2 describes the functions

in the R package branchLars. The usage of the functions in cost-efficient variable

selection is illustrated using an example in Section 4.3. Section 4.4 contains conclusion

and discussion.
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4.2 Package Description

The main function of the package is branchLars which implements the BLARS search

method. The usage of the function is as follows.

branchLars(X, y, lambda, cost, gamma=1, sumC=0)

The n × p matrix X contains p potential predictors x1, . . . ,xp, each of them has to

be standardized to have mean 0 and norm 1. The response vector y has to be stan-

dardized to have mean 0. The function standardize in the package takes X,y in the

original scale as inputs, standardizes the response y and the predictors in X, and

outputs the standardized X,y and a vector of the norm values for the original predic-

tors. Another function standardizeG does the similar job which returns a matrix X

also containing standardized squared terms and two-way interaction terms. Note that

the estimated coefficients returned by the function branchLars are in the transformed

scale, and the function unstandardize could be used to transform the coefficients back

to the original scale.

A fast effective way of selecting the tuning parameter λ is important in practice.

We use BIC for the lasso (Equation 2.2.2) as the default tuning parameter and model

selection criteria in the branchLars package for its simplicity and effectiveness. The

parameter γ is a user-defined weight imposed on costs, reflecting the level of reluctance

to use high cost variables. When γ = 0, we ignore the costs and the selection becomes

the standard lasso variable selection. The higher the γ value, the more reluctance the

user to select high cost variables. Thus when the user inputs a higher value to γ,

the branchLars function will be less likely to select higher cost variables. There is

a trade off between an expensive but more accurate model and a cheap model with

lower accuracy. The assignment of a γ value is thus based to a large extent on the

opinions and judgments of the user or the decision maker. Sometimes the user has

to use a higher γ because of budget constraint. Once the user chooses a value for γ,

the optimal value of λ can be found by the function lambdaOpt based on the default
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BIC criteria, and the corresponding optimal statistical model could then be selected

by calling the branchLars function again with the optimal λ as the input. The user

could use their own preferred method, such as Cp for the lasso (Efron et al., 2004)

or cross validation, to select an optimal tuning parameter, then call the branchLars

function to build the cost-efficient statistical model.

Given a fixed value of λ in BLARS search process, the value of C(α1c1, . . . , αpcp)

in the objective function 3.2.1 of the optimal model can not increase when we increase

the value of γ. Thus when we increase γ from γ1 to γ2, we could use the value of

C(α1c1, . . . , αpcp) returned by branchLars using γ1 as the input value of sumC in

the call for branchLars when using γ2, so that the branchLars can prune a branch if

C(α1c1, . . . , αpcp) of this branch is larger than the sumC value. We could also ignore

all those variables that have higher cost than the sum of the costs of the variables

selected by branchLars using γ1 to reduce the searching time.

The parameter cost in the branchLars function is a two-element list. The first

element is a vector containing all the group costs and additional individual costs

for each variable. The second element is also a list with length p, where p equals the

number of potential predictors. These p terms have the same names as the p potential

predictors. The ith term contains the pointers to the cost values which could be used

to calculate the cost for the ith predictor, where i = 1, . . . , p. For the simple additive

costs, suppose we have three variables x1, x2, x3 with the costs c1, c2, c3 respectively,

we create the parameter cost using the following R code:

cost <- list()

cost[[1]] <- c(c1, c2, c3) # the first element

cost[[2]] <- list(1, 2, 3) # the second element

names(cost[[2]]) <- c("x1", "x2", "x3")

The cost should then be displayed as

cost

[[1]]

[1] c1 c2 c3
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[[2]]

[[2]]$x1

[1] 1

[[2]]$x2

[1] 2

[[2]]$x3

[1] 3

where the first term of the second element has the name x1 and contains the pointer

1, which points to the first cost value c1. For the non-additive costs as in Figure 3.2,

the cost could be creased using the following R code:

cost <- list()

cost[[1]] <- c(c1, c2, c3, c5) # the first element

cost[[2]] <- list(1, 2, c(1,3), 1, c(2,4)) # the second element

names(cost[[2]]) <- c("x1", "x2", "x3", "x4", "x5")

Then the cost should be displayed as:

cost

[[1]]

[1] C1 C2 C3 C5

[[2]]

[[2]]$x1

[1] 1

[[2]]$x2

[1] 2

[[2]]$x3

[1] 1 3

[[2]]$x4

[1] 1

[[2]]$x5

[1] 2 4
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where the last term of the second element has the name x5 and contains the pointers 2

and 4, which point to the second and fourth cost values C2 and C5. The cost of variable

x5 is then C2 + C5 given variable x2 has not been selected. If we want to include the

squared and two-way interaction terms, such as x2
1 and x1 : x3, we need to include the

pointer 1 for the term x2
1 and pointers (1, 3) for the term x1 : x3 in the second element

of cost. All these additional pointers for squared and two-way interaction terms could

be added in the cost variabale by calling the function standardizeG.

With the above cost structure, the function branchLars will automatically update

the costs of each undetermined variables based on which variables have been selected

into the model. The function branchLars calls a build-in function buildCostFun, which

takes the parameter cost as the input and outputs a function costFun. This function

costFun is used by branchLars to calculate the sum of the costs of the selected variables

(a scalar and the first element of the costFun outputs) and update the costs of the

undetermined varilables (a vector and the second element of the costFun outputs) at

each BLARS step. A vector alpha of length p is the only input of the function costFun,

and it contains the values of−1, 0 and 1, where 1 means the corresponding variable has

been selected, 0 means the variable has been excluded, and −1 means the variable

is undetermined. This vector alpha is also updated by the function branchLars at

each step. The users could input the parameter cost in their own specific structure,

provided that they can write their corresponding function buildCostFun.

The function branchLars returns a BLARS object. The estimated regression co-

efficients in the transformed scale could be displayed using function print(BLARS

object), and the coefficients in the original scale could be obtained using the function

unstandardize(BLARS object, norm values). The function summary(BLARS object)

shows the optimized objective value with its three components (SSE, lasso type l1-

penalty, and total cost) corresponding to the input pair of λ and γ. The function

predict(BLARS object, newdata) could be used to predict the responses for a new

dataset X ′. We could find the times that the function lars have been called in the
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BLARS search process by accessing the evals component of the BLARS object. The

BLARS search tree could be visualized using the function drawTree(BLARS object).

The function bic(BLARS object) and cp(BLARS object)return the BIC and Cp values

of the returned BLARS model.

Table 4.1 summarizes the functions available in the R package branchLars.
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4.3 Example of Use of the Package

We apply the functions in package branchLars to the diabetes data used by Efron

et al. (2004). The data consists of 10 variables: age, sex, body mass index (BMI),

average blood pressure (BP), and S1 to S6 representing 6 serum measurements. For

the purpose of illustration, we assign the non-additive costs to the 10 variables as

shown in Table 3.1.

4.3.1 Cost Efficient Variable Selection for Fixed Value of λ

Let X be the design matrix and y the response vector. We first standardize the data

so that the covariates have mean 0 and unit length, and the response has mean 0.

Then we construct the parameter cost.

> library(branchLars)

Loading required package: lars

Loading required package: Rgraphviz

Loading required package: graph

Loading required package: grid

> data(diabetes)

> X <- as.matrix(diabetes[, 1:10])

> y <- diabetes$Y

> Xy <- standardize(X, y)

> Xs <- Xy$X # standardized design matrix

> ys <- Xy$y # standardized response vector

> normx <- Xy$normX

> costs <- list()

> costs[[1]] <- c(0, 5, 10, 20, rep(30, 6))

> costs[[2]] <- list(1, 1, 2, 3, c(4,5), c(4,6),

c(4,7),c(4,8), c(4,9), c(4,10))

> names(costs[[2]]) <- colnames(Xs)

> costs

[[1]]

[1] 0 5 10 20 30 30 30 30 30 30
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[[2]]

[[2]]$AGE

[1] 1

[[2]]$SEX

[1] 1

[[2]]$BMI

[1] 2

[[2]]$BP

[1] 3

[[2]]$S1

[1] 4 5

[[2]]$S2

[1] 4 6

[[2]]$S3

[1] 4 7

[[2]]$S4

[1] 4 8

[[2]]$S5

[1] 4 9

[[2]]$S6

[1] 4 10

We choose the tuning parameter λ = 30 as an example to illustrate the cost efficient

variable selection process. The parameter γ is a user-defined weight imposed on

costs, reflecting the level of reluctance to use high cost variables. Suppose the user

provides a value of γ = 0.8, then we can select and estimate the predictors using

function branchLars. Function summary gives the total loss and its three components

for the selected regression model; function unstandardize transforms the regression

coefficients back to the original scale.
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> result1 <- branchLars(Xs, ys, lambda=30, costs, gamma=0.8)

> print(result1)

Call:

branchLars(X = Xs, y = ys, lambda = 30, cost = costs, gamma = 0.8)

Regression Coefficient:

AGE SEX BMI BP S1 S2 S3 S4 S5 S6

[1,] 0 -181.4176 519.4402 295.1167 0 0 -248.7673 0 466.3076 0

> summary(result1)

Call:

branchLars(X = Xs, y = ys, lambda = 30, cost = costs, gamma = 0.8)

Optimal Total Loss and its Components:

Total_Loss RSS L1_penalty Cost

1376942.45 1292018.97 51331.48 33592.00

> unstandardize(result1, normx)

AGE SEX BMI BP S1 S2 S3 S4 S5 S6

[1,] 0 -17.29304 5.598589 1.016043 0 0 -0.915871 0 42.50675 0

> drawTree(result1)

The BLARS search tree can be visualized using the function drawTree. Figure 4.1

shows the search tree for λ = 30 and γ = 0.8, where 1 means the variable is selected

and the red path is the optimal search path.

There are 10 potential predictors, hence 210 = 1024 different α values. If no

variable is selected with an initial lars call for some λ values, the search process stops

there. For general situations, we usually need to call the lars function up to 1023 times

to make a full search. Note that there is no need to call lars when all αj = 0 which

means no variable is in the model. When using the BLARS approach, the number of

times the lars is called is much reduced. The branchLars object returned by function

branchLars contains an element evals showing the total times to call lars function.
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root

BMI=0 BMI=1

S5=0 S5=1

BP=0 BP=1

S3=0 S3=1

S6=0 S6=1

S1=0 S1=1

S4=0 S4=1

S2=0 S2=1

S2=0 S2=1

S4=0 S4=1

S1=0 S1=1

S4=0 S4=1

S2=0 S2=1

S2=0 S2=1

S4=0 S4=1

S4=0 S4=1

S1=0 S1=1

Figure 4.1: Search Tree for λ = 30 and γ = 0.8 with 10-Variable Design Matrix
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With fixed λ, we could take the sum of costs of previously selected variables using a

lower γ as the input value of sumC to reduce the computing time. For example, the

times to call lars function is 38 when λ = 30 and γ = 30. If we input the previous

sumC value returned by function branchLars with γ = 15 into the new branchLars

call with γ = 30, the times to call lars function is reduced to 9. Another time-saving

approach is to ignore some variables that have higher cost than the sum of the costs

of the variables selected previously using a lower γ. For instance, when λ = 30 and

γ = 15, the process selects the first four variables and the sum of the costs for each

patient is 15; if we increase γ, we could delete the variables S1 to S6 from the design

matrix since the cost of each S1 to S6 is greater than 15, and we still get the same

results, but the times to call lars function drops dramatically (only 3 times compared

with the previous 38 when γ = 30 ).

> result2 <- branchLars(Xs, ys, lambda=30, costs, gamma=15)

> unstandardize(result2, normx)

AGE SEX BMI BP S1 S2 S3 S4 S5 S6

[1,] 0.04193434 -6.163864 8.27366 1.352763 0 0 0 0 0 0

> result3 <- branchLars(Xs, ys, lambda=30, costs, gamma=30)

> result3$evals

[1] 38

> unstandardize(result3, normx)

AGE SEX BMI BP S1 S2 S3 S4 S5 S6

[1,] 0.3912211 0 9.69494 0 0 0 0 0 0 0

> result4 <- branchLars(Xs, ys, lambda=30, costs, gamma=30,

+ sumC=result2$sumC)

> result4$evals

[1] 9

> unstandardize(result4, normx)
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AGE SEX BMI BP S1 S2 S3 S4 S5 S6

[1,] 0.3912211 0 9.69494 0 0 0 0 0 0 0

> result5 <- branchLars(Xs[,1:4], ys, lambda=30, costs[1:4], gamma=30)

> result5$evals

[1] 3

> unstandardize(result5, normx[1:4])

AGE SEX BMI BP

[1,] 0.3912211 0 9.69494 0

We could include squared terms and two-way interaction terms in the design ma-

trix using the function standardizeG. Excluding the SEX2 term, we have 64 potential

predictors. The following are some results for this bigger design matrix when we assign

λ = 65 and γ = 1.5.

> XyG <- standardizeG(Xs, normx, costs)

> XsG <- XyG$Xs[, -12] # exclude the squared SEX term

> normX <- XyG$normX[-12]

> costsG <- XyG$cost

> costsG[[2]] <- costsG[[2]][-12]

> result6 <- branchLars(XsG, ys, lambda=65, costsG, gamma=1.5)

> result6$evals

[1] 76

> summary(result6)

Call:

branchLars(X = XsG, y = ys, lambda = 65, cost = costsG, gamma = 1.5)

Optimal Total Loss and its Components:

Total_Loss RSS L1_penalty Cost

1421713.0 1239487.8 119240.2 62985.0

> unstandardize(result6, normX)
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AGE SEX BMI BP S1 S2 S3 S4 S5 S6

[1,] 0 -10.57813 5.414105 0.8624607 0 0 -0.7098747 0 43.45239 0

AGE^2 BMI^2 BP^2 S1^2 S2^2 S3^2 S4^2 S5^2 S6^2

[1,] 0.0006874186 0.06546686 0 0 0 0 0 0 0

AGE:SEX AGE:BMI SEX:BMI AGE:BP SEX:BP BMI:BP

[1,] 0.7677764 0 0 0.009862242 0.04133636 0.06988001

AGE:S1 SEX:S1 BMI:S1 BP:S1 AGE:S2 SEX:S2 BMI:S2 BP:S2 S1:S2

[1,] 0 0 0 0 0 0 0 0 0

AGE:S3 SEX:S3 BMI:S3 BP:S3 S1:S3 S2:S3 AGE:S4 SEX:S4 BMI:S4

[1,] 0 0 0 0 0 0 0 0 0

BP:S4 S1:S4 S2:S4 S3:S4 AGE:S5 SEX:S5 BMI:S5 BP:S5 S1:S5

[1,] 0 0 0 0 0.1391305 0 0 0 0

S2:S5 S3:S5 S4:S5 AGE:S6 SEX:S6 BMI:S6 BP:S6 S1:S6 S2:S6 S3:S6

[1,] 0 0 0 0 0 0 0 0 0 0

S4:S6 S5:S6

[1,] 0 0

4.3.2 Optimal Models

We choose the optimal tuning parameter and optimal model based on the default

BIC criterion. Function bic gives the BIC value for a selected BLARS model. The

optimal value of λ based on BIC depends on the value of γ. For the 10-variable design

matrix, the optimal λ value is 19.98 for standard lasso selection based on BIC. For

γ = 1, the optimal λ was found using function lambdaOpt to be λ = 9.213. We could

compare the optimal model when γ = 1 with the optimal model when γ = 0 (the

lasso solution based on BIC criterion) in Table 3.10. The optimal model using BLARS

contains two less predictors: S1 and S6, and the total cost decreased by 38.7%. This

“cheaper” model is selected by sacrificing a 1.0% increase of SSE, and 5.6% decrease

in
∑p

j=1 |βj|.

> lassoOpt <- lambdaOpt(Xs, ys, costs, gamma=0) # Lasso

> lassoOpt

$Optimal_Lambda

[1] 19.98117
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$BIC

[1] 1.094136

$sumC

[1] 155

> modelOptLasso <- branchLars(Xs, ys, lambda=lassoOpt$Optimal_Lambda,

+ costs, gamma=0, sumC=lassoOpt$sumC)

> modelOptLasso$evals

[1] 1

> summary(modelOptLasso)

Call:

branchLars(X = Xs, y = ys, lambda = lassoOpt$Optimal_Lambda,

cost = costs, gamma = 0, sumC = lassoOpt$sumC)

Optimal Total Loss and its Components:

Total_Loss RSS L1_penalty Cost

1313612.34 1275357.12 38255.23 0.00

> unstandardize(modelOptLasso, normx)

AGE SEX BMI BP S1 S2 S3 S4

[1,] 0 -18.85021 5.62909 1.023057 -0.1430241 0 -0.8244074 0

S5 S6

[1,] 46.92238 0.2268591

> opt1 <- lambdaOpt(Xs, ys, costs, gamma=1) # BLARS

> opt1

$Optimal_Lambda

[1] 9.212472

$BIC

[1] 1.076536

$sumC

[1] 95
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> modelOpt1 <- branchLars(Xs, ys, lambda=opt1$Optimal_Lambda,

+ costs, gamma=1, sumC=opt1$sumC)

> modelOpt1$evals

[1] 14

> summary(modelOpt1)

Call:

branchLars(X = Xs, y = ys, lambda = opt1$Optimal_Lambda, cost = costs,

gamma = 1, sumC = opt1$sumC)

Optimal Total Loss and its Components:

Total_Loss RSS L1_penalty Cost

1346904.80 1288271.35 16643.45 41990.00

> unstandardize(modelOpt1, normx)

AGE SEX BMI BP S1 S2 S3 S4 S5 S6

[1,] 0 -20.88318 5.629415 1.090270 0 0 -1.018800 0 43.01096 0

For the 64-variable design matrix and γ = 1, the optimal λ was found to be λ = 72.25.

The optimal BLARS model contains 10 variables, while the optimal lasso model selects

11 variables. Comparing the optimal model when γ = 1 with the optimal model when

γ = 0 (the lasso solution) based on BIC criterion, we found that the total cost using

BLARS decreased by 24.0%, by excluding the cost of S6 in the terms S62 and AGE:S6.

The SSE also decreased by 1.0%, but
∑p

j=1 |βj| increased by 6.1%.

> lassoOpt2 <- lambdaOpt(XsG, ys, costsG, gamma=0) # Lasso

> lassoOpt2

$Optimal_Lambda

[1] 91.47057

$BIC

[1] 1.171799

$sumC

[1] 125
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> modelOptLasso2 <- branchLars(XsG, ys, lambda=lassoOpt2$Optimal_Lambda,

+ costsG, gamma=0, sumC=lassoOpt2$sumC)

> modelOptLasso2$evals

[1] 1

> summary(modelOptLasso2)

Call:

branchLars(X = XsG, y = ys, lambda = lassoOpt2$Optimal_Lambda,

cost = costsG, gamma = 0, sumC = lassoOpt2$sumC)

Optimal Total Loss and its Components:

Total_Loss RSS L1_penalty Cost

1413525.8 1260439.0 153086.8 0.0

> unstandardize(modelOptLasso2, normX)

AGE SEX BMI BP S1 S2 S3 S4 S5 S6

[1,] 0 -6.025656 5.426364 0.7800494 0 0 -0.5704826 0 42.08848 0

AGE^2 BMI^2 BP^2 S1^2 S2^2 S3^2 S4^2 S5^2 S6^2

[1,] 0 0.04450851 0 0 0 0 0 0 0.01277153

AGE:SEX AGE:BMI SEX:BMI AGE:BP SEX:BP BMI:BP AGE:S1

[1,] 0.5955218 0 0 0.00637261 0 0.05141858 0

SEX:S1 BMI:S1 BP:S1 AGE:S2 SEX:S2 BMI:S2 BP:S2 S1:S2 AGE:S3

[1,] 0 0 0 0 0 0 0 0 0

SEX:S3 BMI:S3 BP:S3 S1:S3 S2:S3 AGE:S4 SEX:S4 BMI:S4 BP:S4 S1:S4

[1,] 0 0 0 0 0 0 0 0 0 0

S2:S4 S3:S4 AGE:S5 SEX:S5 BMI:S5 BP:S5 S1:S5 S2:S5 S3:S5 S4:S5

[1,] 0 0 0 0 0 0 0 0 0 0

AGE:S6 SEX:S6 BMI:S6 BP:S6 S1:S6 S2:S6 S3:S6 S4:S6 S5:S6

[1,] 0.003878718 0 0 0 0 0 0 0 0

> opt2 <- lambdaOpt(XsG, ys, costsG, gamma=1, lower=70, upper=90) # BLARS

> opt2

$Optimal_Lambda

[1] 72.24969

$BIC

[1] 1.147681

$sumC

[1] 95
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> modelOpt2 <- branchLars(XsG, ys, lambda=opt2$Optimal_Lambda,

+ costsG, gamma=1, sumC=opt2$sumC)

> modelOpt2$evals

[1] 44

> summary(modelOpt2)

Call:

branchLars(X = XsG, y = ys, lambda = opt2$Optimal_Lambda, cost = costsG,

gamma = 1, sumC = opt2$sumC)

Optimal Total Loss and its Components:

Total_Loss RSS L1_penalty Cost

1417805.3 1247493.2 128322.1 41990.0

> unstandardize(modelOpt2, normX)

AGE SEX BMI BP S1 S2 S3 S4 S5 S6

[1,] 0 -9.364981 5.412267 0.8345961 0 0 -0.676748 0 43.17241 0

AGE^2 BMI^2 BP^2 S1^2 S2^2 S3^2 S4^2 S5^2 S6^2 AGE:SEX

[1,] 0 0.0604145 0 0 0 0 0 0 0 0.7298097

AGE:BMI SEX:BMI AGE:BP SEX:BP BMI:BP AGE:S1 SEX:S1

[1,] 0 0 0.009575883 0 0.06716839 0 0

BMI:S1 BP:S1 AGE:S2 SEX:S2 BMI:S2 BP:S2 S1:S2 AGE:S3 SEX:S3

[1,] 0 0 0 0 0 0 0 0 0

BMI:S3 BP:S3 S1:S3 S2:S3 AGE:S4 SEX:S4 BMI:S4 BP:S4 S1:S4 S2:S4

[1,] 0 0 0 0 0 0 0 0 0 0

S3:S4 AGE:S5 SEX:S5 BMI:S5 BP:S5 S1:S5 S2:S5 S3:S5 S4:S5

[1,] 0 0.1121557 0 0 0 0 0 0 0

AGE:S6 SEX:S6 BMI:S6 BP:S6 S1:S6 S2:S6 S3:S6 S4:S6 S5:S6

[1,] 0 0 0 0 0 0 0 0 0

4.4 Conclusion and Discussion

The main function branchLars in the R package branchLars implements the BLARS

algorithm developed in the previous 2 chapters. Other functions in the package fa-

cilitate the main function with respect to either the input values or the outputs. A
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detailed example was used in this chapter to illustrate the usage of the functions in

the package in a cost-efficient variable selection data analysis process.

The optimal value of λ and the corresponding optimal branching LARS model

are selected based on the default model selection criteria, BIC for the lasso (Zou

et al., 2007), in the branchLars package. Researchers may have their preferred model

selection criteria other than BIC. The function lambdaOpt can be adapted based

on other selection criteria to find the optimal λ value. The corresponding optimal

BLARS model can still be obtained using the function branchLars once the optimal

λ has been selected.
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Chapter 5

REAL DATA APPLICATION - ACT PROJECT

5.1 Description of the Project

A study was conducted in Southwestern Ontario to assess factors which may influ-

ence the outcomes of clients with severe mental illness (SMI) receiving care from the

Assertive Community Treatment (ACT)(Lehman and Steinwachs, 1998) service. A

total of 233 SMI patients who meet the Ontario Ministry of Health standards for

ACT (Ministry of Health, 1998) and who are either already receiving ACT services

or are entering any ACT teams in Southwestern Ontario (London, Windsor, Sarnia,

Waterloo, Milton, etc.) were recruited. These patients were diagnosed as having psy-

chosis or multiple co-morbid psychiatric and physical disorders, having a history of

high hospital use, long-term illness, high needs, and low functioning.

There are about 19 potential predictive factors. Some of them are population

characteristic variables, such as Age, Sex, Marital Status, Diagnosis, Duration of ill-

ness, and 3 Colorado Client Assessment Record (CCAR) (Ellis et al., 1984) subscales

revised for use in Southwest Ontario (Ministry of Health, 1999) (level of function sub-

scale, substance use subscale, and employment status subscale). The other variables

measure the treatment, rehabilitation and support services actually delivered, such as

number of months in ACT, medications prescribed, and number of contacts by ACT

staff per month. The implementation system is measured by the fidelity of team to

the ACT model using Dartmouth ACT Scale (Teague et al., 1995, 1998). Variables

that mediate the treatment effects (intervening variables that occur after clients have

been assigned to treatment but before measurement of longer term client outcomes)
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include Working Alliance Inventory, Empowerment Scale, Drug Attitude Inventory,

Adherence to Medication Scale, and Present State Exam-insight Score. Table 5.1

presents the names and descriptions of the variables used in the analysis of the ACT

project. Long term outcome is the Overall CCAR Score, which is the overall degree

of problem severity (a larger score associates with a higher level of problem severity)

and was measured at 12 and 24 months after enrollment in the project.

Our role in this study is to assess what cost-efficient factors influence outcomes of

clients with SMI receiving care from ACT. We want to find the risk factors not only

with higher prediction accuracy but also cheaper and easier to collect the data so that

we can reduce the burden of ACT team, patients, and health care system.

5.2 Why Selecting Cost-efficient Factors

Since the sources of data collection are different, the cost of collecting data is differ-

ent for the potential predictors. In the ACT project, data were collected from the

following sources.

� Client self-reports: research assistants meet with clients to administer collect-

ing the data including Working Alliance Inventory, Present State Exam-insight

score, Empowerment Scale, and Drug Attitude Inventory.

� ACT clinicians: research assistants visit the ACT team office and let the clini-

cians who know the clients best to give the scores, such as Adherence to Medi-

cation Scale, and CCAR subscales.

� Client records: research assistants visit the ACT team offices and extract the

data from charts about the clients, for example, Age, Marital status, Diagnosis,

Duration of illness, Medications prescribed and Total service use.
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Table 5.1: Potential Predictive Factors in ACT Project.

Predictors Description

Age Age in years

Sex 1: Female ; 0: Male

Mstatus Marital Status, 1: Married or Common-law; 0: Otherwise

CoMorbid Number of co-morbid diagnoses

Duration Number of years since first diagnosis

Lifetime Lifetime days in hospital

Jail Ever in jail, 1: No; 0: Yes

EmpSC CCAR employment subscale

1: Employed (full-time or part-time); 0: Otherwise

SubSC CCAR substance use subscale

A larger score associates with a higher level of substance abuse

FunSC CCAR functioning subscale

A larger score associates with a lower level of functioning

ACTmonth Total service use: number of months in ACT

Medtype Medications prescribed: number of medication categories

Contacts Intensity of contacts: average number of contacts per month by

ACT staff

DACTS Fidelity of team to ACT model: Dartmouth ACT Scale

A larger score associates with a higher level of fidelity to ACT model
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Predictors Description

WAIscore Therapeutic alliance: Working Alliance Inventory

A larger score associates with a higher level of partnership or al-

liance between patient and therapist

PSEscore Insight into psychosis: Present State Exam-insight score

A larger score associates with a lower level of client’s insight into

psychotic symptoms

EMPscore Empowerment scale

A larger score associates with a higher level of client’s participation

in their own recovery

DAIscore Satisfaction with medications: Drug Attitude Inventory

A larger score associates with a higher level of client’s satisfaction

with medication

MEDCscore Medication compliance: Adherence to medication scale

A larger score associates with a lower level of client’s adherence to

medication
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� Hospital archives: research assistants visit hospitals to extract data from hospi-

tal archive, for instance, Lifetime days in hospital.

� ACT team’s staff activity records: research assistants extract data from ACT

team’s staff activity records, such as Intensity of Contacts.

� ACT coordinators: research assistants give the Dartmouth ACT Scale to the

ACT team coordinator who fills out the required information.

The data that involves the professional work of clinicians cost higher than the data

from the work of research assistants. On the other hand, the client self-reported data

is harder to get than the data extracted from hospital archives due to the fact that

the clients have severe mental illness. Inexpensive predictors may have the similar

statistical importance as costly predictors, so inexpensive predictors could replace

costly predictors by sacrificing minimal prediction accuracy while reducing the cost

burden. We can build “expensive” or “cheap” models by selecting different sets of

variables, and a more accurate but costly model is not necessarily better than a less

accurate but cheaper model. A model is more cost-efficient than another one if it costs

less but gives almost the same prediction accuracy, or it costs much less but gives only

slightly less prediction power. The health researchers could make an overall judgement

about the most efficient combination of variables.

5.3 Cost Structure

The cost of collecting the data has two components in the ACT project. The first is

the monetary cost for human labour, time, material, equipment, compensation paid to

the clients in some research activities, etc. For example, clinicians are paid for their

labour to score the Adherence to Medication Scale, and the CCAR Subscales; the

research assistants are paid to visit the ACT team offices and extract the data from

charts about the patients, such as Duration of Illness, Number of Months in ACT.
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The Duration of Illness and Number of Months in ACT cost less than Adherence to

Medication Scale and the CCAR Subscales due to the professional work of clinicians.

The second is the level of difficulty to get an answer or a value for a potential predictor.

The clients we dealt with are the patients with severe mental illness. They may refuse

to answer some questions or refuse to give information. Some results reported from

the clients may need to be double checked or traced. In this sense, the client self-

reported Working Alliance Inventory is much harder to get than Age, Marital Status,

and Number of Months in ACT, which are simply obtained by chart extraction. These

result in some variables being more “expensive” than others.

Grouping effects of cost is the next issue we need to take into account. A grouping

effect occurs when one variable is selected some other variables become free or cheaper.

For example, the data extracted from charts, such as Sex and Marital Status, have a

total group cost for traveling to the ACT team office and the work of chart extraction

by the research assistant. If Sex is selected in the model, Marital Status can be

assumed free if it is also selected. Another example is the CCAR. Clinicians are

trained to score the CCAR scales for their patients. The 3 CCAR subscales have a

group cost for the training and some work in common, and each of them also has an

additional individual cost since the clinicians have to spend a certain amount of time

on each of them. If one of the CCAR subscales is selected in the model, the cost is the

sum of the group cost and the additional individual cost; if another subscale is also

selected, the cost for the second one becomes cheaper (only the additional individual

cost).

The two components of costs of the potential predictors are estimated between

0 and 100 by the ACT project researcher and coordinator, and are listed in Table

5.2, where both monetary cost and level of difficulty consist of two parts: group

cost and additional individual cost. We consider an overall cost for each predictive

factor, which is a combination of the above two components. One predictor costs

more than another if this predictor is more expensive overall. Since the scales of the
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two components are comparable (with minimum 0 and maximum 100), one simple

way to combine them is to use summation. For convenience, we divide the combined

costs by 200. Table 5.3 displays the combined cost information.

5.4 Data Analysis

5.4.1 Analysis without Considering Cost

Without considering cost, LARS can be directly used to provide the lasso solution.

We estimate the regression coefficients to minimize the loss function

β̂(lasso) = arg min
β





∥∥∥∥∥y −
p∑

j=1

xjβj

∥∥∥∥∥

2

+ λ

p∑
j=1

|βj|


 ,

where λ ≥ 0 is a regularization or tuning parameter (Efron et al., 2004).

The adaptive lasso can also be solved by LARS using a transformation to the

design matrix. In this case, we estimate the regression coefficients to minimize the

loss function

β̂
∗(n)

= arg min
β





∥∥∥∥∥y −
p∑

j=1

xjβj

∥∥∥∥∥

2

+ λn

p∑
j=1

ŵj|βj|


 ,

where the known weights vector ŵ = (ŵ1, ŵ2, . . . , ŵp)
T is data-dependent. We use the

form ŵ = |β̂(ols)|−1 (Zou, 2006) in this thesis , where β̂(ols) is the regression coefficient

estimate vector from the ordinary least squares fit.

We use both BIC for the lasso (Zou et al., 2007) and Cp (Efron et al., 2004) as

the tuning parameter and model selection criteria. Based on the lasso model selected

by BIC, number of months in ACT, average number of contacts per month, CCAR

substance use subscale, and CCAR functioning subscale are important predictors for

the response (overall CCAR score). When the number of months in ACT increases

one month, the overall CCAR score decreases 0.0061 unit; if the average number

of contacts increases one per month, the overall CCAR score increases 0.0028 unit;
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Table 5.2: Two Components of Costs.

Monetary Cost Level of Difficulty

Predictors Group Additional Group Additional

Age 0 0

Sex 0 0

Mstatus 0 0

CoMorbid 15 0 10 0

Duration 10 10

ACTmonth 0 0

Medtype 0 0

Contacts 25 0 20 0

Jail 20 0 30 0

MEDCscore 20 0 30 0

WAIscore 0 0

PSEscore 30 0 30 0

EMPscore 0 0

DAIscore 0 0

Lifetime 30 0 70 0

EmpSC 20 20

SubSC 30 20 50 20

FunSC 20 20

DACTS 60 0 100 0
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Table 5.3: Overall Costs.

Overall Cost Re-scaled Cost

Predictors Group Additional Group Additional

Age 0 0

Sex 0 0

Mstatus 0 0

CoMorbid 25 0 0.125 0

Duration 20 0.1

ACTmonth 0 0

Medtype 0 0

Contacts 45 0 0.225 0

Jail 50 0 0.25 0

MEDCscore 50 0 0.25 0

WAIscore 0 0

PSEscore 60 0 0.3 0

EMPscore 0 0

DAIscore 0 0

Lifetime 100 0 0.5 0

EmpSC 40 0.2

SubSC 80 40 0.4 0.2

FunSC 40 0.2

DACTS 160 0 0.8 0
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the overall CCAR score will increase 0.068 and 0.16 unit if the CCAR substance use

subscale and functioning subscale increase one unit respectively. Many more variables

are shown in the lasso model selected by Cp, where ever in jail, number of months in

ACT, average number of contacts per month, adherence to medication scale, working

alliance inventory, empowerment scale, drug attitude inventory, CCAR employment

subscale, CCAR substance use subscale, CCAR functioning subscale, and Dartmonth

ACT scale are all important predictors for the overall CCAR score.

Table 5.4 displays the optimal lasso model and adaptive lasso model when we use

BIC as the model selection criterion, and Table 5.5 gives the optimal lasso model and

adaptive lasso model when we use Cp as the model selection criterion. Compared

with the lasso solution, adaptive lasso gives a more parsimonious model in both cases

(one less variable is selected when using BIC as the model selection criterion and three

less variables are selected when using Cp as the model selection criterion). Compared

with models using Cp as the model selection criterion, models selected by BIC are

much more parsimonious.
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5.4.2 Analysis with Cost of Predictors Considered

We now use non-additive costs as shown in Table 5.3. We estimate the regression

coefficients to minimize the total loss which is the sum of the residual sum of squares,

the lasso type pentalty, and the cost of collecting data for the predictors. The opti-

mization problem has been shown in Equation 3.2.1. Since the adaptive lasso can be

solved by LARS using a transformation to the design matrix, we can further adjust

the lasso type penalty by using adaptive weights to penalize different coefficients so

that the first two parts of the loss function compose the adaptive lasso loss. This

optimization problem P can be written as

min f(β,α) =

∥∥∥∥∥y −
p∑

j=1

xjβj

∥∥∥∥∥

2

+ λ

p∑
j=1

ŵj|βj|+ nγC(α1c1, . . . , αpcp), (5.4.1)

with domain D:

αj ∈ {0, 1}, for j = 1, . . . , p,

β ∈ <p,

and constraints S:

αj = 0 ⇒ βj = 0, for j = 1, . . . , p,

The known weights vector ŵ = (ŵ1, ŵ2, . . . , ŵp)
T are data-dependent, where

ŵj, j = 1, . . . , p, is the adaptive weight to the regression coefficient βj. We use the

form ŵ = |β̂(ols)|−1 (Zou, 2006) in this thesis.

First, we use BIC for the lasso (Equation 2.2.2) as the tuning parameter and model

selection criterion. We solve the original optimization problem as shown in Equation

3.2.1. When we assign 0.1 to γ, there are 4 predictors selected into the BLARS model

the same as lasso model (γ = 0) did in Section 5.4.1: number of months in ACT,

average number of contacts per month, CCAR substance use subscale, and CCAR

functioning subscale. When γ was increased to 0.2, 3 predictors remained in the

BLARS model, where average number of contacts per month was dropped out. When
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γ was increased to 0.5, only number of months in ACT remained in the model. For

γ = 1.0, no variable was selected in the BLARS model due to the cost effect, and the

best prediction in this case is the grand mean of the response. The BLARS models

for different γ values are shown in Table 5.6. Table 5.8 gives the corresponding Error

Sum of Squares and Cost information for these models, where the percentage increase

or decrease is compared with the first model (γ = 0.1).

We then solve the optimization problem as shown in Equation 5.4.1, where BLARS

is based on adaptive lasso. When we assign 0.2 to γ, three predictors (number of

months in ACT, CCAR substance use subscale, and CCAR functioning subscale)

were selected in the BLARS model, the same as adaptive lasso model (γ = 0) did in

Section 5.4.1. For γ = 0.5, only number of months in ACT remained in the BLARS

model, and when γ was increased to 1.0, the best prediction is the grand mean of the

response. Table 5.7 displays the BLARS models for different γ values, where BLARS

is based on adaptive lasso. Table 5.9 gives the corresponding Error Sum of Squares

and Cost information for these models, where the percentage increase or decrease is

compared with the first model (γ = 0.2).
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Table 5.8: Objective Values Using BIC as the Model Selection Criterion. BLARS
based on Lasso.

γ Total Loss SSE SSE Increase Cost (per patient) Cost Decrease

0.1 348 317 - 1.15 -

0.2 370 325 2.5% 0.925 19.6%

0.5 384 368 15.8% 0.125 89.1%

1.0 388 388 22.2% 0 -

Table 5.9: Objective Values Using BIC as the Model Selection Criterion. BLARS
based on Adaptive Lasso.

γ Total Loss SSE SSE Increase Cost (per patient) Cost Decrease

0.2 377 323 - 0.925 -

0.5 382 366 13.2% 0.125 86.5%

1.0 388 388 19.9% 0 -

Second, we use Cp (Efron et al., 2004) as the tuning parameter and model selection

criterion. We solve the original optimization problem as shown in Equation 3.2.1.

When 0.01 was assigned to γ, there were 11 predictors selected in the BLARS model

as lasso model (γ = 0) did in Section 5.4.1: number of months in ACT, average

number of contacts per month, ever in jail, adherence to medication scale, working

alliance inventory, empowerment scale, drug attitude inventory, CCAR employment

subscale, CCAR substance use subscale, CCAR functioning subscale, and Dartmonth

ACT scale. When γ = 0.02, there was one variable (Dartmonth ACT scale) dropped

out and the BLARS model contained 10 predictors. When γ was increased to 0.04,
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two more variables (ever in jail and adherence to medication scale) were dropped

out and 8 predictors remained in the BLARS model. When γ = 0.1, the BLARS

model contained 4 variables: number of months in ACT, average number of contacts

per month, CCAR substance use subscale and functioning subscale. There were 3

predictors (number of months in ACT, CCAR substance use subscale and functioning

subscale) selected for γ = 0.2. When γ was increased to 0.5, only the number of

months in ACT remained in the model. For γ = 1.0, no variable was selected in the

BLARS model due to the cost effect, and the best prediction was the grand mean of

the response. The BLARS models for different γ values are displayed in Table 5.10.

Table 5.12 gives the corresponding Error Sum of Squares and Cost information for

these models, where the percentage increases or decreases are compared with the first

model (γ = 0.01).

We also solve the optimization problem as shown in Equation 5.4.1, where BLARS

is based on adaptive lasso. When γ = 0.005, BLARS selected 8 variables as adaptive

lasso model (γ = 0) did in Section 5.4.1. When we assigned 0.02 to γ, there was

one variable (Dartmonth ACT scale) dropped out. Adherence to medication scale

was dropped out for γ = 0.03, and CCAR employment subscale was dropped out

for γ = 0.04. For γ = 0.1, BLARS selected 4 variables. When γ was increased to

0.2, one less variable was selected, where average number of contacts per month was

dropped out. For γ = 0.5, only number of months in ACT remained in the BLARS

model, and when γ was increased to 1.0, the best prediction was the grand mean of

the response. Table 5.11 displays the BLARS models for different γ values, where

BLARS is based on adaptive lasso. Table 5.9 gives the corresponding Error Sum of

Squares and Cost information for these models, where the percentage increases or

decreases are compared with the first model (γ = 0.005). Figure 5.1 shows the search

tree of the optimal BlARS model with γ = 0.02. The red path is the chosen optimal

path.
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Table 5.12: Objective Values Using Cp as the Model Selection Criterion. BLARS
based on Lasso.

γ Total Loss SSE SSE Increase Cost (per patient) Cost Decrease

0.01 322 301 - 2.95 -

0.02 325 303 0.9% 2.15 27.1%

0.04 335 308 2.5% 1.65 44.1%

0.10 348 317 5.5% 1.15 61.0%

0.20 370 325 8.2% 0.925 68.6%

0.50 384 368 22.2% 0.125 95.8%

1.00 388 388 28.9% 0 -

When γ is small, BLARS models based on adaptive lasso are more parsimonious

compared with the BLARS models based on lasso using either BIC or Cp as the

turning parameter and model selection criterion. Compared with models using Cp as

the model selection criterion, models selected by BIC are much more parsimonious

for small values of γ. However when γ is getting bigger (γ > 0.1), BLARS results

based on lasso are similar as the BLARS results based on adaptive lasso regardless

which model selection criterion is used.

The value of γ is user-defined, and the selection criteria of tuning parameter and

model selection are also user’s choice. The health researchers, or decision makers,

should make overall judgements based on the percentage increase of the error sum of

squares and the percentage decrease of the cost to choose their preferred cost-efficient

model from the BLARS results. Note that in this chapter, the variables are selected

and their effects are estimated in the purpose of prediction. They do not necessarily

explain the causal effects.
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Figure 5.1: Search Tree for Optimal BLARS Model with γ = 0.02 Using Cp as the
Model Selection Criterion. BLARS is Based on Adaptive Lasso.
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Table 5.13: Objective Values Using Cp as the Model Selection Criterion. BLARS
based on Adaptive Lasso.

γ Total Loss SSE SSE Increase Cost (per patient) Cost Decrease

0.005 335 300 - 2.7 -

0.02 340 305 1.6% 1.9 29.6%

0.03 342 307 2.3% 1.65 38.9%

0.04 345 311 3.6% 1.45 46.3%

0.10 354 316 5.2% 1.15 57.4%

0.20 377 323 7.7% 0.925 65.7%

0.50 382 366 21.9% 0.125 95.4%

1.00 388 388 29.1% 0 -
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This thesis was motivated by the Assertive Community Treatment (ACT) project I

was involved in, where the cost of collecting data for the potential predictors were

different due to different sources of data collection. In this thesis, we have developed

a variable selection procedure called Branching LARS (BLARS) that can simulta-

neously select and estimate the important predictors to build a model that is not

only good at prediction but also cost efficient. The BLARS optimization problem

is an extension of the lasso to incorporate variable costs penalized in the objective

loss function, and a modified branch and bound method is employed to search for a

model which minimizes total loss. The total loss includes the residual sum of squares,

the lasso type penalty, and the cost of collecting data for the predictors, where the

first two parts compose the lasso loss. We can further adjust BLARS by using an

adaptive lasso type penalty instead of a lasso type penalty. We focused on lasso type

penalty when we were developing the BLARS procedure since the R package lars can

be directly used to solve lasso type optimization problem.

Additive cost is the simplest cost structure, where the total cost of obtaining data

for a selected set of variables is the sum of the cost of getting data for each variable

in the set. This cost structure applies to the situation when we collect the data for

the variables individually and independently. Although additive cost only exists in

some special cases, we developed the BLARS algorithm based on additive cost as a

starting point because of its simplicity. More general cost structure is non-additive
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cost, where a grouping effect of cost is a common example.

We also built an R package branchLars which implements the BLARS proce-

dure. This software implementation makes BLARS more practical, and the health

researchers can routinely apply the cost-efficient variable selection strategy in statis-

tical model building given they have the cost information at hand. The diabetes data

from Efron et al.(2004) was used in the examples to illustrate the development of

BLARS procedure and the usage of the R package branchLars, and BIC for the lasso

(Equation 2.2.2) was used in the selection of the turning parameter and as model

selection criterion for its simplicity and effectiveness.

BLARS was applied in the data analysis of the ACT project. In the analysis, we

further adjusted the lasso type penalty by using adaptive weights to penalize different

coefficients so that the first two parts of the loss function compose the adaptive lasso

loss. The cost-efficient variable selection results based on both lasso type penalty and

adaptive lasso type penalty were shown in details. Both BIC for the lasso (Zou et al.,

2007) and Cp (Efron et al., 2004) were used in the selection of the turning parameter

and as model selection criteria, and we made comparisons for the results.

6.2 Discussion

Our cost efficient variable selection method is based on the LARS technique, which

may not be suitable in some nonlinear situations. We could generalize our BLARS

algorithm by changing the Lasso loss (the first two terms in equation (2.2.1)) to

other minimization objective functions to incorporate the cost effect whenever we

have a method to solve that minimization problem. Recently Friedman et al. (2008)

proposed new fast algorithms for regression estimation which are based on cyclical

coordinate descent methods. Their methods are a remarkably fast approach for solving

convex problems with an l1 (the lasso) penalty or l2 (the ridge-regression) penalty,

or mixtures of the two (the elastic-net penalty). Since these alternatives are well
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developed, they can be easily adapted to the node-level in our cost efficient variable

searching approach, but unfortunately they are not directly applicable to minimizing

Equation (3.2.1), which is not convex.

We illustrated the cost-efficient variable selection procedure in this thesis with

either BIC for the lasso or Cp as the turning parameter and model selection criteria.

There is a lot of controversy on which criterion is the best, and it seems that no

one surpasses others in all situations. Researchers may have their preferred selection

criteria other than BIC or Cp, and they have to make the judgement based on their

own opinion. But the BLARS algorithm is the same regardless which model selection

criterion is used.

6.3 Future Work

We considered two cost components, monetary cost and level of difficulty, in the ACT

project. Because the two components were estimated in the same scale, we used the

combined overall costs in the data analysis. In general cases, the two cost components

may not be in the same scale, therefore it may be better to consider them separately,

and it gives researchers more freedom to balance between the two kind of costs.

Similar to the Equation 3.2.1, but with two separate cost components, the opti-

mization problem P can be written as

min f(β,α) =

∥∥∥∥∥y −
p∑

j=1

xjβj

∥∥∥∥∥

2

+ λ

p∑
j=1

|βj| + nγ1C1(α1c1, . . . , αpcp)

+ nγ2C2(α1c1, . . . , αpcp),

with domain D:

αj ∈ {0, 1}, for j = 1, . . . , p,

β ∈ <p,

and constraints S:

αj = 0 ⇒ βj = 0, for j = 1, . . . , p,
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where β is the regression coefficient vector that we want to estimate; λ ≥ 0 is the

regularization or tuning parameter. The cost function C1(α1c1, . . . , αpcp) represents

the total monetary cost and C2(α1c1, . . . , αpcp) represents the cost reflecting the level

of difficulty to collect the data. The cost functions are non-decreasing when adding

more αk = 1 to the existing non-zero set of {αj}. The two parameters γ1 ≥ 0 and γ2 ≥
0 are two user-defined weights imposed on costs, reflecting the level of reluctance to

use high monetary cost variables and variables with high level of collecting difficulties

respectively.

In the data analysis of the ACT project, we further adjusted the optimization

problem by using an adaptive lasso penalty instead of a lasso type penalty in the

objective function (Equation 5.4.1), where the data-dependent weights vector ŵ =

(ŵ1, ŵ2, . . . , ŵp)
T has the form |β̂j|−ν for each ŵj, j = 1, . . . , p. In this thesis, we fixed

ν = 1 and used ŵ = |β̂(ols)|−1, where β̂(ols) is the vector of ordinary least squares

estimates. This is suitable when collinearity is not a concern. In the future, we can

try β̂(ridge) from the ridge regression fit when collinearity is a concern because it is

more stable than β̂(ols) in this case. Another time-consuming but worth-trying future

work is to use two-dimensional cross-validation to turn the two parameters λ and ν

when the adaptive lasso penalty is used in the objective function.
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