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ABSTRACT 

 

The integrity of the roof system is essential for ensuring the safety of inhabitants and 

preventing excessive damage to light-frame wood structures.  The uplift capacity of 

fastened roof panels has been investigated using experimental tests and numerical 

models, where monotonic uniform static pressures are often applied to the roof panel 

models.  The verification is needed for the adequacy of using static uniformly distributed 

pressure representing the wind load.  Moreover, the uncertainty of nail withdrawal 

behaviour has not been included in existing numerical models, and the effect due to 

construction errors has not been addressed rationally. 

A nonlinear Finite Element model is developed in this study to incorporate the nail 

withdrawal uncertainty in terms of maximum withdrawal force, initial stiffness, 

proportional limit, and the displacement at maximum force of the nail withdrawal 

behaviour.  This model is used to investigate the statistical characteristics of the panel 

uplift capacity.  The effect of spatial varying wind load is discussed by using the pressure 

coefficient obtained from wind tunnel model test at the Boundary Layer Wind Tunnel at 

the University of Western Ontario. 

Furthermore, the impact of construction error is investigated, in terms of missing nail 

effects, with first-hand survey information.  The detailed survey was carried out at the 

IRLBH (The Insurance Research Lab for Better Homes) facility to inspect the quality of 

construction, specifically for the statistical information of missing nails on roof panels.  

Finally, the evaluated statistical characterization of panel uplift capacity is used for 

the reliability analysis of a typical panel considering or ignoring the missing nail effects. 
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Both code specified pressure-gust coefficient from NBCC (2005) and the peak pressure 

coefficients obtained from wind tunnel test are used.  Results suggested that the nonlinear 

pushover analysis using the proposed nonlinear Finite Element model is adequate for 

estimating the panel uplift capacity.  A more stringent fastening schedule with a spacing 

of 150 mm for the edges and intermediate supports is suggested for the construction of 

light frame wood houses. 

 

Keywords: Uplift capacity, roof panel, wind pressure, spatial varying, nail spacing, 

nonlinear dynamic analysis, human error, missing nail, reliability 
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CHAPTER 1 
 

INTRODUCTION 
 
1.1 Background 

Damaging wind events, which include hurricanes, tornadoes, and other windstorms, 

occur year round and can strike most places in the United States and Canada. When 

specifically considering the insured property losses, wind probably is one of the highest 

natural disasters. Based on the post disaster investigations, the integrity of roofs is 

essential to the residential houses subjecting extreme wind events. It ensures the safety 

and prevents excessive damages to those light-frame wood structures.  The loss of even 

one roof panel or window could cause insured losses increasing dramatically, and insured 

loss can reach up to 80% of total insured value of the house due to water penetration 

during a wind storm (Sparks et al. 1994).  Studies showed that the partially enclosed 

buildings suffer much higher wind loads than an enclosed one, and keeping the integrity 

of a house is critical for reducing insured losses in wind storms (Rosowsky 1996). The 

uplift capacity of fastened roof panels is of great interest since the roof is one of the 

weakest links in building envelope. Experiment tests and numerical models are the two 

main approaches to evaluating its capacity.  

Studies on the test results were reviewed by Datin and Prevatt (2009), indicating that 

monotonically increasing uniform static pressure is often applied in experiment 

investigation to find the uplift capacity of typical panels, and the panel failure is defined 

as the failure of the first nail, or a permanent separation between the fastened panel and 

supporting frames (Sutt 2000).  As a summary of those test results, the mean of panel 

uplift capacity for plywood sheathing (11.9 mm (15/32 in) thickness) is ranged from 
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2.9~6.2 KPa (60~130 psf), or 8.6~18.5 KN in terms of total uplifting force. Those panels 

are all fastened on framing members with 8d common nails (the length and the diameter 

of the nail are 63 mm (2.5 in) and 3.4 mm (0.133 in), respectively) at the nail spacing of 

150 mm along the framing members at panel edges and 300 mm along the interior 

supports. Such a big range of the panel capacity is mainly due to the variation of the nail 

withdrawal capacity, which can be affected by the type of wood, the wood moisture 

content, and the nail installing method, and the fore-mentioned tests are carried out with 

different type of wood framing member.  Since there is no standard test protocol for 

determining the uplift capacity of wood framed roof structures, the obtained results can 

not compare to each other. Moreover, the numbers of the samples used in the tests are 

small (mostly less than 10 samples have been used), which make the test results 

statistically unreliable.  

Numerical methods are used to predict the panel system failure from the nail 

withdrawal capacity, which can be obtained from tests that following the procedures 

described in ASTM D1761, Standard Test Method for Mechanical Fasteners in Wood 

(ASTM, 2005a). Nail withdrawal tests results usually based on hundreds of samples, such 

as Sutt (2000) reported the test results based on 593 samples, and the mean and 

coefficient of variation (cov) values of nail withdrawal equal 996N and 19% COV, 

respectively. However, most test reports available in the literature are focused on the 

maximum nail withdrawal force. Only Groom and Leichti (1993) reported the statistical 

test results for the initial stiffness, proportional limit, and the displacement at the 

maximum force, as well as the capacity of the nail withdrawal behaviour, which are very 

important for developing nonlinear model of nail withdrawal behaviour. It also makes the 
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analyzing of load sharing among nails possible when considering all nails within a panel 

as a system.   

The spatial varying wind load effect on panel uplift capacity remains a mystery under 

wind loads. The theory has been well developed for linear structures, and there are 

extensive studies for ductile nonlinear structures in earthquake engineering.  Datin and 

Prevatt (2009) provided the methodology of using equivalent pressure traces for a typical 

sized roof panel that accounts for the spatial varying wind load, but there is no further 

analysis carried out for the evaluation of the panel uplift capacity.    

In the United States, significant building code revisions have also been conducted 

after hurricane Andrew in 1992. However, the post hurricane survey found out that the 

roof damage remains high in newer homes built to modern building code(Gurley et al. 

2006).  As Surry (Surry et al. 2005) pointed out: 

“We know enough about the wind loads on low buildings now, so that disastrous 

failures (such as those seen during Hurricane Andrew) to storms other than severe 

tornadoes, are much more likely to be due to faults in codes, or construction and 

inspection practices, than due to a lack of basic wind engineering knowledge.” 

Human error effect on panel capacity was brought up to attention and a good 

opportunity was provided by the lab of the Insurance Research Lab for Better Homes in 

the project called “three little pigs”.  A detailed survey of the fastening of the roof panel 

was constructed, panel-by-panel and nail-by-nail, for the full-scale two-story test house at 

the IRLBH facility (Surry et al., 2005; Bartlett et al., 2007; Kopp et al., 2010).  The 

statistical characteristic of panel uplift capacity was then carried out based on the Finite 

Element model that was developed in chapters 2 to 3. 
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1.2 Objectives 

The main objective of the present study is to assess the statistical characteristics and 

to assign probability distribution of the uplift capacity of the roof panel under stochastic 

wind pressure and considering several factors: the uncertainty in nail withdrawal 

behaviour, the spatial varying effects of wind load, and the human error effects. 

 

1.3 Organization of the thesis 

This dissertation consists of five chapters. The subsequent four chapters are 

summarized briefly in the following. 

Chapter 2 develops a nonlinear Finite Element model for evaluation of the roof panel 

uplift. This model is used to assess the statistical characteristics of the uplift capacity for 

the roof panel under stochastic wind pressure incorporating the uncertainty in nail 

withdrawal behaviour.  The results have shown that the nonlinear behaviour of nail 

withdrawal needs to be considered to improve the accuracy of the estimated uplift 

capacity. The statistics and the probability model of the uplift capacity are affected by the 

degree of correlation of the fasteners’ behaviour within the panel; the nail spacing and 

missing nail on the uplift capacity affect the uplift capacity significantly. 

Chapter 3 focuses on the assessment of the statistics of and probability model for the 

uplift capacity of the roof panel under spatio-temporally varying wind pressure.  The 

assessment considers the uncertainty in the spatial variation of nonlinear nail withdrawal 

behaviour and the impact of the possible missing nails.   

Chapter 4 investigates the construction error effect on the panel uplift capacity. The 

statistical information of construction error is obtained by a detailed construction roof 
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survey on an “as build” two story typical Canadian residential house.  

Chapter 5 summarizes conclusions obtained from the preceding chapters. Based on 

the conclusions, future research topics related to roof panel uplift capacity, risk, and 

codification for low rise residential roofs are suggested. 

 

1.4 Thesis format 

This thesis is prepared in a manuscript format as specified by the School of 

Postgraduate Studies at the University of Western Ontario. Each chapter is presented in a 

manuscript format with its own list of references. 
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CHAPTER 2 

PROBABILISTIC CHARACTERIZATION OF ROOF PANEL UPLIFT 

CAPACITY UNDER WIND LOADING 

 

2.1 Introduction 

The integrity of roof system is essential for residential houses subjected to extreme 

wind events. It could ensure the safety of inhabitants and prevent excessive damages to 

the light-frame wood structures.  The loss of even a single panel or window has the 

potential to cause a dramatic increase in insured losses, which can reach up to 80% of the 

total insured value of the house in the event of water penetration during a wind storm 

(Sparks et al. 1994).  Studies have shown that partially enclosed buildings or structures 

with openings suffer much higher wind pressure than an enclosed one (Kopp et al. 2008), 

and that maintaining the integrity of a house is critical for reducing insured losses in wind 

storms (Rosowsky and Schiff 1996).  

The uplift capacity of fastened roof panels is therefore of great interest as the roof is 

one of the weakest links in building envelope, and has been investigated using both test 

results and numerical models.  In previous experimental investigations, monotonically 

increasing uniform static pressure has often been applied to obtain the uplift capacity of 

typical panels, and the panel failure is defined as the failure or “pullout” of the first nail, 

or a permanent separation (6 to 12 mm) between the fastened panel and supporting 

frames (Sutt 2000).  As panel tests can be costly, numerical models have been employed 

to estimate the capacity of panels considering the nail withdrawal capacity (Cunningham 

1992, Mizzell 1994, Rosowsky and Schiff 1996, Kallem 1997, Sutt 2000).  For example, 
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Cunningham (1992) considered that the uplift capacity of the panel can be estimated from 

the largest tributary area associated with a fastener in the panel, while Mizzell (1994) 

modeled the panel using shell element in a finite element model, with the nail 

connections represented by linear elastic springs to predicting the uplift capacity under 

static wind (load) pressure.  The latter showed that the predicted uplift capacity using 

tributary area approach differs from that predicted by using the finite element model, and 

that the difference decreases with decreased nail spacing between fasteners.  However, 

the nail withdrawal capacity is uncertain, and this uncertainty propagates to the estimated 

uplift capacity of panel under negative wind pressure (suction).  Incorporation of this 

uncertainty to assess the uplift capacity by using the tributary area approach was 

presented by Rosowsky and Schiff (1996) and Sutt (2000). 

The tributary area approach assumes that each nail in the panel shares the wind load, 

proportional to its tributary area, until failure.  Therefore, the load sharing and 

redistribution caused by the differences in stiffness and withdrawal capacities of the 

fasteners cannot be considered.  Murphy et al. (1996) carried out two types of tests: 30 

typical panel tests and 40 single 8d (the length and the diameter of the nail are 63 mm 

(2.5”) and 3.4 mm (0.133”), respectively) common nail withdrawal tests on southern 

yellow pine (SYP) studs. They compared the results of single nail tests to the nail 

withdrawal capacities estimated from panel test based on panel failure pressures.  Their 

findings indicated that the use of tributary area approach may not accurately predict panel 

capacity, especially in evaluating its statistical characteristics, and that a modification 

factor is needed to account for system effects.  However, a modification factor derived 

for a particular fastening schedule and panel may not necessarily be applicable to panels 
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with different fastening schedules or panel thickness. Furthermore, in almost all previous 

studies, static uniformly distributed wind pressure is assumed even though natural wind 

pressure is spatio-temporarily varying; verification of the adequacy of applying static 

uniformly distributed load in assessing the panel uplift capacity is needed. 

In housing construction, it has often been observed that nails may not be fastened 

properly or simply missing.  Sutt (2000) estimated the missing nail effect on the uplift 

capacity of the panel using the tributary area approach (by excluding the missing nail), 

and suggested that tests need to be carry out to verify the missing nail effect.  In addition, 

construction in different geographic regions may adopt different fastening schedules for 

roofing, which could affect the uplift capacity of the panels as well. 

The main objective of the present study is to assess the statistical characteristics and 

to assign probability distribution of the uplift capacity of the roof panel under stochastic 

wind pressure while considering the uncertainty in nail withdrawal behaviour. For the 

uncertainty analysis, the simple Monte Carlo technique is employed, and the temporal 

variability of wind pressure is considered. The panel is modeled using a finite element 

model, and the nail connections are modeled using linear or nonlinear springs. Sensitivity 

of the statistics of panel uplift capacity to the nail spacing and missing nail(s), and to 

static and dynamic wind pressure, is also investigated. The material properties and 

geometrical variables of the considered panels and fasteners, numerical modeling and 

analyses, as well as the obtained statistics of the uplift capacity of the panels are 

presented in the following sections. 

 

2.2 Modeling of the panel and wind load and analysis procedure 
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2.2.1 Model for roof panel 

A typical roof panel with a fastening schedule for residential houses, shown in Figure 

2.1, is considered for this study.  The panel is composed of plywood sheathing with a 

thickness of 11.5 mm (3-plies) and a size of 1.22 m × 2.44 m (i.e., 4 ft × 8 ft); and is 

fastened to the framing members with 8d common nails. The length and the diameter of 

the nails are 63 mm (2.5 in) and 3.4 mm (0.133 in), respectively. The framing members, 

such as trusses and rafters, consist of 38 mm × 89 mm (2 in ×4 in) lumbers, often 

Douglas-fir, and are spaced 610 mm (24 in) on center.  The nail spacing along the 

framing member shown in Figure 2.1 follows the roof panel fastening schedule for wind 

uplift recommended in APA (1995), the Engineered Wood Association.  The schedule 

shown in Figure 2.1 is also recommended in NBCC (2005) and some jurisdictions in the 

United States; NBCC (2005) requires a nail spacing of 150 mm along the framing 

members at panel edges and 300 mm along the interior supports.  More stringent fastener 

requirements are warranted for regions with significant wind hazard.  For example, 

Florida Building Code (Florida Building Code 2007) requires a spacing of 152 mm (6 in) 

at panel edges and intermediate supports, except at gable ends where a spacing of 102 

mm (4 in) is specified. However, nail spacing less than 76 mm (3 in) is not recommended 

as it is likely to split the wood. 
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Figure 2.1 Typical roof panel and nail schedule. 
 

In the present study, the panel is modeled using 4–node shell element with 6 degree 

of freedoms at each node, considering both bending and membrane stiffness to allow for 

large deflections. The mesh of the finite element model for the panel is shown in Figure 

2.2, where the mesh is generated using ANSYS (ANSYS Inc. 2005). The element type 

used for nails is summarized in Table 2.1. It is assumed that the modulus of elasticity of 

Douglas-fir along the longitudinal grain, which equals 10.45 GPa, could be employed to 

represent that for the panel as Douglas-fir is the common wood specie used to 

manufacture plywood panels (Canadian Plywood Association 2005).  It is noted that the 

wood is isotropic material, and the modulus of elasticity along the longitudinal, radial, 

and tangential axes of wood can be varying in a large range. While the plywood is a 

composite material with overlays, and the orientation of the plies are well balanced. The 

panel uplift capacity only reduces less than 2% if the modulus elasticity reduces to a half.  

Therefore, the modulus of elasticity along longitudinal grain is used, and treated as a 
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deterministic value. 

Table 2.1 Elements used for the finite element modeling.  

  ANSYS Element Description 

Roof Panel Shell63 Large displacement, bending & 
membrane stiffness 

Nail (Linear) Combin14 1D linear spring 

Nail (Nonlinear) Combin39 1D nonlinear spring 
 

 

 

 

Figure 2.2 Finite element model mesh of the panel with fasteners. 
 

As the nail withdrawal capacity is not significantly affected until the shear loading 

approaches the ultimate shear capacity of the nail (Sutt 2000), the shear effect on the nail 

withdrawal capacity is neglected in this study. The available nonlinear force-deformation 

curves used to model the nail withdrawal behaviour include elastoplastic model (Chui et 
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al. 1998) and tri-linear model (Groom and Leichti 1993). These models do not consider 

strain softening effect (i.e., negative stiffness after maximum load) to simplify the 

numerical treatment. More recently, Dao and van de Lindt (2009) proposed a new 

nonlinear roof panel fastener model that incorporates bending moment effect. They 

showed that the nail withdrawal behaviour can be modeled using nonlinear springs, and 

the moment rotation has an effect on external nail supports.  However, the panel fastening 

schedule used in their study differs from that shown in Figure 2.1, and as the panel uplift 

capacity for the typical panel shown in Figure 2.1 is governed by the withdrawal capacity 

of the nails on internal supports, the moment rotation effect on nail withdrawal behaviour 

is neglected in the present study. To model nail withdrawal capacity, nonlinear springs 

with force-displacement curve illustrated in Figure 2.3 is adopted, where fm, fp, dm, dp and 

k0 are the ultimate withdrawal force, proportion limit, displacement corresponding to the 

ultimate withdrawal force, displacement at proportional limit, and initial stiffness, 

respectively. The curve is based on the studies reported by Groom and Leichti (1993) and 

Foschi (2000).  The force, F, and displacement, D, relation follows a linear relation from 

O up to the proportional limit (Point b). After Point b, the force-displacement relation is 

described by, 

( ) ( )( )0010 /exp1 QdkdQQfF p −−++=  (1a) 

for mp dDd ≤<  where pdDd −= , and 

( )( )2
4exp mm dDQfF −=  (1b) 

for mdD >  where ( ) ( )[ ]2
324 1/ln −= QdQQ m . 
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Figure 2.3 Force-displacement curve for nail withdrawal behavior. 
 

The model parameters in the above equation ( 0Q , 1Q , 2Q , 3Q ) are determined using 

test results with monotonically increasing displacement. The displacement dm 

corresponding to fm for given 0Q , 1Q , fp, and k0 can be evaluated by letting F equal to fm 

in Eq. (1a).  If a roof panel is subjected to positive pressure, the nail is modeled using a 

linear spring with the stiffness equal to AE where E (= 10.45 GPa) is the modulus of 

elasticity of timber, and A (=0.0052 m2) represents the contact area of panel with the 38 × 

89 mm (2”×4”) stud. As negative wind pressures dominate throughout the roof, the nail 

model under positive pressure provides an equivalent restoring force only, and has no 

effects on panel uplift capacity. 

For dynamic analysis, the loading and unloading behaviour needs to be considered. 

According to He et al. (2001), as an approximation, the initial stiffness can be used for 

the stiffness of unloading and reloading as shown in Figure 2.3.  It is noteworthy that 

Foschi (2000) considered that the model is adequate for in plane displacement, whereas 

the displacement D in Eq. (1) represents the displacement along nail shank. The model 
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does not include the stiffness degradation of nail withdrawal capacity due to cyclic 

dynamic loads. To assess the difference between using linear and nonlinear nail 

connection models, a linear brittle spring is also considered. For the linear spring, it is 

considered that the stiffness equals the secant stiffness k defined as mm dfk /= , and the 

ultimate withdrawal capacity equals fm. 

 

Table 2.2 Parameters used to model the nail withdrawal behaviour. 

Parameter Mean value Coefficient of 
variation 

Initial stiffness, K0 (N/m) 4171521.2 0.39 

Proportional limit, fp (N) 680.6 0.20 

Maximum load, fm (N) 805.1 0.17 
Displacement corresponding 
to maximum laod, dm (mm) 0.254 0.38 

Ratio, r 0.183 0.44 

Q0 
* 121 - 

Q1
* 1×105 - 

Q2
* 0.9 - 

Q3
* 2.6 - 

* Values of Q0 to Q3 are determined by fitting Eq(1) to the mean capacity curve 
reported by Groom and Leichti  (1993) through regression analysis. 

 

Although it is acknowledged that the material properties for both the panel and nail 

withdrawal capacity are uncertain, only uncertainty in nail withdrawal capacity is 

considered to assess the panel uplift capacity.  This is because that this study is focused 

on the nail withdrawal rather than the nail punching failure model, and no pull-through 

failures were observed in entire panel tests with 8d common nails and plywood sheathing 

for the test conducted by Sutt (2000).  The uncertainty in the nail withdrawal capacity is 

influenced by the wood density, moisture content, nail installation method and the 
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statistical inhomogeneity in timber or lumber. Following Groom and Leichti (1993), the 

uncertainty in nail withdrawal capacity (i.e., the relation shown in Figure 2.3) can be 

characterized by the uncertainties in fm, fp, dm, and k0 where their means and standard 

deviations are shown in Table 2.2.  Also shown in the table are the model parameters ( 0Q , 

1Q , 2Q , 3Q ) for 8d common nail suggested by Foschi (2000). 

Note that Sutt (2000) analyzed the ultimate withdrawal capacity from tests of 8d 

common nails fastened to SYP, and concluded that fm can be modeled as lognormal 

variate with mean of 206.65 N/cm (118 lb per inch) and a coefficient of variation (cov) of 

0.33.  However, there is insufficient information available in the literature to investigate 

the appropriate probability model for fp and k0. As k0 is non-negatively defined, it is 

assumed that it can be adequately modeled as a lognormal variate with the mean and cov 

shown in Table 2.2. 

For a given nail, as fm must be greater than fp by definition, the ratio (fm-fp)/fp, denoted 

by γ, must be non-negatively defined. It is considered that this ratio is lognormally 

distributed with mean of 0.183 and cov of 0.08, where these values are estimated using 

first-order second moment approximation (Madsen et al. 1986, Melchers 1999) and the 

statistics shown in Table 2.2. 

For the simulation analysis, once values of fm, k0 and γ are sampled from their 

probability distributions, the force-deformation curve for nail withdrawal is completely 

defined if 0Q , 1Q , 2Q , and 3Q  are given, as fp and dp can be estimated using, 

( )γ+= 1/mp ff  (2a) 

and 

0/ kfd pp =  (2b) 
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and dm can be evaluated using Eq. (1a). 

The nail withdrawal behaviour within a panel could be correlated as they serve under 

similar environment and are fastened to similar timber species.  Let Yi denote the random 

variable of interest such as fm, k0 or γ for the i-th nail.  As test results are not available to 

assess the correlation between Yi and Yj, the following multiplicative model is adopted to 

investigate the impact of the correlation of nail withdrawal behaviour on the estimated 

panel uplift capacity. The model considers that Yi can be expressed as, 

ii XYY ×= 0 , ni ,,1L= , (3) 

where Y0 and Xi are independent random variables. This model considers that the variable 

controlling the nail withdrawal capacity for each nail depends on a common or “global” 

variable Y0 and on a “local” variable for the i-th nail, Xi, where Xi, ni ,,1L= , are 

independent and identically distributed.  If Y0 is lognormally distributed with a mean of 

mY0 and a cov of v0 (i.e., ),( 0000 YY mvmLNY ∈  where the symbol ),( σmLN  is used to 

denote a lognormal variate with a mean of m and a standard deviation of σ), and 

),1( Xi vLNX ∈ , it can be shown that Yi is lognormally distributed with mean mYi equal to 

mY0, and the correlation coefficient between Yi and Yj for ji ≠ , ρij, is given by,  

22
0

22
0

2
0

XX
ij vvvv

v
++

=ρ  (4) 

and the cov of Yi, vi, equals 22
0

22
0 XX vvvv ++ .  This shows that the correlation for this 

multiplicative model is completely defined by the cov of the random variable Y0 that is 

common to all nails, and by the cov of the independent identically distributed random 

variables Xi.  The correlation is uniform in that it is distance (and nail location) 
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independent.  The use of this model is advantageous because the degree of correlation 

and the cov of Yi are completely defined by v0 and vX (or vice versa).  In particular, if vX 

equals zero, the correlation coefficients are equal to one; if v0 equals zero, the correlation 

coefficients are equal to zero.  This probabilistic model is adopted for fm, k0 and γ in 

section below to describe the fasteners. An illustration of the force-displacement curve 

simulated for 20 nails using the probabilistic models and with a correlation coefficient 

equals 0.5 is given in Figure 2.4. 

 

 

Figure 2.4 Samples of the force-displacement curve for nail withdrawal. 
 

2.2.2 Wind Load Model 

Wind pressure on low-rise buildings and houses is complex and varies spatio-

temporarily.  The variation is influenced by their geometry and orientation with respect to 

wind direction, and by their proximity to the adjacent structures (e.g. Simiu and 
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Stathopoulos 1997).  For simplicity, the analyses are focused on fragility curves or the 

panel uplift capacities often consider that the wind pressure can be approximated as 

uniform and static, and that the panel uplift capacity can be estimated using tributary area 

method (Sutt 2000, Lee and Rosowsky 2005).  The validity of this simplifying 

assumption and its associated accuracy in estimating the panel uplift capacity is unknown. 

Furthermore, as time-history of the wind pressure coefficients are available from 

boundary layer wind tunnel (Rigato et al. 2001), it is desirable, at least, to validate such 

assumption by comparing the uplift capacity obtained from time-varying wind pressure 

and that obtained under static uniform wind pressure, including nonlinear dynamic effects 

of the fasteners. 

For the present study, the wind pressure time histories obtained from a test model 

carried out at the Boundary Layer Wind Tunnel laboratory at the University of Western 

Ontario are considered. The test model with the length scale of 1:50 represents a typical 

domestic dwelling with 4:12 gable roof, 8 m roof eave height. Locations of the pressure 

taps on the roof are shown in Figure 2.5, and the wind pressure coefficient time histories 

Cp, sampled at a frequency of 400Hz, for open country terrain (z0=0.01 m) and a 

reference mean wind speed of 13.7 m/s (45 ft/s).   
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Figure 2.5 Identification of taps on test model. 
The total number of samples for each tap is 71871, representing about 3 minutes 

time history for the model scale that corresponds to about one hour full-scale wind load 

history for a 30 m/s reference mean wind speed. The sampling frequency for full-scale is 

related to model scale as follows (Simiu and Scanlan 1996), 

FSMS U
fD

U
fD

⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛   (5) 

where D is the length scale, f is the sampling frequency, U is the mean wind velocity at 

the eave height, and the subscript FS and MS denote the quantities associated with full-

scale and model scale, respectively. For example, if the reference mean wind speed is 30 
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m/s, the full scale sampling frequency fFS determined by using Eq. (5) equals 17.5 Hz (i.e.,  

50
1

7.13
30400

×
×

=×=
FS

MS

MS

FSMS
FS D

D
U

Uff ), and the wind pressure time histories on the roof 

are calculated by multiplying the time histories of Cp and the reference pressure. 

 

2.2.3 Analysis Procedure 

Both static and dynamic analyses are carried out on a typical roof panel subjected to 

static and time-varying wind pressure. The results are used to assess the dynamic load 

effects on the characteristics of panel uplift capacity. The numerical evaluation of the 

capacity by using the finite element model discussed previously is straight forward, if the 

wind pressure is modeled as a static uniform pressure, and the uncertainty in nail 

withdrawal capacity and material properties of panel is ignored.  Furthermore, the 

resistance or capacity curve defined by the uplift force (or the total reacting force) versus 

displacement of a critical nail of the panel can be obtained using the nonlinear static 

pushover (NSP) analysis (Krawinkler and Seneviratna 1998).  In fact, the term nonlinear 

static pushover analysis, perhaps, could be more appropriately termed as nonlinear static 

pullover analysis as the uplift or suction force is of concern. The uplift capacity (or 

capacity at incipient failure) is defined by the applied wind pressure or the point, where 

there is non-convergence for an increased wind pressure, provided that a stable and 

reliable numerical method is used for the analysis. 

If deterministic nonlinear dynamic responses for a given time-varying wind pressure 

are of interest, the incremental dynamic analysis (IDA) (Vamvatsikos and Cornell 2002) 

which is developed in earthquake engineering, can be used. The method was adopted to 

evaluate transmission tower capacity under fluctuating along wind excitations (Banik et 
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al. 2010).  To assess the capacity curve of the panel using the IDA, a series of nonlinear 

dynamic analyses needs to be carried out, each with increased reference wind speed and 

the same set of samples of the wind pressure coefficients.  It must be emphasized that 

although the magnitude of the wind pressure coefficients for the time history measured 

from wind tunnel test is the same, the sampling frequency for the full-scale needs to be 

estimated using Eq. (5) for the given reference mean wind speed.  Again, the results of 

nonlinear dynamic analysis can be used to obtain the capacity curve, defined in terms of 

maximum displacement of a critical nail and its corresponding total reaction force for 

each of the dynamic analysis, and to find the uplift capacity of the panel. 

Furthermore, if the uncertainties in nail withdrawal capacity as well as different 

samples of pressure time history are considered, the simple Monte Carlo technique 

(Melchers 1999) can be employed to evaluate samples of the uplift capacity of the panel.  

In such a case, the finite element analyses are carried out repeatedly for simulated 

withdrawal behaviour of the nails. The samples of capacity curve and the uplift capacity 

of the panel obtained from each analysis can be used to statistically characterizing the 

capacity curve and uplift capacity of the panel. 

 

2.3 Panel Uplift Capacity 

2.3.1 Dynamic effect on panel capacity 

A simple dynamic analysis of the panel is considered with the material properties 

equal to their corresponding means shown in Table 2.2 and the fastener modeled as linear 

elastic spring leading to the fundamental vibration frequency of 57.3 Hz.  To investigate 

the uplift capacity of the panel under uniform but time-varying wind pressure, nonlinear 
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dynamic analysis is first carried out according to the procedure outlined in the previous 

section. For the dynamic analysis, the viscous damping ratio of 2% is considered 

throughout this study; the sample time history of wind pressure coefficients taken from 

tap 2301 (see Figure 2.5) is considered.  For the evaluation, the sampling frequency for 

the full-scale is equal to 17.5 Hz (see previous section). Wind pressure time history of 

one minute shown in Figure 2.6a, has a mean wind pressure of -0.71 kPa (negative 

indicates suction). By using this wind pressure time history, the obtained displacement 

time history for the nail labelled 11 (see Figure 2.1) is shown in Figure 2.6b. The 

responses at nail 11, as well as nails 13, 21 and 23, shown in Figure 2.1 (the response at 

these nails are the same due to symmetry) are of interest, as they were found to be critical 

nails under uniform wind pressure. Inspection of the results of other nails indicates that 

the reacting force and displacement at these nails are larger than those associated with the 

remaining nails, implying that the wind demand on these nails is highest. To investigate 

the dynamic effect on the response of the panel, a time history static analysis was also 

carried out(i.e., static analysis but considering the magnitude of wind pressure obtained at 

each sampling point of the time history), which for simplicity will be referred to as quasi-

static analysis. The obtained results are also shown in Figure 2.6b. The figure shows that 

the results obtained by quasi-static analysis are only very slightly greater than those 

obtained by the dynamic analysis.  The difference is attributed to the inertial force and 

damping effect.   
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a). Pressure time history 

 b)  Time history of the total reaction force 
 

Figure 2.6 Time histories of wind pressure and responses. 
 

To completely characterize the uplift capacity of the panel under dynamic loads, a 

series of nonlinear dynamic analyses (i.e., IDA), each with an increased wind speed, is 

carried out.  The obtained maximum total reacting force and the corresponding 

displacement of nail 11 for each nonlinear dynamic analysis are collected and plotted in 

Figure 2.7.  Note that the identified total reacting force is independent of whether the 

displacement of nail 11 is used to represent the ordinate to draw the capacity curve. The 
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use of one minute (full scale) wind pressure time history to characterize the capacity 

curve is adequate (Banik et al. 2010).  Since the wind pressure is time-varying and 

stochastic, the IDA is repeated using nine additional one-minute wind pressure records 

based on the pressure coefficients from the same tap to assess the effect of “record-to-

record” variability. The obtained results are shown in Figure 2.7 as well, indicating that 

the record-to-record variability is not very significant, at least if the time history obtained 

from the same pressure tap is considered. 

For the NSP analysis with uniformly distributed pressure over the panel instead of 

using nonlinear dynamic or quasi-static analysis, the obtained capacity curve is also 

shown in Figure 2.7.  Unfortunately, the use of the NSP analysis could not obtain the 

descending branch of capacity curve (i.e., the part on the right side of point A shown in 

Figure 2.7) as in this case a force driven algorithm (as opposite to the displacement 

controlled algorithm) is adopted for the NSP analysis.  To overcome this, a nonlinear 

dynamic analysis without the viscous damping is carried out by considering the panel 

subjecting to a ramp load defined by spatially uniformly distributed pressure whose 

magnitude increases linearly with time.  For the analysis, the rate of increase of the 

pressure magnitude is considered to be equal to about the pressure associated with the 

yield capacity of the panel divided by twice of the first vibration period; the time 

increment used for the nonlinear dynamic analysis is considered to be equal to the first 

vibration period divided by 40.  The obtained time histories of the total reacting force 

versus the displacement at nail 11 are shown in Figure 2.8.   
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Figure 2.7 Estimated uplift capacity curves by different approaches. 
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Figure 2.8  Time histories from nonlinear dynamic analysis for a constant wind pressure. 

 

Since the total reacting force and displacement at each time instance is related, it is 

reasonable to use the force and displacement pair (for the same time instances) identified 

from Figure 2.8 to define the capacity curve.  The curve obtained based on nonlinear 

dynamic analysis with the ramp load, termed as the NDA-RL curve, is presented in 

Figure 2.7 and compared with that obtained from the NSP analysis.  During the analysis, 

it was observed that the NDA-RL curve is insensitive to the rate of increase of the 

pressure magnitude if the rate is sufficiently small.  In fact, by varying this rate by 20% 

the identified maximum values from the NDA-RL curves differ by only 1%. 

Comparison shown in Figure 2.7 indicates that the (maximum) panel uplift capacity 

obtained from the NSP curve is close to the average of the 10 IDA curves, and that the 

NDA-RL curve mimics well the average of the IDA curves.  The use of the NDA-RL 
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curve as the panel uplift capacity curve is adopted below because it allows the 

identification of descending branch of capacity curve, it avoids the non-convergence 

problems that is often associated with the NSP analysis, and it requires significantly less 

computing time as compared to the evaluation of the average of the IDA curves. 

 

2.3.2 Adequacy of linear-brittle approximation 

To inspect whether the approach used in the previous section can be further 

simplified but still adequately predict the uplift capacity of the panel, instead of using the 

nonlinear force-deformation shown in Figure 2.3, we consider the linear-brittle model for 

the nail connection discussed earlier was used (i.e., with stiffness mm dfk /=  and the 

ultimate withdrawal capacity equal to fm). The obtained results by using linear-brittle 

model are also shown in Figure 2.7.  Comparison of the results shown in Figure 2.7 

indicates that the predicted uplift capacity of the panel by using the linear-brittle model 

for the nails is 4.6% less than that by using the NDA-RL analysis.  Furthermore, it is 

noted that if the uncertainty in nail withdrawal behaviour is considered, the panel uplift 

capacity estimated by the linear-brittle model could be directly proportional to the 

withdrawal capacity of the weakest nail among the critical nails (i.e., nails 11, 13, 21 or 

23) as the linear-brittle model does not sustain any load after its capacity is reached, and 

the load redistribution may not occur.  Therefore, the analysis by using the linear-brittle 

spring model will not be considered in the remaining part of this study. 
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2.3.3 Impact of uncertainty in nail withdrawal behaviour on panel uplift capacity 

2.3.3.1 Fully correlated or independent cases 

Roof panel uplift capacity (i.e., the maximum capacity identified from the capacity 

curve), R, depends on the properties characterizing nail withdrawal behaviour, which are 

uncertain.  To incorporate this uncertainty in evaluating panel capacity, it is first assumed 

that each of fm, γ and k0 for all the nails is identically distributed.  As discussed in Section 

2, fm, γ and k0 are assumed to be lognormally distributed with the model parameters 

shown in Table 2.2. 

To incorporate the uncertainty in nail behaviour in estimating the uplift capacity, first, 

samples of the nail properties (fm, γ and k0) are generated, and are used to evaluate values 

of fp, dp, and dm according to Eqs. (1) and (2) to define the force-displacement curve.  

Using this sample force-displacement curve for all nails in the panel and applying the 

NSP analysis as was done in the previous section, the uplift capacity of the panel is 

evaluated.  By carrying out this procedure 500 times, samples of R are obtained and 

plotted on lognormal probability paper in Figure 2.9.  Visual inspection of the plot 

suggests that the samples can be approximated by a straight line, and R could be modeled 

as a lognormal variate.  A Kolmogorov-Smirnov goodness-of-fit test (Benjamin and 

Cornell 1970) indicates that the hypothesis that R is lognormally distributed could not be 

rejected at a significance level of 5%.  For comparison, the statistics of R are summarized 

in Table 2.3 and identified as the case with correlation coefficient ρ equal to 1 (i.e., ρ = 1).  

The magnitude of the cov of R which equals 0.154 is comparable to that of fm, which 

equals 16.5% (see Table 2.1). 
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Table 2.3 Effect of correlation of nail withdrawal behaviour on the panel uplift capacity. 

Condition Mean (N) 
Coefficient of 

variation 

Fully correlated   ρ=1 10893 0.154 

            ρ=0.9 10691 0.151 

            ρ=0.8 10575 0.147 
Partially 

correlated 
            ρ=0.5 10350 0.132 

Independent        ρ=0 10138 0.074 
 

 

 

Figure 2.9 Simulated samples of uplift capacity presented on lognormal probability paper. 

 

Rather than assuming that each of the variables fm, γ and k0 is identically and 

lognormally distributed for all nails, one can consider, as another extreme case, that each 

of the variables fm, γ and k0 is independent, identically and lognormally distributed for all 
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nails.  By considering this case, and repeating the simulation analysis, the obtained 

samples are also plotted in Figure 2.9, and the mean and cov of samples of R are listed in 

Table 2.3.  Comparison of the statistics of this case (i.e., case identified with ρ = 0) to 

those for the case with ρ = 1 indicates that the cov of R for the former is significantly less 

than that of the latter, although the mean of R is similar.  The Kolmogorov-Smirnov 

goodness-of-fit test for the samples shown in Figure 2.9 (identified as ρ = 0) indicates 

that, again, R is lognormally distributed could not be rejected at a significance level of 

5%. 

Note that the means of R for the cases with ρ = 1 and ρ = 0 shown in Table 2.3 are 

lower than the mean of R determined from 7 experimental tests reported by Sutt (2000), 

which equals 11.4 kN (80 psf).  This difference can be explained by noting that the mean 

of nail withdrawal capacity in the tests is 957 N while the mean of nail withdrawal 

capacity adopted in this study is 805.1 N.  Furthermore, if the linear-brittle model 

(Mizzell 1994, Sutt 2000) is employed, which simplifies the analysis, the estimated mean 

of R is 10451 N and 8565 N for the cases with ρ = 1 and ρ = 0, respectively.  The mean 

values are about 4.3% and 18% less than those shown in Table 2.3. 

 

2.3.3.2 Effect of partial correlation of nail withdrawal behaviour on the uplift 

capacity of the panel 

The nail withdrawal capacity for a panel is invariably and partially correlated since 

they serve under similar environment and fastened to similar or the same timber specie.  

As the values of the correlation coefficient or the experimental data for its assessment are 

not available, the multiplicative model discussed in Section 2.1 is employed for the 
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parametric analysis presented in this section.  For the analysis, it is considered that the 

model described in Eq. (3) for Yi can be used to model fm, γ or k0.  For each of the random 

variables fm, γ and k0, as its mean and cov are already given in Table 2.2, by assigning the 

correlation coefficient ρij equal to a selected value of ρ, v0 and vX for the model can be 

calculated using Eq. (4), as vi, equals 22
0

22
0 XX vvvv ++ , and mYi and vi are equal to the 

mean and cov of the variables of interest (i.e., fm, γ or k0). 

Using the adopted model and following the procedure employed in the previous 

section, analyses are carried out for three selected cases: ρ = 0.9, ρ = 0.8, and ρ = 0.5.  

The obtained 500 samples of R for each case are shown in Figures 2.10a to 2.10c.  The 

statistics of R are summarized in Table 2.3.  The plots shown in the figure indicate that 

the use of the lognormal model for R is appropriate.  
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 a) ρ = 0.9 

b) ρ = 0.8 
 

c) ρ = 0.5 
Figure 2.10 Empirical probability distributions of the uplift capacity of the panel 

considering different degree of correlation of nail withdrawal behaviour. 
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Comparison of the results shown in Table 2.3 indicates that the mean of R is 

relatively insensitive to the value of ρ, while the cov of R decreases as the value of ρ 

decreases. 

 

2.3.4 Effects of missing nail and nail schedule on the uplift capacity of the panel  

As mentioned in the introduction, nails may not be fastened properly or simply 

missing in housing construction.  To assess the impact of the missing nail effect on the 

uplift capacity of the roof panel, nails 5, 11 and 13 as shown in Figure 2.1 are considered 

missing one at time, or 2 at time, although it is acknowledged in construction practice the 

pattern of the missing nails are random. 

Based on the above consideration and following the same analysis procedure 

employed in the previous sections, the obtained statistics of the uplift capacity of the 

panel for the cases with ρ = 1 and ρ = 0 are shown in Table 2.4 and the samples of R for 

each case are plotted in Figure 2.11.  Visual inspection of the results shown in Figure 

2.11 indicates that the lognormal model is still adequate for R.  Table 2.4 shows that 

missing a single nail could reduce the mean of the panel uplift capacity by about 10%, 

missing two nails could reduce the mean of R by as much as 23%, and missing nails also 

can increase the cov of R for the case with  ρ = 0 but slightly.  
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Table 2.4 Missing nail effects on panel uplift capacity. 

Condition Mean (N) Coefficient of 
variation 

Fully correlated     ρ=1 10833 0.154 Missing at nail #5 

Independent          ρ=0 10131 0.074 
Fully correlated     ρ=1 9745 0.197 Missing at nail #11 

Independent          ρ=0 9426 0.082 
Fully correlated     ρ=1 9383 0.182 Missing at nail #5 

and #11 
Independent          ρ=0 9203 0.081 
Fully correlated     ρ=1 8849 0.194 Missing at nail #11 

and #13 
Independent          ρ=0 8759 0.087 

 

One more issue that needs to be considered is the influence of the fastener schedule, 

as more stringent fastener requirements are warranted for regions with significant wind 

hazard.  By considering the nail spacing of 6 inches on both internal and external 

supports, and repeat the analyses that were carried out to arrive at the results shown in 

Table 2.3, the obtained statistics of R are listed in Table 2.5. The mean uplift capacity of 

the panel shown in Table 2.5 is more than twice of those shown in Table 2.3.  This is very 

significant as the number of nails is only increased from 33 to 45.  In all cases, the 

differences between the cov value of R shown in Tables 3 and 5 are less than 20%. 

 

Table 2.5 Uplift capacity for panel fastened with 6 inch nail spacing at panel edges 
and intermediate supports. 

Condition Mean (N) 
Coefficient of 

variation 

Fully correlated   ρ=1 22156 0.154 

          ρ=0.9 21623 0.152 

         ρ=0.8 21309 0.148 
Partially 

correlated 
         ρ=0.5 20710 0.127 

Independent       ρ=0 19683 0.063 
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Figure 2.11 Empirical probability distributions of the uplift capacity of the panel 
considering the missing nail effect. 

Missing nail #5, ρ = 1

Missing nail #11,
 ρ = 1

Missing nails #5
& 11, ρ = 1

Missing nails #11 
& 13, ρ = 1

Missing nail #5, ρ = 0

Missing nail #11,
ρ = 0

Missing nails #5
& 11, ρ = 0

Missing nails #11 
& 13, ρ = 0
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2.4 Conclusions 

Statistical characterization of the uplift capacity of the roof panel under stochastic 

wind pressure has been carried out by considering the uncertainty in nail withdrawal 

behaviour.  For the analysis, the panel is modeled using a finite element model and the 

nail withdrawal behaviour is modeled using a nonlinear spring.  As the use of the 

nonlinear static pushover analysis could not identify the descending branch of capacity 

curve and often leads to non-convergence problem, and the application of the nonlinear 

incremental dynamic analysis is computing time consuming, the use of nonlinear 

dynamic analysis with a ramp load is adopted for estimating the uplift capacity of the 

panel, R.  The numerical results show that the consideration of statistical correlation of 

nail withdrawal behaviour for the nails within the panel affects the mean of R negligibly, 

but it reduces the coefficient of variation (cov) of R as the degree of correlation between 

the nail behaviour decreases.  In general, the use of the simple tributary area approach 

underestimates the mean of R by 5% to 23% as compared to that estimated using the NSP 

analysis.  This underestimation is also about 10% if the panel is modeled using the finite 

element model and the nail withdrawal behaviour is modeled using (equivalent) linear-

brittle spring.  

Furthermore, sensitivity analysis indicates that missing a single nail could reduce the 

mean of the panel uplift capacity by 10%, and missing two nails could reduce the mean 

of R by as much as about 23%.  Parametric analysis also indicates that by using a more 

stringent nail schedule with the nails spacing of 6 inches on the edge and intermediate 

supports, the mean of R is about twice of that obtained by using a nail spacing of 6 inches 

for edge supports and of 12 inches for intermediate support, which is a recommended 



38 

practice by the 2005 edition of the National Building Code of Canada (NBCC 2005). 

In all cases, the uplift capacity of roof panel can be modeled adequately as a 

lognormal variate. 
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CHAPTER 3 

EFFECTS OF SPATIALLY AND TEMPORALLY VARYING WIND LOAD ON 

ROOF PANEL UPLIFT CAPACITY 

 

3.1 Introduction 

Strong winds result in significant external pressure on houses, including the roof 

sheathing panels.  Media coverage and reconnaissance visits to the wind damage regions 

(Smith 2005) indicate that wind-induced failure often initiates at roof sheathing panels.  

Significant building code revisions (ASCE 7-95) have also been conducted after 

hurricane Andrew in 1992.  More recent post-hurricane survey results continue to show 

that the occurrence of roof damage remains high even for newer homes built to more 

recent building codes (Gurley et al. 2006). Sheathing failure, especially at roof corners, is 

still common. 

Wind pressure varies spatially and temporally, and its magnitude is a function of the 

wind speed, wind direction, roof pitch, and roof geometry.  Experimental tests and 

numerical models (Mizzell 1994, Rosowsky and Schiff 1996, Sutt 2000) have been used 

to investigate the uplift capacity of typical roof sheathing panels, considering that the 

wind pressure can be treated as a time-invariante or static uniform pressure.  This 

provided a workable assumption at the time, and led to valuable results for practice and 

building code revisions (Cunningham 1992).  However, it does not incorporate the fact 

that the roof panels are actually experiencing non-uniform and dynamic wind loads.  The 

impact of this simplifying assumption on the wind induced demand or on the 

probabilistic characterization of the uplift capacity of the panel is unknown.  Progress for 
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full-scale testing of roofing system has been made by incorporating this spatially and 

temporally varying wind load (Surry et al. 2005, Bartlett et al. 2007, Hill et al. 2009, 

Kopp et al. 2010). This is done through the application of one or several innovative 

pressure actuators (or boxes), each covering an area ranging 610×610 mm to 2440×2440 

mm (2’×2’ to 8’×8’). Numerical results of the uplift capacity of the panel under 

uniform time-varying uplift wind pressure indicate that this uplift capacity is affected by 

the nonlinear force-displacement behaviour of the fasteners (see Chapter 2).  The results 

also indicate that the use of the tributary area method (Cunningham 1992, Murphy et al. 

1996, Sutt 2000) could lead to an underestimation of the uplift capacity of a typical panel 

with 1220×2440 mm (4’×8’) that is fastened to the framing members using 8d common 

nails with a spacing of 150 mm (6”) along the framing members at panel edges and 300 

mm (12”) along the intermediate supports by about 5%.  However, the influence of the 

spatially varying wind pressure and the nonlinear nail withdrawal behaviour on the 

probabilistic characteristics of the panel uplift capacity is still unavailable, although such 

characterizations are of value for quantifying the fragility curve, as well as for reliability 

analysis and reliability-based design code calibration.  Furthermore, it is often observed 

that panels may not be fastened properly or nails are simply missing.  The improperly 

fastened or missing nails, and different nail schedules used in construction in different 

geographic regions, can also affect the statistics of the uplift capacity of the roof panel. 

The assessment of the statistics of and probability model for the uplift capacity of the 

roof panel under spatio-temporally varying wind pressure forms the main task of this 

study.  For the assessment, nonlinear dynamic analysis with a ramp load is considered.  

The application of the nonlinear dynamic analysis with a ramp load is justified because it 
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provides sufficiently accurate estimation of the panel uplift capacity as compared to that 

obtained by the incremental dynamic analysis method and it avoids the non-convergence 

problem that is often associated with the nonlinear static pushover analysis (see Chapter 

2).  Parametric investigation of the uplift capacity of the panel is carried out by 

considering nonlinear force-displacement behaviour of fasteners, and cases of possible 

missing nails.  The uncertainty in the nail withdrawal behaviour, as well as in the wind 

pressure, is also incorporated in evaluating the statistics of the panel uplift capacity using 

the simple simulation technique. 

 

3.2 Modeling the sheathing panel and fasteners 

Consider the typical roof plywood sheathing panel for residential house shown in 

Figure 3.1.  The panel has a thickness of 11.5 mm (3-plies) and a size of 1.22 m × 2.44 m 

(i.e., 4’×8’), and is fastened to the framing members using 8d common nails, each 

having a length of 63 mm (2.5”) and a diameter of 3.4 mm (0.133”).  The framing 

members, such as trusses and rafters, consist of 38 mm × 89 mm (2”×4”) lumber, often 

Douglas-fir, and are at spaced 610 mm (24”) on centers.  The panel depicted in Figure 

3.1 is fastened to the frames following the roof sheathing fastening schedules for wind 

uplift that is recommended by APA- the Engineered Wood Association, which specifies a 

nail spacing of 150 mm (6”) along the framing members at panel edges and 300 mm 

(12”) at the intermediate supports.  Such a fastening schedule is almost identical to that 

recommended in the NBCC (2005) and in the Ontario Building Code (OBC 2006), which 

considers a spacing of 150 mm along the framing members along edge supports and 300 

mm along the intermediate supports.  A more stringent fastener requirement for 
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geographic regions with significant wind hazard that requires a spacing of 150 mm (6”) 

for the edges and intermediate supports, except at gable ends, where a spacing of 100 mm 

(4”) has been recommended by the Florida Building Code (2007).  A further reduction in 

the nail spacing to less than 75 mm (3”) is not recommended because of possible 

splitting of the framing member (Forest Products Laboratory 1999). 

 

 

Figure 3.1 Typical roof panel layout 

 

For numerical analysis, the sheathing panel is modeled using 4–node shell element 

with 6 degrees of freedom at each node, considering both bending and membrane 

stiffness to allow large deflection capability.  The mesh generated using the finite element 

software package ANSYS (ANSYS Inc. 2005) is illustrated in Figure 3.2 and the element 

type used is described in Table 3.1.   
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Table 3.1 Element name in the ANSYS and its description for the finite element 
modeling. 

 ANSYS Element Property Description 

Roof Panel Shell63 Large displacement, bending & 
membrane stiffness 

Nail (Linear) Combin14 1D linear spring 

Nail (Nonlinear) Combin39 1D nonlinear spring 
 

The software is employed for linear and nonlinear static analyses throughout the 

present study.  It is assumed that the modulus of elasticity of Douglas-fir along the 

longitudinal grain equal to 10.45 GPa could be adopted to represent that for the sheathing 

panel, as the Douglas-fir is the common wood species used to manufacture plywood 

panels (Canadian Plywood Association 2005).  

 

Figure 3.2 Finite element model representation of the panel and fasters. 
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The nonlinear force-displacement curves used to model the nail withdrawal behavior 

include elastoplastic model (Chui et al. 1998), tri-linear model (Groom and Leichti 1993), 

and a nonlinear model incorporating the bending moment effect (Dao and van de Lindt 

2009).  The adopted model for the nail withdrawal capacity in the current study is based 

on the test results reported by Groom and Leichti (1993) and a nail withdrawal model 

proposed by Foschi (2000), as this model allows more smooth transition from initial to 

post yield behaviour. The model is shown schematically in Figure 3.3, where fm, fp, dm, dp 

and k0 are the ultimate withdrawal force, proportion limit, displacement corresponding to 

the ultimate withdrawal force, displacement at proportional limit, and initial stiffness, 

respectively.  The relation between the force, F, and displacement along the nail shank 

direction, D, is given by 
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where pdDd −= , ( ) ( )[ ]2
324 1/ln −= QdQQ m , the model parameters ( 0Q , 1Q , 2Q , 3Q ) are 

to be determined using test results with monotonically increasing displacement, and the 

displacement dm is evaluated from the second equation for F = fm.  The suggested values 

of ( 0Q , 1Q , 2Q , 3Q ) for 8d common nails based on the recommendations given in Foschi 

(2000) are shown in Table 3.2.  Although Eq. (1) incorporates neither the shear effect 

(Sutt 2000) nor the edge bending moment effect (Dao and van de Lindt 2009), it is 

adopted in this study because these effects are considered to be negligible for the uplift 

capacity of panel under uplift wind pressure with the fastening schedule shown in Figure 

3.1. 
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Table 3.2 Characterization of the parameters used to model the nail withdrawal 
behaviour. 

Parameter Mean value Coefficient of 
variation 

Initial stiffness, K0 (N/m)* 4171521.2 0.39 

Proportional limit, fp (N)* 680.6 0.20 

Maximum load, fm (N)* 805.1 0.17 
Displacement corresponding 
to maximum laod, dm (mm)* 0.254 0.38 

Ratio, r 0.183 0.44 

Q0
* 121 - 

Q1
* 1×105 - 

Q2
* 0.9 - 

Q3
* 2.6 - 

Modulus elasticity, E (GPa) 10.45 - 

Contact area, A (m2) 0.0052   - 
* Statistics are based on the nail withdrawal tests reported by Groom and 
Leichti (1993). 
* Values of Q0 to Q3 are determined by fitting Eq(1) to the mean capacity 
curve reported by Groom and Leichti  (1993) through regression analysis. 

 
 

 

Figure 3.3 Illustration of force-displacement curve of nail withdrawal behavior. 
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If the roof panel is subjected to positive pressure, the nail is modeled using a linear 

spring with the stiffness equal to AE, where E (= 10.45 GPa) is the modulus of elasticity 

of timber, and A (=0.0052 m2) represents the contact area of sheathing with the stud.  

This approximate modeling is unlikely to affect the uplift capacity of the panel because 

the uplift wind pressure is of concern.  According to He et al. (2001), the initial stiffness 

can be used to approximate the loading and unloading for the force-deformation curve 

shown in Figure 3.3.  The model does not include the degradation of nail withdrawal 

capacity due to cyclic dynamic loads. 

The material properties of both the sheathing panel and nail withdrawal capacity are 

uncertain. Only uncertainty in the nail withdrawal behaviour is considered to assess the 

sheathing panel uplift capacity, as this work is focused on the effect of the nail 

withdrawal rather than the nail punching through failure model. The uncertainty in the 

nail withdrawal capacity, which is influenced by the nail installation method and the 

statistical inhomogeneity in timber or lumber, could be characterized by the uncertainties 

in fm, fp, dm, and k0, where their mean values, standard deviations and probabilistic models 

are also shown in Table 3.2 (Groom and Leichti 1993, Sutt 2000).  Note that fp can be 

characterized using the ratio γ, defined as (fm-fp)/fp. 

Given samples of fm, k0 and γ and the values of 0Q , 1Q , 2Q , and 3Q , because fp and dp 

can be calculated using 

( )γ+= 1/mp ff , (2a) 

and 

0/ kfd pp = , (2b) 

and a sample of the force-deformation curve for nail withdrawal is completely defined. 
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The nail withdrawal capacity for the nails within a panel is likely correlated as the 

nails serve under similar environment and are fastened to the same or similar timber 

specie.  Unfortunately, statistical data that can be used to asses the correlation is scarce.  

For the parametric investigation of the impact of the correlation between the nail 

behaviour on the estimated panel uplift capacity, a simple multiplicative model is adopted.  

The model considers that a random variable Yi of interest, such as fm or k0 or γ, for the i-th 

nail can be expressed as, 

ii XYY ×= 0 , ni ,,1L= , (3) 

where Y0 represents a random variable that is common to all nails, Xi is “local” variable 

that only affects the i-th nail, and Y0 and Xi are independently distributed.  If Y0 is 

lognormally distributed with a mean of mY0 and a coefficient of variation (cov) of v0, and 

Xi is lognormally distributed with a mean of 1.0 and a cov of vX, it can be shown that Yi is 

lognormally distributed, and the correlation coefficient between Yi and Yj for ji ≠ , ρij, is 

given by,  

( )2
0 / Yij vv=ρ  (4a) 

and 

22
0

22
0 XXY vvvvv ++=  (4b) 

where vY is the cov of Yi.  This shows that ρij is controlled by the cov values of Y0 and Yi.  

In other words, given vi, one can calculate the required v0 to achieve a target ρij using Eq. 

(4a), and the corresponding vX is then evaluated by solving Eq. (4b).  Therefore, for given 

vY, the degree of correlation can be easily controlled by changing the value of v0.  This 

model will be used to generate the correlated nail properties (i.e. fm, k0 and γ) for all nails 
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used to fasten the panel that are needed to evaluate the panel uplift capacity. 

 

3.3 Modeling the spatially and temporarily varying wind pressure 

The geometry and presence of surrounding buildings or houses, as well as the wind 

direction affect the wind pressure coefficient on roof panels (Surry and Stathopoulos 

1978, Simiu and Stathopoulos 1997, Kopp et al. 2005).  These coefficients can be 

measured from boundary layer wind tunnel experiments and results from the Boundary 

Layer Wind Tunnel at the University of Western Ontario for a test model are used as the 

basis to assign probabilistic model for wind pressure coefficient to be used in this study. 

The test model is shown in Figure 3.4.  The time history of the pressure coefficient for 

the model scale is obtained for each pressure tap for 3 minutes, at a sampling frequency 

of 400Hz for open country terrain (z0 = 0.01 m) and the reference mean wind speed of 

13.7 m/s (45 ft/s).  The ratio of the reference mean wind speed at the average roof height 

to the reference mean wind velocity equals 0.6984.  
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Figure 3.4 Locations of taps on the test model with the length scale of 1:50, 
representing a typical domestic dwelling with 4:12 gable roof, 
8 m roof eave height (dimensions are in the plot is in inches). 

 

To use the pressure coefficients for the full-scale, the relation between the sampling 

frequencies for the full-scale and the mode scale, 
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needs to be considered (Simiu and Scanlan 1996), where D is the length scale, f is the 

sampling frequency, U is the eave height mean wind speed, and the subscript FS and MS 
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denote the variables for the full-scale and model scale, respectively. For example, if the 

reference mean wind speed at the average roof height is 30 m/s, the full scale sampling 

frequency fFS determined by using Eq. (5) equals 25.08 Hz (i.e., 

50
1

6984.07.13
30400

×
×

×
=×=

FS

MS

MS

FSMS
FS D

D
U

Uff ). The total number of samples for each tap is 

71871, which corresponds to about 45 minutes full-scale wind load history for a 30 m/s 

reference mean wind speed at the average roof height. The pressure time histories for the 

taps on the roof are calculated by multiplying Cp (obtained from the time histories) and 

the reference pressure. 

Figure 3.4 identifies layout of the taps located on the roof of the test model.  There 

are more taps placed near the roof corners and roof edges, because the spatial variation 

and magnitude of the wind pressure coefficients is greater in these locations (St. Pierre et 

al. 2005).  The contour map of the instantaneous pressure coefficients is illustrated in 

Figure 3.5.  The variation of pressure coefficients on the roof is reflected in the code 

recommended values (NBCC 2005), which considers three typical wind pressure regions: 

field, edge and corner regions. 
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Figure 3.5 Illustration of the contour map of a point-in-time Cp value over the 
roof for a wind attack angle of 40o. 

 

To assess the spatial correlation coefficient of the wind pressure coefficients for roof 

panels located in the three pressure regions, records for the pressure taps on three panels 

labelled S34, S35, and S55 (shown in Figure 3.6a) are considered.  The tributary area is 

indicated by the dashed lines for each tap in the figure, where the pressure coefficient 

within each tributary area is considered to be uniform.  The time histories of the pressure 

coefficients for two pressure taps within S34 are illustrated in Figure 3.6b, indicating that 

they are not fully correlated or synchronized. 

To assess the statistics of the wind pressure coefficient, Cp, the time histories of the 

pressure coefficient from the taps within each of the considered panels (i.e., S34, S35, 

and S55) are employed.  The estimated mean and standard deviation values of Cp for each 
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tap are presented in Table 3.3.  In general, the standard deviation of Cp for taps in the 

field wind pressure region is less than that in the edge and corner regions. 

 

Table 3.3 Statistics and fitted probabilistic model of the wind pressure coefficient for taps 
located on the three panels shown in Figure 3.6a. 

Tap number Mean  
Standard 
deviation  

Probability distribution 
type 

2412 -0.654 0.236 Gumbel (minimum)  

2413 -0.749 0.293 Gumbel (minimum) 

2414 -0.972 0.288 Longnormal* 

2415 -1.320 0.392 Normal 

2416 -1.303 0.432 Longnormal* 

2501 -1.269 0.411 Longnormal* 

2614 -1.011 0.311 Normal 

2615 -1.052 0.318 Normal 

2616 -1.010 0.344 Gumbel (minimum) 

2701 -1.096 0.416 Gumbel (minimum) 

2711 -0.883 0.257 Normal 
* In these cases, the lognormal model is fitted to the negative values of the 

wind pressure coefficients. 
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6a)  Layout of three typical panels  
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b)  Illustration of pressure time histories at two locations for a wind attack angle 

of 40o. 
Figure 3.6 Layout of three panels and illustration of pressure time histories at locations 

on panel S34 for 30m/s reference wind speed at the average roof height. 
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To assign the probability distribution of the wind pressure coefficient, we consider 

several commonly employed probabilistic models: Normal, Lognormal, Weibull, Gamma 

and Gumbel (maximum and minimum) distributions.  We use these distributions to fit 

samples of the pressure coefficient from each tap shown in Figure 3.6a, and the best 

distribution type for each tap is shown in Table 3.3.  The selection of the best fit 

distribution is based on the Kolmogorov-Smirnov goodness-of-fit test results (Benjamin 

and Cornell 1970) and using samples from one minute pressure coefficient time histories. 

In all cases, the best model could not be rejected at the 5% significance level.  Figure 3.7 

shows the fitted probabilistic models for different taps.  The fitting shows that the 

probability distribution of pressure coefficient is not always Gaussian which is in 

agreement with that observed by Cope et al. (2005).  For simplicity in the parametric 

investigation of the panel uplift capacity carried out in the following sections, the 

pressure coefficient is considered to be normally distributed for all cases. 
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Figure 3.7 Samples of pressure coefficients presented on different probability papers. 
 

 

The estimated correlation coefficients for Cp between any two pressure taps within 

each panel identified in Figure 3.6a are calculated and summarized in Table 3.4.  The 

correlation coefficient matrix shown in the table for Panel S35 indicates that the value of 

an element in the matrix decreases as the element moves away from the diagonal.  This 

suggests that the correlation decreases as the distance between the taps increases, which 

is expected.  The observed trend is also found in the matrix for Panel S55 (e.g. for the 

instance where the correlation coefficient between the Cp values from Taps 2614 and 

2711 is large, which is expected as the distance between these two taps is small).  In all 

cases, the decrease in the correlation coefficient is not very drastic.  It is interesting to 
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note that the degree of correlation for the taps in Panel S34 is no more significant than 

those for the taps in Panel S35 or in Panel S55. 

Table 3.4 Correlation coefficients between wind pressure coefficients for different taps in 
the three considered panels shown in Figure 3.6a and for a wind direction of 40º 
illustrated in Figure 3.4. 

Panel Tap 2412 2413    
2412 1 0.64    S34 
2413 symmetric 1    

Panel Tap 2414 2415 2416 2501  
2414 1 0.78 0.62 0.57  
2415  1 0.87 0.81  
2416 Symmetric  1 0.88  

S35 

2501    1  
Panel Tap 2614 2615 2616 2701 2711 

2614 1 0.78 0.52 0.51 0.85 
2615  1 0.74 0.70 0.68 
2616   1 0.84 0.48 
2701  symmetric  1 0.49 

S55 

2711     1 
 

To better appreciate the spatial correlation of Cp, the values of the correlation 

coefficient, ρc, shown in Table 3.4 for Panels S34, S35, and S55 are plotted in Figure 3.8, 

where the abscissa represents the distance, d, between two taps used to evaluate ρc.  The 

figure shows the typical exponential decay of the correlation coefficient versus distance 

found in the literature (Simiu and Scanlan 1996).  By adopting the following 

mathematical model (Davenport 1961), 

( )λ−=ρ /exp dc  (6) 

and carrying out a nonlinear regression analysis, the obtained value of the correlation 

length λ equals 2.7 m for data associated with Panel 35, and 1.8 m for data associated 

with Panel 55.  Furthermore, the predicted ρc values for λ equal to 1.45 and 3.7 m provide 
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the lower and upper bound to the samples of ρc shown in Figure 3.8, respectively.  

Therefore, it is deemed adequate that a value of λ within 1.5 and 3.0 is to be used in the 

following sections. 
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Figure 3.8 Correlation coefficients of the wind pressure coefficients. 

 

Figure 3.8 also compares the afore-mentioned correlation coefficients to those 

reported by Datin and Prevatt (2009), which were obtained based on more dense arrays of 

pressure taps located in the corner region for an angle of attack of zero degrees.  The 

figure shows that their values are higher than those found in this study for d < 1 m, and 

are in agreement with ρc reported in Table 3.4 for d > 1 m. 

 

3.4 Uplift capacity evaluation procedure 

To assess the impact of spatially varying load on the panel uplift capacity, the 
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capacity with the spatially varying Cp is estimated and compared with that estimated 

under uniform Cp.  These are elaborated as follows. 

Consider that the point-in-time pressure coefficient is available, as they could be time 

history measurements from experiments.  If the panel with known properties of the 

fasteners is subjected to spatially uniformly/non-uniformly distributed wind pressure, its 

uplift capacity is estimated using the adopted nonlinear dynamic analysis with a ramp 

load (NDA-RL) (see Chapter 2).  As mentioned in the introduction, the adoption of this 

method is justified since the method predicts the capacity that is close to that predicted by 

the incremental dynamic analysis (IDA) method; it demands much less computing effort 

as compared to the IDA method and avoids the non-convergence problem often 

associated with the nonlinear static pushover analysis.  The NDA-RL considers a ramp 

load defined by spatially distributed pressure, whose magnitude increases linearly with 

time and proportional to pressure coefficients; the incipient failure uplift wind load that 

equals the ultimate total reaction force is obtained from the time history of the total 

reaction force.  The rate of increase for the ramp load can be taken equal to the pressure 

associated with the yield capacity of the panel divided by twice of the first vibration 

period, where the yield capacity can be approximated by using the tributary method 

(Cunningham 1992, Murphy et al. 1996, Sutt 2000) as the obtained capacity curve is not 

very sensitive to the selected yield capacity. 

For a panel with an area, AT, under (spatially) uniformly distributed wind pressure 

with pressure coefficient Cp at a reference wind mean speed of Ur, the total applied force 

FT for a reference wind mean speed of Ur (at the average roof height) is given by, 

TprT ACUF 2

2
1

ρ= , (7) 
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where ρ is the air density that is taken equal to 1.26 kg/m3.  Let FTF denote the incipient 

failure uplift wind load predicted by the NDA-RL.  This incipient failure wind load 

represents the uplift capacity of the panel, and corresponds to a critical reference mean 

wind speed at the average roof height UCR ( ( )TpTFCR ACFU ρ= /2 ).  It must be 

emphasized that UCR is associated with the point-in-time pressure coefficient rather than 

the gust pressure coefficient.  If the gust pressure coefficient rather than the point-in-time 

pressure coefficient in the above calculation is used, UCR will be decrease accordingly. 

Now, consider that the panel is subjected to the spatially varying wind pressure for a 

given time that results in FT, 

( )∑ρ= iirT ACUF 2

2
1  (8) 

where Ci is the pressure coefficient applicable to the i-th tributary area Ai.  One can also 

carry out the NDA-RL to estimate the uplift capacity of the panel FTF.  Its corresponding 

UCR can be calculated using, 

( )∑ρ= iiCRTF ACUF 2

2
1  (9) 

Unfortunately, the calculated FTF and its corresponding UCR are not applicable for other 

combinations of Ci, because the values of Ci vary both spatially and temporally.  That is, 

given a value of Ur, two combinations of Ci values can lead to the same FT that is 

calculated using Eq. (8).  However, one combination may not result in the failure of the 

panel, while the other does. This implies that the use of the total applied wind force (or 

reaction force) alone to characterize the uplift capacity of the panel may not be 

inadequate for the spatially and temporally varying wind load.  In such a case, we could 

characterize the capacity of the panel directly based on the estimated UCR.  The use of 
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UCR to characterize the uplift capacity can be advantageous since it could be used directly 

to represent the fragility curve. 

We can define an equivalent uniform wind pressure coefficient CE, 

( ) TiiE AACC /∑=  (10) 

For the uniformly distributed wind pressure with pressure coefficient equal to CE, as 

explained earlier, we evaluate the uplift capacity of the panel, denoted as FTF,E.  Its 

corresponding critical reference mean wind speed at the average roof height, denoted as 

UCR,E, is calculated from 

TEECRETF ACUF 2
,, 2

1
ρ= . (11) 

The difference between the uplift capacity of the panel under spatially varying wind 

pressure and uniform wind pressure can then be characterized using the ratio Rn, defined 

as, 

ETFTFn FFR ,/=  (12) 

which can be shown to be equal to ( )2
,/ ECRCR UU  by using Eqs. (9) and (11). 

In the above discussion, it was considered that the pressure coefficients for all taps in 

a panel are available for a given instance. By considering the time-varying nature of the 

wind pressure coefficient, samples of the uplift capacity of the panel, critical reference 

mean wind speed at the average roof height (which is associated with the point-in-time 

rather than the gust pressure coefficient) and Rn can be obtained.  Each sample of Rn is 

calculated for the sampled pressure coefficients from the taps at the same time.  The 

statistics of the samples of Rn that take into account the uncertainty in wind pressure 

coefficients are used to characterize the uplifting capacity of the panel. 
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Furthermore, the above procedure can be repeated to incorporate the uncertainty in 

the nail withdrawal behaviour to statistically characterize FTF, UCR and/or Rn.  This can be 

done, by repeatedly sampling the properties of the fasteners, and the pressure coefficients 

from the time histories, and carrying out the NDA-RL to evaluate FTF, UCR and/or Rn. 

For the parametric analysis aimed at assessing the impact of the correlation of wind 

pressure on the estimated uplift capacity or Rn, rather than sampling the pressure 

coefficients from the time histories obtained from wind tunnel test, they are sampled from 

the probabilistic model discussed in Section 3.0 with the assigned correlation structure 

shown in Eq. (6).  Note that if the pressure coefficients are considered to be correlated 

and non-normally distributed, their samples can be obtained using the Nataf 

transformation system (Der Kiureghian and Liu 1986).  A flow chart outlining the above 

analysis procedure is given in Figure 3.9. 
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Figure 3.9 Flow chart for evaluation of panel capacity.  

 

3.5 Characterizing the Panel Uplift Capacity 

3.5.1 Uplift capacity of the panel 

Before assessing the impact of the spatially and temporarily varying wind pressure on 

the uplift capacity of the panel, we mention that if the uncertainty in the nonlinear nail 

withdrawal behaviour is ignored and only the mean values of the model variables shown 

in Table 3.2 are used, FTF equals 10418 N for the panel shown in Figure 3.1 subjected to 
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uniform wind pressure coefficient (see Chapter 2). 

To investigate the impact of the spatially varying wind pressure on the estimated FTF, 

first, we consider the three panels: S34, S35, and S55, and ignore the uncertainty in the 

nail withdrawal behaviour.  For each panel, we directly use the samples of the wind 

pressure coefficients from the time histories obtained from the wind tunnel test, and 

evaluate FTF, UCR, FTF,E, UCR,E, and Rn following the simulation procedure described in 

the previous section and outlined in Figure 3.9.  For each calculation, the point-in-time 

wind pressure coefficients from the taps are employed.  For this and the remaining 

analyses, a simulation cycle of 500 is considered, which represents about 20 seconds of 

full scale pressure coefficients time history with a reference mean wind speed of 30 m/s.  

The statistics of FTF, UCR, FTF,E, UCR,E, and Rn calculated from the samples are shown in 

Table 3.5.  The table indicates that the mean and cov of FTF do not differ significantly for 

different panels, and that the cov values are about 5%.  This implies that the statistics of 

the uplift capacity of the panel in terms of FTF are insensitive to the spatially varying 

wind pressure coefficient if the uncertainty in nail withdrawal behaviour is negligible.  

The table shows that FTF,E is identical and equal to the value mentioned in the previous 

paragraph.  This is expected as the uncertainty in nail withdrawal behaviour is ignored 

and the wind pressure is considered to be uniform.  However, as the pressure coefficients 

at the taps vary spatially and temporally, the uplift capacity of the panel in terms of UCR 

or UCR,E is significantly uncertain with a cov of up to 17.1%.  The large cov is caused by 

the temporally varying wind pressure coefficients.  It must be noted that as the evaluation 

of UCR or UCR,E is based on the point-in-time pressure coefficients, UCR or UCR,E represent 

the panel uplift capacity associated with the point-in-time pressure coefficients and do not 
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include the gust effect.  The fact that the mean of Rn shown in Table 3.5 is close to 1 and 

the cov of Rn is small indicates that the use of the equivalent uniformly distributed wind 

loading with the pressure coefficient of CE to evaluate the uplift capacity of panel is 

adequate if the uncertainty in the nail withdrawal behaviour can be ignored.  No attempt 

is made in finding the best fit probability distributions to the samples of FTF, UCR, UCR,E, 

and Rn because the inherent uncertainty in the nail withdrawal behaviour, which must be 

considered in assessing the uplift capacity of the panel was not incorporated in this case. 

Table 3.5 Statistics of panel uplift capacity determined by using samples of wind 
pressure coefficients determined from wind tunnel test and ignoring the uncertainty in 
nail withdrawal behaviour. 

Parameter and statistics Panel S34 Panel S35 Panel S55 

Mean (N) 10215 10264 10238 FTF 
Cov 0.052 0.054 0.052 

Mean (N) 10422 10422 10422 FTF,E 
Cov - - - 

Mean (m/s) 97.4 73.1 80.1 UCR 
Cov 0.167 0.155 0.151 

Mean (m/s) 100.8 75.1 82.8 UCR,E 
Cov 0.171 0.154 0.148 

Mean 0.978 0.983 0.982 Rn Cov 0.052 0.054 0.052 
Note: UCR and UCR,E are associated with the point-in-time pressure coefficient 
rather than the gust pressure coefficient.  If the gust pressure coefficient rather 
than the point-in-time pressure coefficient is used, UCR and UCR,E will be 
decreased accordingly. 

 

If we repeat the above analysis but considering that the nail withdrawal behaviour for 

the nails are independent (ρij = 0) or fully correlated (ρij = 1), the obtained statistics of 

FTF, UCR, FTF,E, UCR,E and Rn are summarized in Table 3.6.   
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Table 3.6 Statistics of the uplift capacity of the panel by considering the uncertainty in 
the nail withdrawal behaviour. 

Case Parameter Statistics Panel S34 Panel S35 Panel S55 
Mean (N) 9991 9890 9886 FTF cov 0.081 0.081 0.083 
Mean (N) 10138 10137 10138 FTF,E cov 0.074 0.076 0.074 

Mean (m/s) 94.1 71.4 78.6 UCR cov 0.195 0.164 0.150 
Mean (m/s) 94.8 72.2 79.7 UCR,E cov 0.197 0.164 0.151 

Mean 0.987 0.980 0.976 

 ρij = 0 

Rn Cov 0.061 0.056 0.063 
Mean (N) 10216 10329 10261 FTF cov 0.179 0.170 0.177 
Mean (N) 10833 10833 10833 FTF,E cov 0.154 0.154 0.154 

Mean (m/s) 97.2 72.8 79.9 UCR cov 0.198 0.184 0.174 
Mean (m/s) 100.2 74.7 82.2 UCR,E cov 0.193 0.179 0.168 

Mean 0.941 0.952 0.945 

ρij = 1 

Rn cov 0.063 0.055 0.056 
 

The results show in the table indicate that the mean and cov of FTF for the case with 

ρij = 0 are smaller than those for the case with ρij = 1.  The difference between the mean 

of FTF for the case with ρij = 0 is less than 5%, while the cov of FTF for the case with ρij = 

0 is about 50% of that for the case with ρij = 1, which is very significant.  The same trend 

was observed for UCR, FTF,E and UCR,E, although the differences between the cov values of 

UCR and UCR,E for the cases with ρij = 0 and ρij = 1 are much smaller.  The latter can be 

explained by noting that the uncertainty in the nail withdrawal behaviour significantly 

contributes to the uncertainty in the FTF and FTF,E, while the variability in both the nail 

withdrawal behaviour and the pressure coefficients adds to the variability of UCR and 

UCR,E.  In all cases, the mean of Rn shown in Table 3.6 is near unity and the cov of Rn is 
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small compared to those of FTF, UCR, FTF,E and UCR,E.  This suggests again that the use of 

the equivalent uniformly distributed wind loading with the pressure coefficient of CE to 

evaluate the panel uplift capacity is adequate.  Furthermore, comparison of the results 

shown in Tables 3.5 and 3.6 indicates that the incorporation of the uncertainty in the nail 

withdrawal capacity behaviour resulted in a significant increase in the cov of the panel 

uplift capacity.  Therefore, such an uncertainty must be considered in characterizing the 

uplift capacity of the panel. 

An exercise of fitting probability distributions to the samples of FTF, UCR, FTF,E, 

UCR,E and Rn is carried out using commonly employed probabilistic models: Normal, 

Lognormal, Weibull, and Gamma.  It is concluded that FTF, UCR, FTF,E, and UCR,E could 

be adequately modeled as lognormal variates.  In fact, the Kolmogorov-Smirnov 

goodness-of-fit test results (Benjamin and Cornell 1970) indicate that the lognormal 

model could not be rejected at the 5% significance level.  The samples and fitted 

distributions are presented in Figure 3.10 for Panel S35.  Samples and fitted distributions 

for other panels are not shown, as they exhibit similar fits.  It can be observed that FTF,E 

can be modeled as a lognormal variate.  However, none of the considered models exhibit 

good fits for the samples of Rn.  As the cov of Rn is much smaller than those of FTF, UCR, 

FTF,E, and UCR,E (see Table 3.6) and the mean of Rn is near unity, it is suggested that Rn 

could be assumed to be lognormally distributed for practical applications. 
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Figure 3.10 Samples of FTF, UCR, FTF,E and UCR,E plotted on lognormal probability 

paper for ρij = 0 and for ρij = 1. 
 
 

The nail withdrawal behaviour for nails used to fasten a panel could be partially 

correlated because they are constructed and serve under similar environment.  To see the 

effect of the partial correlation on the panel uplift capacity of the panel, the analysis for 

the fully correlated case is repeated but considering ρij equal to 0.5 or 0.8 or 0.9.  The 

obtained statistics of the FTF, UCR, FTF,E, UTF,E, and Rn are summarized in Table 3.7. 
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Table 3.7 Statistics of the uplift capacity of the panel by considering the partially 
correlated nail withdrawal behaviour. 

Case Parameter Statistics Panel S34 Panel S35 Panel S55 
Mean (N) 10049 9966 9962 FTF Cov 0.153 0.151 0.153 
Mean (N) 10350 10350 10350 FTF,E Cov 0.132 0.132 0.132 

Mean (m/s) 94.0 71.4 76.9 UCR Cov 0.199 0.175 0.157 
Mean (m/s) 95.5 72.8 78.4 UCR,E Cov 0.198 0.168 0.156 

Mean 0.970 0.962 0.962 

 ρij = 0.5 

Rn Cov 0.063 0.064 0.059 
Mean (N) 10087 10130 10071 FTF Cov 0.181 0.171 0.173 
Mean (N) 10575 10575 10575 FTF,E Cov 0.147 0.147 0.147 

Mean (m/s) 97.3 72.2 77.7 UCR Cov 0.256 0.179 0.179 
Mean (m/s) 99.9 73.9 79.7 UCR,E Cov 0.244 0.174 0.175 

Mean 0.951 0.956 0.950 

ρij = 0.8 

Rn Cov 0.069 0.066 0.061 
Mean (N) 10222 10183 10174 FTF Cov 0.183 0.172 0.177 
Mean (N) 10691 10691 10691 FTF,E Cov 0.151 0.151 0.151 

Mean (m/s) 94.6 71.9 77.5 UCR Cov 0.198 0.178 0.157 
Mean (m/s) 96.9 74.0 79.6 UCR,E Cov 0.197 0.174 0.155 

Mean 0.953 0.951 0.950 

ρij = 0.9 

Rn Cov 0.061 0.059 0.059 
 

Comparison of the results shown in Table 3.7 to those in Table 3.6 indicate that the 

statistics of the uplift capacity of the panel for partially correlated cases are within those 

for the fully correlated case and independent case.  The cov values of FTF and of FTF,E for 

ρij equal to 0.5 are about twice of those for ρij equal to 0.0.  The variation of ρij does not 

affect significantly the cov of UCR and UCR,E for each of the considered panels.  This 
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again indicates that the degree of uncertainty in UCR and UCR,E is significantly influenced 

by the uncertainty in the point-in-time wind pressure coefficients. 

 

3.5.2 Parametric investigation for panel uplift capacity 

The use of the pressure coefficients from the time histories obtained from wind 

tunnel test allowed us to assess the impact of the spatial variability of the wind pressure 

on the uplift capacity of the panel.  The assessment is specific to the considered panel and 

the wind direction used to obtain the time histories of the pressure coefficients.  To 

further investigate the effect of the correlated pressure on the uplift capacity of the panel, 

rather than using the time histories of the pressure coefficients from the wind tunnel test, 

we sample the pressure coefficients for the taps shown in Figure 3.6.  To generate 

samples of pressure coefficients, it is assumed that the statistics of the pressure 

coefficient shown in Table 3.3 are applicable and they can be considered to be normally 

distributed.  Furthermore, the pressure coefficients are considered to be spatially 

correlated with the correlation coefficient ρc defined by Eq. (6). 

The results for the cases where λ equal to 1.5, 2.0 and 3.0 m and having a ρij equal 

to 0.5 are shown in Table 3.8.  Comparison of the results shown in Table 3.8 to those 

depicted in Tables 3.6 and 3.7 indicates that in general the observations drawn from 

Tables 3.6 and 3.7 are also applicable to Table 3.8. 
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Table 3.8 Statistics of the uplift capacity of the panel using the simulated spatially 
correlated wind pressure coefficients and considering uncertainty in the nail withdrawal 
behaviour. 

Case Parameter Statistics Panel S34 Panel S35 Panel S55 
Mean (N) 9963 9832 9830 FTF Cov 0.160 0.156 0.165 

Mean (m/s) 97.6 70.9 77.7 UCR Cov 0.232 0.192 0.241 
Mean (m/s) 99.7 72.8 81.0 UCR,E Cov 0.241 0.193 0.223 

Mean 0.962 0.949 0.949 

 λ = 1.5 

Rn Cov 0.076 0.069 0.089 
Mean (N) 9975 9973 9915 FTF Cov 0.159 0.157 0.154 

Mean (m/s) 95.1 70.7 78.0 UCR Cov 0.228 0.196 0.183 
Mean (m/s) 97.1 72.1 79.8 UCR,E cov 0.233 0.190 0.182 

Mean 0.962 0.962 0.957 

λ = 2.0 

Rn cov 0.068 0.068 0.070 
Mean (N) 10010 10014 9966 FTF cov 0.159 0.152 0.159 

Mean (m/s) 95.7 72.7 79.6 UCR cov 0.242 0.198 0.202 
Mean (m/s) 97.6 74.0 81.3 UCR,E cov 0.247 0.194 0.203 

Mean 0.965 0.967 0.962 

λ = 3.0 

Rn cov 0.066 0.063 0.068 
Note:  Since in all cases the mean and cov of FTF,E are equal to 11942 (N) and 0.141, 
respectively, they are not shown in the table. 

 

It is often observed that nails may not be fastened properly or simply missing. To 

illustrate the effect of the missing nail on the panel uplift capacity, it is considered that 

Nail 11, or Nails 11 and 13 shown in Figure 3.1 are missing and that the nail withdrawal 

behaviour is uncorrelated (i.e., ρij = 0), although it is acknowledged in construction 

practice the pattern of the missing nails are random.  Note that Nail 11 (or Nail 13, or 21 

or 23) is the most critical nail for the panel uplift capacity.  After repeating the analysis 

that was carried out for the results presented in Table 3.6, for ρij = 0 but considering the 
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mentioned missing nails, the obtained statistics of the panel uplift capacity are shown in 

Table 3.9.  The results shown in the table again indicates that the mean of Rn is near unity 

and its cov is small as compared to that of FTF.  Comparison of the results shown in 

Tables 3.9 and 3.6 indicates that missing the single critical nail (i.e., Nail 11) could 

reduce the mean of the panel uplift capacity by about 7% whether the comparison is 

based on FTF or FTF,E.  For the case with two missing nails, the reduction in the mean of 

the panel uplift capacity is 13%.  In all cases, the increase in the cov of FTF is not 

significant. 

Table 3.9 Statistics of the panel uplift capacity considering the partially correlated wind 
load and missing nail effects. 

Case Parameter Statistics Panel S34 Panel S35 Panel S55 
Mean (N) 9067 9315 9347 FTF 

cov 0.089 0.083 0.083 
Mean (N) 9392 9392 9392 FTF,E 

cov 0.080 0.080 0.080 
Mean (m/s) 90.4 68.6 75.1 UCR 

cov 0.175 0.162 0.156 
Mean (m/s) 91.2 68.9 75.3 UCR,E 

cov 0.176 0.159 0.154 
Mean 0.968 0.993 0.996 

Missing 
Nail 11 

Rn 
cov 0.059 0.056 0.055 

Mean (N) 8846 8986 9016 FTF 
cov 0.088 0.095 0.097 

Mean (N) 9062 9062 9062 FTF,E 
cov 0.091 0.091 0.091 

Mean (m/s) 89.1 67.5 74.0 UCR 
cov 0.192 0.153 0.145 

Mean (m/s) 90.1 67.7 74.2 UCR,E 
cov 0.197 0.152 0.146 

Mean 0.977 0.993 0.997 

Missing 
Nail 11 and 

13 

Rn 
cov 0.060 0.056 0.064 
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3.6 Conclusions 

The numerical results presented in this study are focused on the assessment of the 

uplift capacity of the roof panel under spatio-temporally varying wind pressure.  The 

analysis considers the nonlinear nail withdrawal behaviour, and uncertainty in pressure 

coefficients and the nail withdrawal capacity.  The results indicate that the statistics of the 

panel uplift capacity in terms of the (ultimate) total reaction force are not sensitive to the 

spatially varying wind, but are significantly influenced by the adopted probabilistic 

model and correlation of nail withdrawal behaviour.  This is especially true for the 

coefficient of variation (cov) of the total reaction force.  Results also indicate that the use 

of the equivalent uniformly distributed wind loading, with the pressure coefficient equal 

to the weighted average wind pressure coefficient, provides sufficiently accurate 

estimates of the statistics of the uplift capacity of panel.  This approximate approach is 

therefore recommended for assessing the panel uplift capacity as it simplifies the analysis.  

The approximation introduces a modeling error with a bias close to unity and a cov of 

only 4% which is much smaller than those associated of the ultimate total reaction force 

ranging from 7% to 20%.  In all cases, the ultimate total reaction force of the panel could 

be modeled as lognormal variate. The investigation of the effect of missing nail on the 

uplift capacity indicates that missing a single critical nail could reduce the mean of the 

panel uplift capacity by 8%. 

The panel uplift capacity is also characterized by using the critical reference mean 

wind speed at the average roof height.  As expected, the statistics of the critical mean 

wind speed depend on the location of the roof panel because the magnitude of and 

uncertainty in the pressure coefficients are location dependent.  It must be noted that the 
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critical wind speed used to represent the uplift capacity of the panel is associated with the 

point-in-time pressure coefficients, and they do not incorporate the gust effect or 

exposure factor.  Also, statistical analysis shows that the spatial correlation can be 

modeled using an exponential model with correlation length within 1.5 m to 3.0 m. 
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CHAPTER 4 

THE EFFECTS OF MISSING NAILS ON THE PANEL UPLIFT CAPACITY 

AND RELIABILITY OF ROOF PANELS UNDER WIND LOAD 

 

4.1. Introduction 

The damage to and insured losses of light frame wood houses caused by windstorms 

are rising.  This trend is partly due to increased population and construction in the coastal 

areas, and possibly caused by increased number of high wind events.  The failure of a 

single roof panel has the potential to increase insured losses dramatically due to water 

penetration during wind storms (Sparks et al. 1994).  This problem is compounded by the 

fact that wind-induced failure is frequent and often initiates at roof sheathing panels.  

This is true even for newer homes built to more recent and stringent building codes 

(Gurley et al. 2006). 

Numerical and experimental investigations have been conducted to investigate the 

uplift capacity of typical roof sheathing panels, considering that the wind pressure can be 

treated as a time-invariante or static uniform pressure (Mizzell 1994, Rosowsky and 

Schiff 1996, Sutt 2000).  The Insurance Research Lab for Better Homes (IRLBH) at the 

University of Western Ontario, a state-of-the-art test facility, is equipped with pressure 

loading actuators, which allows the investigation of the performance of houses under 

environmental actions, including full-scale wood frame houses under wind loading. 

An inspection of the results from damage surveys (Allen 1986a) and details of newly 

constructed houses indicates that, similar to any other construction or manufacturing 

process, some of the nails used to fasten the roof panels to the roof trusses may be 
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missing or improperly installed.  The missing or improperly fastened nails are likely to 

affect the panel uplift capacity and its reliability under wind load. 

The influence of construction quality on the reliability of structures is a well-known 

problem.  Ellingwood (1987) indicated that it is not surprising that structural failures 

rarely occur because of high loads and low strengths, since design codes are developed to 

cope with the uncertainty in loads and structural resistance.  The proportion of failures 

attributed to human error varies from about 75% to 90% (Matousek 1982, Madsen et al. 

1986, Melchers 1989, Stewart 1993).  However, error in construction is difficult to 

quantify.  This is partially due to limited accessibility to construction sites to carry out 

detailed inspection, as well as the fact that failures attributed to poor construction quality 

or human error are not an integral part of design code calibration.  The subject of human 

error and structural practice was also discussed by Allen (1986b) in terms of how 

mistakes are made and discovered.  As the building process involves a wide variety of 

tasks carried out by humans, research focused on human error needs a multidisciplinary 

approach with expertise from psychology, forensic engineering, sociology and quality 

management (Atkinson 1998).  This range of consideration is valuable, but is beyond the 

scope of this study.  Rather, we take the advantage of having complete access to the 

house during the construction process of the two-story full-scale wood frame test house at 

the IRLBH facility for the purpose of quality inspection.  More specifically, we inspected 

and surveyed the fastening of the roof panel, nail-by-nail, for the full-scale two-story test 

house, which was constructed at the IRLBH facility (Surry et al., 2005; Bartlett et al., 

2007; Kopp et al., 2010) by students from Fanshawe College in London, Ontario, Canada.  

The quality of the construction, according to more than 20 local building inspectors, was 
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representative of average construction quality. 

The collected information on the quality of fastening was employed in this study to 

assess the frequency of missing or improperly installed nails used to fasten the plywood 

roof panels.  This frequency is incorporated in assessing the roof panel uplift capacity.  

For the assessment of the statistics of the panel uplift capacity, a spatio-temporally 

varying wind pressure was considered, a finite element model is used to represent the 

panel and fasteners and a nonlinear dynamic analysis with ramp load (NDA-RL) is 

employed.  The use of the NDA-RL is justified because it provides sufficient accurate 

estimates of the panel uplift capacity (see Chapter 2) as compared to those obtained based 

on the nonlinear incremental dynamic results.  Parametric investigation of the uplift 

capacity of the panel is carried out by considering nonlinear force-displacement 

behaviour of fasteners.  A comparison of the statistics of the uplift capacity with and 

without the missing or improperly fastened nails is carried out.  Also, the impact of 

considering and ignoring the missing or improperly fastened nails on the estimated 

reliability of roof panel under wind loading is presented. 

 

4.2.  Construction error: the case of improper fastening of roof panels 

One of the major contributing factors to structural failure is human error or 

construction error, which may be defined as “significant departure from standard 

practice” (Nowak and Collins 2000).  However, the quantification of the human error in 

practice is a complex task.  In this section, the assessment of the human error in 

construction is very specific in that it focuses on the quality of the fastening of the 

plywood roof panel to the roof trusses.  Missing nails (i.e., nails at specific locations are 
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required but missing) and improperly fastened nails (i.e., nails that have penetrated to the 

roof panels but missed the roof trusses) are considered to be caused by human error. 

 

a) Full scale test house during construction (Modification has been made to avoid 
commercial issue.). 

 

b) Full scale house after installing brick veneer walls. 

Figure 4.1 Photos of the two story test house. 
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The assessment of the statistics of the missing or improperly installed nails is carried 

out based on the information gathered from the construction of the full-scale two-story 

test house at the IRLBH (Bartlett et al., 2007; Kopp et al., 2010).  The testing structure is 

a full-scale two-story wood frame house, shown in Figure 4.1, with brick veneer which 

was built with standard building technology and normal construction procedure. The 

quality of construction, according to more than 20 local building inspectors, was 

representative of current industry standard.  In other words, the quality of the 

construction of this “as-built” house is no better or no worse than that of a typical 

Canadian residential house.  This two-story test house has plane dimension of 9.3 m × 9.3 

m, an eave height of 5.2 m and a gable roof slope of 4:12.  The ½ inch (nominal thickness 

11.5 mm) plywood panels were used as roof panels; 8d common nails (with 63 mm (2.5”) 

length and 3.4 mm (0.133”) diameter) were installed using nail guns to fasten the panels 

to the roof trusses constructed of 2”×4” lumber.  The fastening schedule for the roof 

panels used is based on that recommended by the NBCC (2005), which considers a nail 

spacing of 150 mm along the edge supports and 300 mm along the intermediate supports.  

Illustrations of the roof panel connection tolerance can be found in (NAHB Research 

Center 2003). 

The inspection and survey of the fastening for the roof were carried out immediately 

after the completion of the construction of roof panels and before the installation of 

shingles.  Extensive photos of the roof top were taken, and the location of the nails along 

each roof truss was measured.  Also, a survey of the adequacy of the fastening was 

conducted in the attic to see whether a nail appearing on the top of the roof panel had 

missed the roof truss.  Nails that were not properly installed were identified by pairing the 
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locations of nail heads and nails that missed the indented frame.The information on the 

fastening obtained from the survey is shown in Figure 4.2 and Table 4.1.   

 
a) Surveying information on the nails (nail locations are shown in dots; improperly 
installed nails are marked as ‘×’, and missing nails are marked with ‘?’). 
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b) The typical improperly installed nail 
 
Figure 4.2 Surveying information on the fasteners and roof panel layout. 

 

Figure 4.2 shows the locations of the properly installed nails as well as the improperly 

installed nails.  It also shows the locations where nails are required but are missing.  Note 

that if no human error is involved and the recommended fastening schedule in the NBCC 

(2005) is followed, the number of the properly installed nails to fasten the roof panels is 

equal to 33 for a standard roof panel.  There are 1467 nails that are properly installed to 

fasten the roof panels; there are 18 improperly installed nails as they missed the roof 

trusses, and 5 missing nails as the actual nail spacing for the nails along the direction of 

the roof truss used to fasten the panel is greater than 1.5 times of the specified nail 

spacing. The panel numbering is also shown in Figure 4.2, where “N” and “S” are used to 

identify whether the panels are on the north or south sides of the roof ridge. 
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Table 4.1 Survey information on missing nails. 
Panel label nf Pf p(nf) 

Typical Non-typical    
N22, N52 - 3 0.074 0.011 
S51, S53 N54, S45 2 0.074 0.074 

N32, N42, S33, S34, S43 N21, S12, S13, S32 1 0.185 0.305 
N53, N51, N44, N43, 
N35, N33, N31, N24, 

N23, S22, S23, S24, S31, 
S35, S42, S44, S54, S55 

other panels 0 0.667 0.607 

Note:  nf = Number of missing or improperly installed nails; Pf = frequency that a typical 
panel has nf missing or improperly installed nails (from observation); p(nf) is 
calculated using Eq. (1) considering nf missing nails in a typical panel that requires 
33 nails. 

 
For simplicity, the missing or improperly installed nail will be referred to as “missing 

nail” in the following.  Based on the information listed in Table 4.1, it can be observed 

that there are 15 panels with at least one missing nail, and there are 2 panels with up to 3 

missing nails, one of which is located at the north edge of the roof that is likely to 

experience high wind pressure. Although most of the observed missing nails are located 

on the panel edge supports, there is no evidence that the missing nail only occurs on such 

locations as the required number of fasteners for the edge support is greater than that for 

the intermediate support.  It is noted that the missing nail statistics listed here are based 

on a single typical “as-built” Canadian residential house. 

If the occurrence of the missing nail is assumed to be spatially homogeneous as there 

is no strong evidence to suggest otherwise, the rate of missing nail calculated using the 

information obtained from surveying equals 1.5% (=(18+5)/(1467+18+5)).  By 

considering that the occurrence of the missing nail follows the binomial process with the 

probability of an intended nail fastening being missing, p, equal to 1.5%, the probability 

that there are k missing nails for panel that requires n fasteners, p(k), is given by,  
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The calculated p(k) for a typical roof panel with fastening schedule recommended by 

the NBCC code (see Figure 4.3), is shown in Table 4.1.  Comparison of the calculated 

probabilities with those obtained directly from the survey indicates that the model could 

be considered adequate.  Note that we did not scrutinize possible splitting of the lumber 

in the roof panel due to nail installation, as visual inspection indicates that this is not a 

problem for this test roof. 

 

 
Figure 4.3 Nail schedule recommended by NBCC (2005) for typical roof panel.
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4.3. Modeling and procedure for evaluating the uplift capacity 

The typical plywood roof sheathing panel shown in Figure 4.3 is modeled using 4–

node shell element with 6 degrees of freedom at each node implemented in ANSYS 

(ANSYS Inc 2005), considering both bending and membrane stiffness to allow large 

deflection capability.  As the Douglas-fir is the common wood species used to 

manufacture plywood panels (Canadian Plywood Association 2005), it is assumed that 

the modulus of elasticity of the plywood roof panel, E, equals that of Douglas-fir along 

the longitudinal grain, which is listed in Table 4.2. 

A nonlinear force-displacement relation with the statistics of model parameters 

summarized in Table 4.2 is adopted to represent nail withdrawal behaviour.  The model is 

based on studies by Groom and Leichti (1993) and Foschi (2000), and is discussed in 

Chapter 2. The model does not incorporates the effects of shear (Sutt 2000) or the edge 

bending moment effect (Dao and van de Lindt 2009), since these effects are considered to 

be negligible for the uplift capacity of panel under uplift wind pressure with the fastening 

schedule shown in Figure 4.3.  Although the nonlinear spring is unlikely to sustain 

compression under uplift wind pressure, for completeness, the nail is modeled using a 

linear spring with the stiffness equal to AE if the nonlinear spring is under compression, 

where A (=0.0052 m2) represents the contact area of sheathing with the 2”×4” stud. 
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a) Distribution of pressure taps for model test 

 

 
S34 S35 S55 

b)  Pressure taps locations for the selected panels  
 

Figure 4.4 Locations of pressure taps and the selected panels (‘+’ is used to mark the tap 
location, and dashed lines are used to define the tributary area for the pressure taps). 
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Table 4.2 Summary of the models used to represent the roof panel, the withdrawal behaviour of the nails and their correlation, and the 
characteristics of the wind pressure coefficients.  

Model Parameter Value 
Roof panel modeled as linear elastic Modulus of elasticity, E 10.45 GPa 
Nail withdrawal model: The relation between the force, F, 
and displacement along the nail shank, D 
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( 0Q , 1Q , 2Q , 3Q ) are model 
parameters for 8d common nail; 
the displacement dm is evaluated from 
the second equation for F = fm. 

Q0 = 121 
Q1 = 1×105

 
Q2 = 0.9 
Q3 = 2.6 

Nail under compression:  The nail is modeled using a linear 
spring with the stiffness equal to AE. 

A = the contact area of panel with the 
2”×4” stud 

A = 0.0052 m2 
 

Multiplicative model for correlated nails: a random variable 
Yi, representing fm or k0 or γ, for the i-th nail is expressed as, 

ii XYY ×= 0 , ni ,,1L= .  The correlation coefficient between 

Yi and Yj for ji ≠ , ρij, equals 
2
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⎝
⎛ ++ XX vvvvv  

Y0 ∈LN(mY0, v0) and  
Xi ∈LN(1.0, vX), where LN(m,v) 
denote a lognormally distributed 
random variable with mean of m and 
coefficient of variation of v. 

Variable       Mean             cov 
K0 (N/m)     4171521.2      0.39 
fp (N)           680.6 0.20 
fm (N)       805.1 0.17 
dm (mm)       0.254 0.38 

Model for wind pressure coefficient Ci:  For the parametric 
investigation, Ci is considered to be normally distributed, 
although it is acknowledged that in some cases other 
probability models could be assigned (see Chapter 2).  The 
spatial correlation ρc between Ci for different taps is 
considered to be given by  ( )λ−=ρ /exp dc , where d is 
distance between two taps and the correlation length λ takes 
a value within [1.5, 3.0]. 

Tap number, mean of Ci and 
coefficient of variation (cov) of Ci for 
the taps shown in Figure 4.4 for the 
selected panels 

Tap # Mean cov 
2412 0.289 0.112 
2413 0.362 0.142 
2414 0.513 0.166 
2415 0.570 0.185 
2416 0.582 0.195 
2501 0.574 0.194 
2614 0.442 0.141 
2615 0.462 0.151 
2616 0.479 0.171 
2701 0.476 0.184 
2711 0.422 0.143 

Note:  Ci is used to represent the absolute value of the negative wind pressure coefficient. 



 95

The nail withdrawal behaviour in a roof panel is likely to be correlated as the nails 

serve under similar environment and are fastened to the same, or similar, timber species.  

Because statistical data for assessing this correlation is lacking, a multiplicative model for 

each model parameter used to represent the nail behaviour (see Table 4.2) is adopted for 

the parametric investigation. 

The pressure coefficients on the roof panels are affected by the geometry of 

surrounding structures, and the wind direction (Surry and Stathopoulos 1978, Simiu and 

Stathopoulos 1997, Kopp et al. 2005).  The pressure coefficients are taken from 

measurements obtained from the boundary layer wind tunnel of a test model with a scale 

of 1:50, representing the full-scale wood frame test house with distribution of the 

pressure taps shown in Figure 4.4a.  The obtained statistics of the point-in-time pressure 

coefficients are listed in Table 4.2 for a few selected pressure taps located on Panels S34, 

S35, and S55 shown in Figure 4.4b.  The statistics are obtained from 71871 samples for 

each tap, representing about 3 minutes time history for the model scale for a reference 

mean wind speed of 13.7 m/s (or about 45 minutes full-scale pressure history for a 30 m/s 

mean wind speed at the average roof height).  Furthermore, based on the Kolmogorov-

Smirnov goodness-of-fit and statistical analysis, it was observed that in most cases, the 

point-in-time wind pressure coefficients could be modeled as a normal variate (see 

Chapter 2); and that the spatial correlation of the point-in-time pressure coefficients can 

be modeled using an exponential model depicted in Table 4.2 with a correlation length λ 

between 1.5 m and 3.0 m. 

To assess the panel uplift capacity, including the effect of human error, we use the 

nonlinear dynamic analysis with ramp load (NDA-RL) since it provides sufficient 
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accurate estimates of the panel uplift capacity as compared to that obtained from the 

nonlinear time history dynamic analysis considering the wind pressure time histories (see 

Chapter 2).  For a panel subjected to the spatially varying wind pressure for a given set of 

point-in-time pressure coefficients, Ci, applicable to the i-th tributary area Ai, within the 

panel, the NDA-RL is used to estimate the uplift capacity of the panel FTF, which equals 

the maximum reacting force that the panel can sustain.  Its corresponding critical mean 

wind speed UCR (for the same reference height used to evaluate Ci, say at the average roof 

height) can be calculated using, 

( )∑ρ= iiCRTF ACUF 2

2
1  (2) 

where ρ is the air density that is taken equal to 1.26 kg/m3.  Note that in this equation as 

UCR is associated with the point-in-time pressure coefficient rather than the gust pressure 

coefficient, UCR will be reduced if the gust pressure coefficient is used in this calculation.   

Since the calculated FTF and UCR vary with different combinations of Ci values, to 

possibly simplify the characterization and assessment of the panel uplift capacity, we 

evaluate it by considering that the panel is under an equivalent spatially uniform pressure, 

CE, 

( ) TiiE AACC /∑=  (3) 

The estimated capacity under the equivalent uniform pressure, denoted by FTF,E, and its 

corresponding critical reference mean wind speed, denoted as UCR,E, is calculated from, 

TEECRETF ACUF 2
,, 2

1
ρ=  (4) 

In the above equation and throughout this study, it is understood that the negative 

pressure, or suction, is of interest, and Ci is used to represent the absolute value of the 
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negative pressure coefficient.  The ratio between FTF  and FTF,E, denoted by Rn, which can 

be shown to be equal to ( )2
,/ ECRCR UU , can be used to characterize the adequacy of using 

FTF,E, and UCR,E to approximate FTF and UCR.  A flow chart that outlines the analysis 

procedure based on the simulation technique (Rubinstein and Kroese 2007) for evaluation 

of the panel uplift capacity by including or excluding the human error is presented in 

Figure 4.5. 

Start
Evaluation of panel 

uplift capacity

Define probability 
models for panels and 

nail connections

Define the probability model 
of wind pressure coefficient Ci

for the pressure taps

Sample nail and 
panel properties

Evaluate the 
equivalent uniform 

wind load

Sample point-in-
time pressure 

coefficient for the 
corresponding 
tributary area

Evaluate panel reaction 
force for different loading 

conditions

Panel capacity in terms of FTF, 
FTF,E, UCR, UCR,E, and Rn

End

Define probabilistic 
missing nail model

Define the panel and 
fasteners

Enough 
samples?

yes

no

 

Figure 4.5 Flow chart for evaluation of the roof panel uplift capacity.  
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4.4. Analysis results 

4.4.1 Spatially uniform wind pressure coefficient 

In this section, investigation of the panel uplift capacity under spatially uniform 

pressure is carried out by considering the uncertainty in nail withdrawal behaviour and by 

including construction error modeled as a binomial process with p = 1.5%.  The 

calculated statistics of FTF from 500 samples obtained following the procedure presented 

in Figure 4.5 are summarized in Table 4.3 for ρij equal to 0, 0.5, 0.8, 0.9, and 1.0.  Also, 

the corresponding statistics resulting from neglecting the construction error are estimated 

and compared in Table 4.3.  The comparison indicates that the mean of the predicted 

panel uplift capacity by considering the construction error with p = 1.5% is 6% lower 

than that without construction error.  Also, the cov value of FTF for the case with 

construction error is consistently higher than that without construction error.  The 

samples of FTF for the case with construction error are plotted on lognormal probability 

paper in Figure 4.6, indicating that the roof uplift capacity can be modeled as a lognormal 

variate.  Similar analysis shows that FTF can be adequately modeled as a lognormal 

variate if there is no construction error. 
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Figure 4.6 Empirical probability distribution of the uplift capacity considering 
construction error with p = 1.5%. 
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Table 4.3 Estimated statistics of uplift capacity with and without construction error. 

Without construction error 
With construction error, 

 p = 1.5% 

Condition & value of ρij Mean (N) 
Coefficient 
of variation Mean (N) 

Coefficient 
of variation 

Fully correlated    1 10893 0.154 10502 0.179 

            0.9 10691 0.151 10412 0.168 

            0.8 10575 0.147 10270 0.171 
Partially 

correlated 
            0.5 10350 0.132 10079 0.151 

Independent        0 10138 0.074 9936 0.081 
 

 

4.4.2 Spatially varying pressure coefficients 

Rather than assuming that the wind pressure coefficient is spatially uniform, consider 

that the wind pressure coefficients are spatially varying.  In particular, we consider the 

three panels S34, S35 and S55 shown in Figure 4.4b.  For each panel, we directly use the 

samples of the point-in-time wind pressure coefficients from the time histories obtained 

for the pressure taps located on the panels, the tributary area for each tap is also shown in 

Figure 4.4 for the considered panels. 

By carrying out the simulation analysis with and without considering the construction 

error, the statistics of the uplift capacity in terms of FTF, UCR, FTF,E, UCR,E, and Rn 

calculated from 500 samples (for each case) are shown in Table 4.4 for ρij equal to 0 and 

1.0.  The results shown in the table indicate that the observed trends for the results shown 

in Table 4.3 are equally applicable to this case, except that in this case the decrease in the 

mean of FTF is only up to 2%.  Given a value of ρij, the differences between the statistics 

of FTF,E and of FTF are not very significant.  This implies that the roof uplift capacity can 
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be adequately approximated by that estimated using the equivalent uniformly distributed 

wind loading.  This view is further supported by the fact that the mean of Rn shown in 

Table 4.4 is almost identical to unity, and the cov of Rn is less than 4%.  Since the cov of 

Rn is much smaller than that of FTF,E or FTF, Rn could be treated as a deterministic 

quantity. 

As the wind pressure coefficients at the taps vary temporally, the uplift capacity of the 

panel in terms of UCR or UCR,E is significantly uncertain with a cov of up to 20%.  The 

large cov is caused by the temporally varying wind pressure coefficients.  It must be 

emphasized that as the evaluation of UCR or UCR,E is based on the point-in-time wind 

pressure coefficients, UCR or UCR,E represent the panel uplift capacity associated with the 

point-in-time wind pressure coefficients and do not include gust effects.  The implication 

of this in reliability analysis will be discussed shortly.   

An exercise of fitting probability distributions to the samples of FTF, UCR, FTF,E, and 

UCR,E is carried out using commonly employed probabilistic models: Normal, Lognormal, 

and Gamma.  It is concluded that these variables could be modeled as lognormal variates 

as the Kolmogorov-Smirnov goodness-of-fit test results (Benjamin and Cornell 1970) 

indicate that the lognormal model could not be rejected at the 5% significance level. 
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Table 4.4 Statistics of the uplift capacity of three selected panels by considering and 
ignoring construction error. 
 

 Case Parameter Statistics Panel S34 Panel S35 Panel S55
Mean (N) 9991 9890 9886 FTF 

cov 0.081 0.081 0.083 
Mean (N) 10138 10137 10138 FTF,E 

cov 0.074 0.076 0.074 
Mean (m/s) 94.1 71.4 78.6 UCR 

cov 0.195 0.164 0.150 
Mean (m/s) 94.8 72.2 79.7 UCR,E 

cov 0.197 0.164 0.151 
Mean 0.987 0.980 0.976 

 ρij = 0 

Rn 
Cov 0.061 0.056 0.063 

Mean (N) 10216 10329 10261 FTF 
cov 0.179 0.170 0.177 

Mean (N) 10833 10833 10833 FTF,E 
cov 0.154 0.154 0.154 

Mean (m/s) 97.2 72.8 79.9 UCR 
cov 0.198 0.184 0.174 

Mean (m/s) 100.2 74.7 82.2 UCR,E 
cov 0.193 0.179 0.168 

Mean 0.941 0.952 0.945 

Without 
construction 

error  

ρij = 1 

Rn 
cov 0.063 0.055 0.056 

Mean (N) 9862 9701 9695 FTF 
cov 0.093 0.089 0.094 

Mean (N) 9911 9911 9911 FTF,E 
cov 0.084 0.084 0.084 

Mean (m/s) 94.4 70.6 76.9 UCR 
cov 0.196 0.166 0.165 

Mean (m/s) 94.7 71.4 78.1 UCR,E 
cov 0.197 0.164 0.163 

Mean 0.997 0.980 0.974 

 ρij = 0  

Rn 
Cov 0.071 0.065 0.059 

Mean (N) 10119 10133 10003 FTF 
cov 0.185 0.185 0.186 

Mean (N) 10532 10532 10532 FTF,E 
cov 0.168 0.168 0.168 

Mean (m/s) 94.4 71.2 76.6 UCR 
cov 0.209 0.185 0.183 

Mean (m/s) 96.4 72.6 78.8 UCR,E 
cov 0.206 0.179 0.181 

Mean 0.960 0.961 0.949 

With 
construction 
error for p 

=1.5% 

ρij = 1  

Rn 
cov 0.060 0.058 0.061 
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4.4.3 Parametric analysis 

The assessment of the statistics of roof panel uplift capacity in the previous section 

considered the construction error and the spatially and temporally varying wind pressure.  

It is specific to the considered panel and the wind direction used to obtain the time 

histories of the pressure coefficients.  To further investigate the effect of the correlated 

pressure coefficients on FTF, UCR, FTF,E, UCR,E and Rn, samples of correlated pressure 

coefficients for the taps shown in Figure 4.4 are generated based on their probabilistic 

models listed in Table 4.2.  The calculated mean and cov of FTF, UCR, UCR,E and Rn are 

shown in Table 4.5.  The mean and cov of FTF,E are not shown in the table as they are the 

same as those shown in Table 4.4 for the case with ρij = 0, since FTF,E is independent of 

spatially varying wind pressure coefficients.  The results presented in the table indicate 

that the mean and cov of FTF varies only slightly for different λ. 

As more stringent fastening requirements for geographic regions with significant 

wind hazard are needed, the analysis carried out for a typical panel considering 1.5% 

construction error (see Table 4.3) is repeated by considering a nail spacing of 150 mm for 

both edge and intermediate supports.  The estimated statistics of FTF are shown in Table 

4.6.  Comparison of the results shown in Tables 4.3 and 6 indicates that the reduction in 

the nail spacing from 300 mm to 150 mm resulted in doubling the mean of FTF.  Such an 

increase in the roof panel uplift capacity is very significant and can be a cost-effective 

means to reduce the wind risk for wood frame houses.   
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Table 4.5 Statistics of the uplift capacity by considering ρij = 0, construction error with p 
= 1.5% and correlated wind pressure coefficients with correlation length within 1.5 to 3.0. 

Case Parameter Statistics Panel S34 Panel S35 Panel S55 

Mean (N) 9748 9715 9688 
FTF 

cov 0.102 0.094 0.095 

Mean (m/s) 95.8 72.8 76.2 
UCR 

cov 0.202 0.158 0.162 

Mean (m/s) 97.6 74.4 77.4 
UCR,E 

cov 0.215 0.164 0.167 

Mean 0.975 0.974 0.971 

 λ = 1.5 

Rn 
cov 0.082 0.067 0.069 

Mean (N) 9792 9674 9629 
FTF 

cov 0.091 0.092 0.099 

Mean (m/s) 94.1 71.6 77.2 
UCR 

cov 0.214 0.175 0.199 

Mean (m/s) 95.1 72.1 78.8 
UCR,E 

cov 0.226 0.193 0.202 

Mean 0.977 0.972 0.967 

λ = 2.0 

Rn 
cov 0.063 0.070 0.072 

Mean (N) 9760 9652 9618 
FTF 

cov 0.105 0.095 0.098 

Mean (m/s) 97.0 73.8 77.9 
UCR 

cov 0.274 0.183 0.198 

Mean (m/s) 99.0 74.9 79.5 
UCR,E 

cov 0.288 0.199 0.212 

Mean 0.981 0.969 0.965 

λ = 3.0 

Rn 
cov 0.085 0.072 0.075 
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To show the impact of the different fastening schedules in combination with 

different construction error rate on the panel uplift capacity, the analysis carried out for 

Table 4.3 is repeated but only for ρij = 0 and 1, and considering p = 1% and 3% and two 

fastening schedules.  The calculated statistics of FTF are depicted in Table 4.7, indicating 

again that the roof panel uplift capacity is most significantly affected by the fastening 

schedule and that the increase in the construction error rate reduces the mean of FTF, and 

slightly increases the cov of FTF. 

Table 4.6 Estimated statistics of panel uplift capacity considering construction error with 
p = 1.5% and a more stringent fastener requirement with a spacing of 150 mm for the 
edges and intermediate supports. 

Without construction error With construction error, 
p = 1.5% Condition & value of ρij 

Mean (N) Coefficient of 
variation Mean (N) Coefficient of 

variation 
Fully correlated     1 22156 0.154 19630 0.243 

            0.9 21623 0.152 19475 0.235 

            0.8 21309 0.148 19389 0.224 Partially 
correlated 

            0.5 20710 0.127 19264 0.186 

Independent         0 19683 0.063 18684 0.070 
 

Table 4.7 Estimated statistics of panel uplift capacity, FTF, by considering different 
fastening schedule and different construction error rate. 

Fastening schedule p ρij Mean (N) Coefficient 
of variation 

1 10577 0.171 
1% 

0 9985 0.082 

1 10362 0.189 
Fastening schedule 
shown in Figure 4.3 

3% 
0 9792 0.090 

1 21962 0.154 
1% 

0 19544 0.059 

1 18153 0.245 

The fastening Spacing 
of 150 mm for the 

edges and intermediate 
supports 3% 

0 17443 0.084 
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4.5. Implication on reliability and codification 

Although the reliability of light-frame wood construction under wind load has been 

presented in the literature (Rosowsky and Cheng 1999, Ellingwood et al. 2004, Lee and 

Rosowsky 2005, Shanmugam et al. 2009), these studies do not included the effect of the 

construction error, nor do they incorporate the nonlinear structural responses and/or 

temporal variation of pressure coefficients directly.  Since the effect of construction error 

on the roof panel has been incorporated in probabilistically characterizing the panel uplift 

capacity in the previous sections, the reliability analysis including the effect of 

construction error is largely simplified as shown below. 

Consider that failure of roof panel under suction occurs if the panel uplift capacity 

FTF is less than the applied uplifting wind load FA.  In such a case and the equivalent 

uniform pressure discussed in the previous sections, the limit state function g can be 

expressed as, 

TEETFn ACUFRg 2
, 2

1
ρ−=  (5) 

where Rn, ρ, CE and AT are defined previously, and U is the mean wind speed at the 

average roof height.  If CE is evaluated from the point-in-time pressure coefficients Ci, the 

estimated failure probability (i.e., probability of g ≤ 0), Pf, does not consider the gust 

effect.  To take into account the gust effect, the probability distribution of extreme value 

of CE needs to be used in estimating Pf. 

If the point-in-time wind pressure coefficients Ci are normally distributed, the point-

in-time values of CE can also be modeled as a normal variate with the mean and standard 

deviation denoted by mcm and σcm.  Given the attack angle of the wind being of 40 degree 

in the present study, the mcm and σcm calculated based on Eq. (3) for the wind pressure 
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time histories obtained from the wind tunnel test are 0.646 and 0.230 for Panel S34, 1.124 

and 0.330 for Panel S35, and 0.935 and 0.275 for Panel 55. 

The maximum of n (point-in-time) values of CE, mĈ  is Gumbel distributed with the 

probability distribution function ( )mcF ˆ  given by (Jordaan 2005), 

( ) ( )( )( )nmnm accF −α−−= ˆexpexpˆ  (6) 

where 

( ) ( )
⎟
⎠

⎞
⎜
⎝

⎛ π+
−σ+=

n
nnma cmcmn ln22

4lnlnlnln2  (7) 

and, 

cmn n σ=α /ln2  (8) 

To select the value of n, it is noted that Ci used in this study is obtained from the 

boundary layer wind tunnel at the University of Western Ontario for the test model with 

the length scale of 1:50, sampling frequency of 400Hz, the wind tunnel reference mean 

wind speed of 13.7 m/s, and the ratio of the reference mean wind speed at the average 

roof height to the reference mean wind speed equal to 0.6984.  The sampling rate for the 

full-scale with a mean wind speed of U (m/s) at the average roof height can be calculated 

using a similarity relation (Simiu and Scanlan 1996) resulting in, 

6984.07.1350
400/

××
=⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

U
U
D

U
fDf

MS

 (9) 

where D is the length scale, f is the sampling frequency, U is the mean wind speed, the 

subscript MS denotes the quantities associated with model scale, and symbols without 

subscript denote those associated with full-scale.  This equation indicates that the number 

of point-in-time readings, n, for the duration of one hour and the mean wind speed at the 
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average roof height U can be calculated from, 

Ufn 30103600 ==  (10) 

Use of Eq. (10) and the values of mcm and σcm in Eqs. (6) to (8) completely characterises 

the statistics of mĈ . 

However, it is known that the use of this approach (i.e., the parent distribution 

approach) is insensitive to the extreme observations.  Therefore rather than applying the 

parent distribution approach, we fit directly the probability distribution to the extreme 

observations in the following.  For each tap, we divide the wind tunnel pressure time 

history in non-overlapping segments, each segment with 5989 samples representing about 

15 seconds time history for the model scale that corresponds to about four minutes full-

scale pressure history for the mean wind speed at the average roof height of 30 m/s.  The 

statistics of the absolute value of the peak negative pressure coefficients are shown in 

Table 4.8.  By considering that the Gumbel probability model can be used to represent the 

peak pressure coefficient and based on the extreme value analysis, the parameters of the 

probability model for a period of one hour and the reference wind speed U at the average 

roof height is calculated and shown in Table 4.8.  Also shown in the table are the 

calculated mean and cov of mĈ .  From the table, it can be observed that the values of the 

estimated mean of mĈ  are within the range of the values of the pressure-gust coefficients 

(i.e., CpCg) for primary structural actions arising from wind load acting simultaneously on 

all surfaces recommended by the NBCC (2005).  However, they are much smaller than 

the CpCg values for the design of structural components and cladding suggested by the 

same code.  This is expected as the code value represents the maximum wind pressure 

from different wind directions.  The implication that the (absolute) CpCg value, which is 
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about 4 for an area of a typical roof panel size, is significantly greater than mean of mĈ  

shown in Table 4.8, and the implication on reliability will be shown shortly. 

To evaluate Pf, we note that the annual maximum (hourly) mean wind speed U is 

commonly modeled as a Gumbel variate. The mean and cov of the annual wind speed for 

more than 230 locations, each having more than at least 10 years of record and provided 

by the Engineering Climatology Section of the Canadian Meteorological Centre in 

Downsview for the calibration of 2005 edition of NBCC, were considered.  For the 

majority of these locations, the statistics indicate that the cov of U, vU, ranges from 0.08 

to 0.18 and an overall cov value of 0.13, and that the mean of U, mU, varies from about 

10 to 30 (m/s), and an overall mean of about 18 (m/s). 

Using the afore-mentioned information, the characterizations of FTF,E and Rn given in 

the previous section, and considering that CE in Eq. (5) is replaced by mĈ , the estimation 

annual probability of failure Pf based on the simple simulation technique can be carried 

out according to the following steps: 

1) Sample FTF,E and U from their corresponding probability models; 

2) Evaluate n using Eq. (10), and evaluate αn and an using Eqs. (7) and (8), sample CE 

according to the distribution shown in Eq. (6), and evaluate g; 

3) Repeat Steps 1) to 2) ns times and count number of times, nf, that g is less than zero; 

and the estimated Pf equals nf/ns. 

The reliability index β corresponding to the estimated Pf, equals ( )fP−Φ− 11 , where Φ-1( ) 

denotes the inverse of the standard normal distribution function. 
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Table 4.8 Statistics of the peak of the absolute value of the negative wind pressure coefficients and parameters of Gumbel model (see 
Eq. (6)) for mĈ . 

Statistics based on 
5989 point-in-time 

samples 

Probability distribution model parameters for mĈ  considering 
the duration of one hour and a reference hourly mean wind 

speed (at the average roof height) of U 

Mean and cov of mĈ  for the 
duration of one hour 

Panel 

Mean 
mcm 

Standard 
deviation 

σcm 
( )cmn σ×π=α 6/  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛

α
+= 577.0

5989
3010ln1 Uma

n
cmn  For U 

= 20 m/s 
For U 

= 25 m/s 
For U 

= 30 m/s 

S34 1.977 0.240 5.345 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛+ 577.0

5989
3010ln

345.5
1977.1 U

 2.408, 
0.100 

2.449, 
0.098 

2.484, 
0.097 

S35 2.635 0.237 5.416 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛+ 577.0

5989
3010ln

416.5
1635.2 U

 3.061, 
0.077 

3.102, 
0.076 

3.136, 
0.076 

S55 2.278 0.209 6.141 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛+ 577.0

5989
3010ln

141.6
1278.2 U

 2.654, 
0.079 

2.690, 
0.078 

2.720, 
0.077 
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Table 4.9 Estimated annual failure probability for the selected panels for different wind hazard conditions. 
Wind Hazard Condition S34 S35 S55 Error 

Rate 
Nail 

Correlation Mean of U 
(m/s) cov of U Pf β Pf β Pf β 

20 0.15 1.11×10-5 4.24 7.28×10-5 3.80 2.60×10-5 4.05 
25 0.15 5.22×10-4 3.28 2.43×10-3 2.82 1.04×10-3 3.08 
30 0.15 7.03×10-3 2.46 2.53×10-2 1.96 1.24×10-2 2.24 
25 0.08 2.43×10-6 4.57 3.70×10-5 3.96 7.95×10-6 4.32 

ρij = 0 

25 0.18 1.56×10-3 2.96 5.80×10-3 2.52 2.83×10-3 2.77 
20 0.15 1.84×10-5 4.13 1.16×10-4 3.68 3.86×10-5 3.95 
25 0.15 7.71×10-4 3.17 3.26×10-3 2.72 1.33×10-3 3.00 
30 0.15 9.02×10-3 2.36 3.00×10-2 1.88 1.42×10-2 2.19 
25 0.08 1.04×10-5 4.26 1.01×10-4 3.72 2.15×10-5 4.09 

0% 

ρij = 1 

25 0.18 2.02×10-3 2.88 6.96×10-3 2.46 3.27×10-5 2.72 
20 0.15 1.13×10-5 4.24 1.08×10-4 3.70 3.41×10-5 3.98 
25 0.15 6.10×10-4 3.23 3.31×10-3 2.72 1.30×10-3 3.01 
30 0.15 7.86×10-3 2.41 3.21×10-2 1.85 1.49×10-2 2.17 
25 0.08 4.05×10-6 4.46 6.47×10-5 3.83 1.24×10-5 4.22 

ρij = 0 

25 0.18 1.74×10-3 2.92 7.43×10-3 2.44 3.38×10-3 2.71 
20 0.15 2.44×10-5 4.06 1.60×10-4 3.60 5.67×10-5 3.86 
25 0.15 9.09×10-4 3.12 4.06×10-3 2.65 1.74×10-3 2.92 
30 0.15 1.03×10-2 2.32 3.54×10-2 1.81 1.76×10-2 2.11 
25 0.08 1.53×10-5 4.17 1.66×10-4 3.59 3.83×10-5 3.95 

1.5% 

ρij = 1 

25 0.18 2.33×10-3 2.83 8.34×10-3 2.39 4.05×10-3 2.65 
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By using this outlined procedure and the statistics of the uplift capacity shown in 

Table 4.4 with and without construction error, Pf and its corresponding β are estimated by 

considering a few combinations of values of mU and vU.  For the analysis, a simulation 

cycle of 108 is employed, and the obtained Pf and β are shown in Table 4.9 for the 

considered Panels S34, S35 and S55.  The table indicates that in all cases the estimated Pf 

for mU ≥ 25 (m/s) and vU ≥ 0.15 is greater than the tolerable annual failure probability 

level of about 5×10-5 to 10-6 (CSA S408 1980); the lowest reliability index equal to 1.81 

is associated with the case with construction error mU = 30 (m/s) and vU =0.15 for Panel 

S35.  The results imply that use of the NBCC (2005) suggested fastening schedule to not 

ensure the roof panels meet the recommended target reliability level in the CSA S408 

(1980).  The ratio of the estimated Pf with construction error to that without construction 

error ranges from about 1.01 to about 1.75.  Note that the mean of the uplift capacity for 

ρij = 1.0 is greater than that for ρij = 0, and the cov of the uplift capacity for ρij = 1.0 is 

lower than that for ρij = 0 (see Table 4.4).  Their combination resulted in the estimated Pf 

for the case with ρij = 1.0 that is greater than that for the case with ρij = 0. 

To investigate the impact of the mean of mĈ  on the estimated annual failure 

probability, a sensitivity analysis is carried out considering that the mean of mĈ  varies 

from 2.0 to 5.0 and the cov of mĈ  equals 0.05, 0.10 and 0.15.  For the analysis, only the 

uplift capacity shown in Table 4.4 for Panel S35 is considered, as the statistics of FTF, E 

and the value of Rn for the three selected panels are similar.  The consideration of the 

upper bound value of mean of mĈ  is based on the NBCC (2005) recommended CpCg 

values for the design of structural components and cladding.  The estimated Pf is shown 



 113

in Figure 4.7 for mU = 18 (m/s) and vU = 0.05, 0.10 and 0.15.  The results shown in the 

figure indicates that the estimated Pf is very sensitive to the mean of mĈ . If the mean of 

mĈ  is greater than 4.0, the estimated Pf is significantly higher than a tolerable annual 

failure probability of 10-5.  Therefore, for such a high mean value of mĈ , a more stringent 

fastening schedule should be considered to reduce the annual failure probability.  In 

particular, if the more stringent fastening schedule with a nail spacing of 150 mm for both 

edge and intermediate supports is considered, by repeating the analysis that was carried 

out for Figure 4.7, the estimated Pf in all cases is less than 10-6 for mean value of mĈ  less 

than 5.0. This indicates that a significant increase of reliability level of roof panel can be 

achieved if the more stringent fastening schedule is adopted for the construction of light 

frame wood houses. 
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a) ρij = 0,  p = 0.  b) ρij = 1,  p = 0. 
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c) ρij = 0,  p =1.5%.  d) ρij = 1,  p =1.5%. 

 
Figure 4.7 Estimated annual failure probability for nail spacing shown in Figure 2. 
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4.6. Conclusions 

The occurrence of construction error on the fastening of roof panels for a full-scale 

two-story test house is described and used to develop a probability model.  Statistics of 

roof panel uplift capacity are evaluated by considering and ignoring the missing nails, 

and the uncertainty in nail withdrawal behaviour.  The results indicate that if the missing 

nail effect is ignored, an overestimation of the mean of the panel uplift capacity by about 

4% can be observed.  Also, the consideration of the construction error increases the 

coefficient of variation of the uplift capacity of the panel, especially if the withdrawal 

behaviour of the nails within the panel is fully correlated. 

The estimated annual failure probability, Pf, of the roof panel fastened according to 

the NBCC (2005) requirement, for most considered wind hazard cases (representative of 

Canadian sites), is larger than the recommended tolerable annual failure probability level 

for calibrating design codes, which ranges from 5×10-5 to 1×10-6.  The ratio of the 

estimated Pf with construction error to that without construction error is up to 1.75.   

If the code specified gust wind pressure coefficients for the design of structural 

components and cladding is considered, the obtained Pf is further increased.  In such a 

case, it is suggested that a more stringent fastening schedule with a spacing of 150 mm 

for the edges and intermediate supports is to be adopted for the construction of light 

frame wood houses. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

5.1 Summary and Conclusions 
 

The main objectives of the present study are to assess the statistics of the roof panel 

uplift capacity, and to estimate the reliability of roof panel with typical fastening schedule 

under wind loading.  For the analysis and estimation uncertainty in nonlinear nail 

withdrawal behaviour and the spatially and temporally varying wind pressure coefficients.  

The analysis also incorporates the construction error (i.e., effect of missing or improperly 

installed nails to fasten the roof panel).  For the analyses, the panel is modeled using a 

finite element model, the nail withdrawal behaviour is modeled using a nonlinear spring, 

and the reliability of the roof panel under wind loading is estimated using the simulation 

technique.  The conclusions that can be drawn from the numerical analysis are given 

below. 

I) Based on the analysis for roof panel subjecting to time-varing uniform wind 

pressure, the conclusions are list below from I.1 to I.5. 

I.1) The nonlinear static pushover (NSP) analysis and nonlinear incremental dynamic 

analysis were adopted for assessing the roof panel uplift capacity.  It was 

observed that the use of the NSP analysis is adequate for estimating the uplift 

capacity of the panel. 

I.2) The consideration of statistical correlation of nail withdrawal behaviour for the 

nails used to fastening the roof panel affects the mean of uplift capacity about 5%, 

and it reduces the coefficient of variation (cov) of the uplift capacity significantly 

as the degree of correlation between the nail behaviour decreases.  The uplift 
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capacity of roof panel can be modeled adequately as a lognormal variate. 

I.3) In general, the use of the simple tributary area approach underestimates the mean 

of the uplift capacity by 10% to 22% (for different nail correlation) as compared 

to that estimated using the NSP analysis.  This underestimation is also about 10% 

if the panel is modeled using the finite element model and the nail withdrawal 

behaviour is modeled using (equivalent) linear-brittle spring. The difference of 

estimated panel uplift capacity using tributary area method and linear finite 

element model is not significant, and the difference is due to the fact that the 

tributary area method does not consider the load sharing among nails with 

different stiffness. 

I.4) Sensitivity analysis indicates that missing a single nail could reduce the mean of 

the panel uplift capacity by 10%, and missing two nails could reduce the mean of 

R by as much as about 20%. 

I.5) By using a more stringent nail schedule with the nails spacing of 6 inches on the 

edge and intermediate supports, the mean of uplift capacity is about twice of that 

obtained by using a nail spacing of 6 inches for edge supports and of 12 inches for 

intermediate support, which is a recommended practice by the 2005 edition of the 

National Building Code of Canada (NBCC 2005). 

 

II) Based on the analysis results for roof panel subjecting to spatially and temporally 

varying wind pressure, the conclusions are list below from II.1 to II.5. 

II.1) The statistics of the panel uplift capacity in terms of the (ultimate) total reacting 

force are not sensitive to the spatially varying wind, but are significantly 
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influenced by the adopted probabilistic model and correlation of nail withdrawal 

behaviour.  This is especially true for the coefficient of variation (cov) of the total 

reacting force. 

II.2) The use of the equivalent uniformly distributed wind loading, with the pressure 

coefficient equal to the weighted average wind pressure coefficient, provides 

sufficiently accurate estimates of the statistics of the uplift capacity of panel.  This 

approximate approach is therefore recommended for assessing the panel uplift 

capacity as it simplifies the analysis.  The approximation introduces a modeling 

error with a bias close to unity and a cov of only 4% which is much smaller than 

those associated of the ultimate total reacting force ranging from 7% to 20%. 

II.3) The spatial correlation coefficient of the instantaneous pressure coefficients can 

be modeled using an exponential model with correlation length within 1.5 m to 

3.0 m. 

II.4) The ultimate total reacting force (i.e., the uplift capacity of the panel) of the panel 

could be modeled as lognormal variate.  The investigation of the effect of missing 

nail on the uplift capacity indicates that missing a single critical nail could reduce 

the mean of the panel uplift capacity by about 10%. 

II.5) The panel uplift capacity can also be characterized by the critical reference mean 

wind speed.  As expected, the statistics of the speed depend on the location of the 

roof panel because the magnitude of and uncertainty in the pressure coefficients 

are location dependent.  In all cases, the statistics represent the uplift capacity of 

the panel associated with the instantaneous pressure coefficients, and they do not 

incorporate the gust effect or exposure factor. 
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III) Based on analysis results by considering or ignoring construction error and 

reliability analysis results, the conclusions are list below from III.1 to III.5. 

III.1) Survey and inspection of nails used to fastening the roof panels for a full-scale 

two-story test house is carried out.  Simple statistical analysis indicates that the 

missing or improperly installed nails (i.e., construction error) can be modeled as a 

binomial process with a defect rate of 1.5%. 

III.2) Results of the estimated uplift capacity by considering/ignoring the construction 

error indicate that if the construction error is not considered, on average, the uplift 

capacity is overestimated by about 6%.  The consideration of the construction 

error increases the coefficient of variation of the uplift capacity of the panel, 

especially if the withdrawal behaviour of the nails within the panel is fully 

correlated. 

III.3) To carry out reliability assessment of the roof panel under wind loading, an 

extreme analysis of the pressure coefficients was carried out, indicating that the 

magnitude of the mean of the peak wind pressure coefficients for the considered 

time histories is significantly lower than the pressure-gust coefficients (i.e., CpCg) 

recommended by the NBCC (2005) for the design of structural components and 

cladding.  We attribute this to that the considered wind direction acting on the test 

model may differ from the critical wind direction for the considered pressure taps 

and panels, the location of the panel that was selected is not the location where 

subjecting highest wind pressure, and that the available wind pressure record 

employed in the extreme analysis may not be sufficiently long 
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III.4) By using these extreme value statistics of wind pressure coefficients, the 

estimated annual failure probability of the roof panel, Pf, for most considered 

wind hazard cases is smaller than the recommended tolerable annual failure 

probability level for calibrating design codes, which ranges from 1.6×10-4 to 

7×10-7.  The ratio of the estimated Pf with construction error to that without 

construction error ranges from about 1 to about 1.75.  

III.5) If the code value of the pressure-gust coefficients (i.e., CpCg) for the design of 

structural components and cladding is considered, the obtained Pf can be higher 

than the tolerable annual failure probability level.  In such a case, it is suggested 

that a more stringent fastening schedule with a spacing of 150 mm for the edges 

and intermediate supports is to be adopted for the construction of light frame 

wood houses. 

 
5.2. Suggested future work 

It is suggest that the analyses presented in the present study is to be repeated for the 

whole roof system.  This is likely to be very intensive computing time consuming task.  

The obtained results can be used to aid the development of simple approach to estimating 

the reliability of roof system.  They can also be used to aid the calibration of design code. 

Also, the analysis can be extended to include the roof trusses and impact of the 

construction error associated with the toe nails used to fastening the trusses on the 

reliability of the roof system. 
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Figure A.1. The detailed flow chart of the analysis using Matlab and ANSYS 
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