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ABSTRACT

Microarray technology is essentially a measurement tool for measuring expressions of

genes, and this measurement is subject to measurement error. Gene expressions could

be employed as predictors for patient survival, and the measurement error involved

in the gene expression is often ignored in the analysis of microarray data in the

literature. Efforts are needed to establish statistical method for analyzing microarray

data without ignoring the error in gene expression.

A typical microarray data set has a large number of genes far exceeding the

sample size. Proper selection of survival relevant genes contributes to an accurate

prediction model. We study the effect of measurement error on survival relevant

gene selection under the accelerated failure time (AFT) model setting by regularizing

weighted least square estimator with adaptive LASSO penalty. Simulation results

and real data analysis show that ignoring measurement error will affect survival rel-

evant gene selection. Simulation-Extrapolation (SIMEX) method is investigated to

adjust the impact of measurement error on gene selection. The resulting model after

adjustment is more accurate than the model selected by ignoring measurement error.

Microarray experiments are often performed over a long period of time, and

samples can be prepared and collected under different conditions. Moreover, differ-

ent protocols or methodology may be applied in the experiment. All these factors

contribute to a possibility of heteroscedastic measurement error associated with mi-

croarray data set. It is of practical importance to combine microarray data from

different labs or platforms. We construct a prediction AFT model using data with

heterogeneous covariate measurement error. Two variations of the SIMEX algorithm

are investigated to adjust the effect of the mis-measured covariates. Simulation re-
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sults show that the proposed method can achieve better prediction accuracy than the

naive method.

In this dissertation, the SIMEX method is used to adjust for the effects of co-

variate measurement error. This method is superior to other conventional methods

in that it is not only more robust to distributional assumptions for error prone covari-

ates, it also offers marked simplicity and flexibility for practical use. To implement

this method, we developed an R package for general users.

Keywords: Accelerated failure time model, Measurement error, Microarray, Predic-

tion, Simulation and extrapolation method, Survival analysis, Variable selection.
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1

Chapter 1

Introduction

1.1 Microarray Technology

Microarray is an innovative technology that facilitates the analysis of thousands of

gene expressions simultaneously (Golub et al., 1999; Schena et al., 1995). The use of

this technology calls for a multidisciplinary efforts from biological, statistical sciences

and bioinformatics community. There have been various microarray studies carried

out in recent years.

1.1.1 Microarray Data Examples

1. DLBCL Data

Diffuse large-B-cell lymphoma (DLBCL) is the most common type of lymphoma

in adults. The data set of Rosenwald et al. (2002) consists of 7399 gene ex-

pression profiles across 240 patients with untreated DLBCL. Median survival

time was 2.8 years and 138 patients died during this follow up period. Gene

expression can be used as predictor of patient survival time after chemotherapy.

In Rosenwald et al. (2002), the authors used 17 genes to build a Cox regression

model to predict the survival time of these DLBCL patients.

2. Golub Data

The data set of Golub et al. (1999) consists of 72 bone marrow samples ob-

tained from acute leukemia patients. Ribonucleic acid (RNA) prepared from

bone marrow mononuclear cells was hybridized to high-density oligonucleotide
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microarray, where 6817 human gene expression profiles were measured. By re-

lying on gene expression, Golub et al. (1999) were able to make distinguishable

identification between acute myeloid leukemia (AML) and acute lymphoblastic

leukemia (ALL) without any prior knowledge of these classes.

3. Breast Cancer Data

Van de Vijver et al. (2002) studied a cohort of 295 young patients with breast

cancer. This study utilized only tumor specimens which were less than 5 cm. All

patients were treated using modified radical mastectomy or breast-conserving

surgery and assessed annually for a period of at least five years. The median

follow-up among all 295 patients was 6.7 years. The authors reported that

prediction model based on 70 gene expression profiles performed best for the

appearance of distant metastases during the first five years after treatment.

These studies give examples of the applications of microarray technology to measure

gene expression, and utilize gene expression as covariate to build statistical model for

survival prediction, group classification, etc.

Microarray is a breakthrough technology that allows us to analyze completed

genetic variations in entire genome level (Golub et al., 1999). Introduced in the mid-

1990s (Schena, 1995; Lockhart, 1996; DeRisi, 1997), microarray has ever since been

applied to a number of diverse areas, such as nutrition research (DellaPenna, 1999),

drug discovery (Debouck, 1999), environmental health research (Nuwaysir, 1999) and

cancer diagnostic (Golub, 1999; Dudoit, 2002). With the advent of new technolo-

gies and more rapid methods of analysis, microarray technology has the potential to

become increasingly popular tool in many new areas in the future. Comprehensive

reviews of microarray technology and data analysis can be found in Duggan et al.

(1999) and Quackenbush (2001, 2002).

Microarray technology is essentially a measurement tool for measuring biological

features such as gene expression. However, the measurement of gene expression may
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be subject to error, and those measurement errors are often ignored in the microarray

data analysis in the literature. We investigate this issue in this thesis.

1.1.2 Genomes and Microarray Experiment

To provide a better picture of gene expression data, we give a brief background of

the gene and procedures of microarray experiment. Genes are hereditary units that

are composed of deoxyribonucleic acid (DNA) sequences organized in chromosomes in

the cell nucleus (Russell et al., 2009). The DNA sequences control the generation of

messenger ribonucleic acids (mRNA) through a process called transcription. mRNA

encodes amino acids that subsequently form proteins through a process called trans-

lation. The proteins carry out the designated function of a particular gene. Thus, the

structural and functional features of cells and tissues are determined by the simul-

taneous, selective, and differential expressions of thousands of genes. The type and

amount of protein present in the cells determine the phenotypes of the cells, such as

cancer or normal cells.

A microarray is a solid substrate (usually glass) upon which many different cD-

NAs have been spotted in specific locations in a grid pattern. mRNA from a tissue

sample of interest is extracted and the reverse transcription is applied to synthesize

cDNA, and labels the cDNA with fluorescent dye or radioactive nucleotides. This la-

beled cDNA is then hybridized to cDNA immobilized on the array. The labeled cDNA

binds to its complementary sequence approximately proportional to the amount of

each mRNA transcript in a sample. The amount of radioactivity or fluorescence can

be measured, allowing estimation of the amount of mRNA for each transcript in the

sample. Once a microarray experiment has been conducted, the arrays are scanned

by a confocal laser microscope. The images from the scanner are processed to extract

the spot intensities and background spot intensities. The gene expression levels are

measured by the normalized ratio of the fluorescence intensity of the test sample and

the reference sample for a certain gene. Although microarray data can be generated
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from multiple platforms, it is worth to point out that our methods are not limited to

specific platforms, as long as the generated data are continuous variable. In the case

of the SNP microarray platform, a log transformation is sufficient to convert discrete

variables into continuous variables, so to satisfy prerequisite of our methods.

1.2 Survival Analysis

Survival analysis or time-to-event data analysis is a branch of statistics which empha-

sizes on developing statistical methods for analyzing the time to an event of interest,

often referred to as survival time or failure time (Lawless, 2003). Survival analysis is

an important topic in various scientific fields, such as biomedical sciences, economics

and engineering. One special characteristic of survival data is that the survival time

may be subject to censoring. Censoring generally occurs because subject may be lost

in the follow-up during the study period or withdraw from the study due to death or

some other reasons. In this thesis, we will focus on right censoring. Suppose that we

have a random sample of n subjects, i = 1, . . . , n. Let Ti be the survival time and Ci

be the censoring time. Usually, it is assumed that the survival time is independent of

the censoring time, or at least that they are independent given certain covariates. We

only observe min(Ti, Ci) and δi = I(Ti ≤ Ci) is the censoring indicator, with δi = 0

if subject i is censored and δi = 1 if the survival time Ti is observed.

The survival function and hazard function are essential to survival analysis. The

survival function, S(t), describes the probability that the random variate T exceeds

the specified time t and is given by

S(t) = Pr(T ≥ t) for t ≥ 0,

where S(t) is non-increasing and left continuous. At time t = 0, S(0) = 1 and at

t = ∞, S(∞) = 0.
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The hazard function, h(t), gives the instantaneous rate of failure at time t on

condition that individual surviving up to t and is given by

h(t) = lim
∆t→0

Pr(t ≤ T < t+ ∆t|T ≥ t)

∆t
.

In contrast to the survival function, the hazard function focuses on failure given

survival up to a certain time point. The hazard function can be used to identify the

form of model. The relationship between S(t) and h(t) is

S(t) = exp

{
−
∫ t

0
h(u)du

}
.

1.2.1 Cox Proportional Hazards Model

Cox proportional hazards (PH) model is one of the most popular semiparametric

regression model in survival analysis (Cox, 1972). The Cox PH model is given by

h(t|Xi) = h0(t) exp (X′
iβx),

where h0(t) is a unspecified baseline hazard function; Xi = (Xi1, Xi2, . . . , Xip)
′ is p

dimensional vector of covariates and βx is the associated vector of unknown regression

coefficients, which can be estimated by maximizing the partial likelihood (Cox, 1975)

L(βx) =
n∏
i=1

 eX
′
iβx∑

j∈Ri

e
X′
jβx


δi

,

where Ri is the risk set of subjects at time ti given by

Ri = {j : Tj ≥ ti}.
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1.2.2 Accelerated Failure Time Model

Another attractive alternative to the Cox PH model is the accelerated failure time

(AFT) model (Kalbfleisch and Prentice, 1980). The AFT model relates the logarithm

of the survival time linearly to covariates and is given by

Yi = β0 + X′
iβx + εi, (1.1)

where Yi = log (Ti), εi is the error term. The parametric AFT model specifies

the distribution of εi up to parameters α. Common choice of distribution include

the Weibull, exponential, Gaussian, logistic, log-normal and log-logistic distribution

(Lawless, 2003). The semiparametric AFT model does not make any assumption on

the distribution of εi.

The Cox PH model and AFT model are intended for different types of com-

parisons (i.e., the Cox PH model compares the hazard functions whereas the AFT

model compares the survival times). In the Cox PH model, the covariates are mul-

tiplicative to the hazard function and remains constant over time, whereas in the

AFT model, the covariates are multiplicative to the survival times. Compared to the

Cox PH model, the results of AFT models are easier to interpret due to its direct

modeling of the survival time (Reid, 1994). Also, when there is no censoring, the

AFT models reduce to ordinary generalized linear regression models. AFT models

have been studied extensively in the literature: Miller (1976) and Buckley and James

(1979) modified the least square estimate equation to account for the censored re-

sponse variable; Tsiatis (1990) and Ying (1993) proposed the rank based estimator;

and Stute (1996) investigate the weighted least square estimator. In this thesis, we

will focus on AFT models.
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1.3 Survival Analysis with Microarray Data

Central to the application of microarrays in biomedical and genomic research is to re-

veal different gene expression profiles under different medical or treatment scenarios.

For example, in cancer research, gene expression profiles can help further understand-

ing of cancer at the genetic or molecular level.

With the microarray features of each patient, we can have a patient survival

prediction model that is biologically meaningful. Microarray experiments generate

large data sets, to which many biological researchers may not be accustomed (Page

et al., 2003). A typical microarray data set has a large number of genes far exceeding

the sample size. Other than the high dimensionality of the genes, the expression levels

of genes are often highly correlated. As a pre-procedure, one needs to identify survival

relevant genes from a large set of candidates produced by microarray experiments.

After identifying a subset of genes with the most predictive power to the survival

outcome of the patient, one can combine them with patient specific covariates to

build a prediction model for future patients’ survival outcomes. Simply put, proper

selection contributes to an accurate prediction model that are both clinically and

biologically meaningful, and could lead to better treatment choice for patients.

1.3.1 Variable Selection

Variable selection is fundamental in statistical modeling and data analysis. Tra-

ditional variable selection approaches include Akaike information criterion (AIC)

(Akaike, 1973), Bayesian information criterion (BIC) (Schwarz, 1978), and risk infla-

tion criterion (RIC) (Foster and George, 1994). Recent high throughput technologies

have generated data where the number of covariates is significantly larger than the

sample size. Typical examples include microarray data, text categorization and image

retrieval. New features of these data present a direct challenge to standard variable

selection methods.



8

Literature on variable selection in high dimensional models is growing quickly.

Fan and Lv (2010) presented a review on variable selection in high-dimensional mod-

eling. Here we introduce two popular methods: least absolute shrinkage and selection

operator (LASSO) (Tibshirani, 1996) and the adaptive LASSO (Zou, 2006).

1.3.1.1 LASSO

Tibshirani (1996) proposed the popular shrinkage regression technique that could

select variables and estimate the regression coefficient simultaneously. The LASSO

estimate is defined as

β̂x(lasso) = argmin
βx


n∑
i=1

Yi − p∑
j=1

Xijβxj

2

+
γ

n

p∑
j=1

∣∣∣βxj ∣∣∣
 ,

where Yi is the response for subject i, Xi = (Xi1, Xi2, . . . , Xip)
′ is p dimensional

covariate vector and βx is the associated vector of unknown regression coefficients.

γ is a penalty parameter determined by cross-validation. It shrinks a number of

coefficients to zero, thus can be used for variable selection. Efron et al. (2004)

published least angle regression algorithm which can be employed to solve LASSO

estimate.

1.3.1.2 Adaptive LASSO

Fan and Li (2001) showed that the LASSO penalty produces biased coefficients es-

timates. To overcome the bias, Zou (2006) proposed the adaptive LASSO that has

oracle properties:“ it can not only selects significant variables consistently but also

performs as efficient as if the true model was known, a property not enjoyed by the

LASSO.” Hence, the adaptive LASSO method is an ideal one for variable selection.

The adaptive LASSO estimate is defined as
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β̂x = argmin
βx


n∑
i=1

Yi − p∑
j=1

Xijβxj

2

+ γ

p∑
j=1

vj

∣∣∣βxj ∣∣∣
 ,

where v = (v1, . . . , vp) is a known weight vector. The weight vector can be constructed

as v = 1/|β∗|τ , τ > 0, where β∗ needs to be a root-n-consistent estimator of βx,

such as the ordinary least square estimate.

1.3.2 Variable Selection for Survival Outcomes

In the past few years, some of the variable selection procedures in linear regression

analysis have been extended to the censored survival data analysis in the presence of

high dimensional predictors. For example, Tibshirani (1997) developed a regularized

Cox regression by minimizing L1 LASSO penalty to the partial likelihood; Faraggi

and Simon (1998) proposed a Bayesian variable selection method for the Cox model;

Li and Luan (2003) investigated the L2 penalized estimation of the Cox model using

kernel; and Gui and Li (2005) introduced a threshold gradient descent regularization

estimation method. For the AFT model, Schmid and Hothorn (2008) presented a

boosting algorithm for fitting the parametric AFT model. For the semiparametric

AFT model, Huang et al. (2006) investigated the LASSO regularization for estimation

and variable selection in the AFT model based on the inverse probability of censoring

weights method; Huang and Harrington (2005), Datta et al. (2007) used the LASSO

regularized Buckle-James method for the AFT model; and Cai et al. (2008) developed

variable selection for the AFT model by the LASSO regularized rank based estimator.

1.4 Measurement Error Models

In many biomedical studies, it is often the case that some covariates can not be

measured accurately, which leads to measurement error models or errors-in-variable

models in the literature (Carroll et al., 2006). Measurement error arises for many
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reasons. Sometimes it is due to covariate nature, for instant, blood pressure. In other

cases the patient consent and cost may prevent precise observation of the covariate.

It is well known that ignoring measurement error in covariate leads to biased estimate

of the covariate effects and consequently affects inference (Fuller, 1987; Carroll et al.,

2006).

In the past several decades, a great deal of research has been done on mea-

surement error models. Fuller (1987) summarized a detailed discussion of statistical

method for linear measurement error models while Carroll et al. (2006) provided

systematic guide on dealing with nonlinear measurement error models. Recently, the

study of measurement error models has become an increasingly popular theme in

nonparametric measurement error area (Delaigle and Meister, 2007; Carroll et al.,

2009).

1.4.1 Models for the Measurement Error Process

Specifying the model for the measurement error process is fundamental for analyz-

ing measurement error problems. There are a number of measurement error models

reported in the literature. The general two models are the classical additive measure-

ment error model and the Berkson error model. Assume we have response Yi and

two types of covariates, Zi consists of the covariates measured without error, and Xi

represents those that can not be observed exactly for subjects i = 1, . . . , n. Instead

of observing Xi, we observe its contaminated version Wi.

The classical additive model assumes that

Wi = Xi + Ui, (1.2)

the Berkson model assumes that

Xi = Wi + Ui,
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where measurement error Ui has multivariate normal distribution with mean 0 and

variance Σui . The measurement errors can be either homoscedastic or heteroscedas-

tic. If the variances Σui are the same for all subjects, it is called homoscedastic

measurement error. Otherwise it is heteroscedastic. The measurement errors are mu-

tually independent and are independent of {Yi,Xi,Zi}. The use of different model

forms is decided by the nature of study.

It is important to identify distinct measurement error mechanisms. Measure-

ment error is non-differential when the distribution of Yi given (Xi,Zi,Wi) is the

same as the distribution given (Xi,Zi). In other words, Wi contains no information

about Yi other than what is available in (Xi,Zi). Wi is called a surrogate for Xi.

Otherwise, measurement error is differential. This thesis focuses on nondifferential

measurement error models.

1.4.2 Methods for Measurement Error Analysis

A large number of methods has been proposed to deal with measurement error prob-

lems, including likelihood based methods (Stefanski and Carroll, 1990); score function

methods (Kukush and Schneeweiss, 2004); Bayesian methods (Clayton, 1992); and

semiparametric and nonparametric methods (Huang and Wang, 2000). Two widely

applicable methods for measurement error analysis are regression calibration and sim-

ulation extrapolation (SIMEX).

1.4.2.1 Regression Calibration

Regression calibration is commonly applied to account for measurement error (Carroll

et al., 2006). It reduces bias in the estimate of parameter and enjoys simplicity in

practical use. This method replaces the unobserved covariate Xi by the conditional

expectation of Xi given the observed covariates denoted by E(Xi|Zi,Wi). Then,

it runs the standard analysis based on this approximation. Either the bootstrap
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or sandwich method is needed to adjust the standard errors of the parameter esti-

mates to account for the variation induced by estimation of parameters in modeling

E(Xi|Zi,Wi). The key issue with this method is how to best estimate this expecta-

tion.

1.4.2.2 Simulation Extrapolation Method

Cook and Stefanski (1994) introduced a SIMEX approach for estimating and cor-

recting bias due to measurement error. The general idea of the SIMEX method is

to generate additional data sets with increasingly larger measurement error, estimate

the trend of the effect of the measurement error on the estimation of the parameter

of interest. We then extrapolate the trend back to the case of no measurement error.

The major advantage of the SIMEX method is its easy implementation and robust-

ness to distributional assumptions for error prone covariates. See section 2.2.3 for the

detailed description.

1.5 Survival Analysis with Measurement Error

A well-known challenge associated with survival data analysis is to find an appropriate

way of handling measurement errors which are frequently present in covariates. It

is known that many biomarkers, such as blood pressure and CD4 counts are often

subject to measurement error. Great research effort has already been undertaken to

explore effective ways of handling covariate measurement error for survival data.

Prentice (1982) first considered the regression calibration method to adjust the

impact of measurement error in covariates for the Cox PH model; Clayton (1992)

modified Prentice’s approach by using the regression calibration within each risk set;

Zhou and Pepe (1995) proposed a nonparametric method for discrete covariates with

measurement error; later, Zhou and Wang (2000) extended this method to contin-

uous covariates by applying a kernel smoothing. Hu, Tsiatis and Davidian (1998)
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developed a full likelihood approach to account for measurement error in the Cox

regression model with a single covariate; Nakamura (1992) and Buzas (1998) applied

the corrected score function to the Cox PH model when the measurement errors are

additive and normally distributed; Huang and Wang (2000) modified the score func-

tion and proposed a nonparametric approach to estimate the parameter of the Cox

regression model when replicates of Wi are available for each subject; and Gimenez

et al. (1999, 2006) have applied the corrected score approach in their investigation of

inference methods under Weibull regression models.

For multivariate survival analysis with mismeasured covariates, Li and Lin

(2000) used the expectation-maximization algorithm to calculate the nonparamet-

ric maximum likelihood estimates for clustered survival data with covariates subject

to frailty measurement error; Hu and Lin (2004) proposed semiparametric regression

methods for multivariate failure times; and Green and Cai (2004) explored the SIMEX

method in dealing with measurement error effect on multivariate failure time model.

In the above literature, all the works are focused on the Cox PH models with

covariates subject to measurement error. With AFT models, Tseng et al. (2005)

considered the joint modeling of failure time and longitudinal data under the AFT

assumption when covariates are assumed to follow a linear mixed effects model with

measurement errors; He et al. (2007) applied the SIMEX method to adjust the effect

of mismeasured covariates in the accelerated failure time model; Yu and Nan (2009)

considered the regression calibration estimation method for the semiparametric AFT

model with covariates subject to measurement error.

1.6 Objective of This Thesis

Like other measurement tools, the gene expression levels measured from microarrays

have measurement error. Throughout the microarray experiment process, measure-

ment error might be produced from various sources, including errors associated with
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the fluorescent signal, slide hybridization, image creating and reading, etc. As com-

monly acknowledged, the presence of measurement error leads to substantially biased

and inconsistent parameter estimates. Thus this leads to invalid hypothesis test and

mask the feature of the data.

To the best of our knowledge, most existing variable selection procedures are

limited to directly observed predictors. Variable selection for measurement error

data has not been systematically studied yet. Liang and Li (2009) proposed a class

of variable selection procedures for partially linear measurement error models by

using penalized least squares and penalized quantile regression. Ma and Li (2010)

discussed variable selection for general parametric and semiparametric measurement

error models via penalized estimating equations. In this thesis, we study the impact

of measurement error on survival relevant gene selection under the AFT model.

Microarray experiments are often performed over a long period of time, and

samples can be prepared and collected under different conditions. Moreover, differ-

ent protocols or methodology may be applied in the experiment. All these factors

contribute to a possibility of heteroscedastic measurement error associated with mi-

croarray data set. It is of practical importance to combine microarray data from

different labs or platforms which presents a natural way to increase sample size so

that reliable statistical analysis can be conducted. In this thesis, we will investi-

gate prediction of survival time under AFT model with gene expression subject to

heteroscedastic measurement error.

An outline of this thesis is as follows. In Chapter 2, we study the effect of

measurement error on survival relevant gene selection under the AFT model setting

by regularizing the weighted least square estimator with an adaptive LASSO penalty.

In Chapter 3, we consider prediction of AFT model using data with heteroscedastic

covariate measurement error. Two variations of the SIMEX algorithm are investi-

gated to adjust the effect of the mis-measured covariates, and a best linear prediction

is employed to predict the corresponding value of the unobserved covariates of fu-
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ture observation. We develop an R package simexaft to adjust biases induced by

covariate measurement error under AFT models and illustration is given in Chapter

4. Concluding remarks and discussion on future work are presented in Chapter 5.

The source code for the R package and some technical details are included in the

appendix.
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Chapter 2

Survival Relevant Gene Selection in Microarray Data
Analysis with Gene Expression Subject to Measurement

Error

2.1 Introduction

Microarray technology has become a very popular tool for investigating molecular fea-

tures of different clinical outcomes (Golub et al., 1999; Dudoit et al., 2002; Rosenwald

et al., 2002). In survival analysis, microarray data are commonly used for building

a prediction model of survival outcomes based on the gene expression profiles (e.g.,

survival times of patients). However, because of their unique features, microarray

data must be analyzed carefully. For instance, the number of genes far exceeds the

sample size in many microarray data sets. Other than the high dimensionality of the

genes, the gene expression levels are often highly correlated. Therefore, we need to

identify a subset of genes that are significantly correlated with the survival outcomes,

and combine patient specific covariates together to build a prediction model for future

patients’ survival outcomes (Li, 2008).

There has been extensive research on variable selection and estimation method-

ologies in the presence of high dimensional predictors. Examples include bridge re-

gression (Frank and Friedman, 1993); non-negative garrote (Breiman, 1995); least

absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996); smoothly

clipped absolute deviation (Fan and Li, 2001); gradient directed regularized method

(Friedman and Popescu, 2004); the boosting algorithm (Buhlmann and Yu, 2003);

the elastic net (Zou and Hastie, 2005); the adaptive LASSO (Zou, 2006); and the

Dantzig selector (Candes and Tao, 2007). Fan and Lv (2010) gave a comprehensive

overview of several of these high dimensional variable selection methods.
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It becomes more complicated if the goal is to predict survival time with high

dimensional gene expressions when the survival time is censored. As a consequence,

direct employment of traditional survival analysis techniques is difficult to obtain

accurate parameter estimates. See section 1.3.2 for the literature review on variable

selection methods for combining high-dimensional covariates to predict failure time

outcomes.

Microarray technology allows for the measurement of the expressions of thou-

sands of genes simultaneously. Like many other quantitative tools, gene expressions

are subject to measurement errors. It is commonly acknowledged that ignoring mea-

surement error could lead to substantially biased estimates of the regression parame-

ters (Fuller, 1987; Carroll et al., 2006). This leads to incorrect results for statistically

identifying survival relevant genes. Consequently, it is essential to investigate survival

relevant gene selection when the gene expressions are subject to measurement errors.

Huang et al. (2006) used censoring weights for adjusting the LASSO penalized

least squares loss function for variable selection in AFT model. Because of the L1

penalty structure, this method has the advantage of carrying variable selection and

estimating parameters simultaneously. The adaptive LASSO (Zou, 2006) is similar

to LASSO in that it has retained the near-minimax optimality and can be solved by

the least angle regression algorithm (Efron et al., 2004). Furthermore, it enjoys the

oracle properties as mentioned in Section 1.3.1.2.

In this chapter, we study the effect of the measurement error on survival rel-

evant gene selection in the AFT model by regularizing the weighted least square

estimator with the adaptive LASSO penalty. The bootstrap method, which samples

with replacement from the original observations, is employed to estimate variances.

The simulation extrapolation (SIMEX) method is explored to adjust the effect of

measurement error on variable selection.
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2.2 Model Framework

Survival regression models are mainly used to identify covariates that are significantly

related to the survival times. With microarray data, we use gene expressions to build

the survival model to find gene expressions that significantly predict the survival

time of a patient. Typically, the gene expression measurements from microarray

experiments have measurement errors. Let Wi be the measured gene expression and

Xi be the true gene expression, which is usually unavailable, for the ith subject. The

relationship between Wi and Xi could be assumed through the most commonly used

additive measurement model given by equation (1.2), where measurement error Ui

follows a normal distribution with mean 0 and covariance matrix Σui . By ignoring

Ui, the AFT model (1.1) will be the naive model given by

Yi = β0 + W′
iβw + εi. (2.1)

The estimates for βw will attenuate from the true βx in the model (1.1) (Fuller,

1987); hence, the survival relevant variable selection will be affected (Carroll et al.,

2006; He et al., 2007).

2.2.1 The Adaptive LASSO Regularized Inverse Probability of

Censoring Weight (IPW) Method

One problem in utilizing the adaptive LASSO for survival relevant gene selection is

that the survival times are not available for censored observations. Thus, the least

square term in adaptive LASSO has to be modified for survival data. The IPW

method is a popular choice to overcome this problem (Huang et al., 2006).

The Kaplan-Meier estimator of the distribution function of survival time changes
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only at the uncensored point by the jumps π′nis given by

πn1 =
δ(1)

n
,

and

πni =
δ(i)

n− i+ 1

i−1∏
j=1

(
n− j

n− j + 1

)δ(j)
, i = 2, . . . , n,

where δ(1), δ(2), . . . , δ(n) are the censoring indicators for the corresponding ordered

logarithm of survival times Y(1) ≤ Y(2) ≤ · · · ≤ Y(n). The weighted least square

estimator defined by Stute (1996) is the set of values for (β0,βx) that minimizes

`(β0,βx) =
1

2

n∑
i=1

πni

(
Y(i) − β0 − X′

(i)βx

)2
,

where X(1), X(2), . . . , X(n) are covariates of the corresponding ordered Y(i)’s.

We first adjust X(i) and Y(i) by their πni−weighted means, respectively,

Xπ(i) = π
1/2
ni

(
X(i) − X̄π

)

and

Yπ(i) = π
1/2
ni

(
Y(i) − Ȳπ

)
,

where

X̄π =
n∑
i=1

πniX(i)/
n∑
i=1

πni

and

Ȳπ =
n∑
i=1

πniY(i)/

n∑
i=1

πni.

By replacing the original sample (Yi,Xi, δi) with the weighted centered values (Yπ(i),Xπ(i)),
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the weighted least squares (LS) objective function becomes

`(βx) =
1

2

n∑
i=1

(
Yπ(i) − X′

π(i)βx

)2
.

Then, the adaptive LASSO regularized IPW estimator, β̂x, is the solution that min-

imizes

`(βx) =
1

2

n∑
i=1

(
Yπ(i) − X′

π(i)βx

)2
+ γ

p∑
j=1

vj

∣∣∣βxj ∣∣∣ , (2.2)

where γ is the adaptive LASSO penalty parameter and v = (v1, . . . , vp) is a known

adaptive LASSO weight component. We use v = 1/|β̂|, where β̂ is the ordinary least

square estimate of β̂x, as suggested by Zou (2006).

For the variance estimates of β̂x, we use the bootstrap method, where samples

are generated with replacement from the original observations. The bootstrap esti-

mator is computed with the same optimal value of γ as used on the original data.

According to Theorem 2 in Zou (2006), β̂x is asymptotically normal.

2.2.2 Variable Selection with Mismeasured Covariates

Throughout the microarray experiment process, measurement error might be pro-

duced from various sources (He et al., 2007). Consider the hypothesis test for evalu-

ating the significance of the covariate, Xij , given by

H0 : βxj = 0 versus HA : βxj 6= 0, j = 1, . . . , p.

The test statistic is given by

zxj =
β̂xj

SE(β̂xj )
,

where β̂xj and SE(β̂xj ) are the estimate and standard error estimate of βxj , respec-

tively. Under H0, zxj follows the standard normal distribution. If Wij is observed
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but Xij is not observable, the naive test statistic is given by

zwj =
β̂wj

SE(β̂wj )
,

where β̂wj and SE(β̂wj ) are the estimate and standard error estimate of βwj , respec-

tively.

Typically, β̂wj will be attenuated from β̂xj and its corresponding SE(β̂wj ) will

be smaller than SE(β̂xj ) under certain conditons(Buzas et al., 2005). Hence, its

corresponding p-value will be different from the p-value if Xij is observable, often

leading to incorrect decisions for the hypothesis test.

A common problem for microarray data involves the analysis of high dimen-

sional gene expression data that are typically characterized by thousands of variables

with few observations. That is, these data have a high degree of multicollinearity in

the analysis. In general, the naive test statistic which ignores the measurement error

and substitutes Wi for Xi in a test is not correct (Carroll et al., 2006). Here the Xi

are highly correlated, under the multivariate distribution, the naive test of no effect

due to any component of Xi is not correct. We will use the SIMEX method (Cook

and Stefanski, 1994) to adjust the effect of measurement error on survival relevant

gene selection.

2.2.3 Simulation Extrapolation Method

Here we describe the SIMEX method to correct the bias due to measurement error.

More details are available in Carroll et al. (2006). Although the theory of the SIMEX

method is not trivial, an example from simple linear regression can well illustrate the

idea of this method. Suppose the response variable Y and the covariate X is modeled

as

Y = β0 +Xβx + ε,
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where ε has mean 0. Here X is normal distributed with variance σ2
x. If replacing X

with its observed measurement W , modeled by W = X +U , where U follows normal

distribution with mean 0 and variance σ2
u , and is independent of ε and X, then the

resulting least squares estimator β̂∗x for βx converges in probability to

β∗x =
σ2
x

σ2
x + σ2

u
βx,

instead of βx. To see how the bias may be related to the degree of measurement error

in X, we perturb W by adding additional error to create W (b, λ) = W +
√
λUb where

Ub is independently generated from a N(0, σ2
u) distribution. Intuitively, if regressing

Y over the perturbed version W (b, λ), then the resulting estimator β̂x(b, λ) would

converge in probability to

β∗x(b, λ) =
σ2
x

σ2
x + (1 + λ)σ2

u
βx.

This expression indicates the dependence of the asymptotic bias on the magnitude

of measurement error - the less degree of measurement error (equivalently, a smaller

λ), the smaller asymptotic bias. In particular, if λ shrinks to 0, β̂x(b, 0) recovers the

naive estimator β̂∗x; if λ takes value -1, then the limit β∗x(b,−1) is identical to the true

parameter βx.

We consider two practical cases for the parameters in Σui : (i) the parameters

in Σui are given as fixed values; and (ii) the parameters in Σui are not known, but

replicate measurements of Wi are available.

Suppose that one could estimate regression parameter θ by solving an estimat-

ing equation given by

0 =
n∑
i=1

ϕ(θ;Yi,Xi). (2.3)

Given an integer B and a sequence Λ = {λ1, λ2, ..., λM} taken from [0, λM ],
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the estimates and associated variances of the parameters θ can be obtained by the

following SIMEX algorithm.

2.2.3.1 Case I: The parameters in Σui are given as fixed values.

1. Simulation Step

We generate the pseudo errors Ubi ∼ MVN(0,Σui) for i = 1, . . . , n, b =

1, . . . , B. For each λ ∈ Λ, let the pseudo data be given by

Wi(b, λ) = Wi + λ
1
2Ubi.

Note that E(Wi(b, λ)|Xi) = Xi and Var(Wi(b, λ)) = Σwi(b, λ) = Σx + (1 +

λ)Σui . When λ = −1, Σw = Σx. Hence, the mean square error, E[(Wi(b, λ)−

Xi)
2|Xi], converges to zero as λ → −1. This implies that Wi(b, λ) is the best

measurement of Xi. This is the most important property of the pseudo data

(Carroll et al., 2006).

2. Estimation Step

Given λ and b, we obtain the estimate θ̂(b, λ) by solving equation (2.3) with

Xi replaced by Wi(b, λ). The corresponding variance estimate, Ω̂(b, λ), is the

diagonal elements of the observed information matrix given by

[
−

n∑
i=1

∂

∂θ′
ϕ(θ;Yi,Wi(b, λ))|

θ=θ̂(b,λ)

]−1

.

By averaging over b, we obtain

θ̂(λ) = B−1
B∑
b=1

θ̂(b, λ)
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and

Ω̂(λ) = B−1
B∑
b=1

Ω̂(b, λ).

Define Ŝ(λ) = (B − 1)−1
B∑
b=1

(
θ̂(b, λ) − θ̂(λ)

)2
, the variance for the estimator

θ̂(b, λ) is given by

Ω̂(λ) − Ŝ(λ).

3. Extrapolation Step

Fit these average estimates to an extrapolation function of lambda and extrap-

olate θ̂(λ) back to the case of no measurement error (i.e., λ = −1) to yield the

SIMEX estimate θ̂simex. The variance estimate for θ̂simex can be obtained by

extrapolating Ω̂(λ) − Ŝ(λ) back to λ = −1.

The most commonly used extrapolation functions are linear extrapolation func-

tion, quadratic extrapolation function and rational linear extrapolation func-

tion. The quadratic extrapolant function in the SIMEX method is generally a

safe choice for most regression models (He et al., 2007).

2.2.3.2 Case II: The parameters in Σu are not known, but replicate mea-

surements of Wi are available.

Consider the case where the measurement error covariance matrices are not known but

replicate measurements of Wi are available. The procedures of the SIMEX algorithm

described above can be applied except for the data simulation step. Devanarayan and

Stefanski (2002) introduced this variation and named it empirical SIMEX.

Suppose we have ki ≥ 2 replicate measurements denoted by {Wi1, . . . ,Wiki
}

for every subject i such that

Wij = Xi + Uij , i = 1, . . . , n; j = 1, . . . , ki,
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where Uij are mutually independent from each other and independent of {Yi,Xi}. For

fixed i, Uij are independent and identically distributed random errors such that Uij

iid∼ MVN(0,Σui). Without knowing the covariance matrix Σui , we cannot generate

pseudo errors directly. However, we can obtain them by taking linear combination of

the replicated measurements.

The empirical SIMEX algorithm is as follows

1. We generate zb,i,j
iid∼N(0, 1), i = 1, . . . , n, j = 1, . . . , ki, b = 1, . . . , B. We define

z̄b,i,. =
∑ki
j=1 zb,i,j/ki and

cb,i,j =
zb,i,j − z̄b,i,.√∑ki
j=1

(
zb,i,j − z̄b,i,.

)2 ,

where
∑ki
j=1 cb,i,j = 0 and

∑ki
j=1 c

2
b,i,j = 1.

2. For i = 1, . . . , n, j = 1, . . . , ki, b = 1, . . . , B and each λ ∈ Λ, we define

Wi(b, λ) = W̄i. +

(
λ

ki

)1
2
ki∑
j=1

cb,i,jWij ,

where W̄i. =
∑ki
j=1 Wij/ki. It is easy to see that E(Wi(b, λ)|Xi) = Xi and

Var(Wi(b, λ)) = Σwi(b, λ) = Σx + (1 + λ)Σui/ki.

This pseudo data have the same important property as the SIMEX algorithm

defined in the previous section. That is, as λ → −1, E[(Wi(b, λ) − Xi)
2|Xi]

converges to zero. We estimate θ̂(b, λ) by solving equation (2.3) with Xi re-

placed by Wi(b, λ) for each b and λ. Then, we averaged over b to obtain

θ̂(λ) =
∑B
b=1 θ̂(b, λ)/B.

3. We extrapolate θ̂(λ) back to λ = −1 to obtain θ̂simex.
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For practical use, choosing B = 50, 100 or 200, and taking Λ to be equally

cut points of interval [0, 1] or [0, 2] with M = 5, 10 or 20 can often lead to fairly

reasonable SIMEX estimates (Carroll et al., 2006).

2.2.3.3 Asymptotic Normality of SIMEX Estimate

The adaptive LASSO regularized IPW method is utilized to select the variable and

estimate the covariate coefficients under the AFT setting (2.1). Here we assume that

all the covariates are subject to measurement error and the SIMEX method is applied

to adjust the effect of measurement error on variable selection on AFT models. For

each λ and b. We obtain estimates, β̂x(b, λ), by minimizing

`(βx(b, λ)) =
1

2

n∑
i=1

(
Yπ(i) − Wi(b, λ)′π(i)βx(b, λ)

)2
+ γ

p∑
j=1

vj

∣∣∣βxj (b, λ)
∣∣∣ .

For any given λ, by applying Theorem 2 of Zou (2006), we have

√
n
(
β̂x(b, λ) − βx(b, λ)

)
→d MVN(0,C(b, λ)),

where βx(b, λ) is the true unknown adaptive LASSO regularized IPW parameter.

C(b, λ) is the variance parameter. We calculate the average of these B estimators,

β̂x(λ) = B−1∑B
b=1 β̂x(b, λ), and let C(λ) = B−1∑B

b=1 C(b, λ)). According to Slut-

sky’s theorem, we have

√
n
(
β̂x(λ) − βx(λ)

)
→d MVN(0,C(λ)).

Let β̂x(Λ) = vec{β̂x(λ);λ ∈ Λ}, βx(Λ) = vec{βx(λ);λ ∈ Λ} and Γ(Λ) =

diag{C(λ), λ ∈ Λ}, we have

√
n
(
β̂x(Λ) − βx(Λ)

)
→d MVN(0,Γ(Λ)).
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Assume that the exact extrapolation function G(ζ;λ) is known in the extrapo-

lation step to fit β̂x(λ), where ζ is d-dimensional vector of parameters. Let ζ̂ be the

least squares estimator. Let Gζ(ζ;λ) = (∂/∂ζ)G′(ζ;λ),

s(ζ) = (Gζ(ζ;λ1)Gζ(ζ;λ2) · · ·Gζ(ζ;λM ))

and A(ζ) = s(ζ)s′(ζ) be the d× d matrix. Then by the similar argument to that of

Carroll et al. (1996), we obtain

√
n(ζ̂ − ζ) →d MVN(0,Q(ζ)),

where Q(ζ) = [A(ζ)]−1s(ζ)Γ(Λ)s′(ζ)[A(ζ)]−1 is a d × d matrix. Letting λ = −1

leads to the SIMEX estimator β̂x = G(ζ̂;−1). Therefore, obtain

√
n(β̂x − βx) →d MVN(0,G′

ζ(ζ;−1)Q
(
ζ)Gζ(ζ;−1)

)
.

2.3 Simulation Studies

This section investigates the impact of ignoring measurement error on survival rel-

evant gene selection in the AFT model and exploring how the SIMEX method can

adjust the selection when measurement error is shown. Each simulation study con-

sists of 100 data sets of size n = 200. The survival times are generated from the model

(1.1) using β0 = 0, βx = (0.7, 0.7, 0, 0, 0, 0.7, 0, 0, 0)′ and εi follows the standard ex-

treme value distribution with its scale parameter, α, set to 0.5 and 1.5. The censoring

times are generated such that the censoring rates are approximately 30% and 50%.

The true covariates Xi = (Xi1, Xi2, . . . , Xi9)′ are generated from MVN(1,Σ) where

Σ is defined by

Scenario 1: Independent Covariance Matrix
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Σ =



1

1

. . .

1


9×9

Scenario 2: Exchangeable Covariance Matrix

Σ =



1 ρ

ρ 1
. . .

. . . . . . ρ

ρ 1


9×9

where ρ, which is set to be 0.5 to account for moderate correlation, is the pairwise

correlation between Xii and Xi(i+1). The pseudo errors Ubi are generated from

MVN(0, σ2I), where I is the identity matrix and σ is set to be the following four con-

tamination levels: 0.25, 0.50, 0.75 and 1.00 to feature various degrees of measurement

error.

Using the naive and SIMEX methods, Tables 2.1 and 2.2 report the results of

the parameter estimates, β̂, its standard errors, SE(β̂), which is computed using 1000

bootstraps and the corresponding p-values under different degrees of measurement

error and α = 1.5. Tables 2.5 and 2.6 reports the results of the same settings but

α = 0.5. Since the gene expressions from the microarray may be correlated with

each other, we assume that the genes have been rearranged based on their functional

similarity. We generated gene expressions using the exchangeable covariance matrix,

where gene expressions are only correlated with the ones right beside them. Tables

2.3 and 2.4 contain the results of using the exchangeable covariance matrix.

When the measurement error is minor (i.e., σ = 0.25) or moderate (i.e., σ =

0.50), the impact of measurement error is not noticeable. The naive method, which

uses the adaptive LASSO regularized IPW method by solving equation (2.2) with
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Xπ(i) replaced by Wπ(i), can select the true model. However, when the measurement

error becomes increasingly larger, the effect of measurement error is more obvious.

The bias of the β̂ increases, while the SE(β̂) decreases. The covariates, Xi1, Xi2 and

Xi6, which should be in the true model, can be selected. However, as the measurement

error becomes severe, those covariates that are not actually in the true model were

improperly selected since their p-values were typically smaller than the 5% level.

Afterwards, the SIMEX approach was employed with B = 50, λM = 2 and

M = 11 to adjust the impact of measurement error to the selection of variables. In

this chapter, we choose to use quadratic extrapolation for the SIMEX method as

used in He et al. (2007). The results are listed in Tables 2.1 to 2.4. These results

show that the SIMEX approach improves the performance of variable selection when

measurement errors are present. The SIMEX method gives good estimates of βx,

especially those that are not present in the true model, since the biases are smaller

and the p-values provide the correct conclusion at the 5% significance level. However,

when the measurement error is severe, the SIMEX method seems to perform less

satisfactorily. The bias tends to increase as the degree of measurement error increases.

By comparing the estimates reported in Tables 2.1 to 2.6, we find that the proportion

of censoring could also affect the estimation of βx since the censoring rate is highly

related to the Kaplan Meier weights used in the IPW step.
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2.4 Real Data Analysis

2.4.1 PBC Data

The PBC data were collected from the Mayo Clinic trial conducted between 1974 and

1984. A wide range of health-related covariates were collected for 312 randomized

participants. See Tibshirani (1997) for the detailed description of those covariates.

We first transform the survival time and some covariates on 276 complete observations

of the PBC data according to the recommendations by Huang et al (2006). These 276

patients were followed from diagnosis until death or censoring, where the censoring

rate was 59.78%. We fit both the AFT model with the Weibull distribution and AFT

model by regularizing IPW estimate with adaptive LASSO penalty on these data.

Standard error estimates are obtained by using the bootstrap with 1000 replications.

Table 2.7 provides the results for the estimate, the standard error and the p-

value for all covariates used in both methods. It seems that the AFT model using

the adaptive LASSO regularized IPW method yields a smaller model than the AFT

model using the Weibull distribution. Therefore, we will use only the adaptive LASSO

regularized IPW method for the investigation of the impact of the measurement error.

We conduct sensitivity analysis by adding different levels of measurement error

to the covariates to assess the impact of measurement error on variable selection

in the PBC data. Measurement errors are randomly and independently added to

the continuous covariates. They are generated from N(0, σ2), where the standard

deviation, σ, is proportional to the standard deviation, σx, of the corresponding

covariate. The proportions are set to be 10%, 30% and 50% to represent various

degrees of measurement error.

Table 2.8 shows the results of the estimate, associated standard error and corre-

sponding p-value from the sensitivity analysis. The error free covariates do not seem

to be greatly affected by the error prone covariates. In the naive method, as measure-

ment error becomes severe, the bias of the estimate increases while the standard error
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estimate decreases. The impact of measurement error on estimation of the log(bili) is

very noticeable. For the original PBC data, the adaptive LASSO regularized IPW p-

value of log(bili) in Table 2.7 is 0.043 (i.e., log(bili) is significantly associated with the

survival time). The naive method computes p-values greater than 5% under different

degrees of measurement error; this concludes that there is no evidence that log(bili)

is a survival related covariate, which conflicts with the result from the original data.

On the other hand, the SIMEX method makes adjustment to the effect of measure-

ment error. The estimates from the SIMEX method have smaller bias compared to

the naive method. The corresponding p-values are more consistent with the p-values

given by the adaptive LASSO method of the original PBC data set.

Table 2.7: Fit the AFT model to PBC data using adaptive LASSO regularzied IPW
method. β̂x: estimate of coefficient; SE(β̂x): the bootstrap standard error; p: the
corresponding p-value.

Predictor AFT Adaptive LASSO

β̂x SE(β̂x) p β̂x SE(β̂x) p
Age -0.020 0.007 0.005 -0.012 0.009 0.221
Alb 0.305 0.178 0.087 0.393 0.228 0.084
Log(alkphos) -0.054 0.089 0.548 0.147 0.098 0.133
Ascites -0.216 0.225 0.336 -0.464 0.442 0.294
Log(bili) -0.346 0.104 0.001 -0.234 0.115 0.043
Log(chol) -0.099 0.180 0.580 0.138 0.166 0.406
Edtrt -0.639 0.226 0.005 -0.612 0.508 0.228
Hepmeg 0.047 0.155 0.761 0.158 0.153 0.302
Log(platelet) -0.062 0.176 0.727 0 0.172 1
Log(protime) -1.626 0.832 0.051 0.577 0.874 0.509
Sex -0.091 0.195 0.640 0 0.182 1
Log(sgot) -0.281 0.187 0.134 -0.081 0.209 0.697
Spiders -0.002 0.147 0.987 -0.189 0.167 0.256
Stage -0.220 0.107 0.039 -0.114 0.095 0.231
Trt -0.010 0.128 0.661 0 0.136 1
Log(trig) 0.072 0.153 0.636 -0.063 0.185 0.735
Log(copper) -0.170 0.107 0.112 -0.137 0.105 0.192
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2.4.2 DLBCL Data

The DLBCL data consists of 7399 gene expression profiles across 240 patients with

untreated diffuse large-B-cell lymphoma (Rosenwald et al., 2002). The outcome is

the survival time, which is either observed or right censored. The median survival

time is 2.8 years. During the follow up period, 138 patient deaths were observed (i.e.,

the censoring rate is 42.5%). These patients with zero survival time are excluded.

We are interested in finding survival relevant genes. First, we reduced the

dimension of genes. Many authors have analyzed survival times based on gene ex-

pression profiles. We used the 74 genes reported by He and Yi (2009) plus 26 other

randomly selected genes as potentially survival relevant genes. We fit the AFT model

with the Weibull distribution by regularizing IPW estimate with adaptive LASSO

penalty. The weights used in the adaptive LASSO step are computed using the

LASSO estimates. The bootstrap method with 1000 replications is applied to cal-

culate the standard error estimates with the same optimal adaptive LASSO penalty

parameter. Table 2.9 summarizes the results for the estimate, the standard error and

the p-value for each of the 100 genes.

Sensitivity analysis is applied by adding a sequence of values of measurement

error to the gene expressions to assess the impact of measurement error on the DLBCL

data set. Measurement error are randomly and independently added to the true

gene expressions with standard deviation, σme, proportional to the corresponding

gene’s standard deviation respectively. The proportions are set to be 10%, 20%,

30% and 50%. The results from the naive method are reported in Tables 2.10 and

2.11. In these tables, the biases of the estimates are attenuated to zero. That is, as

the standard deviation of the measurement error increases, the attenuations become

severe. Tables 2.14 and 2.15 report the rank of the genes according to the descending

level of significance. Gene 92 is ranked 37th in terms of significant correlation with the

patient’s survival time on the original DLBCL data set. However, the naive method

ranked it the first survival relevant when σme=10% or 20% of the corresponding gene’s
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standard deviation respectively. which conflict with the results from the original data.

As the measurement error becomes severe, the effect becomes more noticeable. For

example, genes 47, 61 and 63 are reported as being the top 3 survival relevant genes

from the original data. However, these 3 genes are ranked much lower under the naive

method with different degrees of measurement error. On the other hand, the SIMEX

method makes adjustment to the effect of measurement error. It provids estimates

with smaller bias than those from the naive method. Meanwhile, the corresponding

rankings of p-values are more consistent in value with those given by the adaptive

LASSO IPW method of the original DLBCL data set. Hence, the model selected by

the SIMEX method is more accurate than the one selected by the naive method.
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Table 2.10: NAIVE Method: Sensitivity Analysis on DLBCL Data Set (1)

Predictor σme = 10%σx σme = 25%σx σme = 30%σx σme = 50%σx
Gene β̂x SE(β̂x) p β̂x SE(β̂x) p β̂x SE(β̂x) p β̂x SE(β̂x) p

1 0.071 0.296 0.810 0.022 0.208 0.917 0.012 0.185 0.949 -0.001 0.124 0.992
2 0.045 0.159 0.776 0.034 0.111 0.757 0.028 0.097 0.770 0.016 0.063 0.795
3 0.174 0.179 0.332 0.136 0.121 0.260 0.118 0.105 0.262 0.074 0.068 0.279
4 -0.209 0.207 0.312 -0.099 0.140 0.480 -0.077 0.125 0.537 -0.025 0.084 0.765
5 -0.177 0.283 0.532 -0.069 0.183 0.706 -0.038 0.160 0.810 -0.003 0.106 0.979
6 0.030 0.317 0.925 0.080 0.225 0.722 0.067 0.201 0.738 0.044 0.140 0.751
7 0.158 0.188 0.403 0.086 0.125 0.492 0.072 0.109 0.510 0.036 0.072 0.617
8 -0.090 0.226 0.690 -0.127 0.164 0.440 -0.110 0.146 0.452 -0.070 0.102 0.489
9 -0.159 0.255 0.532 -0.100 0.168 0.553 -0.084 0.147 0.570 -0.044 0.096 0.646
10 -0.132 0.305 0.666 -0.064 0.213 0.764 -0.040 0.186 0.830 -0.015 0.123 0.902
11 0.091 0.326 0.780 0.008 0.222 0.970 -0.022 0.194 0.909 -0.030 0.128 0.813
12 -0.326 0.310 0.292 -0.250 0.214 0.241 -0.214 0.187 0.254 -0.131 0.122 0.285
13 -0.013 0.234 0.957 0.028 0.159 0.859 0.029 0.138 0.835 0.015 0.091 0.866
14 -0.099 0.303 0.745 -0.005 0.210 0.982 0.004 0.185 0.982 0.014 0.124 0.911
15 0.044 0.134 0.744 0.013 0.095 0.892 -0.002 0.084 0.978 -0.013 0.057 0.818
16 0.012 0.103 0.908 0.023 0.074 0.752 0.023 0.066 0.726 0.014 0.045 0.758
17 -0.023 0.123 0.851 -0.023 0.094 0.807 -0.019 0.084 0.819 -0.009 0.059 0.873
18 0.136 0.103 0.188 0.050 0.068 0.463 0.039 0.059 0.505 0.021 0.039 0.600
19 0.299 0.229 0.191 0.236 0.167 0.157 0.192 0.146 0.187 0.106 0.098 0.279
20 -0.097 0.103 0.348 -0.112 0.070 0.108 -0.093 0.060 0.120 -0.045 0.038 0.242
21 -0.108 0.220 0.622 -0.158 0.163 0.333 -0.129 0.143 0.367 -0.061 0.095 0.520
22 0.110 0.147 0.453 0.036 0.097 0.707 0.025 0.085 0.764 0.004 0.054 0.937
23 -0.194 0.165 0.240 -0.052 0.107 0.624 -0.044 0.093 0.639 -0.026 0.060 0.662
24 0.231 0.154 0.134 0.048 0.101 0.632 0.029 0.089 0.740 0.007 0.060 0.905
25 -0.071 0.204 0.728 0.010 0.140 0.945 0.004 0.124 0.977 -0.003 0.084 0.975
26 0.119 0.171 0.484 0.002 0.118 0.984 -0.008 0.104 0.939 -0.016 0.069 0.813
27 -0.029 0.121 0.809 0.105 0.091 0.252 0.101 0.081 0.212 0.064 0.055 0.241
28 -0.040 0.081 0.625 -0.031 0.058 0.584 -0.026 0.050 0.609 -0.009 0.033 0.791
29 0.168 0.116 0.147 0.084 0.075 0.261 0.070 0.066 0.283 0.048 0.044 0.273
30 -0.334 0.215 0.120 -0.118 0.130 0.364 -0.090 0.113 0.424 -0.041 0.073 0.578
31 0.024 0.070 0.731 0.008 0.048 0.869 0.005 0.041 0.901 0.002 0.027 0.945
32 0.011 0.097 0.914 -0.030 0.068 0.660 -0.028 0.059 0.635 -0.024 0.039 0.532
33 0.020 0.108 0.854 0.013 0.070 0.858 0.009 0.060 0.886 0.002 0.038 0.962
34 0.121 0.199 0.544 0.036 0.132 0.784 0.022 0.115 0.849 -0.014 0.077 0.857
35 0.002 0.149 0.989 0.052 0.106 0.621 0.041 0.093 0.656 0.019 0.063 0.767
36 -0.151 0.175 0.388 -0.039 0.114 0.732 -0.029 0.100 0.774 -0.021 0.066 0.748
37 -0.153 0.126 0.226 -0.075 0.087 0.389 -0.063 0.076 0.408 -0.036 0.050 0.473
38 0.009 0.098 0.924 -0.017 0.065 0.790 -0.014 0.057 0.800 -0.012 0.037 0.748
39 0.014 0.142 0.919 -0.013 0.099 0.897 -0.019 0.087 0.824 -0.030 0.060 0.617
40 -0.044 0.172 0.798 0.023 0.120 0.849 0.026 0.106 0.809 0.034 0.074 0.641
41 0.169 0.146 0.247 0.061 0.101 0.544 0.044 0.088 0.618 0.017 0.059 0.775
42 0.008 0.142 0.955 -0.039 0.100 0.697 -0.040 0.089 0.652 -0.023 0.062 0.707
43 -0.063 0.147 0.668 0.008 0.104 0.936 0.012 0.092 0.893 0.010 0.062 0.875
44 -0.163 0.144 0.258 -0.129 0.099 0.193 -0.105 0.087 0.225 -0.062 0.058 0.286
45 -0.068 0.181 0.706 -0.060 0.134 0.656 -0.062 0.121 0.609 -0.050 0.085 0.551
46 0.092 0.181 0.611 -0.003 0.121 0.979 -0.004 0.104 0.968 -0.001 0.067 0.994
47 -0.535 0.241 0.027 -0.122 0.147 0.407 -0.079 0.127 0.535 -0.011 0.081 0.887
48 0.127 0.128 0.319 0.021 0.076 0.779 0.012 0.067 0.859 0.003 0.044 0.941
49 0.276 0.202 0.172 0.059 0.123 0.633 0.031 0.106 0.772 -0.012 0.069 0.861
50 -0.055 0.107 0.607 -0.060 0.075 0.424 -0.049 0.065 0.448 -0.026 0.042 0.536
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Table 2.11: NAIVE Method: Sensitivity Analysis on DLBCL Data Set (2)

Predictor σme = 10%σx σme = 25%σx σme = 30%σx σme = 50%σx
Gene β̂x SE(β̂x) p β̂x SE(β̂x) p β̂x SE(β̂x) p β̂x SE(β̂x) p

51 -0.007 0.249 0.977 -0.012 0.175 0.947 -0.019 0.154 0.899 -0.022 0.104 0.832
52 0.048 0.157 0.758 -0.012 0.105 0.907 -0.016 0.092 0.863 -0.012 0.060 0.839
53 0.145 0.172 0.398 0.028 0.106 0.795 0.012 0.092 0.894 -0.003 0.059 0.955
54 -0.031 0.111 0.783 -0.055 0.076 0.473 -0.051 0.068 0.452 -0.040 0.046 0.381
55 0.284 0.220 0.198 0.079 0.136 0.562 0.065 0.118 0.583 0.032 0.077 0.676
56 0.086 0.142 0.546 0.005 0.084 0.953 0.002 0.072 0.979 0.003 0.044 0.947
57 0.173 0.151 0.252 0.070 0.090 0.436 0.057 0.077 0.460 0.035 0.048 0.463
58 -0.057 0.171 0.741 -0.055 0.122 0.652 -0.046 0.107 0.666 -0.026 0.069 0.707
59 0.076 0.109 0.488 0.045 0.068 0.505 0.040 0.059 0.493 0.026 0.038 0.488
60 0.082 0.151 0.586 0.071 0.102 0.485 0.056 0.089 0.528 0.023 0.058 0.698
61 0.037 0.126 0.771 0.007 0.085 0.938 0.004 0.073 0.956 -0.004 0.046 0.936
62 0.039 0.128 0.763 -0.006 0.087 0.945 -0.004 0.076 0.961 0.007 0.047 0.884
63 -0.211 0.141 0.134 -0.040 0.079 0.611 -0.022 0.067 0.738 0.003 0.041 0.941
64 -0.119 0.154 0.442 -0.023 0.094 0.809 -0.024 0.081 0.764 -0.020 0.051 0.703
65 0.092 0.148 0.534 0.063 0.107 0.556 0.053 0.094 0.570 0.037 0.062 0.548
66 0.069 0.146 0.637 -0.004 0.101 0.965 -0.012 0.089 0.895 -0.020 0.057 0.732
67 0.001 0.184 0.994 -0.027 0.128 0.832 -0.035 0.113 0.758 -0.034 0.073 0.639
68 0.080 0.117 0.493 0.039 0.075 0.602 0.035 0.066 0.593 0.024 0.041 0.558
69 -0.062 0.103 0.545 0.001 0.066 0.988 0.008 0.058 0.884 0.015 0.038 0.693
70 -0.086 0.118 0.465 -0.060 0.080 0.452 -0.047 0.070 0.501 -0.028 0.045 0.539
71 0.052 0.108 0.627 0.019 0.068 0.783 0.013 0.060 0.830 0.001 0.038 0.989
72 0.078 0.137 0.569 0.084 0.096 0.382 0.071 0.084 0.398 0.044 0.052 0.403
73 0.145 0.192 0.451 0.091 0.128 0.475 0.076 0.112 0.496 0.044 0.073 0.549
74 -0.161 0.173 0.353 -0.076 0.116 0.510 -0.071 0.102 0.489 -0.056 0.068 0.410
75 0.050 0.105 0.634 0.088 0.075 0.240 0.085 0.066 0.201 0.065 0.044 0.146
76 -0.188 0.133 0.156 -0.068 0.086 0.428 -0.056 0.076 0.458 -0.038 0.051 0.458
77 0.002 0.079 0.984 0.011 0.057 0.844 0.010 0.050 0.849 0.004 0.034 0.898
78 0.005 0.090 0.953 -0.005 0.064 0.932 -0.002 0.057 0.976 0.002 0.039 0.952
79 0.022 0.124 0.862 0.024 0.090 0.788 0.020 0.080 0.799 0.006 0.055 0.907
80 -0.104 0.126 0.413 -0.056 0.095 0.556 -0.057 0.086 0.506 -0.047 0.060 0.427
81 0.369 0.211 0.080 0.157 0.135 0.244 0.119 0.117 0.309 0.045 0.075 0.551
82 0.067 0.185 0.718 -0.013 0.129 0.917 -0.015 0.114 0.893 -0.016 0.076 0.831
83 0.140 0.128 0.275 0.079 0.091 0.385 0.067 0.080 0.404 0.045 0.055 0.411
84 0.080 0.184 0.662 0.017 0.122 0.890 0.012 0.105 0.908 -0.000 0.066 0.997
85 0.217 0.331 0.513 0.103 0.240 0.670 0.080 0.212 0.705 0.008 0.144 0.954
86 -0.069 0.107 0.517 -0.071 0.076 0.351 -0.056 0.066 0.395 -0.022 0.042 0.590
87 -0.078 0.125 0.533 -0.017 0.088 0.850 -0.012 0.079 0.883 -0.003 0.054 0.960
88 -0.025 0.145 0.861 0.020 0.103 0.849 0.018 0.092 0.847 0.033 0.064 0.606
89 -0.252 0.178 0.157 -0.142 0.119 0.230 -0.108 0.103 0.296 -0.052 0.068 0.446
90 -0.029 0.133 0.828 0.005 0.094 0.955 0.012 0.084 0.887 0.025 0.058 0.669
91 -0.484 0.243 0.047 -0.178 0.148 0.228 -0.142 0.128 0.268 -0.090 0.084 0.283
92 0.556 0.211 0.008 0.206 0.123 0.093 0.161 0.104 0.124 0.085 0.066 0.195
93 0.127 0.143 0.374 0.016 0.100 0.872 0.006 0.087 0.942 0.004 0.059 0.943
94 0.080 0.184 0.666 0.060 0.139 0.664 0.056 0.125 0.652 0.045 0.089 0.615
95 -0.058 0.255 0.820 0.000 0.174 0.999 -0.019 0.155 0.902 -0.027 0.104 0.796
96 -0.101 0.151 0.501 -0.104 0.107 0.329 -0.088 0.094 0.350 -0.056 0.063 0.374
97 -0.079 0.155 0.610 -0.029 0.111 0.793 -0.030 0.098 0.762 -0.015 0.065 0.818
98 -0.139 0.185 0.453 0.006 0.113 0.956 0.014 0.099 0.891 0.019 0.064 0.767
99 -0.292 0.171 0.087 -0.061 0.103 0.557 -0.035 0.089 0.691 -0.010 0.058 0.860
100 0.045 0.169 0.788 0.072 0.118 0.545 0.066 0.105 0.528 0.049 0.069 0.482
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Table 2.12: SIMEX Method: Sensitivity Analysis on DLBCL Data Set (1)

Predictor σme = 10%σx σme = 25%σx σme = 30%σx σme = 50%σx
Gene β̂x SE(β̂x) p β̂x SE(β̂x) p β̂x SE(β̂x) p β̂x SE(β̂x) p

1 1.092 0.688 0.113 1.108 0.682 0.104 0.375 0.610 0.539 -0.185 0.448 0.679
2 -0.543 0.416 0.191 -0.850 0.476 0.074 -0.535 0.420 0.202 0.019 0.228 0.934
3 -0.269 0.418 0.520 -0.338 0.416 0.416 -0.128 0.345 0.710 0.038 0.207 0.853
4 -0.334 0.403 0.407 -0.432 0.425 0.309 -0.170 0.379 0.653 0.223 0.264 0.397
5 -0.140 0.612 0.819 0.194 0.653 0.766 0.299 0.574 0.603 0.341 0.408 0.402
6 0.018 0.700 0.979 0.021 0.747 0.977 -0.085 0.656 0.897 -0.020 0.417 0.962
7 0.444 0.376 0.238 0.338 0.396 0.393 0.282 0.367 0.442 0.360 0.278 0.195
8 0.191 0.454 0.673 0.187 0.480 0.697 0.068 0.441 0.877 -0.235 0.332 0.479
9 -0.801 0.607 0.187 -0.979 0.644 0.129 -0.720 0.540 0.182 -0.185 0.334 0.579
10 0.024 0.680 0.972 0.212 0.722 0.769 0.664 0.640 0.300 0.748 0.442 0.091
11 -0.582 0.719 0.418 -0.659 0.756 0.383 -0.483 0.689 0.483 -0.129 0.485 0.790
12 -0.428 0.660 0.517 -0.256 0.660 0.698 0.009 0.565 0.987 0.026 0.364 0.944
13 0.185 0.493 0.707 0.274 0.515 0.595 0.278 0.439 0.526 0.009 0.292 0.976
14 -0.277 0.697 0.691 -0.110 0.719 0.879 -0.044 0.631 0.944 -0.162 0.445 0.716
15 -0.382 0.311 0.219 -0.271 0.317 0.393 -0.230 0.280 0.412 -0.321 0.205 0.118
16 -0.088 0.255 0.732 -0.272 0.266 0.306 -0.275 0.245 0.263 -0.311 0.184 0.090
17 0.211 0.255 0.409 0.195 0.268 0.467 0.037 0.252 0.883 0.033 0.183 0.856
18 0.039 0.191 0.838 0.084 0.195 0.665 0.041 0.175 0.817 0.052 0.124 0.673
19 0.263 0.458 0.566 0.596 0.500 0.233 0.503 0.468 0.283 0.279 0.335 0.405
20 0.133 0.187 0.476 0.150 0.190 0.428 0.098 0.163 0.546 0.099 0.112 0.374
21 -0.086 0.496 0.862 -0.020 0.508 0.968 0.059 0.444 0.894 0.089 0.287 0.757
22 -0.671 0.407 0.099 -0.970 0.454 0.033 -0.639 0.369 0.083 -0.178 0.208 0.392
23 0.645 0.411 0.116 0.929 0.474 0.050 0.774 0.404 0.055 0.388 0.258 0.133
24 0.440 0.338 0.192 0.324 0.360 0.369 0.434 0.331 0.189 0.568 0.260 0.029
25 0.003 0.404 0.995 -0.104 0.411 0.800 -0.064 0.362 0.861 -0.052 0.229 0.821
26 0.688 0.400 0.085 0.446 0.381 0.242 -0.016 0.341 0.962 -0.171 0.234 0.464
27 -0.501 0.272 0.065 -0.478 0.282 0.091 -0.419 0.257 0.102 -0.349 0.186 0.060
28 -0.035 0.162 0.832 -0.038 0.176 0.829 -0.026 0.153 0.866 -0.028 0.096 0.773
29 0.414 0.242 0.087 0.290 0.234 0.214 0.082 0.198 0.679 0.057 0.136 0.674
30 -0.500 0.442 0.257 -0.462 0.477 0.333 -0.656 0.450 0.145 -0.853 0.358 0.017
31 -0.275 0.171 0.108 -0.310 0.179 0.083 -0.170 0.157 0.279 -0.025 0.100 0.806
32 0.328 0.269 0.222 0.392 0.269 0.145 0.094 0.229 0.683 -0.141 0.147 0.338
33 -0.332 0.264 0.208 -0.365 0.250 0.144 -0.137 0.211 0.517 -0.047 0.138 0.733
34 -0.110 0.379 0.773 -0.310 0.382 0.417 -0.402 0.331 0.223 -0.440 0.256 0.085
35 -0.428 0.334 0.201 -0.424 0.341 0.214 -0.386 0.296 0.192 -0.273 0.201 0.175
36 0.546 0.357 0.126 0.586 0.365 0.108 0.426 0.320 0.183 0.231 0.214 0.280
37 -0.223 0.361 0.537 -0.202 0.360 0.574 -0.254 0.290 0.383 -0.175 0.171 0.305
38 0.094 0.267 0.726 0.061 0.264 0.818 0.048 0.214 0.824 -0.079 0.130 0.544
39 -0.048 0.274 0.860 -0.053 0.274 0.846 0.068 0.242 0.777 0.138 0.175 0.428
40 -0.626 0.370 0.091 -0.885 0.400 0.027 -0.664 0.360 0.065 -0.539 0.275 0.050
41 0.172 0.296 0.562 0.173 0.317 0.586 0.357 0.306 0.243 0.577 0.247 0.019
42 -0.328 0.328 0.318 -0.230 0.318 0.469 -0.073 0.273 0.790 0.040 0.195 0.837
43 0.357 0.374 0.340 0.206 0.365 0.573 0.035 0.318 0.913 0.039 0.221 0.861
44 -0.389 0.277 0.160 -0.566 0.285 0.047 -0.522 0.252 0.038 -0.506 0.188 0.007
45 0.216 0.405 0.593 0.236 0.408 0.562 -0.002 0.359 0.995 -0.046 0.254 0.857
46 1.332 0.558 0.017 1.413 0.513 0.006 0.668 0.385 0.083 0.118 0.240 0.623
47 -2.510 0.784 0.001 -2.691 0.715 0.000 -1.689 0.566 0.003 -1.049 0.388 0.007
48 0.251 0.272 0.355 0.268 0.291 0.358 0.279 0.266 0.295 0.097 0.186 0.604
49 -0.518 0.462 0.262 -0.453 0.483 0.349 0.120 0.452 0.791 0.387 0.339 0.254
50 -0.132 0.222 0.553 -0.199 0.234 0.395 -0.213 0.204 0.297 -0.176 0.134 0.188
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Table 2.13: SIMEX Method: Sensitivity Analysis on DLBCL Data Set (2)

Predictor σme = 10%σx σme = 25%σx σme = 30%σx σme = 50%σx
Gene β̂x SE(β̂x) p β̂x SE(β̂x) p β̂x SE(β̂x) p β̂x SE(β̂x) p

51 -0.205 0.521 0.694 -0.047 0.524 0.929 0.042 0.444 0.925 0.024 0.293 0.935
52 0.002 0.380 0.996 0.105 0.393 0.789 0.073 0.344 0.831 0.043 0.222 0.846
53 0.198 0.392 0.613 0.206 0.401 0.608 0.287 0.366 0.434 0.421 0.270 0.119
54 -0.055 0.226 0.809 -0.203 0.237 0.392 -0.246 0.211 0.242 -0.199 0.152 0.192
55 0.129 0.432 0.765 -0.104 0.451 0.818 -0.111 0.404 0.783 0.172 0.285 0.546
56 -0.682 0.438 0.119 -0.387 0.399 0.332 0.059 0.318 0.852 0.178 0.165 0.281
57 0.531 0.419 0.205 0.315 0.397 0.428 0.366 0.320 0.253 0.427 0.199 0.032
58 0.287 0.403 0.476 0.397 0.411 0.334 0.100 0.353 0.777 -0.164 0.211 0.437
59 -0.118 0.257 0.644 -0.141 0.268 0.600 0.005 0.234 0.981 0.197 0.152 0.196
60 -0.471 0.386 0.222 -0.538 0.383 0.160 -0.443 0.341 0.193 -0.434 0.237 0.067
61 1.467 0.545 0.007 1.387 0.468 0.003 0.422 0.342 0.218 -0.030 0.186 0.874
62 -0.177 0.428 0.679 -0.264 0.428 0.538 -0.237 0.345 0.492 0.006 0.185 0.973
63 -1.446 0.523 0.006 -1.316 0.424 0.002 -0.376 0.327 0.249 0.018 0.183 0.920
64 0.255 0.289 0.377 0.226 0.277 0.414 0.033 0.240 0.890 -0.080 0.149 0.590
65 0.689 0.378 0.068 0.868 0.412 0.035 0.780 0.380 0.040 0.530 0.264 0.045
66 -0.017 0.321 0.957 -0.046 0.325 0.888 -0.076 0.275 0.782 -0.080 0.172 0.643
67 -0.679 0.472 0.150 -0.609 0.486 0.210 -0.199 0.411 0.628 0.162 0.276 0.557
68 0.429 0.356 0.228 0.288 0.319 0.367 0.145 0.262 0.581 0.102 0.154 0.510
69 -0.211 0.281 0.453 -0.132 0.277 0.634 -0.043 0.242 0.858 0.041 0.169 0.806
70 0.057 0.297 0.847 0.080 0.314 0.799 0.040 0.274 0.885 -0.105 0.178 0.554
71 0.257 0.230 0.264 0.280 0.239 0.243 0.283 0.219 0.195 0.210 0.154 0.172
72 -0.043 0.349 0.903 -0.249 0.366 0.496 -0.335 0.310 0.280 -0.244 0.186 0.190
73 0.009 0.443 0.983 0.037 0.451 0.935 -0.033 0.376 0.929 -0.062 0.234 0.792
74 0.311 0.372 0.403 0.348 0.368 0.344 0.224 0.327 0.494 0.050 0.229 0.828
75 -0.340 0.264 0.198 -0.422 0.282 0.134 -0.405 0.248 0.102 -0.307 0.161 0.057
76 -0.132 0.253 0.602 -0.218 0.271 0.420 -0.203 0.254 0.423 -0.070 0.175 0.688
77 0.172 0.205 0.401 0.230 0.211 0.276 0.190 0.184 0.300 0.133 0.124 0.281
78 0.111 0.197 0.572 0.096 0.210 0.646 0.026 0.196 0.893 0.005 0.138 0.973
79 0.065 0.254 0.799 0.078 0.272 0.775 0.114 0.252 0.652 0.198 0.186 0.286
80 -0.164 0.246 0.504 -0.124 0.268 0.643 -0.128 0.250 0.608 -0.033 0.189 0.862
81 0.405 0.405 0.317 0.445 0.419 0.288 0.187 0.361 0.605 -0.118 0.233 0.612
82 -0.632 0.445 0.155 -0.734 0.481 0.127 -0.660 0.426 0.122 -0.460 0.298 0.122
83 0.659 0.304 0.030 0.676 0.318 0.033 0.615 0.293 0.036 0.639 0.216 0.003
84 -0.042 0.443 0.924 0.047 0.461 0.919 0.228 0.413 0.581 0.146 0.267 0.586
85 0.596 0.644 0.354 0.549 0.643 0.393 0.139 0.558 0.804 -0.023 0.387 0.952
86 0.224 0.237 0.345 0.209 0.246 0.397 0.132 0.218 0.544 0.095 0.142 0.501
87 -0.047 0.284 0.868 -0.065 0.298 0.828 -0.105 0.263 0.689 -0.116 0.190 0.542
88 -0.545 0.345 0.114 -0.691 0.351 0.049 -0.413 0.311 0.184 -0.265 0.224 0.236
89 0.114 0.320 0.721 0.047 0.342 0.891 -0.084 0.309 0.785 -0.106 0.215 0.621
90 0.161 0.254 0.527 0.068 0.265 0.797 0.057 0.236 0.809 0.204 0.161 0.206
91 0.451 0.474 0.341 0.550 0.461 0.233 0.293 0.400 0.463 0.016 0.249 0.949
92 0.343 0.373 0.358 0.515 0.388 0.184 0.227 0.327 0.488 -0.072 0.190 0.705
93 -0.015 0.304 0.962 -0.042 0.310 0.891 0.084 0.262 0.749 0.150 0.172 0.381
94 -0.391 0.347 0.259 -0.353 0.352 0.316 -0.154 0.307 0.616 0.032 0.212 0.881
95 -0.387 0.528 0.463 -0.377 0.548 0.492 -0.380 0.481 0.430 -0.455 0.340 0.181
96 -0.210 0.329 0.524 -0.348 0.339 0.305 -0.588 0.318 0.064 -0.662 0.244 0.007
97 -0.187 0.399 0.639 -0.321 0.427 0.451 -0.203 0.368 0.581 0.086 0.233 0.713
98 -0.815 0.462 0.078 -0.845 0.425 0.047 -0.338 0.358 0.344 0.072 0.256 0.777
99 -0.497 0.369 0.178 -0.381 0.365 0.296 -0.357 0.318 0.260 -0.291 0.216 0.178
100 0.417 0.404 0.302 0.456 0.405 0.260 0.253 0.343 0.460 0.140 0.228 0.537
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Table 2.14: Ranks of the genes based on level of significance from the sensitivity
analysis on the DLBCL Data (1)

Rank DLBCL NAIVE Method SIMEX Method

10%σx 25%σx 30%σx 50%σx 10%σx 25%σx 30%σx 50%σx
1 63 92 92 20 75 47 47 47 83
2 61 47 20 92 92 63 63 83 96
3 47 91 19 19 27 61 61 44 47
4 99 81 44 75 20 46 46 65 44
5 57 99 91 27 29 83 40 23 30
6 24 30 89 44 3 27 22 96 41
7 30 24 75 12 19 65 83 40 24
8 68 63 12 3 91 98 65 46 57
9 29 29 81 91 12 26 98 22 65
10 83 76 27 29 44 29 44 75 40
11 7 89 3 89 96 40 88 27 75
12 81 49 29 81 54 22 23 82 27
13 35 18 96 96 72 31 2 30 60
14 15 19 21 21 74 1 31 9 34
15 96 55 86 86 83 88 27 36 16
16 56 37 30 72 80 23 1 88 10
17 27 23 72 83 89 56 36 24 15
18 65 41 83 37 76 36 82 35 53
19 46 57 37 30 57 67 9 60 82
20 37 44 47 50 37 82 75 71 23
21 67 83 50 8 100 44 33 2 71
22 9 12 76 54 59 99 32 61 35
23 36 4 57 76 8 9 60 34 99
24 95 48 8 57 21 2 92 54 95
25 71 3 70 74 32 24 67 41 50
26 19 20 18 59 50 75 35 63 72
27 53 74 54 73 70 35 29 57 54
28 48 93 73 70 65 57 19 99 7
29 26 36 4 18 73 33 91 16 59
30 75 53 60 80 81 15 26 31 90
31 44 7 7 7 45 32 71 72 88
32 94 80 59 100 68 60 100 19 49
33 41 64 74 60 30 68 77 48 36
34 31 73 41 47 86 7 81 50 56
35 97 98 100 4 18 30 99 77 77
36 69 22 9 9 88 94 96 10 79
37 92 70 65 65 94 49 16 98 37
38 80 26 80 55 39 71 4 37 32
39 40 59 99 68 7 100 94 15 20
40 4 68 55 28 67 81 56 76 93
41 100 96 28 45 40 42 30 95 22
42 98 85 68 41 9 43 58 53 4
43 5 86 63 32 23 91 74 7 5
44 88 5 35 23 90 86 49 100 19
45 11 9 23 94 55 85 48 91 39
46 58 87 24 42 69 48 68 11 58
47 78 65 49 35 60 92 24 92 26
48 20 34 58 58 64 64 11 62 8
49 76 69 45 99 72 77 54 74 86
50 38 56 32 85 58 74 7 33 68
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Table 2.15: Ranks of the genes based on level of significance from the sensitivity
analysis on the DLBCL Data (2)

Rank DLBCL NAIVE Method SIMEX Method

10%σx 25%σx 30%σx 50%σx 10%σx 25%σx 30%σx 50%σx
51 62 72 94 16 66 4 85 13 100
52 82 60 85 6 38 17 15 1 87
53 18 50 42 63 36 11 50 86 38
54 10 97 5 24 6 69 86 20 55
55 2 46 22 67 16 95 64 97 70
56 1 21 6 97 4 58 3 68 67
57 60 28 36 84 98 20 34 84 9
58 52 71 16 52 35 80 76 5 84
59 13 75 2 2 41 12 57 81 64
60 42 66 10 49 28 3 20 80 48
61 84 84 48 36 2 96 97 94 81
62 73 10 71 79 95 90 17 67 89
63 16 94 34 38 26 37 42 79 46
64 55 43 79 40 11 50 95 4 66
65 14 8 38 5 15 41 72 29 18
66 90 45 97 17 97 19 62 32 29
67 49 82 53 39 82 78 45 87 1
68 43 25 17 71 51 45 43 3 76
69 21 31 64 10 52 76 37 93 92
70 91 58 67 13 34 53 41 58 97
71 86 15 77 88 99 97 13 39 14
72 17 14 88 34 49 59 59 66 33
73 70 52 40 77 13 8 53 55 21
74 74 62 87 48 17 62 69 89 28
75 89 61 33 52 43 14 80 42 98
76 28 2 13 87 62 51 78 49 11
77 64 11 31 69 47 13 18 85 73
78 3 54 93 33 77 89 8 90 69
79 77 100 84 90 10 38 12 18 31
80 12 40 15 98 24 16 5 38 25
81 6 27 39 82 79 55 10 52 74
82 66 1 52 43 14 34 79 56 32
83 33 95 82 53 61 79 52 69 52
84 23 90 1 66 22 54 90 25 3
85 34 17 78 51 48 5 70 28 17
86 50 33 43 31 63 28 25 8 45
87 8 88 61 95 93 18 55 17 43
88 22 79 62 84 31 70 38 70 80
89 25 16 25 11 56 39 87 64 61
90 32 32 51 26 78 21 28 78 94
91 39 39 56 93 85 87 39 21 63
92 45 38 90 1 53 72 14 6 2
93 51 6 98 61 87 84 66 43 51
94 54 78 66 62 33 66 89 51 12
95 59 42 11 46 25 93 93 73 91
96 72 13 46 78 5 10 84 14 85
97 79 51 14 25 71 6 51 26 6
98 85 77 26 15 1 73 73 59 78
99 87 35 69 56 46 25 21 12 62
100 93 67 95 14 84 52 6 45 13
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2.5 Summary

The impact of measurement error in covariates has been extensively studied in the

literature for survival data. To our knowledge, no investigation has been done on

the impact of measurement error in survival relevant gene selection in microarray

data analysis. We investigate the effect of measurement error on gene selection when

measurement error is accounted and use the SIMEX method to adjust this effect.

Our simulation studies and real data analysis demonstrate that the SIMEX approach

does outperform the naive method. With a certain amount of adjustment for the bias

induced by error prone covariates, the SIMEX method can always select more accurate

model than the naive method. While in the naive method, as the measurement

error becomes substantial, the biases of the estimates increase and the standard error

estimates decrease. This causes the corresponding p-values to be smaller than the

nominal level, leading to incorrect hypothesis test results. The SIMEX method, by

contrast, reduces the estimate biases.
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Chapter 3

Prediction of Survival Time by Combining Mismeasured
Gene Expression Data from Different Platforms

3.1 Introduction

Knowledge of the human genome and its gene expressions might greatly enhance our

understanding of cancer (Brown and Botstein, 1999). For example, the gene expres-

sions of cancer tissue are very useful in helping develop predictions of the patient’s

survival time. Microarray technology allows for the measurement of the expression

levels of thousands of genes simultaneously, thereby leading great power to gene ex-

pression based research such as those aforementioned. However, measurement error

might be produced from various sources during the microarray experiment process.

It is well known that ignoring measurement error could lead to substantially biased

estimates of covariate coefficients, invalid hypothesis tests, or significantly masks the

feature of the data (Carroll et al., 2006).

In survival analysis with microarray data, one of the main goals is to predict

the survival time of future patients based on high dimensional gene expressions and

patient specific covariates. When all covariates are observed accurately or error prone

covariates have homoscedastic measurement error, i.e., the measurement error vari-

ance is assumed the same for all subjects, then there is no need to adjust the effect of

measurement error in the prediction model. The survival time of future observation

can be predicted as no measurement error case (Carroll et al., 2006). In practice,

however, data may be collected under different conditions, making the observations

associated with heteroscedastic measurement errors. Hence, a naive prediction model

that ignores measurement error may not be appropriate (Carroll et al., 2009).
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Microarray experiments are often performed over a long period of time on sam-

ples that are prepared and collected under different conditions. Moreover, different

protocols or methodologies may be applied in the experiment, such as microarray

print batches, array hybridization procedures, etc. Hence, all these factors contribute

to a possibility of heteroscedastic measurement error associated with microarray data

set. In practice, it is also important to combine microarray data from different labs

or different platforms, which represents a natural way to increase sample size so that

reliable statistical analysis may be conducted. In many statistical analyses, prediction

is one of the ultimate goals. Thus, prediction of survival time under heteroscedastic

measurement error is of primary importance.

Heteroscedastic measurement error models have been applied in epidemiology

(Kulathinal et al., 2002) and analytical chemistry (Cheng and Riu, 2006) to avoid bias

in parameter estimation. Carroll and Stefanski (1990) considered the heteroscedastic

measurement error issue for generalized linear models. Devanarayan and Stefanski

(2002) proposed an empirical simulation extrapolation (SIMEX) method for mea-

surement error models with replicate measurements in the case of heteroscedastic

measurement error. Recently, some work has been done on nonparametric regres-

sion estimation in the presence of heteroscedastic measurement error (Delaigle and

Meister, 2007, 2008; Staudenmayer et al., 2008). However, survival analysis with

heteroscedastic measurement error has not yet received much attention except for

some sporadic studies, for example Carroll et al. (2009) investigated a nonparametric

method to predict survival time in heteroscedastic measurement error models, and

Augustin et al. (2008) considered regression calibration for the Cox proportional

hazards (PH) model under heteroscedastic measurement error. Here we consider

prediction of survival time for future observation under the accelerated failure time

(AFT) model with covariates subject to heteroscedastic measurement error.
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3.2 Methodology

3.2.1 Notation and Assumptions

Assume we have two types of covariates: Zi consisting of the covariates that can be

observed accurately and Xi consisting of those subject to measurement error. The

AFT model specified by (1.1) can be rewritten as

Yi = X′
iβx + Z′

iβz + εi, i = 1, . . . , n, (3.1)

where Yi is the logarithm transformed survival time that may be subject to right

censoring and β = (βx,βz)
′ is the vector of regression parameters. The intercept

coefficient is incorporated with βz. Instead of observing Xi, we observe its contami-

nated version Wi. The relationship between Xi and Wi could be assumed through

the classic additive measurement error model given by (1.2) with measurement error

Ui ∼ MVN(0,Σui). The components of Ui are independent (i.e., each Σui is a di-

agonal matrix); however, Σui might be different for each subject. For i = 1, . . . , n,

{Xi,Ui, εi} are mutually independent.

Assume that the future error prone covariates are contaminated by WFi
=

XFi
+ UFi

, i = 1, . . . , nF , where UFi
∼ MVN(0,ΣuFi

). The components of UFi

are independent and {XFi
,UFi

} are mutually independent. Also, ΣuFi
might be

different for each subject.

Using the settings by Carroll et al. (2009), we further assume a two-error

model. That is, the training data, {Yi,Wi,Zi}, i = 1, . . . , n, has been rearranged

such that the first m (m ≤ n) observations have type 1 measurement error with

covariance matrix Σui = Σuu1 , i = 1, . . . ,m; the rest n −m observations have type

2 measurement error with covariance matrix Σui = Σuu2 , i = m + 1, . . . , n; and

all future observations have type 2 measurement error, ΣuFi
= Σuu2 , i = 1, . . . , nF .
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The covariance matrix of the measurement error may be assumed known or replicated

measurements of Wi are available.

3.2.2 The Effect of Measurement Error and Adjustment

The naive estimate (β̂w, β̂z)
′, which is known to be inconsistent and asymptotically

biased, can be obtained by solving the AFT model (3.1) with training data samples

{Yi,Wi,Zi} without adjusting the measurement error. The naive prediction model

of the future observation with covariate (WFi
, ZFi) is given by

ŶFi = W′
Fi
β̂w + Z′

Fi
β̂z, i = 1, . . . , nF .

We propose to use two variations of the SIMEX method applied to the samples

{Yi,Wi, Zi}, to adjust the effect of the measurement error and obtain the estimates

of the coefficients, β̂x and β̂z. Then, we use the surrogate (Wi,WFi
) and error-free

variable (Zi,ZFi) together to predict the corresponding unobserved future error prone

covariate X̂Fi
. Using the coefficient estimates computed from the training data, we

can predict the survival time of future observation, ŶFi with covariate (WFi
, ZFi) by

ŶFi = X̂
′
Fi
β̂x + Z′

Fi
β̂z, i = 1, . . . , nF .

3.2.3 Two Variation of the SIMEX Algorithm

The SIMEX algorithm is a popular tool to adjust the effect of measurement er-

ror. See section 2.2.3 for detailed description. In this section, we briefly describe

two variations of the SIMEX algorithm to calculate the SIMEX coefficient estimate

β̂simex = (β̂x, β̂z)
′.
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3.2.3.1 Generalized SIMEX Method for Known Heteroscedastic Mea-

surement Error

The generalized SIMEX algorithm is proposed to dealing with known heteroscedas-

tic measurement error (Yi, 2010). Given an integer B and a grid of values Λ =

{λ1, . . . , λM} with λ1 = 0, λi >= 0, i = 1, . . . ,M . For each λ ∈ Λ and b from

1, . . . , B: Generate ξbi from a binomial distribution with a success probability m
n . If

ξbi = 1, we generate pseudo errors from

Ubi(λ) ∼ MVN(0,Σuu1);

else if ξbi = 0, the pseudo errors are generated from

Ubi(λ) ∼ MVN(0,Σuu2).

The pseudo data with increasing amount of measurement error are

Wi(b, λ) = Wi + λ
1
2Ubi(λ).

We estimate the corresponding β̂(b, λ) by replacing Xi in AFT model (3.1)

with Wi(b, λ) for each b, and then, average over b to obtain the SIMEX estimate

β̂(λ) for each fixed contamination level λ. Modelling the β̂(λ) as a function of λ and

extrapolating back to the case λ = −1 results in the SIMEX estimate β̂simex.

3.2.3.2 Empirical SIMEX Method for Unknown Heteroscedstic Measure-

ment Error

Consider the case where the covariance matrices for the measurement errors are not

known but replicated measurements of Wi are available. Assume we have k replicated
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measurements {Wi1, . . . , Wik} for every subject i, such that

Wij = Xi + Uij , i = 1, . . . , n; j = 1, . . . , k,

where Uij are mutually independent from each other and are independent of {Yi, Xi,

Zi} for the training data. For fixed i, Uij are independent and identically distributed

measurement errors. The empirical SIMEX algorithm introducted in section 2.2.3 can

be utilized to estimate β̂simex = (β̂x, β̂z)
′.

3.2.4 Best Linear Prediction and Regression

Next, we briefly introduce the best linear prediction method to predict the unobserved

error prone covariate. See Carroll et al. (2006) for technical details. Let X and Y be

any two correlated random variables. The best linear predictor of Y based on X is

Ŷ = µy +
σxy

σ2
x

(X − µx)

where µy is the mean of Y , σxy is the covariance between X and Y , µx is the mean

of X and σ2
x is the variance of X.

For the case of the multiple linear regression model, the best linear predictor of

Y based on vector of covariates X is

Ŷ = µy + ΣxyΣ
−1
x (X − µx)

where Σxy = E{[Y − E(Y )][X − E(X)]t} and Var(X) = Σx.

Consider the classic measurement error model (1.2), where X and U are uncor-

related and E(U) = 0. If X and Z are independent, then the best linear predictor of

X based on W is

X̂ = µx + Σx(Σx + Σu)−1(W − µx).
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If the distribution of X depends on Z, then the best linear predictor of X based on

W is

X̂ = µx +

(
Σx Σxz

) Σx + Σu Σxz

Σxz Σz


−1

 W

Z

−

 µx

µz




where E(Z) = µz, Var(Z) = Σz and Σxz is the covariance matrix between X and

Z.

3.2.4.1 Best Linear Prediction for Known Heteroscedastic Measurement

Error

When the variances of the heteroscedastic measurement errors are known, the unbi-

ased estimate for µx, µz and Σz can be calculated by

µ̂x = W̄ =

n∑
i=1

Wi +
nF∑
i=1

WFi

n+ nF
,

µ̂z =

n∑
i=1

Zi +
nF∑
i=1

ZFi

n+ nF
,

and

Σ̂z =

n∑
i=1

(Zi − µ̂z)(Zi − µ̂z)′ +
nF∑
i=1

(ZFi − µ̂z)(ZFi − µ̂z)
′

n+ nF − 1
.

Using the observations in the training data set with type 1 measurement error,

Σuu1 , we have the estimates of the Σxz and Σx given by

Σ̂xz1 =

m∑
i=1

(Wi − W̄)(Zi − µ̂z)

m− 1

′

,
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and

Σ̂x1 = Σ̂w1 − Σuu1 .

where

Σ̂w1 =

m∑
i=1

(Wi − W̄)(Wi − W̄)′

m− 1
.

By merging the observations in the training data set with type 2 measurement

error, Σuu2 , and future observations, we have another set of estimates of the Σxz and

Σx given by

Σ̂xz2 =

n∑
i=m+1

(Wi − W̄)(Zi − µ̂z)′ +
nF∑
i=1

(WFi
− W̄)(ZFi − µ̂z)

′

n−m+ nF − 1
,

and

Σ̂x2 = Σ̂w2 − Σuu2 .

where

Σ̂w2 =

n∑
i=m+1

(Wi − W̄)(Wi − W̄)′ +
nF∑
i=1

(WFi
− W̄)(WFi

− W̄)′

n−m+ nF − 1
.

Then, the pooled estimates of Σxz and Σx that will be used to predict XF are

given by

Σ̂xz =
(m− 1)Σ̂xz1 + (n−m+ nF − 1)Σ̂xz2

n+ nF − 2
,

and

Σ̂x =
(m− 1)Σ̂x1 + (n−m+ nF − 1)Σ̂x2

n+ nF − 2
.
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The estimate of XF is X̂F given by

X̂F = µ̂x +

(
Σ̂x Σ̂xz

) Σ̂x + Σuu2 Σ̂xz

Σ̂xz Σ̂z


−1

 WF

ZF

−

 µ̂x

µ̂z


 .

3.2.4.2 Best Linear Prediction for Unknown Heteroscedastic Measure-

ment Error

When Σuui for i = 1, 2 are unknown but replicated measurements are available, we

modify the best linear approximation method derived by Carroll and Stefanski (1990).

Suppose for each Wi we have replicated measurements Wi1, . . . ,Wik, k > 1 where

Wij = Xi + Uij , i = 1, . . . , n; j = 1, . . . , k;

and

WFij
= XFi

+ UFij
, i = 1, . . . , nF ; j = 1, . . . , k.

The unbiased estimates for µz and Σzz are computed in the same way as the known

measurement error variances case given by

µ̂z =

n∑
i=1

Zi +
nF∑
i=1

ZFi

n+ nF
,

and

Σ̂z =

n∑
i=1

(Zi − µ̂z)(Zi − µ̂z)′ +
nF∑
i=1

(ZFi − µ̂z)(ZFi − µ̂z)
′

n+ nF − 1
.

For every object, the individual averages given by

W̄i =
1

k

k∑
j=1

Wij and W̄Fi
=

1

k

k∑
j=1

WFij
.
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would function as the surrogate for Xi. The unbiased estimate of µx can be calculated

by

µ̂x = W̄ =

n∑
i=1

W̄i +
nF∑
i=1

W̄Fi

n+ nF
.

Similarly, we can obtain two sets of estimates of the Σxz and Σx. Using the

observations in the training data set with type 1 measurement error, we have

Σ̂uu1 =

m∑
i=1

k∑
j=1

(Wij − W̄i)(Wij − W̄i)
′

m(k − 1)
,

Σ̂x1 =

m∑
i=1

(W̄i − W̄)(W̄i − W̄)′

m− 1
−

Σ̂uu1

k
,

Σ̂xz1 =

m∑
i=1

(W̄i − W̄)(Zi − µ̂z)′

m− 1
,

By merging the observations in the training data set with type 2 measurement

error and future observations, we have

Σ̂uu2 =

n∑
i=m+1

k∑
j=1

(Wij − W̄i)(Wij − W̄i)
′ +

nF∑
i=1

k∑
j=1

(WFij
− W̄Fi

)(WFij
− W̄Fi

)′

(n−m+ nF )(k − 1)
,

Σ̂x2 =

n∑
i=m+1

(W̄i − W̄)(W̄i − W̄)′ +
nF∑
i=1

(W̄Fi
− W̄)(W̄Fi

− W̄)′

n−m+ nF − 1
−

Σ̂uu2

k
,

Σ̂xz2 =

n∑
i=m+1

(W̄i − W̄)(Zi − µ̂z)′ +
nF∑
i=1

(W̄Fi
− W̄)(ZFi − µ̂z)

′

n−m+ nF − 1
,

Then, the pooled estimates of Σxz and Σx that will be used to predict XF are given



59

by

Σ̂x =
(m− 1)Σ̂x1 + (n−m+ nF − 1)Σ̂x2

n+ nF − 2
,

Σ̂xz =
(m− 1)Σ̂xz1 + (n−m+ nF − 1)Σ̂xz2

n+ nF − 2
.

The estimate of XF is X̂F given by

X̂F = µ̂x +

(
Σ̂x Σ̂xz

) Σ̂x + 1
k Σ̂uu2 Σ̂xz

Σ̂xz Σ̂z


−1

 W̄F

ZF

−

 µ̂x

µ̂z


 .

3.2.5 Prediction Accuracy Criteria

The performance of the proposed SIMEX adjusted prediction models and the impact

of naive prediction model are evaluated by the mean squared prediction error (MSPE)

MSPE = E

( nF∑
i=1

(
Yi − Ŷi

)2
)

where nF is the total number of future observations and Ŷi is the logarithm trans-

formed survival time predicted by the AFT model. Due to censoring, some of the true

survival times are not observed, such that the censored survival time is shorter than

the true potential survival time. We consider the following three methods to make

transformation of the censored survival time (Yi, δi,Xi,Zi) to (t∗i ,Xi,Zi) according

to the rules

t∗i = δiφ1(Yi,Xi,Zi) + (1 − δi)φ2(Yi,Xi,Zi).

A basic requirement for this transformation is to make E(t∗i |Xi,Zi) =E(Yi|Xi,Zi).

According to Jin and He (2010), the following three adjustment methods satisfy the

above condition. The consistent estimator of the mean squared prediction error of
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adjusted survival time is

MSPE =
1

nF

nF∑
i=1

(
t∗i − Ŷi

)2
.

3.2.5.1 Inverse Probability Weights (IPW)

In the Inverse Probability Weights (IPW) method, let

φ1(Y,X,Z) =
Y

Ḡ(Y |X,Z)
,

and

φ2(Y,X,Z) = 0.

Then, we have

t∗i =
δiYi

Ḡ(Yi|Xi,Zi)
,

where Ḡi(t) is the Kaplan-Meier estimator of censored time.

3.2.5.2 Integral

In the Integral method, let

φ1(Y,X,Z) = φ2(Y,X,Z) =

∫ Y

0

dt

Ḡ(t|X,Z)
,

So, we have

t∗i =

∫ Yi

0

dt

Ḡ(t|Xi,Zi)
.
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3.2.5.3 Buckley James (BJ)

Another transformation comes from the idea of Buckley and James (1979). Let

φ1(Y,X,Z) = Y,

and

φ2(Y,X,Z) = E(Yi|Yi > Y,X,Z) =

∑
i:Yi>Y

δiYi∑
i:Yi>Y

δi
.

Then, we have

t∗i = δiYi + (1 − δi)

∑
j:Yj>Yi

δjYj∑
j:Yj>Yi

δj
.

3.3 Simulation Study

We conduct simulation studies to evaluate the proposed SIMEX adjusted predic-

tion method. We generate independent observations from the AFT model under the

Weibull distribution with the survival function given by

S(t) = exp (−tαeXiβx+Ziβz )

where S(t) is generated independently from the uniform distribution Unif[0, 1]. The

censoring times are generated from the exponential distribution with a fixed parame-

ter to achieve 0%, 10%, 30%, 50% and 70% censoring rate. Two values of α, α = 0.5

and α = 1.5, which represent the decreasing and increasing hazard rates of the Weibull

model, are considered. Each simulation study consists of 100 data sets of size n = 125

with m = 100 samples having type 1 measurement error, Σuu1 , and the rest of the

25 samples having type 2 measurement error, Σuu2 . The future covariates have a

size of nF = 50 with type 2 measurement error. The variances of the measurement
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errors are known or replicated measurements of Wi are available. For all simulation

scenarios, we set λ ∈ [0, 2] and B = 100 for the SIMEX algorithm. The MSPEs of

the naive prediction and the SIMEX adjusted prediction models are calculated for

each simulation run. The mean and standard error (SE) of these MSPEs under each

scenario are calculated to compare the performance of the proposed method and the

naive method.

3.3.1 X and Z are Independent

3.3.1.1 Heteroscedastic Measurement Error with Known Measurement

Error Variance

In this simulation study, the true values of the covariate coefficients are βz = 0.5 and

βx = − log(2). We generate zi from a Bernoulli distribution with 50% probability of

success and xi follows a normal distribution N(1, 1). The observed surrogate is wi =

xi+ui. The first 100 observations have a type 1 measurement error ui = N(0, 0.252).

The remaining 25 observations of the training data and 50 future observations have

type 2 measurement error ui = N(0, 12). Here we assume that the measurement error

for the future observation is severe than the training data set.

Tables 3.1 and 3.2 list the mean and SE of the MSPE of the naive and the

SIMEX adjusted prediction models. Three methods to adjust the censored survival

times are applied and the mean and SE of those MSPEs are reported as well.

For both naive and SIMEX adjusted prediction models with α = 0.5, as the

censoring rate increases the actual MSPE increases and the corresponding SE becomes

larger. The actual MSPE that all the survival time are observed is calculated under

each censoring rate. When there is no censoring, all three censor adjustment methods

give the same MSPE and the corresponding SE; under low and median censoring rates

(10% to 50%), all three censored survival time adjustment methods underestimate

the MSPE. Compared to the other two methods, IPW method is more consistent
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with the actual MSPE at the expense of higher SE; when the censoring rate is high,

IPW and Integral methods overestimate the MSPE and SE, while the BJ method

underestimates the MSPE but with larger SE estimator. BJ method adjusted survival

time works best under low censoring rate and Integral method is the optimal choice

under heavy censoring rate.

For both naive and SIMEX adjusted prediction models with α = 1.5, as the

censoring rate increases the actual MSPE increases and the corresponding SE be-

comes larger. When there is no censoring, all three censored survival time adjustment

methods give the same MSPE and the corresponding SE. As long as there is censored

survival time, Integral method overestimates the actual MSPE and the corresponding

SE while IPW and BJ methods underestimate the MSPE. Specifically, for the naive

prediction method, compared to the BJ adjustment method, IPW method is more

consistent with the actual MSPE at the expense of higher SE, while for the SIMEX

adjusted prediction method, IPW method is more consisted in estimating the mean

and SE of the MSPE.

It is clear from Tables 3.1 and 3.2 that the proposed prediction model outper-

forms the naive prediction model. Under each censoring rate, the proposed method

has better prediction accuracy with small mean and SE of the MSPE. In order to

check the performance of the proposed method, we compare four prediction models

with no censored survival time. First of all, comparison is made between our pro-

posed SIMEX adjusted prediciton model using x̂β̂x and the naive prediction model

using wβ̂w in Table 3.3. Our proposed prediction model outperforms the naive model

in that it gives smaller mean and SE of the MSPE. Secondly, comparing the predic-

tion model using xβ̂x to the prediction model using xβ̂w, it confirms that the naive

approach gives biased estimates and the SIMEX approach corrects the bias, giving

smaller MSPE and SE. Similarly, while comparing MSPE difference of wβ̂w and xβ̂x

to the MSPE difference of x̂β̂x and xβ̂x, it shows that x̂ performs better than naively

use w directly.
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Table 3.3: Comparison of mean squared prediction errors: Scenario 3.1.1

Parameter wβ̂w xβ̂w x̂β̂x xβ̂x
E(MSPE) SE(MSPE) E(MSPE) SE(MSPE) E(MSPE) SE(MSPE) E(MSPE) SE(MSPE)

α = 0.5 8.249 2.149 6.894 1.885 7.848 2.076 6.829 1.879
α = 1.5 0.917 0.239 0.766 0.209 0.872 0.231 0.759 0.209

3.3.1.2 Heteroscedastic Measurement Error with Replicate Measurements

When the covariance matrixes of the measurement errors are unknown, but replicates

of the wi are available. Here we assume each subject has k = 2 replicate measure-

ments. All the parameter settings are kept the same as the known variances case.

Tables 3.4 and 3.5 show the mean MSPEs and the corresponding SE of the

naive prediction model and the empirical SIMEX adjusted prediction model. The

proposed empirical SIMEX adjusted prediction model performs better than the naive

model, the difference is smaller compared to the known error case. Both naive and

the emprical SIMEX adjusted prediction models perform better than the known error

case. This is because with replicated measurements, the variance of the surrogate is

smaller than the case of the known covariance matrix. Similarly, we compare the

four prediction models with no censoring in the survival time. It confirms that the

empirical SIMEX adjusted prediction model outperforms the naive prediction model.

3.3.2 X and Z are Independent but X are Correlated

In cases where gene expressions from the microarray are correlated with each other, we

next simulate a scenario where Xi and zi are independent, but the components of Xi

are correlated. Let zi be generated from a Bernoulli distribution with 50% probability

of success and Xi = (xi1 , xi2)′ be generated from the multivariate normal distribution

with mean (1, 1)′. Let their coefficients be βz = 0.5 and βx = (− log(2),−1)′, respec-

tively. Let the correlation, ρ, between the components of Xi be (0.8, 0.3,−0.3,−0.8)′

to represent moderate and heavy correlation.
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Table 3.6: Comparison of mean squared prediction errors: Scenario 3.1.2

Parameter wβ̂w xβ̂w x̂β̂x xβ̂x
E(MSPE) SE(MSPE) E(MSPE) SE(MSPE) E(MSPE) SE(MSPE) E(MSPE) SE(MSPE)

α =0.5 7.494 2.448 6.708 2.452 7.316 2.456 6.708 2.461
α = 1.5 0.833 0.272 0.745 0.272 0.813 0.273 0.745 0.273

 xi1

xi2

 ∼ MVN


 1

1

 ,

 1 ρ

ρ 1




For the type 1 measurement error, we assume it comes from multivariate normal

distribution specified by

 ui1

ui2

 ∼ MVN


 0

0

 ,

 0.252 0

0 0.252




For the type 2 measurement error, we assume

 ui1

ui2

 ∼ MVN


 0

0

 ,

 1 0

0 1




3.3.2.1 Heteroscedastic Measurement Error with Known Measurement

Error Variance

Consider the case that the measurement error variances are known. The mean of the

MSPEs of 100 runs and the corresponding SE are reported from Tables 3.8 to 3.15

under each parameter combination. As the censoring rate increases the MSPE calcu-

lated from the real survival times increases and the corresponding SE becomes larger.

When there is no censoring, all three censored survival time adjustment methods

give the same MSPE and the corresponding SE. As long as there is censored survival

time, three survival time adjustment methods give different MSPE and SE. No mat-

ter which method applied to adjust the censored survival time, the SIMEX adjusted
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prediction model works better than the naive prediction model; the proposed predic-

tion method has better prediction accuracy with smaller mean and SE of MSPE. The

strength of the correlation between covariate Xi will affect the prediction accuracy;

as the correlation reduces from 0.8 to -0.8, the mean and SE of the MSPE become

smaller.

We compare four prediction models with no censored survival time to check the

performance of the proposed method. The correlation between the component of Xi

is 0.8. Other strength of the correlation should give similar conclusions. First of all,

comparison is made between our proposed SIMEX adjusted prediction model using

X̂β̂x and the naive prediction model using Wβ̂w in table 3.7. Our proposed predic-

tion model outperforms the naive prediction model in giving smaller mean MSPE with

less variation. Secondly, by comparing the prediction model using Xβ̂x to the predic-

tion model using Xβ̂w, it confirms that the naive approach gives biased estimates and

the SIMEX method corrects the bias, giving smaller MSPE and corresponding SE.

Lastly, the results from comparing our proposed prediction model to the prediction

model using Xβ̂x suggests that the performance of the proposed prediction model

might be improved by better predicting on the unobservable XF .

Table 3.7: Comparison of mean squared pridiction errors: Scenario 3.2.1

Parameter wβ̂w xβ̂w x̂β̂x xβ̂x
E(MSPE) SE(MSPE) E(MSPE) SE(MSPE) E(MSPE) SE(MSPE) E(MSPE) SE(MSPE)

α =0.5 11.352 2.589 6.860 2.059 10.313 2.405 6.779 2.049
α = 1.5 1.261 0.288 0.762 0.229 1.146 0.267 0.753 0.228
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3.3.3 Distribution of X Depends on Z

In this simulation scenario, we consider the case that xi and zi are correlated, βx =

− log(2) and βz = 0.5. The covariates follow the multivariate normal distribution

with xi and zi having the same mean and variance as the independent case. The

correlation between xi and zi is set to be ρ = (0.5, 0.3,−0.3,−0.5)′. The type 1

measurement error has variance of 0.252 and type 2 measurement error has variance

of 12.

 xi

zi

 ∼ MVN


 1

0.5

 ,

 1 ρ

ρ 0.25




Here, the measurement error variances are known. The mean of the MSPEs

of 100 runs and the corresponding SE are reported from Tables 3.16 to 3.23. Three

survival time adjustment methods are applied to calculate the mean MSPE and the

corresponding SE under different censoring rates. As the censoring rate increases, the

mean and SE of the MSPE becomes larger. The proposed SIMEX adjusted prediction

model works better than the naive prediction model with better prediction accuracy.

It gives smaller MSPE and SE. The strength of the correlation between covariate xi

and zi affects the prediction accuracy. When the correlation is ±0.5, the mean MSPE

and the corresponding SE are similar and are smaller than the ±0.3 correlation cases.
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3.4 Conclusion

Prediction is one of the goals for many statistical analyses. When we have accurately

measured covariates only or homogenetic measurement errors in the error prone co-

variates in the AFT model, prediction can be done the same as the model with no

measurement error because no adjustments are needed. However, when the covari-

ates are subject to heteroscedastic measurement error, the naive prediction model

without adjustments to the effect of measurement error is not appropriate. In mi-

croarray studies, the gene expressions are often subject to measurement error, which

varies with different labs or platforms used. In practice, it is necessary to combine

these various microarray data in the analysis. Thus, prediction with heteroscedastic

measurement error has to be addressed.

We propose two variations of the SIMEX methods to adjust the effect of the

measurement error and obtain the estimates of the coefficients, β0, β̂X and β̂Z . Then,

we use the surrogate (Wi,WFi
) and error-free variable (Zi,ZFi) together to predict

the corresponding unobserved XF . Using the coefficient estimates computed from

the training data, we obtain the prediction of the future survival time by replacing

XF with X̂F .

The performance of the proposed SIMEX adjusted prediction and naive pre-

diction methods are evaluated by the mean squared prediction error (MSPE). Due

to the fact that some of the survival times might be right censored, we propose the

following three methods to adjust the censored survival times for calculating MSPE:

inverse probability of weights method, integral method and Buckley James method.

No matter which method is applied to adjust the censored survival time, the SIMEX

adjusted prediction model outperforms the naive prediction model with higher pre-

diction accuracy. The MSPE of SIMEX adjusted prediction model is smaller than

the naive prediction model and is less variable.

We run simulation studies to evaluate the proposed methods. When measure-

ment error variance is known, we first apply the general SIMEX method to obtain the
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coefficient estimates. When the variance is not known but replicated measurements

of the surrogate are available, we use the empirical SIMEX method to estimate the

coefficients. For both the SIMEX adjusted prediction and the naive prediction meth-

ods, as the censoring rate increases, the mean and corresponding standard error of

the MSPE become larger. This is due to the fact that more information about the

true survival times is unavailable.
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Chapter 4

simexaft: R Package for Accelerated Failure Time Models
with Covariates Subject to Measurement Error

4.1 Introduction

For survival data with covariates subject to measurement error, standard inferential

procedures may produce biased estimation if measurement error is not properly taken

into account (Carroll et al., 2006). There has been extensive discussion in the litera-

ture to correct the bias induced by measurement error in the Cox proportional hazards

(PH) model (Prentice, 1982; Li and Lin, 2003; Yi and Lawless, 2007). Although the

impact of measurement error is well understood for the Cox PH models, there is little

discussion on its impact on accelerated failure time (AFT) models. The AFT model

is an attractive alternative to the Cox PH model since it may provide more accurate

or concise summarization of the data than the Cox PH model in certain applications

(Zeng and Lin, 2007).

With general AFT models, He et al. (2007) discussed inference procedures to

account for effects of covariate measurement error using a simulation extrapolation

(SIMEX) approach. The main advantage of the developed SIMEX method for AFT

models is its simplicity and flexibility to implement. Moreover, it is robust to the

distribution of error prone and error free covariates. This method is quite appeal-

ing for practitioners to accommodate covariate measurement error when analyzing

survival data with AFT models. Despite great advances in the methodology of ad-

dressing covariate measurement error for survival analysis, the methods developed in

current literature have not been widely used in practice. The reluctance to adopt

these methods may be partly due to the lack of available software to implement
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these methods. To address this practical issue, we developed an R (R Development

Core Team, 2010) package simexaft to make the SIMEX method discussed by He

et al. (2007) accessible for general users on the Comprehensive R Archive Network

(CRAN) at http://cran.r-project.org/. The source code for this R package is attached

in Appendix A.

4.2 Notation and Framework

Assume we have two types of covariates, let Xi = (Xi1, Xi2, . . . , Xip)
′ be the p × 1

vector of covariates subject to possible measurement error and Zi be the vector of

error free covariates. The response variable Yi = log(Ti) is characterized by the

AFT model (3.1). The parameters for the AFT model (3.1) is θ = (β,α)′, where

β = (βx,βz)
′ is the vector of regression parameters (βz may include the intercept

coefficient). Interest primarily focuses on estimating parameters β in order to study

the relationship between the response Yi and covariates (Xi,Zi)
′. Using (3.1), we

define the likelihood contributed from subject i as

Li(θ;Yi,Xi,Zi) = [g(Yi − X′
iβx − Z′

iβz;α)]δi [1 −G(Yi − X′
iβx − Z′

iβz;α)]1−δi ,

where g(·) is the density function corresponding to the distribution function, G(·), of

εi. Then, the log likelihood is given by

l(θ;Y,X,Z) =
n∑
i=1

li(θ;Yi,Xi,Zi),

where li(θ;Yi,Xi,Zi) = logLi(θ;Yi,Xi,Zi). If there is no measurement error present

in covariates, then the maximum likelihood estimator, θ̂, is obtained by solving

∂l(θ;Y,X,Z)

∂θ
= 0. (4.1)
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This estimator is consistent for θ and has an asymptotic normal distribution. How-

ever, when error is present in covariates, the resulting estimator can be substantially

biased (Li and Lin, 2003; Yi and He, 2006).

Let Wi be the observed version of covariate Xi. Conditional on Xi and Zi,

we assume Wi and Xi follow a classical additive measurement error model given by

equation(1.2), where measurement error Ui follows a normal distribution with mean

0 and covariance matrix Σu = [σjk]p×p. The parameters in Σu can be estimated

in certain situations (e.g., repeated measurements for Wi are available). In other

situations, the parameters in Σu may be assumed known because of prior knowledge

about the measurement process or other similar studies. When conducting sensitivity

analysis to assess the impact of different degree of measurement error on estimation

of the response parameters, the parameters in Σu are typically specified to be known

because of the background information about the measurement process.

4.3 Simulation Extrapolation Method

To conduct valid inference for θ in the presence of covariate measurement error, He

et al. (2007) developed a SIMEX method for the AFT model. See section 2.2.3 for

a brief background of the SIMEX algorithm. This technique was initially proposed

by Cook and Stefanski (1994) for measurement error correction. Later, it was gen-

eralized to account for heteroscedastic error model by Devanarayan and Stefanski

(2002). Recently, it has been adapted for semiparametric measurement error model

(Apanasovich, 2009). The SIMEX method is widely used in applications that involve

survival analysis (Li and Lin, 2003; He et al., 2007); misclassification in regression

(Kuchenhoff et al., 2006); smoothing parameter choice (Delaigle and Hall, 2008) and

estimation of the variance function (Carroll and Wang, 2008; Wang et al., 2009).

The main idea of the SIMEX method is to generate additional data sets with

increasingly larger measurement error, estimate the trend of the effect of the measure-
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ment error on the estimation of the parameter of interest, and extrapolate the trend

back to the case of no measurement error. This method is robust to the distribution

of Xi, even when it is unspecified. We consider two practical cases for the parameters

in Σu: (i) the parameters in Σu are given as fixed values; and (ii) the parameters in

Σu are not known, but repeated measurements of Wi are available. The procedures

of the SIMEX method apply to both cases except for the data simulation procedure.

The SIMEX method was generalized to handle survival data for which censor-

ing is a typical feature by He et al. (2007). The SIMEX approach is very appealing

because of its simplicity to implement and no requirement of modeling the true co-

variates Xi (often not observable). To implement this method, we need to address a

few issues. The specification of B or Λ is not unique. Technically speaking, a larger

value of B leads to a better SIMEX estimator in the sense that Monte Carlo sam-

pling error in the simulation step can be reduced. For practical use, however, choosing

B = 50, 200 or 500, and taking Λ to be the equal cut points of interval [0, 1] or [0, 2]

with M = 5, 10 or 20, can often lead to fairly reasonable SIMEX estimates (Carroll

et al., 2006). Another source of variation in obtaining SIMEX estimators lies in the

choice of an extrapolation function. The exact extrapolation function is usually not

known. Instead, a user-specified approximation is employed, hence SIMEX estima-

tors are usually approximately consistent. Linear regression or quadratic regression

function tends to be the most widely used replacement of the exact extrapolation

function. Although SIMEX estimators are often not exactly consistent, they greatly

outperform naive estimators for which measurement error is not accounted for. The

performance of the SIMEX method has been shown superior in some highly nonlinear

models (Carroll et al., 1996; Wang et al., 1998).

4.3.1 Implementation in R

An R function, entitled simexaft, is developed to implement the SIMEX procedures

described above. Function simexaft produces the SIMEX estimates for interesting
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parameter β and other parameters along with their associated SIMEX standard errors

and p-values. The form of calling function simexaft is given by

simexaft(formula = formula(data), data = parent.frame(),

SIMEXvariable = indicator, repeated = FALSE,

repind = list(), err.mat = Sigma, B = B,

lambda = lambda, extrapolation = quadratic, dist = "Weibull")

with the arguments being described as follows

• formula: specifies the model to be fitted, with the variables coming with data.

This argument has the same format as the formula argument in the existing R

function survreg.

• SIMEXvariable: the index of the covariate variables that are subject to mea-

surement error.

• repeated: set to TRUE or FALSE to indicate if there are repeated measurements

for the mis-measured variables, i.e., corresponding to case (i) or (ii) in Section

4.3.

• repind: the index of the repeated measurement variables for each mis-measured

variable. It has an R list form. If repeated = TRUE, repind must be specified.

• err.mat: specifies the covariance matrix of the measurement error. If repeated

= FALSE, err.mat must be specified.

• B: the number of simulated samples for the simulation step. The default is set

to be 50.

• lambda: the set of Λ = {λ1, . . . , λM} with λ1 = 0 that is used as the grids for

the extrapolation step.

• extrapolation: specifies the function form for the extrapolation step. The

options are linear, quadratic and both. The default is set to be quadratic.
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• dist: specifies a parametric distribution that is assumed in AFT model (3.1).

This argument is the same as the dist option in the existing R function

survreg, and it can take distribution such as Weibull, exponential, Gaussian,

logistic, lognormal and loglogistic.

4.4 Examples

To illustrate the usage of the developed R package simexaft, in this section we apply

the package to two real data sets, corresponding to cases with or without repeated

measurements for error prone covariates.

The first example is based on a subset from real data set arising from the

Busselton Health Study (Knuiman et al., 1994). The whole data set was analyzed

in He et al. (2007). The data set analyzed here includes survival information for a

randomly selected subset of 100 females. The survival time is taken as the age at the

death, as in He et al. (2007). Systolic blood pressure (xi1), cholesterol level (xi2),

age at registration (zi1), body mass index (zi2) and smoking status are risk factors

related to mortality. Following Carroll et al. (2006), we rescale systolic blood pressure

as log(xi1 − 50). Smoking status is classified by two dummy indicators, denoted by

zi3 and zi4, where zi3 = 1 indicates an individual is an ex-smoker, and 0 otherwise;

zi4 = 1 represents that an individual is a current smoker, and 0 otherwise. It is known

that measurements of risk factors xi1 and xi2 are subject to substantial error due to

the nature of these covariates.

The logarithms of the failure times are postulated by model

Yi = β0 + xi1βx1 + xi2βx2 + zi1βz1 + zi2βz2 + zi3βz3 + zi4βz4 + εi,

where error εi follows a specific distribution. The standard extreme value distribution

is assumed for an illustration. We assume that errors in both risk factors xi1 and xi2
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can be represented by model (1.2).

To use the developed R package simexaft, we need to install the package from

a zip file simexaft.zip and load it to R

> library(simexaft)

Next, load the data that are properly organized with the variable names speci-

fied. In this example, the data set “BHS” included in the package is called by

> data(BHS)

> dataset = BHS

> dataset$SBP = log(dataset$SBP-50)

For illustrative purposes, we use settings with B = 50, λM = 2 and M = 20.

Assume the parameters in Σu are known. This is a typical case when conducting

sensitivity analysis. Here we set σ11 = σ22 = 0.75 and σ12 = σ21 = 0 as an example.

The naive AFT approach without considering measurement errors in covariates

gives the output,

> formula = Surv(SURVTIME, DTHCENS) ~ SBP + CHOL + AGE + BMI

+ SMOKE1 + SMOKE2

> out1 = survreg(formula=formula, data=dataset, dist= "weibull")

> summary(out1)

Call:

survreg(formula = formula, data = dataset, dist = "weibull")

Value Std. Error z p

(Intercept) 12.5302 3.3587 3.731 0.000191

SBP -1.2524 0.7766 -1.613 0.106807

CHOL -0.0512 0.1096 -0.467 0.640360

AGE -0.0603 0.0223 -2.712 0.006692

BMI 0.0337 0.0400 0.842 0.399920

SMOKE1 -0.7392 0.3993 -1.851 0.064158

SMOKE2 -0.8232 0.4178 -1.970 0.048805

Log(scale) -0.5142 0.2079 -2.474 0.013375

Scale= 0.598

Weibull distribution

Loglik(model)= -83.5 Loglik(intercept only)= -98.5

Chisq= 30.02 on 6 degrees of freedom, p= 3.9e-05

Number of Newton-Raphson Iterations: 9

n= 100
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To adjust for possible effects of measurement error in variables SBP and CHOL,

we call the developed function simexaft for the analysis.

> set.seed(120)

> formula = Surv(SURVTIME,DTHCENS) ~ SBP+CHOL+AGE+BMI+SMOKE1+SMOKE2

> ind = c("SBP","CHOL")

> err.mat = diag(rep(0.5625,2))

> ###fit a AFT model with quadratic extrapolation

> out2 = simexaft(formula=formula,data=dataset,SIMEXvariable=ind,

repeated="FALSE",repind=list(),err.mat=err.mat,B=50,

lambda=seq(0,2,0.1),extrapolation="quadratic",dist="weibull")

> summary(out2)

$coefficients

Estimate Std. Error P value

Intercept 16.33008771 3.91664272 3.053897e-05

SBP -2.40116761 0.93348413 1.010358e-02

CHOL -0.05630569 0.12982884 6.645124e-01

AGE -0.04846142 0.02063056 1.882334e-02

BMI 0.05933523 0.04278722 1.655177e-01

SMOKE1 -0.60168913 0.36963556 1.035694e-01

SMOKE2 -0.79819843 0.39230144 4.188551e-02

$scalereg

(Intercept)

0.5791607

$extrapolation

[1] "quad"

$SIMEXvariable

[1] "SBP" "CHOL"

attr(,"class")

[1] "summary.simaxaft"

Now we demonstrate the use of simexaft for the case that the parameters in Σu

is unknown, but repeated measurements for error prone covariates are available. This

is illustrated by the example from a study of pulmonary exacerbations and rhDNase.

Fuchs et al. (1994) reported on a double-blind randomized multicenter clinical trial

designed to assess the effect of rhDNase, a recombinant deoxyribonuclease I enzyme,

versus placebo on the occurrence of respiratory exacerbations among patients with

cystic fibrosis. The rhDNase operates by digesting the extracellular DNA released

by leukocytes that accumulate in the lung as a result of bacterial infection, and so it
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was expected that aerosol adminstration of rhDNase would reduce the incidence of

exacerbations (Cook and Lawless, 2007).

Six hundred and forty five patients were recruited in this trial. Each subject was

randomly assigned to treatment or placebo group, and was followed up approximately

169 days for pulmonary exacerbations. Data on the occurrence and resolution of all

exacerbations were recorded. The forced expiratory volume (FEV) was considered a

risk factor and was measured twice at randomization. The response is defined as the

logarithm of the time from randomization to the first pulmonary exacerbation.

To investigate the effect of the FEV on the time to first pulmonary exacerbation,

we postulate the model

Yi = β0 + FEV ∗ β1 + trt ∗ β2 + εi,

where “trt” is the indicator of treatment, and error εi follows a specific distribution.

The standard extreme value distribution is taken again for illustrations. We assume

that measurement errors in risk factors FEV can be represented by model (1.2).

First, load the data “rhDNase” into R by issuing

>data(rhDNase)

Two repeated measurements for covariate FEV, fev1 and fev2, are called in simexaft

using the option repeated=TRUE, along with a list of index of the repeated measure-

ments.

Existing R function survreg can provide the analysis with no measurement

error effects properly taken into account, by merely taking the FEV measurements

as the average of the two repeated observations.

> fev.ave = (rhDNase$fev + rhDNase$fev2)/2

> output1 = survreg(Surv(rhDNase$time2, rhDNase$status)~rhDNase$trt

+fev.ave, dist="weibull")

> summary(output1)

Call:
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survreg(formula = Surv(rhDNase$time2, rhDNase$status) ~ rhDNase$trt +

fev.ave, dist = "weibull")

Value Std. Error z p

(Intercept) 4.5183 0.15470 29.21 1.61e-187

rhDNase$trt 0.3570 0.12179 2.93 3.38e-03

fev.ave 0.0193 0.00275 7.00 2.50e-12

Log(scale) -0.0782 0.05959 -1.31 1.89e-01

Scale= 0.925

Weibull distribution

Loglik(model)= -1617.5 Loglik(intercept only)= -1652.9

Chisq= 70.98 on 2 degrees of freedom, p= 3.3e-16

Number of Newton-Raphson Iterations: 5

n= 641

Similar analysis results can be obtained if using the simexaft function to ac-

commodate covariate error effects. In this example, we note that variation in the

two repeated measurements of FEV is too minor to suggest different results obtained

from the methods of ignoring or accounting for covariate measurement error. Here we

perturb the two repeated observations by adding additional noise, e.g., 15% of sam-

ple standard error, and then apply the developed R function to produce the output.

This artificial procedure may not be customary when one focuses on a genuine data

analysis. However, it is useful for illustration purposes. Moreover, this approach can

provide some insights if conducting sensitivity analyses is of prime interest.

> set.seed(120)

> error.sd = 0.15*sd(rhDNase$fev)

> error.sd2 = 0.15*sd(rhDNase$fev2)

> fev.error = rhDNase$fev+rnorm(length(rhDNase$fev),mean=0,sd=error.sd)

> fev.error2 = rhDNase$fev2+rnorm(length(rhDNase$fev2),mean=0,sd=error.sd2)

> dataset2 = cbind(rhDNase$time2, rhDNase$status, rhDNase$trt,

fev.error, fev.error2)

> colnames(dataset2) = c("time2","status","trt","fev.error","fev.error2")

> dataset2 = as.data.frame(dataset2)

> formula = Surv(time2, status)~trt + fev.error

> ind = c("fev.error")

Below is the output obtained from the naive approach that ignores covariate

measurement error for perturbed data.
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> ######naive model using the average FEV value###########

> fev.error.c = (fev.error + fev.error2)/2

> output2 = survreg(Surv(rhDNase$time2, rhDNase$status) ~ rhDNase$trt

+ fev.error.c, dist="weibull")

> summary(output2)

Call:

survreg(formula = Surv(rhDNase$time2, rhDNase$status) ~ rhDNase$trt +

fev.error.c, dist = "weibull")

Value Std. Error z p

(Intercept) 4.5303 0.15413 29.39 6.66e-190

rhDNase$trt 0.3555 0.12191 2.92 3.54e-03

fev.error.c 0.0190 0.00273 6.98 3.05e-12

Log(scale) -0.0772 0.05962 -1.30 1.95e-01

Scale= 0.926

Weibull distribution

Loglik(model)= -1617.9 Loglik(intercept only)= -1652.9

Chisq= 70.02 on 2 degrees of freedom, p= 6.7e-16

Number of Newton-Raphson Iterations: 5

n= 641

Now we apply the developed function simexaft to adjust for the measurement

error effects, with the perturbed data analyzed using the repeated measurements

option.

> formula = Surv(rhDNase$time2, rhDNase$status)~rhDNase$trt + fev.error

> output3 = simexaft(formula=formula,data=dataset2,SIMEXvariable=ind,

repeated="TRUE",repind=list(c("fev.error","fev.error2")),

err.mat=NULL,B=50, lambda=seq(0,2,0.1),

extrapolation="quadratic", dist="weibull")

> summary(output3)

$coefficients

Estimate Std. Error P value

Intercept 4.50991887 0.15790876 0.000000e+00

trt 0.36252461 0.12196482 2.955100e-03

fev.error 0.01935275 0.00279358 4.281020e-12

$scalereg

(Intercept)

0.925138

$extrapolation

[1] "quad"

$SIMEXvariable

[1] "fev.error"

attr(,"class")

[1] "summary.simaxaft"
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Compared to the previous results, it is clearly seen that when covariate measure-

ment error is not minor, ignoring it can lead to biased results. Properly accounting

for error effects is necessary, and this can be easily accomplished by applying the

developed R function simexaft.

The estimated covariate coefficients for simulation steps are stored in the re-

sults, and the extrapolation curve can be shown through R function plotsimex. The

plotsimex function plots the extrapolation of the estimate of each covariate effect

with the option of linear, quadratic or both to view the performance of different

extrapolant methods. Here we plot the variable “SBP” in the first example with both

linear and quadratic extrapolants.

> plotsimexaft(test,"SBP","both",ylim=c(-3,1))
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Figure 4.1: Extrapolation of the coefficient

4.5 Discussion

The impact of measurement error in covariates is well documented for survival data

that are typically postulated by the Cox PH models, but there is relatively little
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discussion on the AFT models. The AFT model is a useful tool for analyzing sur-

vival data and “in many ways more appealing than Cox PH models because of its

quite direct physical interpretation”, as noted by D. R. Cox (Reid 1994). Yi and

He (2006) explored the measurement error problem for bivariate survival data un-

der AFT models, but their discussion was mainly focused on the AFT models with

normal error distributions. To address the measurement error effects on inferential

procedures under AFT models with general distributional forms, He et al. (2007)

describe a simulation based method. This method is appealing because it is easy to

implement and does not require the specification of the distribution of the error prone

true covariates that is generally unobservable. For practical interest, we developed

an R package simexaft to adjust for biases induced by covariate measurement error

under AFT models. Our demonstrations showed that this R package is simple to

use. It is anticipated that such development is of great interest to data analysts when

handling survival data with covariate measurement error.
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Chapter 5

Conclusion and Future Work

Microarray technology is a tool for simultaneously measuring thousands of gene ex-

pression that can be used as predictors for survival outcomes. However, microarray

data are often subject to measurement error. In current literature, this error is

commonly ignored in the analysis of microarray data, which may cause problems in

analysis of microarray data. In this thesis, we focus on using the accelerated fail-

ure time (AFT) model to investigate the survival analysis of microarray data with

measurement error in gene expression being accounted for.

A typical microarray data set has a large number of genes far exceeding the

sample size. Proper selection of survival relevant genes contributes to an accurate

prediction model. The impact of measurement error in covariates has been exten-

sively studied in the literature for survival data; however, no investigation has been

done on the impact of measurement error in survival relevant gene selection in mi-

croarray data analysis. We study the effect of the measurement error on survival

relevant gene selection under the AFT model setting by regularizing weighted least

square estimator with adaptive LASSO penalty. Simulation studies and real data

analysis demonstrate that ignoring measurement error will affect survival relevant

gene selection. Simulation extrapolation (SIMEX) method is employed to adjust the

impact of measurement error to gene selection. With a certain amount of adjustment

for the bias induced by the error in covariates, the model selected by the SIMEX

method after adjustment is more accurate than the model selected by naively ignor-

ing measurement error. For the naive method, as the measurement error becomes

substantial, the biases of the estimates increase while the estimates of the standard
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deviations decrease; as a result, the corresponding p-values tend to be smaller than

they should be, leading to incorrect hypothesis test results.

Most existing variable selection procedures are limited to directly observed pre-

dictors. Variable selection for measurement error data has not been systematically

studied yet. In future research, we plan to investigate variable selection for general

parametric and semiparametric measurement error models for survival data.

Prediction is an ultimate goal for many statistical analyses. When there are no

error prone covariate or homoscedastic error prone covariate in the AFT model, pre-

diction can be done as a no measurement error case. So, there is no need to adjust the

effect of measurement error. However, when the covariates subject to heteroscedastic

measurement error, the naive prediction model without adjusting the effect of mea-

surement error may not be appropriate. In Chapter 3, we consider a prediction AFT

model using data with heteroscedastic covariate measurement error. Two variations

of the SIMEX algorithm are investigated to adjust the effect of the measurement

error, and a best linear prediction is employed to predict the corresponding value of

the unobserved error prone covariates of the future observation.

The performance of the proposed SIMEX adjusted prediction method and naive

prediction methods are evaluated by the mean squared prediction error (MSPE). Due

to that some of the survival time might be subject to censoring, we propose to use

three methods to adjust the censored survival times to calculate the MSPE. Simu-

lation studies show that the SIMEX method can achieve better prediction accuracy

than the naive method since the MSPE and variability of the SIMEX adjusted pre-

diction model are smaller than those of the naive prediction model.

In this thesis, the SIMEX method is used to adjust for the effects of gene ex-

pression measurement error in both survival relevant gene selection and prediction

model for survival. The major advantage of this method is its easy implementation

and robustness to distributional assumptions for error prone covariates. The general

idea of the SIMEX method is to generate additional data sets with increasingly larger
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measurement error, estimate the trend of the effect of the measurement error on the

estimation of the parameter of interest with respect to the magnitude of enlarged

variation, and extrapolate the trend back to the case of no measurement error. For

practical interest, we developed an R package simexaft to adjust for biases induced

by covariate measurement error under AFT models. Our illustrations show that the

developed package is simple to use. It is anticipated that such a development is of

great interest to data analysts when handling survival data with covariate measure-

ment error. The R package code is included in appendix, and the package is available

on the Comprehensive R Archive Network website for potential users.

There are currently several methods available to correct for measurement error

in the AFT model. In the future, we plan to compare the performance of the SIMEX

method to other methods, such as regression calibration proposed by Yu and Nan

(2009) and nonparametric method proposed by Wang (2000) to correct the effect of

measurement error.

In this thesis, we investigated the AFT model with error prone covariates. It

is of interest to study the effect of measurement error on other survival regression

models. The Proportional Odds (PO) regression model (Cox, 1972; Bennett 1983;

Yang and Prentice, 1999) relates the covariate effect on the baseline odds function.

The PO model with error prone covariates is

S(t|X,Z)

1 − S(t|X,Z)
=

S0(t)

1 − S0(t)
exp

(
W′βw + Z′βz

)
,

where S(t|X,Z) denote the conditional survival function given covariate X and Z;

S0(t) denote the unspecified baseline survival function; W is contaminated version of

covariate X; and Z are the error free covariates. Extension of the SIMEX method to

this model should be straightforward.

Another interesting topic is to extend the SIMEX method to a more general

model which includes Cox proportional hazards (PH) model and PO model as special
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cases (Yang and Prentice, 2005). Suppose we have two treatment A and B, the hazard

ratio of these two treatment can be modeled as

λA(t)

λB(t)
=

exp (X′β) exp (V′γ)

exp (X′β) + (exp (V′γ) − exp (X′β))SB(t)
,

where λA(t) is the hazard function of subjects in treatment A with covariate X; β

is the regression coefficient; λB(t) is the hazard function of subjects in treatment B

with covariate V; γ is the regression coefficient; and SB(t) is the survival function of

subjects in treatment group B. If γ = 0, the model reduce to PO model and when

exp (X′β) = exp (V′γ), the model reduce to Cox PH model.



97

BIBLIOGRAPHY

[1] Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive
moving average models. Biometrika, 60, 255-265.

[2] Apanasovich, T. V., Carroll, R. J. and Maity, A. (2009). SIMEX and standard
error estimation in semiparametric measurement error models. Electronic Journal
of Statistics, 3, 318-348.
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Appendix A

Appendices

A.1 R code for SIMEXAFT Package

R Code of simexaft

.packageName <- "simexaft"

‘linearextrapolation‘ <-function(A1,A2,A3,lambda){

reg1<-numeric()

reg2<-numeric()

scalereg<-numeric()

D=ncol(A1)

for(i in 1:D)

{

e1=coef(lm(A1[,i]~lambda))

a1= e1[1] - e1[2]

reg1 = c(reg1,a1)

e2 = coef(lm(A2[,i]~lambda))

a2 = e2[1] - e2[2]

reg2 = c(reg2, a2)

}

e3 = coef(lm(A3[,1]~lambda))

a3 = e3[1] - e3[2]

scalereg= c(scalereg,a3)

return(list("reg1"=reg1,"reg2"=reg2,"scalereg"=scalereg))

}

‘predic.simexaft‘ <-function(object,newdata,...)

{

new.object<-object$formula

new.object$coefficients=object$coefficients

predict(new.object, newdata=data.frame(newdata),...)

}

‘print.simexaft‘<-function(x, digits=max(3, getOption("digits")- 3), ...)

{

cat("\nSIMEX-Variables: ")

cat(x$SIMEXvariable, sep = ", ")

cat("\nNumber of Simulations: ", paste(x$B), "\n\n", sep = "")



106

if (length(coef(x))) {

cat("Coefficients:\n")

print.default(format(coef(x), digits = digits), print.gap = 2,

quote = FALSE)

}

else cat("No coefficients\n")

cat("\n")

}

‘quadraticextrapolation‘ <-function(A1,A2,A3,lambda){

reg1<-numeric()

reg2<-numeric()

scalereg<-numeric()

D=ncol(A1)

for(i in 1:D)

{

lambda2=lambda^2

e1=coef(lm(A1[,i]~lambda + lambda2))

a1 = e1[1] - e1[2] + e1[3]

reg1 = c(reg1,a1)

e2 = coef(lm(A2[,i]~lambda + lambda2))

a2 = e2[1] - e2[2] + e2[3]

reg2 = c(reg2, a2)

}

e3=coef(lm(A3[,1]~lambda+lambda2))

a3= e3[1]-e3[2]+e3[3]

scalereg= c(scalereg,a3)

return(list("reg1"=reg1,"reg2"=reg2,"scalereg"=scalereg))

}

‘simexaft‘<-function(formula=formula(data),data=parent.frame(),

SIMEXvariable=indicator,repeated="F", repind=list(),

err.mat=Sigma,B=100,lambda=seq(0,2,0.1),

extrapolation="quadratic",dist="weibull")

{ colname=colnames(data)

SIMEXvariable=unique(SIMEXvariable)

nSIMEXvariable=length(SIMEXvariable)

if(!is.character(SIMEXvariable) | nSIMEXvariable>length(colname)){

stop("Invalid SIMEXvariable object")

}

if(!all(SIMEXvariable %in% colname)){

stop("SIMEXvariable must selected from the data")

}

if (!any(repeated == c("F", "T"))) {
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stop("Repeated indicator not implemented.")

}

if(repeated=="F"){

if(!is.numeric(err.mat) | any(err.mat < 0)){

stop("Invalid err.mat object")

}

if (nrow(err.mat) != ncol(err.mat)) {

stop("err.mat must be a square matrix")

}

if (length(SIMEXvariable) != nrow(err.mat)) {

stop("SIMEXvariable and err.mat

have non-conforming size")

}

SSigma <- err.mat

dimnames(SSigma) <- NULL

if (!isTRUE(all.equal(SSigma, t(SSigma)))) {

warning("err.mat is numerically not symmetric")

}

}

else if(repeated=="T"){

if(length(SIMEXvariable) != length(repind)){

stop("SIMEXvariable and repind

have non-conforming size")}

}

if(length(B)!=1){

stop("B must be positive integer")

}

if(!is.numeric(B) | B<=0 ){

stop("B must be positive integer")

}

else{

B=ceiling(B)

}

if(!is.vector(lambda) |!is.numeric(lambda)){

stop(":Invalid lambda object")

}

if (any(lambda < 0)) {

warning("Lambda should be positive values.

Negative values will be ignored",call. = FALSE)

lambda <- lambda[lambda >= 0]

}

extrapolation = substr(extrapolation, 1, 4)
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if(!is.character(extrapolation) | length(extrapolation)!=1){

warning("Invalid extrapolation object.

Using: quadatic\n\n",call.=FALSE)

}

extrapolation="quad"

ndata=nrow(data)

nformula=length(attr(terms(formula),"term.labels"))+1

nlambda=length(lambda)

A1=matrix(data=NA,nlambda,nformula)

A2=matrix(data=NA,nlambda,nformula)

A3=matrix(data=NA,nlambda,nformula)

theta=matrix(data=NA,B,nformula)

colnames(theta)=c("Intercept",attr(terms(formula),"term.labels"))

p.names=colnames(theta)

theta.all=vector(mode="list",nlambda)

for(k in 1:length(lambda))

{

w=numeric()

v=numeric()

omega=numeric()

temp=data

estivarB=matrix(data=NA,B,nformula)

estiscaleB=matrix(data=NA,B,ncol=1)

for(r in 1:B)

{

if(repeated=="F"){

temp[SIMEXvariable]=data[SIMEXvariable]+sqrt(lambda[k])*

rmvnorm(ndata,rep(0,length(SIMEXvariable)),err.mat)

}

else{

constrast=list()

for(i in 1:nSIMEXvariable){

n.i=length(repind[[i]])

z.i=rnorm(n.i, 0, 1)

constrast[[i]]=(z.i-mean(z.i))

/sqrt(sum((z.i-mean(z.i))^2))

mean.i=apply(temp[repind[[i]]],1,sum)/n.i

temp[SIMEXvariable[i]]=mean.i + sqrt(lambda[k]/n.i)*

as.matrix(temp[repind[[i]]])

%*%as.vector(constrast[[i]])

}

}

re = survreg(formula=formula,data=temp,dist=dist)
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scale=re$scale

w=re$coefficients

omega=diag(re$var)[1:nformula]

theta[r,]=w

estivarB[r,]=omega

estiscaleB[r,]=scale

}

w=apply(theta,2,FUN=mean)

v=apply(theta,2,FUN=var)

omega =apply(estivarB,2,FUN=mean)

tau=omega-v

A1[k,] = w

A2[k,] = tau

A3[k,] = apply(estiscaleB,2,FUN=mean)

theta.all[[k]]=theta

}

theta=matrix(unlist(theta.all),nrow=B)

theta.all=list()

for (i in 1:nformula){

theta.all[[p.names[i]]]<-

data.frame(theta[,seq(i, nformula * nlambda, by = nformula)])

}

if(extrapolation=="line"){

result1=linearextrapolation(A1,A2,A3,lambda)}

else if(extrapolation=="quad"){

result1=quadraticextrapolation(A1,A2,A3,lambda)}

else stop("extrapolation method must be linear or quadratic")

estimate=result1$reg1

names(estimate)=p.names

se=sqrt(result1$reg2)

names(se)=p.names

scalereg=result1$scalereg

pvalue=2*(1-pnorm(abs(estimate/se)))

if(repeated=="F"){

erg=list(coefficients=estimate,se=se,scalereg=scalereg,

pvalue=pvalue, lambda=lambda, B=B, formula=formula,

err.mat=err.mat,extrapolation=extrapolation,

SIMEXvariable=SIMEXvariable,theta=theta.all)

}

else{

erg=list(coefficients=estimate,se=se,scalereg=scalereg,

pvalue=pvalue,lambda=lambda, B=B, formula=formula,

extrapolation=extrapolation, SIMEXvariable=SIMEXvariable,
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repind=repind,theta=theta.all)

}

class(erg)<-("simexaft")

return(erg)

}

‘summary.simexaft‘ <-function (object, ...)

{

p.names <- names(object$coefficients)

est <- object$coefficients

est.table <- list()

se <- object$se

pvalue <-object$pvalue

est.table <- cbind(est, se, pvalue)

dimnames(est.table)<-list(p.names,c("Estimate","Std. Error","P value"))

ans <- list()

class(ans) <- "summary.simaxaft"

ans$coefficients <- est.table

ans$call <- object$call

ans$scalereg <- object$scalereg

ans$extrapolation <- object$extrapolation

ans$SIMEXvariable <- object$SIMEXvariable

ans

}
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A.2 The Impact of Ignoring Measurement Error

In this section, We summarized some of the known results about the effect of the
measurement error in linear model. Fuller (1987) gave a comprehensive overview
of measurement error modeling and adjusted estimators for linear models. And see
Carroll et al (2006) for detailed coverage of nonlinear models.

The multiple linear regression model is defined as:

Yi = β0 + βtXi + εi i = 1, . . . , n

Let Xi = (xi1, xi2, . . . , xip)
′ be the p×1 covariates subject to possible measure-

ment error and β = (β1, β2, . . . , βp)
′ is the coefficient parameter. And εi

iid∼ N(0, σ2).
Now suppose that we have additive measurement error:

Wi = Xi + Ui

Where Wi is unbiased for Xi, and Ui is independent random variable with
E(Ui|Xi) = 0, V ar(Ui|Xi) = Σuu. And Xi

εi
Ui

 ∼MVN

 µx
0
0

 ,

 Σxx 0 0

0 σ2
ε 0

0 0 Σuu


Then (

Xi
Wi

)
∼MVN

((
µx
µx

)
,

(
Σxx Σxx

Σxx Σxx + Σuu

))
And the conditional distribution of X given W is:

X|W ∼ Np

(
(µx + Σxx(Σxx + Σuu)−1(W − µx)),Σxx − Σxx(Σxx + Σuu)−1Σxx

)
Hence, the conditional mean and variance are:

E(X|W) = µx + Σxx(Σxx + Σuu)−1(W − µx)

V ar(X|W) = Σxx − Σxx(Σxx + Σuu)−1Σxx

With nondifferential measurement error,

E(Y,W) = E{E(Y |X,W)|W}
= E{E(Y |X)|W}
= E(β0 + βx

tX|W)

= β0 + βx
t[µx − Σxx(Σxx + Σuu)−1µx] + βx

t[Σxx(Σxx + Σuu)−1]W

= βw0 + βw
tW
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The naive least squares regression of Y on W without adjusting for the mea-
surement error will get a consistent estimate not of βx, but

βw
t = βx

t[Σxx(Σxx + Σuu)−1]

The residual variance of this regression of Y on W is:

V ar(Y |W) = βx
tV ar(X|W)βx + σ2

= βx
t[Σxx − Σxx(Σxx + Σuu)−1Σxx]βx + σ2

A.2.0.1 Simple Linear Regression Model

When p = 1, we have the simple linear regression model, and:

E(X|W ) =
σ2
u

σ2
x + σ2

u
µx +

σ2
x

σ2
x + σ2

u
W

V ar(X|W ) =
σ2
uσ

2
x

σ2
x + σ2

u

With nondifferential measurement error,

E(Y,W ) = β0 +
βxσ

2
u

σ2
x + σ2

u
µx +

βxσ
2
x

σ2
x + σ2

u
W

= β∗0 + β∗xW

The naive least squares regression of Y on W without adjusting for the mea-
surement error will get a consistent estimate not of βx, but instead of β∗x = λβx,
where

λ =
σ2
x

σ2
x + σ2

u
< 1

The residual variance of this regression of Y on W is:

V ar(Y |W ) = σ2
∗

= β2
xV ar(X|W ) + σ2

= λβ2
xσ

2
u + σ2

The variance of the slope estimator calculated from the true data (Y,X) would
be

V ar(β̂x) = σ2/Sxx = σ2/nσ2
x

The variance of the naive slope estimator calculated from the data (Y,W ) would
be

V ar(β̂∗x) = σ2
∗/Sww = σ2

∗/nσ
2
w
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The naive estimate of the slope can be asymptotically less variable than the
true data estimator as long as:

V ar(β̂∗x) < V ar(β̂x)

σ2
∗/nσ

2
w < σ2/nσ2

x

λβ2
x <

σ2

σ2
x

As pointed out by Buzas, Stefanski and Tosteson (2005) that this inequality is
possible when σ2 is large, or σ2

u is large , or β2
x is small. Note that this phenomenon

cannot occur with Berkson error, for which the variance of the naive estimator is
never less than the variance of the true-data estimator asymptotically. (Carroll, et
al., 2006)
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