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ABSTRACT:  The use of MALDI MS as a fast and direct method to detect the Aβ oligomers of different masses 

is examined in this paper. Experimental results suggest that Aβ oligomers are ionized and detected as singly 

charged ions, and thus the resulting mass spectrum directly reports the oligomer size distribution. Validation 

experiments were performed to verify the MS data against artifacts. Mass spectra collected from modified Aβ 

peptides with different propensities for aggregation were compared.  Generally, the relative intensities of 

multimers were higher from samples where oligomerization was expected to be more favorable, and vice 

versa. MALDI MS was also able to detect the differences in oligomeric composition before and after the in-

cubation/oligomerization step.  Such differences in sample composition was also independently confirmed 

with an in vitro Aβ toxicity study on primary rat cortical neurons. An additional validation was accomplished 

through removal of oligomers from the sample using molecular weight cutoff filters, the resulting MS data 

correctly reflected the removal at the expected cutoff points. The results collectively validated the ability of 

MALDI MS to assess the monomeric/multimeric composition of Aβ samples. 

 

KEYWORDS: Alzheimer’s disease, Amyloid beta-derived diffusible ligand (ADDL), Oligomers, Non-covalent 
complexes, Protein aggregation, In vitro toxicity assay, Embryonic rat cortical neurons 
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INTRODUCTION 

 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by deterioration in cog-

nition, memory, and behavior [1-2]. With more than 5 million North Americans suffering from this disease 

[3], AD is now considered the most common cause of dementia, and the 6th leading cause of death in the 

United States [4]. The adverse neuropsychiatric and behavioral symptoms patients suffer from pose as a sig-

nificant strain on our health care system, and give rise to socioeconomic issues. Hallmarks of the disease 

include extracellular plaques characterized by the accumulation of protein-containing deposits primarily 

consisting of amyloid-β	(Aβ) peptides and intracellular neurofibrillary tangles caused by aberrant phosphor-

ylation of tau [5-7]. Previous work found these large fibrillary Aβ structures within neuritic plaques killed 

cultured neurons [8]. This and other evidence led to the amyloid cascade hypothesis which originally postu-

lated that these insoluble fibrillary aggregates were the primary cause of neurodegeneration in AD patients 

[9].  Although extensive research has targeted these plaques, poor correlation between neurological deficits 

and plaque accumulation have been observed in AD patients [10-11].  

 

Recent studies have shifted focus to examine the onset of Aβ aggregation from the monomeric peptides to 

the soluble form of Aβ multimeric complexes, and found evidence linking the accumulation of the Aβ oligo-

mers to the progression and severity of AD, in particular, with long term hippocampal, age-onset memory 

failures [5-6, 12-15].  Due to these recent findings, modifications to the amyloid cascade hypothesis have been 

made to target the role of soluble Aβ oligomers in disease progression [16-18]. In healthy individuals, Aβ 

peptides are degraded within or cleared from the brain [19-20]. Reduction in the degradation or clearance 

efficiency results in accumulation of the soluble oligomers that correlate with disease onset and progression. 

Understanding the mechanisms and effects of Aβ oligomerization in the brain is therefore critical to the 

development of novel therapeutics for AD.  A common experimental approach is the in vitro toxicity assay of 

Aβ oligomers on neuron cell cultures, where cellular viability is quantified to determine the effects of various 

forms of Aβ and/or potential therapeutics [21-25]. The Aβ samples for the in vitro experiments are typically 

obtained from commercial sources.  Numerous protocols have been reported for in vitro oligomeric Aβ1-42 

preparations with the largest variation residing in the monomerization and oligomerization solutions used 

[26-29]. Surprisingly, to our knowledge, comprehensive studies examining the effect of protocol conditions 

on the resulting oligomer size distribution are not available in the literature. In addition, it is not a common 

practice to verify the composition of the Aβ oligomers prior to use, partly due to the limitations in techniques 

available for fast and simple Aβ multimer characterization.  
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Currently, the most common means for oligomer quantification is gel electrophoresis [30]. The technique 

depends on the ability for SDS to bind to proteins of interest. This binding compromises the structural integ-

rity of proteins resulting in dissociation of oligomer composition [31]. Low sample throughput and prevalence 

of gel smearing are also significant issues which act as limitations in resolution and possess accuracy issues 

[32]. Another prominent issue gel electrophoresis possesses is the inability to accommodate for a large mass 

range for multimer analysis. The percent composition of acrylamide within the gel is tailored for the target 

sample. The larger the peptide or protein under analysis, the lower the amount of acrylamide used in order 

to facilitate appropriate separation to obtain distinct bands. For samples containing a wide range of molecular 

weights, the set acrylamide concentration could not optimally accommodate for both extremes, resulting in 

either the smaller molecular weight peptides to run off the gel, or poor resolution of the larger peptides. 

Other techniques available to study Aβ aggregation include atomic force microscopy (AFM), surface plasmon 

resonance (SPR), absorbance and fluorescence [33-34]. AFM is generally suitable for detection of large Aβ 

aggregates such as fibrils, but not the soluble small oligomers. SPR is typically used to detect interactions in 

amyloid-ligand binding, but ligand interaction is not selective enough to differentiate oligomers by size. Like-

wise, absorbance and fluorescence can detect the bulk presence of oligomers, but lacks the ability to differ-

entiate between small size differences of Aβ oligomers.  

 

Chemical cross-linking could be used to stabilize protein-protein interactions. Several methods of cross-link-

ing have been explored in the attempt to freeze Aβ oligomers in current oligomerization states. However, 

many of these methods require addition of cross-linkers or catalyst to induce cross-linking [35-36]. Introduc-

tion of these cross-linkers and catalysts at times can result in modifications of native amyloid composition 

and structure or induce further oligomerization leading to fibril formation. Complications also arise from 

non-specific interactions that occurs upon addition of these compounds. Due to the complexity introduction 

of these reactive moieties generate, photoinduced cross-linking of unmodified proteins (PICUP) was pro-

posed as a means of cross-linking [32, 37]. PICUP induces cross-linking through rapid, visible light photolysis 

of tris-bipyridyl Ru(II). In the presence of electron acceptors, Ru(III) is produced. Ru(III) then acts as an 

electron abstraction agent forming carbon radicals which form new C-C bonds with nearby carbons. This 

form of crosslinking is attractive as it does not require insertion of a cross-linking group to the peptide and 

the m/z of the oligomers are not altered by the cross-linking. However, the carbon radical formation and C-

C bond formation are non-specific, and can occur between preexisting oligomers with free monomers to form 

artificially larger oligomers [38]. Importantly, the observed crosslinked oligomer distribution is highly de-

pendent on the crosslinking conditions of protein-to-Ru ratio and the power and duration of the photo illu-

mination [39]. Finally, a separation may be required to remove the high concentration of quenching reagent, 

mercaptoethanol or dithiothreitol, prior to detection.  
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Electrospray ionization mass spectrometry (ESI MS) has been widely used as an alternative label free tool for 

amyloid beta analysis [40-42]. ESI is capable of transforming the multimeric forms of amyloidogenic peptides 

from solvated to gaseous ions as intact non-covalent complexes [43]. However, the resulting complex ions 

can possess a wide range of multiple charges; for example, z = 2 to 10.  Oligomers of different sizes can there-

fore have identical m/z, making the peak assignment to oligomer sizes a perplexing task [44-45]. To overcome 

this, researchers turned to the use of ion mobility spectrometry (IMS), which can resolve the multimeric 

complex ions, not only by m/z, but also according to size based on their mobility in a drift tube [46-48]. In 

recent years, the combination of IMS with ESI MS has become an invaluable tool in deciphering the assembly 

mechanism of Aβ oligomers [31, 47, 49-53]. While ESI IMS-MS is extremely powerful, the interpretation of 

two-dimensional data of drift time and m/z is not a straight forward task for multiply-charged homo-multi-

mers such as Aβ oligomers.  The assignment of signals to oligomer of various sizes involves the consideration 

of monomer charge states, the 13C isotope distributions with and without collision induced dissociation, and 

the drift time dependence of injection energy [50]. 

 

The work described herein focuses on a simpler mode of MS based on matrix assisted laser desorption ioni-

zation (MALDI). In contrast to ESI, MALDI generates gaseous ions of peptides and proteins predominately 

in the singly charge state (z = 1).  As a result, the measured m/z values of Aβ oligomers directly represent the 

mass of the oligomers. To our knowledge, Van Duyne and co-workers presented the first use of MALDI MS 

to detect oligomers of Aβ1-42 [54], but the use of MALDI MS was not the focus of their work, and only one 

mass spectrum of the oligomers was presented as a supplementary figure. Also, the adoption of this applica-

tion has not been observed in the literature. Most importantly, the authors did not present validation exper-

iments to confirm that the observed Aβ complex ion distribution indeed reflect that of original oligomeric 

Aβ sample solution. Instead, they claimed that "the observed ions are likely a combination of intact molecular 

ions, fragments from larger oligomers, and gas phase aggregates”.  In this paper, we will examine the validity 

of MALDI MS in measuring the composition of Aβ multimers. Particularly, we aim to investigate whether the 

oligomers detected by MALDI MS were indeed artificial Aβ complexes non-existent in the original sample, 

merely a result of the non-specific associations of Aβ peptides, either during sample preparation or during 

the MALDI process. To achieve this, we begin by reproducing the oligomer detection by MALDI MS with 

wildtype Aβ1-42 and Aβ1-40, and comparing with the different results obtained from other variants of Aβ pep-

tides with varying tendencies of oligomerization. Secondly, we manipulated the size distribution of Aβ1-40 

oligomer samples using molecular weight cut off filters, and subsequently illustrated the expected changes 

in the resulting MS data. After validating MALDI MS in measuring Aβ multimeric composition, the method 

has been applied to examine the Aβ samples prepared using published protocols on monomerization and 

oligomerization for in vitro toxicity assays.   
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METHODS 

 

Reagents. All Aβ peptides were purchased from Bachem (King of Prussia, PA). They include the wildtype 

Aβ1-42 and Aβ1-40, a peptide with same amino acid composition but in scrambled sequence Aβ1-40s 

(AEGDSHVLKE GAYMEIFDVQ GHVFGGKIFR VVDLGSHNVA), the reversed sequence peptide Aβ42-1, and 

the mutant that has high tendency of oligomerization Aβ1-40(E22Q) (DAEFRHDSGY EVHHQKLVFF 

AQDVGSNKGA IIGLMVGGVV). Ethanol, methanol, and acetonitrile (ACN) were purchased from Caledon 

(Ontario, Canada), and hexafluoro-2-propanol (HFIP), dimethyl sulfoxide (DMSO), Sinapinic acid (SA), tryp-

sin, amphotericin B solution, 7% poly-L-ornithine from Sigma Aldrich (St. Louis, MO). Ham’s F-12 nutrients 

mixture, B27 supplement, N2 supplement, penicillin/streptomycin, glutamax, and 4’-6-diamidino-2-phenyl-

indole (DAPI) were purchased from Life Technologies (Grand Island, NY). Formic acid, ammonium hydrox-

ide was obtained from EM Science (Darmstadt, Germany), and trifluoroacetic acid (TFA) was purchased from 

Fischer Scientific (Ottawa, ON, Canada). Neurons were isolated from Wistar rats purchased from Charles 

River (Montreal, QC, Canada). Hank’s balanced salt solution (HBSS) and neural basal media were from Wi-

sent (St. Jean-Baptiste, QC, Canada).  Trypsin inhibitor was obtained from Roche Life Sciences (Indianapolis, 

IN), and propidium iodide was purchased from Biotium (Hayward, CA). 

 

Amyloid Beta Sample Preparation. To optimize the monomerization condition, Aβ peptides were sus-

pended in one of the four monomerization solvents, NH4OH, TFA, HCO2H, or HFIP, at a concentration of 1 

mM. Our preliminary MALDI MS results revealed that highest peak intensities from the monomer with min-

imum signals from multimers were obtained with NH4OH (data not shown), and thus was chosen in our 

work.  To prepare for short term storage, the sample was fractionated in 10 μL aliquots and lyophilized for 1 

hour at –100oC and stored at –80oC.  To prepare for use, each aliquot of lyophilized powder was resuspended 

in 10 μL of DMSO and sonicated in a 37oC water bath for 10 minutes. The sample was then brought to a 

concentration of 150 μM with the F12 solvent and vortexed. The final sample solution was incubated at 4oC 

for 24 hours to allow for oligomerization. 

 

Molecular Weight Cut-Off (MWCO) Filtration. MWCO Filters at 10 kDa and 30 kDa were purchased from 

Pall Corporation (Ann Arbor, MI). Aβ sample aliquots of 70 μL were pipetted into each filter and centrifuged 

4 times in 30 second intervals at 14 000 rpm with Centrifuge 5417c from Eppendorf (Westbury, NY). Typically, 

60 - 65 µL of filtered sample solution was collected. ThermoFisher Scientific NanoDropTM Spectrophotometer 

2000c (Waltham, MA) was used to assess the final filtrate concentration in five replicates.  

 

Primary Embryonic Rat Cortical Neuron Cultures. Studies were conducted using neurons isolated from 

embryonic rat brain. Pregnant Wistar rats were sacrificed for surgical removal of E18 embryos. Cortices from 
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each embryo were extracted and placed in 14 mL conical tubes containing 1.8 mL of HBSS and centrifuged at 

4000 x g for 1 minute at room temperature. HBSS was aspirated and 1.8 mL of Solution A (71.4% HBSS, 0.086% 

MgSO4 (1 M), and 28.6% trypsin) was added. The mixture was agitated to ensure neurons were free floating 

and the sample was placed in an automated rotator for 25 minutes at 37oC. After rotation, 3.6 mL of Solution 

B (96.0% HBSS, 0.109% MgSO4 (1M), 2.40% 10 mg/mL DNase 1, and 1.54% 100 μg/mL trypsin inhibitor) was 

added. The solution was mixed for 2 minutes followed by centrifugation at 4000 x g for 5 minutes at room 

temperature. The HBSS was then aspirated and the pellet was re-suspended in 6 mL of Solution C (89.5% 

HBSS, 0.215% MgSO4 (1 M), 5.82% DNase I, and 4.47% trypsin).  The cells were transferred to a 50 mL falcon 

tube and another 6 mL of Solution C was added. The cells were titrated and centrifuged at 4000 x g for 5 

minutes and the supernatant aspirated. Neurobasal plating media was prepared with 96% neural basal media, 

2% B27 supplement, 0.8% N2 supplement, 0.5% penicillin/streptomycin, 0.25% Glutamax, and 0.1% ampho-

tericin B solution. The resulting pellet from centrifugation was then re-suspended in the prepared neurobasal 

plating media, and counted with a hemocytometer prior to plating in 35 mm wells coated with 7% poly-L-

Ornithine at a density of 0.5 x 106 cell/well. The cells were stored at 37oC with 5% CO2 and the medium was 

changed on the third day of plating prior to use.  

 

Neuron Cellular Viability in Presence of Amyloid Beta. Aβ 1-42 was prepared as previously described. 

NH4OH was used as the lyophilization solvent and the lyophilized powder was suspended in DMSO and F12 

medium to 150 μM. An Aβ 1-42 sample was prepared and incubated for 24 hours while a second sample was 

prepared at the time of use providing the oligomer and monomer conditions respectively. Three different 

environmental conditions were provided for each cell population (N = 4) with 10 μL additions of pre-incu-

bated Aβ 1-42 (monomer), and post incubation Aβ 1-42 (oligomer). One set of cultures were left without any 

environmental alterations to provide a baseline (control) of the natural decrease in cellular viability over time. 

The cells were incubated for 6, 24, 36, and 48 hours. PI staining was applied through addition of 10 μL of PI 

45 minutes prior to fixation. The cells were fixed with 500 μL of 4% formaldehyde followed by 400 μL of 2% 

formaldehyde. The fixing agent was removed with 3 consecutive PBS (1x) washes.  

 

Microscopy. Fine tweezers were used to plate the cells fixed on 12 mm round cover slips. The cells were 

counter-stained with DAPI for nuclear visualization and imaged using a Nikon Eclipse Ni-E with fluorescent 

filters and a DS-Qi2 monochrome microscope camera. 20x magnification was used with appropriate filters 

for DAPI and PI stained cell images. Five images were acquired for each cell culture in order to obtain the 

average cell deaths vs. total cells per culture. ImageJ software was used to process and analyze the cell images 

obtained. 
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Statistical Analysis. All values were presented as the mean ± standard error of the mean (S.E.M.) of four 

independent experiments (n=4). Statistical comparisons between experimental groups were performed using 

the GraphPad Prism software. A two-way ANOVA with Tukey’s HSD test was applied. P < 0.05 was considered 

to have statistical significance. 

 

Mass Spectrometry. Sinapinic acid (SA) was selected as the MALDI matrix on this work based on prelimi-

nary experiments comparing it with the two other most commonly used matrices, alpha-cyano-4-hy-

droxycinnamic acid and 2,5-dihydroxybenzoic acid. SA matrix was prepared to 10 mg/mL in 50% ACN and 

0.05% TFA. The Aβ sample and SA matrix were deposited as sandwiched layers, where 0.75 μL of the Aβ 

solution was spotted between two layers of SA (0.75 μL). The spots were washed twice with 1 μL water prior 

to analysis. MALDI-MS sample analyses were performed on an Sciex TOF/TOF 5800 MALDI mass spectrom-

eter. TOF-TOF Series Explorer in positive ion linear mode and Data Explorer were used for data acquisition 

and processing, respectively (Sciex). Total sum of 200 shots/spot were acquired with a 1 kHz OptiBeam on-

axis Nd:YAG laser system. Lowest possible laser intensity was used to minimize dissociation and favor the 

detection of Aβ oligomers. Other instrument parameters were generally optimized for sensitivity while com-

promising resolution to an acceptable extent. 

 

RESULTS AND DISCUSSION 

 

MALDI MS Results from Wildtype Aβ Oligomers. We began our studies by performing the detection of 

wildtype Aβ1-40 and Aβ1-42 oligomers with MALDI MS based on the conditions reported by Van Duyne [54] 

(Figure 1). Briefly, samples were subject to monomerization and then oligomerization conditions. Sinapinic 

acid (SA) was the MALDI matrix, and the same spotting was used with a modification of including a washing 

step. Effects of different TFA concentrations in the matrix solution was assessed, and we concluded that a 

reduction in TFA concentrations was most beneficial in the detection of oligomers within the sample. This 

coincides with previous studies indicating low pH disruptions in the formation of non-covalent complexes 

[55]. The instrument’s acquisition parameters were set to optimize for detection sensitivity. Our MALDI MS 

instrument appeared to be susceptible to ionization suppression of higher MW species by low MW ones. In 

other words, the detection of high MW oligomers was hindered by the presence of the monomers, as shown 

in Panels A and E of Figure 1. To alleviate this, mass spectra were acquired starting at higher m/z values to 

enhance the sensitivity for the large MW species.  

 

The monomeric Aβ1-40 and Aβ1-42 peptides have a molecular weight of 4329.86 Da and 4514.10 Da respectively, 

and therefore only the singly charged ions the Aβ monomer and multimers were observed in all cases. Be-

tween the Aβ1-40 and Aβ1-42, our spectra revealed that signals of high MW complexes were more prominent for 
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Aβ1-40 than Aβ1-42. Importantly, when comparing our data to those previously reported [54], the same general 

trend in oligomer size distribution was detected.  That is, the signal intensity was the strongest with small 

MW species, and dropped off in a decaying fashion for larger complexes.  There were also differences in the 

peak intensities, as expected, attributed to the different MALDI mass spectrometers used.  The MALDI MS 

results also generally agree with those reported by gel electrophoresis, where substantial quantities of multi-

mers relative to the monomer were typically detected, as bands of similar size and darkness. When compared 

to ESI MS, rather different looking mass spectra were reported with similar samples. The dominant two peaks 

in the ESI mass spectra of Aβ1-42	correspond to the monomers with -3 and -4 charge states, and the sum of 

peak height from other peaks accounts for less than 10% of the total	[50].  

 

MALDI MS Results from Aβ Variants. The preparation of Aβ samples for MALDI MS analysis involve mix-

ing it with UV absorbing matrices at acidic pH, which is then deposited on target plates and allowed to dry.  

Hence, a common concern is the possibility of artificial non-specific associations that could occur either dur-

ing sample spot drying or within the mass spectrometer in gas phase.  In the literature, numerous examples 

of MALDI MS application on complexes of biomolecules were reported and reviewed [55-57]. The consensus 

is that the technique is capable of detecting certain non-covalent multimeric complexes under optimized 

conditions.  However, there is not one universally optimal protocol. Therefore, it is important to experimen-

tally determine if the Aβ non-covalent complexes detected by MALDI MS herein were real or merely an arti-

fact.  To achieve this, Aβ variants with varying propensities in oligomerization, used by others in toxicity 

experiments, were acquired and analyzed. 

 

We first selected the Aβ1-40
 variant with the same amino acid composition as wildtype, but in a random se-

quence, as a negative control. This variant, Aβ1-40S, has been applied in Alzheimer’s disease research as an 

inactive controls, and verified to exhibit minimal toxic effects compared to the wildtype [58]. Using the same 

experimental conditions for the wildtype Aβ samples, mass spectra were collected for Aβ1-40S, and the results 

revealed only a minimal level of dimerization (Figure 2). Importantly, the results presented a very strong evi-

dence that gas phase aggregates and non-specific association of the dried Aβ samples did not occur, at least 

not to a significant extent. Consequently, it argues that the multimeric signals observed by MALDI MS, such 

as those in Figure 1, in fact came from Aβ complexes assembled in solution.    

 

Another negative or inactive control of Aβ used in Alzheimer’s disease research is the reversed sequence vari-

ant, Aβ42-1. Contrary to our expectation, oligomerization was evident with the reversed peptide, and the oligo-

meric composition observed from Aβ42-1 (Figure 3) was very similar to that of wildtype Aβ1-42 (Figures 1E to 1H).  

However, controversy on the effectiveness of this variant as an inactive control has been reported. For example, 
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Vadukul et al. presented experimental data that the reversed Aβ peptides self-assembled to form fibres within 

24 h, even though they exhibited a reduced effect on cellular health compared to wildtype Aβ [59].  

 

Finally, we completed this set of experiments by examining a third Aβ variant, Aβ1-40(E22Q). This Aβ mutant 

was intended to aggregate more readily in comparison to the wildtype peptide [60-63]. To capture the more 

favorable oligomerization of Aβ1-40(E22Q), we performed MALDI MS of the Aβ samples without the 24-hour 

incubation step.  It essentially allowed us to capture the onset of oligomerization, immediately after the mon-

omerized Aβ samples were put in oligomerizing conditions. Figure 4 present the mass spectra, comparing the 

Aβ1-40(E22Q) with wildtype Aβ1-40. The results between Figures 4B and 4D indicate a higher level of multimeric 

signals from the mutant, in agreement with the expected behavior of the mutant.  

 

In vitro Aβ Toxicity Assay.   Another noteworthy point from the results in Figure 4 is the ability of our tech-

nique in detecting differences in the Aβ multimeric compositions before and after the incubation/oligomeri-

zation step; namely, the differences observed between Figures 1A-1B with Figures 4C-4D for Aβ1-40. Very similar 

results were also observed for Aβ1-42 (data not shown). To verify that the incubation step indeed resulted in the 

intended oligomerization of Aβ peptides, we conducted an in vitro toxicity assay on embryonic rat cortical 

neuron cell cultures.  The average cell death percentage was determined in 48 hours under the treatment of 

using our Aβ samples with and without the incubation step, which we refer to as the “oligomerized” and “mon-

omerized” Aβ samples (Figure 5).  The results obtained from the monomer treatment were indistinguishable 

from the control in all time points measured.  In contrast, an accelerated rate of cell death was observed upon 

treatment with Aβ oligomers.  At 24 hours, the toxicity of the oligomer sample treatment began to display a 

notable difference when compared to the monomer sample (P = 0.07). As the treatment was extended for 36 

hours, the toxicity of the oligomer treatment was significantly higher than that of the control (P = 0.002). Once 

the treatment was carried out for 48 hours, statistically significant differences in toxicity between the oligo-

meric sample and that of the control and monomeric samples were observed (p = 0.03 and 0.01 respectively).  

In the literature, reports on the effect of Aβ oligomers varied depending on conditions such as cell culture 

preparation methods, stains, and dosage. For example, one reported a decrease in cellular viability from 90% 

to 55% upon exposure to Aβ oligomers while another reported 20% cellular viability after 48 hours [64-65].  

Importantly, our results reaffirmed the significant toxicity of the oligomerized Aβ samples are in close agree-

ment with the MALDI MS peak distribution observed.  

 

Manipulation of Aβ Oligomeric Composition with MWCO Filters. Further to examining the various Aβ 

variants, we performed sample filtration using MWCO filters with the intention of removing the higher MW 

complexes at two different MWCO points, 10 kDa and 30 kDa. Based on the discoveries presented, MALDI 
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MS should be able to detect differences in oligomeric composition after being manipulated by MWCO filtra-

tion. Specifically, a 10 kDa cut-off filter should in theory remove complexes larger than dimers (8659.72 Da). 

The resulting mass spectrum indeed revealed the expected reduction in signals of the large oligomers. The 

result is presented in Figure 6A, where a significant reduction the dimer signal intensity was observed. In 

comparison, when the Aβ1-40 oligomers were filtered at the 30 kDa cut-off point, significantly stronger dimer 

and trimer signals were observed (Figure 6B). The extent of sample loss due to non-specific adsorption during 

the MWCO filtration was determined by nano-drop spectrophotometer, which measured the filtrate concen-

tration to be approximately three times lower than stock concentrations. For comparison, the mass spectrum 

from a 3-fold diluted Aβ sample, without MWCO filtration, is shown in Figure 6C. The results collectively 

allowed us to draw the conclusion that, despite the harsh, non-native, nature of MALDI MS, it is capable of 

revealing the oligomeric composition of Aβ complexes in solution. The Aβ complexes detected by MALDI 

agreed with expected oligomeric compositions of the solution samples. Finally, the intensity of the MALDI 

MS signals of these oligomers corresponded to their concentration at least in a semi-quantitative fashion. It 

is however noteworthy that the detection of very large Aβ oligomers, if present, is limited by the sensitivity 

of the MS.  

 

CONCLUSION  

In this paper, the validity of MALDI MS in the detection of Aβ monomeric/oligomeric composition was in-

vestigated. Our results verified the ability of MALDI MS to differentiate variants of Aβ peptides with different 

propensities of oligomerization, and the Aβ samples obtained before and after oligomerization incubation. 

In contrary to previous speculations, our work provided the evidence that the MALDI MS signals of Aβ oli-

gomers did not result from random gas phase aggregation. Interestingly, we observed a significant extent of 

oligomerization from the reversed peptide, Aβ42-1, which supported the controversial report of reversed Aβ 

self-assembly reported in the literature.  Even though MALDI MS is not a quantitative measurement of the 

Aβ oligomeric composition, the peak distribution broadly reflects the oligomeric composition in a qualitative 

manner. In terms of potential applications, MALDI MS will allow researchers to confirm the multimeric com-

position of their Aβ samples prior to their use in neurodegeneration research, or to determine the oligomer-

ization affinity of novel Aβ mutants.  The detection of Aβ oligomers with MALDI MS also presents an exciting 

opportunity of future work in the direct MS imaging of multimeric Aβ in brain tissues, although further re-

search and development will be required to overcome background interferences and signal suppression.  
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Figure 1. MALDI mass spectra of wildtype Aβ1-40 (A to D) and Aβ1-42	(E to H) samples 
prepared under conditions that promote oligomerization. Data acquisition was shifted to 
higher m/z starting values to enhance the detection of larger molecules.   
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Figure 2. MALDI mass spectra of Aβ1-40S, a variant with scrambled sequence acquired: 
at full range (A) or at a higher m/z to enhance the detection of larger complexes (B). 
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Figure 3. MALDI mass spectra of reversed sequence peptide Aβ42-1 acquired at various 
starting m/z values to enhance the detection of larger molecules.   
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Figure 4. MALDI mass spectra of samples acquired without the 24-hour incubation to 
capture the onset of oligomerization for: the Aβ1-40(E22Q) mutant (A to B) and the 
wildtype Aβ1-40 (C to D) acquired at two starting m/z values to enhance the detection of 
larger molecules.   
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Figure 5. Rat cortical neuron cell death determined under the treatment of Aβ 
monomers and oligomers.  Results are presented as the mean with S.E.M. (n=4). 
*: P ≤ 0.05, **: P ≤ 0.01 (two-way ANOVA with Tukey’s HSD test). 
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Figure 6. MALDI mass spectra of wildtype Aβ1-40 after passing through 10 kDa (A) and 
30 kDa (B) MWCO filters, and spectra of wildtype Aβ1-40 diluted from 150 to 50 µM to 
match the approximate concentration of the filtered samples (C). Spectra were acquired 
at the starting m/z to capture the dimeric and larger complexes.
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