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ABSTRACT

This thesis is on model selection using information criteria. The information
criteria include generalized information criterion and a family of Bayesian information
criteria. The properties and improvement of the information criteria are investigated.

We analyze nonasymptotic and asymptotic properties of the information criteria
for linear models, probabilistic models, and high dimensional models, respectively.
We give probability of selecting a model and compute the probability by Monte Carlo
methods. We derive the conditions under which the criteria are overfitting, consistent,
or underfitting.

We further propose new model selection procedures to improve the information
criteria. The procedures combine the information criteria with the probability of
selecting a model and overfitting level, respectively.

In addition, we develop model selection software packages in R and examine ap-

plications to real data.

KEY WORDS: Statistical modeling, model selection, variable selection, model selec-

tion algorithm, penalized likelihood, model selection criterion, information criteria.

1l



CO-AUTHORSHIP STATEMENT

This thesis was entirely written by Changjiang Xu under the direction of my

doctoral supervisor, Dr. A. Ian McLeod.

v



ACKNOWLEDGEMENTS

I would like to thank my Ph.D. advisor, Professor A. Ian McLeod, for his constant
support, guidance and inspiration. He always keeps his door open for us in order to
discuss the research with great enthusiasm. I always felt I could approach him with
absolutely any issue. I have greatly benefited both from his knowledge in a wide
variety of areas and from his dedicated engagement in research. I am proud of being
his student, and hope to work with him again in the future.

I would like to thank my thesis examiners, Professors Paul McNicholas, John
Knight, Duncan Murdoch and Kristina Sendova for carefully reading this thesis and
providing useful comments. Their comments are helpful to improve this thesis.

I would like to thank all professors in the Department of Statistical and Actuarial
Sciences those who give me direct or indirect helps during my graduate study. I would
like to especially thank professors Reg J. Kulperger, Serge B. Provost, Rogemar Ma-
mon, Hao Yu, Wenqing He, Dave A. Stanford, Xiaoming Liu, and Duncan Murdoch,
from those whom I took the courses and learnt a broad knowledge of statistics. I
would also like to thank the department secretaries Ms. Jennifer Dungavell and Ms.
Jane Bai for their kind assistances.

I would like to thank my graduate student colleagues Esam Mahdi, Juan Xiong,
Lihua Yue, Nagham Mohammad, Mark Wolters, Weibin Jiang, Na Lei, Weiwei Harry
Liu, Tao Jin, Mir Moosavi Avonleghi, Jing Wang, Mohammad Shahidul Islam, Radu
Mitric. Finally, I would like to thank my family for their patience and love that
helped me reach this point.



CONTENTS

LIST OF TABLES
LIST OF FIGURES

1 INTRODUCTION

1.1 Statistical Modeling . . . . . . . . .. ... L
1.2 Model Selection . . . . . . . ...
1.2.1  Algorithms . . . . . . .. ...
1.2.2 Criteria . . . . . . . . . e
1.3 Information Criteria . . . . . . . . . . . . ...
1.4 Main Issues . . . . . . . ..

LINEAR MODEL SELECTION USING GIC

2.1 Introduction . . . . . . . . . . ...
2.2 Linear Model Selection . . . . . . . . . . . ...
2.2.1  Optimal Model . . . . . . ... ... o
2.2.2 Performance Measure . . . . . . . . . . . . ... ...
2.2.3 Model Selection . . . . . . . ...
2.2.4 Selection Criterion . . . . . . . . ... ... ... ... .. ..
2.3 Nonasymptotic Properties . . . . . . ... . ... ... ... .....
2.3.1 Nested Subsets . . . . . . . . ... ...
2.3.2 Unnested Subsets . . . . . . . .. ... ... ... ...,
2.3.3 UpperBounds. . . ... .. ... ... ... ... ...
2.4 Asymptotic Properties . . . . . . ... ... L
2.5 Adaptive Procedures Based on Probabilities . . . . . . ... ... ..
2.5.1 Procedure One . . . . . . . . . . ... .. ... ...
2.5.2 Procedure Two . . . . . . . . ...
2.6 Further Discussions . . . . . . . . . . ..
2.7 Numerical Ilustration . . . . . . . . .. . . .. .. ... .. .....
2.7.1 Simulation Study . . . . .. ..o
2.7.2 Diabetes Study . . . . ... ..o
2.7.3 Standard & Poor’s 500 Index . . . . . . . ... ...
2.8 Conclusions . . . . . . . ...
2.9 Appendix . . ...
2.9.1 Proofsof Lemmas. . . . . .. ... .. ... ... ... ....
2.9.2  Proofs of Propositions . . . . ... ... ... ... ... ...
2.9.3 Proofs of Theorems . . . . . . . . . . .. ... ... .. ....



3 GIC WITH OVERFITTING LEVEL
3.1 Introduction . . . . . ... ... ... ... ...
3.2  Generalized Information Criterion . . . . . . .. ... ..
3.3 Procedure by Controlling Overfitting . . . . . ... ...
3.3.1 Hypotheses . . . .. .. ... ... ... ...
3.3.2 Probability of Selecting a Model . . . . . . . . ..
3.3.3 Procedure . . ... ... ... L.
3.3.4 Consistent Procedure . . . . . . . ... ... ...
3.4 Simulations . . . . ... ...
3.4.1 Linear Regression with Overfitting Level p = 0.01
3.4.2 Comparison of Four Rules . . . . ... ... ...
3.4.3 Subset Autoregression . . . .. ... ... . ...
3.5 Mlustrative Applications . . . . . . ... ... ... ...
3.5.1 South Africa Heart Disease Data . . . . ... ..
3.5.2 Lynx Time Series . . . . . . . .. .. ... ....
3.6 Conclusions . . . .. .. .. ... oo

4 FAMILY OF BAYESIAN INFORMATION CRITERIA
4.1 Introduction . . . . . . ... ..o
4.2 Properties . . . . . ... oo

4.2.1 BIC4 More General Than BIC, . . . . . ... ..
4.2.2 Tuning Parameter . . . . . . . . ... .. ... ..
4.3 Simulation Experiments . . . . ... ... ... ... ..
4.3.1 Linear Regression . . . . . .. . ... ... ....
4.3.2  Subset Autoregression AR(1) . . ... ... ...
4.3.3 Subset Autoregression AR(4) . . ... ... ...
4.4 Tllustrative Applications . . . . . . . .. ... ... ...
4.4.1 Hospital Manpower Data . . . . . ... ... ...
4.4.2 Monthly Sunspot Series 1749 — 1997 . . . . . ..
4.4.3 Long Autoregressions . . . . . . ... ... ....
4.5 Concluding Remarks . . . ... ... ... ... .....

vii



5 GIC FOR HIGH DIMENSIONAL MODEL SELECTION

5.1 Introduction . . . . .. ..

5.2 Penalized MLE Model Selection . . . . . . . . .. . .. .. ... ...

5.2.1 Probability Models
5.2.2 Penalized MLE . .

5.2.3 Algorithms for Penalized MLE . . . . . . . .. ... ... ...

5.2.4 Model Selection . .
5.3 Asymptotic Properties . .
5.4 Numerical Illustration . .

5.4.1 Linear Regression Models . . . . . . ... ... ... ... ..
5.4.2 Logistic Regression Model . . . . . . ... ... ... .. ...

5.5 Conclusions . . . ... ..
5.6 Appendix . ... .....
56.1 Lemmas . .. ...
5.6.2 Proofs of Theorems

6 SUMMARIES AND FUTURE DIRECTIONS

CURRICULUM VITAE

viil

59
29
61
61
61
62
63
64
66
66
68
69
70
70
72

74

82



2.1
2.2

2.3

2.4

2.5

2.6
2.7

2.8

3.1

3.2

3.3

4.1
4.2

LIST OF TABLES

Relative frequency f}, of selecting a model S, k =1,...,8, by FPEy. . 26
The probability of selecting a model S, k=1, ..., 8, with known non-
centrality parameters. The standard errors are between 0 and 0.00014.
The differences, p;. — f., range from —0.0062 to 0.0053. . . . . . . .. 26
Percentage number of underfitted models (u), correct models (c), and
overfitted models (o), and model error with standard deviation from
10* simulations for different sample size n. . . . . . . . .. ... ... 27
The probability of selecting a model S;., k =1, ..., 10, in the LASSO sub-
sets, computed by (2.10). N = 1000,000. The standard errors are
between 0 and 0.0005. . . . . . . . . ... ... 27
The probability of selecting a model S, £k = 1,...,10, in the best
subsets, computed by (2.13). N = 1000,000. The standard errors are
between 0 and 0.0005. . . . . . . ... ... 28
Intervals (ay, 1,y 2) in which FPE, selects the model Sp. . . . . . .. 28
Model coefficients with significance codes ***’ <4 67 <2 "or < repre-
senting the corresponding p-value in (0, 0.001], (0.001, 0.01], (0.01, 0.05],
(0.05,0.1], or (0.1,1], respectively. . . . . . ... ... ... ... 28
Intervals (v 1,7k,2) in which FPE, selects the model Sp.. . . . . . .. 29

Percentage number of underfitted models (u), correct models (c), and
overfitted models (o), and true model error from 10% simulations for
each parameter setting. . . . . . . . . .. ... 42
Percentage number of underfitted models (u), correct models (c), and
overfitted models (op: & more variables) from 10* simulations. Com-
parison of p = 0.05 and rules py ,,, p2, and p3,, in eqns. (3.6), (3.7)
and (3.8). . .o 43

Lags in subset autoregression selected by various information criterion 45

The number of underfit, overfit and correct models, and the model error 53
The table shows p, the order selected for fitting an AR(p) to some time
series with peak spectra of various lengths, n. The series Willamette
and SeriesA are available in the R package FitAR (McLeod et al., 2010)
and lynx and sunspot.year are included in the base distribution of R
(R Development Core Team, 2010). The series sunspot.year are the
mean annual sunspot numbers for the period 1700 — 1988. . . . . . . o7

X



2.1

3.1

3.2

3.3
3.4

4.1

4.2

4.3

5.1

5.2

5.3

5.4

LIST OF FIGURES

Left: upper bound of the probability of selecting a overfitted model.
Right: upper bound of the probability of selecting the true model. The
non-centrality parameters, A, are 5 (dashed), 10 (dotted), 15 (dotdash),
20 (longdash), and 25 (solid), respectively. . . . . ... ... ... ..

Upper bound probability, p, of selecting an overfitted model. The
AIC corresponds to o« = 2 in which case the upper bound of the prob-
ability of selecting an overfitted model is about 13%. The maximum,
p=0.25 occursat « =0.455. . . . ... ...
Upper bound probability, pg, of selecting the true model with v =
5,10,20,40. . . . . .
Three overfitting levels: p1, (p1), p2,n (P2), P30 (P3). - . - . . . ..
Relative model error in percent for AR(1) with K = 10 for series
lengths n = 200,400 and parameter setting ¢ = 0,0.3,0.6,0.9. GIC se-
lection with p =0.01. . . . . . . ... .. ... ...

Relative model error in percent for AR(1) with K = 10 for series
lengths n = 200,400 and parameter setting ¢ = 0,0.3,0.6,0.9. BIC(¢ =
0.25). o o

The empirical probability of including lag k in a subset autoregression
with K = 30 based on 10* simulations of an AR(4) time series. The
dotted line shows the conservative estimate of a 95% margin of error.
Estimated log spectral density function estimated by fitting a subset
autoregression using BIC; with ¢ = 0.5 and ¢ =0.25. . . ... .. ..

Proportion of models correctly selected in linear regression example
with d = 8. The 95% margin of error is less than 0.01. . . . . .. ..
Average prediction errors in linear regression with d = 8. ORACLE: o,
Alc: 'V, BIC: +. 95% MOE < 0.01,0.002,0.001 for n = 20,60, 100
respectively. . . . . Lo
Proportions of underfitted, correctly fitted and overfitted models in
linear regression example with d = 50. The 95% margin of error is less
than 0.01. . . . . . . . .
Percentages of correctly fitted models in logistic regression with d = 25.
The 95% margin of error is less than 0.01. . . . . .. ... ... ...

54

25

o6

67

68



Chapter 1

INTRODUCTION

1.1 Statistical Modeling

There are two goals in analyzing data: extract information about the underlying
system producing the data and predict the responses from future predictor variables
(Breiman, 2001). Statistical modeling or data modeling is an approach toward these
goals.

Statistical modeling aims at learning general rules from observed data. The data
are generated as a sample from a population. Such statistical populations generating
data occur widely in most areas of science including medicine, finance and engi-
neering. From statistical point of view, the population is defined with a probability
distribution.

More precisely, it is assumed that the population can be approximated by a family
of probability distribution models, such as additive Gaussian models, generalized
linear models, ARMA models for time series data, Weibull distribution for time-to-
event data, and regression with autocorrelated or GARCH errors with financial time
series. The family of distribution models may be nonparametric or mixture models,
such as k-nearest-neighbor (kNN), kernel smoothing, and Bayesian networks.

The unknown distributions are then estimated from the data using some princi-
ple, such as least squares, maximum likelihood, or Bayes’ rule. In general, statistical
modeling involves model specification, model estimation, model selection, model val-

idation, and model verification or adequacy checking.

1.2 Model Selection

The family of distribution models is specified to approximate the underlying system

and is then estimated from the data. The next step is to assess the performance

of the contending models and select the best one. The best model would have high
1



prediction performance, and could illustrate which predictor variables are important
and how these predictors affect the response of the underlying system. The selection
performance is measured by consistency, efficiency and stability. The model selection
proceeds in two steps: develop an algorithm for producing contending models, also
referred to as a set of candidate models; and find a criterion for ranking the contending

models.

1.2.1 Algorithms

Procedures for producing the candidate models include best subsets, stepwise, or pe-
nalized methods with continuous penalty (Miller, 2002; Frank and Friedman, 1993;
Tibshirani, 1996; Fan and Li, 2001; Zou, 2006; Zhang, 2010). In high dimensional
statistical modeling, the traditional best subset procedure becomes infeasible due to
computational cost. Furthermore, the best subset selection is unstable with a small
change of data. Instead penalized maximum likelihood estimation (MLE) or least
squares (LS) was suggested to automatically select significant variables with simul-
taneously estimating associated parameters. The attractive feature of the penalized
methods is that they can produce an estimator that achieves selection consistency,
stability and the oracle property. A selection procedure is said to have the oracle
property if the covariance matrix of the estimates is identical to that obtained if the
true model were known a priori. The key issues are the design of penalty function

and algorithms for solving the penalized MLE.

1.2.2 Criteria

The model selection approaches are generally based on hypothesis testing, discrep-
ancy, or Bayes principle (Linhart and Zucchini, 1986; McQuarrie and Tsai, 1998;
Burnham and Anderson, 2002; Lahiri, 2001). The hypothesis testing based proce-
dure usually assumes that the candidate models are nested and include a true model.
The hypothesis testing with misspecified or non-nested models has also been discussed
(Bera, 2000). The discrepancy is a particular class of loss functions.

Using the Bayes principle may yield two types of Bayesian selection approaches.
One is the family of Bayesian information criteria, such as BiC, that is derived by
approximating the posterior probability of a given model. The other is referred to as

Bayesian model selection that is primarily based on the computation of the posterior



probability using Monte Carlo technique. The negative log-posterior probability may
be also viewed as a loss function.

Let X and Y be the predictor and response variables. Let D = {(z;,y;), i =
1,...,n} be a sample of (X,Y). Let i(X|D) be a prediction model that has been
estimated from the data set D. The errors between the response and the predic-
tion model are measured by a loss function L(Y,(X|D)), such as squared-error
loss, log-likelihood loss, and 0-1 loss. The risk function is the expected loss func-
tion E{L(Y, 1(X|D))}, also called expected test error (Hastie et al., 2009, §7.2). The

test error is the prediction error over an independent test sample
E{L(Y, (X |D))D}.

This expectation is taken with respect to X and Y.

Let f be the probability density function (pdf) or probability mass function (pmf)
of the population generating the data. The corresponding function for the family of
probability models with parameter vector # is denoted by gy. The discrepancy is a
functional A(gp, f) that has the property (Linhart and Zucchini, 1986, §1.3.2)

Alge, f) = A(S, f)-

The important discrepancies include Kullback-Leibler, Kolmogorov or Lo, norm, L
and Lo norms, and Pearson chi-square (Linhart and Zucchini, 1986, §2.2).
Various model selection criteria were proposed by estimating the expected loss

function or discrepancy, for example,

e FPE: final prediction error, derived for linear regression models by estimating
the prediction error (Akaike, 1969).

e AIC: Akaike information criterion, derived for probability models by approxi-
mating the expected Kullback-Leibler discrepancy (Akaike, 1974).

e BIC: Bayesian information criterion, obtained by approximating the negative

log-posterior probability (Schwarz, 1978)

e (Cross-validation and bootstrap methods: using an empirical estimate of the
prediction error (Shao, 1993, 1996).



There are other model selection approaches motivated from different viewpoints,
such as minimum description length (MDL) (Rissanen, 1978, 1983, 2007) and Vapnik-
Chervonenkis dimension (Vapnik, 2000). The MDL approach gives a selection crite-
rion formally identical to the family of Bayesian information criteria (Hansen and Yu,

2001).

Efficiency and Consistency
Let u = E{Y}. Let My be the model minimizing L(u, u(My)) over a set of models
{My}. Let Mg be the model selected using a selection procedure. The selection

procedure is said to be asymptotically loss efficient if in probability (Shao, 1997)

L(p, p(Mg))
L(p, u(Mo))

— 1.

The selection procedure is said to be consistent if Pr{My; = My} — 1.

The My is a true model or the model that is the closest to the true model. The
terms overfitting and underfitting were defined two ways based on either consistency
or efficiency (McQuarrie and Tsai, 1998). Using efficiency, overfitting is defined as
choosing a model that has more variables than M. Underfitting is defined as choosing
a model with too few variables compared to M. Under consistency, My is supposed
to be a true model. The procedure is overfitting if My C My, otherwise, underfitting
it My & M,

1.3 Information Criteria

The FPE and AIC were respectively extended into FPE, the generalized FPE (Bhansali
and Downham, 1977; Shibata, 1984), and AIC,, the generalized A1C (Akaike, 1979;
Bhansali, 1986). All of these criteria may be unified as a generalized information
criterion (GIC)

cic = —2log L. + acy,,

where £;. is the maximum likelihood of the model with size k, « is a positive tuning
parameter that may be a constant or depend on the sample size n, and c¢;. reflecting
the model complexity is a specified positive increasing function of the model size k.
The ¢, = k was usually considered (Nishii, 1984; Shao, 1997).



Using Bayes or MDL principle gives a general family of Bayesian information cri-
teria (Hansen and Yu, 2001; Rissanen, 2007)

BIC; = —2log L. + klogn — 2log 7},

where 7. is a prior probability of the model with size k.

Information criteria include the generalized information criterion, GIC, and the
family of Bayesian information criteria, BIC;. Most of criteria derived by estimating
the expected loss function or discrepancy may be considered as a special form of
the GIC or BIC; (Shao, 1997; Zhang, 2009). For example, with a = 2 and ¢, =
kn/(n —k — 1), the GIC is the A1C. (Hurvich and Tsai, 1989).

As compared with the bootstrap or cross-validation, the information criteria are
computationally much faster which is a consideration in data mining with large

datasets.

1.4 Main Issues

Asymptotic properties of the information criteria are known well (Nishii, 1984; Sin and
White, 1996; Shao, 1997; Yang, 2005), but there are few results on non-asymptotic
properties. The choice of the tuning parameter is a key issue for the information
criteria. However, each approach to choosing the tuning parameter is identical to a
model selection procedure. Also there are relatively few studies on the information
criteria for high dimensional model selection (Fan and Lv, 2010). This thesis will
address the three issues mentioned above. We focus on the information criteria:
generalized information criterion, GIC, and the family of Bayesian information criteria,
BIC;. Summarized below are the main parts of this thesis.

Chapter 2 considers linear model selection. The properties on the GIC are analyzed
and two adaptive model selection procedures are proposed.

Chapter 3 deals with the general probabilistic models. The upper bounds for the
probabilities of selecting an overfitting model and the optimal model are discussed.
The GI1c with overfitting level is proposed.

Chapter 4 examines a family of Bayesian information criteria with the Bernoulli
prior, called BIC;. We show that the BIC, is more effective than the usual BIC and
an extended BIC.



Chapter 5 considers the high dimensional model selection. We derive the condi-
tions under which the GIC is overfitting, consistent, or underfitting when the candidate

models are estimated by the penalized maximum likelihood methods.



Chapter 2

LINEAR MODEL SELECTION USING GIC

We examine nonasymptotic and asymptotic properties of linear model selection by
generalized information criterion. A necessary and sufficient condition for the model
selection consistency is derived. The computation of probability of selecting a model is
addressed using Monte Carlo technique and bootstrap method. Two adaptive model
selection procedures are proposed based on the probability of selecting a model. These

results are illustrated with simulations as well as in examples with actual data.

2.1 Introduction

By model selection we mean the choice of a best model from a set of candidate
models that are often obtained by least squares or maximum likelihood estimation.
The candidate models may also be provided by penalized least squares or penalized
maximum likelihood, such as LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), and
MCP (Zhang, 2010). The true model may have infinite dimension or include unknown
misspecified predictors. In this case, model selection is to find the parsimonious
optimal approximation model.

Many model selection criteria have been derived based on a variety of princi-
ples such as minimizing final prediction error (Akaike, 1969, 1970), minimizing mean
squared model error (Mallows, 1973), minimizing information loss (Akaike, 1974),
and maximizing posterior probability (Schwarz, 1978). We mention a few of those
that are most widely used. These criteria may be generalized to FPE, (Bhansali and
Downham, 1977) or AI1C,, (Akaike, 1979).

For linear models, AIC,, is asymptotically equivalent to FPE,, and both were re-
ferred to as a generalized information criterion (GIc) (Nishii, 1984; Shao, 1997). But

the FPE, is often used for the linear model. The asymptotic properties of FPE, have



been examined by several authors (Shibata, 1984; Nishii, 1984; Shao, 1997). In prac-
tice, the sample is finite, and nonasymptotic properties are often more important
than asymptotic properties.

In this chapter, we investigate the properties of FPE, . We derive the probabil-
ity distribution of selecting a model and the necessary and sufficient condition that
FPE, is consistent. The computation of the probabilities is addressed using Monte
Carlo method. It is seen that the best model has the highest probability to be se-
lected. According to this property, we propose two probability-based procedures for
model selection.

The performance of FPE, is related to a proper choice of a. How to choose the
a was discussed respectively by simulation (Atkinson, 1980), approximate efficiency
(Shibata, 1984), bootstrap (Rao, 1999), and generalized degrees of freedom (Shen
and Ye, 2002). FPE, using the different values of o may select the same model. So
the best choice of the value of « is not unique. We derive an interval for o in which
FPE, can select a specified model. The interval is a necessary and sufficient condition
under which a specified model can be selected. Each selected model corresponds to
a unique interval. Thus using these interval constraint can reduce the number of the
candidate models that could be selected.

A more general form of FPE, is further considered, in which the penalty term is
a monotone function of model complexity. The penalty in FPE, includes an estimate
of the variance of the model error. When the estimate is near to zero, as in high
dimensional model selection, FPE, cannot work. To avoid the drawback, we intro-
duce a new tuning parameter that combines the unknown variance together with the

parameter «, and give a modified FPEq , denoted by FPE,.

2.2 Linear Model Selection

2.2.1 Optimal Model

Let y = (y1,...,yn)" be a vector of responses and X = (Xq, -y Xg,) be an n x dy
matrix, where X is a vector of measurements of k-th predictor. The number of
predictors, d,, may grow with the sample size n. To simplify the notation, the
dependence of X, y and other random variables on n is suppressed. We mainly

consider the case of deterministic predictors. When the predictors are random, the



results are still valid but some may require that n ' X (k)’ X (j) converge almost surely
for each k and 7, see Assumption 2.2.
The response is expressed as y = u+¢, where y = E(y|X) is the mean of response

and € ~ N(0, oI ). We approximate the mean p by a linear model

u(S) = X(S)B(S), (2.1)

where S = {s1, ..., 53} is a subset of {1,2,...,dp}, X(S) = (Xsy, ..., X5, ), and 3(S) =
(Bsys -y ﬁsk)’ is a vector of parameters that specifies the model. To simplify notation,
the intercept term is considered as a predictor and included in the linear model. Each
subset S represents a class of models. The number of components in &, denoted by
k(S), is called the model size.

By minimizing the model error

ME(B) =[| 1= X (S)B(S) |I%, (2.2)

the optimal linear approximation is g = X3 = Hpu, where 8 = (X'X)" X'y, H =
X(X'X)” X" is a hat matrix and (X'X)~ denotes the generalized inverse or Moore-
Penrose pseudoinverse of (X’'X). The approximation error pue = (I — H)u. The

response may be rewritten as
Y=g+ pte +€=XB+ pe + €.
Let the model class S be specified by
B(S) = {X(8)X(8)} X(S) .

Since p is unknown, (3 is unknown but fixed for a given design matrix, and so is 3(S).
The e related to misspecified predictors is orthogonal to ji,, and cannot be linearly
predicted by X, k=1,...,dy. The pq is a linear combination of the predictors.
Let Sy, be the most parsimonious model satisfying X(Sy,)3(Sk,) = pa- The
most parsimonious model is called as an optimal model with size kg = (S, ). If the
design matrix X is of full column rank, (3 <Sk‘0) is the nonzero elements of . If there

are no misspecified predictors, e = 0 and Sk‘o is a true model.



Assumption 2.1. The optimal model size, kg, is bounded and the optimal model is
identifiable, that is,

A =liminf min n | X(Sg,)B(Sk,) — X(S)B(S) || > 0.
no S#Sk,
H(S)Sko

Assumption 2.1 is the same as the condition used by Shao (1996, eqn. (7)). It
means that the optimal model is separable from the models of size not greater than k.
Under Assumption 2.1, the S, is unique. Let X (Sg,, —t) be the matrix X (Sg,) with
the i-th column removed and B(Sy,, —i) be 3(Sy,) with the i-th element removed.
Then,

0| X (Skg) B(Sky) = X (Skys —1)B8(Skys —1) | = n M5l | Xi 1> A,

So if the predictors in Sy, have a finite average energy, that is, || X; 12 /n < oo, then
the predictors having decaying coefficients are excluded in the optimal model.
We only consider the models with size no more than min{d,,, n} because the model

of size greater than min{d,, n} would be overfitted and might not be identifiable.

2.2.2 Performance Measure

The model performance is assessed using prediction error, that is, expected squared-
error loss. Let yy be a vector of future responses at X. Thus yy = pu + ey, where
er ~ N(0, o?I). The prediction error for the model S is

PE(0) = E{|| yr — X(S)B(S) |*} = ME(B) + ko® + no?, (2.3)
where k = £(S) and 5(S) = {X(S)'X(8)} X (S)'y. The estimated model error is
ME(S) = E{|| p— X(8)B(S) I} = ME(B) + ko™,
Let Rss(3) =|| y — X(S)B(S) || be the residual sum of squares (Rss). Then

E{rss(0)} = /(I — H)pu+ 0% (n — k) = ME(B) + 02(n — k).

10



Thus
PE() = ME(() 4+ no? = E{rss(3)} + 2k (2.4)

~

Minimizing PE(/3) is not equivalent to minimizing ME((3). Usually there is a trade-
off between the model size and the model error to minimize the prediction error. The

following proposition elucidates this relationship. Let k = x(S) and

SNR = min | X(Sk())ﬁ(SkO) — X(5)B(S) HQ
B k<kq (ko — k)02 )

be an average signal-to-noise ratio.

Proposition 2.1. Let S, be the model that minimizes prediction error. Under
Assumption 2.1, if SNR > 1, S, = Sk()’ otherwise, if SNR < 1, kpg < kg.

The proof of Proposition 2.1 and all others are in Appendix 2.9. If SNR = 1, then
either kpp < ko or S, = Sk, The SNR is related to the sample size and the noise
level. As the sample size increases, the SNR becomes large and the model having a
good prediction tends to the optimal model. That is, the optimal model Sko might
minimize the prediction error. But the S, is unknown and needs to be estimated.

Selecting a model is equivalent to estimating Sko.

2.2.3 Model Selection

We consider the problem of selecting the best model from a set of candidate models
denoted by {Si,k = 1,..., K}. The best model is selected by the minimum value
of some selection criterion. Each candidate model S;. is the best model in the set
of models with size k, which has the minimum RsSS. Often stepwise methods or the
branch-and-bound algorithm (Furnival and Wilson, 1974; Gatu, 2006) may be used
but other optimization methods are also available for larger space problems (Hofmann
et al., 2007). Penalized least squares, such as LASSO and SCAD, can also be employed
to get the candidate models.

Assume that there is no multicollinearity for each model Sj.. Then

B(Sk) = {X(Sk)' X (Sp)} X (Sk)y.

Assume that the sizes of the candidate models are unique, that is, each size corre-
sponds to one candidate model. If the model sizes are not unique, we keep one model
11



for each size that has a minimum RSS. Hence selecting a model is equivalent to select-
ing the model size. For simplicity of notation, let X (k) = X(S;) and G(k) = 3(Sy)
in the sequel.

Let Sy, be the selected model with size k. If Pr{k, = kg} — 1 as n — oo, the
model selection procedure is consistent. If k,, > kg, the selected model is overfitting.

Otherwise, if ky,, < kg, the selected model is underfitting.

2.2.4 Selection Criterion

Most model selection criteria proposed to estimate the prediction error can be unified
into a generalized information criterion (GIC). For a linear model, the GIC has the
form,

GIC = nlog (7,% + ak,

where « is a tuning parameter, 6]% — RsSy/n, and Rssy, =|| y — X (k)3(k) ||2. The

GIC is asymptotically equivalent to a generalized FPE,
FPEq = nos ks, = s
a = noy, + aksy = RSSy + aksy, (2.5)
where s% = RSSy/(n — k), since as ak/n — 0,

log{FPEy/n} _ log 6,% + log{1 + (Ozk/n)(s%(/ff%)} as,

- 1.
GIC/n 10ga%+ak/n

So, for the linear model selection, we focus on the FPE, instead of the cic. Using
FPE,, we may get the finite-sample distribution of selecting a model instead of an
asymptotic distribution.

The original FPE proposed by Akaike (1969, 1970) is FPE = {1 + 2k/(n — k:)}ff]%.
Bhansali and Downham (1977) generalized the FPE into FPEP = (1 + ak/n)&%. Shi-
bata (1984) suggested the FPE,. Both FPE, and FPEg are asymptotically equivalent

since as ak/n — 0,
FPEq 1+ (O‘k/n)(s_%{/&]%) a.s.

= — 1.
nrPED 1+ ak/n
The expected FPE,, is
E{FPE.} = ME(S),) + ko (ag — 1) + no?, (2.6)

12



where a5 = a(1+62/0?), 62 = pibpe/(n— K). If there are no misspecified predictors,
e = 0 and a5 = a. If a5 = 1, the expected FPE,, equals the quadratic risk. If a5 = 2,
it equals the prediction error (2.3). Comparing (2.6) with (2.3), from Proposition 2.1

we have

Proposition 2.2. Assume Sy, € {S}. Let Sy, be the model minimizing the
expected FPEq. Under Assumption 2.1, if 0 < ag —1 < SNR then Skeprg = ko’
otherwise, if ag —1 > SNR then kppg, < ko. Furthermore, if 1 < a5 —1 < SNR,

Skrpea = Sko = Skep-
Proposition 2.2 shows that the model minimizing the expected FPE, may have

the minimum model error and prediction error if the sample size is large enough or

equivalently the SNR is higher.

2.3 Nonasymptotic Properties

We analyze the probability of selecting a model by FPE, and the computation of
the probability using the Monte Carlo method. The following lemma provides the

interval of «, in which FPE, can select a specified model.

Lemma 2.1. FPE,, can select the model S, if and only if

max Ay ; < a < min Ay

>k j<k

where Ay, ; = (RSSk—RSSj)/{(j—k)s%(} forjg#k k=1,... K. Letk;,i=1,....,m,
be all of sizes selected by FPE, with different a = a; and be in ascending order. Then
Akl,kQ <ap <00,

Ak ki = 00 S Ay kg

and 0 < oy < Ay, If a = Aki»ki—i-l’ the FPEq may select Sy, and Sy, .

_1,km

Here we define minjq Ay j = 0o and max;- g Ax ; = 0. Let x(a) be the model
size selected by FPE,. From Lemma 2.1, the probability of selecting the model &j, is

Pr{k(a) =k} = Pr{max A} ; <o <min A ;}. (2.7)
ji>k ’ j<k ’

13



Define an indicator function I(X,y,a) = I{max;.; Ay ; <o <minj; Ay i}
Then
Pr{x(a) = k} = B{I(X, y,a)}

Let X(@) and y(i) be the sample of X and y. By the strong law of large numbers,

N
i) = %ZI(X@, @ a) 5 Prin(a) = k}. (2.8)
=1

The probability, Pr{x(a) = k}, can also be estimated using the bootstrap method
or resampling the data {X, y}.

2.3.1 Nested Subsets

Assume that the candidate models are nested. In order to compute the probability
in (2.7), we analyze the distribution of Ay, ;. The following Lemma 2.2 holds from
the distribution of quadratic forms (Rao, 1973, §3b.4).

Lemma 2.2. LetS; O S, O §). Let x?l(/\) denote a noncentral chi-square distribution

with a degree of freedom d and a noncentrality parameter X. Then

Rssy/o? =y (I — Hy)y/o? ~x2_1(\p),
(RSSy, — RsS;)/0? = o/ (Hj — Hy)y/o? ~ X?_k()‘kj)a

where o?\, = /(I — H)p and ‘72>\kj =/ (Hj — Hp)p. If S D Skgs Mg,k = 0-
Furthermore, RSSfc, RSS; — RSSy, and RSS — RSS; are independent.

Since {S;.} are nested, from Lemma 2.2, for k=1,..., K — 1

Y

2 9
Zy, = (RSSg — RSSp11)/0° ~ XT( Mk kt1),

are independent, where A\j, .1 = E{RSS}, — RSSj11}/0% — 1 =y (Hyyq — Hy)p/o?
are the noncentrality parameters. Let Zx = s%(/a2. Then for j=1,...,k—1,

Apj = (Zj+ -+ Zp1)/Zi (k= ),

14



and for j=k+1,..., K,

Apj=Zp++Zj1)/Zk(5 — k).

Let Ak: = (Ak,la"wAk,k’—l?Ak,k—i—l’ SN 7Ak7K) and Z = (le--;ZK—l) be vectors
of length K — 1, and for 1 < k < K,

1 1 1
-1 E—1 1
1 1
E—2 T2 0
1
G, —
F 1
1 1
0 2 2
1 1 1
i K—%k K—Fk K% |
Then
Ay = GLZ/Zx. (2.9)

Define an indicator function I(Ay,, o) = I{max;-, Ay j < o < minj g A ;}. From
(2.7), for 1 <k < K,

Pr{x(a) = k} = E{I(Ay,a)} = E{I(G,Z/Zx, a)}.

From Lemma 2.2, Z;., k = 1,..., K, are independent. Assume that there are no
misspecified predictors, that is, pe = 0. Then Zx = 3%/02 ~ X?pK/(n — K). Let
Z]iz), i =1,...,N, be i.i.d. sample of Z;.. Let Z() = (ZY), . .,Z}?_l). By strong
law of large numbers,

plest gy _ | o a.s.
=¥ Z sz a) — Pr{k(a) = k}. (2.10)

Sampling Zj, needs the noncentrality parameter Ay 1.1 = E{RSS}, —RSSjyq}/0%—

1. An unbiased estimator of the non-centrality parameter is, see Kubokawa et al.
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(1993),
(n — K — 2)(RSS;; — RSSg11)

(n—K)S%(

Mg Jr1 = max{ —1,0}. (2.11)

Using the estimates of noncentrality parameters yields a conditional probability. If the

estimate is consistent, the conditional probability will converge to the true probability.

2.3.2 Unnested Subsets

Let X be the n x K design matrix corresponding to the subsets {S;}. Consider the
matrix decomposition X = UV, where U is an n x K column orthogonal matrix,
that is, U'U = Ij, and V is a K x K square matrix. This decomposition can
be constructed by the singular value decomposition. Then X (k) = UV (k), where
V(k) = V(Si).

Let Hp = ( WV EVENY IV, i = Ulp, § = Us, and € = é/o. Then
Yy Hyy = (i + €)' Hy(fi + ), and

(j — k) Ay = y'(H; — Hy)y/s% = (ifo + ) (Hj — Hy)(fi)o + €) [ Z .
The indicator function I(Ay, «) can be rewritten as
I(Akva) :](67 ZK?Mvo-a a)' (212)

Since ¢ ~ N(0,021,), € ~ N(0,Ixg). Assume that there are no misspecified
predictors, that is, ue = 0. Then Zp ~ X%_K/(” — K). Let () and Z}?, i =
1,..., N, be i.2..d. sample of € and Z, respectively. By strong law of large numbers,

pymmest () ZI K 0, 0) L5 Pr{k(a) = kY. (2.13)

The indicator function I(e, Zf, i, 0, «) includes the unknown parameters p and

o. In practice, we instead use the estimates 62 = s%( and o = Hy.

2.3.3 Upper Bounds

Let gk:—l and §k+1 be the models of size £ — 1 and %k + 1, respectively, and satisfy
gk—l C S, C §k+1~ If the candidate models are nested, gk—l = Sp_1 and gk; =S;.
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Since §; has the minimum RSS in the models of size j, f@éj > Rss; for j =k —1
and k 4+ 1. Assume that there are no misspecified predictors, that is, e = 0. Then
Zi ~ g/ (n— K).

From (2.7) and Lemma 2.2, an upper bound of the probability that FPE, selects
the model S, 1 <k < K, is

Pr{r(a) =k} < Pr{Appq <a<App_1}

Pr{(RSSy — RSSj11)/s% < a < (RSSp_1 — RsSSy,)/s%}
Pr{(rssy — fiégml)/s%( < a < (RSSk_q —fiSSk)/S%(}
Pr{F k(M jt1) <} Pria < Fy gk (Ap—1.k) )

(2.14)

IN

where j\k,k+1 and S\kfl,k are noncentrality parameters of (RSSy — RSS41)/0” and
(RSSj,_1 —RSS};) /02, respectively, and Fy, d,(A) represents a noncentral F-distribution
with degrees of freedom dq and d9 and noncentrality parameter \.

If & > ko, S‘k,kﬂrl = 0 and j\kfl,k = 0. Hence, the probability of selecting a
overfitted model by FPE, is bounded by,

Pri{r(a) =k} < Pr{Fy,, x <a}(1 - Pr{F, g <a}) £p. (2.15)
Similarly, the probability of selecting the true model by FPE, is bounded by
Pr{s(a) = ko} < Pr{F, g < a}(1 = Pr{F, x(\) < a}) = p, (2.16)

where \ = S‘ko—lyko is a noncentrality parameter of (f{\sgko_l - RSSkO)/O'Q.

The upper bound probabilities of selecting an overfitted model and the true model
are plotted in Figure 2.1. Each curve in the right of Figure 2.1 corresponds to a
different non-centrality parameter A. The small A represents the case of small sample
size. The circles represent the maximum values of each curve.

When K is large, the following upper bounds may also be used to reduce the

computational burden.

Pris(a) =k} <Pr{ max A;..<a< min A, .
{r(a) =k} < {k<j<k:+h Rod =% = <<k kit

where 0 < h < K is a specified number, for example, h = 4.
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Figure 2.1: Left: upper bound of the probability of selecting a overfitted model.
Right: upper bound of the probability of selecting the true model. The non-centrality
parameters, A, are 5 (dashed), 10 (dotted), 15 (dotdash), 20 (longdash), and 25 (solid),

respectively.

2.4 Asymptotic Properties

For convenience, denote Pr{4,} 2" Pr{B,} if Pr{lim A,} = Pr{lim B,}. To ana-
lyze the asymptotic properties on FPE, we use the following assumption.

Assumption 2.2. There almost surely exist the limits: n~ Yy 25 v2, n_lX(k)’y 5

v, and n” X (k) X (5) L5 Vij-

Lemma 2.3. Under Assumptions 2.1 and 2.2,

nTIME(B(k)) “5 A2 462,
nTIrss(B(k)) “B A2 4462 402,

where
A = limn ™| X (ko)B(ko) — X (k)B(k) | = vj Vi vke = V1 Vir 0k
6% = lim n_l,uéue =02 — 0% — Ufcovk_gllcoka‘

Moreover, Ai =0 if and only if k > ko. If k < ko, A% > A.
18



Proposition 2.3. Assume that Assumptions 2.1 and 2.2 hold. Let S} be the best
model of size k, k= 1,..., K, that minimizes RSS. If the sample size is sufficiently
large, then Sy, is independent of the sample for a fived k, S’fo € {8}, and either
S C S or X (k) and X (j) span the same subspace for the fived k and j with k < j.

It may not hold that S O Sy, for k > kg if the sample size is small. For example,
there are three predictors z1, z9 and x3 = x1 + x9 + 0.0le, and the true model
y = x3 + 0.1e, where e ~ N(0,1). Let n = 20. The first two best subsets may be
81 = {3} and Sy = {1, 72}

From Lemma 2.3, there exists the following limit

. | .
7= lim minn~ “A;. . = min > 0. 2.17
n=00 j <ky h0d T kg (02 + 82) (ko — J) (2.17)

Theorem 2.1. Let o = vy and n” Loy, — 7. Let k() be the model size selected by
FPEq. Assumptions 2.1 and 2.2 hold.
1) If a < o0, then for ky < K,

Pr{limx(«) < ko} =0,
Pr{lim k() = ko} ‘2’ Pr{max;-p, Agyj < o},
Pr{lim x(a) > ko} 2" Pr{max;-j, Ak, > a}-

2)Ifa — o0 andr <,

Pr{lim k(o) = ko} = 1,
Pr{lim k() # ko} = 0.

3) Ifr >,
Pr{limx(a) < ko} =1,
Pr{lim k(o) > ko} = 0.

4) Ifr=r,
Pr{limk(a) < ko} = 1.

19



If S;. are nested, from (2.9),

Ak ko+1 1 ZyolZK
1 1
Ak(),k‘o-l—Q 2 2 Zk0+1/ZK éGQZk 175
: : : : 0 ’
1 1 1
Ako K Kk K-k =~ Kk J LZK-1/2K

where Z; ~ X%; j =ko,...,K — 1, and Zg are independent. Define an indicator
function I(Zy,, Zg, o) = I{max;~p, Ay, ; < a}. Then for ky < K, from Theorem
2.1,

Pr{lims(a) = ko} ‘=" E{I(Zy,, Zic,0)} "2 E{I(Zy,, 1 + 6%/0* o)}

If there are no misspecified predictors, 62 = 0.

If S;. are unnested, similar to (2.14), we may show asymptotically
Pr{limx(a) = ko} < E{I(Z,, 1+ 52 /0%, a)}.

Hence for a finite or fixed o, Pr{limx(a) = ko} < Pr{Z, < (1+ 62/0?)a} < 1. This
means that the FPE, with a finite « is inconsistent if kg < K.

If kg = K, since we define max;~ g Zg ; = 0,
Pr{lim k(o) = ko} = Pr{max Z ; < a} = 1.
J>K ’

So in this extreme case, the FPE, with a finite « is consistent.
The asymptotic properties are described in Corollaries 2.1 and 2.2, which are
directly derived from Theorem 2.1. In the following corollaries, Assumptions 2.1 and

2.2 are implied but omitted.

Corollary 2.1. Assume ko < K and Sy, € {Sg}. Let a = ap and nlag —r#T.
1) If « is bounded, FPEq is inconsistent, and the selected model is asymptotically either
optimal or overfitted. 2) FPEy, is strongly consistent if and only if « is unbounded
and r < 7. 8) FPEq is asymptotically underfitted if and only if o is unbounded and

r>T.
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Corollary 2.2. Assume ko = K and Sg, € {Sg}. Let ntay, — r # 1. Then
if 1 < T, FPEq s strongly consistent. Otherwise if r > T, FPEq is asymptotically
underfitted.

From Corollary 2.1, as commonly known, FPE, is inconsistent if « is bounded.

Loy, — 0 is sufficient but not necessary for the consistency.

But the usual condition n™
From Corollary 2.2, A1C and FPE may be consistent in the extreme case of ky = K.
So strictly speaking, the statement that AIC and FPE are inconsistent is incorrect.
The 7 is an unknown constant related to the optimal model size kg, and might
be estimated by 7 = min; . Ag,(j)/n if kg was known. Since Ay, (j)/n 20 for

J > ko, the 7 may be estimated by
7 =min{Ag(j)/n > €}, (2.18)
i<k

where € is a small value.

2.5 Adaptive Procedures Based on Probabilities

2.5.1 Procedure One

According to the probability distribution of selecting a model, we may decide the best
model. From the asymptotic property given in Theorem 2.1, we see that as the tuning
parameter « increases with the sample size, the asymptotic probability of selecting
the optimal model, Sk‘O’ may approach one. Hence the model having the maximum
probability should be the best model.

Let prp(a) = Pr{s(a) = k}, the probability of selecting a model that can be
estimated using (2.8), (2.10), or (2.13). The best model is estimated by

o — 2.19
0 =arg, g}%XK{algnggaQ pe(a)}, (2.19)
where [a1, ag] is a specified range of a. From the bound probability of selecting the
optimal model (2.16) and Figure 2.1, the a may be limited by 2 < o < 9.
The model selection procedure given by (2.19) is called an adaptive FPE,, , denoted

as FPE, g, in which the adaptive change of « is based on the probability distribution.

From Theorem 2.1, the FPE, 4 is inconsistent if the upper range as is finite, and it
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is consistent if ag = clog(n), where c is a constant. In practice, the @ may only take
the integers in [aq, as] because whether or not a model can be selected relies on an

interval in which « is.

2.5.2 Procedure Two

Let I}, = [maxj~j Ay j, minjo Ag ;] If o € I, FPEq selects the model Sj. Let
o= € I} be changed adaptively based on the interval. From Lemma 2.1, the
probability of selecting the model S;. is

Pri{r(a; ) =k} = Pr{max;.j Ay ; < minjp A ;}
= Pr{max;. Dy ; <minj Dy ;}
= Pr{max;.; W ; < min;,, W} i},

where Dy ; = (RSSy, — RSS;)/(j — k) and Wy, ; = Dy, j/o”.
Similar to (2.14), for kg < k < K,

Pr{s(o;, ) = k} Pr{Wj, k11 < W -1}
Pr{x} < x}}

0.50.

IAIA

Under Assumptions 2.1 and 2.2, from Lemma 2.3, for j > kg > [, as n is large
enough, we have Dy, ; = o(n) < Dy, ; = O(n), and then

Pr{fi(aiko) =ko}t = Pr{jrr;a};x Dioj < ]yréikrz) Dyt = 1.

Hence by computing the probabilities, p; = Pr{m(aik) =k}, k=1,..., K —1,

we may determine the best model. The procedure is given by
ko = max{k : p, > n}, (2.20)

where 7 is the level of selecting the optimal model. If it is desired that Pky 2 0.90,
then 7 = 0.90. The procedure given in (2.20), denoted as FPE, ;, is consistent if
n > 0.5.
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Define an indicator function I(X,y, k) = I{max;~, D} ; < min;;, Dy, ;}. Then

Pr{r(a;, ) = k} = E{I(X,y,k)}.

Let X() and y(i) be the sample of X and y. By strong law of large numbers,

N
1 N .
Pr= ST1x Wy k) “5 Prin(a,) = k). (2.21)
=1
The bootstrap or resampling methods can be used to estimate py.

2.6 Further Discussions

A more general form of FPE, is
FPE, = RSS; + acks%(, (2.22)

where ¢, is a known positive increasing function of the model size £ and may depend
on n. The ¢, represents the model complexity. The form (2.22) includes a variety of
information criteria. With ¢;. = (eo‘k/ " —1)Rrssy/ as%(, the FPE,, is exactly equivalent
to AICq. If acy, = 42?21 log(K/j), the FPE, is the covariance inflation criterion
(c1c) (Tibshirani and Knight, 1999). The FPE, also includes the risk inflation crite-
rion (RIC) (Foster and George, 1994).

2 may be considered as a scale of the

In (2.22), s%(, an estimate of variance o
tuning parameter a and can be replaced by any positive number. Substituting as%{
with v, we obtain,

FPE, = RSSj, + ¢k (2.23)

The penalty in (2.22) is a random variable related to the sample, while the penalty
in (2.23) is deterministic. The FPE, is asymptotically equivalent to FPE, with v =
(02 + 52)a. In the high dimensional feature space, usually s%( is close or equal to

zero, and then FPE, cannot work but FPE, works.

Corollary 2.3. FPE, , defined in (2.22), selects the model Sy, if and only if

max By, ; < a < min B,

>k j<k
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where By, ; = (Rssy, — RsS;)/{(c; — ck,)sg(} forj #k, k=1,...,K. Let k;, i =
1,...,m, be all of sizes selected by the FPEy with different o = «; and be in ascending
order. Then By, p, < a1 < 00,

By ki1 < 0 < Bry_y gy

and 0 < am < By, Afa= Bki»ki—i—l’ FPEq may select Sy, and Sku—l'

_1,km

Corollary 2.4. FPE, , defined in (2.28), selects the model Sy, if and only if

max D;. ; <~ < min Dy, .,

J>k hj == j<k kJ
where Dy, j = (RS, — RSS;)/(cj —¢y) forj#k, k=1,...,K. Letk;j, i =1,..,m,
be all of sizes selected by FPEy with different v = ~; and in ascending order. Then
Diy ko <M < 00,

Diikin <% S Digg_y

and 0 < ym < Dy

m—hkm'

Corollaries 2.3 and 2.4 are directly obtained from Lemma 2.1. Substituting Ay, ;
with By, ; or Dy, ;, the results provided in Section 2.3 and Section 2.4 are applicable
to the general FPEq or FPE,.

From Corollaries 2.3 and 2.4, the necessary condition under which the model S;.
can be selected is

D ki1 < Dy

Let ko < k1 < ... < km. ISy CSpy C ... C Sy, andlet ¢ = k then Dy, g, /0 ~
X%,H_ 1./ (kiy1 — k;) are independent, see Lemma 2.2, and the probability that the
(2 1

m models could be selected is

2 2
Pr{MS.._SM}’
k1 — ko km — km—1

which will be near zero if m is large. Hence only a few models can be selected even if
K is large. Using the interval constraints may significantly reduce the number of the
candidate models. This is particularly useful to reduce the computational burden if

K is large.
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2.7 Numerical Illustration

This section is to numerically illustrate the properties of the general FPE, and
FPE, with simulation study and applications to the diabetes study and the Stan-
dard and Poors 500 stocks. The simulation study verifies the probability of selecting
a model by FPEy and the probability-based procedures for model selection. For
the diabetes study, we obtain the set of candidate models by LASSO and exhaustive
search, and then use the probability-based procedures to select the best model. In
the dataset of the Standard and Poors 500 stocks, the number of observations is less
than the number of the predictors. We obtain the candidate models by MCP , screen
the candidate models by the interval conditions in Corollary 2.4, and then use the

probability-based procedures to select the final best model. In this section, ¢, = k.

2.7.1 Simulation Study

As in Tibshirani (1996) and Fan and Li (2001), we consider a linear model with
8 = (3,1.5,0,0,2,0,0,0). The components of X and e are standard normal. The
correlation between X; and X is p|i_j‘ with p = 0.5. The true model size is kg = 3.
The full model size is K = 8. Let 0 = 1, and n = 20.

First we assume that the predictors are deterministic, that is, X, k =1,...,8, are
fixed. We run m = 10% simulations, and count the number of the models selected by
FPEy with different v = 20y, ag = 2,...,10. Let mj. be the number of the selected
model S, k = 1,...,8. The relative frequency, defined by f = mj/m, the model
error, ME(() =|| X — X (k(a))B(x()) ||2, and the standard error (SE) of the ME are
shown in Table 2.1. FPEy with oy € (7,10) selects the true model with probability
more than 0.99. FPE, with ay = 9 has the highest probability but slightly larger
ME than FPEy with oy = 8. This means that the true model having the minimum
model error may not be the model having the minimum prediction error.

With known noncentrality parameters A;;11, we compute the probabilities py,
using (2.8) with N = 107. The results are in Table 2.2. The largest standard error
is 0.00014. Comparing with Table 2.1, the probabilities and the relative frequencies
are very close, and their differences are from —0.0062 to 0.0053.

Now we assume that the predictors are random variables. we compare the perfor-
mance of the probability-based procedures FPE, 4 and FPE,; with AIC and BIC by

measuring the percentage number of underfit, overfit and correct models, and the
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Table 2.1: Relative frequency fy of selecting a model Sy, k =1, ...,8, by FPE,.
o f1 0 fo /3 f4 /5 f6 I I3 ME SE
0.000 0.741 0.112 0.058 0.039 0.026 0.024 4.722 0.043
0.000 0.884 0.073 0.025 0.012 0.004 0.002 3.802 0.035
0.000 0.946 0.042 0.008 0.003 0.000 0.000 3.410 0.031
0.000 0.970 0.025 0.004 0.001 0.000 0.000 3.259 0.030
0.001 0.982 0.016 0.001 0.000 0.000 0.000 3.170 0.028
0.001 0.990 0.008 0.000 0.000 0.000 0.000 3.123 0.028
0.002 0.993 0.004 0.000 0.000 0.000 0.000 3.109 0.029
0.003 0.994 0.003 0.000 0.000 0.000 0.000 3.121 0.031
0.006 0.993 0.002 0.000 0.000 0.000 0.000 3.172 0.034

o

= O 00 ~J O UL~ Wi
SO DD DO oo O

Table 2.2: The probability of selecting a model S, k =1, ..., 8, with known noncen-
trality parameters. The standard errors are between 0 and 0.00014. The differences,
P — fr, range from —0.0062 to 0.0053.
ac pL P2 3 P4 D5 P6 Pr P8

0.000 0.735 0.117 0.061 0.038 0.027 0.022

0.000 0.883 0.074 0.025 0.011 0.005 0.003

0.000 0.943 0.043 0.010 0.003 0.001 0.000

0.000 0971 0.025 0.004 0.001 0.000 0.000

0.001 0.984 0.014 0.001 0.000 0.000 0.000

0.001  0.990 0.008 0.000 0.000 0.000 0.000

0.002 0.993 0.005 0.000 0.000 0.000 0.000

0.004 0.993 0.003 0.000 0.000 0.000 0.000

0.006 0.992 0.002 0.000 0.000 0.000 0.000

= O 00 3 O O Wi
OO OO OO o oo

model error, (B -8 Em(ﬁ — (3), where ¥ is the covariance matrix of the predictors.
The probabilities pi(a) and pj are computed using (2.8) and (2.21) by bootstrap
methods. The level of selecting the optimal model for FPE, ; is n = 0.90. The num-
ber of bootstrap samples is N = 100. We run 10* simulations. The results are in
Table 2.3.

2.7.2 Diabetes Study

We consider the diabetes dataset used by Efron et al. (2004) to illustrate LARS. This
dataset consists of 442 diabetes patients who were measured on 10 baseline variables:
age, sex, body mass index, average blood pressure and six blood serum measurements.
A prediction model was desired for the response variable, a quantitative measure of

disease progression one year after baseline.
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Table 2.3: Percentage number of underfitted models (u), correct models (c), and
overfitted models (o), and model error with standard deviation from 10* simulations

for different sample size n.

n  procedure u ¢ 0 me sd
50 AIC 0 44 56 0.304 0.245
BIC 0 78 22 0.220 0.215
FPE, g 0 94 6 0.179 0.207
FPE, 4 95 1 0.217 0.413
100 AIC 0 44 56 0.140 0.105
BIC 0 8 14 0.094 0.086
FPE, ¢ 0 97 3 0.078 0.073
FPE, ; 0 99 1 0.073 0.065

We first consider the subsets generated by LASSO , which consist of ten nested
subsets S, k = 1,...,10. The best model will be selected from the subsets. We
compute the probability of selecting each model by (2.10). Monte Carlo sample size
N = 105. The results are shown in Table 2.4. The model S5 is selected using the
procedure (2.19), FPE, 4, because it has the highest probability. Using the Cp in

LARS selects the model §7 that contains two insignificant coefficients. AIC also selects

S7 but BIC prefers Ss.

Table 2.4: The probability of selecting a model S;., k = 1, ..., 10, in the LASSO subsets,
computed by (2.10). N = 1000,000. The standard errors are between 0 and 0.0005.

o D2

p3

P4

D5

P6

p7

P8

P9

P10

0.000
0.000
0.000
0.001
0.004
0.010
0.020
0.037
0.063

= © 00~ O Ul A W N
coococoocooool

o

0.000
0.003
0.010
0.025
0.049
0.084
0.128
0.177
0.228

0.003
0.012
0.025
0.043
0.062
0.080
0.095
0.107
0.113

0.333
0.550
0.695
0.772
0.794
0.776
0.730
0.664
0.587

0.038
0.032
0.023
0.015
0.009
0.005
0.003
0.002
0.001

0.353
0.296
0.207
0.131
0.077
0.043
0.023
0.012
0.006

0.069
0.033
0.014
0.005
0.002
0.001
0.000
0.000
0.000

0.147
0.061
0.022
0.007
0.002
0.001
0.000
0.000
0.000

0.057
0.013
0.003
0.001
0.000
0.000
0.000
0.000
0.000

We further consider the best subsets generated by exhaustive search. The best

subsets are not nested, see Table 2.7, where five subsets are listed. The Sg is the

same as that in LASSO subsets, but the Sg is different from that in LASSO. In the

best subsets, S5 and Sg are almost equivalent because the covariate ‘hdl’ in S5 has a
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linear relationship with covariates ‘tc’ and ‘1dl” in S§g. The probabilities of selecting the

models S, are computed using (2.13) and shown in Table 2.5. It is seen that S5 and

Sg are tied and both can be selected using the procedure (2.19). Using Lemma 2.1,

we calculate the intervals (ay, 1, ay, 2) shown in Table 2.6. From Table 2.6 BIC selects

the model S5 because logn = 6.09, and AIC selects the model Sg.

Table 2.5: The probability of selecting a model Sy, k =1, ..., 10, in the best subsets,
computed by (2.13). N = 1000, 000. The standard errors are between 0 and 0.0005.

a Pl b2 b3 P4 45! D6 b7 b8 P9 P10
2 0 0.000 0.000 0.002 0.094 0.386 0.182 0.193 0.089 0.053
3 0 0.000 0.001 0.008 0.182 0.503 0.140 0.116 0.036 0.013
4 0 0.000 0.002 0.023 0.277 0.529 0.091 0.061 0.014 0.003
5 0 0.000 0.007 0.045 0.367 0.492 0.053 0.029 0.005 0.001
6 0 0.001 0.016 0.074 0.442 0423 0.028 0.013 0.002 0.000
7 0 0.003 0.032 0.105 0.495 0.343 0.014 0.005 0.001 0.000
8 0 0.008 0.056 0.136 0.527 0.264 0.007 0.002 0.000 0.000
9 0 0.018 0.088 0.160 0.535 0.195 0.003 0.001 0.000 0.000
10 0 0.032 0.126 0.178 0.523 0.138 0.001 0.000 0.000 0.000
Table 2.6: Intervals (Oék,la ozk72) in which FPE, selects the model Sj..
S 1 2 3 5 7 8 9 10
Qg1 103.52 18.45 12.79 5.60 1.26 1.06 0.22 0.03 0
a9 oo 103.52 18.45 12.79 5.60 1.26 1.06 0.22 0.03

Table 2.7: Model coefficients with significance codes

Ckksky osksko oky o ;
, , 74 or Y repre-

4

senting the corresponding p-value in (0,0.001], (0.001,0.01], (0.01,0.05], (0.05,0.1],

or (0.1, 1], respectively.

Variable S3 S5 Sg S7 Sy

sex -0.1456%**F  -0.1399***  -0.1462*** -(.1495%**
bmi 0.3725%**  (.3234%*%*  (.3273%FF  (.3268%FF  (0.3204***
map 0.1620***  0.2015***  0.2021***  0.2062***  0.1986™**
te -0.4682***  -0.3799**  -(.3834**
1dl 0.3327***  (.2181 - 0.2186 -
hdl -0.1786%**

tch 0.0836 - 0.0786 -
Itg 0.3359%FF  0.2930%**  0.4967***  0.4357***  (.4274%**
glu 0.0415 -
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2.7.3 Standard & Poor’s 500 Index

The dataset included in R package plus contains a year’s worth of close-of-day data for
most of the Standard and Poors 500 stocks. We consider the daily percentage change.
In the data, the first column named X.DJI, Dow Jones Industrial Average, is used
for the response variable, and the other 492 columns excluding the second column
are the predictor variables. There are 252 observations. The goal is to estimate the
index using the individual stocks.

In this example, n = 252 and d,, = 492. First, the minimax concave penalized
likelihood method, MCP (Zhang, 2010), is used to obtain 501 candidate models with
sizes from 1 to 30. Then, we select a best model having a minimum RSS for each size
and get K = 28 candidate models with unique size from 1 to 30. Using Corollary 2.4,
we calculate the intervals of v and then reduce the 28 candidate models to 10 that
can be possibly selected by FPE,, see Table 2.8. Finally, using the probability-based
procedure (2.19) yields the best model Sig with a probability of more than 0.95.

Table 2.8: Intervals (7, 1,7k 2) in which FPEy selects the model S.

Sy 1 3 4 7 11 13 18 22 24 30
Y1 10400 1825 1436 3.07 146 1.13 0.28 0.277 0.206 0
YE.2 oo 104.00 18.25 14.36 3.07 1.46 1.13 0.28 0.277 0.206

2.8 Conclusions

Model selection is to find the best model among a set of candidate models according to
some selection criterion. We considered the generalized information criterion, FPE,
investigated the relevant properties, and extended it into FPE, that is suitable for high
dimensional space. We investigated the probability distribution of selecting a model
by FPEq, and the conditions under which the criterion is underfitting, consistent, or
overfitting. The probability-based procedures were proposed for selecting the best
model.

As shown in the application to the Standard and Poors 500 stocks, the properties
given in this chapter have a potential application to the model selection in high
dimensional feature space. First, using the necessary and sufficient conditions that

the models can be selected reduces the number of the candidate models. Then, using
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the probability-based procedures select the best model in the reduced set of candidate

models.

2.9 Appendix

2.9.1 Proofs of Lemmas

Proof of Lemma 2.1.

FPEq selects the model Sy, if and only if for j # k, FPEq(j) — FPEq = (RSS; —
RSSE) + o) — k))S%{ > 0, that is, max;~j Ag ; < a <minj g Ay ;.

Let ayj, = max;j~p A j and agy = minj o Ay ;. Since

aip; = H;E}CXFIC () = Ak kg = Fryq (ki) = ]g}cﬂil Fiepy ) = agg,
and there is no gap between the adjacent intervals [a1y,, agy,| and [ayy, 10 A2k +1]’ we
have ayj, = agy, |, and then ayy, = Ay, . | = Fkiﬂ(ki) = a9k, ;-
If o= Ap, ;o € a1y, agy,;] and o € [a’lki+1’a2ki+1]' Hence FPE, can select
the two models S, and S, E O

Lemma 2.4. Under Assumption 2.2, there exist the followz'ng limits: (1) n_lX'
0,n e 250, andn ' X (k) u 5 v (2) n= 1l g =5 Uk Vk_k Vg andn™ Ll e &5
62, where 62 = 1% — o2 — u;govk;}fovko.
Proof of Lemma 2.4.

(1) Since Z,, = nings ~ N(0, U2XZ(XZ'/TL2), and there exist Ny and o; such that
XIX;/n < 0;2 for n > Ny, for any € > 0

2/2dz
—2z /2dz

Pr{|Zal > ¢} = [l2sne/olx;) m

= fz|>\fe/aaZ \/ﬂ
1 2kp Ck
< f|z|>\/ﬁe/aaZ Vor 22k dz nk— 05’ (k >2).

Since }2,~n, PrilZn| > ¢} < o0, Zp 2% 0. Similarly, n=ty/e %% 0. Then

limn 1 X (k) = limn = X (k) (y — ¢) = limn "' X (k)'y = vy, a.s.
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(2)

limn_l,ug,ua :limn_l,u’HkO,u
= lim{n =14/ X (ko) H{n 1 X (ko) X (ko)}~H{n ™' X (ko)' s}
-1
= U;COVkOkoka.

2_ 52 and then lim n_l,u'eue =

Since lim n_ly’y = lim n_lp'u—l—lim n_lels, lim n_l,u’u =0
limn =14/ — lim n_lug,ua = 2. O
Proof of Lemma 2.3.

By Hpp = Hp g, and Lemma 2.4,

Ap = limn Y| X (ko)B(ko) — X (K)B(k) ||?
limn =Y pa — Hype ||?
= lim(n™yrppa —n”Hp Hyp)
o —1 ry—1
Vko VkokoUko ~ VEVik Uk-

From
nIME(B(K) = nb| p— X(K)B(K) |2
= 07 (| pa — X(K)BK) |* + pilpie)
= n (|| X(ko)B(ko) — X (k)B(K) |1 + ppe),

and Lemma 2.4, n~IME(B(k)) 5 A2 + 62,
The second limit follows from Lemma 2.4 and

rSS(B(k)) = ME(B(k)) + 21/ (I — Hy)e + &' (I — Hy)e.

If £ < kg, by Assumption 2.1, A% > 0. If kK > kg, £ > kg as n is large enough.
There exists S D Sk, and then A%(Sk) = 0, where k(S;) = k. Since Sy, is the best
one in the models of size k, Rss(B(k)) < RsS(Sj;). From Lemma 2.3,

lim n~Irss(B(k)) = A2 + 6% + 0% < lim n~1Rrss(S;) = 62 + o2

Hence A% =0. O

2.9.2 Proofs of Propositions

Proof of Proposition 2.1.
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Let SNR(Sy) =|| X (ko)B(ko) — X (k)B(k) ||* /o*. Then

PE(S)) = ME(B(E)) + ko? + no?
= || pa = X(k)B(K) |* +ppe + ko? + no?
= || X (ko)B(ko) — X (K)B(k) || +ko? + pilpe + no
= PE(Sy,) + {SNR(Sy) — (ko — k)}o?.

(2.24)

For k > ko, PE(Sy) > PE(S},). So kep < ko.
If sSNR > 1, PE(Sg) > PE(Sy,) for k # ko. Hence kpp = ko and PE(Sg,,) =
PE(S, ). From (2.24), SNR(Sg,,,,) = 0 and then

X(kep)B(kpe) = X (ko)B(ko) = pa-

By Assumption , Sy, = Sk,
If SNR < 1, From (2.24), there exists k1 < ko such that PE(Sg, ) < PE(Sy,). Hence
kpg # kg, and then kpg < kg. This completes the proof. O

Proof of Proposition 2.35.

Consider the models S with x£(S) = k. From Lemma 2.3, as n — oo, the S}, mini-
mizing RSS(S) almost surely approaches the model minimizing Ay, that is independent
of n.

Similarly, as n — oo, the S minimizing RSS(S) subject to k(S) = kg almost
surely approaches the model minimizing Ay, that is Sy,. Hence Sy, € {Sy}-

For the fixed k < j, §; and §; are almost surely independent of the sample as n
is large enough. Since RSSj, > RSS;, RSS), — RSS; = y'(Hj — Hj.)y > 0 for each sample
y. So either H;y = Hpy or H; — Hy, > 0 and then §, C ;. O

2.9.3 Proofs of Theorems

Proof of Theorem 2.1.
Let n be large enough. Then from Proposition 2.3, Sy, € {Sy}. For j,k > ko > [,
from Lemma 2.3, 4y, ; = o(n) and Ag; = O(n). Hence Ay, ; < Ay, ; and

«Q =max A ; < « = min A;._ ;.
ko,1 i>ko ko, ko,2 1<k kol
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So from Lemma 2.1, the optimal model Sk’o can be always selected by the FPE, with

a proper . We may divide [0, 00) into three intervals:

A= [ako,Qa 00)7
A = [ako,la ak072)7
Ay =10, ag 1)

From Lemma 2.1,
Pr{k(a) < kg} = Pr{a € A_},
Pr{x(a) = ko} = Pr{a € Ap},
Pr{r(a) > ky} = Pr{a € A4}

1) Let a < 00. Since Ay, ; = O(n) for | < ko, ap, 2 — co. As n is large enough,

Pr{k(a) < kg} =Pr{a € A_} =0,
Pr{r(a) = ko} = Pr{a € Ao} = Pr{a € [ay, 1, o0)},
Pr{r(a) > ko} = Pr{a € A1} =Pr{a € [0, oy, 1)}

1

2) Let oy — o0 and r < 7. Since limn™"'ay, =7 < 7 = lim ming g, n_lAkOJ,

there exists ng such that for n > ng, an < minj g, Ag, ;= o, 2. Hence

Pr{r(a) = ko} = Pr{a € Ao} = Pr{max 4; ; < an}.
>k ’

Since Pr{max;-p, Ap,; < on} Y Pr{max;, Wi, ; < an(l + 62/5%)}, where
Wio.i = (RSSg, — RSSj)/U2(j — kp). From Proposition 2.3 and Lemma 2.2, as n is
large enough, for j > kg, either Wko,j =0 or Wk()vj ~ X?*ko/(‘j — ko). Hence from
oy — 00, we have

Pr{max Wy, ; < an(1+ §2/0%)} — 1,
J>ko

and then Pr{x(a) = ko} = 1.
3) Let r > 7. There exists ng such that for n > ng, a > min < Aol = Vg2

Hence

Pr{r(a) < ko} =Pr{ae A_} = Pr{lmikn At S at=1.
<Ko
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4) Let r = 7.
Pr{r(a) > ko} = Pr{a € A} = Pr{a/n < ay, 1/n} = Pr{r <=0} =0.

Thus Pr{lim x(a) < kg} = 1.
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Chapter 3

GIC WITH OVERFITTING LEVEL

A new model selection method using the generalized information criterion (GIC) is
developed based on controlling the upper bound of the probability of selecting an
overfitting model. The main advantage of this method is that it has very good model
selection capability as well as being easy to implement. As in the case of the BIC,
the new procedure is consistent with a proper choice of the overfitting level. The im-
provement in model selection over the BIC is demonstrated in simulation studies. The

application of the GIC is illustrated with logistic regression and subset autoregression.

3.1 Introduction

Model selection is an important topic in modern applied statistics (Hastie et al.,
2009, §7). We suggest using the generalized information criterion (GIC) to automat-
ically select the best model from a set of candidate models. Many model selection
criteria have been derived based on a variety of principles such as minimizing final
prediction error (Akaike, 1969, 1970), minimizing mean squared model error (Mal-
lows, 1973), minimizing information loss (Akaike, 1974), and maximizing posterior
probability (Schwarz, 1978). Most of them may be considered as a special case of the
GIC (Bhansali and Downham, 1977; Akaike, 1979; Shibata, 1984; Nishii, 1984; Shao,
1997; Zhang, 2009).

The Gic with hypothesis testing for model selection was considered for linear
regression by Shao and Rao (2000). A model selection procedure was proposed by
controlling an upper bound of overfitting probability to a pre-assigned level (Shao
and Rao, 2000). This approach provides a computationally more efficient approach
than cross-validation. Previously, Shao (1993, 1997) showed that simple leave-one-
out and k-fold cross validation did not provide consistent model selection but that a

more computationally intensive approach using delete-d cross-validation was needed
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for asymptotic consistency. This approach was shown to provide more accurate model
selection in finite samples (Shao, 1993, 1997) in simulation experiments.

The hypothesis testing approach of Shao and Rao (2000) is not easily implemented
since the overfitting probability bound cannot be computed. As well, the suggested
approximation (Shao and Rao, 2000, eqn (2.6)) is very conservative because of re-
placing the true model with a model of size one. In this chapter, we propose an
alternative procedure by controlling the upper bound probability of selecting an over-
fitting model. The probability of selecting an overfitting model is different from the
overfitting probability considered by Shao and Rao (2000). Our approach is simpler

as well as more general.

3.2 Generalized Information Criterion

Let y = (y1, .., yn) be a vector of responses and X = (X1, ..., X;) be an n X d matrix
of inputs. Let S = {s1,..., 83} be a subset of {1,2,...,d}, which represents a class of
models with size k. The model is specified by a distribution function fys)(y|X(S)),
where 6(S) is a vector of parameters, and X (S) denotes the matrix formed by selecting
the columns corresponding to S from X. After the data is available, let L(6(S)) =
fo(s)(y| X (S)) be the likelihood function and 0(S) its maximum likelihood estimate.

We consider the problem of selecting the best model from a set of candidate models
denoted by {Si,k =1,..., K}, where S}, is the model of size k that has the maximum
likelihood in the class of models with size k. Assume that the sizes of the candidate
models are unique and L(8(Sy)) < L(6(Sj41)). If the model sizes are not unique,
we keep the model having the maximum likelihood and remove others for each size.
Hence, selecting a model is equivalent to selecting the model size.

The best model is selected by the minimum value of some selection criterion. A
widely used criterion is the generalized information criterion (Akaike, 1979; Nishii,
1984),

CIC, = —2log L(0(S},)) + ak. (3.1)

When « is constant, the GIC, was called A1C, (Akaike, 1979; Bhansali, 1986), in
which the o was introduced to balance the effects of the bias and variance of the
parameter estimate. The GICc, is called A1C-type if o is bounded and BIiC-type if
a — 00 as n — oo. The consistent property of BIC is shared by the BIC-type criterion

satisfying & — oo and a/n — 0 as n — oo (Shao, 1997; Yang, 2005).
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3.3 Procedure by Controlling Overfitting

Before giving the model selection procedure that is based on controlling the proba-
bility of selecting an overfit model, we analyze the constraints on the o under which

the GIC, can select a specified model. The GIC, selects model S, if and only if for
J#k,
—2{log L(6(S;)) —log L(A(Sk))} + a(j — k) > 0.

Equivalently, for j > k,
a > 2{log L(0(S;)) — log L(O(Sy))}/(j — k),

and for 5 < k,
o < 2{log L(0(S;)) — log L(O(S1))} /(7 — k)

Hence, the following proposition holds.

Proposition 3.1. GICy selects the model Sy, if and only if a1 < a < ay, 9, where

a1 = max 2{log L(0(S;)) — log L(O(Sk))}/(j — k),

Ok = ?222{105-’; L(9(S;)) —log L(B(Sk)}/ (7 — k).

Here we define a1 = 0 and o 9 = oo. Proposition 3.1 gives all of the possible
models that can be selected by the GICo. The inequality condition oy, 1 < ay o may

not hold for some £ and in this case, the model S}, cannot be selected.

3.3.1 Hypotheses

Assume that the true model Sy is in the candidate models and S, C &) for ko < 1.
Let k(GICy) be the model size selected by GIC, and k(GIC,) < K. We consider the
following hypotheses for testing overfitting

Hy: Ii(GICa) > ko,
Hy: k(Gicy) < k.
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Let k = k(GICq). Let gk;—l and §k+1 be the models of size k—1 and £+1, respectively,
and satisfy Sp_1 C S C §k+1- If the candidate models are nested, S;_1 = S_1
and gk =S;.

Under Hy, Sg, © gk:—l C S, C §k+1» and then asymptotically

A1 = 2{log L(0(Sy.+1)) — log L(O(Sp))} ~ X7,

Ap = 2{log L(8(S},)) —log L(0(S—1))} ~ X1,
where X% denotes the X2 distribution with one degree of freedom. Furthermore, by
Cochran’s theorem (Rao, 1973), A, 1 and A}, 5 are independent because Ay, 1+ Ay o =
2{log L(0(Sp41)) — log L(A(S,_1))} ~ X3 asymptotically.
Under Hy, similarly, if k(GICy) = kg, asymptotically Apg1 ™~ X% and Ay, o ~ X%,v
are independent, where X%,v denotes the y2 distribution with one degree of freedom
and with non-centrality parameter v. It is seen that v = E{Ay olk = ko} — 1. Sov

increases with sample size, n.

3.3.2 Probability of Selecting a Model

Provided a > 0, there is asymptotically zero probability of underfitting. In this
section, we obtain upper bounds for the probability of selecting the correct model
and also for selecting an overparameterized model.

Let k(GICq,) be the model size selected by GIC. From Proposition 3.1, the prob-
ability of selecting the model S by G1C,, is

Pr{x(cicq) = k} = Pr{ag 1 <a <ap}

Under the null hypothesis Hy, A1 < a1 < ago < Apg, and Ay ~ X% and Apo ~ X%
are independent. Hence the probability of selecting an overfitted model by GIC, is
asymptotically bounded by,

Pr{x(GiCa) =k | k> kot < Pr{Ap <o < Ap}
= Pr{xj <a}(1 - Pr{x} < a}) (3.2)
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Similarly, the probability of selecting the true model by cic, is asymptotically
bounded by

Pr{,‘i(GICa) = ko} < Pr{Akol <a< AkQZ}
= Pr{x} <a}(1-Pr{x}, <a}) (3.3)
= Po-

The upper bound, p, of the probability of selecting an overfitted model by GIC,,
is plotted in Figure 3.1.
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Figure 3.1: Upper bound probability, p, of selecting an overfitted model. The AIC cor-
responds to o = 2 in which case the upper bound of the probability of selecting an
overfitted model is about 13%. The maximum, p = 0.25, occurs at o = 0.455.

The upper bound probabilities, pg, from (3.3) are shown in Figure 3.2 for v =
5,10, 20,40. As v, or equivalently n, increases, pg increases.

The upper bound defined in Shao and Rao (2000, p. 217) may be written in our
notation as the upper bound of the probability, Pr{x(Gicy) > kq}.
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Figure 3.2: Upper bound probability, pg, of selecting the true model with v =
5, 10, 20, 40.

3.3.3 Procedure

From (3.2) and Figure 3.1, the maximum probability of selecting an overfitted model
occurs when p = 0.25 and a = 0.455. Moreover, from (3.3) and Figure 3.2, if
a < 0.455, pg < Pr{x% < a} < 0.5. We may stipulate that the probability of
selecting a true model is greater than 0.5 and take o > 0.455. Then from (3.2), with

0<p<0.25Pr{x? <a}=(1++T—4p)/2. Let p = (1 + /T — 4p)/2. Setting ay,

which is the quantile for a X% distribution, that is, Pr{x% < ap} = p, defines the new
procedure for selecting ov. This procedure is denoted by GIC. In most cases, we may
select p € [0.01,0.1]. In the next section, we will show that to achieve consistency we
need p — 0 as n — 0. In practice, it is helpful to choose p small for larger n and also

when the model space is large and most independent variables are not needed.
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3.3.4 Consistent Procedure

From (3.3), the probability of selecting the true model by the GIc,
Pr{r(c10) = ko} < Pr{x3 < ap} = (1+ /1 —4p)/2.
So for a given constant p, the GIc, procedure (3.4), is inconsistent. Let

pn = Pr{x} < logn}(1 - Pr{y} < logn}), (3.5)

be the overfitting level instead of a fixed p, then oy = logn, and the GIC is the same
as the usual BIC (Schwarz, 1978) and is consistent.

We may set the overfitting level less than a given level p. Setting,

P1n = min{p, 1/v/n}, (3.6)

and

p2,n = min{p, pn}. (3.7)

Then n < 1 /p2 and we obtain, pj, = p, for the upper level as in Shao and Rao
(2000). When n > e where a is the 1 — p quantile of X%, P2,n = Pn, the level for the
BIC . Setting p = p; 5, ¢ = 1 and 2, the GIC is consistent.

There are other settings for the overfitting level that provide asymptotic consis-
tency. We propose a setting of overfitting level such that the level is close to a given
level p if the sample size is not large and other letting the level approach py, in (3.5)
as n gets larger. Whether the sample size is large or not is related to the ratio of
n and K, the full model size. Roughly if n/K > ry, where rg > 2, the sample size
would be large. Let ¢ = 1/(1 + ¢~ 2("/5K=70)) "and define the third rule,

P3n = (I—=c)p+ci{n/(n+ 50)}p2,n- (3.8)

Then GIC is consistent because p3, — pp — 0 as n — oo.
The three significant levels p; ,, i = 1, 2 and 3 are plotted in Figure 3.3. It is seen
that as n increases, po , and p3, decrease at a faster rate than py . When n/K is

smaller, p3 , is close to the upper level p. When n/K is larger, p3 ,, approaches pg ;.
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Figure 3.3: Three overfitting levels: py 5, (p1), p2,n (P2), P3.n (P3).

3.4 Simulations

3.4.1 Linear Regression with Overfitting Level p = 0.01

Consider the linear regression with K =5 and n = 40,

yi = B1wi1 + Bowio + B3x; 3 + Baxia + Poris + €0 =1,...,40,

where e; are independent and identically distributed as N(0,1), 7;1 = 1, and x; 1, k =
2,...,5, are specified in Shao (1993). The true values of 3 are shown in Table 3.1. We
compare the performance of AIC, BIC, and GIC by measuring the percentage number
of underfit, overfit and correct models, and the model error, | X3 — X(8)3(S) ||%.
The overfitting level p = 0.01 is used for cic . We simulated 10* times for each
parameter setting. The simulation results are shown in Table 3.1. It is seen that the

GIC outperforms the AIC and BIC.

Table 3.1: Percentage number of underfitted models (u), correct models (c), and
overfitted models (o), and true model error from 10* simulations for each parameter
setting.

true (3 procedure u ¢ o model error
(2,0,0,4,0) AIC 0 57 43 3.82
BIC 0 82 18 2.98
GIC 0 9 4 2.31
(2,0,0,4,8) AIC 0 68 32 4.21
BIC 0 87 13 3.67
GIC 0 97 3 3.23
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3.4.2 Comparison of Four Rules

There are four rules of setting the overfitting level p in our GIC procedure defined
in (3.4). Using a constant, p € [0.01,0.1], does not produce a consistent or asymp-
totically correct model choice but may nevertheless be useful in some applications.
Some consistent model selection rules, py ,, p2 5, and p3,, were given in (3.6), (3.7)
and (3.8) respectively.

To compare the performance of these rules, we consider the linear model, as in
Tibshirani (1996), y = X3 + e, with 5 = (3,1.5,0,0,2,0,0,0). The components of
X and e are standard normal. The correlation between X; and X is p|i_j | with
p = 0.5. The true model size kg = 3. The full model size K = 8. Let ¢ = 1, and
n = 20, 60, 100.

For each parameter setting, 10* simulations were done. The total number of
the underfitted models, the true models, and the overfitted models selected by the
GIC with the rules, p1 5, p2, and p3, and a fourth rule, simply taking p = 0.05,
was determined and the percentages are shown in Table 3.2. The standard deviation
of each percentage can be calculated by the usual formula for proportions. The
maximum standard deviation is 0.0032. The rg =5 in the p3 j,-rule. For n = 20, the
performance is the same with all four rules but p3, outperforms others when n = 60

and n = 100.

Table 3.2: Percentage number of underfitted models (u), correct models (c), and
overfitted models (oz: k more variables) from 10% simulations. Comparison of p =
0.05 and rules pq p, p2., and p3 , in eqns. (3.6), (3.7) and (3.8).

n GIC u ¢ 01 02 03 04
20 p 1 62 25 9 2 1
pin 1 62 25 9 2 1
pon 1 62 25 9 2 1
p3n 1 62 25 9 2 1
60 p 0 74 21 4 0 O
pin 0 74 21 4 0 0
pon O 77 19 3 0 0
psn, 0 87 12 1 0 0
100 p 0 76 20 3 0 O
pin 0 76 20 3 0 0
pon 0 84 14 2 0 0
p3n 0 89 10 1 0 0
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3.4.3 Subset Autoregression

The AR (1) model, 2z = p+ ¢(zp—1 — p) +a, t = 1,...,n, where a; is assumed
independent normal with mean zero and variance 02. The model error, ME, was
computed for best subset selection with up to K = 10 lags for subset autoregressions of
the form, 2 = p+¢;, (21— —p)+. . -+¢ip(2t—z‘p—,u)+at7 where iy,...,ip € {1,...,10}
using AIC , BIC and GIC. With the GIC the overfitting level was set to p = 0.01. Denote
the resulting estimates by ¢E¢17 cee qgl-p. Then the corresponding observed model error

may be written

ME () = (& — )T (@ - ¢)/n,

where ¢ = ($1,...,¢10), ¢ = (4,0,...,0),

X Gi P E€iL,. ., ip ¢ i=1
@i = P =

0 otherwise 0 otherwise

and 7 = ﬁ(qﬁu_j |)10><10 is the Fisher information matrix. The relative model

error is the ratio ME ($)/ME (¢), where ¢ denotes the estimates in the full AR (K)
model. For each parameter combination, 10% simulations were done. In Figure 3.4,
the relative model errors are shown for the BIC and BIC;. The AIC was omitted
because the model error was very large. Only ¢ = 0,0.3,0.6,0.9 are shown since the

results for other values are similar.

3.5 Illustrative Applications

3.5.1 South Africa Heart Disease Data

The data are described in Hastie et al. (2009, §4.4.2). The aim of the study was
to establish the importance of ischemic heart disease risk factors. The response is
a binary variable indicating the presence or absence of disease in 462 South African
men. There are 9 predictors. The logistic regression model is used to fit the dataset.
The A1c, BIC, and GIC with p = 0.01 select the same model that has the five variables
tobacco, 1d1, famhist, typea and age. Each of the selected variables is significant.
If p = 0.20, the GIC selects a model with one more variable than the above, but the
extra variable is not statistically significant at 10%. In this case, as expected, the

selected model would be overfitting because p = 0.20 is set too high.
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Figure 3.4: Relative model error in percent for AR(1) with K = 10 for series lengths
n = 200,400 and parameter setting ¢ = 0,0.3,0.6,0.9. GIC selection with p = 0.01.

3.5.2 Lynx Time Series

The lynx time series is derived from annual lynx population estimates from 1821—1934
in Canada and is discussed by Tong (1977) as well as many other researchers in time
series. Tong (1977) fit a subset autoregression using the BIC and obtained the model
with lags 1,2,4, 10, 11. Using our package (McLeod et al., 2010) with K = 15 and with
p = 0.01 for the GIC, we obtained the results shown in Table 3.3. Model diagnostic
checks, including the portmanteau test and residual autocorrelation plot, indicate

that the more parsimonious model that was selected using the GIC is adequate.

Table 3.3: Lags in subset autoregression selected by various information criterion
Arc 1 2 3 4 9 10 11
BIC 1 2 4 10 11
gic 1 2 9 12

3.6 Conclusions

The generalized information criterion, GIC,, includes a penalty parameter . The
performance relies on the choice of the a. The approximate efficiency (Shibata,
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1984), bootstrap (Rao, 1999), and hypothesis testing (Shao and Rao, 2000) were
introduced to choose the penalty parameter. We proposed a procedure by controlling
the overfitting level, p. The procedure is consistent by controlling the overfitting level
to be closer to zero. This method is computationally efficient as well as producing
better model selection.

The essential difference between our method and that proposed by Shao and Rao
(2000) is that we choose the penalty parameter a by controlling the probability of
selecting an overfitting model, Pr{x(GICy) = k | k > kg}, instead of the overfitting
probability, Pr{x(c1cy) > ko}, considered by Shao and Rao (2000). Our approach
is simpler and has been implemented in our software packages for generalized linear
models (McLeod and Xu, 2010) and subset autoregression (McLeod et al., 2010).
Some illustrative applications are given in §3.5 and more are available in the docu-

mentation in our software packages.
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Chapter 4

FAMILY OF BAYESIAN INFORMATION CRITERIA

The family of Bayesian information criteria using the Bernoulli prior, BIC4, with
parameter ¢ € (0, 1), is discussed. The BICy is an effective criterion for many types of
Bayesian model selection problems. We establish some new theorems that elucidate
the behavior of the BIC, and suggest its suitability for large model spaces as well as
many other kinds of model selection problems. Simulation studies are presented that
demonstrate that the BIC; is more effective than the usual BIC in many situations.
Several interesting applications are also examined. The BIC4 is implemented in our
packages for the subset selection in the generalized linear model (McLeod and Xu,
2010) as well as for autoregressive models (McLeod et al., 2010). Scripts are provided
in the vignettes accompanying these packages for reproducing all figures and tables

in this chapter.

4.1 Introduction

Let y = (y1, ..., yn) be a vector of responses and X = (X7, ..., Xz) be an n x d matrix
of inputs. Let S = {s1,..., s} be a subset of {1,2,...,d}, which represents a class of
models with size k. The model is specified by a distribution function fys, ) (y| X (Sk)),
where 6(Sy) is a vector of the parameters, and X (S;) denotes the matrix formed
by selecting the columns corresponding to S;. from X. After the data is available,
let L(6(Sy)) = f@(Sk)<y|X(Sk)) be the likelihood function and 6(S;) the maximum
likelihood estimate.

We consider model selection using Bayesian information criterion with a Bernoulli
prior. A general family of Bayesian information criteria (Hansen and Yu, 2001; Ris-

sanen, 2007) may be written,
—21log L(6(Sy,)) + klogn — 2log p(S),
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where p(Sy) is a prior probability of the model determined by S and k = k(S)
is the model size. Assuming that p(S;) is a constant, Schwarz (1978) obtained the
widely used (Hastie et al., 2009, §7.7) BIC criterion,

BIC = —2log L(0(Sy,)) + klogn.

(George and Foster, 2000, eqn (6)) suggested using a Bernoulli prior with parameter
q € (0,1). In this formulation ¢ is the probability that each parameter appears in the
)=

model. This implies that the prior may be written as p(S;) = qF (1—gq k. where

K is the maximum model size. Hence, dropping the constant term involving K,
BIC; = —2log L((S)) + klogn — 2kloglg/(1 — q)].

Computationally, it is convenient to denote the value of BIC, for a specified value of
4, ¢ = qo, by BIC(q = qp) and to extend the definition so that ¢ = 0 corresponds to
the null model with no parameters selected and ¢ = 1 corresponds to the full model.!

When ¢ = 0.5, the BIC; is same as BIC and more generally the BIC; shares the
consistency property of the Bic, that is, provided the correct model is included in the
possible candidate models, and ¢ is held fixed as n — oo, the correct model will be
chosen with probability one (Shao, 1997; Yang, 2005).

In the next sections, we will show that the BIC4 provides a more general and flexible

Bayes information criterion than the extended Bayesian information criterion, BIC,
(Chen and Chen, 2008).
4.2 Properties

4.2.1 BIC; More General Than BIC,y

The extended Bayesian information criterion suggested by Chen and Chen (2008)

may be written as

BIC, = —2logL(0(Sy,)) + klogn + 2ylog C(K, k),

1. Note that in variable selection problems in regression, the intercept term is usually
included in all models, so it is not counted as a parameter and in this case, the null model
corresponds to the model with only an intercept term.

48



where 0 <y <1 and C(K, k) denotes the number of combinations, K choose k. This
criterion was derived for large model spaces since in this case, it may be thought
that all models having the same size, k, should be equally likely. Specifically, Chen
and Chen (2008) suggested the prior, p(Sj) o [C(K, k)]™7. When ~ = 1, all models
having the same size are assumed equally likely and when v = 0, it reduces to the
usual BIC. Regardless of the value of v, the prior specifies that average model size is
E{r(S;)} = K/2. The parameter v in the BIC was introduced in an ad hoc fashion
and has no useful interpretation unlike ¢ in the BICy.

On the other hand, for the Bicy, E{x(Sg)} = ¢/. So for the large model space
problem where K is large and not many parameters are expected in the final model,
q < 1/2, seems more reasonable than the assumption, implicit in the BICy, that the
average number of parameters is K /2. By varying ¢, the BIC, is suitable for a wide
range of statistical problems such as in prediction or smoothing. In Theorem 4.3 we
show that BIC; provides a more general criterion than the BIC,.

Let x(BIC), k(BICy), and k(BICy) denote the size of the model selected by the BIC,
BICg, or BICy respectively.

The following lemma is useful for the proofs of Theorems.

Lemma 4.1. Let ¢;(k), i = 1,2, be two criteria. Let k(C;) denote the model size
selected by C;(k). Define A(k) = Co(k)—C1(k). Then rk(Cy1) > k(C2) if A(k) increases
and k(C1) < k(Ca) if A(k) decreases.

Proof. We prove the first part. The second part is only the converse of the first.
Assume that A(k) increases. Let k; = k(¢;). Then c¢;(k) > ¢;(k;) for all k. For
k > ki, we have A(k) > A(kq1) and ¢1(k) > ¢1(k1). Thus

Co(k) = c1(k) + A(k) > C1(k1) + A(ky) = Ca(ky).

So ko cannot be greater than ky, that is, ko < k. O

Let q1 < g2 and k; = K(BICq,). Then

A(k) = BICg, — BICq; = 2klogq1(1 — q2)/{a2(1 — q1)},

decreases. From Lemma 4.1 we have k1 < ko. Hence, increasing ¢ causes the number

of parameters selected to increase or to stay the same.
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Theorem 4.1. For each v € [0,1], there exists ¢ = g such that k(BICq) = K(BICs).
Let ky = K(BIC,). Then

. { V(14 {(K = ky)/(ky + DY), by < K
1/(1+1/K7), ky = K.
Proof. Let 0 <y <1, ky = k(BIC,), and
A(k) = Bicg(k) — Bicy (k) = —2log{q" (1 — q) FC(K, k)7}.
If by < K, gy is determined from the equation,
Ak +1) = A(k) = =2log{(K — k)/(k+1)}7q/(1 — q) = 0,

by letting k = k-, that is,

Gy = [+ {(K = ry)/(ry + 1)}

If ky = K, let gy = {1/(1+ K~ 7)} L.

Let ¢ = ¢. Then k., is the minimum point of A(k). The A(k) decreases if k < ky
and increases if k > k. Hence from Lemma 4.1, the BIC,4(k) has the minimum at k- .
That is, k(BICy) = K(BICy) = k~. O

Theorem 4.1 shows that the model selected by the BICy can also be selected using
the BICy.

Theorem 4.2. Let 0 < 1 <y <1, and assume that BICy has a unique minimum.
Then if k(BIC) < K/2, K(BICy,) < K(BICy,) < k(BIC), otherwise if x(BIC) > K/2,
K(BICy,) > K(BICy, ) > K(BIC).

Proof. Let k; = k(BIC,,) and Ky = K /2. Assume that 1 < 72. Then
A(k) = BICyy (k) — BICy; (k) = 2(y2 — 1) log C(K, k),

increases for k < K and decreases for & > K. Since BICy, (k) has a unique minimum,
the BICy, (k) decreases for k < k; and increases for & > k;.
Suppose that k1 < Kg. Let by < k < Kp. Then BICy, (k1) < BICy (k) <
BIC,, (Kp), and A(k1) < A(k) < A(Kp). From BICy, (k) = BICy (k) + A(k),
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BIC~, (k1) < BICqy(k) < BICy,(K(). Hence the minimum of BIC,, (k) should be
no more than kq, that is, ko < k1 < K.

Similarly, if k&1 > Koy, for Ky < k < ki, we have BICy, (Ky) > BICy (k) >
BIC~, (k1) and A(K¢) > A(k) > A(kq), and then BICy, (Kp) > BICy, (k) > BICy, (k).
Hence the minimum of BIC, (k) should be no less than ky, that is, ko > k1 > K.

Let 79 = 0. x(BICy,) = x(BIC). Hence if k(BIC,,) < K, Kk(BICy,) < K(BICy, ) <
k(BIC). And if k(BICy,) > Ko, £(BICy,) > K(BICy,) > K(BIC). O

Theorem 4.2 shows that as 7 increases, the number of parameters selected in
the model may increase or decrease depending on K and the number of parameters

selected using the BIC.
Theorem 4.3. BIC; provides a more general criterion than BIC.

Proof. From Theorem 4.2, the selected model size by BIC, is either less or greater
than that by BIC. Assume that x(BIC) < K/2. Then for each v € [0,1], x(BICy) <
r(BIC) < K /2. If q is close to 1, k(BICq) approaches K. So there may exist ¢ € (0,1)
such that for all v € [0,1], x(BICq) # k(BICy). Hence there may be some cases
where the BIC, cannot select a model that can be selected using the BIC,. And
from Theorem 4.1, any model selected using the BICy may also be selected using the
BICy. [

4.2.2 Tuning Parameter

The performance of the BIC, relies on the tuning parameter g. The Bernoulli prior
specifies that the average model size is E{x(S})} = ¢K. For many screening or subset
selection problems, especially when K is large, we have found that ¢ = 0.25 works
well. For most problems this produces a model that is more parsimonious than a
model selected using the BIC.

As is common practice in time series model building (Box et al., 2005, §1.3.2),
an iterative model building approach involving initial model selection followed by
diagnostic checking, refitting and rechecking is recommended. Adopting this approach
with the BICy, we may start with ¢ = 0.25 to determine an initial model. After suitable
diagnostic checks, if it is found that the model is inadequate, a larger value of ¢ may
be tried. Or if a more parsimonious model is required, we may refit using a smaller

value of q.
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Alternatively, as suggested by George and Foster (2000), cross-validation could
be used. Another possibility would be to use bootstrapping to choose the value of ¢
to minimize the prediction error. Both these approaches are non-Bayesian as well as
more laborious than needed in some cases. If the cross-validation or bootstrapping
approach is used, it would seem more natural to consider the generalized Akaike
information criterion (Bhansali and Downham, 1977; Akaike, 1979),

AICq (k) = —2log L(A(Sy)) + ak,

where « is a tuning parameter. It may be shown that AIC, and BIC4 are equivalent?
in the sense that taking a = logn — 2logq/(1 — q), the A1C, will then select the
same model as the BIC; and similarly for any model chosen using the AIC,, taking
q= 1/(60‘/2/\/5 + 1), will result in the same model being chosen using the BICq.

In some problems, such as spectral density function estimation by autoregression,
the cost function may not be evident and so neither cross-validation or bootstrapping
is likely to be useful. The iterative model building approach may be adequate in

many situations.

4.3 Simulation Experiments

The simulations reported in this section suggest that often the BiCc; with ¢ = 0.25
will outperform the BIC.
4.3.1 Linear Regression

We consider the following linear model
yi = 21 (S)B(S) +€ji=1,...,n,

where S is a subset of {1,..., K}, and ¢; are independent and identically distributed
as N(0,0%). The K covariates are generated from the multinormal distribution,
N(0,%) with ¥;; = 1 and X;; = 0.2 for i # j. The model was examined in Chen and
Chen (2008). Let by = (0.7,0.9,0.4,0.3,1.0,0.2,0.2,0.1) be a vector of length 8. The

2. Note that if ¢ is allowed to depend on n, the BIC, would lose the consistency property.
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following two models are examined: (1) 3(S) = by, and (2) 5(S) = (bg, bp). In this
example K = 20, n = 200 and ¢ = 0.2.

We compare the performance of AIC, BIC, and BIC; with ¢ = 0.25 by measuring
the number of underfitted, overfitted and correct models, and the model error (ME),
| X3 — X(8)3(S) ||>. We simulated 100 times for each parameter setting. The
simulation results are shown in Table 4.1. It is seen that the BIC; outperforms the

AIC and BIC.

Table 4.1: The number of underfit, overfit and correct models, and the model error
True 5(S) procedure overfit underfit correct ME

Bo AIC 86 0 14 0574
BIC 21 0 79 0.382
BIC, 9 0 91 0.345
(Bo, Bo)  AIC 59 0 41 0.709
BIC 11 0 89 0.637
BICq 6 0 94 0.625

4.3.2 Subset Autoregression AR(1)

The model error, ME, was computed for best subset selection with up to K = 10 lags

for subset autoregressions of the form, 2y = pi+¢; (2 —p)+.. -+¢ip(2t—ip — ) +ag,

where 41,...,ip € {1,...,10} using AIC , BIC and BIC,. For the BICy, ¢ = 0.25. The
underlying model was an AR (1) model, z; = pu+¢(zp_1—p)+ag, t =1,... ,n, where az
is assumed independent normal with mean zero and variance o2. Denote the resulting
estimates by qigil, ey qgip. Then the corresponding observed model error may be
written ME (3) = (¢ — )T~ (¢ — )/, where ¢ = (@1, é10)', @ = (6,0,..,0)"

X Gi 1€ i1, .., ip 6 i=1

Yi = . Yi = .

0  otherwise 0 otherwise

and 7 = ﬁ(qﬁ“_j |)10><10 is the Fisher information matrix. The relative model

error is the ratio ME ($)/ME (¢), where ¢ denotes the estimates in the full AR (K)
model. For each parameter combination, 10# simulations were done. In Figure 4.1,
the relative model errors are shown for the BIC and BIC;. The AIC was omitted
because it was very large. Only ¢ = 0,0.3,0.6,0.9 are shown since the results for

other values are similar.
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Figure 4.1: Relative model error in percent for AR(1) with K = 10 for series lengths
n = 200,400 and parameter setting ¢ = 0,0.3,0.6,0.9. BIC(qg = 0.25).

4.3.3 Subset Autoregression AR(4)

The autoregressive process of order 4, 2z = p+ ¢1(zp—1 — p) - .. + Pa(z—4 — 1) + ay,
t=1,...,n, with ¢1 = 2.7607, ¢po = —3.8106, ¢3 = 2.6535, and ¢4 = —0.9238 has
been widely used as an example of a time series whose time series has two peaks
in the spectral density that are close together (Percival and Walden, 1993, p. 42).
In our simulations, it is assumed that a; is Gaussian white noise with mean zero,
unit variance and that g = 0. The method given in McLeod et al. (2010) was
used to fit a subset autoregression with maximum order K = 30 with the BIC and
BICq with ¢ = 0.25. The empirical probability based on 10* simulations of including a
parameter at lag k was determined. For k = 1, 2, 3,4 it was found that this probability
was exactly one. For k > 4 the lower this probability, the better the performance
of the selection criterion. In the oracle case, corresponding to perfect selection, this
probability is zero. From Figure 4.2, it is seen that the BiCq with ¢ = 0.25 decisively
outperforms the BIC.
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Figure 4.2: The empirical probability of including lag k£ in a subset autoregression
with K = 30 based on 10* simulations of an AR(4) time series. The dotted line shows
the conservative estimate of a 95% margin of error.

4.4 Illustrative Applications

The applications discussed also suggest than the BIC; may be preferable in many

situations.

4.4.1 Hospital Manpower Data

This dataset, taken from Myers (1990, Table 3.8), has 5 inputs x1, 9, 3, 24, and 5.
The AIC and BIC both select a model with three inputs. But one of these inputs is
not even significant at the 5% level and it has a negative regression coefficient while
a positive one was anticipated. Using the BIC; with ¢ = 0.25 results in a model
with only two inputs and both of them are highly significant and have the correct
signs. This model was also recommended by Myers (1990, p. 292). This example
also provides an illustration of Theorem 4.3 since using the BIC, with all values of

v € [0, 1], a model with three or more inputs is always selected.
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4.4.2 Monthly Sunspot Series 1749 — 1997

This series, sunspot.month of length n = 2988, is included in the built-in datasets in
R (R Development Core Team, 2010). Subset autoregressions were fit to this series
using the BIC, with ¢ = 0.5 and ¢ = 0.25 and the resulting estimates of the spectral
density function are shown in Figure 4.3. The BIC, with ¢ = 0.5 is the BIC. The plot

with ¢ = 0.25 is smoother and is preferred over the more noisy plot with ¢ = 0.5.

9=0.5

9=0.25

log spectral density

frequency

Figure 4.3: Estimated log spectral density function estimated by fitting a subset
autoregression using BIC; with ¢ = 0.5 and ¢ = 0.25.

4.4.3 Long Autoregressions

In time series prediction problems, model parsimony is a well-established principle
(Granger and Jeon, 2004; McLeod, 1993) but as noted by Hastie et al. (2009, §7.7) the
BIC may chose models which are too parsimonious in some applications. For example,
often a sufficiently long autoregression is needed to capture the salient aspects of the
time series in selecting the model order for autoregressive spectral density estimation
and for estimating the inverse autocorrelations. In these problems we may use the
BIC, with ¢ > 1/2.

In this order selection problem, we need to choose p in the AR(p) model, z; =
C+P12t—1+ ... + Pp2t—p +ay, where t = 1,...,n, a; is assumed independent normal
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with mean zero and constant variance, ¢1, ..., ¢p are the autoregressive coeflicients,
and ( is the intercept term. The autoregressive parameters are assumed to satisfy
the condition for stationarity (Box et al., 2005, §3.1.3).

For autoregressive estimation of the spectral density function a sufficiently long
autoregression is needed to capture the peaks in the spectral density with precision
(Percival and Walden, 1993, Ch. 9). In these applications the usual BIC does not
produce satisfactory estimates. Percival and Walden (1993, Ch. 9) use the final pre-
diction error criterion (FPE) for choosing the order of the autoregression for spectral
density estimation. The FPE is essentially equivalent to the Arc. Kay (1988, Ch 9.5)
also uses the AIC for autoregressive spectral density estimation.

Similarly, when using autoregression to estimate the inverse autocorrelations, a
sufficiently high order is needed (Chatfield, 1979, §4) and (Hipel and McLeod, 1994,
§5.3.6).

In all of these applications, the BIC; may be used in place of the AIC. In Section
5.5, we note that the BIC, is capable of choosing any model that may be chosen using
the AIC or even the more general generalized AIC.

In Table 4.2, we compare the model order p that is selected for some time series
that exhibit periodicity. Each of the time series is available in R and the reader
may wish to read the documentation supplied for more information. Several of the
series are of particular interest. For autoregressive spectral density estimation of the
Willamette series, Percival and Walden (1993, p. 520) recommended using either
p = 27 or p = 38 for the logarithms of the series based on the final prediction
error criterion. Cleveland (1972) used p = 7 or p = 10 for estimation of the inverse

autocorrelations to SeriesA.

Table 4.2: The table shows p, the order selected for fitting an AR(p) to some time
series with peak spectra of various lengths, n. The series Willamette and SeriesA are
available in the R package FitAR (McLeod et al., 2010) and lynx and sunspot.year
are included in the base distribution of R (R Development Core Team, 2010). The
series sunspot . year are the mean annual sunspot numbers for the period 1700 —1988.

Name n AIC BIC q=0.75 q=0.8 q=0.85 g=0.9 q=0.95
Willamette 395 38 11 11 11 23 34 34
SeriesA 197 7 2 2 2 7 14 15
lynx 114 11 2 11 11 11 11 11
sunspot.year 289 9 9 9 9 9 22 24

o7



4.5 Concluding Remarks

By using the tuning parameter ¢ € (0, 1), the Bic, provides a more flexible Bayesian
information criterion than either the BIC or BIC,. The BIC; may be used for large
model spaces, prediction or smoothing problems. With ¢ < % more smoothing3 is
done than with the usual BIC. If less smoothing is desirable, g > % may be used.

There are other approaches to Bayesian model selection that may be preferable
in some situations (Robert, 2007, §7).

3. More smoothing corresponds to fewer estimated parameters.
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Chapter 5

GIC FOR HIGH DIMENSIONAL MODEL SELECTION

Penalized maximum likelihood estimation was proposed for high dimensional variable
selection. The performance of penalized likelihood method relies on the choice of reg-
ularization parameter. We consider the generalized information criterion for choosing
the regularization parameter. We derive the conditions under which the criterion
is overfitting, consistent, or underfitting. Our results are illustrated by simulation

examples.

5.1 Introduction

In many high dimensional modelling problems, the number of variables is large but
the number of significant variables is small. The traditional best subset selection
procedure becomes infeasible for the high dimensional problem due to computational
cost. Furthermore, the best subset selection is unstable with respect to a small
change in the data (Breiman, 1996). Penalized maximum likelihood estimation has
been suggested to automatically select significant variables (Tibshirani, 1996; Fan and
Li, 2001). The penalized likelihood methods are computationally efficient, and with a
proper choice of regularization parameter, achieve selection consistency or the oracle
property (Fan and Li, 2001; Fan and Lv, 2010). The oracle property means that,
asymptotically, the resulting statistical estimates have the same covariance matrix as
when the correct variables are known a priori.

Penalized likelihood methods with various penalty functions have been developed,
such as least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996),
smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001) and minimax concave
penalty (MCP) (Zhang, 2010). These methods produce a set of candidate models for
different regularization parameters. With a proper choice of the regularization pa-
rameter, the resulting model will be consistent. Cross-validation (Cv) is often used
to choose the regularization parameter and if this is done correctly, consistent model
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selection can be achieved (Shao, 1993, 1997). Since each regularization parameter
corresponds to a model, choosing the proper regularization parameter is equivalent
to selecting the best model from the set of candidate models. Hence, automatic model
selection criteria, such as the BIC (Schwarz, 1978), are also applicable for determin-
ing the regularization parameter. For a linear model, Wang et al. (2007) analyzed
asymptotic properties of the generalized Cv and BIC for choosing the regularization
parameter of the SCAD and showed that the BIC is consistent whereas the generalized
CV yields overfitting.

The generalized information criterion (GIC) (Akaike, 1979; Nishii, 1984; Bhansali,
1986) includes a wide range of model selection criteria as a special case (Shao, 1997;
Zhang, 2009). For a generalized linear model, Zhang et al. (2010) obtained the
asymptotic properties of the GIC for choosing the regularization parameter of the
non-concave penalized likelihood methods, such as SCAD and MCP. In this paper, we
examine the asymptotic properties of the GIC for choosing the regularization param-
eter in a general case. The model is described by a family of probability distribution,
which includes the generalized linear model. The penalty function for the penalized
likelihood methods can be either non-concave, such as SCAD and MCP, or concave, as
LASSO.

We derive the conditions under which the GIC is overfitting, consistent, or un-
derfitting. When the penalized likelihood methods possess the oracle property, the
GIC with both penalized and non-penalized maximum likelihood estimators have the
same asymptotic properties. In this case, statistical inferences for the selected model
are the same as if variables in the model were initially known. On the other hand,
when the penalized likelihood method doesn’t possess the oracle property, the BIC may
not be consistent due to the bias between non-penalized and penalized estimators.

The asymptotic properties of the Gic with MLE have been widely investigated
(Nishii, 1984; Sin and White, 1996; Shao, 1997; Yang, 2005). These authors considered
the special case of the GIC with MLE and required that for consistency @ — oo and
a/n — 0. We obtain more general conditions for the penalized MLE under which the
GIC is overfitting, consistent, or underfitting. And we show that in the special case

of MLE, the condition a/n — 0 is sufficient but not necessary for consistency.
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5.2 Penalized MLE Model Selection

5.2.1 Probability Models

Consider a family of probability distributions, f(z;6), z € RP, indexed by parameters
HcOC R Let S = {s1, ..., 81} be asubset of {1,2,...,d}. Each subset S represents
a class of probability models {f(z;0) : 0 € ©(S)}, where O(S) ={0 €0 :0; =0,i &
S}. Let k(S) be the number of elements in S, and 6(S) € O(S). Let zq, ..., 2z, be
n observations that are independent and identically distributed with Z; ~ f(z;0g),
where 0y € O(Sp), Sy represents a true model specified by

0y = argmax E{log f(Z;0)}.
0co

The observation z; € RP consists of both response and explanatory variables. Let
Ly (0) = 11; f(24;0), be the likelihood function and I,,(0) = log Ly (6). Let On(S)
denote the MLE of 0(S).

Assume that the true model is identifiable and its size k(Sp) = kg is finite. The
true model is identifiable if for fixed n and each subset S # Sy with x(S) < k(Sp)
and some A > 0,

max n ',(0) — max n ', (0) > A. (5.1)
0cO(Sy) 0cO(S)

5.2.2 Penalized MLE

The penalized MLE is obtained by maximizing the penalized likelihood (Fan and Li,
2001)

d
n(0) —n Y pa(l6;)), (5.2)
j=1

where py (+) is a penalty function indexed by the regularization parameter A > 0. With
a suitable penalty function, maximizing the penalized likelihood can simultaneously
select variables and estimate their coefficients. The resulting penalized MLE may
possess three properties: sparsity, unbiasedness and continuity (Fan and Li, 2001).
With sparsity, the penalized MLE can achieve variable selection consistency. With
both sparsity and unbiasedness, the penalized MLE may have the oracle property.
With continuity, the penalized MLE is stable, that is, the estimates are not sensitive

to small changes in the data.
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The widely used penalties include ¢4 penalties (Frank and Friedman, 1993) having
¢ and /9 penalties as special cases and quadratic spline penalties such as SCAD and
MCP (Fan and Li, 2001; Zhang, 2010). The quadratic spline penalties also include
the (1 penalty. In the ¢, penalty family, only ¢; penalty, used in LASSO (Tibshirani,
1996), produces a sparse estimator with the continuity property but it is biased. With
the quadratic spline penalties and suitable regularization parameters, the penalized
MLE has both sparsity and continuity as well as approximate unbiasedness (Fan and
Lv, 2010; Zhang, 2010).

For each parameter A\, maximizing the penalized likelihood (5.2) produces one
model. As A varies in a range, we obtain a set of models, the candidate models. With
a suitable penalty, the best model having the oracle property would asymptotically

be included in this set.

5.2.3 Algorithms for Penalized MLE

For a linear model, y = X3 + oe, where X is an n x d matrix and e ~ N(0,1,).

Maximizing the penalized likelihood (5.2) is equivalent to minimizing

d
Sy = X512 403 pal18;)). (5.3

J=1

Efficient algorithms for finding the minimizer of (5.3) include least angle regression
(LARS) for {1 penalty (Efron et al., 2004), MC+ for quadratic spline penalties (Zhang,
2010), and coordinate-wise optimization algorithm for a general penalty (Friedman
et al., 2007).

The generalized linear model may be written, f(z;,0) = f(z;, p;), where p; = JEZTﬁ
and z; = (241, ..., %)’ . The log-likelihood function, I(3) = 3", log f(z;, z;3), can
be locally approximated by

1(9) = 199 + VIEO)T (5~ 50) + 55~ 5O V(5O (5 — 50,

where 3(9) is an initial estimate of 8. Let d(u) = Vi(x) and D(u) = —V21(u), where
() = 27 log f(zi, ). Then VI(B) = XTd(u) and V2(8) = —XTD(u)X. Let
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1o = xp0), dy = d(ug), and Do = D(pg). Suppose Dy is positive. Then

~1(5) = 5 19 ~ X5 |2 + const.

where X(1) = D(l)/QX and y(l) = Dé/QXﬁ(O) + Dalﬂdo. Thus the penalized maxi-
mum likelihood estimator in (5.2) can be approximated by the one-step estimate that
minimizes i
S 1o = X5 12 403" a1, (5.4
j=1
The one-step method was suggested by Zou and Li (2008). Another computationally
efficient algorithm for finding the penalized maximum likelihood estimator in gener-

alized linear models is the coordinate-wise optimization algorithm (Friedman et al.,
2010).

5.2.4 Model Selection

By model selection we mean the choice of the best model from a set of candidate
models that have been produced by penalized maximum likelihood estimation. For
each model, we compute the value of the selection criterion. The model having the
minimum value of the criterion is selected as the best one. Let {Si,k=1,..., K} be
the candidate models specified by 8(Sy,). Let £(Sy,) = k, and I, (8(Sy,)) < In(0(Si11))-

Many criteria have been proposed to select the best model. Some of them may be
considered as a special case of the generalized information criterion Gic = —21,, (k) +

ak, where [, (k) = 1,(0(Sk)), k = k(Si), and a > 0 is a tuning parameter. We

consider a more general form
cIc = =2l (k) + acy, (5.5)

where ¢, is a known positive increasing function of the model size k. With a@ = 2
and ¢, = kn/(n — k — 1), the GIC is the A1C, (Hurvich and Tsai, 1989). For a linear
model, eqn (5.5) reduces to GIC = nlog 6,% + acy., where 6,% = RSSy/n, RSSy is the
model residual sum of squares.

Let Sj, be the selected model and ky, be the model size. Model selection is
consistent if Pr{S;, = Sp} — 1 as n — oo. The model is overfitted if &k, > ko,
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and underfitted if &k, < kqg. If there is a best model in the set of candidate models,
kn = ko implies that S, = Sp, and then Pr{S;, = Sp} = Pr{k, = ko}.

5.3 Asymptotic Properties

Before developing asymptotic properties, we describe some assumptions on the set of
candidate models. All limits in this section and the Appendix indicate convergence
in probability as n — oco. For simplicity of notation, let (k) = 1,(8(S))) and
Z%M)(k;) — 1,(0n(Sy)). And let Sk, denote the true model. Assume that the following

conditions hold:
Cl. E{|log f(Z,0)|} < oo, and Ip(1) < -+ < Ip(K).
C2. 8y, € {8;} is identifiable, and 15" (ko) — ln(ko) = op(n).
C3. There exists a model Sk, € {S.} satisfying Sy, C Sk,

From C1 and C2, limn =Y (ko) = limn=UM (ko) = E{log f(Z,60)}. For k > ko,
since I, (k) > ln(ko), limn =10, (k) = E{log f(Z,6p)} and then

1) (ko) — In(k) = op(n). (5.6)

Let A, = 2{17(1M)(k) — lp(k)} represent the bias between the penalized MLE and the
MLE. If 0(S},) = 0u(Sk), Aj = 0.

Theorem 5.1. Ifa < €+(AkO—AKO)/(cKO—ckO), where € is a constant, then asymp-
totically Pr{r(a) = ko} < g and Pr{k(a) < ko} = 0, where ¢- = Pr{X%{O_kO <
5(CK0 - ck())}'

Proofs of all theorems are given in the Appendix. Theorem 5.1 shows how the
bias between the penalized MLE and the MLE affects the consistency of the Gic. If
T Ay Op(n®), 0 < s < 1, from Theorem 5.1, the GIC with o < nt, t < s,
selects Sko with probability tending to zero. In this case, the BIC is not consistent
and it selects an overfitted model asymptotically because o = logn < n' for a large
n.

To characterize the consistency of Gic, we define

121 (ko) — 210 (5
~ = inf min n {20 (ko) n<j)} (5.7)
n j<ko Chy — €
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From
(ko) = n(G) 2 (ko) = 150(5)
= {In(ko) — 10" (ko)} + {10 (ko) — 15V ()},
and (5.1) and (5.6), we have v > 2A/(cg, — c1)-

Theorem 5.2. Assume Ay, = Op(1l) and Ay, = Op(1). Let Dg = 2l7(1M>(K) —
QZﬁlM)(ko). Let o = oy, and n" Yoy, — r. Then asymptotically:

(i) If o, < 00, GIC selects either the true model or an overfitted model.

(it) If an > (D + Apy)/(crgs1 — Cky) and r <7y, GIC is consistent.

(#1) If ay — 00 and r > 7y, GIC selects an underfitted model.

With suitable penalty, the penalized likelihood methods asymptotically produce
a set of models in which there is a best model having the oracle property. Then
In(ko) = Z%M)(ko) and Ap, = 0 with probability tending to one. Moreover, as the
regularization parameter is near to zero, the penalized MLE reduces to the MLE, and
then A Ky = 0. The asymptotic properties of the GIC with the penalized MLE are

summarized in Corollary 5.1.

Corollary 5.1. Let {S}.} be produced by the penalized MLE having the oracle property.
Let D = 2[7(,LM>(K) - 2l7(1M)(k0). Let o = oy, and n” Loy, — . Then asymptotically:
(1) If ap, < 00, GIC selects either the true model or an overfitted model.

(it) If an > D¢ /(Cyy1 — Cky) and r <1y, GIC is consistent.

(iii) If oy — 00 and r >y, GIC selects an underfitted model.

This Corollary follows directly from Theorem 5.2. Corollary 5.1 (i) is the same
as that given in Zhang et al. (2010). If Dg = oo, the largest model, Sk, is always
selected. In this case, GIC can not work. This usually takes place in the case where n <
K. We may avoid this case by reducing the dimension. If K is finite, Dg = Z%M) (K)—
Z%M)(ko) ~ X%(_ ko asymptotically. Then the consistent condition in Corollary 5.1 (ii)
is that oy, — 0o and r < 7. So the following Corollary also holds.

Corollary 5.2. Let {Si.} be produced by the MLE and K be finite. Let o = auy and

n Loy, — r. Then asymptotically:
(i) If apy < 00, GIC selects either the true model or an overfitted model.
(i) If oy — 00 and r < 7y, GIC is consistent.

(#i) If ay — 00 and r > vy, GIC selects an underfitted model.
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Under the conditions in Theorem 5.2 or Corollary 5.1, the GIC with oy, bounded is

a AIC-type criterion having the same asymptotic property as AIC, while the GIC with

oy, unbounded and lim n1

an < 7, is a BIC-type criterion having the same asymptotic
property as BIC.

Suppose that 6(S;) — 0%(S;), 0(Sk,) — 0o, and 15" (j) = la(j) = op(n) for
1 <j < K. Then n™Hlu(ko) — In(j)} — E{log f(Z,60p) —log f(Z,0*(S;))}, and

7 = min : (5.8)
J<ko Cko — Cj

For the linear model Y = xTﬁ + o€, where € is standard normal and o2 is the error
variance, 2log f(Z, 8) = —(Y — 21 3)2 /0% — logmo?. Suppose that B(Sj) — B*(S;)
and B(Sko) — Bo. Let ¢, = k. From (5.8),

R G Cr) i )

j<ko (ko — j)o? (59)

So 7 may be viewed as an average signal-to-noise ratio.

5.4 Numerical Illustration

In this section we present simulation examples to numerically examine the finite-
sample properties of GIC for model selection with the penalized MLE using AIC and
BIC. When the penalized MLE has the oracle property, the AlCc-type and BIC-type
share the asymptotic properties of AIC and BIC, respectively. Two linear regressions
and a logistic model are examined. For linear models, the R package plus (Zhang,
2010) is used. For the logistic model, the one-step estimates are used (Zou and Li,
2008). A large number of simulations, 10%, was used for each case, so the error of

estimation is negligible. The captions below each figure give the 95% margin of error.

5.4.1 Linear Regression Models

We consider the linear models with regression coefficients given by the d-dimensional
vector (8 and specified by Y = 2T 3 + e, where € is standard normal, o2 is the error

variance, x is d-variate normal with covariance matrix (0.5"_3|)d>< d-
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In the first example we take d = 8, kg = 3, § = (3,1.5,0,0,2,0,0,0) and o = 1.
The components of X and e are standard normal. Sample sizes are n = 20, 60, and
100. The Aic and BIC are used to select the model and the candidate models are
produced by best subset, LASSO, SCAD, and MCP. It was found that the proportion of
underfit models was zero or very close to zero in each case. The proportion of correctly
selected models is shown Figure 5.1. The best subset method, SUBSET, outperforms
LASSO but not SCAD and MCP. The BIC, SUBSET, SCAD and MCP improve markedly
as n increase with SCAD and MCP slightly better than SUBSET. As shown in Theorem

5.1, AIC is overfitting and this behaviour is confirmed in Figure 5.1.

MCP MCP
AIC BIC
- ] ~ 08
- ~ 0.6
- - 04
= 0.2
SCAD SCAD
AIC BIC

0.8
0.6
0.4
0.2
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T T T 7T

LASSO LASSO
AlIC BIC

SUBSET SUBSET
AIC BIC

“lm W W WHH

100
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Proportion correct
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T T T 7T

T T

Sample size, n

Figure 5.1: Proportion of models correctly selected in linear regression example with
d = 8. The 95% margin of error is less than 0.01.

The conditional prediction error, PE = E{(Y —z7(8)3(S))?}, was computed using
10° independent test samples for each simulation. The average of all 104 simulations,
estimates the prediction error that is shown in Figure 5.2 for the various methods.
The average prediction error when LASSO is used for variable selection only and
the usual least-square estimates are then used for the prediction is also shown in
Figure 5.2 for the method denoted by LASSOLS. We see that LASSOLS outperforms
LASSO and SUBSET as expected but it is not quite as good as SCAD and MCP. The
ORACLE prediction error is obtained assuming the correct variables are known a priori
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and then the usual least squares estimates of the parameters are used. When n = 100,
SCAD and MCP are close to the ORACLE prediction error when the BIC is used. As
might be expected, due to overfitting, the AIC performance is generally much poorer
than with the BIC.

n=20 n=60 n=100
wep |o + vlo + Vool + v
SCAD |0 + vl + \V4 o + \V4

LASSOLS |0 + Ve —+ v oo + \V4
LASSO |0 “+vlo o W

SUBSET |0 + vlo + Ve + v

T T T T T T T T T
12 13 1.4 15 1.06 108 110 112 1.04 1.06

Average Prediction Error

Figure 5.2: Average prediction errors in linear regression with d = 8. ORACLE: o,
AIC: V, BIC: +. 95% MOE < 0.01,0.002,0.001 for n = 20,60, 100 respectively.

The performance of AIC, in the large feature space is examined using d = 50,
n =100, kg = 7, By = (1,—0.5,0.7,—1.2,—-0.9,0.3,0.55) and ¢ = 0.3. The GIC with
a =2,4,...,20 are used to select the best model from the candidate models produced
by LASSO, SCAD, and MCP. The proportion of underfit, correct and overfit models are
shown in Figure 5.3. As « increases, the number of the overfitted models decreases,
and the number of the underfitted models increases. The BIC corresponds to a = 4.6.
Using SCAD or MCP with GIC for a > 4 produces a high proportion of correct models
but LASSO always produces many overfit models even for large values of . The
underfitting condition in Corollary 5.1 is illustrated by the fact that when o = 20 all

penalty methods produce some underfit models.

5.4.2 Logistic Regression Model

In this example, the data are generated from the logistic regression model with d =
25, kg = 5 and [y = (2.5,—1.9,2.8,—2.2,3) for samples of size, n = 200, 250, 300.
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Figure 5.3: Proportions of underfitted, correctly fitted and overfitted models in linear
regression example with d = 50. The 95% margin of error is less than 0.01.

As shown in Corollary 5.1, for the penalized likelihood methods having the oracle
property, the BIC-type criteria are consistent but the AIC-type are not and this is in
agreement with the results shown in Figure 5.4. For SCAD and MCP, the number of
the correctly fitted models by BIC increases as n becomes larger but there is only a
very slight increase with the A1C. For LASSO, both A1C and BIC select a small number
of correctly fitted models. For the penalized likelihood method such as LASSO having

no oracle property, the BIC is not consistent.

5.5 Conclusions

Usually there is a bias between the penalized MLE and the MLE. We analyzed how the
bias affects the consistency of Gic, and derived the conditions under which the GIC is
overfitting, consistent, or underfitting. If the penalized MLE has the oracle property,
the GIC may be categorized into three types: AIC-type, BIC-type, and others that are
asymptotically underfitting, and the AlC-type and BIC-type have the same asymptotic
properties as AIC and BIC, respectively. If the penalized MLE does not possess the
oracle property, as is the case with LASSO, the BIC-type may not be consistent.
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The 95% margin of error is less than 0.01.

5.6 Appendix

5.6.1 Lemmas

The following lemmas are useful for the proofs of theorems.

Lemma 5.1. GIC can select the model Sy, if and only if

max Ay ; <a < mii;lAk

j>k i< J?

where Ay, ;j = 2{ln(j) — n(k)}/(cj —cp) forj #k, k=1,..., K.
Proof. GIC selects model Sy, if and only if for j # k,
—2{ln(j) = In(k)} + alcj — ¢5) 20,

that is,

max Ay ; < a <min A;. ;.
FE A Gk
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Define minjq Ay ; = oo and max;s g Ag ; = 0. Let x(a) be the model size
selected by GIC. The probability of selecting the model S;. is

Pr{r(a) = k} = Pr{max A;, ; < o <min Ay ;}. (5.10)
j>k ’ j<k 7

Lemma 5.2. Let o = oy and n ‘o, — 7. Let D = QZ%M)(K) - QZ,SM)(kO). If
an > (D + Agy)/(Chys1 — Crg) and v <y then Pr{x(a) = ko} — 1.

Proof. Let r < ~. From (5.7), n”lay, < min; < g, n_lAkO,j for n large enough. From
(5.10)

Pr{x(a) = kg} = Pr{max Akgj < an,ap < min AkOJ}

7>ko 7<kp
= Pr{max A, . <« ,n_la < minn 1Ay
{j>k ko,j = @n n o= j<ko kou}
= Pr{max A;. ; < «
{j>k0 ko.g = ’I’L}
= Pr{max [21,(j) = 2ln(ko)|/(cj — cy) < an}
J=R0O

> Pr{max 2" () = 20 (ko)}/ (¢ — ) < )

= Pr{2l (K) = o (ko)] < anlerg 11 — cry)}
= Pr{pg + Ay < anlcgyr1 — cxg)}
= 1.

[]

Lemma 5.3. Let o = oy, and n~ tay, — r. Ifr > 7 then Pr{x(a) = ko} < 6, and
Pr{x(a) > ko} — 0, where y~ is the Kronecker delta.

Proof. Let r > ~, and n be large enough. Then there exists a constant € such that
n~tay >~y —e > 0. For j > ko, from (5.6), n~ I, (j) — Z%M)(ko)} = 0p(1). Thus
J > ko,

240 = 00 (ko) + 201" (ko) — L)}
fos €j = Ckpy,

< Q.
Let k > kg. From (5.10)

Pr{x(a) = k} < Pr{a, < mig Ag it < Pr{on < Agypt = 0.
j<
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From (5.10)

Pr{rk(a) = kg} = Pr{maxA
J>ko

= Pr{a, < min A;._ .
{ n_j<k0 ko,]}

< ap,an < min A
J<ko

ko.j kouj )
— Pr{nla, < minn tA, .

{ n = j</€0 ko,j}
< Pr{r<n}

= 6T7’Y'

5.6.2 Proofs of Theorems

Theorem 5.1.  From (5.10),

200 (7) — 20, (K
Pr{s(a) = ky} < Pr{max n()) (ko) < a}
7>k Cj = Cky

21n(Ko) — 21n (ko)

€Ky ~ Ckg

IA

Pr{ < a}.

Since

ln(KO) - ln(k0>
= {0 (K) — 10 (o)} + {1 (ko) — (ko) } — (1M (Ko) — 1K)}
— {18 (ko) — 18 (ko) + (A — Arey)/2,

it holds asymptotically that

Prir(a) = ko} < Pr{2[l" (Ko) — 18 (ko)) < alcxe, — ciy) — (g — Ak}
< Pr{2{" (Ko) — 18" (ko)) < elexey — cxy))

2
Pr{XKO_k;O < 6(CK0 - Ck())}

Qe -
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Let k < kg. From (5.10),

Pr{x(a) =k} < pr{?% 2ln(i;:ilin(k)

2 (ko) — 2l (k)
Cko — Ck
2 (ko) — 21" (k)
Chkg — Ck
20l (ko) — 15" (k)
Cko — Ck

<a}

IN

Pr{

<a}

IN

Pr{ < a}

= Pr{ <n"lal}.

From (5.1) and (5.6),

0 Hin(ko) — Ik} = n 10 (ko) — 1 ()} — M () — 1 (ko))
> A —op(l).

Since nla — 0, Pr{x(a) = k} = 0.

Theorem 5.2. It follows directly from Theorem 5.1 and Lemmas 5.2 and 5.3.
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Chapter 6

SUMMARIES AND FUTURE DIRECTIONS

This thesis primarily studied the properties and improvement of the information
criteria including the generalized information criterion and the family of Bayesian
information criteria. The following issues have been addressed: i) non-asymptotic and
asymptotic properties of GIC with LS or MLE algorithms; ii) asymptotic properties
of GIC with penalized MLE algorithms for high dimensional space; and iii) improved
information criteria for model selection and choice of tuning parameter.

The non-asymptotic properties include the probability of selecting a model and its
computation, and the interval constraints under which a specified model can be se-
lected. The asymptotic properties provide the conditions under which the information
criteria are overfitting, consistent, or underfitting. Three procedures for improving
the G1C have been proposed. Two of them are the adaptive GIC that is based on the
probability of selecting a model. The other is the GIC with controlling the overfitting
level.

There are a lot of issues that are not covered in this thesis. Some topics for
possible future research are indicated in the following sections.

Model Dimension Reduction

When dimensionality can be reduced, model selection may be more accurate. The
computational burden can be reduced dramatically.

Missing Data

We need to develop selection procedures that more effectively deal with missing values
instead of simply discarding them. Missing values should automatically be imputed
or estimated at each stage in the selection process.

Multivariate Models

This thesis dealt only with response or output variables that are univariate. The
extension of this thesis to deal with the more general case of multivariate outputs is
straightforward but the details and algorithmic implementations would be consider-

ably more complex.
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Biomedical Applications

There are many applications of the methods discussed in this thesis in the medical
and biomedical area. Model selection has attracted substantial attention in high-
dimensional genomic and proteomic data analysis. Model selection is extensively
used for survival and longitudinal data analysis and identification of the quantitative
trait loci. A growing important area of medical research deals with the assessment
of a drug or the effect of a new medical procedure by observing the actual historical
outcomes. The data thus comprise a time series and an intervention analysis model
may be used to assess and describe the overall effect. Model selection is important
in selecting model components describing the errors, the covariates, if any, and the
intervention itself. A very interesting and important example is discussed by (Juurlink
et al., 2004) who show that deaths in the target population increased after a new drug
Aldactone was introduced. This drug had been extensively tested in clinical trials
but proved a disaster in actual clinical usage. This disaster was detected and its

magnitude quantified using time series intervention analysis.
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