
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

6-2014

Evaluation of Particle Swarm Optimization Applied
to Grid Scheduling
Wilson Higashino
Western University, whigashi@uwo.ca

Miriam A M Capretz
Western University, mcapretz@uwo.ca

M. Beatriz F. Toledo
Universidade Estadual de Campinas, beatriz@ic.unicamp.br

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Software Engineering Commons, Systems Architecture Commons, and the Theory
and Algorithms Commons

Citation of this paper:
Higashino, Wilson; Capretz, Miriam A M; and Toledo, M. Beatriz F., "Evaluation of Particle Swarm Optimization Applied to Grid
Scheduling" (2014). Electrical and Computer Engineering Publications. 48.
https://ir.lib.uwo.ca/electricalpub/48

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub/48?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F48&utm_medium=PDF&utm_campaign=PDFCoverPages

Evaluation of Particle Swarm Optimization
Applied to Grid Scheduling

Wilson A. Higashino∗†, Miriam A. M. Capretz∗, Maria Beatriz Felgar de Toledo†
∗Dep. of Electrical and Computer Engineering, Western University, London, Canada

{whigashi, mcapretz}@uwo.ca
†Instituto de Computação, Univ. Estadual de Campinas, Campinas, Brazil

{wah, beatriz}@ic.unicamp.br

Abstract—The problem of scheduling independent users’ jobs
to resources in Grid Computing systems is of paramount im-
portance. This problem is known to be NP-hard, and many
techniques have been proposed to solve it, such as heuristics,
genetic algorithms (GA), and, more recently, particle swarm
optimization (PSO). This article aims to use PSO to solve grid
scheduling problems, and compare it with other techniques. It is
shown that many often-overlooked implementation details can
have a huge impact on the performance of the method. In
addition, experiments also show that the PSO has a tendency
to stagnate around local minima in high-dimensional input
problems. Therefore, this work also proposes a novel hybrid
PSO-GA method that aims to increase swarm diversity when
a stagnation condition is detected. The method is evaluated and
compared with other PSO formulations; the results show that the
new method can successfully improve the scheduling solution.

Keywords—Particle Swarm Optimization, Grid Scheduling, Grid
Computing, Genetic Algorithms.

I. INTRODUCTION

Grid computing is a distributed system paradigm in which
multiple computer resources are federated to achieve a com-
mon goal. Grids are usually highly heterogeneous and loosely
coupled environments, with the constituent resources dis-
tributed across many different organizations and administrative
domains.

Computational grids focus on sharing processing capabil-
ities to accomplish highly demanding computational tasks. It
is in this context that grid scheduling emerges as a problem.
Simply stated, grid scheduling refers to the problem of al-
locating jobs to grid resources. There is a whole family of
grid scheduling problems that depend on varying grid and
jobs characteristics [1]. This article focuses on the problem
of centralized scheduling of independent jobs in a static
environment.

The problem of scheduling jobs over heterogeneous re-
sources is known to be NP-hard [2]. Therefore, many heuristic
and meta-heuristic techniques have been used to solve it,
such as genetic algorithms (GA) [3] [4] and particle swarm
optimization (PSO) [5] [6].

This research was intended to carry out a deep study of
PSO as applied to the grid scheduling problem and to propose
a hybrid PSO-GA algorithm that significantly improves the
results of basic PSO. First, an extensive set of experiments was
executed, in which often-overlooked implementation details
of PSO were analysed. It has been shown that these details

can have a huge impact on PSO performance. Next, the
rationale for creating the hybrid method is presented, along
with experimental results that confirm its ability to find good
solutions. At each step, the PSO implementations are compared
with genetic algorithms and other well-known heuristics.

This article is organized as follows: Section II reviews
related research. In Section III, the grid scheduling problem
is formalized, and the basic formulations of the GA and PSO
methods are presented. In Section IV, the hybrid PSO-GA
algorithm is described, and experimental results are shown in
Section V. Finally, Section VI draws conclusions and presents
directions for future research.

II. RELATED WORKS

Xhafa and Abraham [1] have presented an overview of
the grid scheduling problem and the many heuristics that
have been used to solve it. Genetic algorithms (GA) [7] and
particle swarm optimization (PSO) [8] are both population-
based methods that have been applied to this problem.

Genetic algorithms (GAs) are meta-heuristics that use
analogies with genetic biological processes to solve optimiza-
tion problems. Xhafa et al. [4] performed a comprehensive
study of many different GA formulations and their perfor-
mance when applied to grid scheduling. Abraham et al. [3]
presented a grid scheduling method which hybridizes GA
with simulated annealing and tabu search. Xhafa et al. [9]
focused on the struggle GA, which uses a different individual
replacement strategy than the traditional GA.

Particle swarm optimization (PSO) is an evolutionary com-
puting technique introduced by Kennedy and Eberhart [8].
Laskari et al. [10] have shown that an integer version of
PSO can achieve better results than the branch and bound
technique when applied to certain optimization problems. Bu
et al. [5] used this integer PSO to solve the grid scheduling
problem, and Zhang et al. [11] used a similar approach,
but transforming the real solution to an integer using the
SPV (smallest position value) [12] method. Finally, Liu et
al. [6] modelled the scheduling solution as a fuzzy matrix
representing the position and velocity of the particles in the
PSO algorithm.

Finally, various authors have also explored hybrid meta-
heuristics in the grid scheduling context. For example,
Chen [13] hybridized PSO with the simulated annealing tech-
nique, and Sarathchandar et al. [14] used the concept of digital
pheromones to improve PSO results.

W. A. Higashino, M. A. M. Capretz, M. B. F. de Toledo. Evaluation of Particle Swarm Optimization Applied to Grid Scheduling. Proc. of the 2014 IEEE 23rd International WETICE Conference, 2014, pp. 173-178.

http://dx.doi.org/10.1109/WETICE.2014.26

Copyright: http://www.ieee.org/documents/ieeecopyrightform.pdf

III. BACKGROUND

This section presents the classical formulation of the grid
scheduling problem and the main methods used to solve it.

A. Grid Scheduling

The classical formulation of the grid scheduling problem
considers Ji jobs, i ∈ {1, 2, . . . ,m}, and Gj grid nodes
(resources), j ∈ {1, 2, . . . , n}. The length of each job, mea-
sured in cycles, and the speed of each resource, measured
in cycles/second, are known. The following notation is also
defined:

• Cij , the time when resource j finishes processing job
i; Cij = 0 if the job i does not execute on j;

• ΣCj , the time when resource j finishes processing all
jobs allocated to it.

Using this notation, grid scheduling can be defined as the
problem of allocating jobs to resources to minimize an opti-
mization criterion. The makespan, defined as makespan =
max(ΣCj), 1 < j < m, represents the time when the last job
is finished and is one of the most often used criteria.

Ali et al. [15] defined the same problem in terms of an
ETC (estimated time to complete) matrix. In this formulation,
each position ETC(i, j) of the matrix represents the time
that resource j needs to process job i. They expressed the
completion time of a resource j as:

completion(j) = ready(j) +
∑

{i∈Jobs(j)}

ETC(i, j) (1)

where ready(j) is the time at which resource j is available
and Jobs(j) is the set of jobs allocated to the resource. Given
this equation, makespan can be defined as:

makespan = max{completion(j)|j ∈ {1, 2, . . . , n}} (2)

The ETC matrix can represent more general problems in
which the fact that a resourcem1 runs a job i faster than j does
not imply the same for another resource m2. Ali et al. [15]
presented a method to generate ETC matrices that can vary
according to three criteria: job heterogeneity, machine hetero-
geneity, and the matrix consistency. In a consistent matrix, if a
resource mi processes a job faster than another resource mj ,
the same will hold for all other jobs. The ETC formulation
is used in this article because of its broad applicability.

B. Genetic Algorithms

Genetic algorithms (GAs) are meta-heuristics that use
analogies with genetic biological processes to solve optimiza-
tion problems. GAs are implemented as iterative algorithms
that use a population of individuals to represent possible
solutions to the problem at hand. In each iteration, the best
individuals of the population originate an offspring through
crossover and mutation operators. These new individuals, along
with some of their parents, form a new population that is used
in the next iteration. This process is repeated until a good
solution is found or a specified number of iterations have been
executed. Figure 1 shows the generic framework of a GA.

1: Initialization: Create initial population
2: while (not stop condition) do
3: Fitness: Compute fitness values for the population
4: Scale: Scale the computed values
5: Produces the next population by the following steps
6: Selection: Select parents individuals
7: Elite: The elite parents survive to the next generation
8: Crossover: Produce Pc% of the children by crossover
9: Mutation: Produce (1 − Pc)% of the children by mu-

tation
10: end while

Fig. 1. A generic Genetic Algorithm

One of the most important aspects of a GA is how an
individual of the population encodes a possible solution to
the problem. GA implementations may also vary according
to how the population is initialized and how the selection,
crossover, and mutation steps are executed. Therefore, the
generic GA framework can originate many different specific
algorithms by using different individual representations and
different selection, crossover, and mutation operators.

C. Particle Swarm Optimization

Particle swarm optimization (PSO), introduced by Kennedy
and Eberhart [8], is an algorithm that tries to simulate the
behaviour of swarms present in nature, such as flocks of
birds and schools of fish, to solve optimization problems.
In this algorithm, information is shared among individuals
called particles. Each particle represents a possible solution
and moves around in the D-dimensional search space with
a velocity determined by a combination of its knowledge of
the best solution with the knowledge of other members of the
swarm. Formally, each particle i of the swarm has three D-
dimensional vectors associated with it:

• x⃗i(t) - Position of particle i at time t;

• v⃗i(t) - Velocity of particle i at time t;

• p⃗i - Previous best position of particle i.

The particle also tracks the value found in its best position
using the variable pbesti. In each iteration, the particle updates
its position using the following formula:

x⃗i(t) = x⃗i(t− 1) + v⃗i(t) (3)

while the velocity is updated using:

v⃗i(t) = ω · v⃗i(t− 1) + ϕ1 · rand1 · (p⃗i − x⃗i(t− 1))

+ ϕ2 · rand2 · (p⃗g − x⃗i(t− 1))(4)

In this equation, ω, ϕ1, and ϕ2 are algorithm parameters,
rand1 and rand2 are random numbers taken from a uniform
distribution in the range [0, 1], and p⃗g is the best position found
so far by the whole swarm. The ω parameter is called the iner-
tia weight, and can be interpreted as the fluidity of the medium
in which the particles move. A high ω value represents a “low-
friction” environment suitable for space exploration, while a
low value represents a “high-friction” environment better for
space exploitation (local-oriented search). The parameters ϕ 1

and ϕ2, on the other hand, represents the attraction towards the

particle’s own best position and the best position of the group,
respectively. Another important observation is that an un-
bounded velocity can lead to a swarm “explosion”. Therefore,
many authors bound the velocity within [−Vmax,+Vmax],
where Vmax is usually set to a fraction of the maximum x⃗.

D. Heuristics

Many heuristics have been used for grid scheduling, and
their relative performance has been compared in different
studies [16] [17]. This paper uses the LJFR-SJFR and min-
min heuristics because of their simplicity and the good results
achieved in these comparisons.

The LJFR-SJFR (largest job on fastest resource-shortest job
on fastest resource) heuristic works as follows:

1) Jobs are sorted in descending order according to size.
Resources are sorted in descending order according
to speed;

2) The first n jobs are allocated to the corresponding
first n resources (LJFR heuristic);

3) For the remaining jobs, the following is repeated:
a) The shortest remaining job is allocated to the

first available resource (SJFR);
b) The largest remaining job is allocated to the

next available resource (LJFR).

The min-min heuristic, on the other hand, is based on the
idea of scheduling first the task that finishes the earliest. The
following steps make up the algorithm:

1) Given the set U of unscheduled jobs, the minimum
completion time M(i) is calculated for each job i ∈
U ;

2) The job with the smallest M(i) is allocated to the
corresponding resource and is removed from U ;

3) These two steps are repeated until no more jobs exist.

IV. HYBRID PSO-GA

The hybrid PSO-GA (H PSO) algorithm presented in this
paper is based on two main modifications to the original PSO
method. First, H PSO creates elite particles in the initial
swarm. Second, H PSO detects situations in which the swarm
gets stuck at a local minimum and tries to add diversity by
executing a complete iteration of a genetic algorithm. Figure
2 shows a complete description of this algorithm.

The first three lines constitute the initialization phase, in
which two particles are generated using the min-min and LJFR-
SJFR heuristics and the others are randomly initialized. The
body of the algorithm remains essentially the same as the basic
PSO, except for the fact that, if the best global value (gbest)
is not updated for Tr iterations, then an iteration of the GA is
executed. A description of the GA Iteration function can be
seen in Figure 3. In this listing, N is the number of particles
being used. The function introduces three new parameters to
H PSO: Ec, which represents the number of elite particles that
will be carried over to the next iteration; Cf , which represents
the percentage of the swarm that will be generated using the
crossover operator; and Ts, which represents the size of the
tournament used by the selection operator. Details of the GA
operators used can be found in Xhafa et al. [4].

1: i1 ← Min-Min heuristic
2: i2 ← LJFR-SJFR heuristic
3: i3, · · · , iN ← init particles with random x⃗i and v⃗i
4: while not stop condition do
5: for all particles i do
6: currenti ← f(x⃗i)
7: if currenti < pbesti then
8: p⃗i ← x⃗i

9: pbesti ← currenti
10: end if
11: end for
12: p⃗g ← best position found so far
13: gbest← best fitness value
14: if gbest is unchanged for Tr iterations then
15: GA Iteration()
16: else
17: for all particles i do
18: Update x⃗i and v⃗i according to Eqs. 3 and 4
19: end for
20: end if
21: end while

Fig. 2. Hybrid PSO-GA algorithm

1: sort particles i according to pbesti
2: Elite: select the best Ec particles to the next swarm
3: ccount ← Cf ∗N
4: mcount ← N − ccount − Ec

5: Select: select ccount +mcount particles using tournament
of size Ts

6: Crossover: generate ccount particles using cycle crossover
7: Mutation: generate mcount particles using rebalancing

Fig. 3. GA Iteration() function

V. EXPERIMENTS

This section describes the experiments carried out to eval-
uate the PSO algorithm as applied to the grid scheduling
problem and how the hybrid PSO method presented in Section
IV improves the results of the base PSO.

The experiments are divided into three sets. The first set of
experiments aims to validate the GA and PSO implementations
and to compare them with well-known heuristics. In the second
set of experiments, the base PSO is incrementally modified
towards the hybrid PSO, and the final results of the method
are presented. Finally, in the last set of experiments, the hybrid
PSO is compared with the Liu et al. [6] PSO formulation.

A. Validation

In the first set of experiments, six different input instances
of the grid scheduling problem were used. The first two
instances were defined using the model that specifies the length
of the jobs in J and the speed of the resources in G and
can be seen in Table I. The other four instances are ETC
matrices generated using the method by Ali et al. [15], and are
described in Table II. Columnm represents the number of jobs
and column n the number of resources in the input instance.
All algorithms were evaluated according to the makespan
criterion, as defined in Equation 2.

TABLE I. SIMPLE INPUT INSTANCES.

Instance 1 J = {19, 23, 24, 20, 20, 25, 16, 21, 24, 15}
G = {4, 3, 2}

Instance 2 J = {6, 12, 16, 20, 24, 28, 30, 36, 40, 42, 48, 52, 60}
G = {4, 3, 2}

TABLE II. ETC MATRIX INPUT INSTANCES.

Instance Consistent Job het. Machine heterog. m n
3 Yes Low Low 64 8
4 Yes Low High 64 8
5 Yes High High 64 8
6 Yes High Low 64 8

Table III shows the results of these experiments. The
second and third columns are the results of two heuristics used
as a basis for comparison: LJFR-SJFR and min-min. The fourth
column presents the average of ten runs of the GA for each
input instance. The GA implementation used the parameters
and operators with the best results in Xhafa et al. [4], as shown
in Table IV.

The PSO results are shown in the fifth column (B PSO)
of Table III. The basic PSO implementation used in these
experiments represents particle velocity as a vector of floating-
point numbers within [−Vmax,+Vmax]. The functions rand1
and rand2 generate a vector of random numbers within [0, 1]
of size m, and each dimension of this vector multiplies
its corresponding dimension of the position differences in
Equation 4. If after velocity calculations, any velocity com-
ponent is larger (smaller) than +Vmax (−Vmax), then the
component is truncated to +Vmax (−Vmax). Similarly, particle
positions are stored as a vector of floating-point numbers
within [1, (Xmax + 1)[. The algorithm uses a rounded-down
version of particle position to calculate the makespan value.

The values shown in Table III are the average makespan
obtained by ten runs of all top ten PSO parameter combina-
tions. In order to select the best parameter combinations for
the algorithm, a separate experiment was executed in which
all combinations of the parameters described in Table V were
evaluated. The ten combinations with best overall results are
shown in Table VI. For all combinations, the value of ωmax

was set to 0.9, and the number of iterations was 400.
From the results shown in Tables VI and III, it can be

concluded that:

• The min-min heuristic has surprisingly good results for
the larger and more complex input instances, with the
best performance on three of the four ETC matrices.
For the simpler instances, both GA and PSO achieved
results very close to the optimal solution (23.25 and
46 respectively). However, their performance on the
ETC matrices might not justify their use because they
have a higher computational cost than the heuristics.

• In PSO, the use of a decreasing ω is very impor-
tant. Indeed, all the top parameter combinations have
ωmin = 0.1 or ωmin = 0.4. This variation has the
effect of transitioning the PSO population from an
exploration phase, when ω is high, to an exploitation
phase, when ω is low and the particles fine-tune
solutions found in the first phase;

• Almost all PSO parameter combinations have ϕ1 =
2 and ϕ2 = 1.49, which means that when particles

consider their own “self-knowledge” more important
than “social-knowledge”, the results tend to be better.

B. PSO improvements

The experiments of Section V-A showed that the B PSO
results were worse than the GA and the heuristics for most
input instances. In order to understand and improve the al-
gorithm performance, modifications to the base PSO were
proposed and tested. In this section, these modifications and
their experimental results are shown.

1) Limiting behaviour: an important implementation detail
of the PSO algorithm is the behaviour of particles when
they reach the boundaries of the region that encompasses the
solution space. This discussion is often omitted from PSO
algorithm descriptions, but the following experiment shows
that it has important effects on the final results.

In the modification proposed, position dimensions that
exceed Xmax or Xmin are truncated to Xmax or Xmin, and
the corresponding velocity dimensions are zeroed. The idea
is to simulate a boundary that absorbs particle movement.
The results of this version are also shown in Table III in the
column A PSO (Absorption PSO). Once again, for each input
instance the algorithm was executed ten times for all parameter
combinations shown in Table VI. Each cell shows the average
makespan of all these executions and the improvement over
the B PSO. Note that the A PSO version has better perfor-
mance than B PSO for all input instances. Because of these
results, the absorption behaviour was incorporated into the final
PSO algorithm presented in this article.

2) Initial Particle: based on the good results of the min-
min heuristic in the solution of Instances 3 to 6, the A PSO
implementation was modified to use the result of the min-
min heuristic as one of its initial particle. The results of this
experiment can be seen in the column M PSO of Table III.
Note that M PSO has significantly better results than the
others for Instances 3 to 6 and only slightly worse results than
GA in the first two instances.

To assess M PSO performance further, four more input
instances were generated according to the ETC matrix model.
These instances are described in Table VII. The same combi-
nations of job and machine heterogeneity were used, but with
larger values of m and n representing higher dimensional (and
harder) problems. The results of the execution of the M PSO,
GA, min-min, and A PSO algorithms for these new instances
can be seen in Table VIII. Note that even though the M PSO
algorithm has much better results than the GA and A PSO,
the improvement over the min-min heuristic is small.

The M PSO algorithm was further analysed to understand
its poor performance for these inputs. The implementation was
instrumented to calculate two metrics: 1) population diversity
for each iteration, as proposed by Riget and Vesterstrom [18];
2) The swarm centerchange, calculated as the Euclidean
distance between the center of mass of two consecutive
swarms. Figure 4 shows the evolution of the diversity and
centerchange metrics obtained from a typical M PSO run.
Note how both metrics quickly drop at the beginning of the
run, especially the centerchange values.

TABLE III. PSO VALIDATION EXPERIMENTS.

Instance LJFR-SJFR Min-Min GA B PSO A PSO M PSO
1 24.25 25.75 23.26 23.32 23.31 -0.04% 23.31 -0.04%
2 48.00 56.00 46.22 46.34 46.25 -0.19% 46.24 -0.22%
3 1955.86 1652.79 1751.18 1831.33 1791.32 -2.18% 1538.05 -16.01%
4 114263.94 94816.27 101348.19 108373.81 103943.33 -4.09% 90433.92 -16.55%
5 3516259.74 3270218.66 3154809.88 3283008.74 3224763.15 -1.77% 2732893.89 -16.76%
6 51502.87 46706.86 47575.73 50695.48 50410.18 -0.56% 45403.94 -10.44%

TABLE IV. GENETIC ALGORITHM PARAMETERS.

Population size 80
Generations 2500
Initial population Random generated, one particle from LJFR-SJFR
Selection operator Tournament
Tournament Size TS = 4
Crossover operator Cycle Crossover
Mutation probability Pc = 80%
Mutation operator Rebalancing
Stop condition Number of generations OR 50 generations with less

than 1e − 6 change in the average fitness value

TABLE V. PSO PARAMETERS.

Population Size 60, 30
ϕ1 2.0, 1.49
ϕ2 2.0, 1.49
ωmax 0.9
ωmin 0.9, 0.4, 0.1
Xmax n (number of resources)
Vmax Xmax , 0.6 ∗ Xmax , 0.2 ∗ Xmax

Iterations 400
Stopping Condition Number of iterations

Analysis of the graphic suggests that the swarm quickly
converges to a small region of the solution space and that, as
the value of ω decreases , this grouping becomes even tighter.
In other words, the particles quickly confine themselves to a
small region of the search space, probably around the local
minima found by the min-min heuristic, which was used as
one of the initial particles of the algorithm.

3) GA and PSO hybridization: as a result of the obser-
vations made for the last experiment, the H PSO algorithm
has been proposed as described in Section IV. Table IX
shows the results of running the H PSO algorithm using the
same input test instances as earlier. The parameters used were
Tr = 50, Ec = 5, Cf = 0.8, and TS = 4. The H PSO
algorithm exhibited better performance than the others for all
the inputs without adding significant burden to the base PSO
implementation.

TABLE VI. BEST PSO PARAMETER COMBINATIONS.

Pop. Size ωmin ϕ1 ϕ2 Vmax

1 60 0.1 2 1.49 0.6
2 60 0.4 2 1.49 0.6
3 60 0.1 2 1.49 1
4 60 0.1 2 2 0.6
5 30 0.1 2 1.49 0.6
6 60 0.4 2 1.49 1
7 60 0.1 2 1.49 0.2
8 30 0.4 2 1.49 1
9 60 0.4 1.49 1.49 1
10 60 0.4 2 1.49 0.2

TABLE VII. NEW ETC MATRIX INPUT INSTANCES.

Instance Consistent Job het. Machine heterog. m n
7 Yes Low Low 512 16
8 Yes Low High 512 16
9 Yes High High 512 16
10 Yes High Low 512 16

Fig. 4. diversity and centerchange evolution.

C. Alternative PSO implementation

The experiments described in this section were intended
to compare the H PSO implementation with the fuzzy PSO
(F PSO) presented in Liu et al. [6]. According to their results,
the best parameters for F PSO are those presented in Table
X. Their experiments were run using 50 ∗ m ∗ n iterations,
where m is the number of jobs and n is the number of
grid resources available to solve the input problem. For the
sake of this research, the number of iterations was set to
400, because otherwise the algorithm would spend too much
time running and could not be used in a practical scenario.
Similarly to the other experiments, the number of particles was
set to 60. Note also that Liu et al. made no mention of the
value used for Vmax. Therefore, the algorithm was tested with
Vmax = Xmax, 0.6∗Xmax, and 0.2∗Xmax. To perform a more
equitable comparison, the F PSO algorithm was also modified
to generate an initial particle using the min-min heuristic.

The results of the algorithm can be seen in the F PSO
column of Table IX. Each cell shows the average of running
the algorithm 10 times for all three different values of Vmax.
The results for H PSO are very similar to the F PSO results.
Nevertheless, the H PSO implementation particle representa-
tion uses much less memory than F PSO, and its execution
time tends to be shorter because it uses a less complex set
of operations. Some preliminary results show that H PSO is
typically 40% faster than the F PSO formulation.

VI. CONCLUSION
This article analysed the PSO algorithm as applied to

the grid scheduling problem. For purposes of comparison, a
genetic algorithm and two heuristics (LJFR-SJFR and min-
min) were also investigated. The results showed that the basic
PSO can be successfully used in small problem instances and
can provide good results compared to other methods. It was

TABLE VIII. EXPERIMENTS WITH LARGER INPUT INSTANCES.

Instance M PSO GA Min-Min A PSO
7 5980.7377 7274.28 21.63% 6003.01 0.37% 9973.086 66.75%
8 316694.2394 432036.83 36.42% 319733.75 0.96% 865089.9009 173.16%
9 7811849.476 10908183.59 39.64% 7921706.99 1.41% 23677640.77 203.10%
10 164443.6232 199369.12 21.24% 165088.09 0.39% 266718.9151 62.19%

TABLE IX. HYBRID PSO-GA EXPERIMENTS.

Instance H PSO GA Min-Min M PSO F PSO
1 23.26 23.26 0.00% 25.75 10.70% 23.31 0.19% 23.61 1.49%
2 46.17 46.22 0.10% 56.00 21.28% 46.24 0.15% 46.76 1.27%
3 1521.69 1751.18 15.08% 1652.79 8.62% 1538.05 1.07% 1569.38 3.13%
4 87750.84 101348.19 15.50% 94816.27 8.05% 90433.92 3.06% 86257.74 -1.70%
5 2729859.92 3154809.88 15.57% 3270218.66 19.79% 2732893.89 0.11% 2800914.65 2.60%
6 43797.76 47575.73 8.63% 46706.86 6.64% 45403.94 3.67% 43783.93 -0.03%
7 5868.24 7274.28 23.96% 6003.01 2.30% 5980.7377 1.92% 5876.54 0.14%
8 306009.87 432036.83 41.18% 319733.75 4.48% 316694.2394 3.49% 305011.48 -0.33%
9 7551325.00 10908183.59 44.45% 7921706.99 4.90% 7811849.476 3.45% 7502353.66 -0.65%
10 160234.17 199369.12 24.42% 165088.09 3.03% 164443.6232 2.63% 159958.83 -0.17%

TABLE X. FUZZY PSO PARAMETERS.

Population Size 20
ϕ1 1.49
ϕ2 1.49
ωmax 0.9
ωmin 0.1
Iterations 50 ∗ m ∗ n

also shown that some often-overlooked implementation details,
such as the behaviour of particles at the boundaries of the
search space, have significant impact on the performance of
this method.

In addition, this research also studied the PSO method on
larger problems composed of a larger number of jobs and
resources. For this set of inputs, the basic PSO showed some
limitations and a high probability of early convergence to
local minima. To tackle these problems, a new hybrid PSO-
GA algorithm was proposed based on the hybridization of
PSO with GA. H PSO was evaluated and provided significant
improvement over the basic version of PSO.

As for future work, the authors plan to study alterna-
tive representations for swarm particles and to compare the
proposed method with other PSO variations for discrete and
optimization problems. Additionally, a more comprehensive
speed and memory consumption comparison will be carried
out to confirm the initial findings presented in this article.

REFERENCES
[1] F. Xhafa and A. Abraham, “Computational Models and Heuristic

Methods for Grid Scheduling Problems,” Future Generation Computer
Systems, vol. 26, no. 4, pp. 608–621, Apr. 2010.

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[3] A. Abraham, R. Buyya, and B. Nath, “Nature’s Heuristics for Schedul-
ing Jobs on Computational Grids,” in IEEE International Conference
on Advanced Computing and Communications, 2000, pp. 45–52.

[4] F. Xhafa, J. Carretero, and A. Abraham, “Genetic Algorithm Based
Schedulers for Grid Computing Systems,” International Journal of
Innovative Computing, Information and Control, vol. 3, no. 5, pp. 1–19,
2007.

[5] Y.-p. Bu, W. Zhou, and J.-s. Yu, “An Improved PSO Algorithm
and its Application to Grid Scheduling Problem,” 2008 International
Symposium on Computer Science and Computational Technology, pp.
352–355, 2008.

[6] H. Liu, A. Abraham, and A. E. Hassanien, “Scheduling jobs on com-
putational grids using a fuzzy particle swarm optimization algorithm,”
Future Generation Computer Systems, vol. 26, no. 8, pp. 1336–1343,
Oct. 2010.

[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley Professional, 1989.

[8] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings
of ICNN’95 - International Conference on Neural Networks, vol. 4, pp.
1942–1948, 1995.

[9] F. Xhafa, B. Duran, A. Abraham, and K. P. Dahal, “Tuning Struggle
Strategy in Genetic Algorithms for Scheduling in Computational Grids,”
in 7th Computer Information Systems and Industrial Management
Applications. IEEE, Jun. 2008, pp. 275–280.

[10] E. Laskari, K. Parsopoulos, and M. Vrahatis, “Particle swarm optimiza-
tion for integer programming,” Proceedings of the 2002 Congress on
Evolutionary Computation. CEC’02 (Cat. No.02TH8600), vol. 2, pp.
1582–1587, 2002.

[11] L. Zhang, Y. Chen, R. Sun, and B. Yang, “A Task Scheduling Algo-
rithm Based on PSO for Grid Computing,” International Journal of
Computational Intelligence Research, vol. 4, no. 1, 2008.

[12] M. F. Tasgetiren, Y.-c. Liang, M. Sevkli, and G. Gencyilmaz, “Particle
swarm optimization and differential evolution for the single machine
total weighted tardiness problem,” International Journal of Production
Research, vol. 44, no. 22, pp. 4737–4754, Nov. 2006.

[13] R.-m. Chen, “Application of Discrete Particle Swarm Optimization
for Grid Task Scheduling Problem,” in Advances in Grid Computing,
Z. Constantinescu, Ed. InTech, 2011.

[14] A. P. Sarathchandar, V. Priyesh, and D. D. H. Miriam, “Grid Scheduling
using Improved Particle Swarm Optimization with Digital Pheromones,”
International Journal of Scientific & Engineering Research, vol. 3,
no. 6, pp. 1–6, 2012.

[15] S. Ali, H. Siegel, M. Maheswaran, and D. Hensgen, “Task execu-
tion time modeling for heterogeneous computing systems,” in Pro-
ceedings 9th Heterogeneous Computing Workshop (HCW 2000) (Cat.
No.PR00556). IEEE Comput. Soc, 2000, pp. 185–199.

[16] A. K. Bardsiri and S. M. Hashemi, “A Comparative Study on Seven
Static Mapping Heuristics for Grid Scheduling Problem,” International
Journal of Software Engineering and Its Applications, vol. 6, no. 4, pp.
247–256, 2012.

[17] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran,
A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and
R. F. Freund, “A Comparison of Eleven Static Heuristics for Mapping a
Class of Independent Tasks onto Heterogeneous Distributed Computing
Systems,” Journal of Parallel and Distributed Computing, vol. 61, no. 6,
pp. 810–837, Jun. 2001.

[18] J. Riget and J. S. Vesterstrom, “A diversity-guided particle swarm
optimizer-the ARPSO,” Aarhus Universitet, Aarhus, Tech. Rep., 2002.

	Western University
	Scholarship@Western
	6-2014

	Evaluation of Particle Swarm Optimization Applied to Grid Scheduling
	Wilson Higashino
	Miriam A M Capretz
	M. Beatriz F. Toledo
	Citation of this paper:

	Evaluation of Particle Swarm Optimization Applied to Grid Scheduling

