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Abstract 
 

Pipelines are the safest and most efficient way to transport large volumes of oil and gas from 

extraction fields, to refineries, industry and home consumption. Extensively used to transport 

fluids over long distances, pipelines may pass through terrain features exposed to geohazards. The 

performance of buried pipelines in areas subjected to ground displacements constitute a criterion 

for the design, assessment and management of gas pipelines to ensure public, environment and 

property safety in a cost-effective manner. Modern surveying and sampling techniques allow for 

better geotechnical characterization of ground movements and variability of the soil properties 

with confidence. The statistical data enables reliable models to correlate the inspection 

measurements with the overall safety of the buried pipelines.  

 

Random field theory is widely used to model the spatial variability of soil properties that affect the 

probability of failure of pipelines. A limit state for onshore gas pipelines laid down over hill-type 

features is the Upheaval Buckling (UHB). In this study, the spatial variability of the soil properties 

is considered in a simplified manner. First, the soil properties are modeled as an Expansion 

Optimal Linear Estimation (EOLE) of the random field. Further, the soil correlation structure is 

idealized as a multivariable cross-correlated Gaussian random field, approximated with Statistical 

Preconditioning. A parametric example illustrates the impact of the spatiality variability of the soil 

on the failure probability due to UHB and the applicability of simple empirical equations to 

account for the spatial variability of soil. The analysis results suggest that accounting for the soil 

spatial variability of the soil may lead to less conservative estimations of the failure probability 

due to the UHB.  
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A practical approach to analyze probability of failure of pipelines susceptible to landslides is also 

presented in the thesis. Soil displacements can impose significant loads on pipelines and may result 

in the failure of pipelines along unstable slopes. A simple procedure to estimate the probabilities 

of tensile rupture and compressive local buckling is presented. The soil is characterized as a 

random field. The probability of failure is obtained by numerical simulation, extending the 

Generalized Slice Method.  A particular Critical Slip Surface is found for each random field 

realization.   

 

Keywords: Critical Slip Surface, Cross-Correlation, Expansion Optimal Linear Estimation, 

Generalized Slice Method, Upheaval Buckling, Slope Stability, Statistical Preconditioning.     
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Summary for Lay Audience 

 

Pipelines are considered the safest and most efficient way to transport large volumes of oil and gas 

from extraction fields to refineries, industry and home consumption. Thus, pipelines are critical 

infrastructure and have been used extensively. Buried gas pipelines usually transport fluid at 

elevated temperatures to optimize the productivity of the wells. Due to these conditions, an overall 

compressive force is induced along the pipes. This compression, may cause the pipeline to buckle 

upward or even break out of the ground if the soil cover or restraining measures are not sufficient. 

 

Additionally, out-of-straightness imperfections or geometric features along the pipeline 

topography can further reduce the buckling resistance of the pipeline.  Trenched or buried pipelines 

are designed to protect the pipe from external actions and ensure structural stability. The current 

state of the art allows for estimations of the critical axial buckling force considering different types 

of soil, pipe materials and the pipeline geometric conditions.  

 

Different from engineering materials, natural soil deposits have mechanical properties that vary 

orders of magnitude more. This uncertainty has to be taken into account to assess the optimal 

operation of pipelines in a safe and efficient manner. The main objective of this research is to 

investigate the effects of the soil inherent variability on the stability of buried pipelines. 
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1 Introduction 

 

Pipeline networks are critical infrastructure. It is the safest and most efficient means of transport 

for large volumes of oil or gas, according to the Canadian Transportation Safety Board statistics. 

Extensively used in transmission lines, from the production wells to points of distribution and 

consumption, pipelines cross through diverse terrain features, in offshore and onshore 

environments. The design and operation of pipelines are regulated by design standards to ensure 

protections for the environment and public health while maintaining adequate efficiency.  

 

The U.S. Pipeline and Hazardous Materials Safety Administration (PHMSA) and the Canadian 

Pipeline transportation safety investigations and reports indicate that the main risk for the pipeline 

integrity is third party damage due to careless ground excavations. Excluding all man-made risk 

sources, the corrosion and degradation of old pipelines is the main risk. Considering only natural 

incidents (ground movements, heavy rains, floods, and severe temperature fluctuations), ground 

movements are the main cause of failure, accounting for about 50% of all-natural force-related 

incidents and about 10% of the overall failure accidents in pipelines. 

 

Ground movements often occur due to external actions (earthquake, subsidence, freeze and thaw 

processes, etc.). Whatever the cause, an unstable soil mass poses risk to pipelines because it may 

induce failure loads. Further, almost every pipeline that traverse areas in mountainous terrain has 

some vulnerability to ground instability. The uncertainty involved in the assessment of pipelines 

due to soil movements is usually approached in a conservative way by considering the large 

inherent variability of the soil properties. 
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A different limit state of pressurized pipelines, involving ground stability, is related to operating 

conditions. Efficient pipelines usually transport oil or gas at elevated temperatures and pressure. 

Such conditions induce axial compressive loads on the pipelines that may cause the pipelines to 

buckle globally. The capacity or critical buckling force of a particular pipeline depends on several 

key parameters that are random in nature. 

 

1.1 Background, Upheaval Buckling 

 

Oil or gas pipelines operate at high temperatures to reduce the pumping energy lost due to fluid 

viscosity, and facilitating high pressure flow. The design and operation of pipelines optimises the 

cost, subjected to an acceptable safety risk. Due to these operating conditions, an overall 

compressive force is induced along the pipes, as the soil partially constrains the axial expansion 

of pipelines. Excessive compression may cause the pipeline to buckle upward or even break out of 

the ground if the soil cover or restraining measures are not sufficient. Usually, buried pipelines 

under axial loading are more likely to buckle upwards because the bottom and lateral wall of the 

trench are more resistant against pipe movements. This instability mechanism is generally known 

as the upheaval buckling or overbend instability for onshore pipelines.  

 

In addition to the compressive forces, out-of-straightness imperfections or features along the line 

topography can further reduce the buckling capacity of the pipeline. Upheaval buckling in itself is 

not an ultimate limit state but it can lead to considerable deformations, expensive remediation 

measures needed to avoid high cycle fatigue or leaks. The critical forces at which upheaval 



3 

 

buckling occurs for pipe laydown over hill-crest type imperfections along the line cannot be readily 

predicted using analytical methods.  

 

Since 1980, analytical models have been developed to investigate the upheaval buckling behaviour 

in order to predict the pipeline integrity and reliability. Upheaval buckling according to Hobbs [1] 

and Boer et al. [2] imply perfectly straight pipelines laydown over rigid soil with a uniform elastic 

soil cover. Analogous to the vertical stability of railway tracks. Taylor et al. [3] and Richards [4] 

proposed models to account for initial out-of-straightness imperfections over rigid soil with a 

uniform elastic soil cover.  

 

Ju et al. [5] developed a model that considers the pipeline as a long beam resting on a rigid 

foundation with an imperfection characterized by shape functions. The axial soil resistance is 

linear elastic. The vertical soil resistance is lumped as a constant value equal to the sum of the soil 

resistance and weight of the soil and contents of the pipeline.  This model adopts the Ramberg-

Osgood stress-strain relationship for the pipe steel. Pederson et al. [6] formulated a similar model 

to Ju et al.’s model but considered a variable distance of the liftoff point, defined as the vertical 

displacement of the uplifted part of the pipeline, as the the thermally induced axial load increases. 

This semi-analytical, linearized model accounts for the gradual upward movement of the pipe due 

to the pressure and temperature induced axial forces. 

 

In general, semi-analytical models to define upheaval rely on numerical computation to satisfy 

compatibility of axial displacement from the equilibrium equations. Their main limitations are:  
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1.- They do not provide a conservative estimation of the critical load for all soil and imperfection 

shape cases because the soil vertical resistance will degrade considerably long before the 

breakthrough condition is reached.  

 

2.- The initial uplift displacements of the pipeline are likely to artificially vary depending on the 

function chosen to approximate the shape of the imperfection. Although one particular function 

may conform well to a realistic pipeline geometry, the degree or type of function used may yield 

different curvature near the center of the buckling pipe, leading to different vertical displacement 

rates for the same increment of axial loading depending purely on the function chosen. 

 

3.- Considering the mechanical stability of the pipe-soil system, one can see that the semi-

analytical models only yield equilibrium solutions with a simple stability structure. In a more 

realistic model, it is possible that subsequent equilibrium solutions exist after the initial instability 

or bifurcation point (e.g., some pipelines may become stable again after buckling, with enough 

capacity to operate at even higher pressure and temperate without keep moving upwards).  

 

In the present, an upheaval buckling model is proposed from empirical equations, derived from 

parametric analyses of numerical pipe-soil models [7].  In order to overcome the limitations of 

semi-analytical models and to account for more commonly design parameters found on onshore 

gas pipelines (i.e., hill type imperfections and cold formed bends pipe joints). This approach also 

allows to consider: load path dependency, non-linear soil and pipe material properties and second 

order effects. 
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1.1.1 Upheaval Buckling accidents 

 

UHB or overbend instability reports of large diameter distribution pipelines can be found in 

publications as early as 1967. A 1.02 m diameter pipeline, operating at 48℃ buckled. Protruding 

for 65m in length and 3m high out of the ground. A combination of soil cover erosion and cold 

winter, triggered the excessive displacement on a section of the pipeline that was laydown onshore 

over a natural hill in Western Siberia, Russia [8,9].  

 

A notorious UHB accident was published by Nielsen et al. in 1990 [10]. After an offshore pipeline 

was brought into service in the North Sea, it suddenly buckled with a maximum vertical 

displacement of 1.1 m above the seabed. Given the cost associated of remedial measures and the 

risk involved in this particular case gather, it gathered academic interest in subsequent years. 

Nevertheless, more UHB cases occurred after in other pipelines around the world.   

 

More recently, in Canada, a UHB driven failure of a pipeline at the Nexen Long Lake facility near 

Anzac, Alberta, happened in 2016 [11].  

 

1.2 Background, Landslides  

 

Pipelines routes often are designed through diverse geological and topographic features. Due to 

the environmental and public safety concerns or constraints imposed by the land use, the lines are 

sometimes placed in rough terrains or even over previous unforeseen unstable soil conditions. 

Despite extensive surveys during the planning and design of the optimal route, some unstable soil 
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mechanisms remain underestimated since the soil resistance can be affected by highly uncertain 

parameters (e.g., unusual rainfall, change in vegetation that modifies water infiltration, change of 

water currents, additional surcharge introduced by careless constructions processes, etc.). The soil 

may become unstable many years after the pipeline construction.    

 

Landslides are rarely a sudden phenomenon. Earlier soil instability evidence can be detected 

during monitoring and inspection, which allows time to assess and develop maintenance strategies. 

Overly conservative risk estimations may lead to premature actions, generating unnecessary 

maintenance costs. On the other hand, relative movements between the moving soil mass and the 

stable part of the line can exert significant loads to the pipe joints and even failure of the pipeline. 

In spite of modern design practices and maintenance strategies, ground movements such as slope 

instability have been reported. In the US, Canada, and Europe [12] about 10% of all gas pipeline 

incidents are related to ground movements.  

 

Forces induced by soil movements have a direct relationship with the soil-pipe mechanical 

interaction. However, the occurrence of the landslide is random itself and the relationship between 

the peak induced load and the corresponding pipe displacement as well as the determination of the 

corresponding structural stresses are also uncertain, as a result of the inherent variability of the soil 

properties.  In a sense, the probability of failure due to landslides can be understood as the 

probability of the landslide happening multiplied by the probability of failure of the pipeline buried 

in a random media given the landslide event. 
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The stability of slopes is usually analyzed by methods of the limit equilibrium, and finite-element 

analyses. Force limit equilibrium is achieved between rigid body discrete partitions of the soil 

domain. The outcome is a ratio between the soil resistance capacity and the sum of the soil weight 

plus external forces. This ratio is only a factor of safety and no deformation or displacements can 

be predicted from it. Finite element analysis provides information about the magnitude of 

displacements of the soil mass but does not provide a direct measure of the stability that is 

equivalent to the factor of safety. 

 

From a geotechnical perspective, the forces of each element or slice in the limit equilibrium method 

can be calculated from the effective stress or total stress parameters. In effective stress analyses, 

the shear strength of the soil is related to the effective normal stress along the potential slip surface. 

The water pore pressure is a parameter in the effective stress shear strength. In the total stress 

analyses, the shear strength of the soil depends on the total normal stress on the potential slip 

surface. This total shear strength is measured at undrained and representative stress conditions to 

obtain a direct relationship to total stresses without the need to consider the undrained excess pore 

pressures.  

 

Total stress procedures for analysis of undrained conditions can provide a straightforward method 

to account for the uncertainty in the soil properties, rather than characterizing the stochastic 

properties of the undrained excess pore pressures for use in effective stress analyses of undrained 

conditions. Well known force equilibrium methods were the one developed by Janbu in 1968, 

generalized procedure of slices, Morgenstern and Price's method in 1965 and Spencer's method 

in1967. The main criticism of the force equilibrium methods is that the horizontal forces between 
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the slices ignore elastic effects, and its distribution may be unrealistic and has some consequences 

for the equilibrium.    

 

Finite-element or deformation analysis can predict stresses and movements in slopes by 

considering more realistic soil behaviour. The main advantages are: (1) no assumption needs to be 

made in advance about the shape or location of the failure surface; (2) deformation and stress 

results can be obtained from the elastic properties of the soil; thus, it is very useful for monitoring 

the progressive mechanical behaviour of the slope, and (3) it allows to consider complex soil 

behaviour such as compressibility and pressure dependent material relationships.  

 

For a safe design and assessment of pipelines buried in slopes, the simplicity of the force limit 

equilibrium methods could be useful to investigate all the slope features along the pipeline with a 

high degree of uncertainty. FE methods are generally more time-consuming than slope stability 

analyses, and they require more detailed data. They may be valuable in planning instrumentation, 

to identify the location and magnitude of the most critical displacements. They also provide more 

complete results, useful to plan remedial actions.  

 

When the ground movement spans a wide area, the vulnerable regions are initially identified from 

on a regional-level pipeline risk assessment. This is followed by detailed macro-level pipe-soil 

interaction analysis on pipe segments identified from the regional-level assessment [13]. In section 

level analysis, the basic pipe loading mechanisms can be modeled to assess the pipeline safety due 

to landslide.  
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In this thesis, a concise procedure to account for the inherent soil spatial variability of the soil is 

proposed in Chapter 5, as an alternative to assess all the slopes along the pipeline in a section level 

analysis. The procedure considers soil stochastic characteristics that can be quantified with modern 

survey equipment such as monitoring of ground movements and its variations over time, with 

reasonable confidence.  

 

1.3 Background, Spatial Variability of Soil Geotechnical Properties 

 

The inherent spatial variability of soil properties has been identified as one of the major sources of 

uncertainty in geotechnical properties. The uncertainty involved in natural soils may be orders of 

magnitude more significant than the uncertainty involved in the geotechnical models to predict 

soil behaviour.  

 

Several methods to study stochastic mechanical systems have been developed since the 1960s. 

Buried pipelines can be idealized as very long structure (i.e., hundreds of meters to model a large 

pipe diameter upheaval buckling problem or landslide), surrounded by a random media and likely 

to resist plastic deformation before failure. These characteristics can be considered in a simple 

manner by adopting an adequate stochastic method.  

 

Perturbation methods, to estimate the first two statistical moments of the response (e.g., finite 

element-based reliability analysis such as First Order Reliability Method (FORM), Second Order 

(SORM)) are inefficient if a large number of variables involved in the soil discrete locations are 

correlated. Stochastic finite element or series expansion methods are cumbersome to implement in 
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this particular type of model, because it requires manipulation of the global stiffness matrix, 

dealing with the plastic deformation of the pipe and soil material, and the step loading nature of 

the stability problem for the upheaval buckling models. Thus, the most straightforward method is 

a reliability method based directly on the simple Monte Carlo simulation from a set of random 

field realizations. 

 

Theoretical functions are used to approximate the variability of geotechnical properties along the 

soil domain. Single exponential, squared exponential or other valid decrement functions are 

commonly fitted to capture the correlation structure of soil properties [13-18] as a function of the 

distance between measurement points. 

 

A spatial random field is called univariate or multivariate depending on whether the parameter 

associated to a location point in space is a variable or a vector. The values of the parameter along 

all the points in the domain are random but always maintains a correlation structure, and it can be 

fitted to match the stochastic properties observed by measurements taken from a real random 

media. This mathematical representation is useful to model mechanical systems that are random 

in nature, like the soil layers in an earth embankment or a natural slope. 

 

Different techniques have been proposed to estimate random field realizations. A random field can 

be discretized as: (1) a grid of spatial locations or points, (2) as a mesh or spatial areas, or (3) a 

series involving random variables operating on deterministic spatial functions [18]. A brief 

reference of discretization methods is given: 
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The point discretization methods include the Optimal Linear Estimation Method proposed by Der 

Kiureghian and Ke in 1988 [19], Shape Function method by Liu et al. 1986 [20], and Integration 

Point method by Matthies et al. [21] in 1997. The Midpoint methods have questionable accuracy 

according to a comparison presented by Li and Der Kiureghian [19]. The Optimal Linear Estimation 

is the most accurate among the Midpoint methods. Nonetheless, it always underestimates the 

variance of the original or target random field.  

 

Average discretization methods include the Spatial Average method proposed by Vanmarke and 

Grigoriu in 1983 [22], and Weighted Integral method by Deodatis and Shinozuka in 1990 [23]. It has 

been shown that the variance of the spatial average over an element under-represents the local 

variance of the random field by Der Kiureghian and Ke, 1988. The spatial average method is 

limited to the Gaussian correlation type according to Matthies et al. 1997. The Weighted Integral 

method is actually mesh-dependent as pointed out by Matthies et al. in 1997. 

 

Series expansion methods include the Karhunen-Loève expansion method in 1977 [24], Orthogonal 

series expansion method proposed by Zhang and Ellingwood in 1994 [25], and Expansion Optimal 

Linear Estimation (EOLE) method by Li and Der Kiureghian in 1993 [26]. The Karhunen-Loève 

expansion, is the most accurate method for Gaussian correlation structure in terms of variance 

estimation and using all the orthogonal values. The EOLE method is the second most accurate. 

 

For the upheaval buckling problem, the EOLE method seems to be the most convenient method. 

Because all the orthogonal values can be used for minimum error without increasing the 

computational time (in comparison with each FE analysis of the Upheaval Buckling model). 
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Further, all the error in variance seems to be concentrated at the boundaries of the soil domain. For 

the Upheaval Buckling problem and the Slope Stability, the variability of the soil properties at end 

of the pipeline, faraway from the instable mechanism, have a negligible impact on the variability 

of the response. Thus, the marginal improvement on accuracy of using the Karhunen-Loève 

expansion is not noticed for these FE models.  

 

1.4 Objectives of the thesis 

 

This thesis describes research aimed at addressing the effects of soil spatial variability on the 

reliability assessment of pipelines. Two concerning soil mechanics are considered: Upheaval 

buckling and land slides through parametric numerical analysis. The objectives are categorised 

into four technical chapters, with the primary objectives of each outlined as follows: 

 

Propose a simple approach to assess the UHB of pipelines laydown over hill type imperfections 

by considering the effects of the spatial variability of the soil properties. By analyzing the most 

basic case, i.e., a dry granular soil, the soil is defined as a unidimensional random field with the 

aim of clearly identifying the isolated effects and influence of the spatial variability of a single 

dominant mechanical property to assess the UHB variability.  

 

Develop a deterministic empirical equation to predict the UHB of pipelines laydown over hill type 

imperfections built with cold-formed bends. The work is intended to account for the structural 

parameters involved in the thermal buckling mechanism and to examine the influence of soil 

resistance generally, as well as provide a practical expression to assess pipelines. 
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Quantify the influence of the cross-correlation among the soil mechanical properties to asses the 

UHB behavior. Present a collection of cross-correlated random field discretization methods 

capable of modeling particular soil conditions that do not follow a commonly used correlation 

structure and distributions.  

 

Present a practical example of the use of random field discretization methods combined with the 

limit equilibrium methods to assess the safety of pipelines subjected to landslides by accounting 

for potential failure surfaces consistent with the soil random characteristics. 

 

1.5 Motivation 

 

Resent advances in survey technology allow for the acquisition of extensive site data in a cost- 

effective manner. The Airborne Light Detection and Ranging (LiDAR) can be used to track the 

ground movements and its variations over time, along entire sections of a pipeline with reasonable 

accuracy. Also, versatile sampling mobile rigs can efficiently complete geotechnical 

investigations, reducing the need for heavy equipment. This availability of measurements can be 

used to characterize stochastic mechanical models and treat the natural uncertainty involved in the 

assessment of pipelines in risk of ground movements more accurately. 

Life time management of pipelines is needed to ensure safe and economic transportation of 

hydrocarbons. Accurate estimations of the probability of failure due to ground movement will 

allow timely and effective mitigation measures, ultimately reducing preventable accidents without 

increasing the maintenance and monitoring cost.  
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The soil spatial variability, in particular the horizontal plane of the soil properties, may be 

significant to the reliability assessments of pipelines. Because of the limited width and small 

average burial depth in comparison with the total length of a pipeline, the influence of the soil 

spatial variability has been found relevant in previous studies for long structures such as strip and 

pile foundations and retaining walls. Thus, a clear understanding of the influence the spatial 

variability of the soil properties has on the overall variability of the pipeline response is highly 

valuable to evaluate the relevance of considering more refined stochastic models.   

 

Once the relevance of soil stochastic parameters is established, a procedure to implement 

stochastic models in a reliability-based design and assessment framework is relevant and useful 

for practical application. The main motivation of this work is to contribute to better assessing the 

risk of pipeline failure due to soil unstable conditions through better representation of the inherent 

variability of the soil proprieties during structural analysis. This study helps to reduce the number 

of accidents, improving public and environmental safety.  

 

1.6 Thesis outline 

 

This thesis represents an effort to further understand the effects of soil spatial variability on the 

reliability assessment of pipelines. The contents are organized in six chapters as follows:  

 

Chapter 1, the Introduction, contains a brief historical review and basic definitions for each 

research topic, as well as the motivation and research objectives. 
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Chapter 2 explores the effects of the soil friction angle modeled as a univariate random field on 

the Upheaval Buckling variability for onshore pipelines laydown over hill-type imperfections and 

constructed with cold formed joints. The direct Monte Carlo simulation and the EOLE method are 

employed in the investigation. 

 

Chapter 3 proposes an empirical equation to estimate the Upheaval Buckling resistance for onshore 

pipelines laydown over hill-type imperfections and constructed with cold formed joints. The 

empirical equation was fitted from a FE parametric analysis, using commonly observed values for 

pressurized transmission gas pipelines. 

 

Chapter 4 contains a review of selected mathematical models that can be used to include the most 

specific statistical data in the assessment of pipelines against Upheaval Buckling. It also, shows 

the effects of considering a cross-correlated, multivariate (i.e., the friction angle, cohesion factor 

and density) random field by adopting a simple cross-correlated random field discretization 

method. 

 

Chapter 5 presents a practical example of investigating the reliability of pressurised pipelines along 

unstable slopes by accounting for potential failure surfaces given the soil random characteristics.  

The limit equilibrium methods of slices are performed for each random field realization of the soil 

properties to identify particular failure surfaces. A uniform displacement is applied parallel to 

failure surface in a FE model. The response is compared to the capacity of the pipe section 
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Chapter 6: The overall conclusions are presented with significant contributions and key findings 

summarized.  

 

1.7 Scope of the thesis 

 

In Chapter 2, the pipeline is model as a Timoshenko beam, including temperature as a body load, 

and equivalent section forces to account for the internal pressure through the hoop stress 

relationship. The pipe steel material is characterized using the Ramberg-Osgood stress-strain 

relationship. All manufacturing residual stresses in the pipe wall are ignored. The FE analyses are 

carried out using commercial software ABAQUS. The soil-pipe forces are model as multi-linear 

springs to represent the frictional force at the pipe and the soil cover resistances, similar to ASCE 

(1984) and ALA (2001).   

 

A parametric analysis was conducted to investigate the effects of the soil spatial variability on the 

UHB phenomena. The studied parameters are pipe diameter, steel grade, imperfection size, 

operating internal pressure and soil resistance.  

 

The soil friction angle is model as univariate random field, representing the soil friction angle with 

a lognormal distribution. Several valid correlation structures and correlation lengths were studied. 

The random field discretization was performed with the EOLE series expansion method. The 

applicability of the conclusion obtained are valid for cases inside the parametric range. 
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Chapter 3 is based on the deterministic analysis performed in Chapter 1.  After the parametric 

analysis, a result matrix is formed to fit an empirical equation to estimate the critical UHB load. T 

model error is calibrated using the Maximum Likelihood criteria. The scope of the parametric 

analysis includes 252 parametric cases.  

 

Additionally, the Monte Carlo simulation is perform using the empirical equation in comparison 

with the statistics obtained in Chapter 1. The empirical equation is a function of random variables 

in a reliability analysis. To account for the effects of the soil spatial variability within the range of 

the parametric analysis, two empirical variance reductions factors for the critical UHB force 

distribution are proposed.  

 

In chapter 4, a more robust approach to generate valid cross-correlated structures is presented. This 

approach is based on the Matérn correlation type to deal with empirical correlation structures. In 

this method, the discretization of the random field is possible for soil variables with modified 

Bessel second kind probability density functions. The random field discretization is achieved by 

linear coregionalization following loglikelihood approximations of the Bessel function parameters. 

Additionally, a basic example is presented using statistical preconditioning to characterize a simple 

cross-correlated tri-variate random field. This method was developed by Shinozuka in 1990 [27], 

and improved by Vořechovský in 2008 []. The cross-correlation structure of the field, seems to be 

of marginal relevance, for the cases studied assuming the soil properties to have lognormal PDF, 

and normal correlation, and correlation structure. But it is clear that this may be not the case for 

different soil stochastic properties. 
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In chapter 5, a simple cross-correlated tri-variate random field discretization method is 

incorporated in a reliability analysis involving a limit equilibrium method (generalized 

Morgenstern–Price). The limit equilibrium method of slices is performed for each random field 

realization of the soil properties to identify particular failure surfaces. A particular failure surface 

is found for each random field realization. This failure surface is imported on a FE model to 

obtained the maximum compressive and tensile strain in the pile wall and construct a cumulative 

distribution function. This approach may be useful as a coarse assessment of all slopes in a 

pipeline, due to its simplicity. Leaving more refined analysis for the most critical cases. 
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2 Upheaval buckling of onshore pipelines considering soil spatial 

variability 

 

Pipelines are considered the safest and most efficient way to transport large volumes of oil and gas 

from extraction fields to refineries, industry and home consumption. Thus, pipelines are critical 

infrastructure and have been used extensively since 1970. The high efficiency of pipelines can be 

explained by the low energy cost of pumping pressurized fluids with reduced viscosity at high 

temperatures over long distances. Maximum values of the operation pressure are about 70 MPa 

and the maximum operation temperature can reach over 100 °C [1].  

 

The high operating pressure and temperature require adequate restraint measures along the 

pipelines as the weight of the pipe and the soil friction against the pipe wall are likely to be 

insufficient to avoid excessive movements during operation as a result of the global Euler buckling 

of the pipeline.  A similar problem was studied as early as 1939 to investigate the lateral and 

vertical buckling of railway lay-down on a rigid base due to thermal expansion [2].  

 

This earlier analysis assumes that a buckle has already formed, to estimate the initial conditions 

that yields a particular buckling displacement [3].  In 1984, the approach for analyzing the buckling 

of railroad was extended to analyze the problem of buckling pipelines in the vertical or horizontal 

direction [4] considering the qualitative effects of imperfections of a pipeline.  In [4], an asymptotic 

relationship is demonstrated between the buckling length and the buckling amplitude for the stable 

and unstable buckled behavior of pipelines at different temperature changes [4].                                               
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A perfectly straight slender pipe as shown in Fig. 2.1 is used to illustrate the fundamental actions 

induced on the pipe by the operating conditions. In the figure, 𝑄𝑄 denotes the total axial compressive 

load; 𝐶𝐶 accounts for temperature induced compression along the length L, which results from the 

restrained thermal expansion; 𝑄𝑄 is the internal pressure, and k is a constant to account for the 

boundary condition of the pressure (i.e., capped ends, open ends). The displacement along y axis 

is given by 𝜈𝜈(𝑥𝑥) and the axial strain is [5] 

 𝜀𝜀𝑥𝑥𝑥𝑥 = −𝜈𝜈′′(𝑥𝑥)𝑟𝑟 cos 𝜃𝜃 (2.1) 
 

On a differential pipe length, the resultant pressure force due to the pipe bending 𝑞𝑞(𝑥𝑥) is normal 

to the bent axis direction. The force due to pipe bending is 

 𝑞𝑞(𝑥𝑥)𝑞𝑞𝑥𝑥 = 2� 𝑄𝑄 cos 𝜃𝜃(1 + 𝜀𝜀𝑥𝑥𝑥𝑥)𝑟𝑟 d𝜃𝜃𝑞𝑞𝑥𝑥
𝜋𝜋

0
 (2.2) 

  
𝑞𝑞(𝑥𝑥) = −𝑄𝑄𝑝𝑝𝑟𝑟2𝜈𝜈′′(𝑥𝑥) (2.3) 

              
                                 (a)                     (b) 

 
Figure 2.1 Pipe, Caped and Pinned at both ends, under Axial Load and Pressure differential. 

(b) Differential equilibrium of a pipe wall section. 
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Where the horizontal and vertical components are: 

 𝑞𝑞ℎ(𝑥𝑥) = 𝑞𝑞(𝑥𝑥)cos[𝜈𝜈′(𝑥𝑥)] ;     𝑞𝑞𝑣𝑣(𝑥𝑥) = 𝑞𝑞(𝑥𝑥)sin[𝜈𝜈′(𝑥𝑥)]   (2.4) 
 

By series expansion and simplifying the higher order terms: 

 𝑞𝑞ℎ(𝑥𝑥) = −𝑄𝑄𝑝𝑝𝑟𝑟2𝜈𝜈′′(𝑥𝑥) ;     𝑞𝑞𝑣𝑣(𝑥𝑥) = 0 (2.5) 
 

Using the Principle of Minimum Potential Energy; 𝑈𝑈 is elastic energy stored in the pipe material, 

𝑉𝑉 is potential of the external conservative loads: 

 

𝛿𝛿(𝑈𝑈 − 𝑉𝑉) −� 𝑞𝑞ℎ𝛿𝛿𝜈𝜈(𝑥𝑥)𝑞𝑞𝑥𝑥
𝐿𝐿

0
= 0 

 
 

𝑈𝑈 =
𝐸𝐸𝐸𝐸
2
� [𝜈𝜈′′(𝑥𝑥)]2
𝐿𝐿

0
𝑞𝑞𝑥𝑥 

 
 

𝑉𝑉 =
𝑄𝑄
2
� [𝜈𝜈′(𝑥𝑥)]2
𝐿𝐿

0
𝑞𝑞𝑥𝑥 

 

� 𝑞𝑞ℎ𝛿𝛿𝜈𝜈(𝑥𝑥)𝑞𝑞𝑥𝑥
𝐿𝐿

0
= � −𝑄𝑄𝑝𝑝𝑟𝑟2𝜈𝜈′′(𝑥𝑥)𝛿𝛿𝜈𝜈(𝑥𝑥)𝑞𝑞𝑥𝑥

𝐿𝐿

0
 

(2.6) 

 

 𝛿𝛿 �
𝐸𝐸𝐸𝐸
2
� [𝜈𝜈′′(𝑥𝑥)]2
𝐿𝐿

0
𝑞𝑞𝑥𝑥 −

𝑄𝑄
2
� [𝜈𝜈′(𝑥𝑥)]2
𝐿𝐿

0
𝑞𝑞𝑥𝑥� + 𝑄𝑄𝑝𝑝𝑟𝑟2 � 𝜈𝜈′′(𝑥𝑥)𝛿𝛿𝜈𝜈(𝑥𝑥)

𝐿𝐿

0
𝑞𝑞𝑥𝑥 (2.7) 

 

where a Rayleigh-Ritz [6] approximate solution is given by; 

 𝜐𝜐�(𝑥𝑥) = �𝑄𝑄𝑛𝑛Sin
𝑛𝑛𝑝𝑝𝑥𝑥
𝐿𝐿

𝑛𝑛

 (2.8) 

   

 

�
𝐸𝐸𝐸𝐸𝑛𝑛4𝑝𝑝4

𝐿𝐿3
−
𝑄𝑄𝑛𝑛2𝑝𝑝2

𝐿𝐿
− 𝑄𝑄𝑝𝑝3𝑟𝑟2

𝑛𝑛2

𝐿𝐿 �
𝑄𝑄𝑛𝑛 = 0 

 
(2.9) 
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�
𝐸𝐸𝐸𝐸𝑛𝑛4𝑝𝑝4

𝐿𝐿3
−
𝑄𝑄𝑛𝑛2𝑝𝑝2

𝐿𝐿
− 𝑄𝑄𝑝𝑝3𝑟𝑟2

𝑛𝑛2

𝐿𝐿 �
= 0;   𝑛𝑛 𝐿𝐿𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑛𝑛𝑏𝑏 𝑚𝑚𝑚𝑚𝑞𝑞𝑄𝑄 

𝑄𝑄𝑛𝑛 = 0  𝑃𝑃𝑄𝑄 𝑡𝑡ℎ𝑄𝑄 𝑄𝑄𝑃𝑃𝑄𝑄𝑄𝑄 𝑃𝑃𝐹𝐹 𝐹𝐹𝑡𝑡𝑟𝑟𝑄𝑄𝑃𝑃𝑏𝑏𝑡𝑡ℎ 

The critical load is given by the possible solutions 

 

𝑄𝑄𝑐𝑐𝑐𝑐 + 𝑄𝑄𝑐𝑐𝑐𝑐𝑝𝑝𝑟𝑟2 =
𝐸𝐸𝐸𝐸𝑛𝑛2𝑝𝑝2

𝐿𝐿2
 

 
 

𝐶𝐶𝑐𝑐𝑐𝑐 + 𝑏𝑏𝑄𝑄𝑐𝑐𝑐𝑐 + 𝑄𝑄𝑐𝑐𝑐𝑐𝑝𝑝𝑟𝑟 =
𝐸𝐸𝐸𝐸𝑛𝑛2𝑝𝑝2

𝐿𝐿2
 

(2.10) 

 

 𝑄𝑄𝑐𝑐𝑐𝑐 =
𝐸𝐸𝐸𝐸𝑝𝑝
𝐿𝐿2𝑟𝑟2

 
 

(2.11) 

And for the external pressure  

 

𝑄𝑄𝑐𝑐𝑐𝑐 − 𝑄𝑄𝑒𝑒𝑐𝑐𝑐𝑐𝑝𝑝𝑟𝑟2 =
𝐸𝐸𝐸𝐸𝑛𝑛2𝑝𝑝2

𝐿𝐿2
 

 

𝐶𝐶𝑐𝑐𝑐𝑐 + 𝑏𝑏𝑄𝑄𝑒𝑒𝑐𝑐𝑐𝑐 − 𝑄𝑄𝑒𝑒𝑐𝑐𝑐𝑐𝑝𝑝𝑟𝑟 =
𝐸𝐸𝐸𝐸𝑛𝑛2𝑝𝑝2

𝐿𝐿2
 

 

(2.12) 

 
 

𝑄𝑄𝑒𝑒𝑐𝑐𝑐𝑐 =  
𝐸𝐸𝐸𝐸𝑝𝑝

𝐿𝐿2(𝑟𝑟𝑒𝑒2 − 𝑟𝑟2) (2.13) 

 

𝑄𝑄𝑒𝑒𝑐𝑐𝑐𝑐 external pressure, 𝑟𝑟𝑒𝑒 external radius of the pipe section. Eq. 2.10 to Eq. 2.12 predict that there 

is a critical external pressure 𝑄𝑄𝑐𝑐𝑐𝑐 to buckle the pipe even without the temperate-induced 

compression, when 𝐶𝐶𝑐𝑐𝑐𝑐 = 0 or even with some negative 𝐶𝐶𝑐𝑐𝑐𝑐 < 0, i.e., tension acting on the pipe. 

The fundamental actions induced on the pipeline by the operating conditions can be summarized 

as follows: 

 

1.-The temperature differential between the operating and tie-in temperatures will induce a 

compressive axial force if the pipe is restrained in the longitudinal direction by the surrounding 
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soils.  The tie-in temperature is the temperature at which the pipeline is initially constructed and 

connected, typically marked lower than the operating temperature. There is a thermally induced 

critical load. 2.- There is a critical internal pressure that can buckle the pipe, even if there some 

additional axial tension acting. 3.- The external pressure has a stabilizing effect on the pipelines 

[5].  

 

Approximate expressions for the critical global buckling force due to internal pressure were 

proposed based on experimental results in [7]. To prevent the pipelines from buckling, adequate 

supports must be designed to ensure the pipeline’s stability including partial or complete restrains 

in the lateral, vertical and axial directions. If the pipelines are buried, a fully restrained condition 

in the axial direction can be achieved. The restrained pipelines inside trenches have competing 

global buckling modes in the horizontal and vertical directions, respectively.  If the pipe weigh per 

unit length is greater than the lateral resistance of the soil, then lateral buckling may occur. 

Pipelines with sufficient lateral restrain can only buckle upwards, where the soil cover, the weight 

and the bending stiffness of the pipe are not sufficient to prevent the buckling movement. This 

vertical or upward buckling mode is known as the upheaval buckling (UHB) [7], or overbend 

instability for onshore pipelines [8].  Fig. 2.2 depicts a pipeline that has undergone upheaval 

buckling.   

 
 

Figure 2.2  Upheaval Buckling Phenom diagram, Pipeline breaking through the ground 
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The UHB phenomenon is dependent on the internal pressure, difference between the operating and 

tie-in temperatures, soil properties, pipe burial depth, construction initial stresses, and geometry of 

the trench or line base.  Once the global vertical buckling deformation exceeds a critical value, 

local buckling (i.e., wrinkling) of the pipe cross section may occur, resulting in large plastic strains, 

rupture or low-cycle fatigue failure due to cyclic nature of the pipe operating pressure [7]. 

 

Substantial theoretical and experimental research efforts were made to understand and model the 

mechanism leading to UHB [7-10] between 1990 and 2005. From 2000 to date, research has been 

conducted to improve earlier simple models to account for the pipe-soil interaction and the in-situ 

geometric conditions [11]. The resulting nonlinear boundary problems can be solved with numerical 

methods overcoming the simplicity of the closed form solutions. More recent studies have been 

focused on the improvement of the soil-pipe interaction models [11] and finite element analysis 

(FE) model of UHB [12].  

 

The geotechnical research of soil-pipe models in the context of UHB is focused on identifying the 

parameters of the uplift resistance mechanism of soil; from its initial configuration to the break-

through ground condition [11], the fully mobilized soil resistance, the post-peak softening of soil, 

and their dependency on the soil density and confining stress, and the evolution of the angle of the 

slip planes between the moving soil mass and the static soil in the trench wall [13]. The UHB has 

been investigated using sophisticated FE [15-17].  However, such analyses are mainly limited to 

research applications due to the computational demand and the extensive data required to fully 
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characterize the parameters involved in the analysis. Thus, it is valuable to develop simplified yet 

robust, practical FE models that can be used in practical engineering applications [12]. 

 

2.1 Motivation 

 

Life time management of pipelines is required to ensure safe and economic transportation of 

hydrocarbons. The reliability-based design and assessment (RBDA) methodology is recognized as 

a powerful decision-making tool for maintenance and operation of pipelines. RBDA has been 

included in the Canadian pipeline standard, CSA Z662-19 [14], as a viable alternative for the design 

and assessment of onshore natural gas pipelines in Canada [14].  Accurate estimations of the 

probability of UHB will allow timely effective mitigation measures to be carried out to stabilize 

pipelines with a high probability of UHB.  

 

Although UHB is usually not considered an ultimate limit state condition, it can lead to high strains 

if local buckling occurs [15]. It is assumed that the soil cover can only sustain a certain amount of 

vertical displacement before local shear failure in the soil layer occurs. The failure criterion is 

based on the total maximum uplift resistance 

 

UHB is a multivariable phenomenon. A series of studies have been conducted to investigate the 

relevance of such parameters to the overall buckling behavior of pressurized pipelines. [21-31]. Most 

recent efforts have been made to predict the soil capacity, highlighting shortcomings of design 

guidelines [31] as well as the sources of variability and uncertainty in the pipe-soil interaction (PSI) 

parameters [22]. Because of these complex interactions, there is no single conservative value of soil 
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resistance to assess the competing limit state conditions of the pipeline structural system. Instead, 

it is necessary to determine the potential range of end expansions and the strains in the buckles by 

considering friction factors that have been calculated using the full range of relevant pipeline and 

soil input properties that may occur over the entire UHB mechanism domain. This results in low 

estimate (LE), best estimate (BE), and high estimate (HE) design values of each PSI parameter, 

which can be utilized to develop statistical distributions [30].   

 

The relevance of the inherent variability involved in the geotechnical PSI parameters is recognized 

from previous studies [29]. Probabilistic and numerical analysis are useful to examine the 

performance of pipelines under UHB [21] However, previous studies are limited by treating the 

overall uncertainty of each PSI parameter as a single random variable [24]. Thus, ignoring the 

effects of spatial variability of the soil on the overall UHB phenomena. 

 

The soil spatial variability, in particular the horizontal inherent fluctuation of the soil properties 

[33] may be significant to the reliability assessments of pipelines. Because of the limited width and 

small average burial depth in comparison with the total length of a pipeline, the influence of the 

soil spatial variability has been found relevant in previous studies for long structures such as strip 

and pile foundations [19-21] and retaining walls [22]. Thus, the main objective of the present work is 

to investigate the influence of the spatial variability of the soil mechanical properties on the UHB 

behavior, and the relevance of specific stochastic characteristics of the soil properties including 

the correlation length and correlation structure.  
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2.2 Methodology 

 

A parametric nonlinear FEA is carried out to investigate the effect of the soil spatial variability on 

UHB.  The analysis cases considered in the present study are similar to those considered in [20]. In 

this study a pipeline is assumed to be laid over a hill-crest imperfection as illustrated in Fig. 2.3 

subjected to a constant internal pressure and increasing thermal loading until UHB occurs.  The 

critical UHB force at the onset of upheaval buckling is defined as the maximum compressive force 

reached at the crown of the buckling pipe as the thermal load increases.  The friction angle 𝜑𝜑 of 

the soil is characterized from a lognormal distribution. The expansion optimal linear estimation 

(EOLE) method proposed in [28] is adopted to represent the random field.  For comparison, the 

friction angle is also assumed to be represented by a single random variable (i.e., a random field 

with an infinitely long correlation length), and a random field with independent, identically 

distributed (iid) random variables at every node (i.e., a random field with a zero-correlation length).  

For the random model of the soil property, selected analysis cases are used to investigate the effects 

of the correlation length, commonly used correlation structures and the inherent variability of 

common geotechnical properties [18] on the analysis results. 

                                       
 

Figure 2.3  Cold formed bends diagram. Pipeline over a Hill-Type imperfection. 𝜃𝜃 is the 
bending angle of the pipe joint at the top. R is radius of the pipe bend at the top of the 

imperfection. 
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2.2.1 Finite Element Modelling 

 

The commercial software ABAQUS is employed to carry out the parametric analysis.  The pipeline 

is depicted in Figure 1.4, with symmetric geometry.  However, the symmetry in geometry is not 

being utilized in FEA because of the random field-based characterization of the soil property.  

 

The pipeline is modeled using the ABAQUS elastic-plastic pipe elements PIPE31 as Timoshenko 

beams.  The total length of the pipeline is about 300 m, depending on the parametric case.  The 

element length in zone 1 is 0.1 m within 20 m of the hill crest and zone 3 within the lower bend. 

The elements length in zone 2 is increased to 0.25 m between these two zones and for 20 m beyond 

the bottom bend in zone 4. The remaining 80 m of pipeline is modeled with elements of 2.0 m 

length in zone 5. For simplicity, the residual stresses at the cold-formed bends are ignored.  The 

pipe-soil interaction (PSI elements) is represented by force-displacement relationship acting on 

PIPE31 elements, as overbend soil resistance in the vertical direction and soil friction in the 

horizontal direction.  The model incorporates one spring at each far end of pipeline to allow for 

the feed-in to the buckling. This was done to model the axial stiffness of the pipeline restrained by 

 
Figure 2.4  Diagram of burried pipeline over a Hill-Crest imperfection [2] 
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the soil at the far end condition. The spring is characterized from the contribution of the soil at 

each random realization in the parametric analysis following the original formulation [20] Consider 

𝑸𝑸 as the total axial force due to internal pressure and temperature. At some point, far away from 

the hill imperfection, there is an axial force 𝑸𝑸𝟎𝟎 that is fully constrained by the soil friction per unit 

length 𝒇𝒇 given displacement 𝒙𝒙: 

 𝑄𝑄 = 𝑄𝑄0 − 𝑄𝑄 ∙ 𝑥𝑥 (2.14) 

the axial stain in the pipe is 

 𝜀𝜀𝑥𝑥 =
𝑄𝑄0 − 𝑄𝑄
𝐸𝐸𝐸𝐸

=
𝑄𝑄 ∙ 𝑥𝑥
𝐸𝐸𝐸𝐸

 (2.15) 

 

A force-displacement is given by Eq.2.16, at the end of the feed-in, as function of 𝑸𝑸 as the total 

axial force due to internal pressure and temperature, where 𝐸𝐸 denotes, Young’s modulus of the 

pipe steel; 𝐸𝐸 denotes the pipe cross-sectional area; 𝑄𝑄 denotes the soil friction per unit length; Δ is 

the axial displacement at the end of the feed-in, and 𝐿𝐿𝑠𝑠 is between the end of the model and 

where the virtual anchor would occur: 

 Δ =
(𝑸𝑸𝟎𝟎 − 𝑸𝑸)2

2𝐸𝐸𝐸𝐸 ∙ 𝑄𝑄
 (2.16) 

 

 

Figure 2.5  Diagram of FE model, pipeline over a Hill-Crest imperfection 
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2.2.2 Pipeline Material 

 

Three steel grades were considered, X52, X65 and X80, to quantify the effects of the yield strength. 

The Ramberg-Osgood stress-strain relationship, Eq. 2.17, is assumed to model the elastic and 

plastic responses. The yield strength is assumed to equal the specified minimum yield strength 

(SMYS) of the steel grade, i.e., 359, 448 and 550 MPa for X52, X65 and X80, respectively. The 

hardening was characterized by modifying the plastic curve of the X65 steel. As show on Table 

2.1, the value of the strain hardening exponent, n, is assigned to be consistent with the general 

strain hardening characteristics of different steel grades.  For X65 steel, two values of n are 

considered, n = 22.5 and 45, representing strong and weak hardening, respectively.  

 
 
 

𝜀𝜀 =
𝜎𝜎
𝐸𝐸

+
𝛼𝛼𝜎𝜎𝑦𝑦
𝐸𝐸

�
𝜎𝜎
𝜎𝜎𝑦𝑦
�
𝑛𝑛

 

 
(2.17) 

where: 𝜀𝜀 strain 

 𝜎𝜎 stress 

 𝐸𝐸 elastic modulus = 205,000 MPa 

 𝜎𝜎𝑦𝑦 yield strength  

 𝛼𝛼,𝑛𝑛 Ramberg-Osgood parameters 

 

Grade Hardening 𝜎𝜎𝑦𝑦 𝜎𝜎el E Ramberg-Osgood 
parameters 

  (MPa) (MPa) (MPa) 𝛼𝛼 𝑛𝑛 

X80 Good 551 468.4 205,000 1.13 27.1 
X65 Good 448 380.8 205,000 1.29 22.5 
X65 Low 448 380.8 205,000 1.29 45.0 
X52 Good 358 304.3 205,000 1.86 15.4 

 
Table 2.1  Material Data and Ramberg-Osgood Parameters. 
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2.2.3 Soil Axial Friction 

 

The axial soil resistance was modeled as a bilinear force-displacement relationship (Fig. 2.6), 

where the mobilization displacement was assumed as 0.0015m [17,26] and the fully mobilized 

friction force is given as: 

 

 𝑄𝑄 = μ ��
𝑝𝑝
2
𝛾𝛾 g �𝐻𝐻 +

𝐷𝐷
2�

𝐷𝐷�1 + (1 − sinφ)�� + 𝑊𝑊𝑝𝑝 − 𝛾𝛾 g
𝑝𝑝
4
𝐷𝐷2� 

 
(2.18) 

Where: D outer diameter of the pipe (m) 

 g gravitational constant = 9.81 m/s2 

 H burial depth of the pipeline, assumed to equal 0.7 m 

 𝑊𝑊𝑝𝑝 weight of the pipe per meter of length (kN/m) 

 φ soil friction angle (degree) 

 μ soil-pipe axial friction coefficient, assumed to equal 0.5 

 𝛾𝛾 bulk density of the soil (kN/m3) 

 𝛿𝛿 displacement limit 

 
 

Figure 2.6  Axial Force-Displacement Relationship 
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2.2.4 Soil Downward Load 

 

The soil download is modeled with the same parameters as in Matheson et al [20].  The force-

displacement relationship of the soil download (Fig. 2.7) includes a linear static component (or the 

weight of the soil above the pipe), a linear dynamic component according to the pipe-soil response 

models from the Oil and Gas Pipeline System (CSA-2019) [14] and a linear decrement to account 

for the breakthrough condition that happens once the displacement is equal to the burial depth. The 

static download, 𝑞𝑞𝑠𝑠, is the weight of the soil above the pipe as: 

  𝑞𝑞𝑠𝑠 = 𝛾𝛾𝐻𝐻𝐷𝐷 (2.19) 
 
 
The dynamic component 𝑞𝑞𝑑𝑑 according to ALA [6] is given by: 
 
 

 𝑞𝑞𝑑𝑑 = 𝑁𝑁𝑐𝑐𝑣𝑣 𝑏𝑏 𝐷𝐷 + 𝑁𝑁𝑞𝑞𝑣𝑣 𝛾𝛾 𝐻𝐻 𝐷𝐷 (2.20) 
 
 
Where: 𝑁𝑁𝑐𝑐𝑣𝑣  vertical uplift factor for clay (0 for 𝑏𝑏 = 0) 

 c backfill soil cohesion (Pa) 

 𝑁𝑁𝑞𝑞𝑣𝑣 vertical uplift factor for sand (0 for 𝜑𝜑 = 0°) 

 𝜑𝜑 backfill friction angle (degree) 

 𝑁𝑁𝑐𝑐𝑣𝑣 = 2 𝐻𝐻
𝐷𝐷
≤ 10, applicable for 𝐻𝐻

𝐷𝐷
≤ 10 

 𝑁𝑁𝑞𝑞𝑣𝑣 = 𝜙𝜙𝐻𝐻
44𝐷𝐷

≤ 𝑁𝑁𝑞𝑞 where 𝑁𝑁𝑞𝑞 = exp(𝑝𝑝tanϕ)tan2 �45 + 𝜙𝜙
2
�  

 𝛿𝛿𝑣𝑣𝑠𝑠 displacement static limit = 1.5 mm  

 

Two soil mobilization displacements were considered: 𝛿𝛿𝑣𝑣 = 10mm and 𝛿𝛿𝑣𝑣 = 40mm. 𝑁𝑁𝑐𝑐𝑣𝑣, 𝑁𝑁𝑞𝑞𝑣𝑣 and 

𝑁𝑁𝑞𝑞 are dimensionless fitting parameters in Eq. 2.20 [32]. 
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2.2.5 Soil Bearing Capacity  

 

The maximum resistance of the soil was calculated by determining bearing capacity factors,  

N𝑐𝑐and N𝑞𝑞, according to the formulae of Prandtl-Reissner [27]. The limit displacement is taken as 

upper bound, being 10% of the pipe diameter. Illustrated in Fig. 2.3. 

 

 𝑄𝑄𝑢𝑢 = C𝑠𝑠N𝑐𝑐𝐷𝐷 (2.21) 
 

Where: C𝑠𝑠 undrained shear strength 

 N𝑐𝑐 �N𝑞𝑞�/tan𝜑𝜑 

 N𝑞𝑞 𝑄𝑄𝜋𝜋tan𝜙𝜙tan2 �45 +
𝜑𝜑
2
� 

 φ soil friction angle (degree) 

   

 

 
Figure 2.7  Force-displacement diagram for the soil model in the vertical direction [14] 
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Case 
number 

Imperfection 
Sharpness 
(degrees)  

 
 

𝑞𝑞𝑠𝑠 
(kN/m) 

𝑞𝑞𝑑𝑑 
(kN/m) 

𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡 
(kN/m) 

1 38.2 7.32 6 15.06 
2 19.1 7.32 6 15.06 
3 9.6 7.32 6 15.06 
4 38.2 7.32 2 11.06 
5 19.1 7.32 2 11.06 
6 9.6 7.32 2 11.06 
7 38.2 7.32 9 18.06 
8 19.1 7.32 9 18.06 
9 9.6 7.32 9 18.06 
10 38.2 3.05 6 10.79 
11 19.1 3.05 6 10.79 
12 9.6 3.05 6 10.79 
13 38.2 3.05 2 6.79 
14 19.1 3.05 2 6.79 
15 9.6 3.05 2 6.79 
16 38.2 3.05 9 13.79 
17 19.1 3.05 9 13.79 
18 9.6 3.05 9 13.79 

2.2.6 Applied Loads  

 

The UHB is a load-path dependent problem. The pipeline can only deform vertically, once the 

combined pressure and temperature effects overcome the pipe self-weight. Additionally, the 

pressure and temperature are likely to occur at slightly different time. When the internal fluid 

reaches a pressure peak, the induced hoop stress is almost instantaneous. Whereas, if the fluid 

Table 2.2  Cases considering different mean values for the soil parameters. The imperfection 

Sharpness is measured as the angle 𝜃𝜃 in Fig. 2.4. For a base case comparison, the same pipe 

was used for all 18 cases. X65 pipe with good hardening; weight 1.741 (kN/m), 𝜎𝜎y = 448 MPa 

(60), D/t =60, D = 609.6 mm (24 inches), and ratio between hoop stress due to internal 

pressure and yield strength is (0.6) 
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temperature increases, the heat still has to be conducted through the thickness of the pipe wall. 

Also, the operating internal temperature and pressure are more or less stable but the external 

temperature may change leading to a greater temperature differential, acting as last effect. 

Furthermore, as a stability problem, if the loading path is not realistic, previous loading can 

precondition the model into a non-linear configuration, yielding unrealistic results. A high 

pressure, low internal temperature condition is not realistic for oil and gas pipelines. 

 

The external loads on the pipeline are applied in three step load cases: Step 1, the self-weight of 

pipe is applied. Step 2, the internal pressure is applied as a distributed load along the pipeline 

according to Eq. 2.22. The corresponding equilibrium load at the far end, is applied as the same 

rate, as a fully constrained condition (axial loading applied at both ends of the pipeline). Step 3, 

the thermal expansion is applied incrementally as a body force on the pipe elements. A constrained 

thermal axial load is applied at the far ends, at the same rate as the thermal expansion from Eq. 

2.23. The increments are 0.5°C up to the final load, corresponding to a differential of 100 °C.  

 

 𝑄𝑄𝑃𝑃 = �1 −
2𝜈𝜈(𝐷𝐷 − 𝑡𝑡)
(𝐷𝐷 − 2𝑡𝑡)

�
𝑝𝑝(𝐷𝐷 − 2𝑡𝑡)2

4
𝑃𝑃 (2.22) 

 

 𝑄𝑄𝑇𝑇 = 𝐸𝐸𝛼𝛼𝑇𝑇(𝑇𝑇2 − 𝑇𝑇1)𝑝𝑝(𝐷𝐷 − 𝑡𝑡)𝑡𝑡 (2.23) 
 

 

where: 𝑄𝑄𝑃𝑃 pressure induced force (positive for compression), 𝑄𝑄𝑇𝑇 temperature induced force 

(positive for compression), 𝐸𝐸 Young’s modulus, 𝛼𝛼𝑇𝑇 thermal expansion coefficient for steel 

(11.7× 10−6 °C), 𝑇𝑇2 operating temperature, 𝑇𝑇1 tie-in temperature, 𝑡𝑡 wall thickness, 𝜈𝜈 Poisson’s 

ratio and P operating pressure. 
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2.2.7 EOLE Method 

 

Although different methods have been proposed to discretize random fields such as the K-L 

expansion and polynomial chaos expansion, the EOLE method [35] is advantageous for large 

random fields due to its computational efficiency.  It was developed for efficient FE analysis 

involving random media properties. A brief description of the EOLE method is presented below. 

A random field 𝑯𝑯(𝒙𝒙) can be approximated as 𝑯𝑯�(𝒙𝒙) from a linear function of target nodal values 

𝝌𝝌 = �𝑯𝑯(𝑥𝑥1), …𝑯𝑯�𝑥𝑥𝑞𝑞��
T
, where x represents a vector of spatial coordinate: 

 𝑯𝑯�(𝒙𝒙) = 𝑄𝑄(𝒙𝒙) + �𝐿𝐿𝑖𝑖(𝒙𝒙)𝜒𝜒𝑖𝑖

𝑞𝑞

𝑖𝑖=1

= 𝑄𝑄(𝒙𝒙) + 𝐿𝐿𝑇𝑇(𝒙𝒙) ∙ 𝝌𝝌 (2.24) 

where: 𝑄𝑄(𝒙𝒙), 𝐿𝐿𝑖𝑖(𝒙𝒙) linear functions, to be optimized    

 𝑞𝑞 number of nodal points involved in the approximation  

The optimization of 𝑄𝑄(𝒙𝒙), 𝐿𝐿𝑖𝑖(𝒙𝒙) is obtained by minimizing the difference or error in variance for 

all points in the domain, var�𝑯𝑯(𝒙𝒙) −𝑯𝑯�(𝒙𝒙)�. This optimization is constrained or subjected to zero 

difference in the mean value of the field properties, E�𝑯𝑯(𝒙𝒙) −𝑯𝑯�(𝒙𝒙)� = 0. 

∀ 𝒙𝒙 ∈ Ω, arg min var�𝑯𝑯(𝒙𝒙) −𝑯𝑯�(𝒙𝒙)�     subject to   E�𝑯𝑯(𝒙𝒙) −𝑯𝑯�(𝒙𝒙)� = 0  

The variance error is: 

var�𝑯𝑯(𝒙𝒙) −𝑯𝑯�(𝒙𝒙)� = E ��𝑯𝑯(𝒙𝒙) −𝑯𝑯�(𝒙𝒙)�
2
� = 

 𝜎𝜎2(𝒙𝒙) − 2�𝐿𝐿𝑖𝑖(𝒙𝒙)
𝑞𝑞

𝑖𝑖=1

cov[𝑯𝑯(𝒙𝒙),𝜒𝜒𝑖𝑖] + ��𝐿𝐿𝑖𝑖(𝒙𝒙) ∙ 𝐿𝐿𝑗𝑗(𝒙𝒙) ∙ cov�𝜒𝜒𝑖𝑖 ,𝜒𝜒𝑗𝑗�
𝑞𝑞

𝑖𝑖=1

𝑞𝑞

𝑗𝑗=1

 (2.25) 
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The minimization requires a discrete partial differential with respect to 𝐿𝐿𝑗𝑗(𝒙𝒙) of the variance 

error and solved when equal to zero. 

 ∀𝑖𝑖= 1, … 𝑞𝑞    − Cov[𝑯𝑯(𝒙𝒙),𝜒𝜒𝑖𝑖] + �𝐿𝐿𝑗𝑗(𝒙𝒙)Cov�𝜒𝜒𝑖𝑖 ,𝜒𝜒𝑗𝑗� = 0
𝑞𝑞

𝑗𝑗=1

 (2.26) 

Let 𝚺𝚺, denote a covariance matrix, and Eq. 2.26 can be written as: 

 −𝚺𝚺𝑯𝑯(𝒙𝒙)𝝌𝝌 + 𝚺𝚺𝝌𝝌𝝌𝝌 ∙ 𝐿𝐿(𝒙𝒙) = 0 (2.27) 

Let 𝜇𝜇 denote the mean value at each nodal point. Then, the optimal linear estimator [8] is: 

 𝑯𝑯�(𝒙𝒙) = 𝜇𝜇(𝒙𝒙) + 𝚺𝚺𝑯𝑯(𝒙𝒙)𝝌𝝌 + 𝚺𝚺𝝌𝝌𝝌𝝌−1 ∙ �𝝌𝝌 − 𝜇𝜇𝝌𝝌� (2.28) 

 𝑯𝑯�(𝒙𝒙) = �𝜇𝜇(𝒙𝒙) + 𝚺𝚺𝑯𝑯(𝒙𝒙)𝝌𝝌
𝑇𝑇 + 𝚺𝚺𝝌𝝌𝝌𝝌−1 ∙ 𝜇𝜇𝝌𝝌� + �𝝌𝝌𝑖𝑖�𝚺𝚺𝝌𝝌𝝌𝝌−1 ∙ 𝚺𝚺𝑯𝑯(𝒙𝒙)𝝌𝝌�𝑖𝑖

𝑞𝑞

𝑖𝑖=1

 (2.29) 

Note that 𝚺𝚺𝑯𝑯(𝒙𝒙)𝝌𝝌 is a q-dimensional vector containing the covariances of 𝑯𝑯(𝒙𝒙) with the elements 

of 𝝌𝝌, 𝑄𝑄(𝒙𝒙), and 𝐿𝐿𝑖𝑖(𝒙𝒙) solved as: 

 𝑄𝑄(𝒙𝒙) = 𝜇𝜇(𝒙𝒙) − 𝐿𝐿𝑇𝑇(𝒙𝒙)𝜇𝜇 (2.30) 

 𝐿𝐿(𝒙𝒙) = 𝚺𝚺𝝌𝝌𝝌𝝌−1𝚺𝚺𝑯𝑯(𝒙𝒙)𝝌𝝌 (2.31) 

 𝝌𝝌 = 𝜇𝜇𝝌𝝌 + �𝝃𝝃𝑖𝑖√𝜽𝜽𝑖𝑖𝝓𝝓𝑖𝑖

𝑞𝑞

𝑖𝑖=1

 (2.32) 

where: 𝝃𝝃𝑖𝑖 independent normal standard random variables    

 𝜽𝜽𝑖𝑖 ,𝝓𝝓𝑖𝑖 
eigenvalues and eigenvectors of 𝚺𝚺𝝌𝝌𝝌𝝌𝝓𝝓𝑖𝑖 = 𝜽𝜽𝑖𝑖𝝓𝝓𝑖𝑖 from its orthogonal 
decomposition 
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An appealing characteristic for using this method arises from its formulation [8]. The error is simply 

the difference between the variances of 𝑯𝑯(𝒙𝒙) and 𝑯𝑯�(𝒙𝒙). Since the error variance is always positive, 

it follows that 𝑯𝑯�(𝒙𝒙) always will be a numerical underestimation of the variance of the objective 

random field 𝑯𝑯(𝒙𝒙).   

 

2.2.8 Random Field domain discretization 

 

An adequate resolution for the domain discretization is important to develop accurate numerical 

models. The elements sizes are established to represent deterministic and stochastic mechanical 

properties in an efficient manner. The upheaval buckling mechanism was modeled as a continuous 

beam uniformly confined by the soil, along an idealized pipeline profile. The geometric conditions, 

and the soil and pipe properties are the main variables of interest in the UHB analysis. Thus, a fine 

discretization or mesh size is chosen to model the cold-formed bends in the crown of imperfection 

and two shoulders. In general, a fine mesh size was chosen around the region of hill-type 

imperfection and coarser mesh sizes farther way from the buckling length (Fig. 2.3). A total of five 

resolutions were selected for each symmetric part of the UHB model. These regions are uniform 

for the soil and pipe elements. 

 

The geometry of the pipeline is fully defined by assuming the bending angle of the lower parts as 

𝜃𝜃/2 and a constant distance of 𝐿𝐿𝑏𝑏 = 50 m, between lower bends (Fig. 2.4). Deterministic FE 

analyses indicate that the critical UHB forces are not sensitive to the horizontal distance between 

the lower bends.  As the 𝐿𝐿𝑏𝑏 varies from 40m to 150m with all the other parameters being the same, 

the critical UHB force varies by less than 4%, corresponding to less than 1°C in terms of the 
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temperature differential. Therefore, the distance between the lower bends is fixed at 50 m for the 

parametric analysis. The points of interest in the stochastic domain are discrete locations in the FE 

model deterministic model. However, the size and resolution of the random field discretization 

depends on the inherent variability of the soil.  The scale of fluctuation is a very useful parameter 

to characterize the spatial variability and adequate discretize the random field. Statistical 

information about common soil common soil properties [7] is available from previous studies, 

including the scale of fluctuation. Most of the geotechnical data in the literature is sufficient to 

characterize general soil properties.  

 

 Assuming the soil property to be a homogenous Gaussian random field appears to be reasonable 

to investigate the general effects of the soil spatial variability on UHB. Scale of fluctuation of a 

random field [35], 𝐿𝐿ℎ, is a characterizing parameter for the correlation between points inside the 

domain (i.e., if the separation is less than 𝐿𝐿ℎ, then properties at those points are correlated; 

otherwise, the correlation is negligible). Given the correlation function 𝜌𝜌(𝑏𝑏), where l is the 

separation length, one can establish [29]:  

 𝐿𝐿ℎ = 2� 𝜌𝜌(𝑏𝑏)𝑞𝑞𝑏𝑏
∞

0

 (2.33) 

 

Depending on the soil parameter’s scale of fluctuation, the optimal scheme of a random field 

discretization can be obtained. In this study, an element size was chosen according to Table 2.3. 

This is many times the recommended threshold to warranty convergence in variance. The average 

scale of fluctuation is about 50 m for the soil properties in this study. One order of magnitude less 

than the scale of fluctuation seems to be a conventional approach to select an appropriated size for 

the random field mesh [34]. 
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Region Length of region Mesh resolution 
1 20m 0.1m 
2 Variable 0.25m 
3 Variable 0.1m 
4 20m 0.25m 
5 80m 2m 

However, to ensure a good characterization of soil variability for all the parameters and the FE 

mesh, the random field discretization of Table 2.3 was chosen instead. There are gaps between the 

resolution of the properties in the EF model mesh and the random field discretization. This was 

sorted out by means of EOLE method to simulate random fields. The former criterion, was used 

for all parametric cases for consistency and it was verified for 1000 Monte Carlo simulations for 

each case. The effects of using five different correlation structures were studied. For a lower bound, 

a type V Triangular expression was use. The upper bound was set as a type IV Bessel, second kind, 

correlation, as show in Fig 2.8. 

 𝜌𝜌I�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = exp(−𝑄𝑄 ∙ 𝜏𝜏) (2.34) 

Where:  
𝜏𝜏 

 
Euclidian distance between points 

 𝑄𝑄 𝑝𝑝 /𝐿𝐿ℎ       

 𝜌𝜌II�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = exp(−𝑄𝑄 ∙ 𝜏𝜏) ∙ cos(𝐿𝐿 ∙ 𝜏𝜏) (2.35) 

 𝐿𝐿 1 /𝐿𝐿ℎ 

 𝜌𝜌III�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = exp(−𝑄𝑄 ∙ 𝜏𝜏) ∙ 𝐽𝐽∝(𝐿𝐿 ∙ 𝜏𝜏) (2.36) 

 𝐽𝐽∝ Bessel function First kind 

 𝜌𝜌IV�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� =
(−𝑏𝑏 ∙ 𝜏𝜏)𝑑𝑑 ∙ 𝐾𝐾𝐿𝐿ℎ(𝑏𝑏 ∙ 𝜏𝜏)

�5𝑑𝑑−1Γ(𝐿𝐿ℎ)�
 (2.37) 

 c 1 
 𝐾𝐾∝ Modified Bessel function Second kind 
 Γ Legendre Gamma function 

 𝜌𝜌V�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = 1 −
𝜏𝜏
𝐿𝐿ℎ

 (2.38) 

Table 2.3  Random Field domain discretization, for each region shown in Fig. 2.4. 
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                                 Normalized correlation length 

 
Normalized correlation types: I Exponential, II, Cos-Exponential, III Bessel, First kind 

order 0, IV Modified Bessel Second kind and V Triangular. 

 

A literature review concerning the scale of fluctuation was used to stablish the inherent variability 

of the soil geotechnical properties along natural deposits. The amount of information in the 

literature related to the soil spatial variability is adequate to establish base case scenarios in a 

realistic manner. For the horizontal fluctuation of the soil, the most common values of 𝐿𝐿ℎ [37-40] are 

between 40 and 60 m [38].  Three values of 𝐿𝐿ℎ are considered in the present study: 10, 50 and 90 

m, where 50 m is the base case with the other two values being the sensitivity cases. The effect of 

the vertical scale of fluctuation on UHB is ignored in the present study due to the fact that most 

pipelines are buried at the same depth on average.  

 

Negligible effects were observed by changing the correction functions for 𝐿𝐿ℎ= 90. The effects of 

correlation structure functions 𝜌𝜌 were studied by a comparison of the maximum and minimum 

values of the critical buckling force. The relevance of the correction function on the upheaval 

 
Figure 2.8  correlation functions, and Triangular bound 
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buckling problem, becomes more relevant for smaller values of 𝐿𝐿ℎ. Being less than 10% between 

the lower and upper bounds for 𝐿𝐿ℎ= 10, after 1000 simulations of the cases detailed on Table 2.2. 

Only an exponential auto-correlation structure was considered in subsequent analysis. 

 

In order to match realistic force-displacement PSI relationships used in the analysis, as shown in 

Table 2.3, the mean values of geotechnical properties: the soil density γ and the cohesion of the 

soil 𝑏𝑏 were adjusted accordingly to match experimental values of 𝑞𝑞𝑠𝑠 and 𝑞𝑞𝑑𝑑 [45]. The parameter 𝑞𝑞𝑑𝑑, 

depends on the friction angle, so as the angle is simulated randomly in the analysis, the value of 

𝑞𝑞𝑑𝑑 will also vary randomly. In a simplified manner, the soil 𝑏𝑏 = 75kPa was kept constant to study 

the effect of the soil friction angle 𝜑𝜑 variability alone. whereas, γ was made linearly dependent on 

𝜑𝜑 according to Eq. 2.39 [38-45].  

Property  

Static soil  
𝑞𝑞𝑠𝑠 

5kN/m2, 12kN/m2 

Dynamic soil 
𝑞𝑞𝑑𝑑 2kN/m, 6kN/m, 9kN/m 

Mobilization displacement 
𝛿𝛿𝑣𝑣 10mm, 40mm 

 

 

The soil friction angle is assumed to be represented by a homogeneous random field, having 

lognormal distribution with a mean value of 30°, a coefficient of variation (COV) of 30% [38] and 

a scale of fluctuation of 50 m [38]. The lognormal values can be easily mapped to Gaussian space, 

by means of Eq. 2.40 to Eq. 2.42.  The relationship between the means, COVs and correlation 

coefficients associated with these two random values are summarized in Table 2.5. 

Table 2.4  Commonly observed values of PSI for the soil cover. 
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A density factor 𝐹𝐹𝛾𝛾 was introduced to account for the relationship between 𝜑𝜑 and the characteristic 

void ratio of the backfill material [42]. The current soil model, is a homogenous random field with 

simple mechanical properties, derived from Mohr's Circle failure criterion. Thus, the soil 

mechanical properties are fully defined by 𝑏𝑏, 𝛾𝛾,𝜑𝜑, the pipeline geometry and the pipe-soil friction 

coefficient μ from Eq. 2.18. As such, this soil model is only applicable for deposits with similar 

mineralogical composition in which variations on void ratio have a considerable effect on the soil 

friction angle [42-44]. Further, by considering 𝛾𝛾 dependent on 𝜑𝜑, the variability of 𝑞𝑞𝑠𝑠 and 𝑞𝑞𝑑𝑑 

increases, yielding conservative results. Realistic values for 𝛾𝛾 can be close to 0 in swamp areas or 

as high as 20kN/m3 for soils with high content of gravel or rocks. In this study, a linear expression 

for 𝛾𝛾 is adopted to match the values of  𝑞𝑞𝑠𝑠 detailed on Table 2.4. as function of 𝜑𝜑.      

 

This means, a 10% density variation for 10 degrees of 𝜑𝜑. Eq. 2.39 is applied at each random field 

location of 𝜑𝜑. The factor 𝐹𝐹𝛾𝛾 is applied to 𝛾𝛾, in the PSI Eq. 2.40, 2.41 and 2.42. If the friction angle 

is 𝜇𝜇(𝜑𝜑) = 30°,  a density 𝛾𝛾 = 17.15 kN/m3, corresponds to a realistic value of 𝑞𝑞𝑠𝑠 = 7.32 kN/m, 

with a factor 𝐹𝐹𝛾𝛾 = 1 for a 24” outside diameter pipe as show in Table 2.2. The assumption being; 

𝑏𝑏, the pipeline geometry and μ are to remain constant along the domain for each random field 

realization. 𝛾𝛾 is fully correlated to 𝜑𝜑. The effects of the correlation structure of 𝜑𝜑 can be observed 

in a conservative approximation. 

Property Lognormal-value Lognormal 
𝜇𝜇(𝜑𝜑) 3.358 30    
cov 0.0874 0.3 
𝐿𝐿ℎ 50 50 

 

 
Table 2.5 Normal to Lognormal parameters from Eq. 2.40 and Eq. 2.41 
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 𝐹𝐹𝛾𝛾 =
3𝜑𝜑
200

+
11
20

 (2.39) 

The properties of 𝜑𝜑 were treated as Gaussian random field [35] by converting the lognormal 

random field into the normal space 

 𝜇𝜇(𝜑𝜑) = ln(𝜑𝜑�)
ln(1 + cov2)

2
 (2.40) 

 σ2(𝜑𝜑) =
�ln(1 + cov)

𝜇𝜇(𝜑𝜑)
 (2.41) 

 Σ𝜑𝜑𝜑𝜑 = σ2(𝜑𝜑)
ln�1 + ρ𝜑𝜑𝜑𝜑 ∙ cov2�

ln(1 + cov2)  (2.42) 

 

2.3 Results 

 

A parametric nonlinear FEA is carried out to investigate the effect of the soil spatial variability 𝜑𝜑 

on the UHB of pipelines laid down over a hill-crest imperfection as illustrated in Fig. 2.3. The 

geometry, burial deep and all parameters other than the friction angle 𝜑𝜑 and 𝛾𝛾 are considered as 

deterministic quantities in the analysis. 𝛾𝛾 is fully correlated or dependent on the value of 𝜑𝜑 for 

each RF realization, to consider the natural dependency of 𝜑𝜑 on the void ratio of the backfill 

material.  

 

The acting forces; self-weight, internal pressure, and temperature are also model as deterministic. 

Upward displacements are restrained by the self-weight of the pipe and the soil cover. 

Accordingly, the first load step is self-weight in the FE model, follow by the internal pressure. To 
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identify the effects 𝜑𝜑 as random field, an incremental thermal load is added after the self-weight 

and internal pressure. The increment size is equivalent to 1°C of thermal expansion, until UHB 

occurs. The critical UHB force at the onset of instability is defined as the maximum compressive 

force in the pipe section, reached at the crown of the buckling pipe as the thermal load increases. 

In Fig1.5, region 1 there are pipe joints in which the maximum compression occurs. As the soil is 

model as RF, the maximum compression is not always at the geometric symmetry point in the 

model. The results are presented as the maximum compressive force among the FE pipe sections 

inside region 1.  

 

The friction angle 𝜑𝜑 of the soil is characterized from a set experimental data, presented by Phoon, 

et al [38]. Stochastic characteristics are defined in Table 2.5, lognormal distribution and correlation 

length. Each RF realization is obtained by means of EOLE method. The soil mechanical properties 

are fully defined by 𝑏𝑏, 𝛾𝛾,𝜑𝜑, the pipe section geometry and the pipe-soil friction coefficient μ. Only 

𝜑𝜑 is studied in this chapter as RF, 𝛾𝛾 is model as fully dependent on 𝜑𝜑 and all the other parameters 

in the study are deterministic. 

 

2.3.1 Effects of spatial variability of the soil 

 

UHB can lead to significant compressive strains in the middle of buckling bend. This compressive 

strain is induced by the internal pressure, temperature differential and the partial soil restraint. The 

combined effects of pressure and temperature differential constitute the driving force of the UHB 

phenomenon. The total driving forces are referred as the applied axial load in this model.  
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As a result of the applied axial load, there is a maximum compressive strain along the pipeline 

undergoing UHB at the lower part of the pipe cross section due to the upward bending, herein 

called the effective compressive strain. A relationship between the applied axial load and the 

resulting effective compressive strain is presented in Figures 6 and 7. 

 

For each parametric case, there is a critical applied axial load that leads to UHB. The critical point 

can be determined by finding the maximum compressive force at the buckle crown in region 1 of 

Fig 2.4. This total section force at the middle of the buckling bend is identified as the effective 

load 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. 

 

The effects of the spatial variability of 𝜑𝜑 on the UHB can be analyzed by observing the variability 

of the effective compressive strain for a given applied axial load, considering different stochastic 

models. Further validation can be established by studying the variability of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 for a robust 

comparison against the conclusions obtained by studying the variability of the effective 

compressive strain as show in Fig 2.9 and 2.10. 

 

The EOLE method was implemented to perform 1000 random field simulations to investigate the 

effects of the 𝜑𝜑 spatial variability on the UHB phenomenon. The correlation structure is assumed 

to be the Type I exponential.  

                             𝜌𝜌I�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗� = exp(−𝑄𝑄 ∙ 𝜏𝜏) 
 

 

Where:  
𝜏𝜏 

 
Euclidian distance between points 

 𝑄𝑄 𝑝𝑝 /𝐿𝐿ℎ       
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Simulations were performed for the parametric cases from Table 2.2 to identify the maximum 

variability between different stochastic soil models (i.e., perfect random, random field and perfect 

homogenous). In Figures 1.9 and 1.16, 1000 simulations were performed for each soil idealization. 

The mean response is obtained by setting the soil parameters equal to the mean value for all FE 

points in the soil domain and it is shown as a solid line in middle.  The average response, obtained 

from each stochastic soil models, correspond to the deterministic soil line in all cases. These 

response values are due to thermal axial loading.  

 

The lines with different styles are an envelope of the results from 1000 simulations for each 

stochastic soil model. In Figures 1.9 and 1.10, dash lines represent perfect random (iid case, or 

perfect random), dot lines are obtained from model with correlation structure (RF case), marker 

lines are the most conservative soil model (fully correlated or perfect homogenous). Every soil 

stochastic soil model follows the same lognormal distribution from Table 2.5. 

 

The iid case implies a fully independent random variable 𝜑𝜑 at each location of the FE soil domain.  

The random field case involves an exponential correlation structure among all the 𝜑𝜑 point values. 

The perfect correlation case is equivalent to having a single random value of 𝜑𝜑 for all domain 

points at each simulation. Lines with the same style in the figure represent the maximum and 

minimum observed responses over 1000 simulation trials, respectively.  

 

Slight variations can be observed the origin, corresponding to the random response of different 

soil models, due to self-weight and internal pressure. The self-weight and internal pressure 

response, represents a base point for the thermal load case.   
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Figure 2.9  Upper and lower strain response due to upheaval buckling. After 1000 RF 
realizations. Considering different stochastic models of friction angle 𝜑𝜑. Case 1 from Table 2.2. 

Smooth imperfection 
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Figure 2.10  Upper and lower strain response due to upheaval buckling. After 1000 RF 
realizations. Considering different stochastic models of friction angle 𝜑𝜑. Case 3 from Table 2.2. 

Sharp imperfection 
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Figure 2.11  Mean value of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Maximum and minimum values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 after 
random field realizations. Case 1 from Table 2.2 Smooth imperfection 
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Figure 2.12 Mean value of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒.vs Maximum and minimum values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 after random 
field realizations. Case 3 from Table 2.2 Sharp imperfection 
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The effects of the spatial variability of 𝜑𝜑 on the UHB are more relevant for pipe lines laid 

down over narrow hills, or sharp imperfections. In Fig. 2.15, a marginal difference between 

the maximum observed value of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 and the minimum can be explained in terms of the 

imperfection angle 𝜃𝜃. If the arc length of pipe bend at the crown of the hill is large enough, 

given by 𝜃𝜃=38.2° the total resistance against the upward displacement is provided by a 

wider soil mass. As the available resistance is more distributed along the total arc length 

of the pipe the effects of the spatial variability of 𝜑𝜑 are less relevant. This behaviour holds 

for all the parametric cases, due the fact the UHB location is still dominated by the 

imperfection size and shape. In Fig. 2.17 the arc length of the pipe bend is given by 𝜃𝜃=9.6°, 

thus the available soil resistance is dependent on a smaller soil mass and the effects of 

spatial variability of 𝜑𝜑 are significant.  

 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 varies, considering different soil conditions. The effects of including the soil spatial 

variability are compared using the same pipe properties, and same imperfection shape. In 

Fig. 2.13 a sharp imperfection is represents a strong soil condition, case 9 of Table 2.2. 

𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡 = 18.06 kN/m. Whereas, a weak soil condition for the same sharp imperfection is 

presented in Fig. 2.14, case 15 of Table 2.2. 𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡 = 6.79 kN/m. In both cases the effects of 

spatial variability of 𝜑𝜑 are significant.  

 

For pipelines constructed on soils with a dominant static component 𝑞𝑞𝑠𝑠=7.32 kN/m and 

minimal dynamic component 𝑞𝑞𝑑𝑑= 2 kN/m, Fig. 2.17, case 6 from Table 2.2. The effects of 

the spatial variability of 𝜑𝜑 are more significant that those build with soil dominated by    

Its dynamic component, 𝑞𝑞𝑠𝑠=3.05 kN/m and 𝑞𝑞𝑑𝑑=9 kN/m, Fig. 2.18, case 18 from Table 2.2. 
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Figure 2.13  Mean value of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Maximum and minimum values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 after random 
field realizations. Case 9. From Table 2.2 Strong soil condition. 
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Figure 2.14  Mean value of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Maximum and minimum values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 after 
random field realizations. Case 15. From Table 2.2 Weak soil condition. 
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Figure 2.15  Mean value of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Maximum and minimum values 
of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 after random field realizations. Case 4. From Table 2.2 

Smooth imperfection shape 
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Figure 2.16  Mean value of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Maximum and minimum 
values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 after random field realizations. Case 5. From Table 

2.2 regular imperfection size 
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Figure 2.17  Mean value of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Maximum and minimum 
values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 after random field realizations. Case 6. From Table 

2.2 Sharp imperfection size 
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Figure 2.18  Mean value of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Maximum and minimum 
values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 after random field realizations. Case 18. From Table 

2.2 Sharp imperfection size 

 



58 

 

2.3.2 Effects of correlation length 

 

Case 18 from Table 2.2 was selected as the most sensitive case to study the effect of the correlation 

length. It was found that the UHB buckling phenomena is almost insensitive to the soil scales of 

fluctuations larger than the size of the imperfection for the cases studied. If the scale of fluctuation 

is less than size width base of the imperfection it has some influence on the variability of the  

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒  although 𝐿𝐿ℎ = 10 represents a less common case [38]. 

 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 (kN/m)  
 

case Mean  
 

scale of fluctation 
𝐿𝐿ℎ = 10 

scale of fluctation 
𝐿𝐿ℎ = 50 

scale of fluctation 
𝐿𝐿ℎ = 90 

 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 max 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 min 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 max 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 min 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 max 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 min 

18 -1448 1580 1375 1510 1408 1502 1443 

Table 2.6 Results of Case 3 from Table 2.2 after 1000 random field realizations 
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Figure 2.19 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 Case 18. Maximum and minimum response after 1000 realizations 
with scale of fluctuation of  𝐿𝐿ℎ = 10 
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2.3.3 Effects of the correlation type 

 

Effects of correlation structure are negligible. The type of correlation studied were bounded by 

the Triangular type and the Bessel Second kind.  Case 18 was analyzed as the most sensitive case 

by exploring the correlation structures as shown in Figure1.20. The effects of the correlation 

length are not significant in the range of study for 𝐿𝐿ℎ 40-80m. 
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Figure 2.20 Case 18 Maximum and minimum variability while using Bessel Second kind 
type of correlation. 
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2.4 Conclusions 

 

The effects of the friction angle spatial variability on the UHB for onshore pipelines, laydown over 

hill-type imperfections, have been investigated. The soil is characterized from common stochastic 

characteristics of natural deposits, presented by Phoon [38]. The soil properties include, correlation 

length and exponential correlation structure. The expansion optimal linear estimation (EOLE) 

method proposed by Li [28] is adopted to model the random field.  For comparison, the friction 

angle is also assumed to be represented by a single random variable (i.e., a random field with an 

infinitely long correlation length), and a random field with independent, identically distributed 

(iid) random variables at every node (i.e., a random field with a zero-correlation length).   

 

Steel pipes are model following, the Ramberg-Osgood stress-strain relationship as Timoshenko 

beams in FE analysis. For simplicity, the residual stresses at the cold-formed bends are ignored. 

Equivalent force-displacement relationships are used to model the pipe-soil interaction according 

to Oil and Gas Pipeline System (CSA-2019) [14]. The acting forces; self-weight, internal pressure, 

and temperature are model as deterministic. 

 

 Selected analysis cases were performed to investigate the effects of the correlation length, 

influence of the correlation function and the inherent variability of common geotechnical 

properties [38]. The variability of the critical UHB load is measured by means of numerical 

simulation. Ignoring the effects of the soil spatial of the soil friction angle may lead to 

overconservative conclusions in the assessment of UHB for onshore pipelines. Up to one order of 

magnitude, in comparison to single random variable stochastic models.  
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The effects of the spatial variability of friction angle on the UHB are more relevant for pipe lines 

laid down over narrow hills, or sharp imperfections. As the available resistance is more distributed 

along the total arc length of the pipe the effects of the spatial variability of friction are less relevant. 

This behaviour holds for all the parametric cases, due the fact the UHB location is still dominated 

by the imperfection size and shape. 

 

Weak soil and strong granular soil conditions are considered. The variability of the friction angle 

has more relevance for pipelines with strong downward soil load, dominated by the static 

component. The dynamic component is less sensitive to the variability of the soil friction angle. 

The spatial variability of the friction angle is significant for pipelines over narrow hill-type 

imperfections and less significant for smooth imperfection. This applicable for all the imperfection 

types consider in the parametric analysis. The correlation structure type has marginal impact in the 

study cases. The type of correlation studied were bounded by the Triangular type and the Bessel 

Second kind. Given the magnitude of the studied correlation length. The influence of the 

decrement in correlation as function of distance between random field FE points is relevant for 

soil correlation length similar or smaller than the imperfection size. The correlation length has 

some relevance if it less in magnitude in comparison with the total length of the hill type 

imperfection. It has marginal effects otherwise. The most dominant deterministic parameters in 

the UHB problem were identified in order of relevance; the imperfection shape, the soil download 

force, the soil axial force and the pipeline mechanical properties. The dominant stochastic 

parameters of the friction angle, governing the UHB variability are; variability of the soil, 

correlation and correlation structure. The inherent soil variability being the dominant source of 

uncertainty. 
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3 An Empirical Equation for Upheaval buckling Capacity 

Considering Soil Spatial Variability. 

 

Buried gas pipelines usually transport fluid at elevated temperatures to optimize the productivity 

of the wells.  Upheaval buckling (UHB) is a limit state for buried pipelines that operate at high 

pressure and temperature [1]. Due to these conditions, an overall compressive force is induced along 

the pipes. This compression, may cause the pipeline to buckle upward or even break out of the 

ground if the soil cover or restraining measures are not sufficient. Additionally, out-of-straightness 

(OOS) imperfections or features along the line topography can further reduce the buckling capacity 

of the pipeline.  UHB is analogous to the Euler column buckling susceptibility or the localised 

global buckling, depending on the pipe and soil characteristics. The UHB of pipelines, is usually 

not considered as an ultimate limit state condition. However, it can lead to high strains 

concentrations on the pipe wall. If excessive deformation occurs, expensive remediation measures 

may be needed to avoid high cycle fatigue, or lost of pressure integrity [2].  

 

Experimental and theoretical studies have been conducted to investigate the uplift resistance of 

buried pipelines. The current state of the art allows for estimations of the critical axial UHB force 

considering different soil-pipe interaction models and pipe geometric conditions. The most 

common geometric considerations include lay-down straight, lines over hill type imperfection or 

prop-type imperfections [1] and partially restrained ground supported [5], as show in Fig. 3.1   

 

In general, the relationship between the compressive force and upward movement of a buried 

pipeline is nonlinear.  The soil download reaches a maximum value at relatively small vertical 
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displacement, when the pipeline starts buckling due to the induced axial load. After the peak 

resistance, the soil download decreases to zero when the pipe reaches a breakthrough condition. 

The soil-pipe interaction during the upheaval buckling, together with the operating conditions and 

pipe material and geometric properties has a significant influence on the estimation of the UHB 

forces. One can observe that the UHB is a complex process and approximations to estimate the 

UHB critical force may not be always conservative due to the non-linearity and specific site 

conditions. Further, it has been shown experimentally [3] that in some cases the initial part of the 

force-displacement characteristics of soil in the UHB phenomena is of secondary importance. This 

may be counterintuitive because the inelastic buckling of columns tends to be governed by the 

initial departure of the constitutive relationship from the linear-elastic phase. However, when 

considering an elastic pipe embedded in a nonlinear material, the behaviour is different, [6-7] 

apparently being dominated by fully mobilized soil resistance instead. 

 

Since 1990, considerable efforts were made to predict the UHB behavior of offshore pipelines. 

Mostly because submarine pipelines can operate at higher pressure and temperature differentials, 

and the implementation of restraining measures can be more expensive in contrast to onshore 

pipelines.  However, some UHB incidents have occurred in onshore pipelines crossing water 

bodies, swamps, tundra and desert conditions [8]. Onshore pipelines have unique design challenges 

to prevent UHB arising from natural, construction and operating conditions; for instance, soil 

displacement in swaps areas, frost heave and thaw settlement for pipelines in extreme latitudes [9], 

high temperature gradients in desert conditions, the long-term stability of anchor devices, the use 

of cold-formed pipe bends to build pipelines over natural features, obstructions and imperfections 

along the line. Some operating conditions, could trigger large differential settlements or induce 
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pipe stresses [8], that had to be taken into account for the design and during operation of the pipeline 

to ensure safety.  

 

Previous studies to predict the UHB can be classified in four main groups by their formulation: 1) 

closed-form solutions derived from the virtual work principle [6,7,9,10] and validated/calibrated by 

experimental results for realistic buckling length; 2) simplified, finite element (FE)-based 

approach as recommended in various pipeline design guidelines [13,14]; 3) sophisticated numerical 

models, which is primarily used to analyze specific UHB mechanisms for academic proposes [15], 

and 4) empirical expressions derived from experimental data and parametric FE analysis.  This 

approach may be a practical way analysis the UHB phenomena for a wider set of realistic 

conditions.  The last approach may be a practical way to analyze the UHB for a wider set of realistic 

conditions.   

 

 

 

 
Figure 3.21  Most common imperfection idealization types; (a) hill imperfection, (b) 

partially restrained, (c) lay-down straight, (d) prop imperfection   
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3.1 Motivation 

 

The reliability-based design and assessment (RBDA) methodology has gained increasing 

acceptance in the pipeline industry as a viable alternative for the design and assessment of onshore 

natural gas pipelines.  The UHB is a key limit state for buried pipelines that operate at high 

pressures and temperatures.  A common feature of onshore pipelines is the formed bends or 

elbows, to follow the topology of the pipeline route.  

 

 

Empirical formulations for pipelines laid down by welding cold-formed bends over hill-crest type 

of imperfections have been reported in the literature [2]. From simplified numerical analysis, a 

critical force expression for the onset UHB was developed [2]. The influence of the dominant 

variables involved in critical UHB force was investigated using empirical relationships obtained 

from parametric analysis. The UHB limit state function was established in [2] as the critical UHB 

force (i.e., UHB capacity) minus the applied compressive force. The limit state function can be 

employed to efficiently calculate the probability of UHB of pipelines. This limit state function can 

be used to further explore the effects of the inherent uncertainties in soil properties on UHB.  

 
Figure 3.22 Cold formed bends over a hill (Source: Argonne National Laboratory) [4]. 
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The model developed in [2] assume a piece-wise geometry for numerical model of the pipeline and 

force-displacement models for soil cover and axial friction with the pipe [13] to calculate the critical 

axial UHB load and the length of the buckled pipeline.  Although some design guidelines recognize 

the post-peak reduction of the uplift resistance for medium to dense sand and recommended a 

multi-linear force-displacement model to characterize the uplift resistance [14], the influence of 

nonlinear uplift soil resistance and cover depth of the pipeline is likely varying along the length of 

the pile, having an effect that may be enough to trigger a localised vertical buckling. This buckling 

mechanism is trigged by a distinct restriction on the lateral displacement of a pipeline, analogous 

to a mechanism dominated by a Hamiltonian-Hopf bifurcation instead of Euler buckling [17]. Thus, 

the spatial variability of the soil may have significant impact on the overall stability of pipelines 

[13].  

 

Prediction of upheaval buckling resistance of buried pipelines has been a challenge as a result of 

uncertainty in the behaviour of seabed and cover soils, operating conditions and new pipe materials 

[18]. The effect of the spatial variability in soil properties on the resistance against the UHB has not 

been reported in the literature.  There are few studies that address the effect of soil uncertainty on 

the UHB for buried straight pipelines, with no geometric imperfections [22]. Recent research [18-21], 

have presented numerical procedures to assess the UHB of pipelines without considering the 

inherent spatial variability of the geotechnical parameters, using pipe-soil interaction (PSI) models 

to account for the variability of the soil as a single independent random variable instead. The 

findings on previous studies [18-21] clearly show the effects of the soil variability are significant to 

assess the UHB of pipelines. 
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The main objective of the research reported in this chapter is aimed at developing an empirical 

UHB limit state function that can be easily incorporated in RBDA as a viable alternative for 

onshore pipelines.  Extensive parametric finite element (FE) analyses are carried out to improve 

on an empirical equation developed in a previous study [2] to predict the critical axial UHB force 

for pipelines laid down by welding cold-formed bends over hill-crest imperfection types. The 

accuracy of FE analyses conducted in the present study is confirmed by comparing the 

corresponding results with those reported in [2]. Comprehensive numerical simulations are used 

to characterize the statistical properties of the model error associated with the improved empirical 

equation for the critical UHB force. 

 

A variance reduction expression to account for the spatial variability of the soil friction angle is 

presented as secondary objective in this chapter. The proposed expression yields a single factor to 

modify the variability of the empirical equation for the critical UHB force. It can be fully 

characterized from the random properties of the soil friction angle. These improvements can be 

readily implemented in a RBDA framework to calculate the pipeline failure probability due to 

upheaval buckling, on the cold formed bends considering the spatial variability of granular soils. 

 

3.2 Methodology  

 

A non-linear FE parametric study was performed to replicate a set of results obtained in a previous 

study [2]. From these verified results, a matrix of upheaval buckling analysis cases are generated. 

This includes; common soil properties, pipe sections and imperfection shape found along onshore 

pressured gas pipelines. The results from the parametric analysis are used to fit a new UHB 
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empirical equation for pipelines build from cold formed bends and lay down over Hill-type 

imperfections. The critical force at the onset of UHB 𝑄𝑄𝑎𝑎𝑝𝑝𝑝𝑝, is defined as the maximum axial force, 

induced by internal pressure and temperature that the pipeline can hold, before becoming unstable. 

The empirical expression for critical applied axial force  𝑄𝑄𝑎𝑎𝑝𝑝𝑝𝑝,  is a function of the acting or 

effective compressive force near the top or crown of the imperfection (Fig. 3.3) where the pipe 

section experiences the maximum compressive force 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒, due to axial force and UHB. Both 

effective and applied forces are model as total section forces. 

The scope or applicability of the proposed empirical equation for UHB is detailed on Table 3.1. 

The new critical effective force 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 is detailed on Eq 2.6. This account for pipe properties, the 

soil cover, and the imperfection shape. Model error statistics are obtained for the new empirical 

equation to assess pipelines in a RBDA framework.  

From the parametric analysis results the limit state function, g, is defined as follows: 

 g = 𝐵𝐵 ∙ 𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡 − 𝑄𝑄 (3.43) 

 

 
Figure 3.23  critical applied axial force  𝑄𝑄𝑎𝑎𝑝𝑝𝑝𝑝,  function of the acting or effective compressive 

force.  
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where: 𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡 the Critical Upheaval Buckling Force 

 𝐵𝐵 the model error associated with 𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡. It is normally distributed with unitary 
mean and CoV of 4%.  

 𝑄𝑄 the compressive force (due to internal pressure and temperature) 

given by: 

 𝑄𝑄 = 𝑄𝑄𝑇𝑇 + 𝑄𝑄𝑃𝑃 (3.44) 

 𝑄𝑄𝑇𝑇 = 𝐸𝐸𝛼𝛼𝑇𝑇(𝑇𝑇2 − 𝑇𝑇1)𝑝𝑝(𝐷𝐷 − 𝑡𝑡)𝑡𝑡 (3.45) 

 𝑄𝑄𝑃𝑃 = �1 −
2𝜈𝜈(𝐷𝐷 − 𝑡𝑡)
(𝐷𝐷 − 2𝑡𝑡)

�
𝑝𝑝(𝐷𝐷 − 2𝑡𝑡)2

4
𝑃𝑃 (3.46) 

 where: 𝑄𝑄𝑇𝑇 temperature induced force (positive for compression) 

 𝑄𝑄𝑃𝑃 pressure induced force (positive for compression) 

 𝐸𝐸 Young’s modulus 

 𝛼𝛼𝑇𝑇 thermal expansion coefficient for steel (11.7 × 10−6 °C) 

 𝑇𝑇2 operating temperature 

 𝑇𝑇1 tie-in temperature 

 𝐷𝐷 pipe outside diameter 

 𝑡𝑡 wall thickness 

 𝜈𝜈 Poisson’s ratio 

 P operating pressure 

 𝑄𝑄𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡 = 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝐹𝐹𝑎𝑎𝑝𝑝𝑝𝑝 (3.47) 
 

 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒 ∙ 𝐹𝐹ℎ𝑠𝑠 ∙ 𝐹𝐹𝑦𝑦𝑠𝑠 ∙ 𝐹𝐹𝐷𝐷𝑡𝑡 ∙ 𝐹𝐹𝑑𝑑𝑖𝑖𝑎𝑎 (3.48) 
 

 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒 ∙ 𝐹𝐹𝑎𝑎𝑝𝑝𝑝𝑝 (3.49) 
 

 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒 ∙ 𝐹𝐹ℎ𝑠𝑠 ∙ 𝐹𝐹𝑦𝑦𝑠𝑠 ∙ 𝐹𝐹𝐷𝐷𝑡𝑡 ∙ 𝐹𝐹𝑑𝑑𝑖𝑖𝑎𝑎 (3.50) 
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 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 effective force (kN). Defined as the total section force at the buckle of the 
crown. 

 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒 base case effective force (kN) 

 𝐹𝐹𝑎𝑎𝑝𝑝𝑝𝑝 ratio between the applied force to effective force. 

 𝐹𝐹ℎ𝑠𝑠 hoop stress correction factor, accounting for the hoop stress to internal pressure 
ratio. 

 𝐹𝐹𝑦𝑦𝑠𝑠 material grade correction factor. 

 𝐹𝐹𝐷𝐷𝑡𝑡 Diameter to wall thickness correction factor. 

 𝐹𝐹𝑑𝑑𝑖𝑖𝑎𝑎 Pipe outside diameter correction factor. 

 

After the improved Eq 2.10 was fitted from the FE analysis. The same parametric cases were used 

to investigate the effects of the spatial variability soil 𝜑𝜑 on the UHB. The soil is characterized as 

a gaussian random field. Using common statical properties found in natural soil deposits [25].  

 

From the perspective of the pipeline safety, two bounds in terms of the soil spatial variability are 

also considered: the soil domain being treated as homogenous and fully correlated field, i.e., 

represented by a single random variable, and the soil being treated as an uncorrelated random field, 

i.e., represented by a series of independent, identically distributed (iid) random variables at 

different spatial locations.  

 

Thousand sets, a probability density function (PDF) was fitted for each increment of applied axial 

load. Using the empirical expression instead of the FE model an equivalent set of PDFs was 

obtained. These two sets, were compared in order to stablish a new empirical relationship that 

allows for a reduction in the variance of the geotechnical properties. In order to achieve more 

realistic probability of UHB estimations. 
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After the numerical simulation, the probability of the effective axial force being greater or equal 

to the UHB critical load, was calculated at each at each increment of applied axial force from the 

fitted PDF set. In other to obtain the cumulative distribution CDF of the probability of UHB as 

function of the applied axial loading. The former, was compared to the probability obtained from 

the empirical equations to verify that the probability estimations here in proposed, are more 

realistic but still on the conservative side 

 

3.2.1 Finite Element Modelling 

 

The pipeline examples considered in the parametric analysis are the same as those considered in 

Chapter 2.  For easy reference, the basic attributes of the examples are summarized in Table 3.1.  

The commercial FEA package ABAQUS is employed to carry out the analysis. 

 

 

Figure 3.24 Diagram of burried pipeline over a Hill-Crest imperfection [2] 𝐿𝐿𝑏𝑏 = 100m, and the 
Total Length is 300m. 
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3.2.2 Soil Model 

 

The axial soil resistance was modeled as a bilinear force-displacement relationship. Where the 

mobilization displacement was assumed as 0.0015m and the fully mobilized friction force is given 

by: Two soil mobilization displacements were considered 10mm and 40mm. 

The soil uplift resistance was modelled by a static download and a dynamic download. The 

dynamic component is only mobilized by upward movement of the pipe. The peak dynamic 

component is reached at the vertical mobilization displacement, and a linear uplift force-

displacement is assumed for lower values of the uplift displacement. The download – uplift 

response is illustrated in Fig. 3.3 

Typical cover height may range from 0.75 m to 1.0 m and backfill may be mechanically 

compacted. Regular soil backfill has a bulk density of around 18kN/m3, but could reach 20kN/m3 

or higher if the backfill contains high content of gravel or rock. However, in swamp areas the 

effective density could be close to zero. 

To develop a limit state function, a range of typical soil responses need to be considered. In 

addition, the analysis matrix considers a range of pipes with differing diameters and pipe weights. 

The soil download should be normalized as much as possible between differing pipe 

configurations.  

The static soil download is linearly proportional to pipe diameter. Hence, it is proposed to define 

the static soil download as normalized to pipe diameter. This avoids the need to model the soil 

density, and the burry deep as explicit variables.  
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The dynamic download for a cohesive soil is linear proportional to the shear strength of the soil. 

For backfilled soils it is prudent to assume fairly low values of homogeneous shear strength. In the 

following example two shear strengths of 10 and 50 kPa were assumed. 

 

The mobilization displacement Δqu is taken as 0.1 H to 0.2 H for soft to stiff clay but with a 

maximum of 0.2D (e.g., for 0.7 m cover height Δqu is 70 to 140 mm although for the 24” and 16” 

pipelines the upper bound displacement would be limited to 122 and 81 mm, respectively) The 

mobilization displacement Δqu is taken as 0.01 H to 0.02 H for dense to lose sands (e.g., for 0.7 

m cover height Δqu is 7 to 14 mm) 

 

The base case mobilization displacement, is proposed to be 10 mm with a sensitivity case of 40 

mm. The base case mobilization reflects non-cohesive conditions, whilst the sensitivity case aims 

to reflect some increase in displacement which may occur if the soil is partly cohesive. 

 

3.2.3 Empirical Critical Upheaval Buckling Force Function. 

 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒 is the base case effective force in kN (i.e., the effective force developed assuming a fixed 

material grade (448 MPa), D/t ratio (60), diameter (24 inches), and ratio between hoop stress and 

yield strength (0.6) from the parametric analysis. The formulation obtained in previous studies is 

denoted by  𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒[2]. 

 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒[2] = − 99.89 �
1

sinθ 2⁄
− 3.297�

0.6285

𝑤𝑤tot0.5771 (3.51) 
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The former formulation was improved due the fact it contains the vertical soil contribution in a 

condensed in a single variable 𝑤𝑤tot. The proposed expression is  

 
 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒 = −129 �

𝑤𝑤tot
sinθ 2⁄

− 7.69 𝑤𝑤tot0.798�
0.567

 (3.52) 

 

 

 

 𝑤𝑤tot =  𝑤𝑤pipe + 𝑞𝑞𝑠𝑠 + 𝑞𝑞𝑑𝑑 

 

(3.53) 

 
 

Where:  𝑤𝑤tot total download in kN/m 

  𝑤𝑤pipe pipe weight per unit length 

 𝑞𝑞𝑠𝑠 static soil download (i.e., overburden) 

 𝑞𝑞𝑑𝑑 the dynamic soil download 

 θ the angle of the imperfection detailed on Fig. 3.3 

 

The improvement of the new expression is detailed in Table 3.1. These parameters are those used 

to develop the base line case for the effective force 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒 from Eq. 3.10 



83 

 

 

 

 

   
   

   
   

   
 E

ff
ec

tiv
e 

Fo
rc

e 
𝑄𝑄 𝑒𝑒

𝑒𝑒𝑒𝑒
_𝑏𝑏
𝑎𝑎𝑠𝑠
𝑒𝑒 

(k
N

) 

 
                                              Imperfection Angle 

   
   

   
   

   
 E

ff
ec

tiv
e 

Fo
rc

e 
𝑄𝑄 𝑒𝑒

𝑒𝑒𝑒𝑒
_𝑏𝑏
𝑎𝑎𝑠𝑠
𝑒𝑒 

(k
N

) 

 
                                               Imperfection Angle 

 
Figure 3.25 Effective Force 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒, Bend Angle. Case number for 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒 obtained from 

the Emperical Eq 2.6, 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒 obtained from FE Parametric analys. 
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Case 

number 

Imperfction 

 

𝑞𝑞𝑠𝑠 

(kN/m) 

𝑞𝑞𝑑𝑑 

(kN/m) 

𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡 

(kN/m) 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 (kN/m) 

 

FE 

 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒[2] Error 

[2]% 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 Error% 

1 38.2 7.32 6 15.06 -4465 -4455 -0.21 -4415 -1.17 

2 19.1 7.32 6 15.06 -2738 -2708 -1.08 -2751 0.45 

3 9.6 7.32 6 15.06 -1541 -1514 -1.69 -1515 -1.30 

4 38.2 7.32 2 11.06 -3807 -3728 -2.08 -3688 -3.25 

5 19.1 7.32 2 11.06 -2252 -2266 0.65 -2284 1.37 

6 9.6 7.32 2 11.06 -1249 -1267 1.49 -1231 -1.02 

7 38.2 7.32 9 18.06 -4825 -4948 2.55 -4907 1.63 

8 19.1 7.32 9 18.06 -3060 -3008 -1.72 -3069 0.24 

9 9.6 7.32 9 18.06 -1742 -1682 -3.46 -1709 -1.54 

10 38.2 3.05 6 10.79 -3728 -3676 -1.39 -3636 -2.58 

11 19.1 3.05 6 10.79 -2202 -2235 1.47 -2250 2.10 

12 9.6 3.05 6 10.79 -1224 -1249 2.09 -1211 -0.67 

13 38.2 3.05 2 6.79 -2810 -2814 0.14 -2774 -1.33 

14 19.1 3.05 2 6.79 -1625 -1710 5.24 -1698 4.29 

15 9.6 3.05 2 6.79 -895 -956 6.86 -879 -1.37 

16 38.2 3.05 9 13.79 -4261 -4235 -0.60 -4195 -1.63 

17 19.1 3.05 9 13.79 -2579 -2574 -0.17 -2610 1.12 

18 9.6 3.05 9 13.79 -1448 -1440 -0.56 -1429 -0.95 

Table 3.7  Comparison of FE and Calculated Values for Effective Force for a pipeline that 

weights 1.741 (kN/m), material grade (448 MPa), D/t ratio (60), diameter (24 inches), and 

ratio between hoop stress and yield strength is (0.6) 
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For internal pressures other than that which induces a hoop stress of 0.6 yield stress a hoop stress 

correction a correction factor 𝐹𝐹ℎ𝑠𝑠 can be applied: 

 𝐹𝐹ℎ𝑠𝑠 = 1 −
𝜎𝜎ℎ��� − 0.6

0.6 �
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒

8633 �
2

 

 

(3.54) 

Where: 𝜎𝜎ℎ��� ratio of hoop stress to yield stress 

For steel grades different than X65 a yield stress correction factor 𝐹𝐹𝑦𝑦𝑠𝑠 can be applied: 
 

 𝐹𝐹𝑦𝑦𝑠𝑠 = 1 + �
𝜎𝜎𝑦𝑦 − 448

448 � �
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒

−4094 − 4.681𝜎𝜎𝑦𝑦
�
2.631

𝜎𝜎𝑦𝑦
448

 (3.55) 

Where: 𝜎𝜎𝑦𝑦 yield stress (Mpa) 

 
For D/t ratios other than D/t = 60 a correction factor can be applied: 
 

 𝐹𝐹𝐷𝐷𝑡𝑡 = 1 − 0.371ln�
𝐷𝐷𝑡𝑡 𝑡𝑡⁄

60
� (3.56) 

Where: 𝐷𝐷𝑡𝑡 pipe outside diameter 
 t  Pipe wall thickness 

 

For outside diameters other than 24 inch a correction factor can be applied: 

 

 𝐹𝐹𝑑𝑑𝑖𝑖𝑎𝑎 = �
𝐷𝐷𝑡𝑡
24�

1.335

 (3.57) 

 
Where: 𝐷𝐷𝑡𝑡 pipe outside diameter in inches 

 

With the previous factors, the effective UHB force 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 can be applicable in kN (positive for 

compression), which is defined as the total section Force at the buckle crown (note that the 

effective force is different from the applied force, defined as the force remote from the buckle 

crown, due to axial feed-in to the developing buckle); 
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 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒 ∙ 𝐹𝐹ℎ𝑠𝑠 ∙ 𝐹𝐹𝑦𝑦𝑠𝑠 ∙ 𝐹𝐹𝐷𝐷𝑡𝑡 ∙ 𝐹𝐹𝑑𝑑𝑖𝑖𝑎𝑎 (3.58) 
   

 
𝑄𝑄𝑎𝑎𝑝𝑝𝑝𝑝 = 0.8593 ∙ exp

⎝

⎛ −661.4 − 53.71 ∙ 𝑄𝑄

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 �
𝐷𝐷𝑡𝑡 𝑡𝑡⁄

60 �
0.55

∙ �24
𝐷𝐷𝑡𝑡
�
1.33

⎠

⎞ ∙ 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 

 

(3.59) 

Where: 𝑄𝑄 Pipe-soli axial resistance (kN/m) from equation (1.2) 

   

   

3.2.4 Variance Reduction Empirical Equations 

 

In order to assess the assess inherent soil variability, it is also necessary to account for 

measurement error, transformation uncertainty [2]. However, the transformation uncertainties 

associated with the soil Force-Displacement models are seldom analyzed with statistical rigor. 

Because they are, in part empirical and it may be lack sufficient information about them for further 

analysis that can be applied to general cases. However, it is still possible to obtain practical and 

conservative expressions to consider some relevant stochastic properties. 

A practical expression to account for the effects of the spatial variability with the empirical Eq. 

3.10 is obtained as follows: 

The FE analysis was performed with the range of parameters described on Table 3.1. This 

computation was performed for 1000 random field realizations. A set of critical buckling forces 

for each deterministic combination of factors was obtained from these results. One can notice the 

effects of the soil spatial variability in Fig. 3.5  
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Maximum and minimum critical UHB force values, were observed after these realizations. These 

are significant, depending on the idealization of the soil. If the model is fully homogeneous along 

its domain, the results obtained are more disperse and different from the mean value. In the 

opposite extreme, if the soil is considered to be a fully random media (i.e., each discrete point in 

the soil model has fully independent properties) the maximum and minimum values of critical 

UHB force are more similar or closer to the mean value. Whereas, if the soil is idealized with some 

correlation structure, the maximum and minimum of critical UHB force values were always 

bounded by former two extreme cases. 

A best fitting Probability Density Function (PDF) was obtained for each set of critical buckling 

forces obtained from models with random field properties. Best fitting distribution criteria for 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 

was obtained from the logarithm or maximum likelihood. 

 𝑏𝑏(𝜃𝜃; 𝜉𝜉) = −
𝑛𝑛
2

ln(2π) −
𝑛𝑛
2

ln(σ2) −
1

2𝜎𝜎2
�(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2
𝑛𝑛

𝑖𝑖=1

 (3.60) 

 

Then, the equivalent analysis was replicated by means of the empirical equations. The empirical 

equations were characterized with equivalent soil stochastic properties. The former, excluding the 

effects of the spatial variability of the soil. Given the fact that, all the soil parameters are lumped 

on the  𝑤𝑤tot variable in Eq. 3.10 it is not possible to measure the uncertainly directly from basic 

soil properties through the Force-displacement relationship. A simple reduction was used instead. 

The PDFs obtained from the random field FE model are different from the PDFs obtained with the 

empirical equations. A brief summary of this is presented on Table 3.3. The variances of the critical 

UHB force obtained from the empirical equations were always larger than those obtained from the 
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FE analysis. To artificially reduce this discrepancy, a reduction factor 𝐹𝐹𝜎𝜎𝜙𝜙2  for the variance of the 

critical force due to the soil properties (e.g., friction angle, density) was obtained from successive 

approximations. This factor is a base line to eliminate the smallest difference in variance of critical 

UHB force for all cases studied in the parametric analysis. A second reduction factor is proposed 

𝐹𝐹𝜎𝜎𝐼𝐼2, to further reduce the critical UHB force variance due to the imperfection size. For wider or 

smooth type of imperfections, according to the idealization shown in Fig. 3.5 The effects of soil 

spatial variability are expected to be more relevant than those observed if the imperfection is sharp 

or narrow. Bearing in mind that, the soil mass cover is acting over a longer bucking length. Further, 

if the imperfection is sharp the total downward force resisting the buckling is less significant in 

comparison with the total axial friction force developing along the pipeline.  The following 

expressions, 𝐹𝐹𝜎𝜎𝜙𝜙2  , 𝐹𝐹𝜎𝜎𝐼𝐼2 are an empirical reduction factor in the variance of the PDF obtained from 

Eq. 3.10. The applicability range is, 𝑞𝑞𝑑𝑑[2kN/m, 9kN/m] ∪ θ[3°, 12°] for 𝐹𝐹𝜎𝜎𝜙𝜙2  and  𝐹𝐹𝜎𝜎𝐼𝐼2: 

  𝐹𝐹𝜎𝜎𝜙𝜙2 = 𝑞𝑞𝑑𝑑+5
7

   (3.61) 

 
 

𝐹𝐹𝜎𝜎𝐼𝐼2 = 16𝜃𝜃
153

− 13
51

   
(3.62) 

 
 

 
 

3.3 Results 

 

To ensure the applicability of these reduction factors, it was empirically verified to never reduce 

the variance below that of that obtained from the FE analysis for the studied cases. Also, that this 

condition holds up to 10000 trials to verify convergency. PDFs obtained from the FEM analysis is 
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it compared with the PDFs obtained from the empirical equations. For the parameters controlling 

the critical buckling force.  

 

3.3.1 Empirical equation  

 

Eq. 3.10 was fitted after the 252 parametric cases. An example set of 18 cases is shown in Table 

3.3. A new normally distributed model error was fitted with 𝜇𝜇 = 𝐸𝐸(𝑋𝑋) = 1.008, 𝜎𝜎2 = 𝑉𝑉𝑄𝑄𝑟𝑟(𝑋𝑋) =

0.001.  Proving the assumption made on previous studies [2] still holds conservative, if used with 

the Eq. 3.10. The probability density function (PDF) of the model error and the histogram of the 

true/predicted ratios are shown in Fig. 3.6. Where 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒FE 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒⁄  it is the ratio, between the 

numerical values obtained form the FE analysis for the critical buckling force. And the numerical 

values over Empirical Eq. 3.10. 

PD
F 

 

 
 True-predicted ratios 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒FE 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒⁄  

Figure 3.26 The best fitting Model error 𝐵𝐵 
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A statistical analysis was performed to asses the variability and best fitting distribution 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 due 

to random soil friction angle. The most convenient distribution to characterize the critical buckling 

force is Lognormal for simplicity. The improvement of Kernel and GEV are not significant, having 

only marginally better likelihood. 

PD
F 

 

 
 Empirical model of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(kN) 

 

Figure 3.27 Empirical model of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒, by maximum likelihood estimator Eq. 3.10. Case 1  

For all the cases in the metric analysis a Lognormal distribution of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 was fitted for all 252 

analyses. The biggest model errors in the empirical equation where about 10% in three cases. 

Observed in combination of the largest dynamic downforce, and sharpest imperfection type: 

Case  Imp 
𝜃𝜃(°) 

OD 
(“) 

Grade 𝑞𝑞𝑠𝑠 
(kN/m) 

𝑞𝑞𝑑𝑑 
(kN/m) 

𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡 
(kN/m) 

𝜎𝜎ℎ��� 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 (kN/m) 
FE 

 
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 Error% 

166 3 24 X80 12 9 16.32 60 -5270 -4599 -12.73 
202 3 24 X65 12 9 16.32 60 -3681 -4104 11.51 
220 3 16 X65 12 9 13.88 60 -2309 -2529 9.54 

           
Table 3.8  Largest error cases in empirical Eq. 3.10 vs FE analysis. 
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Largest errors in the empirical equation occur when dealing with the sharpest imperfection and the 

biggest soil resistance but only in three particular cases.  

The use of the empirical Eq. 3.10 alone does not account for the effects of the soil spatial 

variability. The implicit assumption being, the soil is perfect homogenous. Hence, one can obtain 

over conservative results of the 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 variance while performing reliability analysis while using the 

lumped empirical variable that accounts for the soil resistance. After the parametric analysis it was 

shown that the biggest overestimation is about one order of magnitude. As show in Fig. 3.8 

PD
F 

 

 
 Empirical model of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒(kN) 

Figure 3.28 Variability comparison between, the empirical 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs FE 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 Case 3 

Results obtained form the empirical equation, are equivalent to those obtained directly from FE 

model where the soil has perfect correlation. Note that empirical equations yield the most 

conservative values in most cases and also yield wider variability, when applied on RBDA 

methods. 



92 

 

Following the method to develop the empirical equation a set of base cases were studied. To obtain 

the variability of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 due to the inherent variability of the soil friction angle. As show in following 

figures. The linear reduction factors form Eq. 3.19 and Eq. 3.20 were obtained from the parametric 

analysis. The variability of the empirical Eq. 3.10 was compared with the variability obtained 

directed from the numerical models over 1000 simulations. These results are summarized on Table 

3.3.  

case FE Eq. 3.10 Random Field FE 
 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 E(X) Var(X) 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 E(X) Var(X) 
1 -4465 -4413 111999 -4465 1137 
2 -2738 -2750 41423 -2738 506 
3 -1541 -1521 17258 -1541 1002 
4 -3807 -3687 83494 -3807 1344 
5 -2252 -2283 32514 -2252 380 
6 -1249 -1236 11076 -1249 460 
7 -4825 -4905 141555 -4825 82 
8 -3060 -3067 55924 -3060 334 
9 -1742 -1716 20891 -1742 415 
10 -3728 -3634 69952 -3728 2938 
11 -2202 -2249 31515 -2202 89 
12 -1224 -1216 10942 -1224 468 
13 -2810 -2773 42215 -2810 2183 
14 -1625 -1698 16946 -1625 286 
15 -895 -883 6596 -895 308 
16 -4261 -4193 99079 -4261 2085 
17 -2579 -2608 41581 -2579 168 
18 -1448 -1434 15725 -1448 454 

Table 3.9 Comparison of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 considering the soil spatial variability from FE models vs the empirical 

values. 

3.4 Conclusions 

 

A parametric analysis was conducted to investigate the effects of the soil spatial variability on the 

UHB phenomena for onshore pipelines, laydown over hill-type imperfections and constructed with 
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cold formed joints. The scope of the parametric analysis includes 252 parametric cases. The 

studied parameters are: pipe diameter, steel grade, imperfection size, operating internal pressure 

and soil. A result matrix was formed to fit an empirical equation to estimate the critical UHB load.  

 

The resulting empirical expression has a maximum absolute error less than 5% with respect to the 

deterministic FE parametric analysis. This represents a 50% increase accuracy with respect to 

similar equations [2]. A model error was calibrated using Maximum Likelihood criteria. of 

equations can be used to account for the effects of the soil spatial variability in simplified manner.  

New equation always underestimates the critical buckling force. The proposed empirical equations 

yield conservative values to asses the variability of the critical buckling for all applicable cases. 

 

A pair of conservative variance reduction factors for the critical UHB empirical equation is 

proposed to account for the effects of the soil spatial variability in the upheaval buckling problem.  

The proposed expressions are simple and can be readily implemented in RBDA analysis to assess 

the safety of cold formed pipeline bends, laid down over hill-top crest type of imperfections.  The 

variability of the critical buckling is adjusted considering the imperfection shape and the soil 

dynamic download. The most dominant parameters were identified in order of relevance. The 

imperfection shape, the soil dynamic download force and the pipeline mechanical properties. The 

soil being the dominant source of uncertainty. 
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4 Upheaval buckling of onshore pipelines considering spatial cross 
correlation of the soil properties 

 

Lateral and Upheaval buckling are possible global buckling mechanisms for pipelines that operate 

at high pressure and high temperature. Both, heat and pressure, induce axial compressive stresses 

on restrained pipes. Analogous to the Euler buckling, a pin-ended column made of commonly used 

steel pipes, may develop global buckling under modest axial loading, if it is left unsupported for 

only tens of meters along its length.  

 

Above ground or pipelines laid-down on shallow buried trenches are more susceptible to Lateral 

Buckling due to inadequate provisions to allow for axial stress relief, during extreme operating 

conditions. Whereas, the Upward or Upheaval Buckling (UHB) can occur if there is sufficient 

lateral restrain and pipeline can only buckle by overcoming its self-weight and the vertical 

restraining measures.  

 

Trenched or buried pipelines are design to protect the pipe from external actions and ensure 

structural stability. However, the first reported UHB incident took place in 1986, in the Danish 

sector of the North Sea, on a Maersk Oil’s gas pipeline [1], generating concern and research efforts 

to better understand the phenomena [2-8].  

 

Global buckling is not an ultimate failure mode. Buckled pipelines, inside the soil or even exposed 

out of the soil may have structural stability in post buckling configurations, within acceptable 

limits and could be easy repaired in a new stable state. However, this is not always the case. The 
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UHB may also lead several failure modes; fracture, fatigue, local buckling or collapse of the pipe 

cross-section and unacceptable plastic deformations due to excessive bending stress. 

Although the global buckling mechanism of pipelines was understood in the open literature since 

1974 [9], sporadic UHB events have taken place in the years after. Late as 2016, one thermally-

driven UHB of a tar-sands pipeline and subsequent cool down from the turnaround was responsible 

for the rupture at Nexen Long Lake explosion [10]. This may be due to unforeseen conditions that 

sometimes arise in the most particular cases.  

 

The understanding of the uplift capacity of buried pipelines is critical for designing an adequate 

burial depth that ensures the line stability against upheaval buckling. After the North Sea 1986 

incident, robust efforts to predict the upheaval were made. Resulting in design recommendations 

[11-14]. Several geotechnical pipe-soil interaction models are available to estimate the critical UHB 

force by means of Finite Element (FE) analysis or by closed-form formulations that require 

experimental calibration. Such approaches consider, simplified force-displacement relationships 

to characterize drained or undrained soil conditions. Further, the experimental data of the soil 

characteristics and the project specific conditions, allows for some predictions for the amplitude 

and length of the UHB geometric, given thermal and pressure critical values, since early studies 

[7]. However, a clear track of the uncertainty involved in such approximations is not readily 

available. 

 

Reliability-based design and assessment (RBDA) is the current practice for common structural 

design codes to ensure an acceptable standard of safety. Pipelines are critical infrastructure, that 

need to be design and operated safely for economic, environmental and public health reasons. A 
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key limit state of buried pipelines that operate at elevated temperatures is UHB. The assessment 

of the critical force for the onset of buckling depends on several key parameters that are random 

in nature.   

 

Backfill soil materials have mechanical properties that could be generalized up to some extent. 

Extrapolating the soil properties could not be done without increasing the uncertainty in the 

translation. In contrast, the pipeline geometric and material properties are orders of magnitude 

more certainty due to quality manufacturing controls and design tolerances during construction. 

The natural variability of the soil cannot be reduced but can be account for. Usually, geotechnical 

designs consider the soil inherent variability by increasing the factor of safety and introduce 

redundancy at the expense of over-design.  

 

A number of the soil property statistics reported in the geotechnical literature have been determined 

from total variability analyses that implicitly assume a uniform source of uncertainty. Clearly, 

these lumped statistics are only applicable to the specific set of site conditions, measurement 

techniques, correlation models for which the design soil properties were derived [15].  

 

There are some soil parameters, that require additional consideration, apart from the provisions in 

the design recommendations [11-14]. Onshore, pipelines are installed through diverse environments 

from desert to swampy soils with poor soil cohesion. Soils with partial drainage conditions, due to 

low-permeability silty sand, has not been studied in detail. As well as the displacements required 

to mobilize a dynamic download reaction of the soil or even the static download for partially 

drained soils. It has been shown that these drainage rate effects can be significant, and the drainage 
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conditions will depend on the dimensionless velocity, of the soil particles, as suggested by previous 

researchers studying penetration and foundation problems [18]. A change in normalized pipeline 

velocity will trigger different degrees of drainage and generate different deformation mechanisms 

in the soil, and these will affect the force-displacement response, especially in silty sands. 

 

The variability of the backfill materials used to restrain entrenched pipelines may be considerable. 

Depending on three main categories: 1.-The inherent variability of the natural soil due to 

geological forming processes. 2.- The conditioning from construction techniques. 3 Environmental 

and long-term effects during the life cycle of the pipeline.  

 

Additional to the soil inherent variability. The uncertainty involved in forced-displacement 

models, recommended in design codes [11-14] is likely to vary from particular soil conditions that 

are not specified in the guidelines. 

 

The uncertainly involved in the sampling from geotechnical surveys is a well-studied subject [15]. 

And can be adopted to assess the UHP risk of pipelines. The former uncertainty sources can be 

categorized by the randomness they introduce in soil models. The inherent variability being the 

greatest contribution and the sampling being the most certain parameter among them. Recent 

technological improvements have increased the availability of high-quality survey data to assess 

the pipeline geometric configuration and soil properties [16-17]. This opens the new possibility to 

adopt the RBDA methodologies for buried pipelines, by using more specialized statistical analysis. 

Leading to more efficient design, assessment of safe pipelines. 
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4.1 Motivation  

 

From a parametric analysis in Chapter 3. The critical UHB load for onshore pipelines made with 

cold formed bends and laydown over hill type of imperfections, has proven to be dependent on the 

imperfection shape θ and the soil parameters; static download, 𝒒𝒒𝒔𝒔(𝑭𝑭,𝑯𝑯,𝑫𝑫) and dynamic download 

𝒒𝒒𝒅𝒅(𝒄𝒄,𝝋𝝋,𝑭𝑭,𝑯𝑯,𝑫𝑫). One can assume, the pipe outside diameter 𝑫𝑫, and pipeline total self-

weight 𝑤𝑤pipe, have small variability when compared to the soil, parameters; cohesion coefficient 

𝒄𝒄, the soil friction angle 𝝋𝝋 and density 𝑭𝑭. The buried deep 𝑯𝑯 can be measure in a newly precise 

ways [16-17] directly from surveys. Or at least, it is true that variability of  𝑫𝑫 is fully independent 

from 𝒄𝒄,𝝋𝝋 and 𝑭𝑭. The small variability of 𝑫𝑫 is due to manufacturing processes, and the buried deep 

𝑯𝑯 varies as a result of construction techniques, external or environmental processes and long-term 

effects, after construction. 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒 is the base-line case to calculate the critical axial loading 

given by, 

 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒_𝑏𝑏𝑎𝑎𝑠𝑠𝑒𝑒 = −129 �
𝑤𝑤tot

sinθ 2⁄
− 7.69 𝑤𝑤tot0.798�

0.567
 (4.1) 

 
  𝑤𝑤tot =  𝑤𝑤pipe + 𝒒𝒒𝒔𝒔 + 𝒒𝒒𝒅𝒅 (4.2) 

 

Where:  𝑤𝑤tot total download in kN/m 

  𝑤𝑤pipe pipe weight per unit length 

 𝑞𝑞𝑠𝑠 static soil download (i.e., overburden) 

 𝑞𝑞𝑑𝑑 the dynamic soil download 

 θ the angle of the imperfection detailed on Fig. 4.1 
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 𝑞𝑞𝑠𝑠 = 𝛾𝛾𝐻𝐻𝐷𝐷 (4.3) 
   

Where: 𝛾𝛾 bulk unit weight of soil  

 H cover depth of the trench (0.7m) 

 D outer diameter of the pipe 

  
The dynamic component 𝒒𝒒𝒅𝒅, according to ALA [6] is given by: 

 
 𝒒𝒒𝒅𝒅 = 𝑄𝑄𝑢𝑢 = 𝑁𝑁𝑐𝑐𝑣𝑣 𝑏𝑏 𝐷𝐷 + 𝑁𝑁𝑞𝑞𝑣𝑣 𝛾𝛾 𝐻𝐻 𝐷𝐷 (4.4) 

 
Where: 𝑁𝑁𝑐𝑐𝑣𝑣  vertical uplift factor for clay (0 for 𝑏𝑏 = 0) 

 c backfield shear strength 

 𝑁𝑁𝑞𝑞𝑣𝑣 vertical uplift factor for sand (0 for 𝜑𝜑 = 0°) 

 𝜑𝜑 backfill friction angle 

 𝑁𝑁𝑐𝑐𝑣𝑣 2 𝐻𝐻
𝐷𝐷
≤ 10 applicable for 𝐻𝐻

𝐷𝐷
≤ 10 

 𝑁𝑁𝑞𝑞𝑣𝑣 𝜙𝜙𝐻𝐻
44𝐷𝐷

≤ 10 where 𝑁𝑁𝑞𝑞 = exp(𝑝𝑝tanϕ)tan2 �45 + 𝜙𝜙
2
�  

 
Two soil mobilization sensitive displacements were considered as 10mm and 40mm.  
 

In Chapter 2, the effects of the spatial variability of the friction angle 𝝋𝝋 were investigated while 

keeping 𝒄𝒄 and 𝑭𝑭 constant. By ignoring the spatial correlation struct of 𝝋𝝋, overconservative 

 
Figure 4.1 Diagram of burried pipeline over a Hill-Crest imperfection 
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estimations for the actual variability of critical axial buckling force were obtained. It was proven 

that more realistic approximation can be employed to assess the pipeline susceptibility to UHB.     

 

Diverse types of soils have been studied as random fields in other geotechnical, environmental and 

geological applications. The current state of the art mathematical models, allows for the use of all 

available statistical information to estimate the pipeline susceptibility to UHB in a more realistic 

manner. Including, empirical or project specific spatial-correlation structures of (𝒄𝒄,𝝋𝝋,𝑭𝑭) and their 

spatial cross-correlation among each geotechnical property.   

 

If the statistical properties are not available, one can always use simplified models at the expense 

of excessive mitigation measures being adopted, such as sleepers or counteract structures like 

helical piles or increase of the soil cover.  The spatial variability of pipeline embedment can be 

approached in a more realistic way, by adopting state random fields models that have been 

successfully used in practice in other scientific disciplines. Although, the understanding of the 

physical mechanism of UHB is simple and accurate, improvements in RBDA to better account the 

uncertain involved may lead to more efficient design and assessment of pressurized gas pipelines. 

This paper illustrates how the influence of these physical mechanisms that drive embedment can 

be extracted from field survey data and then modelled synthetically in design analyses. 

 

The soil properties can be model as random field, providing a numerical approach compatible with 

well accepted (EF) models to deal with inherent variability of each geotechnical property that can 

be resembled as one specific backfill material. In this approach, measurement fluctuations of the 

soil parameters are interpreted as random occurrences that are somehow related to each other 
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depending on how far apart the measurement points were taken. If a measurement is taken at the 

same location is very likely to be of identical value. Two measurements are considered to be 

statically in depend is they are taken far enough from each. This minimum separation is known as 

scale of fluctuation. The function that predicts how similar two measurements can be to each other 

is formally known as spatial variability structure. Such functions can be characterized from 

empirical data. The slight differences of measurements taken very close to the same location, are 

technically model as nugget or remanent uncertainty 

     

The random field theory has been used to investigate the random behavior of physical parameters 

in the context of a variety of classical problems [23-27].  

 

There are two main objectives of this Chapter: 1.- Provide a review of selected ad hoc 

mathematical models that can be used to include the most specific statistical data in the assessment 

of pipelines against UHB. 2.- Investigate the effects of considering the spatial variability of the 

soil geotechnical properties 𝒄𝒄,𝝋𝝋,𝑭𝑭 by adopting a more general and straightforward random field 

characterization. 

 

4.2 Methodology 

 

The spatial variability of the natural soil structure can be considered by modelling 𝒄𝒄,𝝋𝝋,𝑭𝑭  as a Tri-

variate random field. The choice of probability density function (PDF) and correlation structure of 

is not straightforward as the information available in the literature is mostly for idealized soil types. 
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In a more realistic case, the PDF and correlation structure of a particular soil deposit is very likely 

to have unique statistics and spatial variability structure. 

 

The observed values of these spatial variables are referred to as multivariate spatial data, which 

often possess two kinds of spatial correlation: spatial autocorrelation that exists between 

observations of an individual variable at different locations, and spatial cross-correlation that 

describes the correlation between two different variables measures at either the same or different 

locations. It is an important problem to model both kinds of spatial correlation. By appropriately 

accounting for and modeling the spatial correlation, efficient estimation, and better prediction can 

be achieved. For example, cokriging is a technique for linear prediction of one variable by making 

use of observed values of other variables, and can result in more precise prediction than the kriging 

methods that utilize only the spatial auto-correlation of this particular variable being predicted. 

 

A number of commonly used models for the covariance structure, including the spherical, the 

exponential and the Gaussian provide no flexibility with regard to this local behavior and 

essentially assume it is known a priori. An alternative model for general adoption is a more robust 

model. There are general case of valid correlation functions the named after, Matérn. These models 

include a parameter that allows for any degree of differentiability for the random field and includes 

the exponential model as a special case and the Gaussian model as a limiting case. 

Matérn class of covariograms has received much attention in recent years because it has a 

parameter that controls how smooth the process is. The reason is that these parameters determine 

how smooth the processes are and hence have more to do with the variogram cross-variogram at 

small lags. In the UHB case this type of correlation structures could allow to model the contribution 
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of multi scale properties (i.e., the soil lumps that are distributed uniformly along the trenches 

during construction, the graded granular materials to improve mechanical properties of the soil 

and smaller scale properties those found on silty soils).   

 

A valid Matérn class of cross-covariance functions for multivariate random fields with any number 

of components procedure was developed. This method may allow for great flexibility on the 

characterization of specific soil conditions. However, a main draw back of this method is that there 

are number of fitting parameters for each Matérn class function, and these parameters can only be 

accurate optimized by Maximum likelihood procedures, that relay on even more parameters. 

Estimates can be hard to find for two reasons, one being the potential high dimension of parameter 

space, and the other being the constraints on the parameters that are necessary for a valid 

variogram. A method to address the former, Maximum likelihood the optimization was develop 

and it presented to provide an actionable procedure to model the soil parameter as realistic random 

fields.  

 

Finally, to investigate the more general effects of the tri-variate 𝒄𝒄,𝝋𝝋,𝑭𝑭 spatial variability of the 

soil. A comparison is present, by using a simple and robust method to simulate cross correlated 

random fields was first developed in 1990[19].   

 

In general, the simulation and generation of sample functions of stochastic fields is straight forward 

and can be performed by means of: (1) Spectral representation (Series expansion methods); (2) 

Average discretization methods like ARMA (auto-regressive moving average) modeling; and (3) 

Orthogonal expansion by means of covariance matrix decomposition procedures.  
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4.2.1 Tri-variate Friction Angle/Cohesion/Density spatial random field. 

 

The Matérn class of positive definite functions has become the standard covariance model for 

univariate fields [20]. The popularity in large part is due to the work of who showed that the behavior 

of the covariance function near the origin has fundamental implications on predictive distributions, 

particularly predictive uncertainty [Stein (1999)]. The key feature of the Matérn is the inclusion of a 

smoothness parameter that directly controls correlation at small distances. The Matérn correlation 

function Given by: 

 

A 𝑄𝑄-dimensional multivariate random field 𝒀𝒀 = {𝑌𝑌(𝑥𝑥1)𝑇𝑇 , . . . ,𝑌𝑌(𝑥𝑥𝑛𝑛)𝑇𝑇}𝑇𝑇 defined on a space region 

𝒟𝒟 ⊂  ℝ𝑑𝑑  , 𝑞𝑞 ≥ 1, where 𝑌𝑌𝑖𝑖(𝐹𝐹) represents the 𝑃𝑃-th variable, 𝑃𝑃 = 1, … ,𝑄𝑄, at locations 𝐹𝐹 ∈  𝒟𝒟. Y is 

Gaussian, if only its mean and cross-covariance functions are need to fully define 𝑌𝑌.  

 

𝒀𝒀 is considered to be stationary if its cross-covariance satisfies, 

 cov�𝑌𝑌𝑖𝑖(𝐹𝐹1) − 𝑌𝑌𝑗𝑗(𝐹𝐹2)� = 𝐶𝐶𝑖𝑖𝑗𝑗(𝐹𝐹1 − 𝐹𝐹2),        𝑃𝑃, 𝑗𝑗 = 1, … ,𝑄𝑄,         𝐹𝐹1, 𝐹𝐹2 ∈ 𝒟𝒟 (4.5) 
 

𝒀𝒀 is considered to be isotropic if its cross-covariance satisfies, 

 𝐶𝐶𝑖𝑖𝑗𝑗(h1) = 𝐶𝐶𝑖𝑖𝑗𝑗(h2)   if    ‖h1‖ = ‖h2‖  where  ‖∙‖ is the Euclidian norm (4.6) 
 

For Gaussian, stationary and isotropic fields one can use the spatial covariance function given by 

M (Matérn). 

 M(h|ν,α) =
1

2ν−1Γ(ν)
(𝛼𝛼‖h‖)νΚν(𝛼𝛼‖h‖),                  h ∈  ℝ𝑑𝑑, 

 
(4.7) 
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Κν is a modified Bessel function of the second kind, ν > 0 is a smoothness parameter and α > 0 

is a scale parameter. The ratio 1/α is the correlation length and ν models a decrement in correlation 

per unit length, larger values correspond to smoother fields.  

 

The cross-covariance function on this method is characterized by co-allocated covariance 

coefficients 𝜎𝜎𝑖𝑖𝑗𝑗, smoothness parameters 𝜈𝜈𝑖𝑖𝑗𝑗 and scale parameters 𝛼𝛼𝑖𝑖𝑗𝑗 in to a Matérn class function,  

 𝐶𝐶𝑖𝑖𝑗𝑗(h) = 𝜎𝜎𝑖𝑖𝑗𝑗M�h|𝜈𝜈𝑖𝑖𝑗𝑗 ,𝛼𝛼𝑖𝑖𝑗𝑗�,          𝑃𝑃, 𝑗𝑗 = 1, … ,𝑄𝑄,         h ∈  ℝ𝑑𝑑 ,   (4.8) 
 

 

𝐶𝐶𝑖𝑖𝑗𝑗(h) =

�𝜎𝜎𝑖𝑖𝑖𝑖𝜎𝜎𝑗𝑗𝑗𝑗 ∙ 𝑅𝑅𝑉𝑉𝑖𝑖𝑗𝑗 ∙ Γ �
(𝜈𝜈𝑖𝑖𝑖𝑖) + �𝜈𝜈𝑗𝑗𝑗𝑗�

2 �

�Γ(𝜈𝜈𝑖𝑖𝑖𝑖) ∙ Γ�𝜈𝜈𝑗𝑗𝑗𝑗�

�
𝛼𝛼𝑖𝑖𝑖𝑖2 + 𝛼𝛼𝑗𝑗𝑗𝑗2

2 �
�
𝜈𝜈𝑖𝑖𝑖𝑖+𝜈𝜈𝑗𝑗𝑗𝑗

2 �

�𝛼𝛼𝑖𝑖𝑖𝑖2𝜈𝜈𝑖𝑖𝑖𝑖 ∙ 𝛼𝛼𝑗𝑗𝑗𝑗2𝜈𝜈𝑗𝑗𝑗𝑗

∙ M�h�
(𝜈𝜈𝑖𝑖𝑖𝑖) + �𝜈𝜈𝑗𝑗𝑗𝑗�

2 ,�
𝛼𝛼𝑖𝑖𝑖𝑖2 + 𝛼𝛼𝑗𝑗𝑗𝑗2

2 � 

 

(4.9) 

For 𝑃𝑃, 𝑗𝑗 = 1, … ,𝑄𝑄, where 𝑅𝑅𝑉𝑉𝑖𝑖𝑗𝑗are the cross-correlations and 𝜎𝜎𝑖𝑖𝑖𝑖 are the variances for each 𝑄𝑄 in the 

conventional sense. In the present case; 

 

Friction Angle 𝜑𝜑 𝐶𝐶11(h) = 𝜎𝜎11 M(h|𝜈𝜈11,𝛼𝛼11)  
Soil Cohesion 𝑏𝑏 𝐶𝐶22(h) = 𝜎𝜎22 M(h|𝜈𝜈22,𝛼𝛼22) (4.10) 
Soil Density 𝛾𝛾 𝐶𝐶33(h) = 𝜎𝜎33 M(h|𝜈𝜈33,𝛼𝛼33)  

 

where the correlation is given by 

 𝜌𝜌𝑖𝑖𝑗𝑗 =
𝜎𝜎𝑖𝑖𝑗𝑗

�𝜎𝜎𝑖𝑖𝑖𝑖𝜎𝜎𝑗𝑗𝑗𝑗
 (4.11) 
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A multivariate spatial linear coregionalization model is considered that incorporates the Matérn 

class of covariograms. An algorithm is presented for the maximum-likelihood estimation of the 

parameters show in 4.10. 

 

A version of (EM) algorithm has been developed by Zhu et al. (2005) for multivariate 

spatiotemporal generalized linear mixed model, in which the random effects or latent variables 

follow an LCM with exponential covariograms. In that we provide explicit expression in closed 

form for the estimate of each iteration, while these estimates are given by constrained 

maximization in [Zhu et al. (2005)] 

 

A multivariate second-order stationary process. Let 𝒀𝒀(𝐹𝐹) = �𝑌𝑌1(𝐹𝐹), … ,𝑌𝑌𝑝𝑝(𝐹𝐹)�
′
, 𝐹𝐹 ∈ ℝ𝑑𝑑  be a 𝑄𝑄-

variate stochastic process, where 𝑌𝑌𝑖𝑖(𝐹𝐹) represents the value of the 𝑃𝑃-th variable at location 𝐹𝐹. The 

process is said to be second-order stationary if for all 𝐹𝐹,ℎ ∈  ℝ𝑑𝑑 and 𝑃𝑃, 𝑗𝑗 = 1, … , 𝑄𝑄. 

 

 𝐸𝐸[𝑌𝑌𝑖𝑖(𝐹𝐹)] = 𝑚𝑚𝑖𝑖 , cov�𝑌𝑌𝑖𝑖 ,𝑌𝑌𝑗𝑗(𝐹𝐹 + ℎ)� = 𝐶𝐶𝑖𝑖𝑗𝑗(ℎ) (4.12) 
 

where the functions 𝐶𝐶𝑖𝑖𝑗𝑗(∙) are direct cov if 𝑃𝑃 =  𝑗𝑗 and cross-cov if 𝑃𝑃 ≠  𝑗𝑗. The matrix function 

𝐶𝐶(ℎ) = 𝐶𝐶𝑖𝑖𝑗𝑗(ℎ) is the multivariate covariogram, that most be positive definite in the sense that for 

any spatial locations 𝐹𝐹1, … , 𝐹𝐹2 and any vectors 𝑄𝑄𝑖𝑖 ∈ ℝ𝑝𝑝, 𝑃𝑃 = 1, … ,𝑛𝑛, 

 Var��𝑄𝑄𝑖𝑖′ ∙
𝑖𝑖

𝒀𝒀(𝐹𝐹𝑖𝑖)� = � 𝑄𝑄𝑖𝑖′𝐶𝐶�𝐹𝐹𝑖𝑖 − 𝐹𝐹𝑗𝑗�𝑄𝑄𝑗𝑗

𝑛𝑛

𝑖𝑖,𝑗𝑗=1

≥ 0 (4.13) 

 

Because of this constraint, it is a difficult problem to specify a valid multivariate covariogram that 

is not too complex to be estimated and yet capable of modeling a wide range of spatial correlations. 
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Only a few multivariate covariogram models have been proposed and used in analyzing real 

multivariate spatial data. The simplest model is the proportional correlation model [22]: 

 𝐶𝐶(ℎ) = 𝐕𝐕𝜌𝜌(ℎ), ℎ ∈  ℝ𝑑𝑑 (4.14) 
   

where 𝐕𝐕 is a 𝑄𝑄 ×  𝑄𝑄 positive definite matrix and 𝜌𝜌(ℎ) is a correlation function. This proportional 

model can be used to build a nested covariogram in the form of: 

 𝐶𝐶(ℎ) = 𝐕𝐕0 + �𝐕𝐕𝑘𝑘𝜌𝜌𝑘𝑘(ℎ)
𝑘𝑘

𝑘𝑘=1

 

 

(4.15) 

This covariogram corresponds a linear coregionalization model (LCM) [22] Subsection 5.6.5; [23], 

Chapter 26): 

 

 
𝒀𝒀(𝐹𝐹) = 𝜇𝜇(𝐹𝐹) + �𝐕𝐕𝑘𝑘𝜌𝜌𝑘𝑘(ℎ)

𝑘𝑘

𝑘𝑘=0

 

 

(4.16) 

for each 𝑏𝑏,𝐕𝐕𝑘𝑘 there is a positive semi-definite matrix and 𝜌𝜌𝑘𝑘(ℎ) is a correlogram that depends on 

some additional parameters. Rackwitz [24] provides examples for 𝜌𝜌𝑘𝑘(ℎ) as exponential or spherical. 

 𝐶𝐶(ℎ) = 𝐕𝐕0 + �𝐕𝐕𝑘𝑘𝜌𝜌𝑘𝑘(ℎ)
𝑘𝑘

𝑘𝑘=1

 

 

(4.17) 

where X𝑡𝑡(𝐹𝐹) is a stationary but uncorrelated p-variate process with mean 0, that is; 
 

  𝐸𝐸[𝑌𝑌0(𝐹𝐹)] = 0, cov[𝑋𝑋0(𝐹𝐹),𝑌𝑌0(𝐹𝐹 + ℎ)] = 𝐕𝐕0{ℎ≠0} (4.18) 
   

𝑋𝑋𝑘𝑘(𝐹𝐹) is a p-variate stationary process with mean 0 and a multivariate covariogram 𝐕𝐕𝑘𝑘𝜌𝜌𝑘𝑘(ℎ). The 

(1 + 𝑏𝑏) processes are uncorrelated in the sense that for any 𝑏𝑏 ≠  𝑗𝑗, 

 cov�𝑋𝑋𝑘𝑘(𝐹𝐹),𝑋𝑋𝑗𝑗(�̃�𝐹)� = 0, ∀ 𝐹𝐹, �̃�𝐹 (4.19) 
   

If 𝜌𝜌𝑘𝑘(ℎ) is a Matérn type correlation function is fully defined by 𝜓𝜓𝑘𝑘 = (𝛿𝛿𝑘𝑘,𝜙𝜙𝑘𝑘)′as 
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 𝜌𝜌(ℎ;𝜓𝜓) =
1

2𝜈𝜈−1Γ(𝜈𝜈)�
2𝜈𝜈

1
2‖ℎ‖
𝜙𝜙 �

𝜈𝜈

Κ𝜈𝜈 �
2𝜈𝜈

1
2‖ℎ‖
𝜙𝜙 � 

 

(4.20) 

and Κ𝜈𝜈 is the modified Bessel function of order 𝜈𝜈 as discussed by Abramowitz. The parameter 𝜈𝜈𝑘𝑘 

control the smoothens of the process 𝑿𝑿𝑘𝑘(𝐹𝐹),   𝑏𝑏 = 1, … ,𝑏𝑏, which different smoothness parameters, 

are capable of representing different scales of variation. 

 

Goulard and Voltz (1992) developed an algorithm for estimating 𝐕𝐕𝑘𝑘 in the linear coregionalization 

model when the correlograms 𝜌𝜌𝑘𝑘 are known. Hence, their method does not estimate the 

correlogram parameters such as 

 

 𝛿𝛿𝑘𝑘 and 𝜓𝜓𝑘𝑘,𝑏𝑏 = 1 … 𝑏𝑏. That method is an extension of the least squares fitting of variogram in the 

univariate case. It first calls for non-parametric estimation of the direct variograms and cross-

variograms 𝛾𝛾𝑖𝑖𝑗𝑗 at some lags ℎ1, … ,ℎ𝑁𝑁 and then minimizes through an iterative procedure 

∑ tr �Υ��ℎ𝑗𝑗� − Υ�ℎ𝑗𝑗��
2

𝑁𝑁
𝑗𝑗=1 , where Υ(ℎ) is the variogram matrix whose (𝑃𝑃, 𝑗𝑗)-th element is  

 𝛾𝛾𝑖𝑖𝑗𝑗(ℎ) = (1/2) cov�𝑌𝑌𝑖𝑖(𝐹𝐹 + ℎ) − 𝑌𝑌𝑖𝑖(𝐹𝐹),𝑌𝑌𝑗𝑗(𝐹𝐹 + ℎ) − 𝑌𝑌𝑗𝑗(𝐹𝐹) � (4.21) 
   

 and Υ��ℎ𝑗𝑗� is the empirical variogram matrix. The minimization is subject to the constraint that the 

estimates of the matrices 𝐕𝐕𝑘𝑘 are all positive semi-definite.  

There  

The EM algorithm is applied when there are missing values or latent variables. In the LCM (3), 

the processes {𝑋𝑋𝑘𝑘(𝐹𝐹)},   𝑏𝑏 = 1, … , 𝑏𝑏 are unobservable, and therefore the EM algorithm can be 

applied. We first introduce the following notations before introducing the EM algorithm. Recall 

that 𝒀𝒀(𝐹𝐹) = �𝑌𝑌1(𝐹𝐹), … ,𝑌𝑌𝑝𝑝(𝐹𝐹)�
′
 is a p-variate process. Let 𝐹𝐹1, . . . , 𝐹𝐹𝑛𝑛 be the sampling locations 
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where at least one of the p variables is observed and 𝑌𝑌 be the vector of all observations. Hence 𝑌𝑌 

consists of all those 𝑌𝑌𝑖𝑖�𝐹𝐹𝑗𝑗� that are observed. Let 𝑿𝑿𝑘𝑘𝑖𝑖(𝐹𝐹) be the 𝑃𝑃-th element of  𝑿𝑿𝑘𝑘(𝐹𝐹) as 

 𝜇𝜇 = �𝜇𝜇1, … , 𝜇𝜇𝑝𝑝�
′ = 𝐸𝐸�𝒀𝒀(𝐹𝐹)� (4.22) 

 

 𝑿𝑿𝑘𝑘𝑖𝑖 = �𝑿𝑿𝑘𝑘𝑖𝑖(𝐹𝐹), … ,𝑿𝑿𝑘𝑘𝑖𝑖(𝐹𝐹)�′,          𝑿𝑿𝑘𝑘(𝐹𝐹) = �𝑿𝑿𝑘𝑘1′ , … ,𝑿𝑿𝑘𝑘𝑝𝑝′ �′ (4.23) 
 

 𝑿𝑿 = �𝑿𝑿𝟐𝟐′ , … ,𝑿𝑿𝑝𝑝′ �
′
 (4.24) 

 

 𝒀𝒀𝑖𝑖 = �𝑌𝑌𝑖𝑖(𝐹𝐹𝑛𝑛), …𝑌𝑌𝑖𝑖(𝐹𝐹𝑛𝑛)�,    𝒀𝒀∗ = �𝑿𝑿1′ , … ,𝑿𝑿𝑝𝑝′ �
′
 (4.25) 

 

 𝑅𝑅𝑘𝑘(𝜓𝜓𝑘𝑘) = �𝜌𝜌�𝐹𝐹𝑖𝑖 − 𝐹𝐹𝑗𝑗�,𝜓𝜓𝑘𝑘�𝑖𝑖,𝑗𝑗=1
𝑛𝑛  ,        Σ𝑘𝑘(𝜓𝜓𝑘𝑘) = 𝑉𝑉𝑘𝑘 ⨂ 𝑅𝑅𝑘𝑘(𝜓𝜓𝑘𝑘) (4.26) 

 

where ⨂ is the Kronecker product. Note that we do require that at each of the location 𝐹𝐹𝑖𝑖, all p 

variables 𝑌𝑌1(𝐹𝐹𝑖𝑖), … ,𝑌𝑌𝑝𝑝(𝐹𝐹𝑖𝑖) are observable. Hence the observed vector 𝒀𝒀 may be a subset of 𝒀𝒀∗ The 

complete-data log likelihood is given by 

Log 𝐿𝐿(𝜃𝜃,𝒀𝒀∗,𝑿𝑿) = −
1
2

log(Σ0) −
1
2�

𝒀𝒀∗ −�𝑿𝑿𝑘𝑘

𝑏𝑏

𝑏𝑏=1

− 𝜇𝜇 ⨂1 �

′

Σ0−1 �𝒀𝒀∗ −�𝑿𝑿𝑘𝑘

𝑏𝑏

𝑏𝑏=1

− 𝜇𝜇 ⨂1 � 

 

−
1
2
��log�|Σ𝑘𝑘(𝜓𝜓𝑘𝑘)| + 𝑿𝑿1′ Σ𝑘𝑘−1(𝜓𝜓𝑘𝑘)� 𝑿𝑿𝑘𝑘�
𝑏𝑏

𝑏𝑏=1

 

(4.27) 

 

where 𝜃𝜃 = (𝜇𝜇,𝑉𝑉0,𝑉𝑉𝑘𝑘 ,𝜓𝜓𝑘𝑘,𝑏𝑏 = 1, … ,𝑏𝑏) denotes all parameters in the LCM. The EM iterates as 

follows. At each iteration, there are two steps, the E-step and the M-step. The E-step find the 

conditional expectation of the complete-data log likelihood. Specifically, given the estimate 𝜃𝜃𝑚𝑚 in 

the 𝑚𝑚-th, compute the conditional expectation of the complete-date log likelihood 

 Q�𝜃𝜃�𝜃𝜃(𝑚𝑚),𝒀𝒀� = 𝐸𝐸𝜃𝜃(𝑚𝑚)[(log 𝐿𝐿(𝜃𝜃,𝒀𝒀∗,𝑿𝑿)|𝒀𝒀)] (4.28) 
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where the conditional expectation is evaluated under the parameter 𝜃𝜃 = 𝜃𝜃(𝑚𝑚). At the M-step, 

Q�𝜃𝜃�𝜃𝜃(𝑚𝑚),𝒀𝒀� is maximized with respect to 𝜃𝜃 and the new estimate is  

 𝜃𝜃(𝑚𝑚+1) = ArgMax Q�𝜃𝜃�𝜃𝜃(𝑚𝑚),𝒀𝒀� (4.29) 
 

we now show that the maximization can be carried out mostly in closed-form. In view of Eq. 4.27, 

Q�𝜃𝜃�𝜃𝜃(𝑚𝑚),𝒀𝒀� is a sum or (1 + 𝑏𝑏) terms, each of which depends on a different subset of parameters. 

Hence maximizing Q�𝜃𝜃�𝜃𝜃(𝑚𝑚),𝒀𝒀� can be broken down into several separate maximization 

problems. Specifically, 𝑉𝑉𝑘𝑘
(𝑚𝑚+1) and 𝜓𝜓𝑘𝑘

(𝑚𝑚+1), 𝑏𝑏 ≥ 1 maximaze 

 −𝐸𝐸𝜃𝜃(𝑚𝑚)[log|Σ𝑘𝑘| + 𝑿𝑿𝑘𝑘′ Σ𝑘𝑘−1 𝑿𝑿𝑘𝑘] (4.30) 
 

which, because of  log|Σ𝑘𝑘| = 𝑛𝑛log|V𝑘𝑘| + 𝑄𝑄log| 𝑅𝑅𝑘𝑘(𝜓𝜓𝑘𝑘)| and  Σ𝑘𝑘−1 = 𝑉𝑉𝐾𝐾−1 ⨂𝑅𝑅𝑘𝑘−1 (𝜓𝜓𝑘𝑘) can be 

written as  

 −𝑛𝑛 ∙ log|V𝑘𝑘| − 𝑄𝑄 ∙ log| 𝑅𝑅𝑘𝑘(𝜓𝜓𝑘𝑘)| −�𝜈𝜈𝑖𝑖𝑗𝑗,𝑘𝑘 ∙
𝑝𝑝

𝑖𝑖,𝑗𝑗=

𝐸𝐸𝜃𝜃(𝑚𝑚)�𝑿𝑿𝑘𝑘𝑖𝑖′ ∙ 𝑅𝑅𝑘𝑘−1(𝜓𝜓𝑘𝑘) ∙  𝑿𝑿𝑘𝑘𝑗𝑗�𝒀𝒀� (4.31) 

where 𝜈𝜈𝑖𝑖𝑗𝑗,𝑘𝑘 is the (𝑃𝑃, 𝑗𝑗)th element of 𝑉𝑉𝐾𝐾−1. From the well-known property of matric derivative 

[Schott 1997] 

 −
𝜕𝜕log|V𝑘𝑘|
𝜕𝜕𝜈𝜈𝑖𝑖𝑗𝑗,𝑘𝑘

=
𝜕𝜕log|𝑉𝑉𝐾𝐾−1|
𝜕𝜕𝜈𝜈𝑖𝑖𝑗𝑗,𝑘𝑘

= tr�
𝜕𝜕𝑉𝑉𝐾𝐾−1

𝜕𝜕𝜈𝜈𝑖𝑖𝑗𝑗,𝑘𝑘
� = 𝑞𝑞𝑖𝑖𝑗𝑗𝜎𝜎𝑖𝑖𝑗𝑗,𝑘𝑘 (4.32) 

 

where 𝑞𝑞𝑖𝑖𝑗𝑗 is 2 if 𝑃𝑃 ≠ 𝑗𝑗 and 1 otherwise. It follows immediately that the derivative of with respect 

to 𝜈𝜈𝑖𝑖𝑗𝑗,𝑘𝑘 is 

 𝑞𝑞𝑖𝑖𝑗𝑗�𝑛𝑛 ∙ 𝜎𝜎𝑖𝑖𝑗𝑗,𝑘𝑘 − 𝐸𝐸𝜃𝜃(𝑚𝑚)�𝑿𝑿𝑘𝑘𝑖𝑖′ ∙ 𝑅𝑅𝑘𝑘−1(𝜓𝜓𝑘𝑘) ∙  𝑿𝑿𝑘𝑘𝑗𝑗�𝒀𝒀�� (4.33) 
 

hence, for any fixed 𝜓𝜓𝑘𝑘, Eq. 4.26 as a function of V𝑘𝑘 or 𝑉𝑉𝐾𝐾−1 is maximized at V𝑘𝑘 =∙ 𝑉𝑉𝑘𝑘𝑚𝑚(𝜓𝜓𝑘𝑘) this 

trace equals p and 4.31 
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 −𝑛𝑛 ∙ log|𝑉𝑉𝑘𝑘𝑚𝑚(𝜓𝜓𝑘𝑘)| − 𝑄𝑄 ∙ log| 𝑅𝑅𝑘𝑘(𝜓𝜓𝑘𝑘)| − 𝑛𝑛𝑄𝑄 (4.34) 
 

Therefore, in the EM algorithm, estimates for 𝜓𝜓𝑘𝑘 and V𝑘𝑘(𝑏𝑏 = 1, … ,𝑏𝑏) are updated by 

 𝜓𝜓𝑘𝑘
(𝑚𝑚+1) = ArgMin(𝑛𝑛 ∙ log|𝑉𝑉𝑘𝑘𝑚𝑚(𝜓𝜓𝑘𝑘)| + 𝑄𝑄 ∙ log| 𝑅𝑅𝑘𝑘(𝜓𝜓𝑘𝑘)|) (4.35) 

 

 𝑉𝑉𝑏𝑏
(𝑚𝑚+1) = 𝑉𝑉𝑏𝑏𝑚𝑚 �𝜓𝜓𝑏𝑏

(𝑚𝑚+1)� (4.36) 
 

Next, we give the closed-form solution for 𝑉𝑉0
(𝑚𝑚+1)and 𝜇𝜇(𝑚𝑚+1), which minimizes 

log(|Σ0|) + 𝐸𝐸𝜃𝜃(𝑚𝑚) ��𝒀𝒀∗ −�𝑿𝑿𝑘𝑘

𝑏𝑏

𝑏𝑏=1

− 𝜇𝜇𝑚𝑚 ⨂1 �

′

∙ Σ0−1 ∙ �𝒀𝒀∗ −�𝑿𝑿𝑘𝑘

𝑏𝑏

𝑏𝑏=1

− 𝜇𝜇 ⨂1 ��𝒀𝒀�

′

 (4.37) 

 

Thus, the new estimate has to satisfy 𝜇𝜇(𝑚𝑚+1) 

𝐸𝐸𝜃𝜃(𝑚𝑚) = �
𝜕𝜕ℎ(𝜇𝜇)
𝜕𝜕𝜇𝜇′

� 𝒀𝒀� = 0 

The EM iterative process can be summarized as follows: 

Initial value 𝜃𝜃0 while 𝑚𝑚 = 0; 

Given  𝜃𝜃𝑚𝑚, calculate 𝜃𝜃𝑚𝑚+1�𝝁𝝁𝑚𝑚+1,𝑽𝑽0𝑚𝑚+1,𝑽𝑽𝑘𝑘𝑚𝑚+1,𝝍𝝍𝑘𝑘
𝑚𝑚+1,𝑏𝑏 = 1, … ,𝑏𝑏� by 

𝜇𝜇𝑚𝑚+1 = 𝜇𝜇𝑚𝑚 + �
1
𝑛𝑛�

𝑽𝑽0𝑚𝑚𝒀𝒀𝑚𝑚𝑎𝑎
𝑚𝑚 ′ 

𝑉𝑉0𝑚𝑚+1 = 𝑽𝑽0𝑚𝑚 + �
1
𝑛𝑛�

𝑽𝑽0𝑚𝑚𝒀𝒀𝑚𝑚𝑎𝑎
𝑚𝑚 ′𝒀𝒀𝑚𝑚𝑎𝑎

𝑚𝑚 𝑽𝑽0𝑚𝑚 − �
1
𝑛𝑛�

𝑽𝑽0𝑚𝑚𝑩𝑩0
𝑚𝑚𝑽𝑽0𝑚𝑚 − �

1
𝑛𝑛�

2

𝑽𝑽0𝑚𝑚𝒀𝒀𝑚𝑚𝑎𝑎
𝑚𝑚 ′𝒀𝒀𝑚𝑚𝑎𝑎

𝑚𝑚 𝑽𝑽0𝑚𝑚 

𝝍𝝍𝑘𝑘
𝑚𝑚+1 = ArgMin(𝑛𝑛 ∙ log|𝑽𝑽𝑘𝑘𝑚𝑚(𝝍𝝍𝑘𝑘)| + 𝑄𝑄 ∙ log| 𝑹𝑹𝑘𝑘(𝝍𝝍𝑘𝑘)|) 

𝑽𝑽𝑘𝑘𝑚𝑚+1 = 𝑽𝑽𝑘𝑘𝑚𝑚�𝝍𝝍𝑘𝑘
(𝑚𝑚+1)� 

where 𝑩𝑩0
𝑚𝑚 is a 𝑄𝑄 ×  𝑄𝑄 matrix whose (𝑃𝑃, 𝑗𝑗)-th element is the trace of Γ𝑖𝑖𝑗𝑗𝑚𝑚 

given the estimate 𝜃𝜃𝑚𝑚 at the at the m-th iteration, Γ𝑚𝑚 is the inverse of the covariance matrix 
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Var(𝒀𝒀) = 𝑽𝑽0𝑚𝑚⨂ I𝑛𝑛 + �𝑽𝑽𝑘𝑘𝑚𝑚
𝑘𝑘

𝑘𝑘=1

⨂𝝍𝝍𝑘𝑘
(𝑚𝑚) 

Γ𝑚𝑚 =  �Γ𝑖𝑖𝑗𝑗𝑚𝑚�𝑖𝑖𝑗𝑗=1
𝑝𝑝

 

were each Γ𝑖𝑖𝑗𝑗𝑚𝑚 is 𝑛𝑛 ×  𝑛𝑛 defines 

𝒀𝒀𝑚𝑚 = Γ𝑚𝑚(𝒀𝒀 − 𝜇𝜇𝑚𝑚 ⨂ I𝑛𝑛) 

 

 𝒀𝒀𝑖𝑖𝑚𝑚 = �𝚪𝚪𝑃𝑃𝑗𝑗𝑚𝑚
𝑘𝑘

𝑗𝑗=1

�𝒀𝒀𝑗𝑗 − 𝜇𝜇𝑗𝑗𝑚𝑚I𝑛𝑛�,         𝑃𝑃 = 1, … , 𝑄𝑄 (4.38) 

 

The iteration of 𝜃𝜃𝑚𝑚+1 strops until ‖𝜃𝜃𝑚𝑚+1 − 𝜃𝜃𝑚𝑚‖2 < 𝛿𝛿 

 

4.2.2 Simplified cross correlation model 

 

A simple and straight forward method to study the tri-variate 𝒄𝒄,𝝋𝝋,𝑭𝑭 spatial variability of the soil 

for the UHB problem is by statistical preconditioning. This method was developed by Shinozuka 

et al.1988. And is very straight forward. It uses a similar orthogonal decomposition of the cross-

correlation matrix to “condition” a set of pseudo independent random variables that are to be used 

with for each single random field estimation.  

 

The method requires all cross correlated fields over the domain to share an identical autocorrelation 

function and the cross-correlation structure between each pair of simulated fields to be simply 

defined by a cross correlation coefficient. Such relations result in specific properties of 

eigenvectors of covariance matrices of discretized field over the domain. 
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the covariance matrix Σ of the random vector {𝑍𝑍(𝑥𝑥1)𝑇𝑇, . . . ,𝑍𝑍(𝑥𝑥𝑛𝑛)𝑇𝑇}𝑇𝑇  ∈  ℝ must be positive 

definite for any positive integer n at any points 𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛  in ℝ . The covariance is often defined 

as a parametric family of functions whose members are proven to be positive definite. 

 

 𝐶𝐶𝑋𝑋𝑋𝑋(𝑋𝑋1,𝑋𝑋𝑖𝑖) = � exp�
‖𝑋𝑋1,𝑋𝑋𝑖𝑖‖
𝑞𝑞𝑖𝑖

�
𝑝𝑝𝑡𝑡𝑝𝑝𝑖𝑖𝑑𝑑𝑖𝑖𝑚𝑚

𝑖𝑖=1

 (4.39) 

 
The covariance matrix of X is, corresponds to the 3 soil variables studied in this chapter, defined 

by 

 

 𝐶𝐶𝑋𝑋𝑋𝑋 = �
var(𝑋𝑋1) cov(𝑋𝑋1,𝑋𝑋2) cov(𝑋𝑋1,𝑋𝑋3)

cov(𝑋𝑋2,𝑋𝑋1) var(𝑋𝑋2) cov(𝑋𝑋2,𝑋𝑋3)
cov(𝑋𝑋3,𝑋𝑋1) cov(𝑋𝑋3,𝑋𝑋2) var(𝑋𝑋3)

� (4.40) 

 

Assuming homogeneity and zero mean of the stochastic field, 𝑃𝑃𝑗𝑗-component of 𝐶𝐶𝑋𝑋𝑋𝑋 is obtained 

from the auto-correlation function 𝑅𝑅𝑋𝑋𝑋𝑋(∙) of the stochastic field as  

 

 

 𝐶𝐶𝑋𝑋𝑋𝑋𝑖𝑖𝑗𝑗 = cov�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� = 𝑅𝑅𝑋𝑋𝑋𝑋�𝜉𝜉𝑖𝑖𝑗𝑗� (4.41) 

 

 

in which 𝜉𝜉𝑖𝑖𝑗𝑗 is a separation vector between two points 𝑃𝑃 and 𝑗𝑗. The eigenvalues and eigenvectors 

of  𝐶𝐶𝑋𝑋𝑋𝑋 can be obtained by solving the following eigenequation: 

 
 𝐶𝐶𝑋𝑋𝑋𝑋Φ𝑋𝑋 = Φ𝑋𝑋Λ𝑋𝑋 (4.42) 
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where Λ𝑋𝑋 is the (diagonal) eigenvalue matrix and Φ𝑋𝑋 is the modal matrix as follows: 

 λ𝑋𝑋 = �
λ1 0 0
0 λ2 0
0 0 λ3

� ;       Φ𝑋𝑋 = [Φ1,Φ2,Φ3] (4.43) 

whereλ𝑖𝑖, is the 𝑃𝑃th eigenvalue of 𝐶𝐶𝑋𝑋𝑋𝑋 such that 

 λ1 ≥ λ2 ≥ λ3 (4.44) 
   

Also Φ𝑖𝑖, is the 𝑃𝑃th eigenvector of 𝐶𝐶𝑋𝑋𝑋𝑋 normalized to have a Euclidean length of 1, and 

orthogonal with Φ𝑗𝑗(𝑃𝑃 ≠ 𝑗𝑗). Therefore 

  Φ𝑋𝑋
𝑇𝑇 Φ𝑋𝑋 = 𝐸𝐸 (4.45) 

 

in which 𝐸𝐸 is identity matrix. Since the covariance matrix 𝐶𝐶𝑋𝑋𝑋𝑋 is symmetric, all the eigenvalues 

and eigenvectors are obtained as real values. If a vector 𝑍𝑍 =  (𝑍𝑍1𝑍𝑍2𝑍𝑍3 )𝑇𝑇 is introduced as  

 𝑍𝑍 =  Φ𝑋𝑋
𝑇𝑇X (4.46) 

Expected value of 𝒁𝒁 is 

 𝐸𝐸(𝑍𝑍) =  Φ𝑋𝑋
𝑇𝑇X (4.47) 

 
Eq. 4.46 implies that if X has zero mean, Z is also zero mean. Utilizing Eq. 4.42 and 4.47, the 
covariance matrix of Z can be shown to be: 
 

 𝐶𝐶𝑍𝑍𝑍𝑍 = 𝐸𝐸{[𝑍𝑍 − 𝐸𝐸(𝑍𝑍)][𝑍𝑍 − 𝐸𝐸(𝑍𝑍)]} = Λ𝑋𝑋 (4.48) 
 

Since 𝐶𝐶𝑍𝑍𝑍𝑍 is found to be a diagonal matrix, 𝑍𝑍𝑖𝑖  (𝑃𝑃 = 1,2, . . . ,𝑛𝑛) are uncorrected, if not independent, 

and their variances are λ𝑖𝑖(𝑃𝑃 = 1,2, … ,𝑛𝑛), respectively. Thus, by generating a set of independent 

random variables 𝒁𝒁, a corresponding set of correlated random variables 𝑿𝑿 can be easily obtained  

 X = � Φ𝑋𝑋
𝑇𝑇�−1𝑍𝑍 = Φ𝑋𝑋𝑍𝑍 (4.49) 
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The modal decomposition method can also be applied to a multivariate stochastic fields problem. 

Consider an 𝒎𝒎-variate random vector 𝑿𝑿 with dimension 𝑛𝑛 ×  𝑚𝑚 as 

 X = {[X1]𝑇𝑇[X2]𝑇𝑇 … [X𝑚𝑚]𝑇𝑇} (4.50) 
   
 X𝑖𝑖 = �X1𝑖𝑖 X2𝑖𝑖 . . . X𝑛𝑛𝑖𝑖 �

𝑇𝑇                    (𝑃𝑃 = 1,2, … ,𝑚𝑚) (4.51) 
 

The covariance matrix of the random vector 𝐗𝐗 is represented by 

 𝐶𝐶𝑋𝑋𝑋𝑋 =

⎣
⎢
⎢
⎡𝐶𝐶𝑋𝑋𝑋𝑋

11 𝐶𝐶𝑋𝑋𝑋𝑋12 ⋯ 𝐶𝐶𝑋𝑋𝑋𝑋1𝑚𝑚

𝐶𝐶𝑋𝑋𝑋𝑋12 𝐶𝐶𝑋𝑋𝑋𝑋11 ⋯ 𝐶𝐶𝑋𝑋𝑋𝑋2𝑚𝑚
⋮

𝐶𝐶𝑋𝑋𝑋𝑋𝑚𝑚1
⋮

𝐶𝐶𝑋𝑋𝑋𝑋𝑚𝑚2  ⋯ ⋮
𝐶𝐶𝑋𝑋𝑋𝑋𝑚𝑚𝑚𝑚⎦

⎥
⎥
⎤
 (4.52) 

 

and each submatrix represents 

 𝐶𝐶𝑋𝑋𝑋𝑋
𝑖𝑖𝑗𝑗 =

⎣
⎢
⎢
⎢
⎡cov�𝑋𝑋1𝑖𝑖 ,𝑋𝑋1

𝑗𝑗� cov�𝑋𝑋1𝑖𝑖 ,𝑋𝑋2
𝑗𝑗� ⋯ cov�𝑋𝑋1𝑖𝑖 ,𝑋𝑋𝑛𝑛

𝑗𝑗�
cov�𝑋𝑋2𝑖𝑖 ,𝑋𝑋1

𝑗𝑗� cov�𝑋𝑋2𝑖𝑖 ,𝑋𝑋2
𝑗𝑗� ⋯ cov�𝑋𝑋2𝑖𝑖 ,𝑋𝑋𝑛𝑛

𝑗𝑗�
⋮

cov�𝑋𝑋𝑛𝑛𝑖𝑖 ,𝑋𝑋1
𝑗𝑗�

⋮
cov�𝑋𝑋𝑛𝑛𝑖𝑖 ,𝑋𝑋2

𝑗𝑗�  ⋯
⋮

cov�𝑋𝑋𝑛𝑛𝑖𝑖 ,𝑋𝑋𝑛𝑛
𝑗𝑗�⎦
⎥
⎥
⎥
⎤

 (4.53) 

 

From a cross-correlation function 𝑅𝑅𝑋𝑋𝑋𝑋
𝑖𝑖𝑗𝑗 (∙)  between the zero-mean random vectors 𝐗𝐗𝑖𝑖 and 𝐗𝐗𝑗𝑗 the 

𝑏𝑏𝑏𝑏-component of the above submatrix is obtained as 

 cov�𝑋𝑋𝑘𝑘𝑖𝑖 ,𝑋𝑋𝑙𝑙
𝑗𝑗� = 𝑅𝑅𝑋𝑋𝑋𝑋

𝑖𝑖𝑗𝑗 �𝜏𝜏𝑖𝑖𝑗𝑗�   (4.54) 
 

where 𝜏𝜏𝑘𝑘𝑙𝑙 is a separation vector between two points 𝑏𝑏 and 𝐸𝐸 with the following characteristics; 

 𝜏𝜏𝑏𝑏𝑏𝑏 = −𝜏𝜏𝑏𝑏𝑏𝑏   (4.55) 
 

The submatrices 𝐶𝐶𝑋𝑋𝑋𝑋
𝑖𝑖𝑗𝑗 = (𝑃𝑃, 𝑗𝑗 = 1,2, . . . ,𝑚𝑚)  are generally not symmetric except when 𝑅𝑅𝑋𝑋𝑋𝑋

𝑖𝑖𝑗𝑗 �𝜏𝜏𝑖𝑖𝑗𝑗� is 

an even function of 𝜏𝜏𝑘𝑘𝑙𝑙. There is a general relationship between a pair of cross-correlation functions 

such as 
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 𝑅𝑅𝑋𝑋𝑋𝑋
𝑖𝑖𝑗𝑗 (𝜏𝜏𝑘𝑘𝑙𝑙) = 𝑅𝑅𝑋𝑋𝑋𝑋

𝑗𝑗𝑖𝑖 (−𝜏𝜏𝑘𝑘𝑙𝑙) (4.56) 
 

 𝑅𝑅𝑋𝑋𝑋𝑋
𝑖𝑖𝑗𝑗 (𝜏𝜏𝑘𝑘𝑙𝑙) = 𝑅𝑅𝑋𝑋𝑋𝑋

𝑗𝑗𝑖𝑖 (𝜏𝜏𝑙𝑙𝑘𝑘) (4.57) 
 

𝐶𝐶𝑋𝑋𝑋𝑋 is always symmetric, regardless of the form assumed for the auto and cross-correlations. From 

Eq. 4.48. A truncated approximation or a complete simulated covariance matrix 𝐶𝐶𝑍𝑍𝑍𝑍∗ of  𝒁𝒁 to 

approach 𝐶𝐶𝑍𝑍𝑍𝑍 can be obtained by  

 𝐶𝐶𝑍𝑍𝑍𝑍∗ =
1
𝑁𝑁𝑆𝑆
�{𝑍𝑍(𝑗𝑗)[𝑍𝑍𝑖𝑖(𝑗𝑗)]𝑻𝑻 − (�̅�𝑍∗)(�̅�𝑍∗)𝑇𝑇}
𝑁𝑁𝑠𝑠

𝑗𝑗=1

 (4.58) 

 

 �̅�𝑍∗ =
1
𝑁𝑁𝑆𝑆
�𝑍𝑍(𝑗𝑗)
𝑁𝑁𝑠𝑠

𝑗𝑗=1

 (4.59) 

 

where 𝑁𝑁𝑠𝑠 is the sample size and 𝑍𝑍(𝑗𝑗) is the 𝑗𝑗th sample vector of 𝑍𝑍 and �̅�𝑍∗is the sample mean vector 

of 𝑍𝑍.  If sample vector 𝑍𝑍(𝑗𝑗) is independent of each other, the estimators evaluated by Eq. 4.58 and 

4.59 approach the covariance matrix and mean vector when 𝑁𝑁𝑆𝑆 → ∞ by the law of large numbers. 

To generate samples of a random vector 𝑍𝑍 of small size, a trigonometric expansion of the vector 

Z can be used. 

 𝑍𝑍𝑖𝑖(𝑗𝑗) = √2𝐶𝐶𝑖𝑖 � cos(𝜔𝜔𝑘𝑘𝑗𝑗Δ𝑡𝑡 + 𝜓𝜓𝑘𝑘)

𝑁𝑁𝑗𝑗

𝑚𝑚=1

      (𝑃𝑃 = 1,2, …𝑛𝑛)        (𝑗𝑗 = 1,2, . .𝑁𝑁𝑠𝑠) (4.60) 

 

with 𝑏𝑏 = (𝑚𝑚 − 1)𝑛𝑛 + 𝑃𝑃, 𝐶𝐶𝑖𝑖 = �λ𝑖𝑖 𝑁𝑁𝑒𝑒⁄ ,  𝑁𝑁𝑒𝑒 is the number of harmonics, 𝜓𝜓𝑘𝑘 a random phase angle 

uniformly distributed from 0 to 2𝑝𝑝, and 𝜔𝜔𝑘𝑘 the frequency.  

 �̅�𝑍∗ =
1
𝑁𝑁𝑆𝑆
�𝑍𝑍(𝑗𝑗)
𝑁𝑁𝑠𝑠

𝑗𝑗=1

 (4.61) 

then, the mean value of the sample is 
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 �̅�𝑍∗ =
√2
𝑁𝑁𝑠𝑠

𝐶𝐶𝑖𝑖 �� cos(𝜔𝜔𝑘𝑘𝑗𝑗Δ𝑡𝑡 + 𝜓𝜓𝑘𝑘)
𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑚𝑚=1

 (4.62) 

 

 
�̅�𝑍∗ =

√2
𝑁𝑁𝑠𝑠

𝐶𝐶𝑖𝑖 ���cos(𝜔𝜔𝑘𝑘𝑗𝑗Δ𝑡𝑡 + 𝜓𝜓𝑘𝑘) + cos �𝜔𝜔𝑘𝑘𝑗𝑗Δ𝑡𝑡 + 𝜓𝜓𝑘𝑘 +
𝑏𝑏
2
𝑝𝑝�

𝑁𝑁/4

𝑗𝑗=1

𝑁𝑁

𝑚𝑚=1

+ cos(𝜔𝜔𝑘𝑘𝑗𝑗Δ𝑡𝑡 + 𝜓𝜓𝑘𝑘 + 𝑏𝑏𝑝𝑝) + cos �𝜔𝜔𝑘𝑘𝑗𝑗Δ𝑡𝑡 + 𝜓𝜓𝑘𝑘 +
3𝑏𝑏
2
𝑝𝑝�� = 0 

(4.63) 

for 𝑏𝑏 = 1,2, … ,𝑛𝑛𝑁𝑁𝑒𝑒 

 𝐶𝐶𝑍𝑍𝑍𝑍𝑖𝑖𝑖𝑖∗ =
1
𝑁𝑁𝑠𝑠
�[𝑍𝑍𝑖𝑖(𝑗𝑗)]2
𝑁𝑁𝑠𝑠

𝑗𝑗=1

=
2
𝑁𝑁𝑠𝑠
𝐶𝐶𝑖𝑖2��� cos(𝜔𝜔𝑘𝑘𝑗𝑗Δ𝑡𝑡 + 𝜓𝜓𝑘𝑘)

𝑁𝑁𝑓𝑓

𝑚𝑚=1

�

2𝑁𝑁𝑠𝑠

𝑗𝑗=1

 (4.64) 

The sample variance 𝐶𝐶𝑍𝑍𝑍𝑍𝑖𝑖𝑖𝑖∗  of 𝑍𝑍𝑖𝑖, is actually λ𝑖𝑖 

 𝐶𝐶𝑍𝑍𝑍𝑍𝑖𝑖𝑖𝑖∗ =
2
𝑁𝑁𝑠𝑠

λ𝑖𝑖
𝑁𝑁𝑒𝑒
�� cos2(𝜔𝜔𝑘𝑘𝑗𝑗Δ𝑡𝑡 + 𝜓𝜓𝑘𝑘)

𝑁𝑁𝑠𝑠

𝑚𝑚=1

𝑁𝑁𝑓𝑓

𝑗𝑗=1

= λ𝑖𝑖 (4.65) 

 

The orthogonal expansion of the harmonic functions is given by 

 � cos(𝜔𝜔𝛼𝛼𝑗𝑗Δ𝑡𝑡 + 𝜓𝜓𝛼𝛼)cos
𝑁𝑁𝑠𝑠

𝑗𝑗=1

�𝜔𝜔𝛽𝛽𝑗𝑗Δ𝑡𝑡 + 𝜓𝜓𝛽𝛽� (4.66) 

 

 � =
𝑁𝑁𝑠𝑠

𝑗𝑗=1

�
1
2
�cos��𝜔𝜔𝛼𝛼 − 𝜔𝜔𝛽𝛽�𝑗𝑗Δ𝑡𝑡 + 𝜓𝜓𝛼𝛼 − 𝜓𝜓𝛽𝛽� + cos��𝜔𝜔𝛼𝛼 − 𝜔𝜔𝛽𝛽�𝑗𝑗Δ𝑡𝑡 + 𝜓𝜓𝛼𝛼 − 𝜓𝜓𝛽𝛽��

𝑁𝑁𝑠𝑠

𝑗𝑗=1

 (4.67) 

 

 � =
𝑁𝑁𝑠𝑠

𝑗𝑗=1

0       if 𝜔𝜔𝛼𝛼 ≠ 𝜔𝜔𝛽𝛽 ,            � =
𝑁𝑁𝑠𝑠 ∙ cos�𝜓𝜓𝛼𝛼 − 𝜓𝜓𝛽𝛽�

2
             if 𝜔𝜔𝛼𝛼 = 𝜔𝜔𝛽𝛽

𝑁𝑁𝑠𝑠

𝑗𝑗=1

 (4.68) 

 

using different set of 𝑁𝑁𝑒𝑒 frequencies for different 𝑍𝑍’s, the sample covariance of  𝑍𝑍𝑖𝑖 and 𝑍𝑍𝑙𝑙 can be 

shown to be  
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 𝐶𝐶𝑍𝑍𝑍𝑍𝑖𝑖𝑙𝑙∗ =
1
𝑁𝑁𝑠𝑠
�𝑍𝑍𝑖𝑖(𝑗𝑗)
𝑁𝑁𝑠𝑠

𝑗𝑗=1

𝑍𝑍𝑙𝑙(𝑗𝑗) = 0      if  𝑃𝑃 ≠ 𝑏𝑏  (4.69) 

 

the orthogonality of cosine functions is also utilized. Eq. 4.63, 4.66 and 4.69 show that the target 

value and covariance matrix of 𝑍𝑍 are exactly reproduced by the sample of size 𝑁𝑁𝑠𝑠 by using Eq. 

4.60 where the sample size is 𝑁𝑁𝑠𝑠 

 
𝑁𝑁𝑠𝑠 =

𝑇𝑇
∆𝑡𝑡

=
4𝑇𝑇1
𝑇𝑇𝑛𝑛𝑁𝑁𝑓𝑓

= 4𝑛𝑛𝑁𝑁𝑒𝑒 
(4.70) 

The 𝑁𝑁𝑠𝑠 represented by Eq. 4.70 may be a large number if the dimension of the random vector 𝑛𝑛 is 

large. It can be approximated in a truncated form by using only the first M modes: 

 𝑋𝑋 ≈ [Φ1Φ2⋯Φ𝑀𝑀][𝑍𝑍1𝑍𝑍2 ⋯𝑍𝑍𝑀𝑀]𝑇𝑇 (4.71) 

   

 
 

𝑁𝑁𝑠𝑠 =
𝑇𝑇
∆𝑡𝑡

=
4𝑇𝑇1

𝑇𝑇𝑁𝑁𝑓𝑓𝑀𝑀/2
= 2𝑀𝑀𝑁𝑁𝑒𝑒 

(4.72) 

 
where 𝑁𝑁𝑒𝑒  must be large if the simulated random vector Z is to be approximately Gaussian. 

Substituting Eq.4.60 into 4.71. 

 

 𝑋𝑋𝑠𝑠(𝑗𝑗) = √2��Φ𝑠𝑠𝑖𝑖

𝑁𝑁𝑓𝑓

𝑚𝑚=1

𝑀𝑀

𝑖𝑖=1

�
λ𝑖𝑖
𝑁𝑁𝑒𝑒

cos(𝜔𝜔𝑘𝑘𝑗𝑗Δ𝑡𝑡 + 𝜓𝜓𝑘𝑘)                (𝐹𝐹 = 1,2, … ,𝑛𝑛) (4.73) 

Φ𝑠𝑠𝑖𝑖 is the s-th component of vector Φ𝑖𝑖. If 𝑀𝑀 ×  𝑁𝑁𝑒𝑒 is large, 𝑋𝑋𝑠𝑠(𝑗𝑗) is asymptotically Gaussian if M 

is sufficiently large. It is noted that the sample mean value is still exactly equal to zero while the 

sample covariances are approximately equal to the target values, even after mode truncation. If the 

stochastic field is homogeneous, the trace of 𝐶𝐶𝑋𝑋𝑋𝑋 represents the sum of the variances of 𝑋𝑋𝑠𝑠(𝑗𝑗).  

The Karhunen–Loéve expansion of a stochastic field H(x,h) is based on the spectral expansion 
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Let 𝐶𝐶 be a square symmetric positive definite, cross correlation matrix of order 𝑁𝑁𝐹𝐹 with elements 

𝐶𝐶𝑖𝑖𝑗𝑗 ∈ (−1; 1) for 𝑃𝑃 ≠ 𝑗𝑗 and 𝐶𝐶𝑖𝑖𝑗𝑗 = 1 for 𝑃𝑃 =  𝑗𝑗. 𝐶𝐶 defines the correlation structure among 𝑁𝑁𝐹𝐹 

random fields. Here, each field is called H, instead of X to identify the simplified method, apart 

from the original formulation []. An approximate spectral representation of matrix 𝐶𝐶 can be 

obtained from its characteristic representation: 

 

 Φ𝐶𝐶 =

Φ1
𝐶𝐶     Φ2

𝐶𝐶    ⋯   Φ𝑁𝑁𝐹𝐹,𝑟𝑟
𝐶𝐶    ⋯    Φ𝑁𝑁𝐹𝐹

𝐶𝐶

⎝

⎜
⎛
𝜙𝜙1,1
𝐶𝐶 𝜙𝜙1,2

𝐶𝐶 ⋯
𝜙𝜙2,1
𝐶𝐶 𝜙𝜙2,2

𝐶𝐶 ⋯
⋮

𝜙𝜙𝑁𝑁𝐹𝐹,1
𝐶𝐶

⋮
𝜙𝜙𝑁𝑁𝐹𝐹,2
𝐶𝐶

⋮
⋯

𝜙𝜙1,𝑁𝑁𝐹𝐹,𝑟𝑟
𝐶𝐶 ⋯ 𝜙𝜙1,𝑁𝑁𝐹𝐹

𝐶𝐶

𝜙𝜙2,𝑁𝑁𝐹𝐹,𝑟𝑟
𝐶𝐶 ⋯ 𝜙𝜙2,𝑁𝑁𝐹𝐹

𝐶𝐶

⋮
𝜙𝜙𝑁𝑁𝐹𝐹,𝑁𝑁𝐹𝐹,𝑟𝑟
𝐶𝐶

⋯
⋯

⋮
𝜙𝜙𝑁𝑁𝐹𝐹,𝑁𝑁𝐹𝐹
𝐶𝐶

⎠

⎟
⎞ (4.74) 

 Λ𝐶𝐶 =
          Φ1

𝐶𝐶 Φ2
𝐶𝐶  ⋯ Φ𝑁𝑁𝐹𝐹,𝑟𝑟

𝐶𝐶   ⋯  Φ𝑁𝑁𝐹𝐹
𝐶𝐶

𝑞𝑞𝑃𝑃𝑄𝑄𝑏𝑏�λ1𝐶𝐶  λ2𝐶𝐶   ⋯  λ𝑁𝑁𝐹𝐹,𝑟𝑟
𝐶𝐶   ⋯  λ𝑁𝑁𝐹𝐹

𝐶𝐶 �
 (4.75) 

 

 �̂�𝐶 = Φ𝐼𝐼
𝐶𝐶Λ𝐼𝐼𝐶𝐶[Φ𝐼𝐼

𝐶𝐶]𝑇𝑇 (4.76) 
 

Block cross correlation matrix D of random variables). Let D be a squared symmetric matrix of 

order 

𝐷𝐷 =

          𝐻𝐻1  𝐻𝐻2  ⋯     𝐻𝐻𝑁𝑁𝐹𝐹,𝑟𝑟 ⋯      𝐻𝐻𝑁𝑁𝐹𝐹
𝐻𝐻1
𝐻𝐻2
⋮

𝐻𝐻𝑁𝑁𝐹𝐹

�
I C1,2I ⋯
⋮ I ⋯
⋮
⋯

⋮
⋯

⋮
⋯

C1,𝑁𝑁𝐹𝐹,𝑟𝑟I ⋯ C1,𝑁𝑁𝐹𝐹I
C2,𝑁𝑁𝐹𝐹,𝑟𝑟I ⋯ C1,𝑁𝑁𝐹𝐹I

⋮
⋯

⋯
⋯

⋮
I

�
 (4.77) 

 

 𝜒𝜒𝐷𝐷 = Φ𝐷𝐷(Λ𝐷𝐷)1/2𝜉𝜉 (4.78) 
 

 𝜒𝜒𝐷𝐷 = { [𝜒𝜒1𝐷𝐷]𝑇𝑇 [𝜒𝜒1𝐷𝐷]𝑇𝑇 ⋯ [𝜒𝜒1𝐷𝐷]𝑇𝑇 }𝑇𝑇 (4.79) 
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 𝐻𝐻𝑖𝑖(𝑥𝑥) = ��λ𝑖𝑖 ∙ 𝜒𝜒𝑖𝑖,𝑗𝑗𝐷𝐷
𝑁𝑁var

𝑗𝑗=1

∙ 𝜓𝜓𝑘𝑘(𝑥𝑥) (4.80) 

 

 𝐻𝐻𝑖𝑖(𝑥𝑥) = �
𝜒𝜒𝑖𝑖,𝑗𝑗𝐷𝐷

𝜆𝜆𝑗𝑗𝑢𝑢
�Φ𝑗𝑗𝑢𝑢�

𝑇𝑇
𝑁𝑁var

𝑗𝑗=1

Σ𝐻𝐻(𝑥𝑥)𝑢𝑢 (4.81) 

 

𝑁𝑁var assembled in this way: matrix D consists of (𝑁𝑁𝐹𝐹 × 𝑁𝑁𝐹𝐹) blocks 𝐶𝐶𝑖𝑖𝑗𝑗  ×  I, where I is the unit 

matrix of order 𝑁𝑁var, and 𝐶𝐶𝑖𝑖𝑗𝑗  are elements of the cross correlation matrix C defined previously 

 

𝐶𝐶𝐻𝐻𝐻𝐻 is symmetric with real λ𝐻𝐻 and Φ𝐻𝐻  

 𝐻𝐻(𝑥𝑥,𝜃𝜃) = �
𝜉𝜉𝑗𝑗(𝜃𝜃)
𝜆𝜆𝑗𝑗𝑢𝑢

�Φ𝑗𝑗𝑢𝑢�
𝑇𝑇

𝑛𝑛

𝑗𝑗=1

Σ𝐻𝐻(𝑥𝑥)𝑢𝑢 (4.82) 

 

 𝐻𝐻�𝑖𝑖(𝑥𝑥) = �
𝜒𝜒𝑖𝑖,𝑗𝑗𝐷𝐷

�𝜆𝜆𝑗𝑗𝑢𝑢
�Φ𝑗𝑗𝑢𝑢�

𝑇𝑇
𝑁𝑁var

𝑗𝑗=1

Σ𝐻𝐻(𝑥𝑥)𝑢𝑢 (4.83) 

Where the error if truncation is applied if given by 

 𝜀𝜀𝐷𝐷 =
∑ λ𝑗𝑗𝐷𝐷
𝑁𝑁𝑟𝑟
𝑗𝑗=1

∑ λ𝑗𝑗𝐷𝐷
𝑁𝑁𝑣𝑣𝑣𝑣𝑟𝑟∙𝑁𝑁𝐹𝐹
𝑗𝑗=1

=
∑ 𝑁𝑁𝑣𝑣𝑎𝑎𝑐𝑐 ∙ λ𝑗𝑗𝐶𝐶
𝑁𝑁𝐹𝐹,𝑟𝑟
𝑗𝑗=1

∑ 𝑁𝑁𝑣𝑣𝑎𝑎𝑐𝑐 ∙ λ𝑗𝑗𝐶𝐶
𝑁𝑁𝐹𝐹
𝑗𝑗=1

=
∑ λ𝑗𝑗𝐶𝐶
𝑁𝑁𝐹𝐹,𝑟𝑟
𝑗𝑗=1

∑ λ𝑗𝑗𝐶𝐶
𝑁𝑁𝐹𝐹
𝑗𝑗=1

= 𝜀𝜀𝐶𝐶 (4.84) 

 

4.2.3 Random Field Model Characterization 

 

The optimal linear estimation method OLE was implemented to perform 1000 random field 

simulations to investigate the effects of tri-variate 𝒄𝒄,𝝋𝝋,𝑭𝑭 spatial variability of the soil. The 

correlation structure was Type I exponential squared. And the soil proprieties described in Table 

4.1. 
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 For a few parametric cases, additional simulations were performed to identify the maximum 

variability between different soil stochastic conditions (i.e., perfect random, perfect homogenous). 

In Figure 7 and 8, 1000 simulations were performed for each soil idealization. One can observe 

the mean response in single solid line in middle. Follow by dash lines that were obtained from 

realizations considering the soil as a perfect random media with zero correlation in all points. Each 

dash line, represent the maximum observed response and for the minimum. 
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Case 
numbe

r 

Imperfction 
 

𝑞𝑞𝑠𝑠 
(kN/m

) 

𝑞𝑞𝑑𝑑 
(kN/m

) 

𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡 
(kN/m

) 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 (kN/m) 
 

FE 
 

𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒[2

] 
Error 

[2]% 
𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 Error

% 
1 38.2 

7.32 6 
15.06 

-
4465 

-4455 -0.21 -4415 -1.17 

2 19.1 
7.32 6 

15.06 
-

2738 
-2708 -1.08 -2751 0.45 

3 9.6 
7.32 6 

15.06 
-

1541 
-1514 -1.69 -1515 -1.30 

4 38.2 
7.32 2 

11.06 
-

3807 
-3728 -2.08 -3688 -3.25 

5 19.1 
7.32 2 

11.06 
-

2252 
-2266 0.65 -2284 1.37 

6 9.6 
7.32 2 

11.06 
-

1249 
-1267 1.49 -1231 -1.02 

7 38.2 
7.32 9 

18.06 
-

4825 
-4948 2.55 -4907 1.63 

8 19.1 
7.32 9 

18.06 
-

3060 
-3008 -1.72 -3069 0.24 

9 9.6 
7.32 9 

18.06 
-

1742 
-1682 -3.46 -1709 -1.54 

10 38.2 
3.05 6 

10.79 
-

3728 
-3676 -1.39 -3636 -2.58 

11 19.1 
3.05 6 

10.79 
-

2202 
-2235 1.47 -2250 2.10 

12 9.6 
3.05 6 

10.79 
-

1224 
-1249 2.09 -1211 -0.67 

13 38.2 
3.05 2 

6.79 
-

2810 
-2814 0.14 -2774 -1.33 

14 19.1 
3.05 2 

6.79 
-

1625 
-1710 5.24 -1698 4.29 

15 9.6 3.05 2 6.79 -895 -956 6.86 -879 -1.37 

16 38.2 
3.05 9 

13.79 
-

4261 
-4235 -0.60 -4195 -1.63 

17 19.1 
3.05 9 

13.79 
-

2579 
-2574 -0.17 -2610 1.12 

18 9.6 
3.05 9 

13.79 
-

1448 
-1440 -0.56 -1429 -0.95 

 

Table 4.1 Comparison of FE and Calculated Values for Effective Force for a pipeline that 

weights 1.741 (kN/m), material grade (448 MPa), D/t ratio (60), diameter (24 inches), and ratio 

between hoop stress and yield strength is (0.6) 
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4.3 Results 
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Figure 4.2  Cross correlation field, strong correlation between 𝛾𝛾, 𝜑𝜑 and 𝑏𝑏 



129 

 

 
 

Fr
ic

tio
n 

A
ng

le
 𝜙𝜙

(d
eg

re
es

) 

 

𝜌𝜌 = 0.6 

So
il 

C
oh

es
io

n 
𝑏𝑏(

Pa
) 

𝜌𝜌 = −0.8 

So
il 

de
ns

ity
 (K

g/
m

3 ) 

𝜌𝜌 = 0.6 

Distance along the Pipeline(m)  
Figure 4.3 Cross correlation field, inverse correlation between 𝛾𝛾 and 𝜑𝜑 
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𝑄𝑄 𝑒𝑒
𝑒𝑒𝑒𝑒

(k
N

) 

 

 
 Temperature increase (° C) 

Figure 4.4 Mean 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Max. and min. values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. Case 1. From Table 4.1 

𝑄𝑄 𝑒𝑒
𝑒𝑒𝑒𝑒

(k
N

) 

 

 
 Temperature increase (° C) 

Figure 4.5 Mean 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Max. and min. values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. Case 2. From Table 4.1 
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𝑄𝑄 𝑒𝑒
𝑒𝑒𝑒𝑒

(k
N

) 
 

 
 Temperature increase (° C) 

Figure 4.6 Mean 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Max. and min. values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. Case 3. From Table 4.1 

𝑄𝑄 𝑒𝑒
𝑒𝑒𝑒𝑒

(k
N

) 

 

 
 Temperature increase (° C) 

Figure 4.7 Mean 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Max. and min. values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. Case 4. From Table 4.1 
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𝑄𝑄 𝑒𝑒
𝑒𝑒𝑒𝑒

(k
N

) 
 

 
 Temperature increase (° C) 

Figure 4.8 Mean 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Max. and min. values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. Case 5. From Table 4.1 

𝑄𝑄 𝑒𝑒
𝑒𝑒𝑒𝑒

(k
N

) 

 

 
 Temperature increase (° C) 

Figure 4.9 Mean 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Max. and min. values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. Case 6. From Table 4.1 
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𝑄𝑄 𝑒𝑒
𝑒𝑒𝑒𝑒

(k
N

) 
 

 
 Temperature increase (° C) 

Figure 4.10 Mean 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Max. and min. values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. Case 7. Table 4.1 

𝑄𝑄 𝑒𝑒
𝑒𝑒𝑒𝑒

(k
N

) 

 

 
 Temperature increase (° C) 

Figure 4.11 Mean 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Max. and min. values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. Case 8. From Table 4.1 
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𝑄𝑄 𝑒𝑒
𝑒𝑒𝑒𝑒

(k
N

) 
 

 
 Temperature increase (° C) 

Figure 4.12 Mean 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Max. and min. values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. Case 9. From Table 4.1 

𝑄𝑄 𝑒𝑒
𝑒𝑒𝑒𝑒

(k
N

) 

 

 
 Temperature increase (° C) 

Figure 4.13 Mean 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Max. and min. values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. Case 10. From Table 4.1 
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𝑄𝑄 𝑒𝑒
𝑒𝑒𝑒𝑒

(k
N

) 
 

 
 Temperature increase (° C) 

Figure 4.14 Mean 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Max. and min. values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. Case 11. From Table 4.1 

𝑄𝑄 𝑒𝑒
𝑒𝑒𝑒𝑒

(k
N

) 

 

 
 Temperature increase (° C) 

Figure 4.15 Mean 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒 vs Max. and min. values of 𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒. Case 12. From Table 4.1 
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4.4 Conclusion 
 

A robust approach to discretize multivariable random fields with valid cross-correlated structures 

is presented. This is method is useful to characterize soil variables with PDF, different than normal 

or lognormal. With correlation structures based on modified Bessel second kind decrement.    

 

This approach is based on the Matérn class of variogram to deal with empirical or measured 

correlation structures. The discretization of the random field is achieved by linear 

coregionalization following loglikelihood approximations of the Bessel function parameters. 

 

A simply correlated random field model was used to investigate the effects of the spatial cross-

correlation properties the soil, as a tri-variate 𝒄𝒄,𝝋𝝋,𝑭𝑭 random field, on the UHB phenomena for 

onshore pipelines. The effects were stablished by variance comparison, between the response of 

single random field soil-pipe FE models. And the corresponding FE model, considering the cross- 

correlation a tri-variate soil. 

 

The effect of simply cross-correlation structure, between soil properties, seems to have marginal 

effects for studied cases. The method used was developed by Shinozuka in 1990, and improved by 

Vořechovský in 2008. The Gaussian simple cross-correlation structure of the field, seems to be of 

marginal relevance, for the cases studied. Assuming the soil properties have lognormal PDF, and 

normal correlation, and correlation structure. The studied cases are representative of a wide range 

of granular soil parameters close to dry condition. Although it is clear that other types of soil may 

be have different cross-correlated structure. 
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5 Reliability of Pressurized Pipelines along Unstable Slopes 

 

Due to constraints in routing options, oil and gas pipelines may be buried on unstable slopes.   The 

natural soil may suddenly become unstable and fail (e.g., rock formation and granular soils) or 

move slowly over time (e.g., tens of millimeters per year).  The slow soil movements are generally 

difficult to mitigate with preventative measures. Further, instability conditions may arise only arise 

after construction. Due to pore-pressure fluctuations, erosion, and stress relief driving the slow 

movements in natural slopes [1].  This susceptibility to slope instability needs to be assessed and 

continually monitored in order to ensure the safety of pipelines.  

 

5.1 Motivation 

 

Pipelines on unstable slopes will be subjected to deformation that may lead to failure; tensile 

rupture at the top of the slope, compressive local buckling or wrinkling at the bottom of the slope. 

Probabilistic analysis of slope stability problems involving limit equilibrium methods have been 

implemented with various statistical approaches [2]. These included, Monte Carlo method, 

estimation methods, First Order or Second Moment (FOSM), also Point Estimation methods such 

as maximum likelihood estimator (MLE) and generalized method of moments. 

 

It has been demonstrated that the soil variability, modeled as point statistics of a material property, 

implies an infinite spatial correlation [3]. Previous studies [3,4] accounted for spatial variation of 

material properties along prescribed failure planes as a function of the correlation distance and 

failure or slip surface length.    
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However, the assessment of pipelines failure due to land slide, considering the soil spatial 

variability is not straightforward. Once the most likely slip surface has been identified in a 

particular slope, one can find that it has little impact on the overall safety of the pipeline in 

comparison with other less likely failure surfaces along the slope that may induce significant forces 

on the pipeline as the soil displacement occurs. Therefore, it is desirable to account for potential 

slip surfaces dependent on the spatial variability of the soil in other to assess the overall pipeline 

safety. A simple procedure to assess the safety of pipelines due to land slide, considering the soil 

spatial variability is presented. The proposed approach relies on Finite Element (FE) Method to 

model the mechanical behavior of a pipeline buried over a natural unstable slope. The 

characteristics of the FE model are obtained from random field simulations to provide more 

realistic modelling of the spatial variation of soil properties and its dependent slip surfaces. The 

FE is characterized for each trial, with a correlation structure for soil properties along the domain. 

For each random field realization, a critical surface is calculated.  

 

It is well known that solid element, three-dimensional finite element analyses (FEA) of pipe-soil 

interaction are time consuming even when used only to calculate deterministically the stress state 

in the pipe for a given soil movement.  Simplified models for evaluating the strain demand in a 

pressurized pipelines that are buried in unstable soil, have been reported extensively in the 

literature [3-6]. Earlier solutions relay on a simplified analytical model, to calculate the maximum 

tensile and compressive strains due to a uniform movement of a block of soil in a direction relative 

to the pipeline. Previous analytical solutions consider; normal plastic flow rule, von Mises yield 

criterion, and isotropic strain hardening to characterize the pipe steel. The pipe-soil friction in most 

analytical models is assumed to have an elastic perfectly plastic force-deformation [5]. More recent 



143 

 

studies, propose a procedure to calculate the probabilities of tensile rupture and the compressive 

local buckling for pressurized pipelines. By means of close-form strain demand expressions, to 

consider the variability of the soil and pipe properties in a simplified manner [6]. A more detailed 

approach is needed to account for the spatial variability of the soil properties on the overall pipeline 

failure probability due to landslide type of soil instability.  

 

The shape of the moving soil mass and its direction with respect to the pipeline are likely to vary 

accordingly to soil random properties. These spatial characteristics are not included in previous 

studies [3-6]. Most close form expressions to assess pipelines are applicable only for shallow soil 

movements with constant shape and direction.  To overcome these limitations, a simplified FE 

models can be used to assess the pipe-soil mechanical behavior [7,8] in which the pipe-soil 

interaction is characterized by the force-displacement elements (FDE) attached to beam pipe 

elements. Then, the stable soil conditions and the spatial characteristics of the soil displacement 

can be model directly on the FE. This is efficient enough to account for realistic cases and also to 

conduct reliability analysis to assess the failure probability of the pipeline.  

 

5.2 Methodology 

 

A simple procedure, presented in this study can be incorporated in a reliability- or reliability-based 

design and assessment (RBDA) for pipelines.  It accounts for tensile and compressive failure 

modes in the failure probability evaluation. This distinction is important because of the 

consequences associated with a tensile rupture, which leads to immediate loss of pressure 

containment, are in general markedly more severe than those associated with a compressive local 



144 

 

buckling, which usually, does not result in immediate loss of pressure containment [2]. Different 

allowable failure probability levels can be applied to these two failure modes to develop 

maintenance strategies that result in optimal use of resources. The tensile and the compressive 

strain capacities are characterized based on the available information in the literature. The spatial 

viability of the soil and the pipe properties is considered by employing techniques of homogenous 

random fields. The proposed procedure can be used to calculate the pipeline failure probabilities 

conditional on a given ground movement magnitude. The failure probabilities can also be 

evaluated as a function of time, if the probabilistic characteristics of the average ground movement 

rate is known. Based on numerical simulation to identify the probability of fail between two 

competing modes (by excessive tension or compression anyway along the pipeline) as function of 

the average displuming of the soil unstable mass. A simple approach can be summarized as 

follows: 

 

Step Characterization 
 

1.-Soil domain Geotechnical parameters statistical properties. 
Correlation structure. 
Cross-field correlation. 
 

2.-Random field Realization For each realization a critical failure surface is 
identified. 
 

3.- FE model Creation of interpolated nodal points in the soil domain 
to accommodate a critical failure surface. 
Soil properties from Step 2. 
Pipeline properties. 
Induced forces; pressure, temperature, self-weight. 
Applied soil displacements 
 

4.- Assessment of probability of 
failure  
 

Probability of failure as function of soil displacement. 

Table 5.10  A simple approach to assess the probability of failure of pipeline due to land slide 
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5.2.1 Soil domain 

 

The procedure in Table 5.1 is easy to implement by adopting ASCE-ALA (2001) equivalent soil 

force-displacement relationships for the FE model approach to overcome the limitations of the 

analytical solutions. Soil properties themselves may be regarded as random variables owing to the 

uncertainties associated with inherent spatial variability and the epistemic uncertainties arising 

from limited number of soil test data.  Additionally, uncertainties inherent to the quality and 

quantity of soil samples, characteristics of the testing device, and the operator’s experience may 

have a significant effect on the measured geotechnical properties. Therefore, it is useful to relate 

the force-displacement relationships to the actual experimental data from the actual site [8], namely; 

the vertical bearing resistance 𝑞𝑞𝑢𝑢, the vertical uplift soil resistance 𝑞𝑞𝑑𝑑 , Figure 5.1 and the ultimate 

axial resistance 𝑄𝑄 Figure 5.2. To account for the soil spatial variability in a simplified manner, one 

can use the Generalized Slice Method and Critical Slip Surface [12,13].   

 

5.2.1.1 Axial soil resistance   

 

The use of an elastic-perfectly plastic model to predict the axial 𝑄𝑄 soil–pipe behavior under large 

axial load has some limitations. The results obtained using the ASCE-ALA (2001) are in good 

agreement with pipe pullout tests for low to medium density sand soils. In dense sand there is an 

underestimation of the soil peak resistance up to 20% [14]. This increase in normal stress is believed 

to be associated with constrained dilation (interlocked soil particles around the pipe, need to move 

around each other or brake before mobilization, generating an apparent dilation in the soil around 

the pile and thus, a peak resistance) during shear deformations. In some soil conditions, such as 
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over consolidated soils, the proposed simplified soil spring relationships, may not reflect the 

presence of a post-peak reduction in shear resistance which is observed in the behavior of soil-pipe 

interfaces [14]. Also, the available methods for modeling soil restraint with soil springs assumes 

that the spring forces always act in the axial, horizontal, and vertical directions relative to the 

pipeline. In most analyses, the direction of the soil spring forces do not maintain an axial, 

horizontal, and vertical orientation relative to the pipeline if the pipeline undergoes large rotations. 

The error introduced by this misalignment is acceptable considering other assumptions and 

uncertainties inherent in the analysis such as those related to the relationships used to compute soil 

spring properties. Therefore, the use of the force-displacement is considered acceptable for the 

present study.  

 

In general, to estimate force displacement relationships in pipe-soil interaction analyses some 

parameters can be assumed as deterministic [15, 16]. CSA 2019 considers that the actual pipe 

diameter (D) has negligible variability and can be considered equal to the nominal diameter.  The 

mean and coefficient of variation (COV) of the actual-over-nominal pipe wall thickness ratio 

equals 1.01 and 1.0%, respectively [16].  It follows that the pipe wall thickness can be considered a 

deterministic quantity equal to the corresponding nominal value.  Another important parameter to 

consider is the pipe-soil friction coefficient, which depends mostly on the nature of the pipe surface 

(roughness, coating type) and the average particle size of the soil. However, it also could have 

small variability once the friction coefficient is obtained from test between the coating and the 

particular soil characteristics [17]. One can find that the pipe burial depth H may varies significantly 

(i.e., settlements, frost upheave, eroded or undermined trenches) along the entire route of the 

pipeline; however, the burial depth of a particular segment along the pipeline may variations of H 
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that are smaller than the construction tolerance. In this study, 𝐻𝐻 is also assumed to be a 

deterministic variable.  

 

Some solutions have been developed to estimate the frictional force per unit length of pipe as an 

elastic perfect-plastic linear spring [17]. In the present study, some assumptions haven been made 

to take advantage of the simplicity of the well accepted ASCE-ALA (2001) [11] expressions to 

perform reliability analysis: 

𝑄𝑄�𝑏𝑏, 𝛾𝛾,� 𝜑𝜑, 𝜀𝜀𝐾𝐾0� = 𝑝𝑝𝐷𝐷𝛼𝛼𝑏𝑏 +  𝑝𝑝 𝐷𝐷 𝐻𝐻 𝛾𝛾 
1 + 𝜀𝜀𝐾𝐾0 ∙ 𝐾𝐾0

2
tan(𝑄𝑄𝑐𝑐𝜑𝜑) (5.63) 

where; c is soil cohesion representative of the soil back field, �̅�𝛾 is the unit weight of soil;  𝜀𝜀𝐾𝐾0 is a 

model error of 𝐾𝐾0, which is coefficient of pressure at rest, 𝜑𝜑 is soil friction angle and 𝑄𝑄𝑐𝑐 is a pipe 

coating dependent factor relating the internal friction angle of the soil to the pipe-soil interface. 

 

 

 
 

Figure 5.29  Axial Force-Displacement Relationship 𝑄𝑄 soil axial friction per unit length,  𝛿𝛿 

soil displacement 
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The model error 𝜀𝜀𝐾𝐾0 has been included to account for uncertainties introduced by the assumptions 

made in estimating 𝐾𝐾0 empirically for different conditions. The characterization of 𝜀𝜀𝐾𝐾0 is possible 

due to previous experimental work.  The measured axial soil loads from full-scale tests performed 

on buried pipes are comparable to those predicted using the equation recommended in commonly 

used guidelines (ASCE 1984, ASCE-ALA 2001) only for loose dry sand conditions [19]. On the 

other hand, the peak axial resistance measured from pullout tests in dense soils was two times 

higher than the predicted values with the ASCE (1984) expression, due to constrained dilation in 

dense sand during interface shear deformations.  

 

The coefficient of earth pressure at rest 𝐾𝐾0 is defined as the horizontal-to-vertical stress ratio in 

Eq. 5.1 and it is applicable for the Mohr–Coulomb yield conditions in cohesion-less soils, loose 

and normally consolidated clays, thus the error 𝜀𝜀𝐾𝐾0 increases in consolidated soils. 

𝐾𝐾0 = (1 − sin𝜑𝜑)
1 + 2

3 sin𝜑𝜑
1 + sin𝜑𝜑

≈ 1 − sin𝜑𝜑 (5.64) 

The error in introduced by the approximation in Eq. 5.65, is negligible [20] but it shows that 𝐾𝐾0 is 

a function of the friction angle 𝜑𝜑 in the model. Other expressions to estimate 𝐾𝐾0[14,18] also account 

for the effective weight of the pipe and the normal pressure distribution along the pipe cross 

section.  In this study, the effective pipe weight considered in the pipe elements, and 𝐾𝐾0 is 

employed as an approximation to consider the average normal stress (𝐾𝐾0 is an average ratio of the 

overburden stress and lateral pressures at rest at the pipe depth). The 𝐾𝐾0 values, back-calculated 

from (ASCE 1984) expressions almost predict the experimental average stress ratio for loose sand 

with friction angle of 𝜑𝜑 = 31°. In the present study, due to the site geotechnical characteristics 

(cohesion, granular, consolidated soil)  𝜀𝜀𝐾𝐾0 is model as a uniform distributed random variable with 
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a linear variable mean, as function of the friction angle 𝜑𝜑, being 1 at 31° up to 2.5 at 45°, based 

on previous experimental work [19,21]. Other sources of uncertainty, different than the former are 

ignored (i.e., reductions of the normal stress in the pipe wall due to pipe wall deformation under 

axial and bending loading combinations). 

 

5.2.1.2 Soil bearing capacity  

  

The ASCE (1984)  𝑄𝑄𝑢𝑢 Fig. 4.1 depends on the bearing capacity factors  𝑞𝑞𝑐𝑐 and 𝑞𝑞𝑏𝑏. This factors 

and the formulation of  𝑄𝑄𝑢𝑢 it self may introduce error in the approximation and the relationship 

with the basic soil parameters is likely to change for different types of soil. Therefore, practical 

solutions to account the variability of 𝑄𝑄𝑢𝑢 may include; recommendation in design codes (DNV-

RP-F110) which provides distribution and moments to characterize 𝑄𝑄𝑢𝑢 as random variable directly 

in marine environment; or the use of empirical factors that have been used to estimate the bearing 

capacity factor from in-situ tests. The former approach was used. 

 

 𝑄𝑄𝑢𝑢 = 𝜀𝜀𝑁𝑁𝑞𝑞 ∙ 𝑁𝑁𝑞𝑞 �̅�𝛾 𝐻𝐻 𝐷𝐷 + 𝜀𝜀𝑁𝑁𝛾𝛾 ∙ 𝑁𝑁𝛾𝛾 𝛾𝛾  
𝐷𝐷2

2
 (5.66) 

 

where; 𝐷𝐷 is the deterministic pipe diameter, 𝐻𝐻 is the deterministic depth to pipe centerline, 𝛾𝛾 is 

bulk unit weight of soil, �̅�𝛾 specific weight of the soil. The bearing capacity factor  𝑁𝑁𝑞𝑞, 𝑁𝑁𝛾𝛾 are given 

by 

 𝑁𝑁𝑞𝑞 = exp�𝑝𝑝 tan(𝜑𝜑)�tan2 �45 +
𝜑𝜑
2
� 

 
(5.67) 

 

 𝑁𝑁𝛾𝛾 = exp(0.18𝜙𝜙 − 2.5) (5.68) 



150 

 

 

 

According to the literature, in some footing analysis with missing reported soil parameters, SPT 

values have been used for estimation to estimate the bearing capacity of the soil [22] to estimate the 

soil friction angles, with SPT or CPT blow counts corrected using the overburden correction [23]. 

It is known that the sensitivity of the bearing capacity factors increases with the change in soil 

friction angle for higher friction angles. These conclusions were obtained from a comprehensive 

database of load tests on closed-ended piles in sand has been reassembled from the original sources 

to examine the relationship between CPT resistance, 𝑞𝑞𝑐𝑐, and base capacity, 𝑞𝑞𝑏𝑏. In contrast to 

continuum analyses that predict 𝑞𝑞𝑏𝑏 = 𝑞𝑞𝑐𝑐 during steady penetration indicating that the influence of 

density and stress level on soil resistance is broadly captured by the use of Bolton’s correlations 

in the limit equilibrium solution. The error involved in this factor is likely to change between 

different soil conditions [24]. Therefore, in the present, the statistics of the CPT reported by Phoon 

 
 

Figure 5.30 Force-displacement diagram for the soil model in the vertical direction; 𝑄𝑄𝑢𝑢 soil 

bearing capacity at the bottom of trench, 𝑞𝑞𝑠𝑠 static soil download, 𝑞𝑞𝑑𝑑 dynamic soil download,  

𝛿𝛿𝑣𝑣𝑠𝑠 static limit displacement and   𝛿𝛿𝑣𝑣  fully mobilized displacement [11] 
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and Kulhawy [25] are used to approximate characterize the ASCE (1984) bearing capacity factor 

𝑄𝑄𝑢𝑢 with the assumption that the variability of 𝑄𝑄𝑢𝑢 is very similar to the variability of the CPT test. 

However, the 𝑄𝑄𝑢𝑢 may also include the error terms for each bearing factor 𝜀𝜀𝑁𝑁𝑞𝑞and 𝜀𝜀𝑁𝑁𝛾𝛾 if enough 

data is available. 

 

5.2.1.3 Uplift soil resistance   

 

Various models have been proposed for the calculation of peak uplift resistance based on the 

mechanisms observed in previous experimental data. All methods assume that tension cannot be 

sustained between the pipe invert and the soil, allowing a gap to open without resistance [26] 

 

There are three possible failure mechanisms due to a pipe upward moment in the soil that depend 

on the soil properties and the 𝐻𝐻/𝐷𝐷 ratio. The reduction in the resistance after the peak phenomenon 

 
 

Figure 5.31  Uplift mechanisms of buried pipes in sand: (a) Problem geometry; (b) sliding 
block with vertical slip surfaces; (c) sliding block with inclined slip surfaces; and (d) flow 

around the pipe [26]    
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is not observed in lose sands [24]. In this study case, it is assumed that the dominant mechanism is 

of type (b) as shown in Fig. 4.3. due the fact the soil in the landslide will keep piling on the lower  

part of the slide and the upper part of the affected pipeline is likely to be dominated by axial tension 

instead, as the sliding soil mass moves down. The force-displacement relationship of the soil is 

upward direction, idealized in Fig.4.2 has a linear dynamic (fully mobilized soil) component 𝑞𝑞𝑑𝑑 

according to the pipe-soil response ASCE-ALA 2001[11] and a linear decrement to account for the 

breakthrough condition that happens once the displacement is equal to the depth of the trench. The 

initial soil resistance or static download reaction 𝑞𝑞𝑠𝑠, is the weight of the soil above the pipe given 

as: 

 𝑞𝑞𝑠𝑠 = 𝛾𝛾𝐻𝐻𝐷𝐷 (5.69) 

 

 𝑞𝑞𝑑𝑑 = 𝑁𝑁𝑐𝑐𝑣𝑣 𝑏𝑏 𝐷𝐷 + 𝑁𝑁𝑞𝑞𝑣𝑣 𝛾𝛾 𝐻𝐻 𝐷𝐷 
 

(5.70) 
 

where: 𝑁𝑁𝑐𝑐𝑣𝑣 vertical uplift factor for clay (0 for 𝑏𝑏 = 0),  𝑏𝑏 backfield soil cohesion (Pa), 𝑁𝑁𝑞𝑞𝑣𝑣 vertical 

uplift factor for sand (0 for 𝜑𝜑 = 0°). 

 𝑁𝑁𝑐𝑐𝑣𝑣 = 2 𝐻𝐻
𝐷𝐷
≤ 10 applicable for 𝐻𝐻

𝐷𝐷
≤ 10 (5.71) 

 
 

 𝑁𝑁𝑞𝑞𝑣𝑣 = 𝜑𝜑𝐻𝐻
44𝐷𝐷

≤ 𝑁𝑁𝑞𝑞 where 𝑁𝑁𝑞𝑞 = exp(𝑝𝑝tan𝜑𝜑)tan2 �45 + 𝜑𝜑
2
� (5.72) 

 
 

A comprehensive finite element study of the breakout resistance of buried anchor plates [27] set the 

formulation for eq 4.7. The soil was assumed to have a Mohr–Coulomb failure criterion, and both 

associated and non-associated flow rules were adopted. Their results, expressed as 𝑁𝑁𝑞𝑞 in the form 

of simple charts, suggest that soil dilatancy can significantly increase the ultimate anchor capacity 

at moderate depth in medium to dense sand. In this study, the deformation mechanism has been 
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observed at a buried depth ratio of  𝐻𝐻
𝐷𝐷

= 13. Then the only possibility is that the failure given by 

the soil flow around the pipe. Also, at this buried depth ratio the volume of the soil corresponding 

to the half of the pipe is not significant. However, if conditions of applicability for the 𝑞𝑞𝑑𝑑 

expression exceeded the value of  𝐻𝐻
𝐷𝐷

. Such a case, will require case-specific geotechnical guidance 

on the magnitude of soil spring force and the relative displacement necessary to develop this force. 

 

At high embedment depths, the failure mechanism has been studied [28] concluding that the depth 

of this transition depends on the dilatancy of the soil. Also, it was found that the uplift resistance 

of smooth pipes compared with rough was consistently lower by 10 – 30%, increasing with 

decreasing embedment [21]. Therefore, the mayor source of uncertainty is introduced by using the 

factor 𝑁𝑁𝑞𝑞𝑣𝑣. One can rearranged the 𝑞𝑞𝑑𝑑 expression to include a normally distributed error 𝜀𝜀𝑁𝑁𝑞𝑞𝑣𝑣 as 

follows: 

𝑞𝑞𝑑𝑑 = 𝜀𝜀𝑁𝑁𝑐𝑐𝑣𝑣 ∙ 𝑁𝑁𝑐𝑐𝑣𝑣 𝑏𝑏 𝐷𝐷 + 𝜀𝜀𝑁𝑁𝑞𝑞𝑣𝑣 ∙ 𝑁𝑁𝑞𝑞𝑣𝑣 𝛾𝛾 𝐻𝐻 𝐷𝐷 
 

(4.8a) 

where the 𝑁𝑁𝑞𝑞𝑣𝑣 expression for the deep embedment ratios can be estimated by the following 

expression [29] For  𝐻𝐻
𝐷𝐷

 < 8  

 𝑁𝑁𝑞𝑞𝑣𝑣 = �
2𝐻𝐻
𝐷𝐷
−
𝐻𝐻𝑒𝑒
𝐷𝐷 � �

𝐻𝐻𝑒𝑒
𝐷𝐷 �

(0.95tan𝜑𝜑) + 1 (5.73) 
 

 

where 𝐻𝐻𝑒𝑒 is the vertical extend of failure surface, given empirically as 𝐻𝐻𝑒𝑒
𝐷𝐷

(𝜑𝜑). The soil 𝜀𝜀𝑁𝑁𝑞𝑞𝑣𝑣 mean 

value of 1.1 with a standard deviation of 0.17. is taken from experimental studies developed by 

White et al. [30]. 𝜀𝜀𝑁𝑁𝑐𝑐𝑣𝑣 is an error correction factor to account for two uncertainties: The correction 

for differences between the undrain shear strength of the natural soil and the actual shear strength 

of the backfill material due to remoulding of the soil (DNV 2007) [32]. And, the suction force 
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opposite to the pipe movement relative to the soil. 𝜀𝜀𝑁𝑁𝑐𝑐𝑣𝑣 appears to introduce the largest amount of 

uncertainty of all correction factors studied (Eq.5.4 and 5.8a), it can easily reduce up-to 40% of 

the cohesive contribution of 𝑞𝑞𝑑𝑑 . Yet, it seems to be highly dependent on variables not included in 

the formulation of force-displacement relationships (e.g., clay lumps average size in the backfield 

material and the pressure-dependent drainage properties of the soil) [31]. Due to the lack of 

statistical data to estimate  𝜀𝜀𝑁𝑁𝑐𝑐𝑣𝑣 a conservative normal distribution with mean of 0.9 and CoV 0.1 

is assumed in this study. A summary of the soil statistical properties is presented: 

The soil Lognormal properties were treated as Gaussian random field by converting into normal 

space; 

 μ(X) = ln(𝜇𝜇)
ln(1 + cov2)

2
 

 
(5.74) 

Soil Property 
 

PDF Mean CoV 

𝜑𝜑  friction angle Lognormal 30˚ 0.3 
𝑏𝑏   cohesion Lognormal 75kPa 0.3 
𝛾𝛾   bulk density 
 
 

Lognormal 18kN/m3 0.2 

𝑄𝑄𝑢𝑢 bearing capacity 
𝜀𝜀𝑁𝑁𝑞𝑞 Normal 1 0.05 
𝜀𝜀𝑁𝑁𝛾𝛾 Normal 1 0.1 

𝑞𝑞𝑑𝑑 dynamic download 
𝜀𝜀𝑁𝑁𝑞𝑞𝑣𝑣  Normal 1.1 0.03 
𝜀𝜀𝑁𝑁𝑐𝑐𝑣𝑣  Normal 0.9 0.1 

 
 
𝐿𝐿ℎ  horizontal scale of fluctuation  

 
 

deterministic 

 
 

50m 

 

𝐿𝐿𝑣𝑣  vertical scale of fluctuation deterministic 5m  
 
 

Cross-Correlation 
 

 
𝑅𝑅𝜑𝜑𝑐𝑐 = 𝑅𝑅𝑐𝑐𝜑𝜑 

 
deterministic 

    
      -0.7 

 

𝑅𝑅𝑐𝑐𝛾𝛾 = 𝑅𝑅𝛾𝛾𝑐𝑐 deterministic 0.7  
𝑅𝑅𝜑𝜑𝛾𝛾 = 𝑅𝑅𝛾𝛾𝜑𝜑 deterministic 0.2  

 
Table 5.11 Soil Statistical properties 
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 σ2(X) =
�ln(1 + cov)

μ(X)
 

 
(5.75) 

 ΣXX = σ2(X)
ln(1 + ρ𝑋𝑋𝑋𝑋 ∙ cov2)

ln(1 + cov2)  

 
(5.76) 

where ΣXX correlation structure in gaussian space and ρ𝑋𝑋𝑋𝑋 the correlation of the soil variables. 

As a general approximation, the geotechnical soil stochastic properties presented in Table 5.2 were 

suggested by Phoon and Kulhawy [25] as only applicable for most common natural soil deposits. 

These soil properties are adopted to investigate the effects of inherent soil spatial variability in the 

assessment of pipelines susceptible to landslides, in a general since. Also, as a practical example 

of how to consider its effects using a simple procedure.  It is proposed to characterize the well 

accepted ASCE-ALA (2001) force-displacement relationships with error correction variables to 

account for the uncertainty involved in the fitting factors, in good agreement with experimental 

data. 

 

The probability distribution of 𝐹𝐹𝑦𝑦/SMYS is provided in CSA 2007, how over this uncertainty is 

not comparable with the magnitude of the uncertainty involved in the geotechnical spatial 

variability. Therefore, the variability of the pipe wall thickness, the ovality imperfections and  

𝐹𝐹𝐹𝐹/SMYS can be ignored in to a good approximation (e.g., less than 5% where the COV of the 

soil properties is about 30%). 

 

5.2.1.4 Correlation structure 

 

In this approach it is assumed, the in-situ data are statistically homogeneous. Thus, constant mean 

and constant standard deviation throughout the soil domain. All domain values are fully 
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characterized from an autocorrelation function independent of location and dependent only on the 

separation, or lag distance, 𝜉𝜉 , (i.e., the correlation between property values at two locations is only 

a function Euclidian norm). 

 𝑅𝑅𝑋𝑋𝑋𝑋(𝜉𝜉1, 𝜉𝜉2) = exp�−��
2𝜉𝜉1
𝐿𝐿ℎ
�

2

+ �
2𝜉𝜉2
𝐿𝐿𝛿𝛿
�

2

� (5.77) 

where 𝐿𝐿ℎ is scale of fluctuation in the horizontal direction. And 𝐿𝐿ℎ is scale of fluctuation in the 

vertical direction. In order to define an admissible cross-correlation matrix between the force-

displacement random fields, all the soil properties are assumed to have the same spatial correlation 

structure along the soil domain. Observation of geological data indicate that this is true in good 

approximation [36]  Then, the scale of fluctuation in the horizontal direction for this particular case 

was 50 m and 5 m in the vertical direction for the three basic random variables (𝜑𝜑, 𝑏𝑏, 𝛾𝛾) is consider 

to be constant. The scales of fluctuation of each soil type in the horizontal direction are larger than 

those in the vertical direction. This means that the soil has more uncertainty in the vertical 

direction. 

 

5.2.1.5 Cross-field correlation 

 

The covariance matrix Σ of the random vector {𝑍𝑍(𝑥𝑥1)𝑇𝑇 , . . . ,𝑍𝑍(𝑥𝑥𝑛𝑛)𝑇𝑇}𝑇𝑇  ∈  ℝ must be positive 

definite for any positive integer n at any points 𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛  in ℝ . The covariance is often defined 

as a parametric family of functions whose members are proven to be positive definite. 

 
 

 𝐶𝐶𝑋𝑋𝑋𝑋(𝑋𝑋1,𝑋𝑋𝑖𝑖) = � exp�
‖𝑋𝑋1,𝑋𝑋𝑖𝑖‖
𝑞𝑞𝑖𝑖

�
𝑝𝑝𝑡𝑡𝑝𝑝𝑖𝑖𝑑𝑑𝑖𝑖𝑚𝑚

𝑖𝑖=1

 (5.78) 
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The covariance matrix of X is, corresponds to the 3 soil variables studied in this chapter, defined 

by 𝑋𝑋1 = 𝜑𝜑, 𝑋𝑋2 = 𝑏𝑏, 𝑋𝑋3 = 𝛾𝛾 

 

 𝐶𝐶𝑋𝑋𝑋𝑋 = �
var(𝑋𝑋1) cov(𝑋𝑋1,𝑋𝑋2) cov(𝑋𝑋1,𝑋𝑋3)

cov(𝑋𝑋2,𝑋𝑋1) var(𝑋𝑋2) cov(𝑋𝑋2,𝑋𝑋3)
cov(𝑋𝑋3,𝑋𝑋1) cov(𝑋𝑋3,𝑋𝑋2) var(𝑋𝑋3)

� (5.79) 

 
Assuming homogeneity and zero mean of the stochastic field, 𝑃𝑃𝑗𝑗-component of 𝐶𝐶𝑋𝑋𝑋𝑋 is obtained 

from the auto-correlation function 𝑅𝑅𝑋𝑋𝑋𝑋(∙) of the stochastic field as  

 

 𝐶𝐶𝑋𝑋𝑋𝑋𝑖𝑖𝑗𝑗 = cov�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗� = 𝑅𝑅𝑋𝑋𝑋𝑋�𝜉𝜉𝑖𝑖𝑗𝑗� 
 

(5.80) 
 

 

5.2.2 Random Field Realizations 

 

The Morgenstern–Price method [37], is commonly used because it can consider noncircular shapes 

of slip surface, satisfying the force and moment equilibrium, uses the Mohr–Columb failure 

criterion and involves the least numerical difficulty in comparison with similar methods (Janbu[38], 

Lowe[39], Spencer[40]). The basic assumption to consider involved in the Morgenstern–Price 

method is that the ratio of normal to shear interslice forces across the sliding mass is represented 

by an interslice force function that is the product of a specified function and an unknown scaling 

factor.  The interslice force and the normal force are defined as total forces acting on each slide 

section of the moving soil mass. They are characterized from the mean value of soil properties at 

each slide. The dominant parameter that can account for the spatial variability of the soil, while 

using Morgenstern–Price method is the mobilized shear resistance 𝑆𝑆𝑖𝑖 as show in Figure 5.3 since 

it depends on the soil properties right at slip surface and the normal force 𝑁𝑁𝑖𝑖. Thus, one can 
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consider the soil parameters along the slipping surfaces with a correlation structure along the soil 

domain to account for the inherent spatial variability of the natural slopes. 

 

The forces in Figure 5.3 are; 𝑊𝑊𝑖𝑖 the self-weight, 𝐸𝐸𝑖𝑖 and 𝐸𝐸𝑖𝑖−1 are normal interslice forces acting at 

𝑧𝑧𝑖𝑖 and 𝑧𝑧𝑖𝑖−1 vertical distances, 𝜆𝜆𝑄𝑄𝑖𝑖𝐸𝐸𝑖𝑖 and 𝜆𝜆𝑄𝑄𝑖𝑖−1𝐸𝐸𝑖𝑖−1 are interslice shear forces(𝜆𝜆𝑄𝑄(𝑥𝑥) is assumed to 

be an scaled function for the ratio between the normal and shear interslice forces),  𝑁𝑁𝑖𝑖 is the vertical 

normal force. 𝑆𝑆𝑖𝑖 is mobilized shear resistance: 

 𝑆𝑆𝑖𝑖 =
𝑁𝑁𝑖𝑖 tanφ𝑖𝑖 + 𝑏𝑏𝑖𝑖𝐿𝐿𝑖𝑖 sec𝛼𝛼𝑖𝑖

𝐹𝐹𝑠𝑠
 (5.81) 

Where: φ𝑖𝑖 friction angle  

 𝑏𝑏𝑖𝑖 soil cohesion 

 𝐹𝐹𝑠𝑠 safety factor 

 

 
(a) (b) 

Figure 5.32 limit equilibrium methods of slices. (a) Sliding soil mass, where; A and B, are 

slinding soil mass boundary points, 𝑃𝑃𝑖𝑖 is interslice force at the 𝑃𝑃th slide,  𝑛𝑛 is the total number 

slides. (b) Typical slice forces, where;  𝛼𝛼𝑖𝑖 is inclination angle, ℎ𝑖𝑖 is height, 𝐿𝐿𝑖𝑖 is width. 
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In the Morgenstern–Price method, the factor of safety 𝐹𝐹𝑠𝑠, is defined as the ratio of the available 

shear strength to the mobilized shear strength. Both, 𝐹𝐹𝑠𝑠 and 𝜆𝜆 are unknow and can be solved 

through optimization [12](The minimization objective is 𝐹𝐹𝑠𝑠 = 1. Constrained to 𝑃𝑃𝑖𝑖 = 0 at A and B, 

the failure surface is bounded by A and B. Subjected to static equilibrium and Mohr-Coulumb 

failure criterion). The slope of interslice force is given by 𝛽𝛽𝑖𝑖 as:  

 tan𝛽𝛽(𝑥𝑥) = 𝑄𝑄0 + 𝜆𝜆 ∙ 𝑄𝑄(𝑥𝑥) (5.82) 
 

Where: 𝛽𝛽(𝑥𝑥) inclination angle of 𝑃𝑃𝑖𝑖 along the Line of thrust 

 𝑄𝑄0 assumed function ℎ(𝐸𝐸) = 𝑄𝑄0,  ℎ(𝐵𝐵) = 𝑄𝑄0 

 𝑄𝑄(𝑥𝑥) assumed function  

 𝜆𝜆 coefficient 

 

Equilibrium conditions are defined with a coordinate (𝑥𝑥,𝐹𝐹) positive from the crown of the slope 

to its toe. Force 𝑃𝑃(𝐹𝐹𝑠𝑠, 𝜆𝜆) = 0 and moment 𝑀𝑀(𝐹𝐹𝑠𝑠, 𝜆𝜆) = 0: 

 𝑃𝑃(𝐹𝐹𝑠𝑠, 𝜆𝜆) = � 𝑄𝑄(𝑥𝑥,𝐹𝐹𝑠𝑠, 𝜆𝜆)
𝐵𝐵

𝐴𝐴
𝐹𝐹(𝑥𝑥,𝐹𝐹𝑠𝑠, 𝜆𝜆)𝑞𝑞𝑥𝑥 = 0 

 

(5.83) 
 

 𝑀𝑀(𝐹𝐹𝑠𝑠, 𝜆𝜆) = � 𝑄𝑄(𝑥𝑥,𝐹𝐹𝑠𝑠, 𝜆𝜆)
𝐵𝐵

𝐴𝐴
𝐹𝐹(𝑥𝑥,𝐹𝐹𝑠𝑠, 𝜆𝜆)𝑡𝑡(𝑥𝑥,𝐹𝐹𝑠𝑠, 𝜆𝜆)𝑞𝑞𝑥𝑥 = 0 (5.84) 

 

 
𝐹𝐹(𝑥𝑥,𝐹𝐹𝑠𝑠, 𝜆𝜆) = sec�

tanφ𝑖𝑖

𝐹𝐹𝑠𝑠
− 𝛼𝛼 + 𝛽𝛽(𝑥𝑥)�

× exp�−� tan�
tanφ𝑖𝑖

𝐹𝐹𝑠𝑠
− 𝛼𝛼 + 𝛽𝛽(𝜁𝜁)� ∙

𝑞𝑞𝛽𝛽(𝜁𝜁)
𝑞𝑞𝜁𝜁

𝑞𝑞𝜁𝜁
𝑥𝑥

𝐴𝐴
� 

(5.85) 
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𝑡𝑡(𝑥𝑥,𝐹𝐹𝑠𝑠, 𝜆𝜆) = � (sin𝛽𝛽(𝜉𝜉) − cos𝛽𝛽(𝜉𝜉) ∙ tan𝛼𝛼)

𝑥𝑥

𝐴𝐴

× exp�−� tan�
tanφ𝑖𝑖

𝐹𝐹𝑠𝑠
− 𝛼𝛼 + 𝛽𝛽(𝜁𝜁)� ∙

𝑞𝑞𝛽𝛽(𝜁𝜁)
𝑞𝑞𝜁𝜁

𝑞𝑞𝜉𝜉
𝜉𝜉

𝐴𝐴
� 

(5.86) 

 

There are different numerical algorithms deal with nonlinearity in constrained optimization 

problems [41-43]. In this study, a concise algorithm for computing the factor of safety using the 

Morgenstern–Price method developed by Chen et al. [18] is adopted. Due to large number of 

computations involved in RBDA framework.  A brief description of the method is presented, 

considering only the self-weight of the soil and its resistance with constant water content for 

simplicity. Considering the force equilibrium of the i-th slice, and resolving perpendicular to the 

slip surface, 

 𝑁𝑁𝑖𝑖 = (𝑊𝑊𝑖𝑖 + 𝜆𝜆𝑄𝑄𝑖𝑖−1𝐸𝐸𝑖𝑖−1 − 𝜆𝜆𝑄𝑄𝑖𝑖𝐸𝐸𝑖𝑖) cos𝛼𝛼 + (𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖−1) sin𝛼𝛼 (5.87a) 
 

resolving parallel to the slip surface, 

 
𝑁𝑁𝑖𝑖 tanφ𝑖𝑖 + 𝑏𝑏𝑖𝑖𝐿𝐿𝑖𝑖 sec𝛼𝛼𝑖𝑖

𝐹𝐹𝑠𝑠
= (𝑊𝑊𝑖𝑖 + 𝜆𝜆𝑄𝑄𝑖𝑖−1𝐸𝐸𝑖𝑖−1 − 𝜆𝜆𝑄𝑄𝑖𝑖𝐸𝐸𝑖𝑖) sin𝛼𝛼−(𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖−1) cos𝛼𝛼 

 

(4.7b) 
 

Substituting Eq. 5.8a into Eq. 5.7b 

 
𝐸𝐸𝑖𝑖[(sin𝛼𝛼 − 𝜆𝜆𝑄𝑄𝑖𝑖 cos𝛼𝛼) tanφ𝑖𝑖 + (cos𝛼𝛼 + 𝜆𝜆𝑄𝑄𝑖𝑖sin𝛼𝛼)𝐹𝐹𝑠𝑠] 

 
= 𝐸𝐸𝑖𝑖−1[(sin𝛼𝛼 − 𝜆𝜆𝑄𝑄𝑖𝑖−1 cos𝛼𝛼) tanφ𝑖𝑖 + (cos𝛼𝛼 + 𝜆𝜆𝑄𝑄𝑖𝑖−1 sin𝛼𝛼)𝐹𝐹𝑠𝑠] + 𝐹𝐹𝑠𝑠 ∙ 𝑇𝑇𝑖𝑖 − 𝑅𝑅𝑖𝑖 

(5.88) 

 

in which 𝑅𝑅𝑖𝑖 is the sum of all shear resistance forces acting on the slices except the normal interslice 

forces and 𝑇𝑇𝑖𝑖 is force causing instability. 

 𝑅𝑅𝑖𝑖 = 𝑊𝑊𝑖𝑖 cos𝛼𝛼 tanφ𝑖𝑖 + 𝑏𝑏𝑖𝑖𝐿𝐿𝑖𝑖 sec𝛼𝛼𝑖𝑖 
 

(5.89a) 
 

 𝑇𝑇𝑖𝑖 = 𝑊𝑊𝑖𝑖 sin𝛼𝛼 
 

(5.9b) 
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Using Eq. 5.9a and 5.9b, and for 𝐹𝐹𝑠𝑠 can be obtained by applying boundary conditions at the points 

A and B, 𝐸𝐸0 = 0, 𝐸𝐸𝑛𝑛 = 0 and rearranging Eq. 5.8 using variable substitution for simplicity, as 

follows: 

 𝐹𝐹𝑠𝑠 =  d   

��𝑅𝑅𝑖𝑖�Ψ𝑗𝑗

𝑛𝑛−1

𝑗𝑗=𝑖𝑖

� +
𝑛𝑛−1

𝑖𝑖=1

𝑅𝑅𝑛𝑛 

  (5.90) 

��𝑇𝑇𝑖𝑖�Ψ𝑗𝑗

𝑛𝑛−1

𝑗𝑗=𝑖𝑖

� +
𝑛𝑛−1

𝑖𝑖=1

𝑇𝑇𝑛𝑛 

recasting Eq. 5.8 on can get; 

 𝐸𝐸𝑖𝑖Φ𝑖𝑖 = Ψ𝑖𝑖−1𝐸𝐸𝑖𝑖−1Φ𝑖𝑖−1 + 𝐹𝐹𝑠𝑠 ∙ 𝑇𝑇𝑖𝑖 − 𝑅𝑅𝑖𝑖 (5.8a) 
where; 

 Ψ𝑖𝑖−1 =
(sin𝛼𝛼𝑖𝑖 − 𝜆𝜆𝑄𝑄𝑖𝑖−1 cos𝛼𝛼𝑖𝑖) tanφ𝑖𝑖 + (cos𝛼𝛼𝑖𝑖 + 𝜆𝜆𝑄𝑄𝑖𝑖−1 ∙ sin𝛼𝛼𝑖𝑖)𝐹𝐹𝑠𝑠

Φ𝑖𝑖−1
 

 

(4.8b) 
 

 
Φ𝑖𝑖−1 = (sin𝛼𝛼𝑖𝑖−1 − 𝜆𝜆𝑄𝑄𝑖𝑖−1 cos𝛼𝛼𝑖𝑖−1) tanφ𝑖𝑖−1 + (cos𝛼𝛼𝑖𝑖−1 + 𝜆𝜆𝑄𝑄𝑖𝑖−1 sin𝛼𝛼𝑖𝑖−1)𝐹𝐹𝑠𝑠 

 
 

(4.8c) 
 
 

 Φ𝑖𝑖 = (sin𝛼𝛼𝑖𝑖 − 𝜆𝜆𝑄𝑄𝑖𝑖 cos𝛼𝛼𝑖𝑖) tanφ𝑖𝑖 + (cos𝛼𝛼𝑖𝑖 + 𝜆𝜆𝑄𝑄𝑖𝑖−1 ∙ sin𝛼𝛼𝑖𝑖)𝐹𝐹𝑠𝑠 (4.8d) 
 

𝐹𝐹𝑠𝑠 is defined in an implicit form in Eq.5.10. An expression for 𝜆𝜆 factor is derived from the moment 

equilibrium of the i-th slice. Taking moments of all the forces acting on the slice about the centre 

of the base: 

 𝐸𝐸𝑖𝑖 �𝑧𝑧𝑖𝑖 −
𝐿𝐿𝑖𝑖 tan𝛼𝛼𝑖𝑖

2 � = 𝐸𝐸𝑖𝑖−1 �𝑧𝑧𝑖𝑖−1 −
𝐿𝐿𝑖𝑖 tan𝛼𝛼𝑖𝑖

2 � −
𝜆𝜆 ∙ 𝐿𝐿𝑖𝑖(𝑄𝑄𝑖𝑖 ∙ 𝐸𝐸𝑖𝑖 + 𝑄𝑄𝑖𝑖−1 ∙ 𝐸𝐸𝑖𝑖−1)

2
 (5.91) 

where; 

 𝑀𝑀𝑖𝑖 = 𝐸𝐸𝑖𝑖 ∙ 𝑧𝑧𝑖𝑖 ,         𝑀𝑀𝑖𝑖−1 = 𝐸𝐸𝑖𝑖−1 ∙ 𝑧𝑧𝑖𝑖−1 (5.92) 
 

 𝑀𝑀𝑖𝑖 = 𝑀𝑀𝑖𝑖−1 −
𝜆𝜆 ∙ 𝐿𝐿𝑖𝑖(𝑄𝑄𝑖𝑖 ∙ 𝐸𝐸𝑖𝑖 + 𝑄𝑄𝑖𝑖−1 ∙ 𝐸𝐸𝑖𝑖−1) + 𝐿𝐿𝑖𝑖(𝐸𝐸𝑖𝑖 + 𝐸𝐸𝑖𝑖−1) tan𝛼𝛼𝑖𝑖

2
 (5.93) 
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Applying boundary conditions at A and B; 𝑀𝑀0 = 𝐸𝐸0 ∙ 𝑧𝑧0 = 0 and 𝑀𝑀𝑛𝑛 = 𝐸𝐸𝑛𝑛 ∙ 𝑧𝑧𝑛𝑛 = 0, the moment 

equilibrium equation is used to form an expression for the scaling factor 𝜆𝜆: 

 𝜆𝜆 =d   

�𝐿𝐿𝑖𝑖(𝐸𝐸𝑖𝑖 + 𝐸𝐸𝑖𝑖−1) tan𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 
  (5.94) 

�𝐿𝐿𝑖𝑖(𝑄𝑄𝑖𝑖 ∙ 𝐸𝐸𝑖𝑖 + 𝑄𝑄𝑖𝑖−1 ∙ 𝐸𝐸𝑖𝑖−1)
𝑛𝑛

𝑖𝑖=1

 

 

𝜇𝜇 and 𝜈𝜈 are smoothness modification exponents for the interslice function  𝑄𝑄(𝑥𝑥). The implication 

of choosing 𝜇𝜇 and 𝜈𝜈 as well as the initial values for 𝐹𝐹𝑠𝑠0 and  𝜆𝜆0 is only number of iterations need 

to reach the convergence tolerance values 𝜀𝜀𝐹𝐹𝑠𝑠 and 𝜀𝜀𝜆𝜆. It must be 0 ≤ 𝜇𝜇 ≤ 0.5 and 0.5 ≤ 𝜈𝜈 ≤ 2. 

 

From Eq. 5.8 the effective transfer of the thrust force from one slice to another requires that: 

 Φ𝑖𝑖 = (sin𝛼𝛼𝑖𝑖 − 𝜆𝜆𝑄𝑄𝑖𝑖 cos𝛼𝛼𝑖𝑖) tanφ𝑖𝑖 + (cos𝛼𝛼𝑖𝑖 + 𝜆𝜆𝑄𝑄𝑖𝑖 ∙ sin𝛼𝛼𝑖𝑖)𝐹𝐹𝑠𝑠 > 0 (5.95) 
 

 𝐹𝐹𝑠𝑠 > −
sin𝛼𝛼𝑖𝑖 − 𝜆𝜆𝑄𝑄𝑖𝑖 cos𝛼𝛼𝑖𝑖

cos𝛼𝛼𝑖𝑖 + 𝜆𝜆𝑄𝑄𝑖𝑖 ∙ sin𝛼𝛼𝑖𝑖
tanφ𝑖𝑖 

 

(5.96) 
 

The expression for is 𝜆𝜆 explicit, but 𝐹𝐹𝑠𝑠 is implicit because the variable 𝐹𝐹𝑠𝑠 appears on both sides. To 

resolve this, a concise iterative method was developed by Chen et al. [18], adopted as follows: 

Step Action 
 

1 Soil mass discretization 

2 Calculate 𝑅𝑅𝑖𝑖 and 𝑇𝑇𝑖𝑖 from Eq. 5.9a and 5.9b 

3 Characterize interslice function  𝑄𝑄(𝑥𝑥) from eq. 5.15 

4 Set initial values of 𝐹𝐹𝑠𝑠 and  𝜆𝜆 that satisfies eq. 5.17, common initial values are: 
𝐹𝐹𝑠𝑠 = 1, 𝜆𝜆 = 0 

 
5 Calculate Φ𝑖𝑖 and Ψ𝑖𝑖−1 from Eq. 5.8d and 5.8b for all slices 

6 Calculate of 𝐹𝐹𝑠𝑠 from Eq. 5.10 
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Values for the geotechnical parameters. φ𝑖𝑖, 𝑏𝑏𝑖𝑖 and 𝑊𝑊𝑖𝑖 are calculated random field realizations.  

Having, Log-normally distributed statistical properties and simulated by orthogonal 

decomposition of the correlation structure, using the Expansion, Optimal Linear Estimation EOLE 

method [45] for all FE domain points and Cokriging or Gaussian regression [46] to interpolate 

intermedial points needed for the continuum form of 𝐹𝐹𝑠𝑠 and 𝜆𝜆 required during the iteration 

described in Table 5.1. 

 𝐻𝐻�(𝑥𝑥) = 𝜇𝜇(𝑥𝑥) + �𝜉𝜉𝑖𝑖√𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖

𝑞𝑞

𝑖𝑖=1

 

 

(5.97) 
 

𝐻𝐻�(𝑥𝑥) represents a matrix containing an EOLE approximation, of all nodal values in the FE domain 

corresponding to soil properties that have a Σ𝑥𝑥𝑥𝑥 spatial correlation structure. 𝜇𝜇(𝑥𝑥) is the mean 

value of the random field. 𝜉𝜉𝑖𝑖 is a vector of independent normal standard random variables.  

𝜃𝜃𝑖𝑖, 𝜙𝜙𝑖𝑖 are Eigenvalues and Eigenvectors of Σ𝑥𝑥𝑥𝑥 𝜙𝜙𝑖𝑖 = 𝜃𝜃𝑖𝑖𝜙𝜙𝑖𝑖. 

 

 𝑋𝑋�1(𝐹𝐹0) = �𝜆𝜆𝑖𝑖𝑋𝑋1(𝐹𝐹𝑖𝑖) + ��𝛼𝛼𝑖𝑖𝑗𝑗𝑄𝑄𝑖𝑖𝑗𝑗

𝑘𝑘

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 

 

(5.98) 
 

7 with the calculated value of 𝐹𝐹𝑠𝑠 and initial value of  𝜆𝜆, repeat step 5 and 6 once more for 
improved values of Φ𝑖𝑖, Ψ𝑖𝑖−1 and 𝐹𝐹𝑠𝑠 
 

8 Calculate 𝐸𝐸𝑖𝑖 from Eq. 5.8a for all slices 

9 Calculate 𝜆𝜆 from Eq. 5.14 

10 with the updated values of 𝐹𝐹𝑠𝑠 and 𝜆𝜆 return to step 3 and proceed to step until the 
difference in values of 𝐹𝐹𝑠𝑠 and 𝜆𝜆 between two consecutive iterations are within 
specified limits of tolerance, 𝜀𝜀𝐹𝐹𝑠𝑠 and 𝜀𝜀𝜆𝜆 
 
 

Table 5.12 Iterative algorithm for calculating 𝐹𝐹𝑠𝑠 and  𝜆𝜆 
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𝑋𝑋�1(𝐹𝐹0) is a cokriging approximation of the principal soil property at an unsampled point 𝐹𝐹0 . 𝜆𝜆𝑖𝑖 is 

scalar variable for 𝑋𝑋1(𝐹𝐹𝑖𝑖) that minimalize the mean square predicting error, obtained by using the 

method of Lagrange multipliers, with unbiased constrains for the principal soil property. 𝛼𝛼𝑖𝑖𝑗𝑗and 

𝑄𝑄𝑖𝑖𝑗𝑗 are the coefficients of basis functions obtained from the secondary soil properties. 

 

 
𝐻𝐻�𝑖𝑖(𝑥𝑥) = �

𝜒𝜒𝑖𝑖,𝑗𝑗𝐷𝐷

�𝜆𝜆𝑗𝑗𝑢𝑢
�Φ𝑗𝑗𝑢𝑢�

𝑇𝑇
𝑁𝑁var

𝑗𝑗=1

Σ𝐻𝐻(𝑥𝑥)𝑢𝑢 

 

(5.99) 
 
 

The cross-correlation structure for the geotechnical parameters ϕ𝑖𝑖, 𝑏𝑏𝑖𝑖 and 𝑊𝑊𝑖𝑖 is given by statistical 

preconditioning with the method proposed by Shinosuka [47] for simulation of multivariate random 

fields. Eq 4.19 uses the notation proposed by Vořechovský [48] for consistency with the use EOLE 

method. 𝐻𝐻�𝑖𝑖(𝑥𝑥) is a matrix containing an EOLE approximation, of all nodal values in the FE domain 

corresponding to the soil i-th property that have a Σ𝐻𝐻(𝑥𝑥)𝑢𝑢 cross-correlation structure.  𝜒𝜒𝑖𝑖,𝑗𝑗𝐷𝐷  is matrix 

containing preconditioned random variables. 𝜆𝜆𝑗𝑗𝑢𝑢 and Φ𝑗𝑗𝑢𝑢 are characteristic values of Σ𝐻𝐻(𝑥𝑥)𝑢𝑢 

 

5.2.3 Finite Element Modelling 

 

The commercial software ABAQUS is employed to carry out the FE model [49]. Force-

displacement relationships are modeled as PSI elements in ABAQUS to represent spring like 

behavior of the axial and vertical soil resistance forces on the pipeline elements. The soil-pipe 

relationship are elastic-perfectly plastic for the axial component of the soil 𝑄𝑄. The vertical soil 

reaction, is model as multilinear elastic to account for the bearing capacity of the soil 𝑄𝑄𝑢𝑢 beneath 

the pipe for downward soil displacements. 



165 

 

 

In the upward direction, the force displacement is multilinear to account for the static download 

force 𝒒𝒒𝒔𝒔, the fully mobilized soil resistance  𝒒𝒒𝒅𝒅 and the breakthrough condition, once the 

displacement is equal to the buried depth of the pipeline. A simple nonlinear spring force–relative 

displacement relationship is defined in ABAQUS to model the soil force-displacement relations 

as shown in Fig. 4.1 and Fig. 4.2. The FE model represents a 30° natural slope 180m long. It 

transitions to a flat terrain with two symmetrical bends. The bends have a radius of 80m, 

transitioning tangent to the slope and the flat terrain. The length of the pipeline at the crown and 

toe sections is 60m Fig. 4.5. The model incorporates one spring at each far end of pipeline to allow 

for the feed-in to the buckling. This was done to model the axial stiffness of the pipeline restrained 

by the soil at the far end condition. Consider 𝑷𝑷 as the total axial force due to internal pressure and 

temperature. At some point, far away from the hill imperfection, there is an axial force 𝑷𝑷𝟎𝟎 that is 

fully constrained by the soil friction per unit length 𝒇𝒇 given a displacement 𝒙𝒙: 

 𝑃𝑃 = 𝑃𝑃0 − 𝑄𝑄 ∙ 𝑥𝑥 (5.100) 
the axial stain in the pipe is 
 

 𝜀𝜀𝑥𝑥 =
𝑃𝑃0 − 𝑃𝑃
𝐸𝐸𝐸𝐸

=
𝑄𝑄 ∙ 𝑥𝑥
𝐸𝐸𝐸𝐸

 (5.101) 

 
A force-displacement is given by Eq. 1.17, at the end of the feed-in, as function of P as the total 

axial force due to internal pressure and temperature,  𝐸𝐸 steel young modulus, 𝐸𝐸 cross-section area 

of the pipe and the soil friction per unit length 𝑄𝑄; 

Δ0 = � 𝜀𝜀𝑥𝑥
0

𝐿𝐿𝑠𝑠
𝑞𝑞𝑥𝑥 = �

𝑄𝑄 ∙ 𝑥𝑥
𝐸𝐸𝐸𝐸

0

𝐿𝐿𝑠𝑠
𝑞𝑞𝑥𝑥 
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where Δ0 is the axial displacement at the end of the feed-in, and 𝐿𝐿𝑠𝑠 is between the end of the 

model and where the virtual anchor occurs and  𝑃𝑃𝑀𝑀 is the axial force at the FE model. 

 

Δ0 =
𝑄𝑄 ∙ 𝐿𝐿𝑠𝑠2

2𝐸𝐸𝐸𝐸
 

𝐿𝐿𝑠𝑠 =
𝑃𝑃0 − 𝑃𝑃𝑀𝑀

𝑄𝑄
 

 

 Δ0 =
(𝑃𝑃0 − 𝑃𝑃𝑀𝑀)2

2𝐸𝐸𝐸𝐸 ∙ 𝑄𝑄
=

Δ𝑃𝑃2

2𝐸𝐸𝐸𝐸 ∙ 𝑄𝑄
 (5.102) 

 

 

 

5.2.3.1 Creation of interpolated nodal points 

 

A uniform domain discretization of 0.25m square is perform to identify the critical slip surface by 

means of The Morgenstern–Price method [33]. The iterative processes required to resolve the 

 
Figure 5.33 FE model; 𝜃𝜃 = 30°,bending radius is 80m, Slope is 180m long, Toe and Crown 

are 60m long. 
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optimization problem yields successive approximations to the coordinates of the critical slip 

surface. These coordinates can have values outside the discrete points, previously charactered in 

the random field realization. Therefore, new values are obtained from gaussian interpolation. Once 

the iteration has converged, only the field values along the pipeline are needed to characterize the 

FE model. Additionally, a master node coordinates are taken from as the center of mass of each 

soil slice from the last step in the Morgenstern–Price method.  Then, the geometry of the FE model 

is fully defined. The FE model is defined by the points along the pipeline. The points of the soil 

profile and the coordinates of the master nodes. PSI elements are connected from the pipe nodes 

to the soil profile, representing the force-displacement reaction of the soil on the pipes. Based on 

the scale of fluctuation, a cost-effective multi-resolution discretization of the random field could 

be made; first, from the deterministic FE results the less relevant regions in the domain can be also 

treated as determinist (i.e., the strains deformations in the pipeline 40m away from the sliding soil 

are less than 10 micro strains for the maximum imposed displacement in this analysis). Yet the 

constant resolution was adopted to ensure the statistical properties of field are homogenous to 

estimate the critical slip surface with the Morgenstern–Price method. 

 

The soil profile nodes are fixed, except for the nodes inside the region corresponding to soil 

moving mass. The soil prolife nodes inside the moving soil mass are bound to the corresponding 

master node in each slice defined as last step in the Morgenstern–Price method.  

 

Incremental, linear displacements 𝐹𝐹 and rotations 𝑟𝑟 are imposed to the master nodes. The linear 

increment is constant among all the soil slices. The rotation, is corresponding to linear 

displacement 𝑟𝑟 = tan−1 � 𝑠𝑠
0.5 ℎ

�, h being the height of each soil slice. A cumulative density function 
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(CDF) is latter constructed from the result of a series of FE analysis increasing the magnitude of 

the imposed displacements. 

 

 

 

5.2.3.2 Pipeline properties 

 

Pipe elements are model as Timoshenko beams. The pipeline was discretized by displacement-

based beam elements in ABAQUS with a pipe cross-section. The selection of conventional 

displacement elements was made because of the large number of beam elements needed to model 

the soil reaction as distributed loads along the pipeline. A common steel grade is studied, X65, to 

model the effects of the yield strength. The Ramberg-Osgood stress-strain relationship, Eq. 4.41, 

is assumed to model the elastic and plastic responses. The yield strength is assumed to equal the 

specified minimum yield strength (SMYS) of the steel grade, 359 MPa. The hardening was 

characterized by modifying the plastic curve of the X65 steel. As show on Table 5.2.  

 𝜀𝜀 =
𝜎𝜎
𝐸𝐸

+
𝛼𝛼𝜎𝜎𝑦𝑦
𝐸𝐸

�
𝜎𝜎
𝜎𝜎𝑦𝑦
�
𝑛𝑛

 

 

 
(5.103) 

 

 
Figure 5.34 Master node, pipeline and soil profile. Direction of imposed displacements. 
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Ramberg-Osgood stress-strain relationship; 𝜀𝜀 is strain, 𝜎𝜎 is stress, 𝐸𝐸 is the steel elastic modulus, 

𝜎𝜎𝑦𝑦 is the yield strength, 𝛼𝛼 and 𝑛𝑛 are Ramberg-Osgood parameters to characterize hardening 

behavior. 

 

Grade Hardening 𝜎𝜎𝑦𝑦 𝜎𝜎el E Ramberg-Osgood parameters 

  (MPa) (MPa) (MPa) 𝛼𝛼 𝑛𝑛 

X65 Good 448 380.8 205,000 1.29 22.5 
 

Table 5.13 Material Data and Ramberg-Osgood Parameters. 𝜎𝜎el is the elastic limit. 
 

5.2.3.3 Induced forces 

 

The impact of the internal pressure is model as an equivalent section force using PIPE21 providing 

uniform radial expansion of the cross-section caused by internal pressure in ABAQUS. The 

temperature differential is introduced as a body force in the beam elements. The steel plasticity 

model is model from the Ramberg-Osgood relationship, detailed on Table 5.6.  The external loads 

on the pipeline are applied in three step load cases: In Step 1, the self-weight of pipe; In Step 2, 

the internal pressure is applied as a distributed load along the pipeline. The corresponding 

equilibrium load at the far end, is applied as the same rate, as a fully constrain condition (axial 

loading applied at both ends of the pipeline); In Step 3, the thermal expansion is applied 

incrementally as a body force on the pipe elements. A constraining thermal axial load is applied at 

the far ends, at the same rate as the thermal expansion. The increments are 0.5°C up to the final 

load, corresponding to a differential of 80 °C. The induced axial forces are given by: 

 



170 

 

 
𝑄𝑄 = 𝑄𝑄𝑇𝑇 + 𝑄𝑄𝑃𝑃 

 

(5.104) 

 

 
𝑄𝑄𝑇𝑇 = 𝐸𝐸𝛼𝛼𝑇𝑇(𝑇𝑇2 − 𝑇𝑇1)𝑝𝑝(𝐷𝐷 − 𝑡𝑡)𝑡𝑡 

 

(5.105) 

 

 
𝑄𝑄𝑃𝑃 = �1 −

2𝜈𝜈(𝐷𝐷 − 𝑡𝑡)
(𝐷𝐷 − 2𝑡𝑡)

�
𝑝𝑝(𝐷𝐷 − 2𝑡𝑡)2

4
𝑃𝑃 

 

(5.106) 

 

where; 𝑄𝑄𝑇𝑇 temperature force, 𝑄𝑄𝑃𝑃 pressure induced force, 𝐸𝐸 Young’s modulus, 𝛼𝛼𝑇𝑇 thermal 

expansion coefficient for steel (11.7 × 10−6 °C), 𝑇𝑇2 operating temperature, 𝑇𝑇1 tie-in temperature, 

𝐷𝐷 pipe outside diameter, 𝑡𝑡 wall thickness, 𝜈𝜈 Poisson’s ratio and 𝑃𝑃 operating pressure. 

 

After the loading cases are applied the induced displacement are applied at increment of 𝐹𝐹 50mm, 

with an initial displacement of 150mm. Each displacement increment is performed in 1000 random 

realizations (i.e., 1000 FE models with particular soil properties that account, for the spatial 

variability and cross-correlation of the soil parameters𝜑𝜑, 𝑏𝑏 and 𝛾𝛾. Considering its characteristic 

slip surface) To develop a CDF based on the tensile rupture, or compressive wrinkling anywhere 

along the pipeline as function of the expected displacement increment. This procedure can be 

extended easily is there is information about the expected soil displaces as function of time. 

 

 

 
Figure 5.35 Idelization of FE model with soil-pipe, force displacement relationships 
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5.2.4 Assessment of probability of failure 

 

Two limit state functions were established involving the tensile/compressive strain capacities of 

the pipeline with the tensile/compressive strain demand imposed by the unstable slope. The tensile 

and compressive strain capacities of the pipeline are evaluated based on the information in the 

literature (references), and the maximum tensile and compressive strains in the pipeline induced 

by the unstable slope are employed to formulate the limit state functions: 

 
𝑏𝑏1 = 𝜀𝜀𝑡𝑡 −  𝜀𝜀𝑡𝑡 𝑚𝑚𝑣𝑣𝑚𝑚 

 
 

(5.107) 
 
 

 𝑏𝑏2 = 𝜀𝜀𝑝𝑝 − � 𝜀𝜀𝑐𝑐 𝑚𝑚𝑣𝑣𝑚𝑚� (5.108) 
 

where 𝜀𝜀𝑝𝑝 is the compressive strain capacity (as defined in DNV-OS-F101 [33]); 𝜀𝜀𝑡𝑡 is the tensile 

strain capacity, which is assumed to be the tensile strain capacity for simplicity; 𝜀𝜀𝑡𝑡 𝑚𝑚𝑣𝑣𝑚𝑚 and 𝜀𝜀𝑐𝑐 𝑚𝑚𝑣𝑣𝑚𝑚 

are the maximum tensile and compressive strains induced by the moving soil. 

 𝜀𝜀𝑝𝑝 = 0.78 �
𝑡𝑡2
𝐷𝐷
− 0.01� �1 + 5

𝜎𝜎ℎ
𝑄𝑄𝑦𝑦
�𝛼𝛼ℎ−1.5𝛼𝛼𝑔𝑔𝑝𝑝 

 

 
(5.109) 

 
 

where; 𝑡𝑡2 corroded wall thickness (taken as the nominal wall thickness), 𝐷𝐷 nominal outside 

diameter, 𝜎𝜎ℎ hoop stress, 𝑄𝑄𝑦𝑦 yield strength (reduced by a factor of 0.96), 𝛼𝛼ℎ maximum allowed 

yield to tensile ratio (assumed to be 0.90), 𝛼𝛼𝑔𝑔𝑝𝑝 girth weld factor (taken as 0.60 for D/t = 60) 

 

Girth welds are considered as a weak part of the pipeline since girth weld cracking is one of the 

main causes of gas pipeline of accidents. Considerable research efforts have been focused on crack 

assessment using strain-based crack-tip opening displacement (CTOD), J-integral and simplified 

or reference engineering solutions [34,35] to estimate the total axial strain which could lead to girth 
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weld fracture.  The tensile strain capacity 𝜀𝜀𝑡𝑡 depends on the residual stresses from, laying and 

construction, crack or imperfection geometry, girth weld and pipe material properties. For 

simplicity and applicability to older pipelines, which may have been constructed with less rigorous 

quality control procedures, a tensile strain limit of 0.5% is considered as a broad limit in this study. 

 

5.3  Numerical example  

 

An idealized steel pipeline of 19 in. diameter for transport natural gas of is buried 2 m in a natural 

slope 180 m long Fig. 4.5. The slope inclination is 𝜃𝜃 = 30°. The transition from the slope to the 

flat terrain is made with two identical cold formed bends of 80m radius. Toe and Crown are 60m 

long in the horizontal direction. The material grade is X65 with Good hardening properties as show 

in Table 5.4. The soil mobilization displacement is 20mm, the soil statistical properties are detailed 

in Table 5.2.  

 

In this case, the possibility that the soil mass is moving along the pipeline in a deep-seated slip is 

studied. The length along the pipe axis of this mass is between 30 and 120 meters, measured along 

the inclined slope. Whereas  the critical slip failure surface varies for each random field realization. 

The case study shows that the soil movements in a slope can be quite complex. To derive analytical 

solutions from soil–pipeline interaction, however, one can assume some idealized ground 

movement patterns in the slopes. In this case, a linear displacement parallel to the slip surface and 

the corresponding angular rotations are applied to each soil slide. The width of the slices used in 

the generalized method of slices is 3m.  
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In the FE analysis, the pipeline is model with PIPE21, each being 0.25m in length. The force- 

displacement interaction is model with PSI elements, from the pipe to the soil profile. R2D2 rigid 

link elements were used to impose the soil displacements from at the master nodes.     

 

The soil force-displacement presented in Table 5.2. where evaluated for each random field 

realization. A total of 1000 realizations were performed of each displacement increment. To 

construct a CDF dependent on the expected average displacement.  

 

Tensile strain capacity of the pipe is assumed to have a Lognormal distribution with a mean value 

of 5% and CoV of 0.12. Th compressive strain capacity is Lognormal with a mean value given by 

eq 4.47 with a CoV of 0.3.  

 

For an imposed deformation of 400 mm the maximum strain in compression in the pipe line the 

FE deterministic value was 485 microstrains and in tension was 578 microstrains.  

 
Figure 5.36 Failure surface bounds from geotechnical survey 30≤ Failure length ≤90 
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5.4 Conclusion 
 

A strain-based procedure for evaluating the failure probability of pressurised pipelines subjected 

to longitudinal ground movement imposed by unstable slopes is presented. Two failure modes are 

considered, namely tensile rupture and compressive local buckling. The strain demand is 

calculated using analytical and FE models, which accounts for the elastic–plastic behaviour of the 

pipe under internal pressure and temperature as well as the behaviour of the pipe–soil force-

displacement in the vertical and axial directions. The compressive strain capacity is evaluated 

using a model DNV-OS-F101 2007, whereas a representative deterministic tensile a conservative 

strain limit capacity is assumed.  

 

 
 

Figure 5.37 Failure probability for an increasing soil displacement 
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The spatial variability of the soil is taken into account in a simplified manner. The soil pipe 

properties are assumed to have a Gaussian correlation structure and a simple cross-correlation by 

an exponential function.  A difference between competing probabilities of tensile and compressive 

failures is given for a particular pipeline as a practical numeric example. 

 

A procedure to consider the soil variability impact on the failure probability of pressurized 

pipelines subjected to a 2D soil movement was presented. From the deterministic FE model, a 

considerable difference between theoretical formulation and the numerical solution was found. 

That could be due the fact that in the theoretical formulations the geometry of the pipe at the toe 

of the slope is not considered. Furthermore, it seems that some uplift soil resistance was assumed 

equal to the bearing capacity of the soil in the theoretical study case without any consideration 

about the embedment ratio. Yet the FE based reliability analysis remain conservative because the 

pipe wall may withstand significant deformation after the yielding point in tension or compression 

before rupture. 

 

Strain concentration induced by the deformation of the pipe due to the initial geometry and extend 

of the failure surface are taken into consideration in the FE analysis. For a given pipeline, the 

failure probabilities conditional on a given ground movement magnitude (i.e. sliding magnitude) 

can be evaluated. The failure probabilities can be alternatively expressed as a function of time, if 

the probabilistic characterization of the average ground movement per unit time is known. The 

methodology can be incorporated in a reliability- or risk-based pipeline integrity management 

program to facilitate the maintenance decision-making regarding pipelines buried in unstable 

slopes. The analysis results suggest that the FE based approach have some practical advantages 
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over the theoretical based solutions (the possibility to account for more realistic geometry). It 

seems that is similar cases the spatial variability of the soil ultimate resistance tends to decrease 

the failure probability, because the tensile and the compressive strains at the stable-moving soil 

interface is governed by the relatively weaker soil on either side of the interface. 

 

The proposed procedure to estimate the pipe failure probability for a given imposed displacement 

can be easy extended to a variety of problems involvement additional external forces to the slope 

stability problem (e.g., seismic and water pressure) by adding to the lateral force equilibrium 

equations to identify the critical surface for the pipe-soil interaction reliability analysis due to 

landslides.   
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6 Summary and Conclusions 

 

Upheaval Buckling considering soil spatial variability 

 

The effects of the spatial variability of the soil friction angle on the UHB for onshore pipelines 

laydown over hill-type imperfections, have been investigated. The soil is characterized from 

common stochastic characteristics of natural deposits presented by Phoon [38]. The soil properties 

include the correlation length and exponential correlation structure. The expansion optimal linear 

estimation (EOLE) method proposed by Li and Der Kiureghian [28] is adopted to model the random 

field.  For comparison, the friction angle is also assumed to be represented by a single random 

variable (i.e., a random field with an infinitely long correlation length), and a random field with 

independent, identically distributed (iid) random variables at every node (i.e., a random field with 

a zero-correlation length).   

 

Steel pipes are model following the Ramberg-Osgood stress-strain relationship as Timoshenko 

beams in FE analysis. For simplicity, the residual stresses at the cold-formed bends are ignored. 

Equivalent force-displacement relationships are used to model the pipe-soil interaction according 

to Oil and Gas Pipeline System (CSA-2019) [14]. The acting forces; self-weight, internal pressure, 

and temperature are model as deterministic quantities. 

 

Selected analysis cases were performed to investigate the effects of the correlation length, 

influence of the correlation function and the inherent variability of common geotechnical 

properties [38]. The variability of the critical UHB load is measured by means of numerical 
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simulation. The scope of the parametric analysis includes 252 parametric cases. The studied 

parameters are: pipe diameter, steel grade, imperfection size, operating internal pressure and soil. 

A result matrix was formed to fit an empirical equation to estimate the critical UHB load. Weak 

soil and strong granular soil conditions are considered. The variability of the friction angle has 

more relevance for pipelines with strong downward soil load, dominated by the static component. 

The dynamic component is less sensitive to the variability of the soil friction angle.  

 

The spatial variability of the friction angle is significant for pipelines over narrow hill-type 

imperfections and less significant for smooth imperfection. This is applicable for all the 

imperfection types consider in the parametric analysis.  

 

The correlation structure type has a marginal impact in the study cases. The type of correlation 

studied were bounded by the most rapid decrement as Triangular type and the slowest as a Bessel 

Second kind. This encompasses a wide range of possible correlation structures. Given the 

magnitude of the studied correlation length. The influence of the decrement in correlation as 

function of distance between random field FE points is relevant for soil correlation length similar 

or smaller than the imperfection size. The correlation length has some relevance if it less in 

magnitude in comparison with the total length of the hill type imperfection. It has marginal effects 

otherwise.  

 

The most dominant deterministic parameters in the UHB problem were identified in order of 

relevance: the imperfection shape, the soil download force, the soil axial force and the pipeline 

mechanical properties. The dominant stochastic parameters of the friction angle, governing the 
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UHB variability are; variability of the soil, correlation and correlation structure. The inherent soil 

variability being the dominant source of uncertainty. 

 

Ignoring the effects of the soil spatial of the soil friction angle may lead to overly conservative 

conclusions in the assessment of UHB for onshore pipelines by up to one order of magnitude in 

comparison to single random variable stochastic models.  

 

Empirical equation for critical UHB force 

 

The resulting empirical expression for the critical upheaval buckling force has a maximum 

absolute error less than 5% with respect to the deterministic FE parametric analysis. This 

represents a 50% increase accuracy with respect to similar equations [2]. The proposed empirical 

equations yield conservative values to asses the variability of the critical buckling for all applicable 

cases. A pair of conservative variance reduction factors for the critical UHB empirical equation is 

proposed to account for the effects of the soil spatial variability in the upheaval buckling problem.  

 

Cross-correlated random field 

 

A robust approach to discretize multivariable random fields with valid cross-correlated structures 

is presented. This is method is useful to characterize soil variables with probability distributions 

that are different from the normal or lognormal distribution. With correlation structures based on 

modified Bessel second kind decrement. This approach is based on the Matérn class of variogram 

to deal with empirical or measured correlation structures. The discretization of the random field is 
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achieved by linear coregionalization following loglikelihood approximations of the Bessel 

function parameters. A simply correlated random field model was used to investigate the effects 

of the spatial cross-correlation properties the soil, as a tri-variate 𝒄𝒄,𝝋𝝋,𝑭𝑭 random field, on the UHB 

phenomena for onshore pipelines. The effects were stablished by variance comparison, between 

the response of single random field soil-pipe FE models. And the corresponding FE model, 

considering the cross- correlation a tri-variate soil. 

 

The effect of simply cross-correlation structure, between soil properties, seems to have marginal 

effects for studied cases. The Gaussian simple cross-correlation structure of the field, seems to be 

of marginal relevance, for the cases studied. Assuming the soil properties have lognormal PDF, 

and normal correlation, and correlation structure. The studied cases are representative of a wide 

range of granular soil parameters close to dry condition. Although it is clear that other types of soil 

may be have different cross-correlated structure. The spatial variability of the soil is taken into 

account in a simplified manner. The soil pipe properties are assumed to have a Gaussian correlation 

structure and a simple cross-correlation by an exponential function.  The difference between 

competing probabilities of tensile and compressive failures is given for a particular pipeline as a 

practical numeric example. 

 

Pipelines along Unstable Slopes 

 

A procedure to consider the soil variability impact on the failure probability of pressurized 

pipelines subjected to a two-dimensional soil movement is presented. From the deterministic FE 

model, a considerable difference between theoretical formulation and the numerical solution was 
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found. That could be due the fact that in the theoretical formulations the geometry of the pipe at 

the toe of the slope is not considered. Furthermore, it seems that some uplift soil resistance was 

assumed equal to the bearing capacity of the soil in the theoretical study case without any 

consideration about the embedment ratio. Yet the FE based reliability analysis remains 

conservative because the pipe wall may withstand significant deformation after the yielding point 

in tension or compression before rupture. 

 

Strain concentration induced by the deformation of the pipe due to the initial geometry and extend 

of the failure surface are taken into consideration in the FE analysis. For a given pipeline, the 

failure probabilities conditional on a given ground movement magnitude (i.e. sliding magnitude) 

can be evaluated. The failure probabilities can be alternatively expressed as a function of time, if 

the probabilistic characterization of the average ground movement per unit time is known. The 

methodology can be incorporated in a reliability- or risk-based pipeline integrity management 

program to facilitate the maintenance decision-making regarding pipelines buried in unstable 

slopes. The analysis results suggest that the FE based approach have some practical advantages 

over the theoretical based solutions (the possibility to account for more realistic geometry). It 

seems that the spatial variability of the soil ultimate resistance tends to decrease the failure 

probability, because the tensile and the compressive strains at the stable-moving soil interface is 

governed by the relatively weaker soil on either side of the interface. The proposed procedure to 

estimate the pipe failure probability for a given imposed displacement can be easily extended to a 

variety of problems involvement additional external forces to the slope stability problem (e.g., 

seismic and water pressure) by adding to the lateral force equilibrium equations to identify the 

critical surface for the pipe-soil interaction reliability analysis due to landslides.  
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Recommendations for future research 

 

The analyses performed clearly show that ignoring the spatial variability leads to overly 

conservative estimation in the variability of the predicted structural response. In the present, only 

the effects of friction angle, cohesion and density were explored. In reality, there are additional 

parameters that deserve attention.  Further improvements can be categorized in three main areas: 

uncertainty models, geotechnical considerations, and structural models. 

 

From the perspective of the mechanical stability of the pipelines, one can follow the same approach 

of developing empirical equations for particular steel pipelines by considering the residual stresses 

inherent to the manufacturing and construction processes. Also, it is not clear how much the 

stiffness of the pipeline is degraded in old corroded pipelines. Another interesting mechanism is 

the progression of UHB, as the vertical deformation may be a progression of cumulative minor 

events that involve remolding of the soil. In reality, the embedment or buried depth is also 

uncertain due to natural erosion, freeze and thaw cycles and the progressive displacement of the 

soil.  

 

Geotechnical models to represent the soil as springs are characterized from natural soil properties. 

The same soil properties can be used to characterize a solid model of the soil to account for 

compatible for deformations in the soil. The measurement of the soil natural variability effects on 

the variability of the pipeline response by using different geotechnical models can be investigated 

further in the future. 
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The uncertainty models presented are applied to simple and idealized soil parameters in the present 

work. It is not clear if the Gaussian random field discretization techniques are adequate for all soil 

types. Future work can be carried out to collect information about representative PDF, correlation 

structure and cross-correlation of the soil properties, which will be very useful to identify an 

adequate random field model.  
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