
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

10-29-2010 12:00 AM 

Model Selection with Information Criteria Model Selection with Information Criteria 

Changjiang Xu, The University of Western Ontario 

Supervisor: Dr. A. Ian McLeod, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Statistics and Actuarial Sciences 

© Changjiang Xu 2010 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Statistics and Probability Commons 

Recommended Citation Recommended Citation 
Xu, Changjiang, "Model Selection with Information Criteria" (2010). Electronic Thesis and Dissertation 
Repository. 46. 
https://ir.lib.uwo.ca/etd/46 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=ir.lib.uwo.ca%2Fetd%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/46?utm_source=ir.lib.uwo.ca%2Fetd%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Model Selection with Information Criteria

(Spine title: Model Selection)

(Thesis format: Integrated-Article)

by

Changjiang Xu

Graduate Program
in

Statistics

A thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

c© Changjiang Xu 2010



THE UNIVERSITY OF WESTERN ONTARIO

SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Supervisor Examiners

Dr. Ian McLeod Dr. Duncan Murdoch

Dr. Kristina Sendova

Dr. John Knight

Dr. Paul McNicholas

The thesis by

Changjiang Xu

entitled:

Model Selection with Information Criteria

is accepted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Date
Chair of the Thesis Examination Board

ii



ABSTRACT

This thesis is on model selection using information criteria. The information

criteria include generalized information criterion and a family of Bayesian information

criteria. The properties and improvement of the information criteria are investigated.

We analyze nonasymptotic and asymptotic properties of the information criteria

for linear models, probabilistic models, and high dimensional models, respectively.

We give probability of selecting a model and compute the probability by Monte Carlo

methods. We derive the conditions under which the criteria are overfitting, consistent,

or underfitting.

We further propose new model selection procedures to improve the information

criteria. The procedures combine the information criteria with the probability of

selecting a model and overfitting level, respectively.

In addition, we develop model selection software packages in R and examine ap-

plications to real data.

KEY WORDS: Statistical modeling, model selection, variable selection, model selec-

tion algorithm, penalized likelihood, model selection criterion, information criteria.
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Chapter 1

INTRODUCTION

1.1 Statistical Modeling

There are two goals in analyzing data: extract information about the underlying

system producing the data and predict the responses from future predictor variables

(Breiman, 2001). Statistical modeling or data modeling is an approach toward these

goals.

Statistical modeling aims at learning general rules from observed data. The data

are generated as a sample from a population. Such statistical populations generating

data occur widely in most areas of science including medicine, finance and engi-

neering. From statistical point of view, the population is defined with a probability

distribution.

More precisely, it is assumed that the population can be approximated by a family

of probability distribution models, such as additive Gaussian models, generalized

linear models, arma models for time series data, Weibull distribution for time-to-

event data, and regression with autocorrelated or garch errors with financial time

series. The family of distribution models may be nonparametric or mixture models,

such as k-nearest-neighbor (knn), kernel smoothing, and Bayesian networks.

The unknown distributions are then estimated from the data using some princi-

ple, such as least squares, maximum likelihood, or Bayes’ rule. In general, statistical

modeling involves model specification, model estimation, model selection, model val-

idation, and model verification or adequacy checking.

1.2 Model Selection

The family of distribution models is specified to approximate the underlying system

and is then estimated from the data. The next step is to assess the performance

of the contending models and select the best one. The best model would have high
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prediction performance, and could illustrate which predictor variables are important

and how these predictors affect the response of the underlying system. The selection

performance is measured by consistency, efficiency and stability. The model selection

proceeds in two steps: develop an algorithm for producing contending models, also

referred to as a set of candidate models; and find a criterion for ranking the contending

models.

1.2.1 Algorithms

Procedures for producing the candidate models include best subsets, stepwise, or pe-

nalized methods with continuous penalty (Miller, 2002; Frank and Friedman, 1993;

Tibshirani, 1996; Fan and Li, 2001; Zou, 2006; Zhang, 2010). In high dimensional

statistical modeling, the traditional best subset procedure becomes infeasible due to

computational cost. Furthermore, the best subset selection is unstable with a small

change of data. Instead penalized maximum likelihood estimation (mle) or least

squares (ls) was suggested to automatically select significant variables with simul-

taneously estimating associated parameters. The attractive feature of the penalized

methods is that they can produce an estimator that achieves selection consistency,

stability and the oracle property. A selection procedure is said to have the oracle

property if the covariance matrix of the estimates is identical to that obtained if the

true model were known a priori. The key issues are the design of penalty function

and algorithms for solving the penalized mle.

1.2.2 Criteria

The model selection approaches are generally based on hypothesis testing, discrep-

ancy, or Bayes principle (Linhart and Zucchini, 1986; McQuarrie and Tsai, 1998;

Burnham and Anderson, 2002; Lahiri, 2001). The hypothesis testing based proce-

dure usually assumes that the candidate models are nested and include a true model.

The hypothesis testing with misspecified or non-nested models has also been discussed

(Bera, 2000). The discrepancy is a particular class of loss functions.

Using the Bayes principle may yield two types of Bayesian selection approaches.

One is the family of Bayesian information criteria, such as bic, that is derived by

approximating the posterior probability of a given model. The other is referred to as

Bayesian model selection that is primarily based on the computation of the posterior

2



probability using Monte Carlo technique. The negative log-posterior probability may

be also viewed as a loss function.

Let X and Y be the predictor and response variables. Let D = {(xi, yi), i =

1, . . . , n} be a sample of (X, Y ). Let µ̂(X|D) be a prediction model that has been

estimated from the data set D. The errors between the response and the predic-

tion model are measured by a loss function L(Y, µ̂(X|D)), such as squared-error

loss, log-likelihood loss, and 0-1 loss. The risk function is the expected loss func-

tion E{L(Y, µ̂(X|D))}, also called expected test error (Hastie et al., 2009, §7.2). The

test error is the prediction error over an independent test sample

E{L(Y, µ̂(X|D))|D}.

This expectation is taken with respect to X and Y .

Let f be the probability density function (pdf) or probability mass function (pmf)

of the population generating the data. The corresponding function for the family of

probability models with parameter vector θ is denoted by gθ. The discrepancy is a

functional ∆(gθ, f) that has the property (Linhart and Zucchini, 1986, §1.3.2)

∆(gθ, f) ≥ ∆(f, f).

The important discrepancies include Kullback-Leibler, Kolmogorov or L∞ norm, L1

and L2 norms, and Pearson chi-square (Linhart and Zucchini, 1986, §2.2).

Various model selection criteria were proposed by estimating the expected loss

function or discrepancy, for example,

• fpe: final prediction error, derived for linear regression models by estimating

the prediction error (Akaike, 1969).

• aic: Akaike information criterion, derived for probability models by approxi-

mating the expected Kullback-Leibler discrepancy (Akaike, 1974).

• bic: Bayesian information criterion, obtained by approximating the negative

log-posterior probability (Schwarz, 1978)

• Cross-validation and bootstrap methods: using an empirical estimate of the

prediction error (Shao, 1993, 1996).

3



There are other model selection approaches motivated from different viewpoints,

such as minimum description length (mdl) (Rissanen, 1978, 1983, 2007) and Vapnik-

Chervonenkis dimension (Vapnik, 2000). The mdl approach gives a selection crite-

rion formally identical to the family of Bayesian information criteria (Hansen and Yu,

2001).

Efficiency and Consistency

Let µ = E{Y }. Let M0 be the model minimizing L(µ, µ(Mα)) over a set of models

{Mα}. Let Mα̂ be the model selected using a selection procedure. The selection

procedure is said to be asymptotically loss efficient if in probability (Shao, 1997)

L(µ, µ(Mα̂))

L(µ, µ(M0))
→ 1.

The selection procedure is said to be consistent if Pr{Mα̂ = M0} → 1.

The M0 is a true model or the model that is the closest to the true model. The

terms overfitting and underfitting were defined two ways based on either consistency

or efficiency (McQuarrie and Tsai, 1998). Using efficiency, overfitting is defined as

choosing a model that has more variables than M0. Underfitting is defined as choosing

a model with too few variables compared to M0. Under consistency, M0 is supposed

to be a true model. The procedure is overfitting if M0 ⊂Mα̂, otherwise, underfitting

if M0  Mα̂

1.3 Information Criteria

The fpe and aic were respectively extended into fpeα, the generalized fpe (Bhansali

and Downham, 1977; Shibata, 1984), and aicα, the generalized aic (Akaike, 1979;

Bhansali, 1986). All of these criteria may be unified as a generalized information

criterion (gic)

gic = −2 logLk + αck,

where Lk is the maximum likelihood of the model with size k, α is a positive tuning

parameter that may be a constant or depend on the sample size n, and ck reflecting

the model complexity is a specified positive increasing function of the model size k.

The ck = k was usually considered (Nishii, 1984; Shao, 1997).
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Using Bayes or mdl principle gives a general family of Bayesian information cri-

teria (Hansen and Yu, 2001; Rissanen, 2007)

bicπ = −2 logLk + k log n− 2 log πk,

where πk is a prior probability of the model with size k.

Information criteria include the generalized information criterion, gic, and the

family of Bayesian information criteria, bicπ. Most of criteria derived by estimating

the expected loss function or discrepancy may be considered as a special form of

the gic or bicπ (Shao, 1997; Zhang, 2009). For example, with α = 2 and ck =

kn/(n− k − 1), the gic is the aicc (Hurvich and Tsai, 1989).

As compared with the bootstrap or cross-validation, the information criteria are

computationally much faster which is a consideration in data mining with large

datasets.

1.4 Main Issues

Asymptotic properties of the information criteria are known well (Nishii, 1984; Sin and

White, 1996; Shao, 1997; Yang, 2005), but there are few results on non-asymptotic

properties. The choice of the tuning parameter is a key issue for the information

criteria. However, each approach to choosing the tuning parameter is identical to a

model selection procedure. Also there are relatively few studies on the information

criteria for high dimensional model selection (Fan and Lv, 2010). This thesis will

address the three issues mentioned above. We focus on the information criteria:

generalized information criterion, gic, and the family of Bayesian information criteria,

bicπ. Summarized below are the main parts of this thesis.

Chapter 2 considers linear model selection. The properties on the gic are analyzed

and two adaptive model selection procedures are proposed.

Chapter 3 deals with the general probabilistic models. The upper bounds for the

probabilities of selecting an overfitting model and the optimal model are discussed.

The gic with overfitting level is proposed.

Chapter 4 examines a family of Bayesian information criteria with the Bernoulli

prior, called bicq. We show that the bicq is more effective than the usual bic and

an extended bic.
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Chapter 5 considers the high dimensional model selection. We derive the condi-

tions under which the gic is overfitting, consistent, or underfitting when the candidate

models are estimated by the penalized maximum likelihood methods.
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Chapter 2

LINEAR MODEL SELECTION USING GIC

We examine nonasymptotic and asymptotic properties of linear model selection by

generalized information criterion. A necessary and sufficient condition for the model

selection consistency is derived. The computation of probability of selecting a model is

addressed using Monte Carlo technique and bootstrap method. Two adaptive model

selection procedures are proposed based on the probability of selecting a model. These

results are illustrated with simulations as well as in examples with actual data.

2.1 Introduction

By model selection we mean the choice of a best model from a set of candidate

models that are often obtained by least squares or maximum likelihood estimation.

The candidate models may also be provided by penalized least squares or penalized

maximum likelihood, such as lasso (Tibshirani, 1996), scad (Fan and Li, 2001), and

mcp (Zhang, 2010). The true model may have infinite dimension or include unknown

misspecified predictors. In this case, model selection is to find the parsimonious

optimal approximation model.

Many model selection criteria have been derived based on a variety of princi-

ples such as minimizing final prediction error (Akaike, 1969, 1970), minimizing mean

squared model error (Mallows, 1973), minimizing information loss (Akaike, 1974),

and maximizing posterior probability (Schwarz, 1978). We mention a few of those

that are most widely used. These criteria may be generalized to fpeα (Bhansali and

Downham, 1977) or aicα (Akaike, 1979).

For linear models, aicα is asymptotically equivalent to fpeα, and both were re-

ferred to as a generalized information criterion (gic) (Nishii, 1984; Shao, 1997). But

the fpeα is often used for the linear model. The asymptotic properties of fpeα have
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been examined by several authors (Shibata, 1984; Nishii, 1984; Shao, 1997). In prac-

tice, the sample is finite, and nonasymptotic properties are often more important

than asymptotic properties.

In this chapter, we investigate the properties of fpeα . We derive the probabil-

ity distribution of selecting a model and the necessary and sufficient condition that

fpeα is consistent. The computation of the probabilities is addressed using Monte

Carlo method. It is seen that the best model has the highest probability to be se-

lected. According to this property, we propose two probability-based procedures for

model selection.

The performance of fpeα is related to a proper choice of α. How to choose the

α was discussed respectively by simulation (Atkinson, 1980), approximate efficiency

(Shibata, 1984), bootstrap (Rao, 1999), and generalized degrees of freedom (Shen

and Ye, 2002). fpeα using the different values of α may select the same model. So

the best choice of the value of α is not unique. We derive an interval for α in which

fpeα can select a specified model. The interval is a necessary and sufficient condition

under which a specified model can be selected. Each selected model corresponds to

a unique interval. Thus using these interval constraint can reduce the number of the

candidate models that could be selected.

A more general form of fpeα is further considered, in which the penalty term is

a monotone function of model complexity. The penalty in fpeα includes an estimate

of the variance of the model error. When the estimate is near to zero, as in high

dimensional model selection, fpeα cannot work. To avoid the drawback, we intro-

duce a new tuning parameter that combines the unknown variance together with the

parameter α, and give a modified fpeα , denoted by fpeγ .

2.2 Linear Model Selection

2.2.1 Optimal Model

Let y = (y1, ..., yn)′ be a vector of responses and X = (X1, ..., Xdn) be an n × dn

matrix, where Xk is a vector of measurements of k-th predictor. The number of

predictors, dn, may grow with the sample size n. To simplify the notation, the

dependence of X, y and other random variables on n is suppressed. We mainly

consider the case of deterministic predictors. When the predictors are random, the
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results are still valid but some may require that n−1X(k)′X(j) converge almost surely

for each k and j, see Assumption 2.2.

The response is expressed as y = µ+ε, where µ = E(y|X) is the mean of response

and ε ∼ N(0, σ2I). We approximate the mean µ by a linear model

µ(S) = X(S)β(S), (2.1)

where S = {s1, ..., sk} is a subset of {1, 2, ..., dn}, X(S) = (Xs1 , ..., Xsk), and β(S) =

(βs1 , ..., βsk)′ is a vector of parameters that specifies the model. To simplify notation,

the intercept term is considered as a predictor and included in the linear model. Each

subset S represents a class of models. The number of components in S, denoted by

κ(S), is called the model size.

By minimizing the model error

me(β) =‖ µ−X(S)β(S) ‖2, (2.2)

the optimal linear approximation is µa = Xβ = Hµ, where β = (X ′X)−X ′µ, H =

X(X ′X)−X ′ is a hat matrix and (X ′X)− denotes the generalized inverse or Moore-

Penrose pseudoinverse of (X ′X). The approximation error µe = (I − H)µ. The

response may be rewritten as

y = µa + µe + ε = Xβ + µe + ε.

Let the model class S be specified by

β(S) = {X(S)′X(S)}−X(S)′µ.

Since µ is unknown, β is unknown but fixed for a given design matrix, and so is β(S).

The µe related to misspecified predictors is orthogonal to µa, and cannot be linearly

predicted by Xk, k = 1, . . . , dn. The µa is a linear combination of the predictors.

Let Sk0 be the most parsimonious model satisfying X(Sk0)β(Sk0) = µa. The

most parsimonious model is called as an optimal model with size k0 = κ(Sk0). If the

design matrix X is of full column rank, β(Sk0) is the nonzero elements of β. If there

are no misspecified predictors, µe = 0 and Sk0 is a true model.
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Assumption 2.1. The optimal model size, k0, is bounded and the optimal model is

identifiable, that is,

∆ = lim inf
n

min
S6=Sk0
κ(S)≤k0

n−1‖ X(Sk0)β(Sk0)−X(S)β(S) ‖ > 0.

Assumption 2.1 is the same as the condition used by Shao (1996, eqn. (7)). It

means that the optimal model is separable from the models of size not greater than k0.

Under Assumption 2.1, the Sk0 is unique. Let X(Sk0 ,−i) be the matrix X(Sk0) with

the i-th column removed and β(Sk0 ,−i) be β(Sk0) with the i-th element removed.

Then,

n−1‖ X(Sk0)β(Sk0)−X(Sk0 ,−i)β(Sk0 ,−i) ‖ = n−1|βi| ‖ Xi ‖≥ ∆.

So if the predictors in Sk0 have a finite average energy, that is, ‖ Xi ‖2 /n <∞, then

the predictors having decaying coefficients are excluded in the optimal model.

We only consider the models with size no more than min{dn, n} because the model

of size greater than min{dn, n} would be overfitted and might not be identifiable.

2.2.2 Performance Measure

The model performance is assessed using prediction error, that is, expected squared-

error loss. Let yf be a vector of future responses at X. Thus yf = µ + εf , where

εf ∼ N(0, σ2I). The prediction error for the model S is

pe(β̂) = E{‖ yf −X(S)β̂(S) ‖2} = me(β) + kσ2 + nσ2, (2.3)

where k = κ(S) and β̂(S) = {X(S)′X(S)}−X(S)′y. The estimated model error is

me(β̂) = E{‖ µ−X(S)β̂(S) ‖2} = me(β) + kσ2.

Let rss(β̂) =‖ y −X(S)β̂(S) ‖2 be the residual sum of squares (rss). Then

E{rss(β̂)} = µ′(I −H)µ+ σ2(n− k) = me(β) + σ2(n− k).
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Thus

pe(β̂) = me(β̂) + nσ2 = E{rss(β̂)}+ 2kσ2. (2.4)

Minimizing pe(β̂) is not equivalent to minimizing me(β). Usually there is a trade-

off between the model size and the model error to minimize the prediction error. The

following proposition elucidates this relationship. Let k = κ(S) and

snr = min
k<k0

‖ X(Sk0)β(Sk0)−X(S)β(S) ‖2

(k0 − k)σ2 ,

be an average signal-to-noise ratio.

Proposition 2.1. Let Skpe be the model that minimizes prediction error. Under

Assumption 2.1, if snr > 1, Skpe = Sk0, otherwise, if snr < 1, kpe < k0.

The proof of Proposition 2.1 and all others are in Appendix 2.9. If snr = 1, then

either kpe < k0 or Skpe = Sk0 . The snr is related to the sample size and the noise

level. As the sample size increases, the snr becomes large and the model having a

good prediction tends to the optimal model. That is, the optimal model Sk0 might

minimize the prediction error. But the Sk0 is unknown and needs to be estimated.

Selecting a model is equivalent to estimating Sk0 .

2.2.3 Model Selection

We consider the problem of selecting the best model from a set of candidate models

denoted by {Sk, k = 1, . . . , K}. The best model is selected by the minimum value

of some selection criterion. Each candidate model Sk is the best model in the set

of models with size k, which has the minimum rss. Often stepwise methods or the

branch-and-bound algorithm (Furnival and Wilson, 1974; Gatu, 2006) may be used

but other optimization methods are also available for larger space problems (Hofmann

et al., 2007). Penalized least squares, such as lasso and scad, can also be employed

to get the candidate models.

Assume that there is no multicollinearity for each model Sk. Then

β̂(Sk) = {X(Sk)′X(Sk)}−1X(Sk)′y.

Assume that the sizes of the candidate models are unique, that is, each size corre-

sponds to one candidate model. If the model sizes are not unique, we keep one model
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for each size that has a minimum rss. Hence selecting a model is equivalent to select-

ing the model size. For simplicity of notation, let X(k) = X(Sk) and β̂(k) = β̂(Sk)

in the sequel.

Let Skn be the selected model with size kn. If Pr{kn = k0} → 1 as n → ∞, the

model selection procedure is consistent. If kn > k0, the selected model is overfitting.

Otherwise, if kn < k0, the selected model is underfitting.

2.2.4 Selection Criterion

Most model selection criteria proposed to estimate the prediction error can be unified

into a generalized information criterion (gic). For a linear model, the gic has the

form,

gic = n log σ̂2
k + αk,

where α is a tuning parameter, σ̂2
k = rssk/n, and rssk =‖ y − X(k)β̂(k) ‖2. The

gic is asymptotically equivalent to a generalized fpe,

fpeα = nσ̂2
k + αks2

K = rssk + αks2
K , (2.5)

where s2
k = rssk/(n− k), since as αk/n→ 0,

log{fpeα/n}
gic/n

=
log σ̂2

k + log{1 + (αk/n)(s2
K/σ̂

2
k)}

log σ̂2
k + αk/n

a.s.−→ 1.

So, for the linear model selection, we focus on the fpeα instead of the gic. Using

fpeα, we may get the finite-sample distribution of selecting a model instead of an

asymptotic distribution.

The original fpe proposed by Akaike (1969, 1970) is fpe = {1 + 2k/(n− k)}σ̂2
k.

Bhansali and Downham (1977) generalized the fpe into fpeB = (1 + αk/n)σ̂2
k. Shi-

bata (1984) suggested the fpeα. Both fpeα and fpeBα are asymptotically equivalent

since as αk/n→ 0,

fpeα

nfpeBα
=

1 + (αk/n)(s2
K/σ̂

2
k)

1 + αk/n

a.s.−→ 1.

The expected fpeα is

E{fpeα} = me(Sk) + kσ2(αδ − 1) + nσ2, (2.6)
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where αδ = α(1+δ2
n/σ

2), δ2
n = µ′eµe/(n−K). If there are no misspecified predictors,

µe = 0 and αδ = α. If αδ = 1, the expected fpeα equals the quadratic risk. If αδ = 2,

it equals the prediction error (2.3). Comparing (2.6) with (2.3), from Proposition 2.1

we have

Proposition 2.2. Assume Sk0 ∈ {Sk}. Let Skfpeα be the model minimizing the

expected fpeα. Under Assumption 2.1, if 0 < αδ − 1 < snr then Skfpeα = Sk0,

otherwise, if αδ − 1 > snr then kfpeα < k0. Furthermore, if 1 ≤ αδ − 1 < snr,

Skfpeα = Sk0 = Skpe.

Proposition 2.2 shows that the model minimizing the expected fpeα may have

the minimum model error and prediction error if the sample size is large enough or

equivalently the snr is higher.

2.3 Nonasymptotic Properties

We analyze the probability of selecting a model by fpeα and the computation of

the probability using the Monte Carlo method. The following lemma provides the

interval of α, in which fpeα can select a specified model.

Lemma 2.1. fpeα can select the model Sk if and only if

max
j>k

Ak,j ≤ α ≤ min
j<k

Ak,j ,

where Ak,j = (rssk−rssj)/{(j−k)s2
K} for j 6= k, k = 1, . . . , K. Let ki, i = 1, ...,m,

be all of sizes selected by fpeα with different α = αi and be in ascending order. Then

Ak1,k2 ≤ α1 <∞,

Aki,ki+1
≤ αi ≤ Aki−1,ki

,

and 0 ≤ αm ≤ Akm−1,km
. If α = Aki,ki+1

, the fpeα may select Ski and Ski+1
.

Here we define minj<1A1,j = ∞ and maxj>K AK,j = 0. Let κ(α) be the model

size selected by fpeα. From Lemma 2.1, the probability of selecting the model Sk is

Pr{κ(α) = k} = Pr{max
j>k

Ak,j ≤ α ≤ min
j<k

Ak,j}. (2.7)
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Define an indicator function I(X, y, α) = I{maxj>k Ak,j ≤ α ≤ minj<k Ak,j}.
Then

Pr{κ(α) = k} = E{I(X, y, α)}.

Let X(i) and y(i) be the sample of X and y. By the strong law of large numbers,

pk(α) =
1

N

N∑
i=1

I(X(i), y(i), α)
a.s.−→ Pr{κ(α) = k}. (2.8)

The probability, Pr{κ(α) = k}, can also be estimated using the bootstrap method

or resampling the data {X, y}.

2.3.1 Nested Subsets

Assume that the candidate models are nested. In order to compute the probability

in (2.7), we analyze the distribution of Ak,j . The following Lemma 2.2 holds from

the distribution of quadratic forms (Rao, 1973, §3b.4).

Lemma 2.2. Let Sj ⊃ Sk ⊃ Sl. Let χ2
d(λ) denote a noncentral chi-square distribution

with a degree of freedom d and a noncentrality parameter λ. Then

rssk/σ
2 = y′(I −Hk)y/σ2 ∼ χ2

n−k(λk),

(rssk − rssj)/σ
2 = y′(Hj −Hk)y/σ2 ∼ χ2

j−k(λkj),

where σ2λk = µ′(I − Hk)µ and σ2λkj = µ′(Hj − Hk)µ. If Sk ⊃ Sk0, λk0,k = 0.

Furthermore, rssK , rssl − rssk and rssk − rssj are independent.

Since {Sk} are nested, from Lemma 2.2, for k = 1, . . . , K − 1,

Zk = (rssk − rssk+1)/σ2 ∼ χ2
1(λk,k+1),

are independent, where λk,k+1 = E{rssk − rssk+1}/σ2 − 1 = µ′(Hk+1 −Hk)µ/σ2

are the noncentrality parameters. Let ZK = s2
K/σ

2. Then for j = 1, . . . , k − 1,

Ak,j = (Zj + · · ·+ Zk−1)/ZK(k − j),
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and for j = k + 1, . . . , K,

Ak,j = (Zk + · · ·+ Zj−1)/ZK(j − k).

Let Ak = (Ak,1, . . . , Ak,k−1, Ak,k+1, . . . , Ak,K) and Z = (Z1, . . . , ZK−1) be vectors

of length K − 1, and for 1 < k < K,

Gk =



1
k−1

1
k−1 · · · 1

k−1
1

k−2 · · · 1
k−2

. . .
...

1

0

0

1
1
2

1
2

...
...

. . .
1

K−k
1

K−k · · · 1
K−k


Then

Ak = GkZ/ZK . (2.9)

Define an indicator function I(Ak, α) = I{maxj>k Ak,j ≤ α ≤ minj<k Ak,j}. From

(2.7), for 1 < k < K,

Pr{κ(α) = k} = E{I(Ak, α)} = E{I(GkZ/ZK , α)}.

From Lemma 2.2, Zk, k = 1, . . . , K, are independent. Assume that there are no

misspecified predictors, that is, µe = 0. Then ZK = s2
K/σ

2 ∼ χ2
n−K/(n − K). Let

Z
(i)
k , i = 1, . . . , N , be i.i.d. sample of Zk. Let Z(i) = (Z

(i)
1 , . . . , Z

(i)
K−1). By strong

law of large numbers,

pNestk (α) =
1

N

N∑
i=1

I(GkZ
(i)/Z

(i)
K , α)

a.s.−→ Pr{κ(α) = k}. (2.10)

Sampling Zk needs the noncentrality parameter λk,k+1 = E{rssk−rssk+1}/σ2−
1. An unbiased estimator of the non-centrality parameter is, see Kubokawa et al.
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(1993),

λ̂k,k+1 = max{
(n−K − 2)(rssk − rssk+1)

(n−K)s2
K

− 1, 0}. (2.11)

Using the estimates of noncentrality parameters yields a conditional probability. If the

estimate is consistent, the conditional probability will converge to the true probability.

2.3.2 Unnested Subsets

Let X be the n×K design matrix corresponding to the subsets {Sk}. Consider the

matrix decomposition X = UV , where U is an n × K column orthogonal matrix,

that is, U ′U = IK , and V is a K × K square matrix. This decomposition can

be constructed by the singular value decomposition. Then X(k) = UV (k), where

V (k) = V (Sk).

Let H̃k = V (k){V (k)′V (k)}−1V (k)′, µ̃ = U ′µ, ε̃ = U ′ε, and ε = ε̃/σ. Then

y′Hky = (µ̃+ ε̃)′H̃k(µ̃+ ε̃), and

(j − k)Ak,j = y′(Hj −Hk)y/s2
K = (µ̃/σ + ε)′(H̃j − H̃k)(µ̃/σ + ε)/ZK .

The indicator function I(Ak, α) can be rewritten as

I(Ak, α) = I(ε, ZK , µ, σ, α). (2.12)

Since ε ∼ N(0, σ2In), ε ∼ N(0, IK). Assume that there are no misspecified

predictors, that is, µe = 0. Then ZK ∼ χ2
n−K/(n − K). Let ε(i) and Z

(i)
K , i =

1, . . . , N , be i.i.d. sample of ε and ZK , respectively. By strong law of large numbers,

pUnnestk (α) =
1

N

N∑
i=1

I(ε(i), Z
(i)
K , µ, σ, α)

a.s.−→ Pr{κ(α) = k}. (2.13)

The indicator function I(ε, ZK , µ, σ, α) includes the unknown parameters µ and

σ. In practice, we instead use the estimates σ̂2 = s2
K and µ̂ = Hy.

2.3.3 Upper Bounds

Let S̃k−1 and S̃k+1 be the models of size k − 1 and k + 1, respectively, and satisfy

S̃k−1 ⊂ Sk ⊂ S̃k+1. If the candidate models are nested, S̃k−1 = Sk−1 and S̃k = Sk.
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Since Sj has the minimum rss in the models of size j, r̃ssj ≥ rssj for j = k − 1

and k + 1. Assume that there are no misspecified predictors, that is, µe = 0. Then

ZK ∼ χ2
n−K/(n−K).

From (2.7) and Lemma 2.2, an upper bound of the probability that fpeα selects

the model Sk, 1 < k < K, is

Pr{κ(α) = k} ≤ Pr{Ak,k+1 ≤ α ≤ Ak,k−1}
= Pr{(rssk − rssk+1)/s2

K ≤ α ≤ (rssk−1 − rssk)/s2
K}

≤ Pr{(rssk − r̃ssk+1)/s2
K ≤ α ≤ (r̃ssk−1 − rssk)/s2

K}
= Pr{F1,n−K(λ̃k,k+1) ≤ α}Pr{α ≤ F1,n−K(λ̃k−1,k)},

(2.14)

where λ̃k,k+1 and λ̃k−1,k are noncentrality parameters of (rssk − r̃ssk+1)/σ2 and

(r̃ssk−1−rssk)/σ2, respectively, and Fd1,d2(λ) represents a noncentral F-distribution

with degrees of freedom d1 and d2 and noncentrality parameter λ.

If k > k0, λ̃k,k+1 = 0 and λ̃k−1,k = 0. Hence, the probability of selecting a

overfitted model by fpeα is bounded by,

Pr{κ(α) = k} ≤ Pr{F1,n−K ≤ α}(1− Pr{F1,n−K ≤ α}) , p. (2.15)

Similarly, the probability of selecting the true model by fpeα is bounded by

Pr{κ(α) = k0} ≤ Pr{F1,n−K ≤ α}(1− Pr{F1,n−K(λ) ≤ α}) , p0, (2.16)

where λ = λ̃k0−1,k0 is a noncentrality parameter of (r̃ssk0−1 − rssk0)/σ2.

The upper bound probabilities of selecting an overfitted model and the true model

are plotted in Figure 2.1. Each curve in the right of Figure 2.1 corresponds to a

different non-centrality parameter λ. The small λ represents the case of small sample

size. The circles represent the maximum values of each curve.

When K is large, the following upper bounds may also be used to reduce the

computational burden.

Pr{κ(α) = k} ≤ Pr{ max
k<j<k+h

Ak,j ≤ α ≤ min
k−h<j<k

Ak,j},

where 0 < h < K is a specified number, for example, h = 4.
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Figure 2.1: Left: upper bound of the probability of selecting a overfitted model.
Right: upper bound of the probability of selecting the true model. The non-centrality
parameters, λ, are 5 (dashed), 10 (dotted), 15 (dotdash), 20 (longdash), and 25 (solid),
respectively.

2.4 Asymptotic Properties

For convenience, denote Pr{An}
asy.
= Pr{Bn} if Pr{limAn} = Pr{limBn}. To ana-

lyze the asymptotic properties on fpeα, we use the following assumption.

Assumption 2.2. There almost surely exist the limits: n−1y′y a.s.−→ v2, n−1X(k)′y a.s.−→
vk, and n−1X(k)′X(j)

a.s.−→ Vkj.

Lemma 2.3. Under Assumptions 2.1 and 2.2,

n−1me(β(k))
a.s.−→ ∆2

k + δ2,

n−1rss(β(k))
a.s.−→ ∆2

k + δ2 + σ2,

where

∆2
k = limn−1‖ X(k0)β(k0)−X(k)β(k) ‖2 = v′k0V

−1
k0k0

vk0 − v
′
kV
−1
kk vk,

δ2 = limn−1µ′eµe = v2 − σ2 − v′k0V
−1
k0k0

vk0 .

Moreover, ∆2
k = 0 if and only if k ≥ k0. If k < k0, ∆2

k ≥ ∆.
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Proposition 2.3. Assume that Assumptions 2.1 and 2.2 hold. Let Sk be the best

model of size k, k = 1, . . . , K, that minimizes rss. If the sample size is sufficiently

large, then Sk is independent of the sample for a fixed k, Sk0 ∈ {Sk}, and either

Sk ⊂ Sj or X(k) and X(j) span the same subspace for the fixed k and j with k < j.

It may not hold that Sk ⊃ Sk0 for k > k0 if the sample size is small. For example,

there are three predictors x1, x2 and x3 = x1 + x2 + 0.01e, and the true model

y = x3 + 0.1e, where e ∼ N(0, 1). Let n = 20. The first two best subsets may be

S1 = {x3} and S2 = {x1, x2}.
From Lemma 2.3, there exists the following limit

τ = lim
n→∞

min
j<k0

n−1Ak0,j
a.s.
= min

j<k0

∆2
j

(σ2 + δ2)(k0 − j)
> 0. (2.17)

Theorem 2.1. Let α = αn and n−1αn → r. Let κ(α) be the model size selected by

fpeα. Assumptions 2.1 and 2.2 hold.

1) If α <∞, then for k0 < K,

Pr{limκ(α) < k0} = 0,

Pr{limκ(α) = k0}
asy.
= Pr{maxj>k0 Ak0,j ≤ α},

Pr{limκ(α) > k0}
asy.
= Pr{maxj>k0 Ak0,j > α}.

2) If α→∞ and r < τ ,

Pr{limκ(α) = k0} = 1,

Pr{limκ(α) 6= k0} = 0.

3) If r > τ ,

Pr{limκ(α) < k0} = 1,

Pr{limκ(α) ≥ k0} = 0.

4) If r = τ ,

Pr{limκ(α) ≤ k0} = 1.
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If Sk are nested, from (2.9),
Ak0,k0+1
Ak0,k0+2

...

Ak0,K

 =


1
1
2

1
2

...
...

. . .
1

K−k0
1

K−k0
· · · 1

K−k0



Zk0/ZK

Zk0+1/ZK
...

ZK−1/ZK

 , G2Zk0/ZK ,

where Zj ∼ χ2
1, j = k0, . . . , K − 1, and ZK are independent. Define an indicator

function I(Zk0 , ZK , α) = I{maxj>k0 Ak0,j ≤ α}. Then for k0 < K, from Theorem

2.1,

Pr{limκ(α) = k0}
asy.
= E{I(Zk0 , ZK , α)} asy.= E{I(Zk0 , 1 + δ2/σ2, α)}.

If there are no misspecified predictors, δ2 = 0.

If Sk are unnested, similar to (2.14), we may show asymptotically

Pr{limκ(α) = k0} ≤ E{I(Zk0 , 1 + δ2/σ2, α)}.

Hence for a finite or fixed α, Pr{limκ(α) = k0} ≤ Pr{Zk0 ≤ (1 + δ2/σ2)α} < 1. This

means that the fpeα with a finite α is inconsistent if k0 < K.

If k0 = K, since we define maxj>K ZK,j = 0,

Pr{limκ(α) = k0} = Pr{max
j>K

ZK,j ≤ α} = 1.

So in this extreme case, the fpeα with a finite α is consistent.

The asymptotic properties are described in Corollaries 2.1 and 2.2, which are

directly derived from Theorem 2.1. In the following corollaries, Assumptions 2.1 and

2.2 are implied but omitted.

Corollary 2.1. Assume k0 < K and Sk0 ∈ {Sk}. Let α = αn and n−1αn → r 6= τ .

1) If α is bounded, fpeα is inconsistent, and the selected model is asymptotically either

optimal or overfitted. 2) fpeα is strongly consistent if and only if α is unbounded

and r < τ . 3) fpeα is asymptotically underfitted if and only if α is unbounded and

r > τ .
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Corollary 2.2. Assume k0 = K and Sk0 ∈ {Sk}. Let n−1αn → r 6= τ . Then

if r < τ , fpeα is strongly consistent. Otherwise if r > τ , fpeα is asymptotically

underfitted.

From Corollary 2.1, as commonly known, fpeα is inconsistent if α is bounded.

But the usual condition n−1αn → 0 is sufficient but not necessary for the consistency.

From Corollary 2.2, aic and fpe may be consistent in the extreme case of k0 = K.

So strictly speaking, the statement that aic and fpe are inconsistent is incorrect.

The τ is an unknown constant related to the optimal model size k0, and might

be estimated by τ̂ = minj<k0 Ak0(j)/n if k0 was known. Since Ak0(j)/n
a.s.→ 0 for

j > k0, the τ may be estimated by

τ̂ = min
j<k
{Ak(j)/n > ε}, (2.18)

where ε is a small value.

2.5 Adaptive Procedures Based on Probabilities

2.5.1 Procedure One

According to the probability distribution of selecting a model, we may decide the best

model. From the asymptotic property given in Theorem 2.1, we see that as the tuning

parameter α increases with the sample size, the asymptotic probability of selecting

the optimal model, Sk0 , may approach one. Hence the model having the maximum

probability should be the best model.

Let pk(α) = Pr{κ(α) = k}, the probability of selecting a model that can be

estimated using (2.8), (2.10), or (2.13). The best model is estimated by

k̂0 = arg max
1≤k≤K

{ max
α1≤α≤α2

pk(α)}, (2.19)

where [α1, α2] is a specified range of α. From the bound probability of selecting the

optimal model (2.16) and Figure 2.1, the α may be limited by 2 ≤ α ≤ 9.

The model selection procedure given by (2.19) is called an adaptive fpeα , denoted

as fpeα,d, in which the adaptive change of α is based on the probability distribution.

From Theorem 2.1, the fpeα,d is inconsistent if the upper range α2 is finite, and it
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is consistent if α2 = c log(n), where c is a constant. In practice, the α may only take

the integers in [α1, α2] because whether or not a model can be selected relies on an

interval in which α is.

2.5.2 Procedure Two

Let Ik = [maxj>k Ak,j , minj<k Ak,j ]. If α ∈ Ik, fpeα selects the model Sk. Let

α = αik ∈ Ik be changed adaptively based on the interval. From Lemma 2.1, the

probability of selecting the model Sk is

Pr{κ(αik) = k} = Pr{maxj>k Ak,j ≤ minj<k Ak,j}
= Pr{maxj>kDk,j ≤ minj<kDk,j}
= Pr{maxj>kWk,j ≤ minj<kWk,j},

where Dk,j = (rssk − rssj)/(j − k) and Wk,j = Dk,j/σ
2.

Similar to (2.14), for k0 < k < K,

Pr{κ(αik) = k} ≤ Pr{Wk,k+1 ≤ Wk,k−1}
≤ Pr{χ2

1 ≤ χ2
1}

= 0.50.

Under Assumptions 2.1 and 2.2, from Lemma 2.3, for j > k0 > l, as n is large

enough, we have Dk0,j = o(n) < Dk0,l = O(n), and then

Pr{κ(αik0
) = k0} = Pr{max

j>k0
Dk0,j ≤ min

j<k0
Dk0,j} = 1.

Hence by computing the probabilities, pk = Pr{κ(αik) = k}, k = 1, . . . , K − 1,

we may determine the best model. The procedure is given by

k̂0 = max{k : pk > η}, (2.20)

where η is the level of selecting the optimal model. If it is desired that pk0 ≥ 0.90,

then η = 0.90. The procedure given in (2.20), denoted as fpeα,i, is consistent if

η ≥ 0.5.
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Define an indicator function I(X, y, k) = I{maxj>kDk,j ≤ minj<kDk,j}. Then

Pr{κ(αik) = k} = E{I(X, y, k)}.

Let X(i) and y(i) be the sample of X and y. By strong law of large numbers,

pk =
1

N

N∑
i=1

I(X(i), y(i), k)
a.s.−→ Pr{κ(αik) = k}. (2.21)

The bootstrap or resampling methods can be used to estimate pk.

2.6 Further Discussions

A more general form of fpeα is

fpeα = rssk + αcks
2
K , (2.22)

where ck is a known positive increasing function of the model size k and may depend

on n. The ck represents the model complexity. The form (2.22) includes a variety of

information criteria. With ck = (eαk/n−1)rssk/αs
2
K , the fpeα is exactly equivalent

to aicα. If αck = 4
∑k
j=1 log(K/j), the fpeα is the covariance inflation criterion

(cic) (Tibshirani and Knight, 1999). The fpeα also includes the risk inflation crite-

rion (ric) (Foster and George, 1994).

In (2.22), s2
K , an estimate of variance σ2, may be considered as a scale of the

tuning parameter α and can be replaced by any positive number. Substituting αs2
K

with γ, we obtain,

fpeγ = rssk + γck. (2.23)

The penalty in (2.22) is a random variable related to the sample, while the penalty

in (2.23) is deterministic. The fpeα is asymptotically equivalent to fpeγ with γ =

(σ2 + δ2)α. In the high dimensional feature space, usually s2
K is close or equal to

zero, and then fpeα cannot work but fpeγ works.

Corollary 2.3. fpeα , defined in (2.22), selects the model Sk if and only if

max
j>k

Bk,j ≤ α ≤ min
j<k

Bk,j ,
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where Bk,j = (rssk − rssj)/{(cj − ck)s2
K} for j 6= k, k = 1, . . . , K. Let ki, i =

1, ...,m, be all of sizes selected by the fpeα with different α = αi and be in ascending

order. Then Bk1,k2 ≤ α1 <∞,

Bki,ki+1
≤ αi ≤ Bki−1,ki

,

and 0 ≤ αm ≤ Bkm−1,km
. If α = Bki,ki+1

, fpeα may select Ski and Ski+1
.

Corollary 2.4. fpeγ , defined in (2.23), selects the model Sk if and only if

max
j>k

Dk,j ≤ γ ≤ min
j<k

Dk,j ,

where Dk,j = (rssk − rssj)/(cj − ck) for j 6= k, k = 1, . . . , K. Let ki, i = 1, ...,m,

be all of sizes selected by fpeγ with different γ = γi and in ascending order. Then

Dk1,k2 ≤ γ1 <∞,

Dki,ki+1
≤ γi ≤ Dki−1,ki

,

and 0 ≤ γm ≤ Dkm−1,km
.

Corollaries 2.3 and 2.4 are directly obtained from Lemma 2.1. Substituting Ak,j

with Bk,j or Dk,j , the results provided in Section 2.3 and Section 2.4 are applicable

to the general fpeα or fpeγ .

From Corollaries 2.3 and 2.4, the necessary condition under which the model Sk
can be selected is

Dki,ki+1
≤ Dki−1,ki

.

Let k0 < k1 < . . . < km. If Sk0 ⊂ Sk1 ⊂ . . . ⊂ Skm and let ck = k then Dki,ki+1
/σ2 ∼

χ2
ki+1−ki

/(ki+1 − ki) are independent, see Lemma 2.2, and the probability that the

m models could be selected is

Pr

{χ2
k1−k0

k1 − k0
≤ . . . ≤

χ2
km−km−1

km − km−1

}
,

which will be near zero if m is large. Hence only a few models can be selected even if

K is large. Using the interval constraints may significantly reduce the number of the

candidate models. This is particularly useful to reduce the computational burden if

K is large.
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2.7 Numerical Illustration

This section is to numerically illustrate the properties of the general fpeα and

fpeγ with simulation study and applications to the diabetes study and the Stan-

dard and Poors 500 stocks. The simulation study verifies the probability of selecting

a model by fpeγ and the probability-based procedures for model selection. For

the diabetes study, we obtain the set of candidate models by lasso and exhaustive

search, and then use the probability-based procedures to select the best model. In

the dataset of the Standard and Poors 500 stocks, the number of observations is less

than the number of the predictors. We obtain the candidate models by mcp , screen

the candidate models by the interval conditions in Corollary 2.4, and then use the

probability-based procedures to select the final best model. In this section, ck = k.

2.7.1 Simulation Study

As in Tibshirani (1996) and Fan and Li (2001), we consider a linear model with

β = (3, 1.5, 0, 0, 2, 0, 0, 0). The components of X and ε are standard normal. The

correlation between Xi and Xj is ρ|i−j| with ρ = 0.5. The true model size is k0 = 3.

The full model size is K = 8. Let σ = 1, and n = 20.

First we assume that the predictors are deterministic, that is, Xk, k = 1, . . . , 8, are

fixed. We run m = 104 simulations, and count the number of the models selected by

fpeγ with different γ = σ2ασ, ασ = 2, ..., 10. Let mk be the number of the selected

model Sk, k = 1, ..., 8. The relative frequency, defined by fk = mk/m, the model

error, me(β̂) =‖ Xβ−X(κ(α))β̂(κ(α)) ‖2, and the standard error (se) of the me are

shown in Table 2.1. fpeγ with ασ ∈ (7, 10) selects the true model with probability

more than 0.99. fpeγ with ασ = 9 has the highest probability but slightly larger

me than fpeγ with ασ = 8. This means that the true model having the minimum

model error may not be the model having the minimum prediction error.

With known noncentrality parameters λi,i+1, we compute the probabilities pk

using (2.8) with N = 107. The results are in Table 2.2. The largest standard error

is 0.00014. Comparing with Table 2.1, the probabilities and the relative frequencies

are very close, and their differences are from −0.0062 to 0.0053.

Now we assume that the predictors are random variables. we compare the perfor-

mance of the probability-based procedures fpeα,d and fpeα,i with aic and bic by

measuring the percentage number of underfit, overfit and correct models, and the
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Table 2.1: Relative frequency fk of selecting a model Sk, k = 1, ..., 8, by fpeγ .

ασ f1 f2 f3 f4 f5 f6 f7 f8 me se
2 0 0.000 0.741 0.112 0.058 0.039 0.026 0.024 4.722 0.043
3 0 0.000 0.884 0.073 0.025 0.012 0.004 0.002 3.802 0.035
4 0 0.000 0.946 0.042 0.008 0.003 0.000 0.000 3.410 0.031
5 0 0.000 0.970 0.025 0.004 0.001 0.000 0.000 3.259 0.030
6 0 0.001 0.982 0.016 0.001 0.000 0.000 0.000 3.170 0.028
7 0 0.001 0.990 0.008 0.000 0.000 0.000 0.000 3.123 0.028
8 0 0.002 0.993 0.004 0.000 0.000 0.000 0.000 3.109 0.029
9 0 0.003 0.994 0.003 0.000 0.000 0.000 0.000 3.121 0.031
10 0 0.006 0.993 0.002 0.000 0.000 0.000 0.000 3.172 0.034

Table 2.2: The probability of selecting a model Sk, k = 1, ..., 8, with known noncen-
trality parameters. The standard errors are between 0 and 0.00014. The differences,
pk − fk, range from −0.0062 to 0.0053.

ασ p1 p2 p3 p4 p5 p6 p7 p8
2 0 0.000 0.735 0.117 0.061 0.038 0.027 0.022
3 0 0.000 0.883 0.074 0.025 0.011 0.005 0.003
4 0 0.000 0.943 0.043 0.010 0.003 0.001 0.000
5 0 0.000 0.971 0.025 0.004 0.001 0.000 0.000
6 0 0.001 0.984 0.014 0.001 0.000 0.000 0.000
7 0 0.001 0.990 0.008 0.000 0.000 0.000 0.000
8 0 0.002 0.993 0.005 0.000 0.000 0.000 0.000
9 0 0.004 0.993 0.003 0.000 0.000 0.000 0.000
10 0 0.006 0.992 0.002 0.000 0.000 0.000 0.000

model error, (β̂ − β)′Σx(β̂ − β), where Σx is the covariance matrix of the predictors.

The probabilities pk(α) and pk are computed using (2.8) and (2.21) by bootstrap

methods. The level of selecting the optimal model for fpeα,i is η = 0.90. The num-

ber of bootstrap samples is N = 100. We run 104 simulations. The results are in

Table 2.3.

2.7.2 Diabetes Study

We consider the diabetes dataset used by Efron et al. (2004) to illustrate lars. This

dataset consists of 442 diabetes patients who were measured on 10 baseline variables:

age, sex, body mass index, average blood pressure and six blood serum measurements.

A prediction model was desired for the response variable, a quantitative measure of

disease progression one year after baseline.
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Table 2.3: Percentage number of underfitted models (u), correct models (c), and
overfitted models (o), and model error with standard deviation from 104 simulations
for different sample size n.

n procedure u c o me sd
50 aic 0 44 56 0.304 0.245

bic 0 78 22 0.220 0.215
fpeα,d 0 94 6 0.179 0.207
fpeα,i 4 95 1 0.217 0.413

100 aic 0 44 56 0.140 0.105
bic 0 86 14 0.094 0.086
fpeα,d 0 97 3 0.078 0.073
fpeα,i 0 99 1 0.073 0.065

We first consider the subsets generated by lasso , which consist of ten nested

subsets Sk, k = 1, . . . , 10. The best model will be selected from the subsets. We

compute the probability of selecting each model by (2.10). Monte Carlo sample size

N = 106. The results are shown in Table 2.4. The model S5 is selected using the

procedure (2.19), fpeα,d, because it has the highest probability. Using the Cp in

lars selects the model S7 that contains two insignificant coefficients. aic also selects

S7 but bic prefers S5.

Table 2.4: The probability of selecting a model Sk, k = 1, ..., 10, in the lasso subsets,
computed by (2.10). N = 1000, 000. The standard errors are between 0 and 0.0005.

α p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
2 0 0.000 0.000 0.003 0.333 0.038 0.353 0.069 0.147 0.057
3 0 0.000 0.003 0.012 0.550 0.032 0.296 0.033 0.061 0.013
4 0 0.000 0.010 0.025 0.695 0.023 0.207 0.014 0.022 0.003
5 0 0.001 0.025 0.043 0.772 0.015 0.131 0.005 0.007 0.001
6 0 0.004 0.049 0.062 0.794 0.009 0.077 0.002 0.002 0.000
7 0 0.010 0.084 0.080 0.776 0.005 0.043 0.001 0.001 0.000
8 0 0.020 0.128 0.095 0.730 0.003 0.023 0.000 0.000 0.000
9 0 0.037 0.177 0.107 0.664 0.002 0.012 0.000 0.000 0.000
10 0 0.063 0.228 0.113 0.587 0.001 0.006 0.000 0.000 0.000

We further consider the best subsets generated by exhaustive search. The best

subsets are not nested, see Table 2.7, where five subsets are listed. The S5 is the

same as that in lasso subsets, but the S6 is different from that in lasso. In the

best subsets, S5 and S6 are almost equivalent because the covariate ‘hdl’ in S5 has a
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linear relationship with covariates ‘tc’ and ‘ldl’ in S6. The probabilities of selecting the

models Sk are computed using (2.13) and shown in Table 2.5. It is seen that S5 and

S6 are tied and both can be selected using the procedure (2.19). Using Lemma 2.1,

we calculate the intervals (αk,1, αk,2) shown in Table 2.6. From Table 2.6 bic selects

the model S5 because log n = 6.09, and aic selects the model S6.

Table 2.5: The probability of selecting a model Sk, k = 1, ..., 10, in the best subsets,
computed by (2.13). N = 1000, 000. The standard errors are between 0 and 0.0005.

α p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
2 0 0.000 0.000 0.002 0.094 0.386 0.182 0.193 0.089 0.053
3 0 0.000 0.001 0.008 0.182 0.503 0.140 0.116 0.036 0.013
4 0 0.000 0.002 0.023 0.277 0.529 0.091 0.061 0.014 0.003
5 0 0.000 0.007 0.045 0.367 0.492 0.053 0.029 0.005 0.001
6 0 0.001 0.016 0.074 0.442 0.423 0.028 0.013 0.002 0.000
7 0 0.003 0.032 0.105 0.495 0.343 0.014 0.005 0.001 0.000
8 0 0.008 0.056 0.136 0.527 0.264 0.007 0.002 0.000 0.000
9 0 0.018 0.088 0.160 0.535 0.195 0.003 0.001 0.000 0.000
10 0 0.032 0.126 0.178 0.523 0.138 0.001 0.000 0.000 0.000

Table 2.6: Intervals (αk,1, αk,2) in which fpeα selects the model Sk.

Sk 1 2 3 5 6 7 8 9 10
αk,1 103.52 18.45 12.79 5.60 1.26 1.06 0.22 0.03 0
αk,2 ∞ 103.52 18.45 12.79 5.60 1.26 1.06 0.22 0.03

Table 2.7: Model coefficients with significance codes ‘***’, ‘**’, ‘*’, ‘.’, or ‘-’ repre-
senting the corresponding p-value in (0, 0.001], (0.001, 0.01], (0.01, 0.05], (0.05, 0.1],
or (0.1, 1], respectively.

Variable S3 S5 S6 S7 S8
sex -0.1456*** -0.1399*** -0.1462*** -0.1495***
bmi 0.3725*** 0.3234*** 0.3273*** 0.3268*** 0.3204***
map 0.1620*** 0.2015*** 0.2021*** 0.2062*** 0.1986***
tc -0.4682*** -0.3799** -0.3834**
ldl 0.3327*** 0.2181 - 0.2186 -
hdl -0.1786***
tch 0.0836 - 0.0786 -
ltg 0.3359*** 0.2930*** 0.4967*** 0.4357*** 0.4274***
glu 0.0415 -
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2.7.3 Standard & Poor’s 500 Index

The dataset included in R package plus contains a year’s worth of close-of-day data for

most of the Standard and Poors 500 stocks. We consider the daily percentage change.

In the data, the first column named X.DJI, Dow Jones Industrial Average, is used

for the response variable, and the other 492 columns excluding the second column

are the predictor variables. There are 252 observations. The goal is to estimate the

index using the individual stocks.

In this example, n = 252 and dn = 492. First, the minimax concave penalized

likelihood method, mcp (Zhang, 2010), is used to obtain 501 candidate models with

sizes from 1 to 30. Then, we select a best model having a minimum rss for each size

and get K = 28 candidate models with unique size from 1 to 30. Using Corollary 2.4,

we calculate the intervals of γ and then reduce the 28 candidate models to 10 that

can be possibly selected by fpeγ , see Table 2.8. Finally, using the probability-based

procedure (2.19) yields the best model S18 with a probability of more than 0.95.

Table 2.8: Intervals (γk,1, γk,2) in which fpeγ selects the model Sk.

Sk 1 3 4 7 11 13 18 22 24 30
γk,1 104.00 18.25 14.36 3.07 1.46 1.13 0.28 0.277 0.206 0
γk,2 ∞ 104.00 18.25 14.36 3.07 1.46 1.13 0.28 0.277 0.206

2.8 Conclusions

Model selection is to find the best model among a set of candidate models according to

some selection criterion. We considered the generalized information criterion, fpeα,

investigated the relevant properties, and extended it into fpeγ that is suitable for high

dimensional space. We investigated the probability distribution of selecting a model

by fpeα, and the conditions under which the criterion is underfitting, consistent, or

overfitting. The probability-based procedures were proposed for selecting the best

model.

As shown in the application to the Standard and Poors 500 stocks, the properties

given in this chapter have a potential application to the model selection in high

dimensional feature space. First, using the necessary and sufficient conditions that

the models can be selected reduces the number of the candidate models. Then, using
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the probability-based procedures select the best model in the reduced set of candidate

models.

2.9 Appendix

2.9.1 Proofs of Lemmas

Proof of Lemma 2.1.

fpeα selects the model Sk if and only if for j 6= k, fpeα(j) − fpeα = (rssj −
rssk) + α(j − k)s2

K ≥ 0, that is, maxj>k Ak,j ≤ α ≤ minj<k Ak,j .

Let a1k = maxj>k Ak,j and a2k = minj<k Ak,j . Since

a1ki = max
j>ki

Fki(j) ≥ Aki,ki+1
= Fki+1

(ki) ≥ min
j<ki+1

Fki+1
(j) = a2ki+1

,

and there is no gap between the adjacent intervals [a1ki , a2ki ] and [a1ki+1
, a2ki+1

], we

have a1ki = a2ki+1
, and then a1ki = Aki,ki+1

= Fki+1
(ki) = a2ki+1

.

If α = Aki,ki+1
, α ∈ [a1ki , a2ki ] and α ∈ [a1ki+1

, a2ki+1
]. Hence fpeα can select

the two models Ski and Ski+1
.

Lemma 2.4. Under Assumption 2.2, there exist the following limits: (1) n−1X ′iε
a.s.−→

0, n−1µ′ε a.s.−→ 0, and n−1X(k)′µ a.s.−→ vk; (2) n−1µ′aµa
a.s.−→ v′k0

V −1
k0k0

vk0 , and n−1µ′eµe
a.s.−→

δ2, where δ2 = v2 − σ2 − v′k0V
−1
k0k0

vk0.

Proof of Lemma 2.4.

(1) Since Zn = n−1X ′iε ∼ N(0, σ2X ′iXi/n
2), and there exist N0 and σi such that

X ′iXi/n < σi
2 for n > N0, for any ε > 0

Pr{|Zn| > ε} =
∫
|z|>nε/σ‖Xi‖

1√
2π
e−z

2/2dz

≤
∫
|z|>
√
nε/σσi

1√
2π
e−z

2/2dz

≤
∫
|z|>
√
nε/σσi

1√
2π

2kk!
z2k

dz =
ck

nk−0.5 , (k ≥ 2).

Since
∑
n>N0

Pr{|Zn| > ε} < ∞, Zn
a.s.−→ 0. Similarly, n−1µ′ε a.s.−→ 0. Then

limn−1X(k)′µ = limn−1X(k)′(y − ε) = limn−1X(k)′y = vk, a.s.
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(2)

limn−1µ′aµa = limn−1µ′Hk0µ

= lim{n−1µ′X(k0)}{n−1X(k0)′X(k0)}−1{n−1X(k0)′µ}
= v′k0

V −1
k0k0

vk0 .

Since limn−1y′y = limn−1µ′µ+limn−1ε′ε, limn−1µ′µ = v2−σ2, and then limn−1µ′eµe =

limn−1µ′µ− limn−1µ′aµa = δ2.

Proof of Lemma 2.3.

By Hkµ = Hkµa, and Lemma 2.4,

∆2
k = limn−1‖ X(k0)β(k0)−X(k)β(k) ‖2

= limn−1‖ µa −Hkµ ‖2

= lim(n−1µ′aµa − n−1µ′Hkµ)

= v′k0
V −1
k0k0

vk0 − v
′
kV
−1
kk vk.

From
n−1me(β(k)) = n−1‖ µ−X(k)β(k) ‖2

= n−1(‖ µa −X(k)β(k) ‖2 + µ′eµe)

= n−1(‖ X(k0)β(k0)−X(k)β(k) ‖2 + µ′eµe),

and Lemma 2.4, n−1me(β(k))
a.s.−→ ∆2

k + δ2.

The second limit follows from Lemma 2.4 and

rss(β(k)) = me(β(k)) + 2µ′(I −Hk)ε+ ε′(I −Hk)ε.

If k < k0, by Assumption 2.1, ∆2
k > 0. If k ≥ k0, k ≥ k0 as n is large enough.

There exists S̃k ⊇ Sk0 and then ∆2
k(S̃k) = 0, where k(S̃k) = k. Since Sk is the best

one in the models of size k, rss(β(k)) ≤ rss(S̃k). From Lemma 2.3,

lim
n
n−1rss(β(k)) = ∆2

k + δ2 + σ2 ≤ lim
n
n−1rss(S̃k) = δ2 + σ2.

Hence ∆2
k = 0.

2.9.2 Proofs of Propositions

Proof of Proposition 2.1.
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Let snr(Sk) =‖ X(k0)β(k0)−X(k)β(k) ‖2 /σ2. Then

pe(Sk) = me(β(k)) + kσ2 + nσ2

= ‖ µa −X(k)β(k) ‖2 +µ′eµe + kσ2 + nσ2

= ‖ X(k0)β(k0)−X(k)β(k) ‖2 +kσ2 + µ′eµe + nσ2

= pe(Sk0) + {snr(Sk)− (k0 − k)}σ2.

(2.24)

For k > k0, pe(Sk) > pe(Sk0). So kpe ≤ k0.

If snr > 1, pe(Sk) > pe(Sk0) for k 6= k0. Hence kpe = k0 and pe(Skpe) =

pe(Sk0). From (2.24), snr(Skpe) = 0 and then

X(kpe)β(kpe) = X(k0)β(k0) = µa.

By Assumption , Skpe = Sk0 .

If snr < 1, From (2.24), there exists k1 < k0 such that pe(Sk1) < pe(Sk0). Hence

kpe 6= k0, and then kpe < k0. This completes the proof.

Proof of Proposition 2.3.

Consider the models S with κ(S) = k. From Lemma 2.3, as n→∞, the Sk mini-

mizing rss(S) almost surely approaches the model minimizing ∆k that is independent

of n.

Similarly, as n → ∞, the Sk minimizing rss(S) subject to κ(S) = k0 almost

surely approaches the model minimizing ∆k that is Sk0 . Hence Sk0 ∈ {Sk}.
For the fixed k < j, Sk and Sj are almost surely independent of the sample as n

is large enough. Since rssk ≥ rssj , rssk−rssj = y′(Hj−Hk)y ≥ 0 for each sample

y. So either Hjy = Hky or Hj −Hk ≥ 0 and then Sk ⊂ Sj .

2.9.3 Proofs of Theorems

Proof of Theorem 2.1.

Let n be large enough. Then from Proposition 2.3, Sk0 ∈ {Sk}. For j, k ≥ k0 > l,

from Lemma 2.3, Ak,j = o(n) and Ak,l = O(n). Hence Ak0,j < Ak0,l and

αk0,1 = max
j>k0

Ak0,j < αk0,2 = min
l<k0

Ak0,l.
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So from Lemma 2.1, the optimal model Sk0 can be always selected by the fpeα with

a proper α. We may divide [0,∞) into three intervals:

A− = [αk0,2, ∞),

A0 = [αk0,1, αk0,2),

A+ = [0, αk0,1).

From Lemma 2.1,

Pr{κ(α) < k0} = Pr{α ∈ A−},
Pr{κ(α) = k0} = Pr{α ∈ A0},
Pr{κ(α) > k0} = Pr{α ∈ A+}.

1) Let α <∞. Since Ak0,l = O(n) for l < k0, αk0,2 →∞. As n is large enough,

Pr{κ(α) < k0} = Pr{α ∈ A−} = 0,

Pr{κ(α) = k0} = Pr{α ∈ A0} = Pr{α ∈ [αk0,1, ∞)},
Pr{κ(α) > k0} = Pr{α ∈ A+} = Pr{α ∈ [0, αk0,1)}.

2) Let αn → ∞ and r < τ . Since limn−1αn = r < τ = lim minl<k0 n
−1Ak0,l,

there exists n0 such that for n > n0, αn < minl<k0 Ak0,l = αk0,2. Hence

Pr{κ(α) = k0} = Pr{α ∈ A0} = Pr{max
j>k0

Ak0,j ≤ αn}.

Since Pr{maxj>k0 Ak0,j ≤ αn}
asy.
= Pr{maxj>k0 Wk0,j

≤ αn(1 + δ2/σ2)}, where

Wk0,j
= (rssk0 − rssj)/σ

2(j − k0). From Proposition 2.3 and Lemma 2.2, as n is

large enough, for j > k0, either Wk0,j
= 0 or Wk0,j

∼ χ2
j−k0

/(j − k0). Hence from

αn →∞, we have

Pr{max
j>k0

Wk0,j
≤ αn(1 + δ2/σ2)} → 1,

and then Pr{κ(α) = k0} = 1.

3) Let r > τ . There exists n0 such that for n > n0, α > minl<k0 Ak0,l = αk0,2.

Hence

Pr{κ(α) < k0} = Pr{α ∈ A−} = Pr{min
l<k0

Ak0,l ≤ α} = 1.
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4) Let r = τ .

Pr{κ(α) > k0} = Pr{α ∈ A+} = Pr{α/n < αk0,1/n} = Pr{r <= 0} = 0.

Thus Pr{limκ(α) ≤ k0} = 1.
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Chapter 3

GIC WITH OVERFITTING LEVEL

A new model selection method using the generalized information criterion (gic) is

developed based on controlling the upper bound of the probability of selecting an

overfitting model. The main advantage of this method is that it has very good model

selection capability as well as being easy to implement. As in the case of the bic,

the new procedure is consistent with a proper choice of the overfitting level. The im-

provement in model selection over the bic is demonstrated in simulation studies. The

application of the gic is illustrated with logistic regression and subset autoregression.

3.1 Introduction

Model selection is an important topic in modern applied statistics (Hastie et al.,

2009, §7). We suggest using the generalized information criterion (gic) to automat-

ically select the best model from a set of candidate models. Many model selection

criteria have been derived based on a variety of principles such as minimizing final

prediction error (Akaike, 1969, 1970), minimizing mean squared model error (Mal-

lows, 1973), minimizing information loss (Akaike, 1974), and maximizing posterior

probability (Schwarz, 1978). Most of them may be considered as a special case of the

gic (Bhansali and Downham, 1977; Akaike, 1979; Shibata, 1984; Nishii, 1984; Shao,

1997; Zhang, 2009).

The gic with hypothesis testing for model selection was considered for linear

regression by Shao and Rao (2000). A model selection procedure was proposed by

controlling an upper bound of overfitting probability to a pre-assigned level (Shao

and Rao, 2000). This approach provides a computationally more efficient approach

than cross-validation. Previously, Shao (1993, 1997) showed that simple leave-one-

out and k-fold cross validation did not provide consistent model selection but that a

more computationally intensive approach using delete-d cross-validation was needed
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for asymptotic consistency. This approach was shown to provide more accurate model

selection in finite samples (Shao, 1993, 1997) in simulation experiments.

The hypothesis testing approach of Shao and Rao (2000) is not easily implemented

since the overfitting probability bound cannot be computed. As well, the suggested

approximation (Shao and Rao, 2000, eqn (2.6)) is very conservative because of re-

placing the true model with a model of size one. In this chapter, we propose an

alternative procedure by controlling the upper bound probability of selecting an over-

fitting model. The probability of selecting an overfitting model is different from the

overfitting probability considered by Shao and Rao (2000). Our approach is simpler

as well as more general.

3.2 Generalized Information Criterion

Let y = (y1, ..., yn) be a vector of responses and X = (X1, ..., Xd) be an n× d matrix

of inputs. Let S = {s1, ..., sk} be a subset of {1, 2, ..., d}, which represents a class of

models with size k. The model is specified by a distribution function fθ(S)(y|X(S)),

where θ(S) is a vector of parameters, andX(S) denotes the matrix formed by selecting

the columns corresponding to S from X. After the data is available, let L(θ(S)) =

fθ(S)(y|X(S)) be the likelihood function and θ̂(S) its maximum likelihood estimate.

We consider the problem of selecting the best model from a set of candidate models

denoted by {Sk, k = 1, . . . , K}, where Sk is the model of size k that has the maximum

likelihood in the class of models with size k. Assume that the sizes of the candidate

models are unique and L(θ̂(Sk)) < L(θ̂(Sk+1)). If the model sizes are not unique,

we keep the model having the maximum likelihood and remove others for each size.

Hence, selecting a model is equivalent to selecting the model size.

The best model is selected by the minimum value of some selection criterion. A

widely used criterion is the generalized information criterion (Akaike, 1979; Nishii,

1984),

gicα = −2 logL(θ̂(Sk)) + αk. (3.1)

When α is constant, the gicα was called aicα (Akaike, 1979; Bhansali, 1986), in

which the α was introduced to balance the effects of the bias and variance of the

parameter estimate. The gicα is called aic-type if α is bounded and bic-type if

α→∞ as n→∞. The consistent property of bic is shared by the bic-type criterion

satisfying α→∞ and α/n→ 0 as n→∞ (Shao, 1997; Yang, 2005).

36



3.3 Procedure by Controlling Overfitting

Before giving the model selection procedure that is based on controlling the proba-

bility of selecting an overfit model, we analyze the constraints on the α under which

the gicα can select a specified model. The gicα selects model Sk if and only if for

j 6= k,

−2{logL(θ̂(Sj))− logL(θ̂(Sk))}+ α(j − k) ≥ 0.

Equivalently, for j > k,

α ≥ 2{logL(θ̂(Sj))− logL(θ̂(Sk))}/(j − k),

and for j < k,

α ≤ 2{logL(θ̂(Sj))− logL(θ̂(Sk))}/(j − k).

Hence, the following proposition holds.

Proposition 3.1. gicα selects the model Sk if and only if αk,1 ≤ α ≤ αk,2, where

αk,1 = max
j>k

2{logL(θ̂(Sj))− logL(θ̂(Sk))}/(j − k),

αk,2 = min
j<k

2{logL(θ̂(Sj))− logL(θ̂(Sk))}/(j − k).

Here we define αK,1 = 0 and α1,2 = ∞. Proposition 3.1 gives all of the possible

models that can be selected by the gicα. The inequality condition αk,1 ≤ αk,2 may

not hold for some k and in this case, the model Sk cannot be selected.

3.3.1 Hypotheses

Assume that the true model Sk0 is in the candidate models and Sk0 ⊂ Sl for k0 < l.

Let κ(gicα) be the model size selected by gicα and κ(gicα) < K. We consider the

following hypotheses for testing overfitting

H0 : κ(gicα) > k0,

H1 : κ(gicα) ≤ k0.
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Let k = κ(gicα). Let S̃k−1 and S̃k+1 be the models of size k−1 and k+1, respectively,

and satisfy S̃k−1 ⊂ Sk ⊂ S̃k+1. If the candidate models are nested, S̃k−1 = Sk−1
and S̃k = Sk.

Under H0, Sk0 ⊆ S̃k−1 ⊂ Sk ⊂ S̃k+1, and then asymptotically

Ak,1 = 2{logL(θ̂(S̃k+1))− logL(θ̂(Sk))} ∼ χ2
1,

Ak,2 = 2{logL(θ̂(Sk))− logL(θ̂(S̃k−1))} ∼ χ2
1,

where χ2
1 denotes the χ2 distribution with one degree of freedom. Furthermore, by

Cochran’s theorem (Rao, 1973), Ak,1 and Ak,2 are independent because Ak,1+Ak,2 =

2{logL(θ̂(S̃k+1))− logL(θ̂(S̃k−1))} ∼ χ2
2 asymptotically.

Under H1, similarly, if κ(gicα) = k0, asymptotically Ak0,1 ∼ χ2
1 and Ak0,2 ∼ χ2

1,v
are independent, where χ2

1,v denotes the χ2 distribution with one degree of freedom

and with non-centrality parameter v. It is seen that v = E{Ak0,2|k = k0} − 1. So v

increases with sample size, n.

3.3.2 Probability of Selecting a Model

Provided α > 0, there is asymptotically zero probability of underfitting. In this

section, we obtain upper bounds for the probability of selecting the correct model

and also for selecting an overparameterized model.

Let κ(gicα) be the model size selected by gicα. From Proposition 3.1, the prob-

ability of selecting the model Sk by gicα is

Pr{κ(gicα) = k} = Pr{αk,1 ≤ α ≤ αk,2}.

Under the null hypothesis H0, Ak1 ≤ αk,1 ≤ αk,2 ≤ Ak2, and Ak1 ∼ χ2
1 and Ak2 ∼ χ2

1
are independent. Hence the probability of selecting an overfitted model by gicα is

asymptotically bounded by,

Pr{κ(gicα) = k | k > k0} ≤ Pr{Ak1 ≤ α ≤ Ak2}
= Pr{χ2

1 ≤ α}(1− Pr{χ2
1 ≤ α})

= p.

(3.2)
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Similarly, the probability of selecting the true model by gicα is asymptotically

bounded by

Pr{κ(gicα) = k0} ≤ Pr{Ak01 ≤ α ≤ Ak02}
= Pr{χ2

1 ≤ α}(1− Pr{χ2
1,v ≤ α})

= p0.

(3.3)

The upper bound, p, of the probability of selecting an overfitted model by gicα,

is plotted in Figure 3.1.
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Figure 3.1: Upper bound probability, p, of selecting an overfitted model. The aic cor-
responds to α = 2 in which case the upper bound of the probability of selecting an
overfitted model is about 13%. The maximum, p = 0.25, occurs at α = 0.455.

The upper bound probabilities, p0, from (3.3) are shown in Figure 3.2 for v =

5, 10, 20, 40. As v, or equivalently n, increases, p0 increases.

The upper bound defined in Shao and Rao (2000, p. 217) may be written in our

notation as the upper bound of the probability, Pr{κ(gicα) > k0}.
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Figure 3.2: Upper bound probability, p0, of selecting the true model with v =
5, 10, 20, 40.

3.3.3 Procedure

From (3.2) and Figure 3.1, the maximum probability of selecting an overfitted model

occurs when p = 0.25 and α = 0.455. Moreover, from (3.3) and Figure 3.2, if

α ≤ 0.455, p0 ≤ Pr{χ2
1 ≤ α} ≤ 0.5. We may stipulate that the probability of

selecting a true model is greater than 0.5 and take α > 0.455. Then from (3.2), with

0 ≤ p ≤ 0.25, Pr{χ2
1 ≤ α} = (1 +

√
1− 4p)/2. Let p̃ = (1 +

√
1− 4p)/2. Setting αp,

αp = χ2
1(p̃), (3.4)

which is the quantile for a χ2
1 distribution, that is, Pr{χ2

1 ≤ αp} = p̃, defines the new

procedure for selecting α. This procedure is denoted by gic. In most cases, we may

select p ∈ [0.01, 0.1]. In the next section, we will show that to achieve consistency we

need p→ 0 as n→ 0. In practice, it is helpful to choose p small for larger n and also

when the model space is large and most independent variables are not needed.
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3.3.4 Consistent Procedure

From (3.3), the probability of selecting the true model by the gic,

Pr{κ(gic) = k0} ≤ Pr{χ2
1 ≤ αp} = (1 +

√
1− 4p)/2.

So for a given constant p, the gic, procedure (3.4), is inconsistent. Let

pn = Pr{χ2
1 ≤ log n}(1− Pr{χ2

1 ≤ log n}), (3.5)

be the overfitting level instead of a fixed p, then αp = log n, and the gic is the same

as the usual bic (Schwarz, 1978) and is consistent.

We may set the overfitting level less than a given level p. Setting,

p1,n = min{p, 1/
√
n}, (3.6)

and

p2,n = min{p, pn}. (3.7)

Then n ≤ 1/p2 and we obtain, p1,n = p, for the upper level as in Shao and Rao

(2000). When n > ea, where a is the 1− p quantile of χ2
1, p2,n = pn, the level for the

bic . Setting p = pi,n, i = 1 and 2, the gic is consistent.

There are other settings for the overfitting level that provide asymptotic consis-

tency. We propose a setting of overfitting level such that the level is close to a given

level p if the sample size is not large and other letting the level approach pn in (3.5)

as n gets larger. Whether the sample size is large or not is related to the ratio of

n and K, the full model size. Roughly if n/K > r0, where r0 ≥ 2, the sample size

would be large. Let c = 1/(1 + e−2(n/K−r0)), and define the third rule,

p3,n = (1− c)p+ c{n/(n+ 50)}p2,n. (3.8)

Then gic is consistent because p3,n − pn → 0 as n→∞.

The three significant levels pi,n, i = 1, 2 and 3 are plotted in Figure 3.3. It is seen

that as n increases, p2,n and p3,n decrease at a faster rate than p1,n. When n/K is

smaller, p3,n is close to the upper level p. When n/K is larger, p3,n approaches p2,n.
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Figure 3.3: Three overfitting levels: p1,n (p1), p2,n (p2), p3,n (p3).

3.4 Simulations

3.4.1 Linear Regression with Overfitting Level p = 0.01

Consider the linear regression with K = 5 and n = 40,

yi = β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4 + β5xi,5 + ei, i = 1, . . . , 40,

where ei are independent and identically distributed as N(0, 1), xi,1 = 1, and xi,k, k =

2, . . . , 5, are specified in Shao (1993). The true values of β are shown in Table 3.1. We

compare the performance of aic, bic, and gic by measuring the percentage number

of underfit, overfit and correct models, and the model error, ‖ Xβ − X(S)β̂(S) ‖2.

The overfitting level p = 0.01 is used for gic . We simulated 104 times for each

parameter setting. The simulation results are shown in Table 3.1. It is seen that the

gic outperforms the aic and bic.

Table 3.1: Percentage number of underfitted models (u), correct models (c), and
overfitted models (o), and true model error from 104 simulations for each parameter
setting.

true β procedure u c o model error
(2, 0, 0, 4, 0) aic 0 57 43 3.82

bic 0 82 18 2.98
gic 0 96 4 2.31

(2, 0, 0, 4, 8) aic 0 68 32 4.21
bic 0 87 13 3.67
gic 0 97 3 3.23
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3.4.2 Comparison of Four Rules

There are four rules of setting the overfitting level p in our GIC procedure defined

in (3.4). Using a constant, p ∈ [0.01, 0.1], does not produce a consistent or asymp-

totically correct model choice but may nevertheless be useful in some applications.

Some consistent model selection rules, p1,n, p2,n and p3,n, were given in (3.6), (3.7)

and (3.8) respectively.

To compare the performance of these rules, we consider the linear model, as in

Tibshirani (1996), y = Xβ + e, with β = (3, 1.5, 0, 0, 2, 0, 0, 0). The components of

X and e are standard normal. The correlation between Xi and Xj is ρ|i−j| with

ρ = 0.5. The true model size k0 = 3. The full model size K = 8. Let σ = 1, and

n = 20, 60, 100.

For each parameter setting, 104 simulations were done. The total number of

the underfitted models, the true models, and the overfitted models selected by the

gic with the rules, p1,n, p2,n and p3,n and a fourth rule, simply taking p = 0.05,

was determined and the percentages are shown in Table 3.2. The standard deviation

of each percentage can be calculated by the usual formula for proportions. The

maximum standard deviation is 0.0032. The r0 = 5 in the p3,n-rule. For n = 20, the

performance is the same with all four rules but p3,n outperforms others when n = 60

and n = 100.

Table 3.2: Percentage number of underfitted models (u), correct models (c), and
overfitted models (ok: k more variables) from 104 simulations. Comparison of p =
0.05 and rules p1,n, p2,n and p3,n in eqns. (3.6), (3.7) and (3.8).

n gic u c o1 o2 o3 o4
20 p 1 62 25 9 2 1

p1,n 1 62 25 9 2 1
p2,n 1 62 25 9 2 1
p3,n 1 62 25 9 2 1

60 p 0 74 21 4 0 0
p1,n 0 74 21 4 0 0
p2,n 0 77 19 3 0 0
p3,n 0 87 12 1 0 0

100 p 0 76 20 3 0 0
p1,n 0 76 20 3 0 0
p2,n 0 84 14 2 0 0
p3,n 0 89 10 1 0 0
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3.4.3 Subset Autoregression

The ar (1) model, zt = µ + φ(zt−1 − µ) + at, t = 1, . . . , n, where at is assumed

independent normal with mean zero and variance σ2
a. The model error, me, was

computed for best subset selection with up toK = 10 lags for subset autoregressions of

the form, zt = µ+φi1(zt−i1−µ)+. . .+φip(zt−ip−µ)+at, where i1, . . . , ip ∈ {1, . . . , 10}
using aic , bic and gic. With the gic the overfitting level was set to p = 0.01. Denote

the resulting estimates by φ̂i1 , . . . , φ̂ip . Then the corresponding observed model error

may be written

me (ϕ̂) = (ϕ̂− ϕ)′I−1(ϕ̂− ϕ)/n,

where ϕ̂ = (ϕ̂1, . . . , ϕ̂10)′, ϕ = (φ, 0, . . . , 0)′,

ϕ̂i =

{
φ̂i i ∈ i1, . . . , ip
0 otherwise

ϕi =

{
φ i = 1

0 otherwise

and I = 1
1−φ2 (φ|i−j|)10×10 is the Fisher information matrix. The relative model

error is the ratio me (ϕ̂)/me (φ̂), where φ̂ denotes the estimates in the full ar (K)

model. For each parameter combination, 104 simulations were done. In Figure 3.4,

the relative model errors are shown for the bic and bicq. The aic was omitted

because the model error was very large. Only φ = 0, 0.3, 0.6, 0.9 are shown since the

results for other values are similar.

3.5 Illustrative Applications

3.5.1 South Africa Heart Disease Data

The data are described in Hastie et al. (2009, §4.4.2). The aim of the study was

to establish the importance of ischemic heart disease risk factors. The response is

a binary variable indicating the presence or absence of disease in 462 South African

men. There are 9 predictors. The logistic regression model is used to fit the dataset.

The aic, bic, and gic with p = 0.01 select the same model that has the five variables

tobacco, ldl, famhist, typea and age. Each of the selected variables is significant.

If p = 0.20, the gic selects a model with one more variable than the above, but the

extra variable is not statistically significant at 10%. In this case, as expected, the

selected model would be overfitting because p = 0.20 is set too high.

44



Relative model error in percent

5 10 15 20

0
200

0.3
200

5 10 15 20

0.6
200

0.9
200

0
400

5 10 15 20

0.3
400

0.6
400

5 10 15 20

0.9
400

BIC GIC

Figure 3.4: Relative model error in percent for AR(1) with K = 10 for series lengths
n = 200, 400 and parameter setting φ = 0, 0.3, 0.6, 0.9. gic selection with p = 0.01.

3.5.2 Lynx Time Series

The lynx time series is derived from annual lynx population estimates from 1821−1934

in Canada and is discussed by Tong (1977) as well as many other researchers in time

series. Tong (1977) fit a subset autoregression using the bic and obtained the model

with lags 1, 2, 4, 10, 11. Using our package (McLeod et al., 2010) withK = 15 and with

p = 0.01 for the gic, we obtained the results shown in Table 3.3. Model diagnostic

checks, including the portmanteau test and residual autocorrelation plot, indicate

that the more parsimonious model that was selected using the gic is adequate.

Table 3.3: Lags in subset autoregression selected by various information criterion
aic 1 2 3 4 9 10 11
bic 1 2 4 10 11
gic 1 2 9 12

3.6 Conclusions

The generalized information criterion, gicα, includes a penalty parameter α. The

performance relies on the choice of the α. The approximate efficiency (Shibata,
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1984), bootstrap (Rao, 1999), and hypothesis testing (Shao and Rao, 2000) were

introduced to choose the penalty parameter. We proposed a procedure by controlling

the overfitting level, p. The procedure is consistent by controlling the overfitting level

to be closer to zero. This method is computationally efficient as well as producing

better model selection.

The essential difference between our method and that proposed by Shao and Rao

(2000) is that we choose the penalty parameter α by controlling the probability of

selecting an overfitting model, Pr{κ(gicα) = k | k > k0}, instead of the overfitting

probability, Pr{κ(gicα) > k0}, considered by Shao and Rao (2000). Our approach

is simpler and has been implemented in our software packages for generalized linear

models (McLeod and Xu, 2010) and subset autoregression (McLeod et al., 2010).

Some illustrative applications are given in §3.5 and more are available in the docu-

mentation in our software packages.
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Chapter 4

FAMILY OF BAYESIAN INFORMATION CRITERIA

The family of Bayesian information criteria using the Bernoulli prior, bicq, with

parameter q ∈ (0, 1), is discussed. The bicq is an effective criterion for many types of

Bayesian model selection problems. We establish some new theorems that elucidate

the behavior of the bicq and suggest its suitability for large model spaces as well as

many other kinds of model selection problems. Simulation studies are presented that

demonstrate that the bicq is more effective than the usual bic in many situations.

Several interesting applications are also examined. The bicq is implemented in our

packages for the subset selection in the generalized linear model (McLeod and Xu,

2010) as well as for autoregressive models (McLeod et al., 2010). Scripts are provided

in the vignettes accompanying these packages for reproducing all figures and tables

in this chapter.

4.1 Introduction

Let y = (y1, ..., yn) be a vector of responses and X = (X1, ..., Xd) be an n× d matrix

of inputs. Let Sk = {s1, ..., sk} be a subset of {1, 2, ..., d}, which represents a class of

models with size k. The model is specified by a distribution function fθ(Sk)(y|X(Sk)),

where θ(Sk) is a vector of the parameters, and X(Sk) denotes the matrix formed

by selecting the columns corresponding to Sk from X. After the data is available,

let L(θ(Sk)) = fθ(Sk)(y|X(Sk)) be the likelihood function and θ̂(Sk) the maximum

likelihood estimate.

We consider model selection using Bayesian information criterion with a Bernoulli

prior. A general family of Bayesian information criteria (Hansen and Yu, 2001; Ris-

sanen, 2007) may be written,

−2 logL(θ̂(Sk)) + k log n− 2 log p(Sk),
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where p(Sk) is a prior probability of the model determined by Sk and k = κ(Sk)

is the model size. Assuming that p(Sk) is a constant, Schwarz (1978) obtained the

widely used (Hastie et al., 2009, §7.7) bic criterion,

bic = −2 logL(θ̂(Sk)) + k log n.

(George and Foster, 2000, eqn (6)) suggested using a Bernoulli prior with parameter

q ∈ (0, 1). In this formulation q is the probability that each parameter appears in the

model. This implies that the prior may be written as p(Sk) = qk(1 − q)K−k, where

K is the maximum model size. Hence, dropping the constant term involving K,

bicq = −2 logL(θ̂(Sk)) + k log n− 2k log[q/(1− q)].

Computationally, it is convenient to denote the value of bicq for a specified value of

q, q = q0, by bic(q = q0) and to extend the definition so that q = 0 corresponds to

the null model with no parameters selected and q = 1 corresponds to the full model.1

When q = 0.5, the bicq is same as bic and more generally the bicq shares the

consistency property of the bic, that is, provided the correct model is included in the

possible candidate models, and q is held fixed as n −→∞, the correct model will be

chosen with probability one (Shao, 1997; Yang, 2005).

In the next sections, we will show that the bicq provides a more general and flexible

Bayes information criterion than the extended Bayesian information criterion, bicγ

(Chen and Chen, 2008).

4.2 Properties

4.2.1 BICq More General Than BICγ

The extended Bayesian information criterion suggested by Chen and Chen (2008)

may be written as

bicγ = −2logL(θ̂(Sk)) + k log n+ 2γ log C(K, k),

1. Note that in variable selection problems in regression, the intercept term is usually
included in all models, so it is not counted as a parameter and in this case, the null model
corresponds to the model with only an intercept term.
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where 0 ≤ γ ≤ 1 and C(K, k) denotes the number of combinations, K choose k. This

criterion was derived for large model spaces since in this case, it may be thought

that all models having the same size, k, should be equally likely. Specifically, Chen

and Chen (2008) suggested the prior, p(Sk) ∝ [C(K, k)]−γ . When γ = 1, all models

having the same size are assumed equally likely and when γ = 0, it reduces to the

usual bic. Regardless of the value of γ, the prior specifies that average model size is

E{κ(Sk)} = K/2. The parameter γ in the bicγ was introduced in an ad hoc fashion

and has no useful interpretation unlike q in the bicq.

On the other hand, for the bicq, E{κ(Sk)} = qK. So for the large model space

problem where K is large and not many parameters are expected in the final model,

q < 1/2, seems more reasonable than the assumption, implicit in the bicγ , that the

average number of parameters is K/2. By varying q, the bicq is suitable for a wide

range of statistical problems such as in prediction or smoothing. In Theorem 4.3 we

show that bicq provides a more general criterion than the bicγ .

Let κ(bic), κ(bicq), and κ(bicγ) denote the size of the model selected by the bic,

bicq, or bicγ respectively.

The following lemma is useful for the proofs of Theorems.

Lemma 4.1. Let ci(k), i = 1, 2, be two criteria. Let κ(ci) denote the model size

selected by ci(k). Define ∆(k) = c2(k)−c1(k). Then κ(c1) ≥ κ(c2) if ∆(k) increases

and κ(c1) ≤ κ(c2) if ∆(k) decreases.

Proof. We prove the first part. The second part is only the converse of the first.

Assume that ∆(k) increases. Let ki = κ(ci). Then ci(k) ≥ ci(ki) for all k. For

k > k1, we have ∆(k) > ∆(k1) and c1(k) ≥ c1(k1). Thus

c2(k) = c1(k) + ∆(k) > c1(k1) + ∆(k1) = c2(k1).

So k2 cannot be greater than k1, that is, k2 ≤ k1.

Let q1 < q2 and ki = κ(bicqi). Then

∆(k) = bicq2 − bicq1 = 2k log q1(1− q2)/{q2(1− q1)},

decreases. From Lemma 4.1 we have k1 ≤ k2. Hence, increasing q causes the number

of parameters selected to increase or to stay the same.
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Theorem 4.1. For each γ ∈ [0, 1], there exists q = qγ such that κ(bicq) = κ(bicγ).

Let kγ = κ(bicγ). Then

qγ =

{
1/[1 + {(K − kγ)/(kγ + 1)}γ ], kγ < K

1/(1 + 1/Kγ), kγ = K.

Proof. Let 0 ≤ γ ≤ 1, kγ = κ(bicγ), and

∆(k) = bicq(k)− bicγ(k) = −2 log{qk(1− q)−kC(K, k)γ}.

If kγ < K, qγ is determined from the equation,

∆(k + 1)−∆(k) = −2 log{(K − k)/(k + 1)}γq/(1− q) = 0,

by letting k = kγ , that is,

qγ = [1 + {(K − κγ)/(κγ + 1)}γ ]−1.

If κγ = K, let qγ = {1/(1 +K−γ)}−1.

Let q = qγ . Then kγ is the minimum point of ∆(k). The ∆(k) decreases if k < kγ

and increases if k > kγ . Hence from Lemma 4.1, the bicq(k) has the minimum at kγ .

That is, κ(bicq) = κ(bicγ) = kγ .

Theorem 4.1 shows that the model selected by the bicγ can also be selected using

the bicq.

Theorem 4.2. Let 0 ≤ γ1 < γ2 ≤ 1, and assume that bicγ has a unique minimum.

Then if κ(bic) < K/2, κ(bicγ2) ≤ κ(bicγ1) ≤ κ(bic), otherwise if κ(bic) > K/2,

κ(bicγ2) ≥ κ(bicγ1) ≥ κ(bic).

Proof. Let ki = κ(bicγi) and K0 = K/2. Assume that γ1 < γ2. Then

∆(k) = bicγ2(k)− bicγ1(k) = 2(γ2 − γ1) log C(K, k),

increases for k < K0 and decreases for k > K0. Since bicγi(k) has a unique minimum,

the bicγi(k) decreases for k < ki and increases for k > ki.

Suppose that k1 < K0. Let k1 < k < K0. Then bicγ1(k1) < bicγ1(k) <

bicγ1(K0), and ∆(k1) < ∆(k) < ∆(K0). From bicγ2(k) = bicγ1(k) + ∆(k),
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bicγ2(k1) < bicγ2(k) < bicγ2(K0). Hence the minimum of bicγ2(k) should be

no more than k1, that is, k2 ≤ k1 < K0.

Similarly, if k1 > K0, for K0 < k < k1, we have bicγ1(K0) > bicγ1(k) >

bicγ1(k1) and ∆(K0) > ∆(k) > ∆(k1), and then bicγ2(K0) > bicγ2(k) > bicγ2(k1).

Hence the minimum of bicγ2(k) should be no less than k1, that is, k2 ≥ k1 > K0.

Let γ0 = 0. κ(bicγ0) = κ(bic). Hence if κ(bicγ0) < K0, κ(bicγ2) ≤ κ(bicγ1) ≤
κ(bic). And if κ(bicγ0) > K0, κ(bicγ2) ≥ κ(bicγ1) ≥ κ(bic).

Theorem 4.2 shows that as γ increases, the number of parameters selected in

the model may increase or decrease depending on K and the number of parameters

selected using the bic.

Theorem 4.3. bicq provides a more general criterion than bicγ.

Proof. From Theorem 4.2, the selected model size by bicγ is either less or greater

than that by bic. Assume that κ(bic) < K/2. Then for each γ ∈ [0, 1], κ(bicγ) ≤
κ(bic) < K/2. If q is close to 1, κ(bicq) approaches K. So there may exist q ∈ (0, 1)

such that for all γ ∈ [0, 1], κ(bicq) 6= κ(bicγ). Hence there may be some cases

where the bicγ cannot select a model that can be selected using the bicq. And

from Theorem 4.1, any model selected using the bicγ may also be selected using the

bicq.

4.2.2 Tuning Parameter

The performance of the bicq relies on the tuning parameter q. The Bernoulli prior

specifies that the average model size is E{κ(Sk)} = qK. For many screening or subset

selection problems, especially when K is large, we have found that q = 0.25 works

well. For most problems this produces a model that is more parsimonious than a

model selected using the bic.

As is common practice in time series model building (Box et al., 2005, §1.3.2),

an iterative model building approach involving initial model selection followed by

diagnostic checking, refitting and rechecking is recommended. Adopting this approach

with the bicq, we may start with q = 0.25 to determine an initial model. After suitable

diagnostic checks, if it is found that the model is inadequate, a larger value of q may

be tried. Or if a more parsimonious model is required, we may refit using a smaller

value of q.
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Alternatively, as suggested by George and Foster (2000), cross-validation could

be used. Another possibility would be to use bootstrapping to choose the value of q

to minimize the prediction error. Both these approaches are non-Bayesian as well as

more laborious than needed in some cases. If the cross-validation or bootstrapping

approach is used, it would seem more natural to consider the generalized Akaike

information criterion (Bhansali and Downham, 1977; Akaike, 1979),

aicα(k) = −2 logL(θ̂(Sk)) + αk,

where α is a tuning parameter. It may be shown that aicα and bicq are equivalent2

in the sense that taking α = log n − 2 log q/(1 − q), the aicα will then select the

same model as the bicq and similarly for any model chosen using the aicα, taking

q = 1/(eα/2/
√
n+ 1), will result in the same model being chosen using the bicq.

In some problems, such as spectral density function estimation by autoregression,

the cost function may not be evident and so neither cross-validation or bootstrapping

is likely to be useful. The iterative model building approach may be adequate in

many situations.

4.3 Simulation Experiments

The simulations reported in this section suggest that often the bicq with q = 0.25

will outperform the bic.

4.3.1 Linear Regression

We consider the following linear model

yi = xTi (S)β(S) + εi, i = 1, . . . , n,

where S is a subset of {1, ..., K}, and εi are independent and identically distributed

as N(0, σ2). The K covariates are generated from the multinormal distribution,

N(0,Σ) with Σii = 1 and Σij = 0.2 for i 6= j. The model was examined in Chen and

Chen (2008). Let b0 = (0.7, 0.9, 0.4, 0.3, 1.0, 0.2, 0.2, 0.1) be a vector of length 8. The

2. Note that if q is allowed to depend on n, the bicq would lose the consistency property.
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following two models are examined: (1) β(S) = b0, and (2) β(S) = (b0, b0). In this

example K = 20, n = 200 and σ = 0.2.

We compare the performance of aic, bic, and bicq with q = 0.25 by measuring

the number of underfitted, overfitted and correct models, and the model error (me),

‖ Xβ − X(S)β̂(S) ‖2. We simulated 100 times for each parameter setting. The

simulation results are shown in Table 4.1. It is seen that the bicq outperforms the

aic and bic.

Table 4.1: The number of underfit, overfit and correct models, and the model error
True β(S) procedure overfit underfit correct me
β0 aic 86 0 14 0.574

bic 21 0 79 0.382
bicq 9 0 91 0.345

(β0, β0) aic 59 0 41 0.709
bic 11 0 89 0.637
bicq 6 0 94 0.625

4.3.2 Subset Autoregression AR(1)

The model error, me, was computed for best subset selection with up to K = 10 lags

for subset autoregressions of the form, zt = µ+φi1(zt−i1−µ)+. . .+φip(zt−ip−µ)+at,

where i1, . . . , ip ∈ {1, . . . , 10} using aic , bic and bicq. For the bicq, q = 0.25. The

underlying model was an ar (1) model, zt = µ+φ(zt−1−µ)+at, t = 1, . . . , n, where at

is assumed independent normal with mean zero and variance σ2
a. Denote the resulting

estimates by φ̂i1 , . . . , φ̂ip . Then the corresponding observed model error may be

written me (ϕ̂) = (ϕ̂−ϕ)′I−1(ϕ̂−ϕ)/n, where ϕ̂ = (ϕ̂1, . . . , ϕ̂10)′, ϕ = (φ, 0, . . . , 0)′,

ϕ̂i =

{
φ̂i i ∈ i1, . . . , ip
0 otherwise

ϕi =

{
φ i = 1

0 otherwise

and I = 1
1−φ2 (φ|i−j|)10×10 is the Fisher information matrix. The relative model

error is the ratio me (ϕ̂)/me (φ̂), where φ̂ denotes the estimates in the full ar (K)

model. For each parameter combination, 104 simulations were done. In Figure 4.1,

the relative model errors are shown for the bic and bicq. The aic was omitted

because it was very large. Only φ = 0, 0.3, 0.6, 0.9 are shown since the results for

other values are similar.
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Figure 4.1: Relative model error in percent for AR(1) with K = 10 for series lengths
n = 200, 400 and parameter setting φ = 0, 0.3, 0.6, 0.9. bic(q = 0.25).

4.3.3 Subset Autoregression AR(4)

The autoregressive process of order 4, zt = µ+ φ1(zt−1 − µ) . . .+ φ4(zt−4 − µ) + at,

t = 1, . . . , n, with φ1 = 2.7607, φ2 = −3.8106, φ3 = 2.6535, and φ4 = −0.9238 has

been widely used as an example of a time series whose time series has two peaks

in the spectral density that are close together (Percival and Walden, 1993, p. 42).

In our simulations, it is assumed that at is Gaussian white noise with mean zero,

unit variance and that µ = 0. The method given in McLeod et al. (2010) was

used to fit a subset autoregression with maximum order K = 30 with the bic and

bicq with q = 0.25. The empirical probability based on 104 simulations of including a

parameter at lag k was determined. For k = 1, 2, 3, 4 it was found that this probability

was exactly one. For k > 4 the lower this probability, the better the performance

of the selection criterion. In the oracle case, corresponding to perfect selection, this

probability is zero. From Figure 4.2, it is seen that the bicq with q = 0.25 decisively

outperforms the bic.
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Figure 4.2: The empirical probability of including lag k in a subset autoregression
with K = 30 based on 104 simulations of an AR(4) time series. The dotted line shows
the conservative estimate of a 95% margin of error.

4.4 Illustrative Applications

The applications discussed also suggest than the bicq may be preferable in many

situations.

4.4.1 Hospital Manpower Data

This dataset, taken from Myers (1990, Table 3.8), has 5 inputs x1, x2, x3, x4, and x5.

The aic and bic both select a model with three inputs. But one of these inputs is

not even significant at the 5% level and it has a negative regression coefficient while

a positive one was anticipated. Using the bicq with q = 0.25 results in a model

with only two inputs and both of them are highly significant and have the correct

signs. This model was also recommended by Myers (1990, p. 292). This example

also provides an illustration of Theorem 4.3 since using the bicγ with all values of

γ ∈ [0, 1], a model with three or more inputs is always selected.
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4.4.2 Monthly Sunspot Series 1749− 1997

This series, sunspot.month of length n = 2988, is included in the built-in datasets in

R (R Development Core Team, 2010). Subset autoregressions were fit to this series

using the bicq with q = 0.5 and q = 0.25 and the resulting estimates of the spectral

density function are shown in Figure 4.3. The bicq with q = 0.5 is the bic. The plot

with q = 0.25 is smoother and is preferred over the more noisy plot with q = 0.5.
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Figure 4.3: Estimated log spectral density function estimated by fitting a subset
autoregression using bicq with q = 0.5 and q = 0.25.

4.4.3 Long Autoregressions

In time series prediction problems, model parsimony is a well-established principle

(Granger and Jeon, 2004; McLeod, 1993) but as noted by Hastie et al. (2009, §7.7) the

bic may chose models which are too parsimonious in some applications. For example,

often a sufficiently long autoregression is needed to capture the salient aspects of the

time series in selecting the model order for autoregressive spectral density estimation

and for estimating the inverse autocorrelations. In these problems we may use the

bicq with q > 1/2.

In this order selection problem, we need to choose p in the ar(p) model, zt =

ζ + φ1zt−1 + ...+ φpzt−p + at, where t = 1, . . . , n, at is assumed independent normal
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with mean zero and constant variance, φ1, . . . , φp are the autoregressive coefficients,

and ζ is the intercept term. The autoregressive parameters are assumed to satisfy

the condition for stationarity (Box et al., 2005, §3.1.3).

For autoregressive estimation of the spectral density function a sufficiently long

autoregression is needed to capture the peaks in the spectral density with precision

(Percival and Walden, 1993, Ch. 9). In these applications the usual bic does not

produce satisfactory estimates. Percival and Walden (1993, Ch. 9) use the final pre-

diction error criterion (fpe) for choosing the order of the autoregression for spectral

density estimation. The fpe is essentially equivalent to the aic. Kay (1988, Ch 9.5)

also uses the aic for autoregressive spectral density estimation.

Similarly, when using autoregression to estimate the inverse autocorrelations, a

sufficiently high order is needed (Chatfield, 1979, §4) and (Hipel and McLeod, 1994,

§5.3.6).

In all of these applications, the bicq may be used in place of the aic. In Section

5.5, we note that the bicq is capable of choosing any model that may be chosen using

the aic or even the more general generalized aic.

In Table 4.2, we compare the model order p that is selected for some time series

that exhibit periodicity. Each of the time series is available in R and the reader

may wish to read the documentation supplied for more information. Several of the

series are of particular interest. For autoregressive spectral density estimation of the

Willamette series, Percival and Walden (1993, p. 520) recommended using either

p = 27 or p = 38 for the logarithms of the series based on the final prediction

error criterion. Cleveland (1972) used p = 7 or p = 10 for estimation of the inverse

autocorrelations to SeriesA.

Table 4.2: The table shows p, the order selected for fitting an ar(p) to some time
series with peak spectra of various lengths, n. The series Willamette and SeriesA are
available in the R package FitAR (McLeod et al., 2010) and lynx and sunspot.year

are included in the base distribution of R (R Development Core Team, 2010). The
series sunspot.year are the mean annual sunspot numbers for the period 1700−1988.

Name n aic bic q=0.75 q=0.8 q=0.85 q=0.9 q=0.95
Willamette 395 38 11 11 11 23 34 34
SeriesA 197 7 2 2 2 7 14 15
lynx 114 11 2 11 11 11 11 11
sunspot.year 289 9 9 9 9 9 22 24
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4.5 Concluding Remarks

By using the tuning parameter q ∈ (0, 1), the bicq provides a more flexible Bayesian

information criterion than either the bic or bicγ . The bicq may be used for large

model spaces, prediction or smoothing problems. With q < 1
2 more smoothing3 is

done than with the usual bic. If less smoothing is desirable, q > 1
2 may be used.

There are other approaches to Bayesian model selection that may be preferable

in some situations (Robert, 2007, §7).

3. More smoothing corresponds to fewer estimated parameters.
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Chapter 5

GIC FOR HIGH DIMENSIONAL MODEL SELECTION

Penalized maximum likelihood estimation was proposed for high dimensional variable

selection. The performance of penalized likelihood method relies on the choice of reg-

ularization parameter. We consider the generalized information criterion for choosing

the regularization parameter. We derive the conditions under which the criterion

is overfitting, consistent, or underfitting. Our results are illustrated by simulation

examples.

5.1 Introduction

In many high dimensional modelling problems, the number of variables is large but

the number of significant variables is small. The traditional best subset selection

procedure becomes infeasible for the high dimensional problem due to computational

cost. Furthermore, the best subset selection is unstable with respect to a small

change in the data (Breiman, 1996). Penalized maximum likelihood estimation has

been suggested to automatically select significant variables (Tibshirani, 1996; Fan and

Li, 2001). The penalized likelihood methods are computationally efficient, and with a

proper choice of regularization parameter, achieve selection consistency or the oracle

property (Fan and Li, 2001; Fan and Lv, 2010). The oracle property means that,

asymptotically, the resulting statistical estimates have the same covariance matrix as

when the correct variables are known a priori.

Penalized likelihood methods with various penalty functions have been developed,

such as least absolute shrinkage and selection operator (lasso) (Tibshirani, 1996),

smoothly clipped absolute deviation (scad) (Fan and Li, 2001) and minimax concave

penalty (mcp) (Zhang, 2010). These methods produce a set of candidate models for

different regularization parameters. With a proper choice of the regularization pa-

rameter, the resulting model will be consistent. Cross-validation (cv) is often used

to choose the regularization parameter and if this is done correctly, consistent model
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selection can be achieved (Shao, 1993, 1997). Since each regularization parameter

corresponds to a model, choosing the proper regularization parameter is equivalent

to selecting the best model from the set of candidate models. Hence, automatic model

selection criteria, such as the bic (Schwarz, 1978), are also applicable for determin-

ing the regularization parameter. For a linear model, Wang et al. (2007) analyzed

asymptotic properties of the generalized cv and bic for choosing the regularization

parameter of the scad and showed that the bic is consistent whereas the generalized

cv yields overfitting.

The generalized information criterion (gic) (Akaike, 1979; Nishii, 1984; Bhansali,

1986) includes a wide range of model selection criteria as a special case (Shao, 1997;

Zhang, 2009). For a generalized linear model, Zhang et al. (2010) obtained the

asymptotic properties of the gic for choosing the regularization parameter of the

non-concave penalized likelihood methods, such as scad and mcp. In this paper, we

examine the asymptotic properties of the gic for choosing the regularization param-

eter in a general case. The model is described by a family of probability distribution,

which includes the generalized linear model. The penalty function for the penalized

likelihood methods can be either non-concave, such as scad and mcp, or concave, as

lasso.

We derive the conditions under which the gic is overfitting, consistent, or un-

derfitting. When the penalized likelihood methods possess the oracle property, the

gic with both penalized and non-penalized maximum likelihood estimators have the

same asymptotic properties. In this case, statistical inferences for the selected model

are the same as if variables in the model were initially known. On the other hand,

when the penalized likelihood method doesn’t possess the oracle property, the bic may

not be consistent due to the bias between non-penalized and penalized estimators.

The asymptotic properties of the gic with mle have been widely investigated

(Nishii, 1984; Sin and White, 1996; Shao, 1997; Yang, 2005). These authors considered

the special case of the gic with mle and required that for consistency α → ∞ and

α/n→ 0. We obtain more general conditions for the penalized mle under which the

gic is overfitting, consistent, or underfitting. And we show that in the special case

of mle, the condition α/n→ 0 is sufficient but not necessary for consistency.
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5.2 Penalized MLE Model Selection

5.2.1 Probability Models

Consider a family of probability distributions, f(z; θ), z ∈ <p, indexed by parameters

θ ∈ Θ ⊂ <d. Let S = {s1, ..., sk} be a subset of {1, 2, ..., d}. Each subset S represents

a class of probability models {f(z; θ) : θ ∈ Θ(S)}, where Θ(S) = {θ ∈ Θ : θi = 0, i 6∈
S}. Let κ(S) be the number of elements in S, and θ(S) ∈ Θ(S). Let z1, ..., zn be

n observations that are independent and identically distributed with Zi ∼ f(z; θ0),

where θ0 ∈ Θ(S0), S0 represents a true model specified by

θ0 = arg max
θ∈Θ

E{log f(Z; θ)}.

The observation zi ∈ <p consists of both response and explanatory variables. Let

Ln(θ) =
∏
i f(zi; θ), be the likelihood function and ln(θ) = logLn(θ). Let θ̂m(S)

denote the mle of θ(S).

Assume that the true model is identifiable and its size κ(S0) = k0 is finite. The

true model is identifiable if for fixed n and each subset S 6= S0 with κ(S) ≤ κ(S0)

and some ∆ > 0,

max
θ∈Θ(S0)

n−1ln(θ)− max
θ∈Θ(S)

n−1ln(θ) ≥ ∆. (5.1)

5.2.2 Penalized MLE

The penalized mle is obtained by maximizing the penalized likelihood (Fan and Li,

2001)

ln(θ)− n
d∑
j=1

pλ(|θj |), (5.2)

where pλ(·) is a penalty function indexed by the regularization parameter λ ≥ 0. With

a suitable penalty function, maximizing the penalized likelihood can simultaneously

select variables and estimate their coefficients. The resulting penalized mle may

possess three properties: sparsity, unbiasedness and continuity (Fan and Li, 2001).

With sparsity, the penalized mle can achieve variable selection consistency. With

both sparsity and unbiasedness, the penalized mle may have the oracle property.

With continuity, the penalized mle is stable, that is, the estimates are not sensitive

to small changes in the data.
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The widely used penalties include `q penalties (Frank and Friedman, 1993) having

`1 and `2 penalties as special cases and quadratic spline penalties such as scad and

mcp (Fan and Li, 2001; Zhang, 2010). The quadratic spline penalties also include

the `1 penalty. In the `q penalty family, only `1 penalty, used in lasso (Tibshirani,

1996), produces a sparse estimator with the continuity property but it is biased. With

the quadratic spline penalties and suitable regularization parameters, the penalized

mle has both sparsity and continuity as well as approximate unbiasedness (Fan and

Lv, 2010; Zhang, 2010).

For each parameter λ, maximizing the penalized likelihood (5.2) produces one

model. As λ varies in a range, we obtain a set of models, the candidate models. With

a suitable penalty, the best model having the oracle property would asymptotically

be included in this set.

5.2.3 Algorithms for Penalized MLE

For a linear model, y = Xβ + σe, where X is an n × d matrix and e ∼ N(0,1n).

Maximizing the penalized likelihood (5.2) is equivalent to minimizing

1

2
‖ y −Xβ ‖2 +n

d∑
j=1

pλ(|βj |). (5.3)

Efficient algorithms for finding the minimizer of (5.3) include least angle regression

(lars) for `1 penalty (Efron et al., 2004), mc+ for quadratic spline penalties (Zhang,

2010), and coordinate-wise optimization algorithm for a general penalty (Friedman

et al., 2007).

The generalized linear model may be written, f(zi, θ) = f(zi, µi), where µi = xTi β

and xi = (xi1, . . . , xid)
T . The log-likelihood function, l(β) =

∑n
i=1 log f(zi, xiβ), can

be locally approximated by

l̃(β) = l(β(0)) +∇l(β(0))T (β − β(0)) +
1

2
(β − β(0))T∇2l(β(0))(β − β(0)),

where β(0) is an initial estimate of β. Let d(µ) = ∇l(µ) and D(µ) = −∇2l(µ), where

l(µ) =
∑n
i=1 log f(zi, µi). Then ∇l(β) = XT d(µ) and ∇2l(β) = −XTD(µ)X. Let
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µ0 = Xβ(0), d0 = d(µ0), and D0 = D(µ0). Suppose D0 is positive. Then

−l̃(β) =
1

2
‖ y(1) −X(1)β ‖2 + const.,

where X(1) = D
1/2
0 X and y(1) = D

1/2
0 Xβ(0) + D

−1/2
0 d0. Thus the penalized maxi-

mum likelihood estimator in (5.2) can be approximated by the one-step estimate that

minimizes

1

2
‖ y(1) −X(1)β ‖2 +n

d∑
j=1

pλ(|βj |). (5.4)

The one-step method was suggested by Zou and Li (2008). Another computationally

efficient algorithm for finding the penalized maximum likelihood estimator in gener-

alized linear models is the coordinate-wise optimization algorithm (Friedman et al.,

2010).

5.2.4 Model Selection

By model selection we mean the choice of the best model from a set of candidate

models that have been produced by penalized maximum likelihood estimation. For

each model, we compute the value of the selection criterion. The model having the

minimum value of the criterion is selected as the best one. Let {Sk, k = 1, . . . , K} be

the candidate models specified by θ̂(Sk). Let κ(Sk) = k, and ln(θ̂(Sk)) ≤ ln(θ̂(Sk+1)).

Many criteria have been proposed to select the best model. Some of them may be

considered as a special case of the generalized information criterion gic = −2ln(k) +

αk, where ln(k) = ln(θ̂(Sk)), k = κ(Sk), and α ≥ 0 is a tuning parameter. We

consider a more general form

gic = −2ln(k) + αck, (5.5)

where ck is a known positive increasing function of the model size k. With α = 2

and ck = kn/(n− k − 1), the gic is the aicc (Hurvich and Tsai, 1989). For a linear

model, eqn (5.5) reduces to gic = n log σ̂2
k + αck, where σ̂2

k = rssk/n, rssk is the

model residual sum of squares.

Let Skn be the selected model and kn be the model size. Model selection is

consistent if Pr{Skn = S0} → 1 as n → ∞. The model is overfitted if kn > k0,
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and underfitted if kn < k0. If there is a best model in the set of candidate models,

kn = k0 implies that Skn = S0, and then Pr{Skn = S0} = Pr{kn = k0}.

5.3 Asymptotic Properties

Before developing asymptotic properties, we describe some assumptions on the set of

candidate models. All limits in this section and the Appendix indicate convergence

in probability as n → ∞. For simplicity of notation, let ln(k) = ln(θ̂(Sk)) and

l
(m)
n (k) = ln(θ̂m(Sk)). And let Sk0 denote the true model. Assume that the following

conditions hold:

C1. E{| log f(Z, θ)|} <∞, and ln(1) < · · · < ln(K).

C2. Sk0 ∈ {Sk} is identifiable, and l
(m)
n (k0)− ln(k0) = op(n).

C3. There exists a model SK0
∈ {Sk} satisfying Sk0 ⊂ SK0

.

From C1 and C2, limn−1ln(k0) = limn−1l
(m)
n (k0) = E{log f(Z, θ0)}. For k > k0,

since ln(k) ≥ ln(k0), limn−1ln(k) = E{log f(Z, θ0)} and then

l
(m)
n (k0)− ln(k) = op(n). (5.6)

Let ∆k = 2{l(m)
n (k) − ln(k)} represent the bias between the penalized mle and the

mle. If θ̂(Sk) = θ̂m(Sk), ∆k = 0.

Theorem 5.1. If α ≤ ε+(∆k0
−∆K0

)/(cK0
−ck0), where ε is a constant, then asymp-

totically Pr{κ(α) = k0} ≤ qε and Pr{κ(α) < k0} = 0, where qε = Pr{χ2
K0−k0

≤
ε(cK0

− ck0)}.

Proofs of all theorems are given in the Appendix. Theorem 5.1 shows how the

bias between the penalized mle and the mle affects the consistency of the gic. If

∆k0
− ∆K0

= Op(n
s), 0 < s < 1, from Theorem 5.1, the gic with α ≤ nt, t < s,

selects Sk0 with probability tending to zero. In this case, the bic is not consistent

and it selects an overfitted model asymptotically because α = log n < nt for a large

n.

To characterize the consistency of gic, we define

γ = inf
n

min
j<k0

n−1{2ln(k0)− 2ln(j)}
ck0 − cj

. (5.7)
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From

ln(k0)− ln(j) ≥ ln(k0)− l(m)
n (j)

= {ln(k0)− l(m)
n (k0)}+ {l(m)

n (k0)− l(m)
n (j)},

and (5.1) and (5.6), we have γ ≥ 2∆/(ck0 − c1).

Theorem 5.2. Assume ∆k0
= Op(1) and ∆K0

= Op(1). Let dK = 2l
(m)
n (K) −

2l
(m)
n (k0). Let α = αn and n−1αn → r. Then asymptotically:

(i) If αn <∞, gic selects either the true model or an overfitted model.

(ii) If αn ≥ (dK + ∆k0
)/(ck0+1 − ck0) and r < γ, gic is consistent.

(iii) If αn →∞ and r > γ, gic selects an underfitted model.

With suitable penalty, the penalized likelihood methods asymptotically produce

a set of models in which there is a best model having the oracle property. Then

ln(k0) = l
(m)
n (k0) and ∆k0

= 0 with probability tending to one. Moreover, as the

regularization parameter is near to zero, the penalized mle reduces to the mle, and

then ∆K0
= 0. The asymptotic properties of the gic with the penalized mle are

summarized in Corollary 5.1.

Corollary 5.1. Let {Sk} be produced by the penalized mle having the oracle property.

Let dK = 2l
(m)
n (K)− 2l

(m)
n (k0). Let α = αn and n−1αn → r. Then asymptotically:

(i) If αn <∞, gic selects either the true model or an overfitted model.

(ii) If αn ≥ dK/(ck0+1 − ck0) and r < γ, gic is consistent.

(iii) If αn →∞ and r > γ, gic selects an underfitted model.

This Corollary follows directly from Theorem 5.2. Corollary 5.1 (i) is the same

as that given in Zhang et al. (2010). If dK = ∞, the largest model, SK , is always

selected. In this case, gic can not work. This usually takes place in the case where n <

K. We may avoid this case by reducing the dimension. If K is finite, dK = l
(m)
n (K)−

l
(m)
n (k0) ∼ χ2

K−k0
asymptotically. Then the consistent condition in Corollary 5.1 (ii)

is that αn →∞ and r < γ. So the following Corollary also holds.

Corollary 5.2. Let {Sk} be produced by the mle and K be finite. Let α = αn and

n−1αn → r. Then asymptotically:

(i) If αn <∞, gic selects either the true model or an overfitted model.

(ii) If αn →∞ and r < γ, gic is consistent.

(iii) If αn →∞ and r > γ, gic selects an underfitted model.
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Under the conditions in Theorem 5.2 or Corollary 5.1, the gic with αn bounded is

a aic-type criterion having the same asymptotic property as aic, while the gic with

αn unbounded and limn−1αn < γ, is a bic-type criterion having the same asymptotic

property as bic.

Suppose that θ̂(Sj) → θ∗(Sj), θ̂(Sk0) → θ0, and l
(m)
n (j) − ln(j) = op(n) for

1 ≤ j ≤ K. Then n−1{ln(k0)− ln(j)} → E{log f(Z, θ0)− log f(Z, θ∗(Sj))}, and

γ = min
j<k0

2E{log f(Z, θ0)− log f(Z, θ∗(Sj))}
ck0 − cj

. (5.8)

For the linear model Y = xTβ + σε, where ε is standard normal and σ2 is the error

variance, 2 log f(Z, β) = −(Y − xTβ)2/σ2 − log πσ2. Suppose that β̂(Sj) → β∗(Sj)
and β̂(Sk0)→ β0. Let ck = k. From (5.8),

γ = min
j<k0

E{|xT (β0 − β∗(Sj))|2}
(k0 − j)σ2 . (5.9)

So γ may be viewed as an average signal-to-noise ratio.

5.4 Numerical Illustration

In this section we present simulation examples to numerically examine the finite-

sample properties of gic for model selection with the penalized mle using aic and

bic. When the penalized mle has the oracle property, the aic-type and bic-type

share the asymptotic properties of aic and bic, respectively. Two linear regressions

and a logistic model are examined. For linear models, the R package plus (Zhang,

2010) is used. For the logistic model, the one-step estimates are used (Zou and Li,

2008). A large number of simulations, 104, was used for each case, so the error of

estimation is negligible. The captions below each figure give the 95% margin of error.

5.4.1 Linear Regression Models

We consider the linear models with regression coefficients given by the d-dimensional

vector β and specified by Y = xTβ + σε, where ε is standard normal, σ2 is the error

variance, x is d-variate normal with covariance matrix (0.5|i−j|)d×d.
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In the first example we take d = 8, k0 = 3, β = (3, 1.5, 0, 0, 2, 0, 0, 0) and σ = 1.

The components of X and ε are standard normal. Sample sizes are n = 20, 60, and

100. The aic and bic are used to select the model and the candidate models are

produced by best subset, lasso, scad, and mcp. It was found that the proportion of

underfit models was zero or very close to zero in each case. The proportion of correctly

selected models is shown Figure 5.1. The best subset method, subset, outperforms

lasso but not scad and mcp. The bic, subset, scad and mcp improve markedly

as n increase with scad and mcp slightly better than subset. As shown in Theorem

5.1, aic is overfitting and this behaviour is confirmed in Figure 5.1.
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Figure 5.1: Proportion of models correctly selected in linear regression example with
d = 8. The 95% margin of error is less than 0.01.

The conditional prediction error, pe = E{(Y −xT (S)β̂(S))2}, was computed using

105 independent test samples for each simulation. The average of all 104 simulations,

estimates the prediction error that is shown in Figure 5.2 for the various methods.

The average prediction error when lasso is used for variable selection only and

the usual least-square estimates are then used for the prediction is also shown in

Figure 5.2 for the method denoted by lassols. We see that lassols outperforms

lasso and subset as expected but it is not quite as good as scad and mcp. The

oracle prediction error is obtained assuming the correct variables are known a priori
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and then the usual least squares estimates of the parameters are used. When n = 100,

scad and mcp are close to the oracle prediction error when the bic is used. As

might be expected, due to overfitting, the aic performance is generally much poorer

than with the bic.

Average Prediction Error

SUBSET

LASSO

LASSOLS

SCAD

MCP

1.2 1.3 1.4 1.5

●

●

●

●

●

n = 20

1.06 1.08 1.10 1.12

●

●

●

●

●

n = 60

1.04 1.06

●

●

●

●

●

n = 100

Figure 5.2: Average prediction errors in linear regression with d = 8. oracle: ◦,
aic: ∇, bic: +. 95% moe < 0.01, 0.002, 0.001 for n = 20, 60, 100 respectively.

The performance of aicα in the large feature space is examined using d = 50,

n = 100, k0 = 7, β0 = (1,−0.5, 0.7,−1.2,−0.9, 0.3, 0.55) and σ = 0.3. The gic with

α = 2, 4, . . . , 20 are used to select the best model from the candidate models produced

by lasso, scad, and mcp. The proportion of underfit, correct and overfit models are

shown in Figure 5.3. As α increases, the number of the overfitted models decreases,

and the number of the underfitted models increases. The bic corresponds to α = 4.6.

Using scad or mcp with gic for α ≥ 4 produces a high proportion of correct models

but lasso always produces many overfit models even for large values of α. The

underfitting condition in Corollary 5.1 is illustrated by the fact that when α = 20 all

penalty methods produce some underfit models.

5.4.2 Logistic Regression Model

In this example, the data are generated from the logistic regression model with d =

25, k0 = 5 and β0 = (2.5,−1.9, 2.8,−2.2, 3) for samples of size, n = 200, 250, 300.
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Figure 5.3: Proportions of underfitted, correctly fitted and overfitted models in linear
regression example with d = 50. The 95% margin of error is less than 0.01.

As shown in Corollary 5.1, for the penalized likelihood methods having the oracle

property, the bic-type criteria are consistent but the aic-type are not and this is in

agreement with the results shown in Figure 5.4. For scad and mcp, the number of

the correctly fitted models by bic increases as n becomes larger but there is only a

very slight increase with the aic. For lasso, both aic and bic select a small number

of correctly fitted models. For the penalized likelihood method such as lasso having

no oracle property, the bic is not consistent.

5.5 Conclusions

Usually there is a bias between the penalized mle and the mle. We analyzed how the

bias affects the consistency of gic, and derived the conditions under which the gic is

overfitting, consistent, or underfitting. If the penalized mle has the oracle property,

the gic may be categorized into three types: aic-type, bic-type, and others that are

asymptotically underfitting, and the aic-type and bic-type have the same asymptotic

properties as aic and bic, respectively. If the penalized mle does not possess the

oracle property, as is the case with lasso, the bic-type may not be consistent.
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Figure 5.4: Percentages of correctly fitted models in logistic regression with d = 25.
The 95% margin of error is less than 0.01.

5.6 Appendix

5.6.1 Lemmas

The following lemmas are useful for the proofs of theorems.

Lemma 5.1. gic can select the model Sk if and only if

max
j>k

Ak,j ≤ α ≤ min
j<k

Ak,j ,

where Ak,j = 2{ln(j)− ln(k)}/(cj − ck) for j 6= k, k = 1, . . . , K.

Proof. gic selects model Sk if and only if for j 6= k,

−2{ln(j)− ln(k)}+ α(cj − ck) ≥ 0,

that is,

max
j>k

Ak,j ≤ α ≤ min
j<k

Ak,j .

70



Define minj<1A1,j = ∞ and maxj>K AK,j = 0. Let κ(α) be the model size

selected by gic. The probability of selecting the model Sk is

Pr{κ(α) = k} = Pr{max
j>k

Ak,j ≤ α ≤ min
j<k

Ak,j}. (5.10)

Lemma 5.2. Let α = αn and n−1αn → r. Let dK = 2l
(m)
n (K) − 2l

(m)
n (k0). If

αn ≥ (dK + ∆k0
)/(ck0+1 − ck0) and r < γ then Pr{κ(α) = k0} → 1.

Proof. Let r < γ. From (5.7), n−1αn < minj<k0 n
−1Ak0,j for n large enough. From

(5.10)

Pr{κ(α) = k0} = Pr{max
j>k0

Ak0,j ≤ αn, αn ≤ min
j<k0

Ak0,j}

= Pr{max
j>k0

Ak0,j ≤ αn, n
−1αn ≤ min

j<k0
n−1Ak0,j}

= Pr{max
j>k0

Ak0,j ≤ αn}

= Pr{max
j>k0

[2ln(j)− 2ln(k0)]/(cj − ck0) ≤ αn}

≥ Pr{max
j>k0

[2l
(m)
n (K)− 2ln(k0)]/(cj − ck0) ≤ αn}

= Pr{2[l
(m)
n (K)− ln(k0)] ≤ αn(ck0+1 − ck0)}

= Pr{dK + ∆k0
≤ αn(ck0+1 − ck0)}

= 1.

Lemma 5.3. Let α = αn and n−1αn → r. If r ≥ γ then Pr{κ(α) = k0} ≤ δr,γ and

Pr{κ(α) > k0} → 0, where δr,γ is the Kronecker delta.

Proof. Let r ≥ γ, and n be large enough. Then there exists a constant ε such that

n−1αn ≥ γ − ε > 0. For j > k0, from (5.6), n−1{ln(j) − l(m)
n (k0)} = op(1). Thus

j > k0,

Ak0,j =
2{ln(j)− l(m)

n (k0)}+ 2{l(m)
n (k0)− ln(k0)}

cj − ckn
< αn.

Let k > k0. From (5.10)

Pr{κ(α) = k} ≤ Pr{αn ≤ min
j<k

Ak,j} ≤ Pr{αn ≤ Ak0,k} = 0.
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From (5.10)

Pr{κ(α) = k0} = Pr{max
j>k0

Ak0,j ≤ αn, αn ≤ min
j<k0

Ak0,j}

= Pr{αn ≤ min
j<k0

Ak0,j}

= Pr{n−1αn ≤ min
j<k0

n−1Ak0,j}

≤ Pr{r ≤ γ}

= δr,γ .

5.6.2 Proofs of Theorems

Theorem 5.1. From (5.10),

Pr{κ(α) = k0} ≤ Pr{max
j>k0

2ln(j)− 2ln(k0)

cj − ck0
≤ α}

≤ Pr{2ln(K0)− 2ln(k0)

cK0
− ck0

≤ α}.

Since

ln(K0)− ln(k0)

= {l(m)
n (K0)− l(m)

n (k0)}+ {l(m)
n (k0)− ln(k0)} − {l(m)

n (K0)− ln(K0)}
= {l(m)

n (K0)− l(m)
n (k0)}+ (∆k0

−∆K0
)/2,

it holds asymptotically that

Pr{κ(α) = k0} ≤ Pr{2[l
(m)
n (K0)− l(m)

n (k0)] ≤ α(cK0
− ck0)− (∆k0

−∆K0
)}

≤ Pr{2[l
(m)
n (K0)− l(m)

n (k0)] ≤ ε(cK0
− ck0)}

= Pr{χ2
K0−k0 ≤ ε(cK0

− ck0)}

= qε.
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Let k < k0. From (5.10),

Pr{κ(α) = k} ≤ Pr{max
j>k

2ln(j)− 2ln(k)

cj − ck
≤ α}

≤ Pr{2ln(k0)− 2ln(k)

ck0 − ck
≤ α}

≤ Pr{2ln(k0)− 2l
(m)
n (k)

ck0 − ck
≤ α}

= Pr{2n−1[ln(k0)− l(m)
n (k)]

ck0 − ck
≤ n−1α}.

From (5.1) and (5.6),

n−1{ln(k0)− l(m)
n (k)} = n−1{l(m)

n (k0)− l(m)
n (k)} − n−1{l(m)

n (k0)− ln(k0)}

≥ ∆− op(1).

Since n−1α→ 0, Pr{κ(α) = k} = 0.

Theorem 5.2. It follows directly from Theorem 5.1 and Lemmas 5.2 and 5.3.

73



Chapter 6

SUMMARIES AND FUTURE DIRECTIONS

This thesis primarily studied the properties and improvement of the information

criteria including the generalized information criterion and the family of Bayesian

information criteria. The following issues have been addressed: i) non-asymptotic and

asymptotic properties of gic with ls or mle algorithms; ii) asymptotic properties

of gic with penalized mle algorithms for high dimensional space; and iii) improved

information criteria for model selection and choice of tuning parameter.

The non-asymptotic properties include the probability of selecting a model and its

computation, and the interval constraints under which a specified model can be se-

lected. The asymptotic properties provide the conditions under which the information

criteria are overfitting, consistent, or underfitting. Three procedures for improving

the gic have been proposed. Two of them are the adaptive gic that is based on the

probability of selecting a model. The other is the gic with controlling the overfitting

level.

There are a lot of issues that are not covered in this thesis. Some topics for

possible future research are indicated in the following sections.

Model Dimension Reduction

When dimensionality can be reduced, model selection may be more accurate. The

computational burden can be reduced dramatically.

Missing Data

We need to develop selection procedures that more effectively deal with missing values

instead of simply discarding them. Missing values should automatically be imputed

or estimated at each stage in the selection process.

Multivariate Models

This thesis dealt only with response or output variables that are univariate. The

extension of this thesis to deal with the more general case of multivariate outputs is

straightforward but the details and algorithmic implementations would be consider-

ably more complex.
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Biomedical Applications

There are many applications of the methods discussed in this thesis in the medical

and biomedical area. Model selection has attracted substantial attention in high-

dimensional genomic and proteomic data analysis. Model selection is extensively

used for survival and longitudinal data analysis and identification of the quantitative

trait loci. A growing important area of medical research deals with the assessment

of a drug or the effect of a new medical procedure by observing the actual historical

outcomes. The data thus comprise a time series and an intervention analysis model

may be used to assess and describe the overall effect. Model selection is important

in selecting model components describing the errors, the covariates, if any, and the

intervention itself. A very interesting and important example is discussed by (Juurlink

et al., 2004) who show that deaths in the target population increased after a new drug

Aldactone was introduced. This drug had been extensively tested in clinical trials

but proved a disaster in actual clinical usage. This disaster was detected and its

magnitude quantified using time series intervention analysis.
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