
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

11-12-2010 12:00 AM

Collision Detection and Merging of Deformable B-Spline Surfaces Collision Detection and Merging of Deformable B-Spline Surfaces

in Virtual Reality Environment in Virtual Reality Environment

Harish Pungotra, The Univeristy of Western Ontario

Supervisor: Dr. George Knopf, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Mechanical and Materials Engineering

© Harish Pungotra 2010

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Computer-Aided Engineering and Design Commons

Recommended Citation Recommended Citation
Pungotra, Harish, "Collision Detection and Merging of Deformable B-Spline Surfaces in Virtual Reality
Environment" (2010). Electronic Thesis and Dissertation Repository. 32.
https://ir.lib.uwo.ca/etd/32

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/297?utm_source=ir.lib.uwo.ca%2Fetd%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/32?utm_source=ir.lib.uwo.ca%2Fetd%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

COLLISION DETECTION AND MERGING OF DEFORMABLE B-SPLINE

SURFACES IN VIRTUAL REALITY ENVIRONMENT

Spine title: Collision Detection and Merging of Deformable Surfaces

Thesis Format: Monograph

by

Harish Pungotra

Graduate Program in Mechanical and Materials Engineering

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

November, 2010

© Harish Pungotra 2010

ii

THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor

Dr. George Knopf

Co-Supervisor

 Dr. Robert Canas

Supervisory Committee

Examiners

Dr. Ralph Buchal

Dr. Michael Naish

Dr. Roy Eagleson

Dr. Thenkurussi Kesavadas

The thesis by

Harish Pungotra

entitled:

Collision Detection and Merging of Deformable B-spline Surfaces in
Virtual Reality Environment

is accepted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Date___________________ _____________________________
 Chair of the Thesis Examination Board

iii

ABSTRACT

This thesis presents a computational framework for representing, manipulating and

merging rigid and deformable freeform objects in virtual reality (VR) environment. The

core algorithms for collision detection, merging, and physics-based modeling used within

this framework assume that all 3D deformable objects are B-spline surfaces. The

interactive design tool can be represented as a B-spline surface, an implicit surface or a

point, to allow the user a variety of rigid or deformable tools. The collision detection

system utilizes the fact that the blending matrices used to discretize the B-spline surface

are independent of the position of the control points and, therefore, can be pre-calculated.

Complex B-spline surfaces can be generated by merging various B-spline surface patches

using the B-spline surface patches merging algorithm presented in this thesis. Finally, the

physics-based modeling system uses the mass-spring representation to determine the

deformation and the reaction force values provided to the user. This helps to simulate

realistic material behaviour of the model and assist the user in validating the design

before performing extensive product detailing or finite element analysis using

commercially available CAD software. The novelty of the proposed method stems from

the pre-calculated blending matrices used to generate the points for graphical rendering,

collision detection, merging of B-spline patches, and nodes for the mass spring system.

This approach reduces computational time by avoiding the need to solve complex

equations for blending functions of B-splines and perform the inversion of large matrices.

This alternative approach to the mechanical concept design will also help to do away with

the need to build prototypes for conceptualization and preliminary validation of the idea

thereby reducing the time and cost of concept design phase and the wastage of resources.

Keywords: collision detection; merging B-spline surfaces; virtual reality; interactive

design; modeling and simulation; deformable object; B-spline surface.

iv

ACKNOWLEDGEMENTS

The completion of this PhD thesis and the work accomplished over the past four years

would not have been the possible without the wisdom, help, and support of many whom I

do not have enough words to thank.

First and foremost, I would like to thank Prof. George Knopf for giving me the

opportunity to be part of his research group, for inspiring and supporting me, and for

sharing his research insight and passion with me throughout this long process. I owe him

many thanks for his constructive criticism, for his support and encouragement. He has

been a source of inspiration in all respects and has provided me a unique prospective to

face the challenges in research and life. This thesis is a direct consequence of his endless

patience and support.

I would also like to thank Dr. Roberto Canas of the National Research Council of

Canada - Institute for Research in Construction (NRC-IRC, London) for his remarkable

guidance, encouragement, and constructive criticism throughout my research. I owe him

many thanks for helping me during the implementation of algorithms and constantly

reminding me to incorporate different scenarios. I am also thankful to researchers and

staff of NRC-London. Special thanks to Ms. Percy Gail for editing research papers for

grammatical mistakes.

Valuable guidance has been provided by the members of my advisory committee,

Prof. Michael D. Naish and Prof. Samuel F. Asokanthan, whose insightful suggestions,

criticisms, and encouragements helped me to focus and gave me the motivation to learn

and overcome some of the challenges. On the same note, I would like to thank members

of my comprehensive examination committee, Prof. Steve Feng and Prof. Jagath

Samrabandu for their advice and constructive criticism and for helping me focus on

critical aspects of my research.

I owe many thanks to department graduate secretaries Belle Smaill, Chris Seres,

Susan Bock, and Stephanie Laurence for their assistance. It was a great pleasure working

v

with my former colleagues Philip and Matthew as well as my colleagues Khaled and

Kuldeep.

My sincere gratitude goes to Beant College of Engineering and Technology,

Gurdaspur (India) for sanctioning study leave and providing financial assistance during

my PhD. I owe many thanks to Dr. Satish Bansal, Dr. Nirmal Singh, Dr. Dial Chand, Mr.

Inderpal Singh, Mr. Anil Kumar and Mr. Ashok Kumar for their unwavering support in

sanctioning leave and providing timely financial assistance.

I do not have enough words to thank my parents and family for their unconditional

love and support over the years. I also feel highly indebted to my brother and sister for

their moral and intellectual support and prayers. To my wife Ritu, for always being there

for me throughout this journey. To my kids, Anjali and Anuj for their love and

understanding. You all have always been there for me. Thank you for everything and for

encouraging me to follow my dreams.

Finally, I would like to acknowledge the financial assistance from Faculty of

Graduate studies and Natural Sciences and Engineering Research Council of Canada

(NSERC).

vi

NOMENCLATURE

Au = Blending matrix for the B-spline surface in u direction

Av = Blending matrix for the B-spline surface in v direction

Cn = Continuity of order n for the B-spline surface

cij = Material stiffness assigned to spring between nodes i and j

D = Damping constant or damping coefficient

[D] = Damping matrix

dt = Δt = Time step

E = Young's Modulus

e = Strain

eij = Strain in spring between nodes i and j after application of force

F = Force

fi,j,k = Force acting on node i, j, k

fd = Damping force

fext = External force

fk = Force due to spring stiffness

K = Spring constant or spring coefficient

[K] = Stiffness matrix

k = Degree of the B-spline surface in u direction

l = Degree of the B-spline surface in v direction

lij = New length of spring between nodes i and j after application of force

Lij = Natural or rest length of spring between nodes i and j

M = Matrix of discrete points on the B-spline surface

m = Number of rows of matrix M

N = Number of B-spline surfaces being merged simultaneously

n = Number of columns of matrix M

nei = Immediate neighborhood around node i

Pij = Matrix of control points of B-spline surface

r = Number of control points of the B-spline surface in u direction

s = Number of control points of the B-spline surface in v direction

vii

S = B-spline surface

U = Knot vector of B-spline surface in u direction

u, v = Parametric directions of B-spline surface

V = Knot vector of B-spline surface in v direction

x = Node position of location, representing VSOFM weight points

x = Node or weight point velocity

x = Node or weight point acceleration

ν = Poisson's ratio

σ = Stress

ρi = Point mass of node i

ζ = Damping factor

viii

TABLE OF CONTENTS

CERTIFICATE OF EXAMINATION ... ii

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

NOMENCLATURE ... vi

TABLE OF CONTENTS .. viii

LIST OF TABLES ... xiv

LIST OF FIGURES ... xvi

CHAPTER 1 INTRODUCTION .. 1

1.1 Problem Statement .. 1

1.2 Basic Terminology .. 4

1.3 Virtual Reality (VR) Environment .. 4

1.4 Haptics-based Interactive Design .. 5

1.5 Outline of the Thesis ... 7

CHAPTER 2 LITERATURE SURVEY .. 9

2.1 Introduction ... 9

2.2 Virtual Reality in Concept Design .. 9

2.3 Haptic Interaction with Virtual Model .. 12

2.4 Virtual Sculpting ... 15

2.5 Surface Representations .. 16

2.5.1 Implicit surfaces .. 16

2.5.2 Tessellated surfaces ... 18

2.5.3 Parametric surfaces .. 19

2.6 Collision Detection .. 20

ix

2.6.1 Collision detection of rigid bodies .. 21

2.6.2 Collision detection of deformable bodies .. 22

2.7 Force and Deformation Modeling Techniques.. 25

2.7.1 Geometric deformation techniques .. 25

2.7.2 Physics-based deformation techniques .. 28

2.7.2.1 Mass spring method ... 28

2.7.2.2 Finite element method .. 30

2.7.2.3 Continuum method ... 31

2.8 Concluding Remarks ... 32

CHAPTER 3 COLLISION DETECTION ALGORITHM 34

3.1 Introduction ... 34

3.2 Background ... 34

3.2.1 B-spline surface ... 34

3.2.2 Generation of blending matrices .. 38

3.2.3 Bounding volume for B-spline surfaces .. 39

3.3 Collision Detection Algorithm .. 39

3.3.1 Overview ... 39

3.3.2 Pre-processing phase ... 41

3.3.2.1 Generation of blending matrices .. 41

3.3.2.2 Generation of convex hull .. 42

3.3.3 Run-time phase .. 42

3.3.3.1 Intersection test of convex hulls .. 44

3.3.3.2 Calculating minimum and maximum values of u and v 45

3.3.3.3 Surface discretization ... 45

x

3.3.3.4 Generation of spheres .. 47

3.3.3.5 Tessellation of surfaces .. 48

3.3.3.5.1 Generation of points for tessellation ... 48

3.3.3.5.2 Triangulation of surface.. 49

3.3.3.6 Triangle-triangle intersection test .. 50

3.3.3.7 Updating bounding volume .. 51

3.4 Special Cases ... 52

3.5 Analytical Comparison and Performance ... 52

3.5.1 Comparison with a tessellated model .. 52

3.5.2 Comparison with parametric surface models .. 57

3.6 Concluding Remarks ... 58

CHAPTER 4 MERGING MULTIPLE B-SPLINE SURFACE PATCHES 60

4.1 Introduction ... 60

4.2 Related Work... 61

4.3 Merging Multiple B-spline Surface Patches ... 63

4.3.1 Discretization of B-spline surfaces .. 64

4.3.2 Determining revised number of control points .. 65

4.3.3 Determining the new knot vector .. 66

4.3.4 Revised blending matrices ... 67

4.4 Special Cases ... 69

4.4.1 Intersecting and trimmed surfaces ... 70

4.4.2 Surfaces having different degrees .. 71

4.4.3 Multiple surfaces ... 73

4.5 Concluding Remarks ... 75

xi

CHAPTER 5 INTEGRATION OF MASS-SPRING SYSTEM WITH COLLISION

DETECTION SYSTEM ... 76

5.1 Introduction ... 76

5.2 Mass Spring Damper System .. 77

5.3 Integration of Mass Spring System with Collision Detection 79

5.3.1 Mass spring system node generation ... 80

5.3.2 Deformable mesh generation ... 81

5.3.3 Mapping of forces to nodes of mass spring system 83

5.4 Model Deformation and Force Response .. 85

5.5 Concluding Remarks ... 89

CHAPTER 6 SIMULATION STUDIES AND PERFORMANCE EVALUATION ..

 .. 91

6.1 Introduction ... 91

6.2 Computational Efficiency of Collision Detection Algorithm 91

6.2.1 Effect of the number of control points... 93

6.2.2 Effect of the maximum number of points that can be generated 97

6.2.3 Effect of the area of contact ... 101

6.3 Performance of B-spline Surface Patches Merging Algorithm 103

6.3.1 Robustness and accuracy of the algorithm .. 104

6.3.1.1 Case 1: Similar curvatures and knot vectors .. 105

6.3.1.2 Case 2: Different curvatures but similar knot vectors 107

6.3.1.3 Case 3: Similar curvature but different knot vectors 109

6.3.1.4 Case 4: Similar curvatures but different knot vectors and dimensions 110

6.3.1.5 Case 5: Intersecting and trimmed surfaces .. 111

6.3.1.6 Case 6: Surfaces having different degrees ... 112

xii

6.3.1.7 Case 7: Multiple surfaces ... 114

6.3.2 Computational efficiency of the merging algorithm 114

6.4 Computational Efficiency of Physics-based Deformation Algorithm 116

6.5 Computational Efficiency of the Interactive Design Framework 117

6.5.1 Pre-processing phase ... 118

6.5.2 Run-time phase .. 120

6.6 Concluding Remarks ... 121

CHAPTER 7 DEFORMABLE MODELS FOR INTERACTIVE DESIGN AND

USER TRAINING .. 123

7.1 Introduction ... 123

7.2 Conceptual Product Design ... 124

7.3 Interactive Design of an Ergonomic Spoon .. 126

7.3.1.1 Spoon for eating food ... 129

7.3.1.2 Spoon for serving food ... 136

7.4 Evaluation of Model and User Training .. 137

7.4.1 Evaluation of model... 138

7.4.2 User training .. 142

7.5 Concluding Remarks ... 145

CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 146

8.1 Review of Methodologies Developed for Deformable Modelling.................. 146

8.2 Novel Features of the Proposed Method ... 147

8.2.1 Blending matrices .. 147

8.2.2 Collision detection algorithm .. 148

8.2.3 B-spline surface patches merging algorithm ... 150

xiii

8.2.4 Integration of mass spring system ... 151

8.3 Other applications ... 151

8.4 Recommendations to Resolve Limitations .. 152

8.5 Future Work .. 153

8.6 Final Remarks ... 154

BIBLIOGRAPHY ... 156

APPENDIX A: ERROR ANALYSIS OF THE MERGED B-SPLINE SURFACE

... 168

A.1 Introduction ... 168

A.2 Case 1: Similar Curvatures and Knot Vectors .. 168

A.3 Case 2: Different Curvatures but Similar Knot Vectors 169

A.4 Case 3: Similar Curvature but Different Knot Vectors 171

A.5 Case 4: Similar Curvatures but Different Knot Vectors and Dimensions 172

A.6 Case 5: Intersecting and Trimmed Surfaces .. 173

A.7 Case 6: Surfaces having Different Degrees ... 174

A.7 Case 7: Multiple Surfaces ... 176

A.8 Concluding Remarks ... 176

CURRICULUM VITAE ... 178

xiv

LIST OF TABLES

Table 3.1 Comparison of computational cost of collision detection for

tessellated model with the proposed algorithm. ... 54

Table 6.1 Computational time for collision detection of B-spline surface

having different number of control points with a point, a sphere,

and a plane. ... 94

Table 6.2 Computational time for collision detection of B-spline surface

having different number of the maximum points generated at

lowest level of detail with a point, sphere, and plane. 98

Table 6.3 Comparison of the point set deviation of the merged surfaces

generated by Rhino® and the proposed algorithm. 106

Table 6.4 Comparison of the point set deviation of the merged surfaces

generated by Rhino® and the proposed algorithm. 112

Table 6.5 Computational time of the algorithm for merging B-spline surface

patches. ... 115

Table 6.6 Update time for single iteration of mass spring system for different

node sizes. .. 117

Table 6.7 Pre-processing time for generation of mass spring system for

different node sizes. .. 119

Table A.1 Comparison of the point set deviation of the merged surfaces

generated by Rhino® and the proposed algorithm for surface

having similar curvatures and knot vectors. ... 169

Table A.2 Comparison of the point set deviation of the merged surfaces

generated by Rhino® and the proposed algorithm for surface

having different curvatures but similar knot vectors. 170

xv

Table A.3 Comparison of the point set deviation of the merged surfaces

generated by Rhino® and the proposed algorithm for surface

having similar curvature but different knot vectors. 171

Table A.4 Comparison of the point set deviation of the merged surfaces

generated by Rhino® and the proposed algorithm for surface

having similar curvatures but different knot vectors and

dimensions. ... 173

Table A.5 Comparison of the point set deviation of the merged surfaces

generated by Rhino® and the proposed algorithm for intersecting

and trimmed surfaces. .. 174

Table A.6 Comparison of the point set deviation of the merged surfaces

generated by Rhino® and the proposed algorithm for surface

having different degrees. .. 175

Table A.7 Comparison of the point set deviation of the merged surfaces

generated by Rhino® and the proposed algorithm for multiple

surfaces. .. 176

xvi

LIST OF FIGURES

Figure 1.1 Basic architecture of a physics-based haptic system. 2

Figure 1.2 Schematic representation of a haptic interaction with a virtual

object. ... 6

Figure 2.1 Haptic interaction with a virtual model through a haptic device

(PHANTOM® Omni of SensAble Technologies, 2008) located at

the University of Western Ontario. .. 13

Figure 3.1 A typical blending matrix, Au. ... 37

Figure 3.2 Discretized B-spline surface. .. 38

Figure 3.3 Flowchart of the proposed algorithm. .. 40

Figure 3.4 Illustrations showing the major steps in the proposed algorithm. 43

Figure 3.5 Selecting intermittent blending matrix for generation of points

within the selected range of parameter u. ... 46

Figure 3.6 Generation of spheres using the points generated on the B-spline

surface. ... 47

Figure 3.7 Triangulation using the points inside intersecting spheres. 50

Figure 3.8 Comparison of steps for collision detection for tessellated model

with proposed algorithm. .. 53

Figure 3.9 Comparison of total computations required in the worst case

scenario for collision detection of tessellated model versus the B-

spline model using proposed algorithm. .. 55

Figure 3.10 Maintaining lower number of computations required for collision

detection by changing resolution of the surface. .. 56

Figure 4.1 (a) Two B-spline surface patches matched with C1 continuity (b)

Surfaces after one surface patch is deformed. .. 62

xvii

Figure 4.2 Flow chart of the proposed algorithm for merging two B-spline

surface patches. .. 64

Figure 4.3 (a) B-spline surface patches that are to be merged together (b)

Discretized points on the surface, as generated by using the

blending matrices. .. 65

Figure 4.4 The effect of multiple knots at the common edge of the merging

surfaces. .. 67

Figure 4.5 (a) Intersecting surfaces to be merged (b) Region of the surface

selected for discretization (The points shown in red are discarded). 70

Figure 4.6 (a) Initial B-spline surface patches of order 4×4 and 5×6

respectively (b) Merged surface of order 5×6 with C4 connectivity

in v direction, generated by proposed algorithm. 72

Figure 4.7 (a) Initial multiple B-spline surface patches (b) Merged surface

with C2 connectivity generated by proposed algorithm. 74

Figure 5.1 Voigt model of mass spring damper system. ... 77

Figure 5.2 Flow chart for mass spring mesh generation and its integration with

collision detection algorithm. ... 80

Figure 5.3 (a) B-spline surface deformable model (b) Discrete points as nodes

for the mass spring system. .. 81

Figure 5.4 Generation of mass spring system. ... 83

Figure 5.5 A tool colliding with a deformable B-spline surface model. 84

Figure 5.6 Mapping of the sculpting force acting on B-spline surface to nodes

of mass spring system. ... 84

Figure 5.7 Hexahedral mesh and the node (mass) spring representation. 85

Figure 5.8 Illustration of interaction of the tool with the model. 88

xviii

Figure 5.9 The deformation of the model having properties of plasticine

(spring stiffness = 13 MN/m2, density = 2500 kg/m3) while

applying different forces (F). ... 88

Figure 5.10 The deformation of the model with different spring stiffness, and

constant force (30 N) while pulling out the nose of the artifact. 89

Figure 6.1 Primitives (plane and sphere) and B-spline surfaces (a donut and a

distorted donut) for calculating time of collision detection. 92

Figure 6.2 Variation of the computational time of collision detection for a

point, sphere, and plane with respect to the number of control

points used. ... 95

Figure 6.3 Variation of the computational time (ms) of collision detection for

a B-spline surface with another deformable B-spline surface for

different number of control points. .. 97

Figure 6.4 A sphere colliding with (a) A tear shaped B-spline surface (b) A

deformed tear shaped B-spline surface. ... 98

Figure 6.5 Variation of the computational cost of collision detection for a

point, sphere, and plane with respect to the maximum number of

points generated. ... 99

Figure 6.6 Variation of the computational time(ms) of collision detection for a

B-spline surface with another deformable B-spline surface with

respect to the maximum number of points generated. 100

Figure 6.7 Variation of the computational time (ms) of collision detection for

a B-spline surface with a sphere, plane, and another deformable B-

spline surface for different percentage area of contact. 102

Figure 6.8 Variation of the computational time (ms) of collision detection for

a B-spline surface with a sphere, a plane, and another deformable

B-spline surface for different percentage area of contact, when

interrupting the algorithm from going to lower levels of detail. 103

xix

Figure 6.9 (a) Initial B-spline surface patches (b) Merged surface with C2

connectivity generated by Rhino® (c) Merged surface with C2

connectivity generated by proposed algorithm (d) Merged surface

with C0 connectivity generated by proposed algorithm. 105

Figure 6.10 (a) Initial B-spline surface patches (b) Merged surface with C2

connectivity generated by Rhino® after matching the surfaces (c)

Merged surface with C2 connectivity generated by proposed

algorithm (d) Merged surface with C0 connectivity generated by

proposed algorithm (e) Point set deviation for the C2 surface

generated by Rhino® after matching the surfaces (f) Point set

deviation for the C2 surface generated by proposed algorithm. 107

Figure 6.11 (a) Initial B-spline surface patches (b) Merged surface with C2

connectivity generated by Rhino® with increased knots (c) Merged

surface with C2 connectivity generated by proposed algorithm (d)

Merged surface with C0 connectivity generated by proposed

algorithm. ... 110

Figure 6.12 (a) Initial B-spline surface patches (b) Merged surface with C2

connectivity generated by the proposed algorithm. 111

Figure 6.13 (a) Initial B-spline surface patches (b) Merged surface with C2

connectivity generated by proposed algorithm. 111

Figure 6.14 (a) Initial B-spline surface patches (b) Merged surface of order

5×6, with C4 connectivity in v direction, generated by Rhino® with

increased knots (c) Merged surface of order 5×6 with C4

connectivity in v direction, generated by proposed algorithm (d)

Merged surface of order 4×4 with C2 connectivity generated by

proposed algorithm. .. 113

Figure 6.15 (a) Initial B-spline surface patches (b) Merged surface with C2

connectivity generated by proposed algorithm. 114

xx

Figure 6.16 Pre-processing time for calculating the mass spring mesh of

different sizes. .. 120

Figure 6.17 (a) Deformable B-spline model (b) Points for collision detection (c)

Mass spring mesh. .. 121

Figure 7.1 Integration of various modeling techniques proposed in this thesis

to develop B-spline surface based interactive design module for

various applications in virtual reality environment. 124

Figure 7.2 Photograph of typical commercially available spoons. Product

designs mainly focus on contemporary style, ease of use, and

comfort of the user. .. 126

Figure 7.3 Generally accepted motions (a) Holding a spoon and (b) Rotating

wrist while eating (c) Rheumatoid arthritis restricts movements of

fingers and wrist, modified picture from [Joint, Pain Solutions,

2010]. .. 127

Figure 7.4 Different methods to generate initial design represented as a B-

spline surface. ... 128

Figure 7.5 Parts of a spoon. ... 129

Figure 7.6 (a) Handle of spoon from the initial design (b) A plane is used to

fix nodes on one side of the plane (opposite to the direction of

normal vector) and a sphere is used to apply force. 130

Figure 7.7 (a) Mass spring mesh for the spoon handle (b) Fixed nodes (green)

and the nodes colliding with the sphere tool (red) (c) Side view the

B-spline model showing fixed and colliding nodes. 131

Figure 7.8 Deformation of handle under the application of external force with

one end fixed. ... 132

Figure 7.9 Modified shape of spoon to accommodate lack of wrist movement. 133

Figure 7.10 Modifying the shape of spoon handle to grip it with all the fingers

of hand. ... 134

xxi

Figure 7.11 Merging bowl and modified spoon handle to generate the B-spline

model of a of spoon. ... 135

Figure 7.12 Investigation of different shapes of a spoon for eating food to

accommodate impaired wrist movements or weak grip of fingers.

The original design is shown in (a) and design modifications are

presented from (b) to (d). ... 136

Figure 7.13 Investigation of different shapes of a serving spoon to

accommodate impaired shoulder movements. The original design is

shown in (a) and design modifications are presented in (b) and (c). 137

Figure 7.14 (a) B-spline model representing food (jelly) (b-c) Mass spring mesh

to incorporate material properties to the model. 138

Figure 7.15 Simulation of food (jelly) in a spoon without tilting it. 139

Figure 7.16 Simulation of food (jelly) in a spoon when the bowl is tilted by ten

degree. .. 140

Figure 7.17 Simulation of food (jelly) in a spoon when the bowl is tilted by

twenty degree. .. 141

Figure 7.18 Simulation of food (jelly) in a spoon when the spoon is tilted by

different degrees. .. 143

Figure 7.19 Simulation of food (jelly) in a spoon when the spoon is tilted by

different degrees and the hand of the user is shaking. 144

1

CHAPTER 1 INTRODUCTION

1.1 Problem Statement

During the normal design phase, the designer has the freedom to generate and explore

ideas without being constrained by parameters that exist at later design stages. At the

conceptual stage, if a large number of ideas can be created, modified or analyzed; there

will be more chances of finding the best possible design.

Modern computer-aided design (CAD) systems and software tools have played a

significant role in improving the efficiency of the overall product design process,

ensuring geometric accuracy and the exchange of product model data. However, the

impact of these technologies is largely restricted to the detailed modeling and engineering

analysis that occurs during the embodiment design phase. Conceptual design has not

benefited from these sophisticated and highly precise software tools to the same degree

because the creative activities associated with developing and communicating potential

solutions with minimal detail is far less formulaic in its implementation. At the early

stages of product design the specifications and constraints have not been fully

established. The industrial designers and engineers need the freedom to change and

modify the product configuration and mechanical behavior to investigate a wide range of

alternative solutions. Any CAD system that seeks to support and enhance interactive 3D

free form modeling must, therefore, enable natural and haptic modes of human-computer

interaction. Therefore, industrial designers and engineers continue to seek new tools that

provide them with the freedom to artistically modify product concepts. The need for a

viable VR-based conceptual design tool comes from several case studies [Cheshire, 2001;

Sener, 2002; Ye, 2006a; Ye, 2006b]. One key conclusion derived is that the human-

computer interface and related software tools for interacting with the virtual models must

be intuitive to the user, provide sensory feedback during design, and mimic the natural

way that the consumer would interact with the product concepts that are being created.

Recent advancements in high-speed, multi-core computer hardware and virtual reality

(VR) technology provide opportunities to link the more fluid processes of creative

conceptual design with the rigidly defined tasks of product detailing and engineering

2

analysis. The objective of this thesis is to develop tools for a framework for an interactive

design module in virtual reality environment. This will enable a designer to have natural

and haptic modes of human-computer interaction for modeling and validating the

conceptual designs. The proposed technique provides rapid verifications of the early

design, before exchanging the information with commercially available CAD/CAM

software to carry out detailed analysis and generate the final design.

Figure 1.1 shows the basic architecture of a typical physics-based haptic system. The

haptic device works as an interface between the real and the virtual worlds. A collision

detection algorithm then provides the contact information of the virtual tool with the

object. The haptic device takes the force exerted by the user, converts it into appropriate

signals and transmits the signal to the virtual object so as to make it deform (deformable

bodies) or show resistance (rigid bodies). The force exerted by the user and position of

interaction with the object are used by a physics-based model to calculate the

deformation of the object and reactive forces to be sent back to the user.

Figure 1.1 Basic architecture of a physics-based haptic system.

3

Collision detection is an active research topic in engineering, computer graphics and

virtual reality (VR) [Jimenez, 2001]. Collision detection is the necessary step before

haptic interaction can be achieved. An efficient collision detection algorithm plays a very

significant role towards achieving real-time haptic interaction. Most of the collision

detection algorithms, available in literature, are mostly for rigid bodies. These rigid

bodies are mostly represented as lower order implicit surfaces (spheres, cylinders, cones

etc.) or tessellated surfaces. For applications in haptic-based modeling, mostly tessellated

bodies are used, and many constraints are imposed on how the virtual model can deform.

Shape modification of a virtual object can be simulated using either geometric- or

physics-based algorithms [Basdogan, 1998]. Geometric techniques only adjust the

vertices of the underlying mesh model in response to external forces. The reaction force

is typically determined using Hooke’s law where the depth of haptic tool penetration is

calculated based on the current and home positions of the node that is nearest to the

contact point. The concept was originally suggested by [Sederberg, 1986] and was further

extended by [Basdogan, 1998; Basdogan, 2004] for applications in medical simulation.

This technique, though computationally efficient, cannot determine real behavior of a

multiple-material or non-homogeneous material virtual model. Physics-based models, on

the other hand, are able to both estimate the direction and magnitude of nodal movement

based on realistic material properties and the external forces introduced to the model

through the haptic tool.

In the past decade, B-spline/NURBS representation has become the standard for

CAD/CAM systems. Thus it is imperative that any haptic interactive design module

should utilize B-spline surfaces to represent the virtual model in order to streamline the

exchange of information with existing CAD/CAM systems. A major obstacle in using B-

spline surfaces to represent a deformable model is the absence of an efficient algorithm to

detect collision between two or more B-spline surfaces having complex surface. For

applications in interactive 3D free form modeling using haptics based virtual reality

environment, a collision detection algorithm must be capable of tackling complex

surfaces, large areas of contact, multiple contacts, and high deformations.

4

1.2 Basic Terminology

Conceptual Design is the early identification and generation of ideas for a design

solution. Virtual Reality (VR) is a technology that allows a user to interact with a

computer simulated environment representing a real or imaginary word. Haptics means

pertaining to touch. Haptic technology allows the user to interact with a virtual model via

a Haptic Device which works as an interface between real and virtual world. The user

feels the sense of touch through the application of force, vibrations, motion and resistance

via a haptic device. Haptics has applications in the field of medicine (training for

laparoscopic surgery), games, art, shape design and user training.

There are three distinct features that any haptics-based interactive design module

must have. The Haptic Rendering System is used for the visualization of the model and

the tool. Haptic Rendering includes graphics animation and haptic feedback. Through

haptic rendering, a user can feel and manipulate a virtual object using a haptic device. A

Collision Detection algorithm calculates the position and extent of the interference of the

virtual model(s) and the tool. A Physics-Based System uses the information provided by

the collision detection algorithm to determine the deformation of the model(s) and the

resultant reactive forces to be fed back to the user. Force Feedback is provided through

haptic devices. The nature and amount of force feedback depends upon the haptic device

used, and the underlying algorithm used to calculate the force feedback.

1.3 Virtual Reality (VR) Environment

Virtual reality provides real-time interaction with virtual world through several

communication methodologies including visual (computer screen or stereoscopic

display), tactile (force feedback) and audio (stereo sound) feedback. The overall goal of

the virtual reality is to provide a far more natural environment to the user than that is

possible by workstations. This can help to enhance the creativity of the user and increase

productivity. This environment is especially suitable for free form shape design, wherein

an industrial designer or engineer can explore all conceivable options without the

constraints imposed by commercial CAD/CAM environments.

5

The goal of efficiently integrating sensory-motor functionalities and skills within a

VR system poses extraordinary challenges for researchers and engineers in the field.

There are many bottlenecks in efficient use of the virtual reality environment. Firstly, the

real-time rendering of the complex word during simulation is not advanced enough for

industrial applications. In the real word, people can use vision to estimate the distance

between objects, and if, these are far or closer to them. The quality of the graphics has

improved, of late, but still it has not reached the point of maturity.

The second bottleneck is in the implementation of collision detection algorithms. At

present most of the algorithms are limited to particular applications. Most of these

algorithms are for rigid bodies. When applied to deformable objects having complex

surface, it may not be possible to get real-time interaction.

The third bottleneck is in providing physical properties to the virtual models. The

sense of touch and force feed mechanisms allow the user, a rich experience in virtual

world. However, to simulate the behavior of a real object, the simulation must include

object rigidity/strength, mass, friction, surface texture, and heat transfer. Adding these

physical characteristics to virtual objects require powerful computing hardware and

efficient algorithms.

However, virtual reality development is a fast growing area in computer graphics and

engineering. Already, it is being used for training for laparoscopic surgery and games.

The interactive design through virtual reality promises to be very intuitive, creative, and

cost effective method. With better integration with existing CAD/CAM software, it can

provide a very effective way for the industrial designers and engineers to exploit their

creativity. One way to achieve it is by using B-spline surfaces to represent virtual model

and tool. The development of efficient collision detection and mass spring system to

incorporate physical properties is described later in this thesis.

1.4 Haptics-based Interactive Design

Various studies [Sener, 2002; Ye, 2006a] suggest that a haptics-based interactive design

system is well suited to exploit the creativity of an industrial designer or engineer. It

would make it possible to artistically modify and quickly evaluate different concepts. The

6

user gets real-time visual and force feedback, while interacting with the virtual model.

Haptics allows the user to benefit from the natural way of working with the model,

without the constraints imposed by commercially available CAD/CAM software.

During traditional concept design phase, prototypes are sometimes built for

conceptualization and preliminary validation of the idea which increases the time and the

cost of the concept design phase and leads to the wastage of natural resources. The 3D

visualization capabilities and the ability to directly interact with physics-based models

using haptic tools suggest that Virtual Reality (VR) environments can provide new

opportunities to assist the creative design process. Interactive modeling techniques, using

the virtual reality, have rapidly evolved in recent times. This provides the designer, an

insight to the physical characteristics of the concept, which can be evaluated before going

in for a detailed design.

Figure 1.2 shows the schematic representation of a general framework for a haptic

interaction with a virtual object.

Figure 1.2 Schematic representation of a haptic interaction with a virtual object.

7

There are three distinct features to enable any haptics interaction with a virtual

object. As the user interacts with virtual object, the relative positions of the virtual tool

and the object are calculated. The collision detection system provides the information

regarding the details of the contact of the tool with the model and the tool penetration.

The physics-based system uses the information provided by the collision detection

algorithm to determine the deformation of the model(s) and the resultant reactive forces

to be fed back to the user. The haptic rendering system is used for the visualization of the

model and the tool.

1.5 Outline of the Thesis

The literature review, on virtual reality-based concept design, haptic interaction, virtual

sculpting, surface representation techniques, collision detection and basic geometric- and

physics-based modeling approaches, is discussed in Chapter 2. The chapter also

summarises the approaches for haptics based shape design and development of

deformable surface and solid models. The techniques discussed in the chapter includes

collision detection of rigid and deformable bodies; implicit, tessellated and NURBS

surface representation of virtual models; mass spring damper systems and finite element

methods. The chapter also presents various types of surface representations of virtual

models along with their relative merits and demerits and reasons of choosing B-spline

surface representation for the haptic-based interactive design framework.

Chapter 3 introduces the collision detection algorithm for B-spline surface patches.

The algorithm is evaluated for its efficiency using the Big O notation for worst case

scenario. The algorithm is further developed for merging multiple B-spline surface

patches in Chapter 4. The development of initial mass spring damper system to introduce

material properties to the virtual model is discussed in Chapter 5. It also presents the

integration of the mass spring system with the collision detection system so as to achieve

denser high computational efficiency. Chapter 6 takes a closer look at the efficacy of the

algorithms developed for collision detection through simulation tests and performance. It

verifies the efficiency and robustness of the collision detection, B-spline surface patches

merging, and physically-based deformation model algorithms. The collision detection

8

algorithm, merging of B-spline surface patches and deformation and force response of the

mass spring system are combined for the haptics-based interactive design framework.

The performance of this integrated module is also evaluated in this chapter. Chapter 7

presents deformable shape medications and user training in VR space. Chapter 8

summarizes the performance of collision detection, B-spline merging algorithm, and

mass spring system. It also provides the limitations of the proposed system, and

recommendations for the improvement and future work.

9

CHAPTER 2 LITERATURE SURVEY

2.1 Introduction

In addition to realistic three dimensional graphics, a virtual reality environment based

interactive design must support visual object collision detection, physics-based modeling,

and haptic manipulation. The collision detection sub-system provides detailed

information about when and how multiple virtual objects make contact and interact

within the VR space. The physics-based sub-system uses the information provided by the

collision detection algorithm to determine the reactive forces to be fed back to the user

and degree of deformation of any non-rigid elastic and plastic objects. Finally, the haptic

rendering sub-system is used for tactile and visual interaction with virtual objects and

tools used during the creative design exercise.

This chapter discusses the related research work involved in various aspects of a

interactive design module. To better understand the idea behind the development of

techniques for VR based interactive design and specific contribution of this thesis, it is

necessary to review previous techniques used and their relative merits and demerits.

Much of the work in rendering, sculpting, and collision detection has been in the field of

computer graphics with applications in games and medical field in mind. Most of these

techniques use tessellated surfaces for representing rigid bodies or deformable bodies

with several constraints. The algorithms for rendering, collision detection, haptic

interaction, and physics based system depend upon the type of surface representation of

the models and tools in virtual reality environment.

2.2 Virtual Reality in Concept Design

The rapid advancement of virtual reality (VR) technology has led to the development of a

variety of applications in computer graphics, gaming and entertainment, surgical training,

engineering analysis, and industrial design. Specifically, virtual reality promises to be a

very intuitive, creative and cost effective method for concept design [Cheshire, 2001;

Sener, 2002; Ye, 2006a; Ye, 2006b]. The most prominent characteristic of virtual reality

10

systems concerns multimodal (real-time) sensory-motor interaction between the human

operator (user) and the virtual environment. Such a natural and intuitive human/computer

interaction should involve all the sensory channels of the human being.

During conceptual design, product specifications are not fully established and

designers have significant freedom to change and modify the product configuration so as

to meet the design requirements. Industrial designers tend to make extensive use of

physical models created with their hands as it is natural and intuitive process.

Unfortunately, current CAD and geometric modeling systems lack a natural and intuitive

human-computer interface.

Initially, VR-enhanced 3D visualization and analysis systems were used, such as

Virtual Design II [Astheimer, 1995], and ISAAC [Mine, 1997]. In these systems, the

product models are initially created in existing 3D CAD systems and then appropriately

translated into a VR environment. Such systems only permit designers to visualize and

analyze CAD objects in a 3D virtual environment. Designers cannot directly create or

modify pre-existing CAD models and so when any change or modification is required,

they must go back to the conventional CAD systems.

 A VR-based concept design system can provide industrial designers with more

familiar interactive capabilities for creating and representing their design intent easily,

flexibly and efficiently on computers [Ye, 2002]. Compared to conventional CAD

systems, a VR-based CAD system allows more tools for the designers to perform various

design activities. The COnceptual VIRtual Design System (COVIRDS) is a VR-based

CAD modeling environment that allows rapid shape creation by using a bi-modal, voice,

and hand tracking interface [Chu, 1997; Dani, 1997]. It provides parametric and free form

design modes. Mouse/keyboard interface is replaced with voice recognition and 3D

interaction devices. A voice command interface has several advantages including its

simple input device (a microphone) and freedom to use hands for other operations.

However, it also suffers from fundamental weaknesses including limited recognition

capability and difficulty in specifying continuous and complex commands [Ye, 2005].

Many VR-based design system are reported in the literature such as 3-Draw [Sachs,

1991], 3DM [Butterworth, 1992], DesignSpace [Chapin, 1994], CDS [Bowman, 1996],

11

and CUP [Anthony, 2001]. The 3DM allows the designer a better feel for the object's

appearance in VR environment through a head mounded display. 3DM includes several

grid and snap functions. It however lacks many other aids and constraints that are

necessary to accomplish precise work. All of these techniques provide the designer with

real-time interaction with the virtual object. However, each of these VR-based interaction

techniques for CAD applications has its own potential and limitations. There is a

limitation on the size of the model. When geometries get complex, a time lag sets into the

system. Fully immersive design systems can create a more realistic environment but these

often tend to make the system infrastructure more complex, cause uncomfortable

intrusive viewing problems and make the system computationally expensive.

The Loughborough University Conceptual Interactive Design (LUCID) system [Ye,

2005; Ye, 2006a] was developed to integrate VR-based Human-Computer Interfaces

(HCIs) into the design process in order to maximize its interactivity and efficiency so as

to provide better support to conceptual design. It used a six degree of freedom (DOF)

SpaceMouse Classic® input device from 3Dconnexion Corp. to create a two-handed

operation mechanism. A 3D Phantom Desktop® haptic device from SensAble

Technologies Inc. was used to implement haptic interaction. A NuVision GX60®

stereoscopic display toolkit from MacNaughton Inc. was used to offer a stereoscopic

display interface. A universal computer-supported speaker-based auditory system was

employed to provide a sound feedback interface. This system can allow users to

experience 3D haptic force feedback from the 3D Phantom Desktop® haptic device and

navigate the virtual model through six DOF SpaceMouse Classic® input device.

Weidlich et al. [Weidlich, 2007] focused on integrating VR as a user interface into

the process of geometric modeling and detailing. It presents three paths towards a

solution: VRAx®, Navigation Interface for Modeling (NavIMode), and Construct|Tool.

Most of the preliminary work focused on the user interfaces and the modeling tools

for the designers. Sener et al. [Sener, 2002] conducted several case studies that pointed

out the expectations of the designers and industrial engineers. The designers expected

that any interactive design framework must mimic the natural way designers interact with

the physical world and provide direct sensory feedback during the interaction. Current

12

CAD systems do not fulfill these expectations. Robinson et al. [Robinson, 2007]

evaluated Co-Star, an immersive stereoscopic system for cable harness design. Overall,

the results obtained and the positive experience of the participants indicated that 3D

immersive design and direct body motion tracked interfaces did provide a very intuitive,

easy to use, and useful addition to the technologies available to design engineers. Bourdot

et al. [Bourdot, 2010], presented an approach for the integration of Virtual Reality (VR)

and Computer-Aided Design (CAD) by developing a VR-CAD framework. The

framework allowed intuitive and direct 3D edition on CAD objects within virtual reality

environments by combining the VR-CAD framework with multimodal immersive

interaction (using 6 DoF tracking, speech, and gesture recognition systems) to gain direct

and intuitive deformation of the objects' shapes within a VR environment. There are more

research groups [Duriez, 2006; Gironimo, 2006] using virtual reality for concept design.

Overall there is high demand for a virtual concept design tools in industry.

2.3 Haptic Interaction with Virtual Model

In the context of virtual reality applications, haptics is a force feedback technology which

allows a user to use his/her sense of touch while interacting with a virtual model. By

using haptics devices, the user can interact with a virtual model by feeding and receiving

information through tactile/kinaesthetic sensation.

Figure 2.1 shows the user interacting with a virtual model through a haptic device.

The haptic sense is usually divided into two main distinct sensory modalities. The first

sense is the kinaesthetic sense (motion and force sensing), which includes perception of

muscular effort. The second sense is the tactile sense, which provides cutaneous

information, related to contact between the skin of the human body and the external

environment (pressure, vibration, temperature etc.). These sensory interactions enable the

user to perceive physical properties such as rigidity of the model and the surface

characteristics of model (roughness etc.).

13

Figure 2.1 Haptic interaction with a virtual model through a haptic device (PHANTOM® Omni of
SensAble Technologies, 2008) located at the University of Western Ontario.

Bloomenthal and Shoemaker [Bloomenthal, 1991] used implicit geometry techniques

to represent clay-like objects proposed. A convolution surface was proposed as a natural

and powerful extension to point-based field surfaces which was obtained by convolving a

skeleton. In principle, this can comprise points, line segments, curves, polygons, or other

geometrical primitives. This approach overcomes the drawback of bulges and curvature

discontinuity in distance surfaces. Convolution surfaces offer many desirable advantages,

such as intuitive shape design, well-behaved blending and fluid topology changes with

the underlying skeleton. Computer vision research has shown that any 3D object can be

defined entirely from a geometric skeleton [Attali, 1997], which implies that skeletons

are natural abstractions for 3D objects. Convolution surfaces provide us with a means to

control the shape of an underlying modeling object by controlling its skeleton, just as

controlling a parametric surface by manipulating its control vertices. A major drawback

of this approach is that the cost of field evaluation grows with the number of primitives.

During sculpting, if the actions of the user results in creation of a new primitive, the field

evaluation would quickly become prohibitive and interaction will become sluggish. The

mathematical formulations of convolution surfaces also pose some open problems

because there are limited choices of kernel functions and skeletal primitives that can be

convolved together analytically. By using the superposition property of convolution

surfaces and the separable property of Gaussian filters, Bloomenthal and Shoemaker

[Bloomenthal, 1991] calculated field functions numerically based on a point-sampling

14

method, which unfortunately implies potential under-sampling artifacts and storage

problems. McCormack and Sherstyuk [McCormack, 1998] addressed this weakness by

employing a new kernel function, called Cauchy function, and were able to deduce

analytical solutions for several useful primitives, namely, points, line segments,

polygons, arcs, and planes.

Field-based implicit surfaces have become an increasingly popular modeling

approach [Bloomenthal, 1997a; Cani-Gascuel, 1997]. Their implicit representations,

which have smooth-blending properties, make them convenient for modeling and

animating smooth objects of complex topology that may change over time. Examples of

such objects are liquids, clouds, plants, sea-life forms, and other organic shapes. In

addition to object modeling, implicit surfaces have gained acceptance in other

applications, namely, shape morphing [Turk, 1999b], surface reconstruction [Savchenko,

1995], natural phenomena simulation [Dobashi, 2000; Nishita, 1997], and space

deformation [Jin, 2000]. Since implicit surface can produce visually striking special

effects, they have become a powerful tool for animators.

Witkin et al. [Witkin, 1998] used a physically based particle approach to sample and

control implicit surfaces. On the other hand, Raviv and Elber [Raviv, 2000] presented an

interactive sculpting algorithm that used a set of uniform trivariate B-spline functions as

the underlying representations. Martin et al. [Martin, 2001] used a trivariate spline based

mathematical framework to represent and extract volumetric attributes. Park and Kunwoo

[Park, 1997] used high dimensional NURBS representation for analyzing and visualizing

fluid flow data. Schmitt et al. [Schmitt, 2001] presented an approach to constructive

modeling of FRep solids defined by real-values functions using 4D uniform rational

cubic B-spline volumes as primitives. The first three coordinates are used to represent the

spatial component of the volume to be sculpted and the fourth coordinate corresponds to

volume density. Knopf and Sangole [Knopf, 2002] investigated the Self Organization

Feature Map (SOFM) as the starting point for haptic interaction. This technique has also

been extended for use in surface fitting [Knopf, 2004], geometric parameterization

[Knopf, 2003], and visual exploration of numerical data [Knopf, 2007].

15

Zhong et al. [Zhong, 2005] presented a methodology for solid modelling in a virtual

reality (VR) environment in an intuitive manner through constraint-based manipulations.

The data model integrates a high-level constraint-based model for precise object

definition, a mid-level Constructive Solid Geometry/Boundary representation

(CSG/Brep) hybrid solid model for hierarchical geometry abstractions and object

creation, and a low-level polygon model for real-time visualization and interaction in the

VR environment.

2.4 Virtual Sculpting

Mathematically, virtual sculpting refers to the dynamic manipulation of virtual object by

the user to generate different shapes. Galyean and Hughes [Galyean, 1991] presented

interactive modeling technique based on the notion of sculpting a solid material. A

sculpting tool is controlled by a 3D input device and the material is represented by voxel

data. The tool acts by modifying the values in the voxel array and particular attention was

made to prevent aliasing when tool was re-sampled into the field grid. The tool was able

to remove material as well as smoothen the surface through convolution. Wang and

Kaufman [Wang, 1995] further extended haptic interaction to carving and sawing. The

affected regions are indicated directly on the 2D projected image of the 3D model. The

carving tools are pre-generated using a volume sampling technique and stored in a

volume raster of 20 × 20 × 20 resolution. Avila and Sobierajski [Avila, 1996] used a

force feedback articulated arm to command a tool in a similar context. However, the tool

size was limited to 3-5 voxels because in order to meet the requirements of the system,

the contents of each voxel must contain a large number of physical properties. This

includes a scalar value for density, values for material classification and shading

properties, as well as values for mechanical properties such as stiffness, and viscosity.

Alternative data structure to represent virtual sculpting has also be proposed such as,

voxel-based system [McNeely, 1999], a voxel-based system with iso-surface extraction

[Ferley, 2000], B-spline surfaces [Dachille, 1999], and sub-division surfaces [Gregory,

2000b]. These are suitable for low to moderately complex virtual models. Research is

underway to improve computational efficiency and flexibility of haptic sculpting. Multi-

16

resolution surfaces have also been used to reduce computational cost of haptic

interaction, particularly of collision detection. Baerentzen [Baerentzen, 1998] proposed

an octree-based representation to accelerate ray-casting. The algorithm can be extended

by allowing voxels to be inserted at different levels in the octree. This way, a sparsely

represented voxel raster with dynamic resolution, can be obtained. Raviv and Elber

[Raviv, 2000] proposed a hierarchical approach based on the combination of trivariate B-

spline volumes to represent the field. This allows sculpting at different levels of details

and arbitrary orientations. The presented approach provides the user with intuitive

sculpting abilities in an interactive speed for modeling arbitrary geometries and/or

topologies. Ferley et al. [Ferley, 2001] proposed a sculpture metaphor based on a multi-

resolution volumetric representation. It allows the user to model both precise and coarse

features while maintaining interactive updates and display rates. The modeled surface is

an iso-surface of a scalar field, which is sampled on an adaptive hierarchical grid that

dynamically subdivides or un-divides itself. Gao and Gibson [Gao, 2006] used multi-

resolution B-spline surfaces to reduce the computational cost of haptic interaction.

Though the multi-resolution techniques reduce the computation cost of haptic interaction,

the haptic force to be fed back to the user is not realistic.

2.5 Surface Representations

A variety of techniques is available for representing the surface of a virtual object

representing a model or tool. Each technique has its advantages and disadvantages with

respect to other techniques. Before selecting any particular type of representation, it is

necessary to compare the characteristics of these techniques and how these would fit in

the overall picture of concept generation. Some of the prominent techniques are discussed

in detail in the following subsections.

2.5.1 Implicit surfaces

Implicit surfaces are two-dimensional geometric shapes that exist in three-dimensional

space and are defined in a particular mathematical form [Liu, 2006]. This type of

representation scheme is also called volumetric method. Implicit surfaces can be

17

generated using analytical, variational and multi-level partition of unity (MPU) approach.

Implicit surfaces use 3D volumetric methods, 3D implicit primitives (e.g. blobby), level

sets and radial basis functions to represent surfaces by superposition of weighted basis

function. A consistent, smooth and water-tight surface can be represented using this

approach.

An implicit surface consists of those points in three dimensional space that satisfy a

certain requirement represented mathematically by a function 'f ' whose argument is a

point 'p'. By definition, a point 'p' would lie on the surface if, f (p) = 0. The function 'f '

may contain any mathematical expression. These expressions can be polynomials or may

include transcendental expressions such as trigonometric or exponential expressions. For

a continuous function 'f ', its value at any point 'p' is often a measure of proximity

between the point 'p' and the surface [Bloomenthal, 1997b]. This property is unique to the

implicit surfaces and can be very useful for collision detection. However the intersection

test for implicit surfaces of degree higher than 3 is computationally very intensive.

An implicit surface naturally describes an object’s interior. The ability to enclose

volume and to represent blends of volumes provides a straightforward implicit alternative

to fillets, rounds, and other ‘free-form’ parametric surfaces that require care in joining so

that geometric continuity is established along the seams [Charrot, 1984]. Consequently,

animations of organic shapes commonly employ implicit surfaces. Several types of

implicit surfaces have been described in the literature. They include metaballs, [Wyvill,

1989], distance surfaces [Bloomenthal, 1990], convolution surfaces [Bloomenthal, 1991],

R-functions [Pasko, 1995], variational surfaces [Savchenko, 1995], and blob trees

[Wyvill, 1999].

Both implicit surfaces and parametric surfaces are well developed in computer

graphics. Implicit surfaces with a signed distance function are the generalization of

implicit surfaces and have been extensively discussed in the computer graphics literature

[Benko, 2001; Bloomenthal, 1997b; Liu, 2006]. However, parametric surfaces are

preferred over implicit surfaces because parametric surfaces are simpler to render and

more convenient for certain geometric operations, such as computation of curvature and

the control of position and tangency. In particular, parametric surfaces are generally

18

easier to draw, tessellate or to perform any operation that requires a knowledge of 'where'

of the surface [Rockwood, 1989].

Manipulation of an implicit surface is complex because properties like surface point

and its normal are not easily specified. Turk and O’Brien [Turk, 1999a] first presented

the concept of variational implicit surfaces to handle this problem. Variational implicit

surface facilitate direct specification of both the location of points on the surface and

surface normals and are defined with additional interior and exterior constraints. They

demonstrated the use of variational implicit surfaces for shaped transformation [Turk,

1999b]. This approach can successfully generate interpolating implicit surfaces [Turk,

2002]. Bloomenthal [Bloomenthal, 1999] used skeltonization as effective way for storing

and manipulation and projected this technique for applications involving animation. Shen

et al. [Shen, 2004] developed a generalized approach of generating interpolating or

approximating implicit surface from polygonal data with moving least squares (MLS)

approach and iteratively fitted normal constraints. Implicit surfaces with sharp features

are modeled by kernel approximation [Reuter, 2004] and dual-primal mesh optimization

[Ohtake, 2002]. Reuter et al. [Reuter, 2004] used MLS methods and integrated sharp

edges by specifying the implicit equation of half space that cuts the sharp edge with

discontinuous implicit surface. Implicit surfaces are extensively used for character

animations [Cani-Gascuel, 1997]. Implicit surfaces are generally used as an extra layer

coating for any kind of structure that moves and deforms over time.

2.5.2 Tessellated surfaces

Tessellated surface modeling schemes attempt to interpolate the point clouds by mapping

a flat 3D triangulated domain to generate 3D triangulated surface model. Delaunay and

its derived methods are frequently used for generating triangulated surfaces. In Delaunay

triangulation, each triangle is generated from three points in the point set 'P' in such a

way that no other point from the data set 'P' lies within the circum-circle of the

corresponding triangle. This condition minimizes sharp triangles. A detailed description

of Delaunay triangulation, related issues, theory and algorithms have been described in

literature [Cazals, 2004; Chew, 1989; Dey, 2007]. Tessellated surfaces are widely used

19

because of inherent simplicity of triangle-triangle collision detection and advantage of

hardware compatibility with tessellated models for rendering and graphical

representations. However, there are many disadvantages of using tessellated surfaces

while representing deformable surfaces. The most significant disadvantage of using

tessellated model is that graphical rendering, collision detection and the number of nodes

for mass spring system are all dependent upon the number of triangles used to represent a

model.

The resolution of the surface cannot be changed during haptic interaction. A low

resolution model can be used to decrease computation time. Conversely, a high resolution

model can be used to increase accuracy of collision detection and better graphical

representation. However, this trade off cannot be used during haptic interaction.

Furthermore, as a tessellated surface model deforms during interaction with the tool or

other model, the quality of the triangles deteriorate. This makes collision detection

computationally extensive and inefficient. Other drawbacks of this approach include its

incapability of modeling very smooth surfaces, and inability to represent smooth

boundary edges.

2.5.3 Parametric surfaces

A parametric surface is a surface in the Euclidean space R3 which is defined by an

equation with two parameters. In other words a parametric surface is a function with

domain R2 and range R3. Typically variables u and v are used for the domain and x, y, and

z for the range. These notations have been used in this thesis. These surfaces require

fewer geometric parameters for their definitions. However, geometrically and

topologically complex freeform surfaces cannot be represented with simple analytical

surfaces (planes, quadrics, spheres, cones and cylinders etc.).

Parametric surface representation is a well established geometric modeling approach

of modern day geometric modeling software, because it facilitates compact storage,

complex editing and modification tools and reliable data exchange for model sharing.

Parametric modeling is quite effective modeling scheme for generating accurate, concise,

and affine invariant approximate surface of relatively simple size. It requires less storage

20

for surface representation. However, this modeling scheme has not emerged as an

effecting modeling tool for B-spline based shape modifications mainly because of the

computationally expensive collision detection and complexity involved in estimating

controls points from for the deformed surface.

The general form of the parametric representation of a surface is p = p(u, v) = [x(u, v)

y(u, v) z(u, v)]T. There are many types of synthetic parametric surfaces such as, Bilinear

surfaces, Coons surface patches, Bicubic patches, Bezier surfaces, B-spline surfaces and

NURBS surfaces [Farin, 1997; Piegl, 1997]. Of all these types of the surfaces, B-spline

surfaces are the most widely used.

Over the past decade, B-spline representation has become the standard for

CAD/CAM systems. Thus it is imperative that any haptic interactive design module

should utilize a B-spline surface to represent the virtual model in order to streamline the

exchange of the information with existing CAD/CAM systems. A major obstacle in using

the B-spline surface to represent a deformable model is the absence of an efficient

algorithm to detect collision between two or more B-spline surfaces having a complex

surface. A collision detection algorithm must be capable of tackling complex surfaces, a

large area of contact, multiple contacts, and high deformation.

2.6 Collision Detection

Collision detection enables simulation-based interactive design, engineering analysis,

assembly, motion planning, medical training and animation. Collision detection is

considered a major computational bottleneck in these applications. The goal of collision

detection is to automatically report a geometric contact when it is about to occur or has

actually occurred. There are many collision detection algorithms proposed by various

researchers. Lin and Gottschalk [Lin, 1998] presented a survey on the state of the art in

collision detection between geometric models represented by smooth surfaces. These

surfaces were sub-divided into four groups; constructive solid geometry, implicit

surfaces, parametric surfaces and polygonal models. The collision detection algorithms

can be further sub-divided in three groups; pair versus n-body, static versus dynamic, and

rigid bodies versus deformable models. Another survey [Jimenez, 2001] focused more on

21

how the model representation leads to different collision detection algorithms. These

algorithms were grouped into four approaches: space–time volume intersection, swept

volume interference, multiple interference detection and trajectory parameterization.

In this chapter, the collision detection algorithms have been grouped mainly as rigid

body algorithms and deformable model algorithms. Most of these algorithms fall in the

former category and there are not many efficient collision detection algorithms for

deformable bodies having complex surface. This section briefly discusses some of the

important algorithms.

2.6.1 Collision detection of rigid bodies

Ho et al. [Ho, 1999] proposed a Neighbourhood Watch algorithm that was capable of

handling rigid bodies with both convex and concave surfaces. The Neighbourhood Watch

algorithm took advantage of pre-computed connectivity information for detecting

collisions between the end effector of a force-reflecting robot and polyhedral objects in

VR environment. Using this method and a haptic interface device, the users can manually

explore and feel the shape and surface details of virtual objects. Mirtich [Mirtich, 1997]

employed two phased approach to detect collision of rigid, polyhedral geometries. For the

broad phase, an algorithm using axes-aligned bounding boxes (AABB) and a hierarchical

spatial hash table was described. For the narrow-phase, primarily, the Lin-Canny

algorithm [Lin, 1991] was used. Various bounding geometries and spatial geometries

help in performing a rejection test when two virtual objects are apart. Some of the well-

known examples include trees of sphere [Bradshaw, 2002; Hubbard, 1995; Quinlan,

1994], Axis Aligned Bounding Boxes (AABB) [van-den-Bergen, 1997] OBBTrees

[Barequet, 1996; Gottschalk, 1996; Gregory, 2000a], k-DOPs [Klosowski, 1998;

Krishnan, 1998] and SSVs [Larsen, 2000]. Many other types of volume have been

suggested as bounding volume namely cones, cylinders, spherical shells, ellipsoids and

zonotopes [Ericson, 2005]. Spatial partitioning decomposes the workspace into uniform

grids or cells, implemented as a hash table to efficiently deal with large storage

requirements. At runtime, the algorithm can quickly find the cells containing the path

swept out by the hand-held probe. Once the objects are in close proximity, spatial

22

decomposition is used to perform a rejection test for decomposed/subdivided parts of the

objects. Gregory et al. [Gregory, 2000a] used a pre-computed hybrid hierarchical

representation, consisting of uniform grids and trees of tight-fitting Oriented Bounding

Box Trees (OBB Trees). At run time, these hybrid hierarchical representations exploit

frame-to-frame coherence for fast proximity queries. Ehmann and Lin [Ehmann, 2001]

presented a unified approach to perform a set of proximity queries for general, rigid

polyhedral objects. Hubbard [Hubbard, 1995] used simple four-dimensional geometry to

approximate motion, and hierarchies of spheres to approximate three-dimensional

surfaces at multiple resolutions. For time-critical algorithms, such as interruptible

collision detection, there are distinct advantages in using hierarchies of spheres, known as

sphere-trees. Quinlan [Quinlan, 1994] described an efficient algorithm for computing the

distance between non-convex objects. Objects were modeled as the union of a set of

convex components. From this model a hierarchical bounding representation based on

spheres was constructed. Bradshaw and O'Sullian [Bradshaw, 2002] also presented work

in Sphere-Tree construction and medial axis approximation using the Veronoї diagrams

[Okabe, 2000]. Hoffmann and Hopcroft [Hoffmann, 1987] approximated the object as the

union of several cuboids enclosed by a single cuboid. The bounding geometry techniques

work very well with rigid bodies but when applied to deformable bodies, the cost of

updating these geometries, as the object deforms, slows down the collision detection

response. If these bounding geometries are not updated in each frame to reduce the

computational cost, the overlapping of bounding volumes make the rejection test

inefficient.

2.6.2 Collision detection of deformable bodies

In general, rigid body collision detection methods pre-compute some geometric

information of each object, such as bounding boxes, to be used for run-time collision

detection. However, if the object deforms, the pre-computed information may not be

valid anymore and hence needs to be recomputed in every frame while the object is

deforming. Instead of rebuilding, most often, the bounding boxes are refitted as the object

deforms. While this simplifies the bounding box updating, it often increases the

overlapping areas of the bounding boxes.

23

Larsson and Möller [Larsson, 2001] proposed and evaluated suitable bounding

volume trees for deforming bodies that can be pre-built and then updated during

simulation. The technique was used to address the collision detection problem in

applications where deformable bodies are used, which change their overall shape at every

time step of the simulation. Several heuristics for updating the trees due to deformations

were compared to each other. Deformable objects are very challenging for BVH

(Bounding Volume Hierarchies) because hierarchy structures (trees) have to be updated

when an object deforms itself. Teschner et al. [Teschner, 2005] presented various

approaches based on bounding volume hierarchies, distance fields, and spatial

partitioning for deformable bodies and used the techniques for surgical and cloth

simulations. Various bounding volumes were considered, in particular, OBBs and k-

DOP's, and investigated for their efficiencies.

For parametric surfaces, Herzen et al. [Herzen, 1990] developed an algorithm to

detect geometric collisions between pairs of time-dependent parametric surfaces. It used

the Lipschitz condition on a surface to create sets of bounding volumes that are

guaranteed to bound the parametric surface. A surface-surface intersection test for a

Bezier and B-spline surface by subdividing the surface patch till the sub-patches are

sufficiently plane has also been proposed [Hughes, 1996]. The method constructed an

AABB tree for each surface and used the pseudo-normal patch and Gauss map to detect

self-collisions and the sweep-and-prune method to detect other collisions. However, the

method needed to update the Axis Aligned Bounding Box (AABB) tree for each sub-

patch and to find the solution of many algebraic equations for testing self collision. This

made the algorithm computationally expensive. For complex surfaces, the number of

levels needs to be high, further escalating the cost. As the model is deformable, the sub-

patches that were plane initially may deform into curved surfaces and may no longer

remain plane.

Thompson et al. [Thompson, 1997] used a tracing algorithm, supporting the

rendering of NURBS surface, which traced the closest point on a NURBS patch to the

tool point. The system linked an advanced CAD modeling system with a Sarcos force-

reflecting exo-skeleton arm. Initially a rough check for surface proximity was done using

bounding boxes around each surface. Later on nodal mapping was used to find a first

24

order approximation to the closest point on the surface. Dachille et al. [Dachille, 2001]

used a polyhedral representation which makes it easier to search for the nearest point on

the surface, unlike the complicated NURBS surface intersection task proposed by

Thompson [Thompson, 1997]. In this case the nearest point on the surface did not need to

be updated too frequently, so the system could compute the distance from the cursor to all

the vertices of the polyhedral representation. In both of the techniques, the interaction

with the virtual model was only at a point through a point based tool. This limits the

utility of the approaches, particularly in the area of 3D free form shape design where the

sculpting activity is required to be done by hands or other surface based tools. Another

shortcoming of point-surface interaction is the difficulty in anticipating results in

advance. The user often does not know exactly if the deformation is going to be highly

curved or flatter. Gao and Gibson [Gao, 2005; 2006] used a B-spline patch to represent

the surface of a virtual model and an implicit surface to represent the virtual tool. Nodes

were generated on the B-spline surface by discretization. These were used to incorporate

a mass spring system and to detect collision by inputting these nodes in the equation of

the implicit surface of the tool. This technique cannot be used when two or more B-spline

surfaces are present in the virtual environment and are interacting with each other. Only

rigid and lower degree (up to 2) implicit surface tools had been used and the collision

detection technique did not allow a point based tool which further limited the scope of

sculpting.

Galoppo et al. [Galoppo, 2007] used a two-level layered model representation. Low

resolution layer was used for the collision detection and the force response while the high

resolution tetrahedral mesh was used to show deformation.

Recently specialized graphics processing units (GPUs) have been used for

processing bounding volume generation. Lauterbach et al. [Lauterbach, 2009] presented

two parallel algorithms for rapidly constructing bounding volume hierarchies on multi-

core GPUs. This Linear Bounding Volume Hierarchy (LBVH) algorithm is focused on

minimizing the cost of construction, while still producing BVHs of good quality. The

algorithm was implemented in CUDA on an NVIDIA GeForce 280 GTX GPU to

compute axis-aligned bounding boxes (AABBs). The algorithm was used for ray tracing

and can be implemented for collision detection. Avril et al. [Avril, 2010] has discussed

25

various approaches which use General-Purpose Processing on Graphics Processing Unit

(GPGPU) and more recently using multi-core computers.

In general if the model is represented as a tessellated surface, the cost of updating the

bounding box during deformation is very high. In case of a parametric representation of a

deformable model, the collision detection techniques for B-spline intersection require to

calculate computationally intensive blending functions. Hence the intersection test of two

parametric surfaces is complex as compared to the simplicity and efficiency of triangle-

triangle intersection test. The method proposed in this thesis uses the best of parametric

representation of surface and efficiency of triangle-triangle intersection test.

2.7 Force and Deformation Modeling Techniques

Various techniques have been developed to generate fairly smooth surfaces and volumes

that satisfy multiple constraints in deformable modeling. Shape modification of a virtual

object can be simulated using either geometric- or physics-based algorithms. Sederberg

and Parry [Sederberg, 1986] introduced free-form deformation by allowing object to

change shape independent of its structure by embedding it in easily-parameterized

domains. The scheme was based on trivariate Bernstein polynomials, and provided the

designer with an intuitive appreciation for its effects. Terzopoulos et al. [Terzopoulos,

1987] pioneered the work on physically-based deformable models in computer graphics.

It applied the Lagrangian equations of motion using finite difference scheme to simulate

elastic objects with regular parameterizations. This framework was further extended to

include inelastic behaviours [Terzopoulos, 1988a] and to handle stiff rotating bodies

using linearized equations [Terzopoulos, 1988b]. Physics-based deformation models give

the designer, more opportunities to try different types of materials during the interactive

design phase and validate product models in real-time. Major techniques and relevant

research is presented in the following sub-sections.

2.7.1 Geometric deformation techniques

Geometric techniques are computationally efficient. These techniques only simulate the

deformation and do not use the physical principles to calculate the deformation. In

26

Computer Aided Geometric Design (CAGD), mostly parametric curves and surface

patches such as Bezier, B-spline, Rational B-spline, and non-uniform rational B-spline

(NURBS) are used to represent a model. The model can be deformed by moving the

control points, adding or deleting the control points or changing weights of the control

points. The model can also be deformed by changing the knot vector. However, this is a

cumbersome process and a perceptually simple change may require significant and

simultaneous adjustments of several control points.

Free-from deformation is a general geometric-based deformation method to deform

objects. This method deforms the space in which the virtual model lies, thereby,

deforming the model. Barr [Barr, 1984] presented this hierarchical solid modeling

operations, which could simulate twisting, bending, tapering, or similar transformations

of geometric objects. He used geometric mappings of three-dimensional space to examine

model deformation. This mapping causes the objects to twist about z-axis. More complex

deformations can be constructed by composing mappings. These operations extend the

conventional operations of rotation, translation, Boolean union, intersection and

difference. This technique can be applied to different graphical representations such as,

points, polygons, splines, parametric patches, and implicit surface. Barr's method

provides a powerful design tool, but the possible regions and types of deformation are

limited. The user cannot control the deformations intuitively. Sederberg and Parry

[Sederberg, 1986] introduced the term Free-Form Deformation (FFD). They generalized

Barr's approach by embedding an object in a lattice of grid points of some standard

geometry, such as a cube or cylinder. Manipulating nodes of the grid induces deformation

on the space inside the grid, and these deformations transform the underlying primitives

that for the object. FFD involves a mapping from R3 to R3 through a trivariate tensor

product Bernstein polynomial. It can be applied to CSG based solid models as well as

those using Euler operators. It can sculpt solids bounded by any analytic surface: planes,

quadrics, parametric surfaces patches, or implicit surfaces. However, this technique

restricted the parametric solid to a regular parallelepiped with uniform divisions and a

Bernstein polynomial basis. The degree of parameterization of the solid in each

parametric coordinate was set directly by the number of uniform divisions within the

control lattice-two for a quadratic parameterization, three for a cubic, and so on.

27

 Griessmair and Purgathofer [Griessmair, 1989] presented an FFD based on a

trivariate B-spline. Their technique, however, focused on an adaptive triangulation

technique for tessellating the deformed surfaces. Coquillart [Coquillart, 1990] further

extended this method by providing a toolkit of lattices with different sizes, resolutions

and geometries. These geometries can be positioned over the object for selective control

of sub-regions of the surface. Free-form deformation (FFD) is a powerful modeling tool,

but controlling the shape of an object under complex deformations is often difficult. The

difficulty in controlling the shape arises because the deformed object does not follow the

control points exactly. Davis and Burton [Davis, 1991] subsequently demonstrated

techniques for deforming the lattice in an interactive system that incorporated rational

Bernstein bases. Bernstein-based formulations, however, yield an unfortunate relation

between lattice divisions and the degree of the enclosing parametric solid. Lattices

requiring more than two or three divisions for flexibility are undesirable, since evaluating

the basis becomes computationally more expensive as the degrees of the polynomials

increase. Hsu et al. [Hsu, 1992] allowed direct manipulation of surface or curve points by

converting the desired movement of the point to an equivalent grid point movement. The

under-constrained problem is solved by choosing the grid point movement with minimum

least-squares energy that produces the desired object manipulation. Lamousin and

Waggenspack Jr. [Lamousin, 1994] further extended current FFD techniques by basing

them on non-uniform rational B-splines (NURBS). The resulting NURBS-based FFDs

(NFFDs) offer more flexibility and control. McDonnel and Qin [McDonnell, 2007]

presented an interactive, point-based technique for performing free-form deformation of

polygonal meshes. In this technique, a volumetric deformation space is defined as the

linear combination of overlapping, ellipsoidal radial basis functions (EBFs) of compact

support. Mesh vertices are then parameterized with respect to local coordinate frames

centered over the origins of the EBFs. Other important developments in FFD techniques

include dynamic free-form deformations [Faloutsos, 1997], volume-preserving FFD

[Hirota, 1999], sketch-driven FFD [Hua, 2003], and discontinuity-introducing

deformations [Schein, 2004].

28

2.7.2 Physics-based deformation techniques

Unlike geometric techniques, computationally intensive physics-based techniques can

yield real material behavior of a multiple-material/non-homogeneous virtual model

[Knopf, 2005]. Physics-based deformation models give the designer, more opportunities

to try different types of materials during the interactive design phase and validate product

models in real-time. Important physics-based techniques are discussed in the following

sub-sections.

2.7.2.1 Mass spring method

Mass spring systems are simple physical model with well understood dynamics. In

physically-based techniques on mass-spring-damper models, an elastic object is

constructed by applying a mass at each point of a mesh and using springs to link the

points as edges and diagonals [Cotin, 2000; Lin, 2002; Nedel, 1998]. Elastic forces and

damping forces act on mass points as internal forces, and gravity and the user induced

forces act on them as external forces. These are easy to construct and computational cost

is moderate. It is possible to achieve interactive real-time interaction with the virtual

model using mass spring system, on the ubiquitous desktop computers. Mass spring

systems are also suitable for parallel processing and hence can benefit from multi-core

processors being used in desktop computers. The pioneering work of Terzopoulos et al.

[Terzopoulos, 1987], Waters [Waters, 1992], and Platt and Barr [Platt, 1988] has shown

the advantages of physically based models over geometric-based computer animation

techniques.

However, mass-spring-damper models have drawbacks. The model is a significant

approximation of the true physics that occurs in a continuous body. The lattice is tuned

through its spring constant, and proper values for these constants are not always easy to

derive from measured material properties. The physical accuracy of modeling is often not

sufficient and cannot realize the global deformation. The above models are linear, and to

simulate nonlinear force responses, it is necessary to use a precise integration mechanism

such as the finite element method (FEM). However, such a method generally cannot

provide update rates that are sufficient for haptic interactions [Luo, 2007]. In addition,

certain constraints are not naturally expressed in model such as incompressible

29

volumetric objects, or thin surfaces resistant to bending. Mass spring systems also

sometimes exhibit stiffness problem which can occur when very large spring constants

are used. Stiff systems are very problematic because they have poor stability even with

longer time steps.

Terzopoulos et al. [Terzopoulos, 1991] described a mass spring model for

deformable bodies that experience state transition from solid to liquid. The deformable

model features non-rigid dynamics governed by Lagrangian equations of motion and

conductive heat transfer governed by the heat equation for non-homogeneous, non-

isotropic media. In its solid state, the discretized model is an assembly of hexahedral

finite elements in which thermo-elastic units interconnect particles situated in a lattice. A

discretized form of the heat equation is used to compute the diffusion of heat through the

material. At melting point the stiffness reaches zero thereby severing the bond. The

molten state of the model involves a molecular dynamics simulation in which fluid

particles that have broken free from the lattice interact through long-range attraction

forces and short-range repulsion forces. Tu and Terzopoulos [Tu, 1994] used mass spring

system to generate artificial fish with internal contractile muscles that are activated to

produce the desired motions. The fish model comprised of 23 mass points and 91 springs.

The spring-mass system is simulated using implicit Euler method which maintains the

stability of the simulation over the large dynamic range of forces. Christensen et al.

[Christensen, 1997] embedded objects in a cubic eight nodes lattice connected by 28

damped linear springs and used dynamic simulation and FFD's to animate the embedded

objects. The simple Coulomb friction model is used, though friction is permitted to be

stronger in one preferred direction if the animator so specifies. The resulting equations of

motion are solved numerically by a variable time-step, fifth-order Runge-Kutta

integration procedure. Actuation of the mass-spring lattices is achieved by varying the

rest lengths of the springs.

Mass-spring system has been extensively used for facial and modeling and

animation. Terzopoulos and Waters [Terzopoulos, 1990] incorporated physically based

approximation to facial tissue and muscle actuators. Different spring constants were used

to model different layers based on tissue properties. Lee et al. [Lee, 1995] presented a

physics-based model of the face which consisted of a biological tissue layer with

30

nonlinear deformation properties, a muscle layer knit together under the skin, and an

impenetrable skull structure beneath the muscle layer. For improved realism, the model

used a constraint which prevented muscles and facial nodes form penetrating the scull.

Koch et al. [Koch, 1996] used a mass spring model to predict the postoperative

appearance of patients whose underlying bone structure for surgical planning and

prediction of human facial shape after craniofacial and maxillofacial surgery for patients

with facial deformities.

Mass-spring models have also been extensively used in surgical simulations due to

their simplicity of implementation and their relatively low computational complexity

[Baumann, 1996; Kuehnapfel, 1993]. Kuehnapfel and Neisius [Kuehnapfel, 1993]

presented a simulation of endoscopic surgery based on a surface spring-mass model.

Cotin et al. [Cotin, 2000] presented a hybrid model consisting of mass spring system and

tensor-mass model based on continuum mechanics and linear elasticity theory. The

tensor-mass model is used for the simulation of tearing and cutting.

Mass-spring system has also been used for concept design validation. Igwe et al.

[Igwe, 2008b] proposed to generate hexahedral mesh of mass spring system by using

volumetric self-organizing feature map (VSOFM). The VSOFM exploits the adaptive and

self-organizing ability of Kohonen’s original algorithm [Kohonen, 2001] to develop a 3D

mesh where the position the exterior nodes represent surface points of the underlying

object. Material removal and tearing are achieved by eliminating selected mass points

and spring coefficients in the evolving mesh. Pungotra et al. [Pungotra, 2009a] used the

mass spring system based on VSOFM for validating the concept design.

The underlying geometry of mass spring models can easily be modified to represent

topology changes. However, spring-mass models are discrete representations of a

continuum, and the update of stiffness and mass values is hard to handle. This becomes a

problem when complex models are to be deformed in real time. To avoid this problem,

iterative method was used to solve the deformation at any localized region.

2.7.2.2 Finite element method

In the finite element method, the model's solution is subject to the constraints at the node

points and the element boundaries so as to achieve continuity between the elements.

31

Unfortunately, finite element calculations are notoriously slow, making them not very

appealing for real-time applications. Finite element methods are often considered to be

less efficient than spring-mass models. In FEM, the applied forces must be converted to

their equivalent force vectors. This requires numerically integrating distributed forces

over the volume at each time step. This can lead to a significant pre-processing time for

finite element methods. If the topology of the object changes during the simulation, mass

and stiffness matrices must be re-evaluated during the simulation. Traditional FEM is

more accurate in modeling materials such as metals, where the amount of deformation is

limited. As the model deforms, the volume over which equivalent force, mass, and

stiffness matrix integrations are performed will change. Real-time finite element

modeling requires high computational power to achieve visual realism [Berkley, 2004].

FEM has been used for fairly simple physical systems to simulate tissue deformation

[Cotin, 1996; Sagar, 1994].

However, the finite element method (FEM) is a very common and accurate way to

solve continuum-mechanical boundary-value problems [Bathe, 1996; Zienkiewicz, 2005].

Finite element methods provide a more physically realistic simulation than mass-spring

system with fewer nodes. There is a growing trend in using finite element soft tissue

models for real-time computation, as shown for instance by Székely et al. [Székely,

2000] who simulated the deformation of a nonlinearly elastic material using a parallel

processing architecture.

2.7.2.3 Continuum method

Instead of considering the model as a discrete object model, it can be considered as a

continuum that is the solid bodies with mass and energies distributed throughout. Models

can be discrete or continuous but the method used to solve in computer simulation is

always discrete. The numerical integration techniques used to solve the model

approximate the system at discrete time steps. However, unlike the mass-spring model,

continuum models are derived from equations of continuum mechanics. The continuum

model of a deformable object considers the equilibrium of a general body acted upon by

external forces. The object deformation system is a function of these acting forces and

32

object's material properties. The object reaches equilibrium when its potential energy is at

a minimum.

Several authors have based their soft tissue models on continuum mechanics theory,

and the use of elastic solids is widely described in the literature [Bainville, 1995; Speeter,

1992]. Bayville et al. [Bainville, 1995] define the evolution of a set of rigid and

deformable solids under the influence of various forces. In this case, the deformation law

is represented by a hyper-elastic, quasi-static model, associated with a finite element

method for the numerical resolution. Unfortunately, the computation time makes this

approach impractical for real-time simulations.

2.8 Concluding Remarks

The designers may expect that any interactive design framework must mimic the natural

way designers interact with the physical world and provide direct sensory feedback

during the interaction. Current CAD systems do not fulfill these expectations. The

literature survey on the role that Virtual Reality (VR) can play in the field of interactive

design shows that VR can play a vital role in fulfilling the expectations of the engineers

and industrial designers.

This chapter provided a detailed discussion on the techniques for developing a

virtual reality based interactive free form modeling framework. Firstly the virtual model

representation needs to be decided. Some of the surface representation techniques that

were considered include implicit surfaces, tessellated surfaces, and parametric surfaces.

Implicit surfaces generated using analytical, variational, and multi-level partition of unity

(MPU) approach, were considered. Implicit surfaces can represent water tight surfaces

and solids. These surfaces are very efficient for collision detection for lower order

surface. However, when the degree of implicit surface is large or when a large number of

primitives are used to represent an implicit surface, the computational cost of collision

detection is enormous. Tessellated surfaces are preferred to represent rigid bodies

because of its compatibility with graphics hardware and efficiency of triangle-triangle

collision detection. However, this is not efficient for deformable surface. Parametric

surfaces and particularly B-splines have become the standard for CAD. Thus, it is

33

imperative that any interactive design module should use parametric representation for

the virtual models so as to have easy exchange between CAD software and haptic model.

For these reasons, B-spline surfaces were chosen to represent virtual model.

The collision detection algorithms described in literature are not efficient enough for

B-spline to B-spline collision detection. Thus, there is a need to have efficient collision

detection algorithm which can efficiently tackle collision between two or more B-spline

models and a B-spline and a point based or an implicit surface based tool. The collision

detection should be compatible with the model deformation technique and should not be

restricted to the use of a particular model.

This chapter also provided discussion on various techniques for deformation of

model. Physically based models can predict the deformation of a model more accurately,

particularly, when the model consists of multiple or non-homogenous materials. A

detailed study of the physics-based models provided the insight to choose mass-spring

system. Although this is not the best model to accurately model the deformation of the

model, it can provide reasonable accuracy and speed.

The next chapter introduces an efficient collision detection algorithm for a

deformable model represented as a B-spline surface. The tool can be represented as a B-

spline, a point, or an implicit surface.

34

CHAPTER 3 COLLISION DETECTION ALGORITHM

3.1 Introduction

Collision detection is an active research topic in engineering, computer graphics and

virtual reality (VR) [Jimenez, 2001]. Collision detection is the necessary step before

haptic interaction can be achieved. An efficient collision detection algorithm plays a very

significant role towards achieving real-time haptic interaction. A general collision

detection algorithm would be highly complex with high computational cost. Due to this

reason, most of the collision detection algorithms are efficient only in a given domain.

Most of the research has been carried out for applications in the video game industry and

simulations for medical applications. The algorithms developed are mostly for the rigid

bodies which can be represented as lower order implicit surfaces (spheres, cylinders,

cones etc.) or tessellated surfaces. For applications in haptic-based interaction with

virtual objects, mostly tessellated bodies are used, and many constraints imposed on

model deformation under the influence of external force.

In this thesis both the model and tool are represented as B-spline surfaces. A rigid

tool can also be represented as a point, an implicit surface, or a tessellated surface. No

constraint with regard to the shape and rigidity of the tool and model has been

considered. Both the model as well as the tool can have complex shape, elastic or plastic

properties, and multiple contacts. This chapter discusses the step by step implementation

of the collision detection algorithm for deformable models. The comparison of the

computations required for a tessellated surface with that for the B-Spline surface using

the worst case scenario (Big O notation) is also presented.

3.2 Background

3.2.1 B-spline surface

A B-spline surface with r and s number of control points in u and v directions is

mathematically represented by the equation,

35

1

0

1

0

)()(),(
r

i

s

j
ijjlik vBuBvuS P (3.1)

where Pij is the control points vector, Bik (u) and Bjl (v) are the B-spline basis functions of

the surface with degrees k and l in u and v directions, respectively; defined over non-

periodic knot vectors,

 1 1

1 1

{0,...,0, ,..., , 1,...,1}k r

k k

U u u

 and
 1 1

1 1

{0,...,0, ,..., , 1,...,1}l s

l l

V v v

.

The blending functions depend upon periodicity of the surface (in u or v or both

directions), the knot vector, the degrees of the surface in u and v directions and the

number of control points in u and v direction. However, the blending functions are

independent of the position of the control points. A B-spline blending function has the

property of recursion which is defined as:

11

1,1
1

1,
,

)(
)(

)(
)()(

iki

ki
ki

iki

ki
iki uu

uB
uu

uu

uB
uuuB (3.2)

where

otherwise

uuu
uB ii

i ,0

,1
)(1

1,

If the B-spline surface is periodic in u direction, the blending function and the knot

vector (U) are modified as:

))(mod)((,0, rriuBB kki ; }....,,{ 10 ruuuU (3.3)

The function, mod (r) in Eqn. (3.3), is the modulo function and is defined as:

,

mod () 0,

A A r

A r A r

A
remainder of A r

r

A B-spline and NURBS based surface can be expressed as a tensor product. A point

on the B-spline surface, within the knot span ui, ui+1; vj, vj+1, can be determined by using

the tensor product as:

T
lbbaka vBuBvuS)](][)][([),(,,, P ; iaki , jblj (3.4)

36

In Eqn. (3.4), ,[()]a kB u is a 1 × (k+1) row vector of scalars, ,[]a bP is a (k+1) × (l+1)

matrix of control points, and ,[()]T
b lB v is a (l+1) x 1 column vector of scalars. This

equation can also be written as:

T
viju vBBuvuS]][][][][[),(P

 (3.5)

where]........1[][2 kuuuu and]........1[][2 lvvvv

To generate a large number of points on the whole B-spline surface, Eqns. (3.4 -3.5)

need to be computed many times. Instead of using a discrete value for u and v, a set of u

and v parametric values can be used simultaneously. Equations (3.4-3.5) are modified to

generate the matrix of a large number of points to discretize the B-spline surface patch

into a set of a parametrically uniform grid of discrete points in u and v directions. The

matrix of these discrete points M, is then given as:

M = Au Pij Av; 10 ri , 10 sj (3.6)

where Au and Av are blending matrices (also known as B-spline Blending Transformation

Matrices or simply Transformation Matrices).

The magnitudes of the entries of the blending matrices depend upon the blending

functions and u and v parametric values. In Eqn. (3.6); M is an m×n vector of scalars, Au

is an m×(r+1) vector of scalars, Pij is an r×s matrix of control points, and Av is an s×n

vector of scalars.

Equation (3.6) can be re-written as:

 Pij = [Au
T Au]

-1 Au
T M Av

T [Av Av
T]-1, (3.7)

to determine the position of the control points that can represent a B-spline surface

approximating the parametrically uniform discrete points of matrix M. As the blending

matrices are independent of the position of the control points, these matrices (Au, Av) and

their inverses ([Au
T Au]

-1, [Av Av
T]-1) can be pre-calculated.

Figure 3.1 shows a typical blending matrix, Au. It is a band matrix and any row of

this matrix can have a maximum of k+1 number of non-zero terms.

37

 u = 1

u = 0

umin

umax

 1 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0

 0 .5 1 2 0 .4 3 4 0 .0 5 3 0 .0 0 1 0 .0 0 0 0 .0 0 0 0 .0 0 0

 0 .2 1 6 0 .5 9 2 0 .1 8 1 0 .0 1 1 0 .0 0 0 0 .0 0 0 0 .0 0 0

 0 .0 6 4 0 .5 5 8 0 .3 4 2 0 .0 3 6 0 .0 0 0 0 .0 0 0 0 .0 0 0

u A

0 .0 0 8 0 .4 1 6 0 .4 9 1 0 .0 8 5 0 .0 0 0 0 .0 0 0 0 .0 0 0

 0 .0 0 0 0 .2 5 0 0 .5 8 3 0 .1 6 7 0 .0 0 0 0 .0 0 0 0 .0 0 0

 0 .0 0 0 0 .1 2 8 0 .5 8 8 0 .2 8 3 0 .0 0 1 0 .0 0 0 0 .0 0 0

0 .0 0 0 0 .0 5 4 0 .5 2 1 0 .4 1 5 0 .0 1 1 0 .0 0 0 0 .0 0 0

 0 .0 0 0 0 .0 1 6 0 .4 0 9 0 .5 3 9 0 .0 3 6 0 .0 0 0 0 .0 0 0

 0 .0 0 0 0 .0 0 2 0 .2 8 2 0 .6 3 1 0 .0 8 5 0 .0 0 0 0 .0 0 0

 0 .0 0 0 0 .0 0 0 0 .1 6 7 0 .6 6 7 0 .1 6 7 0 .0 0 0 0 .0 0 0

 0 .0 0 0 0 .0 0 0 0 .0 8 5 0 .6 3 1 0 .2 8 2 0 .0 0 2 0 .0 0 0

 0 .0 0 0 0 .0 0 0 0 .0 3 6 0 .5 3 9 0 .4 0 9 0 .0 1 6 0 .0 0 0

 0 .0 0 0 0 .0 0 0 0 .0 1 1 0 .4 1 5 0 .5 2 1 0 .0 5 4 0 .0 0 0

 0 .0 0 0 0 .0 0 0 0 .0 0 1 0 .2 8 3 0 .5 8 8 0 .1 2 8 0 .0 0 0

 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .1 6 7 0 .5 8 3 0 .2 5 0 0 .0 0 0

 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 8 5 0 .4 9 1 0 .4 1 6 0 .0 0 8

 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 3 6 0 .3 4 2 0 .5 5 8 0 .0 6 4

 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 1 1 0 .1 8 1 0 .5 9 2 0 .2 1 6

 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 1 0 .0 5 3 0 .4 3 4 0 .5 1 2

 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .0 0 0 1 .0 0 0

Figure 3.1 A typical blending matrix, Au.

As shown in Figure 3.1, a part of the blending matrix can be used to discretize a part

of the B-spline patch bounded by the minimum and maximum values of the parameters u

and v (umin, vmin; umax, vmax). Thus, if a part of the B-spline model is colliding with the

tool, only that part is discretized to detect collision.

Equations (3.1), (3.6), and (3.7) will determine the correlation between control points

and the discrete points generated on the B-spline surface. These equations can be used to

discretize a B-spline surface and to calculate the control points which can represent a

deformed B-spline surface.

Figure 3.2 shows a discretized B-spline surface along with the set of control points

Pij.

38

Control points set Pij
of the B-spline surface

Set of discretized points M
for the B-spline surface

 B-spline surface

Figure 3.2 Discretized B-spline surface.

3.2.2 Generation of blending matrices

Once various parameters of a B-spline surface are known, a blending matrix can be

generated. The size of this matrix will depend upon the number of control points and the

maximum number of points to be generated in u and v direction. The maximum number

of points to be generated depends upon the accuracy required for collision detection. The

size of a blending matrix for generating m points in u direction with n control points will

be m×n. For the same number of control points in the v direction, the matrix is transpose

of the matrix in the u direction and its size will be n×m. This will generate a total of m2

points on the B-spline surface. Similarly the blending matrices for finding tangents at

each point in the u and v directions can be pre-computed. The cross multiplication of the

tangents in the u and v directions yields the resultant surface normal at the point.

As per Eqn. (3.7), the inverse of the blending matrix, to find new positions of control

points, needs to be computed so that the deformed surface can be represented as a B-

spline surface. Finding the inverse of the matrix during real time haptic interaction will

increase the computational cost and sometimes may be problematic or even impossible.

Since the blending matrices are pre-computed and are independent of the position of the

control points, their inverse can also be pre-computed. This reduces the computational

cost of rendering the deformation of the B-spline surface. The algorithm can also use a

39

property of B-spline surfaces called local support, which indicates that each segment of

the B-spline surface is influenced by only 'k+1' control points where 'k' is the degree of

the surface. If only a small segment of the B-spline surface undergoes deformation due to

interaction with another surface, only some of the control points need to be updated. This

reduces the cost of updating convex hull and the nodes on the B-spline surface. However

if the deformation of the model, based on real material properties is to be calculated, all

control points need to be updated.

3.2.3 Bounding volume for B-spline surfaces

The entire B-spline surface lies in the convex hull of the control points Pij [Bloomenthal,

1997b]. This is due to the property of positivity which ensures that a B-spline curve or

surface always remains within its convex hull. This makes the convex hull, a good choice

as a bounding volume. As the position of the control points is always known and their

numbers limited, the cost of updating the bounding volume (convex hull) is minimal.

Thus, the intersection test algorithm between two B-spline surfaces checks whether two

convex hulls are overlapping. If convex hulls are not intersecting each other, the B-spline

surfaces are not colliding.

3.3 Collision Detection Algorithm

The collision detection algorithm for deformable bodies assumes that all the deformable

models and tools are represented as a single B-spline patch. The algorithm also allows the

rigid tools to have point-, implicit surface-, or tessellated surface-based representation.

3.3.1 Overview

Figure 3.3 shows the flow chart of the proposed collision detection algorithm. The

interaction of collision detection with the force response model is also shown in the flow

chart. The algorithm has two phases: the pre-processing phase and the run-time phase.

40

Figure 3.3 Flowchart of the proposed algorithm.

During the pre-processing phase the blending matrices (Au and Av) of the given B-

spline surfaces, along with their inverses ([Au
 T Au]

-1 and [Av Av
 T]-1), are calculated and

stored. A convex hull is generated from the control point set.

The run-time phase starts by checking for the intersection of convex hulls (bounding

volume) of B-spline surfaces. If the convex hulls are intersecting, the corresponding

minimum and maximum values of u and v parameters associated with the control points

of these surfaces are determined. Within this range of u and v, sparse points are generated

41

on surfaces of the model and the tool, by using intermittent rows and columns of blending

matrices. The points are used to generate spheres on both the model and the tool and

these spheres are then checked for intersection. More points are generated within these

intersecting spheres. This process of generating spheres at the lower levels of detail

continues until all the rows and columns for the blending matrices have been used. The

process of generating lower levels of detail is terminated if, at a particular level of detail,

all the spheres on the model and the tool are intersecting. This is possible if the curvature

of model and tool is similar in the region of probable collision.

The points within the intersecting spheres at the lowest level of detail are

subsequently used to generate a triangulated mesh. The triangle-triangle intersection test

is then carried out to find out the parts of the surfaces which are intersecting. This

information is used to map the forces, applied by the user, to the nodes of the mass spring

system. The physics-based model then determines the resultant deformation and the

reactive forces to be sent back to the user. Using the inverse blending matrices, new

position of control points is determined and the convex hull for the B-spline surface is

updated. Following sub-sections describe the algorithm in detail.

3.3.2 Pre-processing phase

3.3.2.1 Generation of blending matrices

During the pre-processing stage, depending upon the parameters of the B-spline surface

(periodic/non-periodic, number of control points in the u and v directions, the maximum

number of points to be generated) blending matrices are generated and stored along with

their inverse.

A maximum of two blending matrices for generating points are needed per B-spline

surface. Similarly their inverse is also calculated and stored. This inverse is calculated by

the Gaussian Elimination Method using ‘complete pivoting’. The complete pivot method

enhances the robustness of the algorithm and, as this is done during the preprocessing

phase, the time required to calculate inverse of the matrix does not increase the

computational cost during the run-time phase. The algorithm not only calculates surface

normal at the points generated but also calculates tangents in the u and v direction. This is

42

useful if tangential properties, such as friction, are also to be considered to realistically

model material properties. The surface normals also help in correctly mapping the forces

to the surface by calculating the forces normal to the surface. The blending matrices for

finding tangents are also generated and stored during the preprocessing phase.

3.3.2.2 Generation of convex hull

Many convex hull algorithms are available in literature. Avis [Avis, 1995] has considered

most of the known classes of algorithms for generating convex hulls. Most of the

algorithms deal with the general case of ‘d’ dimensions. In the present application, the

control points will always be in three dimensional space, which simplifies the algorithm.

The algorithm used for the generation of a convex hull is similar to the Quickhull

Algorithm [Barber, 1996], which is a variation of the randomized incremental algorithm.

It is a recursive algorithm and partitions the control points data into several sets. Instead

of selecting a random point, it selects the point which is farthest from the existing plane

of the partial convex hull. In the worst case scenario the computational cost of this

algorithm is O (n log n), where n is the number of control points. As control points used

for B-spline surfaces are usually small in number, the computational cost is quite small.

3.3.3 Run-time phase

During the pre-processing phase the control point matrices and blending matrices of the

given B-spline surfaces and the inverse of these blending matrices are calculated and

stored.

The run-time phase starts by checking for the intersection of convex hulls of B-spline

surfaces initially calculated during pre-processing phase. This is done to determine if

there is a need to carry out complex intersection test between B-spline surfaces. If the

convex hulls are not intersecting, the collision detection process exits. However, if the

convex hulls are intersecting, the algorithm goes to lower levels of detail to determine

exact regions of intersection.

Figure 3.4 illustrates major steps during the run-time phase of the proposed

algorithm.

43

(a) Tool intersecting the plane (triangle) on model (b) Points generated within maximum and
minimum u and v values of intersecting triangle

(c) Spheres generated from the points (d) Points generated within intersecting sphere

(e) Expanded view of points generated within
intersecting sphere

(f) Spheres generated from the points

(g) Intersecting spheres (h) Triangulation using the points of intersecting
spheres

Figure 3.4 Illustrations showing the major steps in the proposed algorithm.

44

Once the surfaces of the convex hulls intersect, the algorithm determines the

corresponding minimum and maximum values of u and v parameters associated with the

control points of these surfaces. It then generates sparse points within these limits on the

surfaces of the model and tool. Spheres are generated using these sparse points in such a

way that they cover the whole surface area. Spheres generated on the model surface are

then checked for intersection with those on the tool or another surface model. If some of

the spheres are intersecting, the algorithm generates more points (by using more values of

u and v from the blending matrix) within the u and v parameter limits of the intersecting

spheres and discards the points generated in non-intersecting spheres. This process of

generating lower levels of details continues until all the rows of the blending matrix are

used. The points generated at the end of this loop are then used for triangulation of the

surface.

If all the spheres generated on the model and the tool are intersecting, then the

algorithm does not proceed to lower levels of details and rather stops at the last level of

detail. It then compares the normals of new points being generated within the u and v

parameters. If the difference between unit normal of the point generated and that of the

previous point is less that a small number δ, the new point is discarded. The rest of the

points are then used for tessellation of the surface. The triangle-triangle intersection test

is then carried out to find out the parts of the surfaces which are intersecting. Once the

region(s) undergoing collision are known, the forces on these regions can be used by a

physics-based model to determine the deformation of the model and the tool and the force

to be fed back to the user through a haptic device. Using the inverse blending matrices,

new position of control points is determined and the convex hull for the B-spline surface

is updated. Each step of the algorithm is elaborated in the following subsections.

3.3.3.1 Intersection test of convex hulls

Collision detection between convex polytopes has been extensively researched in

computational geometry and robotics [Baraff, 1990; Gilbert, 1988]. These algorithms can

be easily applied to a convex hull generated from the control points set. The algorithm

presented by Gilbert uses information from previous time steps for fast initialization and

can also be used successfully in this case. The algorithm presented by Baraff for the

45

intersection test of convex hulls, using linear programming and coherence, is more

suitable. This algorithm uses the argument that if two convex polytopes are not

intersecting, there exists a separating plane with the face or edge of one of the polytopes.

This face is called the ‘witness’ and is used in computing the separating plane. A given

plane can be verified as the separating plane between two convex polyhedra in O (n) time

where n is the number of vertices of two convex hulls. The surfaces will not be

intersecting with each other until a separating plane exists.

3.3.3.2 Calculating minimum and maximum values of u and v

Each control point of a B-spline surface has an influence within a particular range of knot

vectors in u and v directions. Depending upon the degree of the surface in u and v

direction and the knot vector in u and v direction, the minimum and maximum value of u

and v associated with a control point can be calculated [Piegl, 1997; Zeid, 1991]. When

two convex hull surfaces (or edges or an edge and a surface) intersect with each other

such that there does not exist any separate plane, the vertices of the surface (edge) are

noted. These vertices are the subset of the control points set of the B-spline surface. The

corresponding u and v parametric values associated with these vertices (control points) of

the intersecting surfaces are calculated. These values are then used for generating

minimum and maximum values of u and v (umin, vmin; umax, vmax).

3.3.3.3 Surface discretization

When the convex hulls intersect, there is a strong possibility that the surface close to the

intersecting surface will experience collision. The limits for discretization of the surface

are set by minimum and maximum values of parameters u and v (umin, vmin; umax,vmax), as

calculated in Section 3.3.3.2. The setting of limits on the surface for point generation and

subsequent tessellation reduces the computational cost of point generation as compared to

the algorithm proposed by Gao and Gibson [Gao, 2005; 2006].

Figure 3.5 shows a typical blending matrix for generation of points in the u direction

and the selection of intermittent blending matrix for generating points on the surface

within the selected maximum and minimum range of parameter u.

46

 u = 1

umin

umax

u = 0 Selection of intermittent
rows for sparse points grid

0.167 0.667 0.167 0.000 0.000 0.000 0.000 0.000

0.032 0.527 0.429 0.012 0.000 0.000 0.000 0.000

0.001 0.256 0.644 0.100 0.000 0.000 0.000 0.000

0.000 0.067 0.607 0.324 0.003 0.000 0.000 0.000

0.000 0.005 0.359 0.583 0.053 0.000 0.000 0.000

0.000 0.000 0.119 0.656 0.224 0.000 0.000 0.000

0.000 0.000 0.000 0.194 0.664 0.142 0.000 0.000

0.000 0.000 0.000 0.042 0.556 0.394 0.008 0.000

0.000 0.000 0.000 0.000 0.082 0.627 0.289 0.002

0.000 0.000 0.000 0.000 0.008 0.394 0.556 0.042

0.018 0.000 0.000 0.000 0.000 0.024 0.495 0.463

0.119 0.000 0.000 0.000 0.000 0.000 0.224 0.656

0.607 0.067 0.000 0.000 0.000 0.000 0.003 0.324

0.644 0.256 0.001 0.000 0.000 0.000 0.000 0.100

0.429 0.527 0.032 0.000 0.000 0.000 0.000 0.012

0.167 0.667 0.167 0.000 0.000 0.000 0.000 0.000

0.0000.000 0.018 0.4630.495 0.024 0.000 0.000

0.0000.000 0.000 0.002 0.289 0.627 0.0820.000

0.0000.000 0.000 0.000 0.000 0.1420.664 0.194

0.3590.005 0.000 0.000 0.000 0.000 0.053 0.583

uA

Figure 3.5 Selecting intermittent blending matrix for generation of points within the selected range
of parameter u.

For generating points in the selected portion of the B-spline surface, a portion of the

blending matrix is selected within minimum and maximum values of parameters u and v.

Initially the B-spline surface is coarsely discretized. This is done by using intermittent

rows and columns of the blending matrix for u and v directions, respectively. The matrix

of the points generated is given by Eqn. (3.6), M = Aiu Pij Aiv, where subscript ‘i’ stands

for intermittent while u and v stand for blending matrix in u and v directions respectively.

Using these blending matrices points will be generated on the B-spline surface. Similarly

tangents for all these points in u (Tiu) and v direction (Tiv) can be calculated by using the

equations: Tiu = ATiu Pij Aiv and Tiv = Aiu Pij ATiv

These tangents can then be used to impart tangential properties such as friction on

the surface and for accurate calculation of the net force acting on the surface when the

applied force is not normal to the surface. The surface normal at any point (iu, iv) is

calculated by cross multiplying Tiu and Tiv : N = Tiu x Tiv

47

3.3.3.4 Generation of spheres

The sparse points generated on the surface are then used to generate spheres. As

discussed in Section 3.3.3.3, the points are generated within minimum and maximum

limits for parameter u and v. The algorithm to generate spheres starts from point at

umin,vmin. It compares the diagonal distance between points at u1,v1; u2,v2; and u2,v1 ; u1,v2

and selects two points of longer diagonal and one of the two remaining points. These

three points in space can generate a unique circle of definite radius and center points. If a

sphere is generated with the same center point and radius as of the circle, the fourth point

will lie on or within the boundary of this sphere. This way of creating sphere ensures that

there is no degenerative case, the computational cost is less and size of the sphere is

optimal. This is better than creating a unique sphere from all the four points. This process

continues with the next values of u and v until all points has been used.

Figure 3.6(a) shows the selection of points to generate a sphere and Figure 3.6(b)

shows the progress of the generation of spheres.

u1 u2 u3 u4

v4

v3

v2

v1

(a) Selection of points to generate the sphere (b) Progress of generation of spheres

Figure 3.6 Generation of spheres using the points generated on the B-spline surface.

Spheres are generated on both the intersecting B-spline surfaces, and an intersection

test is carried out between these spheres. The minimum and maximum u and v values for

the intersecting spheres are noted. More points are generated within these intersecting

48

spheres by selecting more lines and columns of the blending matrices in both u and v

directions. Again spheres are generated and intersection tests are carried out to generate

lower levels of detail.

The process is carried out alternatively for the model and the tool. This reduces the

computational cost as compared to the case when the lower levels of details are generated

simultaneously for the model and the tool. Initially more points are generated within the

intersecting sphere(s) on the model, and the intersection test is carried out between these

spheres and the intersecting sphere of the tool. At the next stage, more points and

consequently spheres are generated within the intersecting sphere on the tool surface

prior to the intersection test being performed. This loop, for generating lower levels of

detail, works until all the values of u and v parameters have been used from the blending

matrices. An exception occurs when the number of spheres generated at a particular level

is equal to the number of intersecting spheres on both the tool and the model, in which

case the loop is terminated. This is possible when two surfaces have a similar curvature in

the region of collision. An interesting and computationally expensive situation will

emerge when two flat surfaces come in contact. When both the model and the tool are

deformable, there is strong possibility that both surfaces will deform during the

interaction to yield a flatter surface of interaction. Similarly when a deformable model

rests on a rigid plane (e.g. table) or is sculpted using a rigid plane tool, the region at

collision will yield a flatter surface. During these interactions the region of contact is

large and most of the collision detection algorithms for deformable models fail when the

area of contact is so large. In this scenario all the spheres generated on the surfaces will

be intersecting and lower levels of details will only add to the computational cost. The

proposed algorithm for generating spheres stops generating more points and spheres in

such a case and straightaway goes to the next step of tessellation of surface.

3.3.3.5 Tessellation of surfaces

3.3.3.5.1 Generation of points for tessellation

There are two scenarios in which the algorithm for sphere generation ends the loop and

moves to tessellation of the surface of probable collision. In the first scenario if all the

values of u and v parameters have been used from the blending matrices, more points

49

inside the intersecting spheres cannot be generated. In such a scenario, tessellation of the

surface starts using the points within the u and v parametric values of intersecting

spheres. As the number of intersecting spheres is small, only a small number of points

will be generated on the surface for tessellation. At the same time the tangents as well as

normals at these points are generated using the tangent blending matrices as discussed in

Section 3.3.3.3.

In the second scenario the number of intersecting spheres is equal to the number of

spheres generated for both the model and the tool. The number of points, and

consequently triangles generated, will be large. This will not only increase the

computational cost of the generation of triangles but also that of the intersection test of

these triangles. To avoid the increase in computational cost, the proposed algorithm

checks the normal of the points being generated in the region. If the normal of a point is

within the limits of that of the previous point by a small number δ, this point is not

generated. This way the points generated on the surface are significantly reduced, without

sacrificing accuracy. This reduces the number of triangles to be generated.

3.3.3.5.2 Triangulation of surface

Tessellation of surfaces is a well researched topic. A large number of algorithms are

available with varying cost of computation. Most of the algorithms, in the worst case

scenario, achieve a computational cost of O(n log n). The most commonly used

triangulation algorithms are Delaunay based. A major drawback of these algorithms is

that while being efficient for a convex object, these tend to triangulate cavities in the case

of non-convex objects. Thus, the tessellated surface does not show the cavities. The

algorithm presented in the thesis does not generate too many points for triangulation to

reduce computational cost. As the deformable model can have steep curvature and sharp

cavities, a general Delaunay triangulation method will be unable to efficiently generate

accurate triangulated surface. Fortunately, the method of generating spheres used in this

algorithm helps us generate accurate triangulated surface. As per one of the definitions of

the Delaunay triangle, “All interior edges of a triangulation Δ of a point set are locally

optimal if and only if no point from this point set is interior to any circumcircle of the

triangle in Δ” [Øyvind, 2006]. As per the algorithm of generating spheres, there is a

50

fourth point inside the sphere. This means that there cannot be an optimal triangle by

joining the three points that are on the surface of sphere. Thus the fourth point is joined

with all the points on the sphere surface. The distance between the three points on the

surface is calculated. The largest side of the possible triangle between these three points

is ignored and the rest of the lines are generated. This yields optimal triangles in an

intersecting sphere. Figure 3.7(a) shows the spheres generated for the given points on the

surface.

(a) Four intersecting spheres shown in dotted lines (b) Triangulation of surface using points in the spheres

Figure 3.7 Triangulation using the points inside intersecting spheres.

Similarly if there are many intersecting spheres with common points as shown in

Figure 3.7(b), the same process will result in triangulated surface. As two points will be

common, a regular mesh within the region is generated. Another advantage of the process

is that all the intersecting spheres can be triangulated simultaneously rather than by

adding one point at a time as in the case of most of the algorithms.

3.3.3.6 Triangle-triangle intersection test

Once the regions of probable collision of the surfaces of the virtual model and tool are

tessellated, a triangle-triangle intersection test is carried out. The simplest approach of

testing all the triangles of the model against all the triangles of the tool requires an

immense number of triangle-triangle intersection tests. Thus, many algorithms have been

devised to reduce the computational cost. In this respect the algorithm, presented in this

thesis first limits the number of triangles of the model which can intersect with that of the

tool. Only those triangles are checked for intersection whose bounding spheres are

51

intersecting at the lowest level of detail. As the computational cost of a sphere-sphere

intersection test is far less than that of a triangle-triangle test, the overall computational

cost is reduced.

Once it is determined as to which triangles have the probability of intersection, an

actual triangle-triangle test is carried out. A simple method for determining whether two

triangles in a three dimensional space intersect, requires the solution of six sets of linear

equations, each corresponding to an intersection of one triangle’s edge with the surface of

the other triangle. Two algorithms from the literature were considered that use less

computation than this simplistic approach [Guigue, 2003; Möller, 1997]. The algorithm

developed by Guigue [Guigue, 2003] is an improvement of that by Möller [Möller, 1997]

and is computationally more efficient. The major limitation is that it cannot tackle

degenerate cases. As the points are dynamically generated in our algorithm and the

conditions are such that chances of degeneracy are minimal, this algorithm is very

suitable. Depending upon the penetration of the tool in the model at various points, as

computed by a triangle-triangle intersection test, the physics based model will calculate

the deformation of the model and tool and the force feedback to the user.

3.3.3.7 Updating bounding volume

Once the physics based force response system determines the deformation and the new

position of the points on the surface of the B-spline model, the control points are updated

using the inverse matrices stored during pre-processing phase. Equation (3.7),

 Pij = [Au
 T Au]

-1 Au
 T M Av

 T [Av Av
 T]-1,

will determine the new set of control points. As matrices are already stored and the

program does not need to do the inverse of a matrix, the computational cost is

substantially decreased. The change in the position of the control points warrants the

updating of a new convex hull. The same function, as described in Section 3.3.2.2 is

called to update it. All the steps described in Section 3.3.3 are then repeated as per the

requirement until the desired shape of the model is achieved and/or the model is

validated.

52

3.4 Special Cases

This algorithm is for collision detection between two or more B-spline surface model(s)

and tool. In special cases a tool can be represented as a rigid implicit surface tool or a

point based tool. This algorithm is capable of handling these special cases efficiently. In

the case of a point based tool, the process discussed in Section 3.3.3 is followed for the

model only. More points are generated in a sphere with which point-based tool is

intersecting and the process continues till all the rows of the blending matrices have been

used. Finally, two triangles will be generated within the intersecting sphere at the lowest

level of detail. The intersection test of the point with these two triangles then determines

the point where the tool is colliding with the model.

In the special case of an implicit surface tool, only part of the algorithm is used. In

the algorithm, first the tool is checked for intersection with the convex hull of the B-

spline. Once the implicit surface intersects the convex hull, the algorithm finds out the

corresponding values of u and v parameters within which the intersecting surfaces of the

convex hull lies. It then generates points on the surface within these limits using the

blending matrices. These points are then input into the implicit surface to detect collision.

3.5 Analytical Comparison and Performance

The approach, presented in this thesis for collision detection, is to use the advantages of

the B-spline surface representation and the computational efficiency of a triangle-triangle

intersection test. Most of the existing algorithms use either of these (tessellated surface

representation or B-spline/Bezier/NURBS surface representation) approaches. Hence we

compare our algorithm with the tessellated surface representation and the B-

spline/Bezier/NURBS surface representation.

3.5.1 Comparison with a tessellated model

Figure 3.8 shows the various steps required for complete collision detection for the

tessellated model and of the proposed model, along with the computational cost

considering the worst case scenario.

53

t = number of triangles; n = number of control points; m = maximum number of points to
be generated on B-spline surface

Figure 3.8 Comparison of steps for collision detection for tessellated model with proposed
algorithm.

Most of the collision detection algorithms, based on tessellated geometry, are for

rigid bodies. Some of these algorithms have been used for deformable objects or

proposed for use in deformable objects. Bordegoni [Bordegoni, 2006] relied on the

algorithm of Barraff [Baraff, 1990] for rigid bodies and Gottschalk [Gottschalk, 1996]

has proposed that, in future, the algorithm can be adopted for deformable bodies. In the

absence of any benchmark for comparison of different algorithms, the worst case

54

scenario represented as Big O notation, can be used as one of the tools to compare the

results of proposed algorithm. Though constants and lower order terms are not used in the

conventional representation of Big O notation, these terms have been used to provide a

better comparison. For comparison, oriented bounding boxes (OBBs) are used as the

bounding box [Gottschalk, 1996] for a deformable model represented as a tessellated

surface. The total cost for each step is tabulated in Table 3.1.

Table 3.1 Comparison of computational cost of collision detection for tessellated model with the
proposed algorithm.

Operations

Computational Cost

Tessellated
Model

Parametric Model

Bounding Box O (t log t) O (n log n)

Collision Prediction O (1) O (n)

Discretization of B-Spline
surface

Nil O (n2m)

Generation of Spheres Nil O (m)

Intersection Test of
Spheres

Nil O (m)

Tessellation of region of
probable collision

Nil O (m log m)

Collision Detection O (ab2) O (m2)

Total computation cost
O (t log t) + O (1)

+ O (ab2)

O (n log n) + O (n) + O (n2m) +
O (m) + O (m) +

O (m log m) + O (m)2

The number of triangles that can be generated from a given set of points depends

upon the location of the points, the total number of points and the topology of the surface

being discretized. In general, the number of triangles generated is given by equation, t =

2m - 2 - e, where m is the number of points and e is the number of points on the convex

hull of the triangulated surface. Considering that the number of triangles that can be

55

generated is 1.5 times the number of points, the computational cost required for

tessellated model with an equivalent number of points generated, can be compared.

Different percentages of area of contact are considered, assuming an even distribution of

triangles on the surface of the model.

Figure 3.9 shows the graphs for different areas of contact and the computational

costs of the tessellated model and that of the B-spline surface model for various control

points.

1 % area of contact

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Number of triangles (x 103)

N
um

be
r

of
 c

om
pu

ta
tio

ns
 (

x
10

6
)

Parametric 4x4

Parametric 6x6

Parametric 8x8

Parametric 10x10

Parametric 12x12

Tessellated

5 % area of contact

0

50

100

150

200

250

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Number of triangles (x 103)

N
um

be
r

of
 c

om
pu

ta
tio

ns
 (

x
10

6
)

Parametric 4x4

Parametric 6x6

Parametric 8x8

Parametric 10x10

Parametric 12x12

Tessellated

10 % area of contact

0

50

100

150

200

250

300

350

400

450

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Number of triangles (x 103)

N
um

be
r

of
 c

om
pu

ta
tio

ns
 (

x
10

6
)

Parametric 4x4

Parametric 6x6

Parametric 8x8

Parametric 10x10

Parametric 12x12

Tessellated

2 % area of contact

0

10

20

30

40

50

60

70

5 10 15 20 25 30 35 40 45 50 55 60 65 70
Number of triangles (x 103)

N
um

be
r

of
 c

om
pu

ta
tio

ns
 (

x
10

6
)

Parametric 4x4

Parametric 6x6

Parametric 8x8

Parametric 10x10

Parametric 12x12

Tessellated

Figure 3.9 Comparison of total computations required in the worst case scenario for collision
detection of tessellated model versus the B-spline model using proposed algorithm.

56

The "X" axis shows the number of triangles for the tessellated model and the

equivalent number of triangles for the B-spline surface model. The "Y" axis shows the

number of computations required for the worst case scenario. It is clear from the graphs

that the computational cost of the proposed algorithm is much less than that of a

tessellated model. This reduction in computational cost is more pronounced for a higher

resolution. During the sculpting and evaluation of the model, multiple contacts and a

large contact area are very common. The proposed algorithm is very suitable for this

application, though it can be extended to other applications as well.

Another aspect of sculpting is that during the early interaction with the objects, the

contours are not very sharp but the area of contact is very large. As the sculpting process

progresses further, the details get finer and the area of contact is reduced. The proposed

algorithm can aptly take advantage of this fact. Figure 3.10 shows the total computation

cost of collision detection for different areas of contact for a 12 × 12 control point B-

spline surface model.

 12x12 Control Point B-Spline Surfaces

0

10

20

30

40

50

60

70

80

5 10 15 20 25 30 35 40 45 50 55 60 65 70
Number of triangles (x 103)

N
o

. o
f c

o
m

p
u

ta
tio

n
s

(x
 1

06)

1%

2%

5%

10%

Figure 3.10 Maintaining lower number of computations required for collision detection by changing
resolution of the surface.

The number of points generated on the surface can be decreased by using fewer rows

and columns from the blending matrices as discussed in previous sections. Thus in the

beginning when the surface to be sculpted does not have finer details but a large area of

contact, the user can specify a lower resolution. This will reduce the number of points

57

generated and therefore the computational cost will be lower. It is shown by the dotted

horizontal line in Figure 3.10. Thus, by changing the resolution of the model (using fewer

number of equivalent triangles), the number of computations can be maintained to less

than 8 × 106, even during the worst case scenario while maintaining high resolution and

accuracy of collision detection during the sculpting of the finer details of the model. The

number of computations in an average case will be much lower. As the sculpting process

progresses to the finer details, the number of points generated and hence the resolution

and accuracy of collision detection can be increased without increasing the computational

cost, as the area of contact is also being reduced.

3.5.2 Comparison with parametric surface models

A number of collision detection algorithms for parametric surface models representing

deformable objects have been proposed. Most of these algorithms are based on

subdividing the surface into patches and sub-patches until these are sufficiently planer.

This is done during the pre-processing phase or the run-time phase. These sub-patches are

then bounded by bounding boxes, mostly AABB’s [Hughes, 1996]. If this process is

carried out during the run-time, it is time consuming and computationally intensive. If it

is done during the pre-processing phase, then the subsequent deformations of the model

make the subdivision prone to large errors and inefficient collision detection. Most of

these algorithms use point contact and are suitable for game engines and not for

applications in interactive free form modeling. These algorithms also tend to fail when

large surface areas are in contact. At the same time, these algorithms tend to deform a

small region and change the position of a small number of control points. In physics

based haptic interaction, collision at any point will change the geometry of a large part of

the surface. Hence, a whole set of control points will need to be updated. As the proposed

algorithm provides a different approach, it is not possible to compare this algorithm with

these methods. Nonetheless, the proposed algorithm is capable of efficiently detecting the

collision for any type of B-spline surface and any subsequent deformation does not affect

the accuracy of collision detection. The user is given freedom to control the accuracy of

collision detection and this increases the robustness of the system.

58

Gao and Gibson [Gao, 2005; 2006] used an implicit surface to represent the tool and

used points generated to discretize the B-spline surface to detect collision. At any time,

all the points are input in an implicit surface equation of the tool to determine if the

surface is colliding with the tool. This limits the applications of the technique and it

cannot handle a B-spline surface or point-based tool. The advantage of the proposed

algorithm over the collision detection algorithm presented by Gao and Gibson, is that it

uses the points only in the region of probable collision and not on the entire surface of the

model. This reduces the cost of collision detection. Furthermore, if the tool and model are

apart (convex hull of B-spline model not intersecting with implicit surface), there is no

need to input a large number of points in the equation of implicit surface to detect

collision. The proposed algorithm is also capable of detecting collision between a B-

spline surface and a point based tool unlike the algorithm used by Gao and Gibson.

3.6 Concluding Remarks

In this chapter, the collision detection algorithm for single B-spline surface patch was

introduced. No limitation has been imposed on the shape, complexity, degree or the

number of control points of the B-spline surface representing the tool or model. Both the

model and the tool can have complex shape, elastic or plastic properties, and multiple

contacts.

The algorithm is also capable of detecting the collision of a B-spline surface model

with a tessellated surface, implicit surface or a point based tool. This will allow the user

to use rigid or deformable tools with complex shapes and enhance the ease and

productivity during the sculpting or concept validation in virtual reality environment. The

‘on the fly’ generation of points and triangles helps to maintain the quality of triangles.

At the same time resolution of the model can be varied during haptic interaction, as

needed, thereby reducing the overall computational cost. Although the algorithm uses a

triangle-triangle intersection test for collision detection, it is far more efficient than a

tessellated surface deformable model. The novel method of generating spheres at

different levels of detail to find out the regions of the surface likely to collide, allows

multiple contact collision detection. It is more efficient than an octree subdivision as

59

instead of subdividing whole space only the spheres which are intersecting are

subdivided. The sphere-sphere intersection test being more efficient as compared to a

triangle-triangle intersection test, reduces the cost of determining the regions of probable

collision and helps reduce the number and hence the cost of generation and collision

detection of triangles on the surface.

The novel technique of comparing the normals of the points generated on a flat

surface reduces the computational cost of collision detection between two flat B-spline

surfaces. This makes the algorithm robust as it can handle a potentially computationally

expensive situation at a much lower computational cost. In general, calculation of inverse

of matrices is required to determine new set of control points representing the B-spline

surface after deformation. A matrix inverse calculation can be problematic and

sometimes impossible. The calculation and storage of blending matrices and their inverse

during the preprocessing stage makes sure that no inverse need to be computed during

run-time phase of the algorithm. This makes the algorithm robust and efficient.

60

CHAPTER 4 MERGING MULTIPLE B-SPLINE SURFACE PATCHES

4.1 Introduction

Computationally efficient bi-parametric functions, such as B-spline and NURBS (non-

uniform rational B-spline), are commonly used to model organic and freeform shapes

and, therefore, provide a viable mathematical representation for describing the geometry

of realistic objects in VR space. CAD systems are able to create shapes by stitching or

joining together numerous low-order bi-parametric patches. Unfortunately, many

collision detection algorithms used in VR environments [Jimenez, 2001; Lin, 2004] do

not permit more than a single B-spline or NURBS surface patch to be considered at any

instant in time. Even when a collision detection algorithm is designed to tackle multiple

B-spline surface patches [Gao, 2006; Hughes, 1996; Pungotra, 2008], the physics-based

system cannot determine the deformation of these multiple joined B-spline patches unless

these are combined into a single, more complicated integral surface. This restriction

exists because the physics engine will represent the solid contained within the closed

surface as a mass-spring system. Consequently, stitching the surface patches does not

automatically connect the underlying dissimilar mass-spring networks. Furthermore, if an

object is represented by multiple B-spline surface patches stitched together with a pre-

defined continuity (C0, C1 or better), then any subsequent deformation of the object

during haptic interaction would separate the patches and result in undesired surface

representation.

Generating a complex shape from a single B-spline patch is both tedious and limits

the scope of a virtual reality based interactive shape design or other applications. This

problem can be solved, if the virtual reality engine allows multiple B-spline patches to be

easily merged into a single integral B-spline surface. This chapter discusses the step by

step implementation of the computationally fast algorithm for combining two or more

dissimilar B-spline surface patches in virtual reality environment. The proposed method

extends the collision detection algorithm described in Chapter 3 and utilizes the blending

matrices for efficiently merging two or more B-spline surface patches. No assumption

regarding the complexity, degree, curvature at the edges, or the number of control points

61

representing the surface patches is imposed on the solution. The user would have the

option to select the connectivity of the merged surfaces along the common edge. The

developed algorithm performs more robustly than the common NURBS based modeling

software tool, Rhino®. To illustrate the capabilities of the algorithm and verify its

performance, several case studies are presented and an error analysis, based on standard

deviation between the single merged surface and the original constituent surface patches

is provided in this chapter.

4.2 Related Work

The early work on combining parametric functions was done on Bézier, B-spline and

NURBS curves. The degree reduction and merging of Bézier/B-spline curves into a

single representation have been addressed in the literature by a variety of different

analytical approaches [Cheng, 2008; Hu, 2001; Piegl, 1994; 1995; Taia, 2003; Yong,

2001]. Taia et al. [Taia, 2003] introduced an approximate solution for merging two

adjacent B-spline curves by adjusting the control points through constrained

optimization. The algorithm combines the two curves by letting both B-spline curves

share a common derivative. Hu et al. [Hu, 2001] also proposed a Bézier curve merging

technique using the constrained optimization method. The basic idea is to find conditions

for the precise merging of Bézier curves first, and then compute the constrained

optimization solution by moving all the control points. In contrast, Cheng and Wang

[Cheng, 2008] proposed an alternative technique that creates a unified matrix

representation from multiple adjacent Bézier curves that have different degrees of

curvature. Continuity at the endpoints is achieved by using partitioned matrices so that

the last point of a Bézier curve matches the first control point of the next curve during the

merging process.

The conditions of geometric continuity between two adjacent bi-parametric surface

patches have been described in the literature [Du, 1990]. Shi [Shi, 2004] presented the

algorithm to obtain G1 continuity for bicubic B-spline surfaces with single interior knots

over an arbitrary quad partition of a polygonal model. Che [Che, 2005] presented an

improved algorithm for G1 continuity conditions for two adjacent NURBS surfaces with

62

arbitrary degrees and generally structured knots. The continuity conditions allow the user

to represent a model having multiple B-spline surface patches. However, if one or more

of these patches are deformed then the continuity no longer exists. Hence, these

techniques cannot be used in a VR environment when the user intends to deform the

surface to obtain the desired shape. Figure 4.1(a) shows the two surfaces, stitched

together with C1 continuity. As shown in Figure 4.1(b), when one of the surfaces is

deformed, the continuity no longer exists.

Patch 1 Patch 2 Patch 1 deformed Patch 2

(a) (b)

Figure 4.1 (a) Two B-spline surface patches matched with C1 continuity (b) Surfaces after one
surface patch is deformed.

To maintain continuity, even while the object is being deformed, the constituent

patches need to be merged into a single B-spline surface. Unfortunately, the problem of

merging B-spline surface patches is more complicated than curves because the individual

control points have influence on the shape in both u and v direction. In addition,

computational time and algorithm efficiency are important constraints on any virtual

reality application where real-time force feedback is required for haptic interaction. Any

viable technique for merging B-spline surface must also work in tandem with the

collision detection algorithms in order to optimize system performance.

63

4.3 Merging Multiple B-spline Surface Patches

In this section, the algorithm developed for merging two or more B-spline surface patches

is discussed in detail. The algorithm uses blending matrices associated with each B-spline

surface being merged. Since the algorithm uses the blending matrices that have been

previously computed for collision detection [Pungotra, 2008], it is not necessary to re-

calculate these matrices while manipulating the patches in VR space. However, if the

blending matrices are not pre-calculated, the algorithm can also generate blending

matrices.

The algorithm to merge N number of B-spline surface patches, S1, S2,…, SN; having

(r1, s1), (r2, s2), …, (rN, sN) number of control points in u and v directions respectively,

starts by discretizing the surfaces to be merged. These discretized matrices M1, M2,…,

MN are combined together to generate a matrix M of discrete points. The algorithm

calculates the revised number of control points “r” and “s” for the merged surface in u

and v directions respectively. The knot vector U and V are computed by combining the

knot vectors (U1, V1), (U2, V2),…., (UN, VN) of the surfaces being merged. Once this

information is known, it can be used to calculate revised blending matrices Au and Av for

the merged surface. These revised blending matrices help to find out the matrix of the

control points Pij, which can generate the merged surface approximating the discrete

points of the combined matrix M.

Figure 4.2 shows the flow chart, describing the steps needed to generate a merged

surface from two B-spline surface patches. This can be further extended to merge any

number of B-spline surface patches. To understand the algorithm better, it will be initially

assumed that there are only two B-spline surfaces patches of similar degree and these

surfaces are spatially close but do not intersect each other. The special cases of

intersecting surfaces, surfaces having different degrees, and merging of multiple (four)

surfaces are described separately in Section 4.5. These steps are discussed in detail in the

following sub-sections.

64

Figure 4.2 Flow chart of the proposed algorithm for merging two B-spline surface patches.

4.3.1 Discretization of B-spline surfaces

The surfaces that need to be merged are first moved closer together and allowed to touch

at one or more points. The blending matrices representing the underlying surfaces are

then used to discretize the individual B-spline surface patches. These discrete points are

stored as matrices M1 = A1
u P

1
ij A

1
v and M2 = A2

u P
2

ij A
2

v. When the merging process

starts, a combined matrix, M, is generated by the combination of these matrices. This can

be expressed as M = [M1 M2] if the matrices are to be combined column-wise, or M =

65

[M1;M2] if these are to be combined row-wise, depending upon the direction in which

these surface patches are being merged. The new number of rows (m) and columns (n) of

the combined matrix, M, are determined. Figure 4.3 shows the two constituent B-spline

surface patches and the dense distribution of discretized surface points obtained from the

patches.

(a) (b)

Figure 4.3 (a) B-spline surface patches that are to be merged together (b) Discretized points on the
surface, as generated by using the blending matrices.

4.3.2 Determining revised number of control points

When the B-spline surface patches are combined, the number of control points in u

and/or v directions will change. Consider the situation where the surfaces are being joined

only in the u direction. The new number of control points in the u direction is then given

by r = r1+ r2 -1, where r is the number of control points of the merged surface in u

direction, and r1 & r2 are the number of control points in u direction for the first and the

second surface respectively. The number of control points in v direction would remain the

same, provided the number of control points is the same for both the surfaces in that

direction, that is, if s1= s2. If surfaces have a different number of control points in v

direction then the larger number is assumed as the new number of control points.

Similarly, if the two surfaces are joined in the v direction, the number of control points in

v direction will be given by s = s1+ s2-1.

66

4.3.3 Determining the new knot vector

A knot vector determines the area of influence of each control point on the B-spline

surface. The two surfaces can have a uniform or non-uniform knot vector. Even if both

the surfaces have a uniform knot vector, these may not align with each other. For this

reason, it is better to recalculate the knot vector for the merged surface. Most often a

uniform knot vector is best suited because the algorithm is designed to tackle any general

case.

If the degree of the initial surfaces is not being changed, the algorithm simply uses

the knot vector of the first surface and then adds to it the knot vector of the second

surface, in the direction of merging. As an example, if the knot vectors of the two cubic

B-spline surface patches, being merged in u parametric direction, is given by U1 = [0, 0,

0, 0, 0.2138, 0.4959, 0.7262, 1, 1, 1, 1] and U2 = [0, 0, 0, 0, 0.1215, 0.2512, 0.3689,

0.5047, 0.7283, 0.8631, 1, 1, 1, 1]; then the combined knot vector, achieved by adding

and normalizing these knot vectors, is given by U = [0, 0, 0, 0, 0.1069, 0.2478, 0.3631,

0.5, 0.5, 0.5, 0.5608, 0.6845, 0.7524, 0. 8642, 0.9316, 1, 1, 1, 1]. Typically the average of

the last multiple knots of the first knot vector (1, 1, 1, 1) and the first knots of the second

knot vector (0, 0, 0, 0) generate the multiple knots at the common edge (0.5, 0.5, 0.5,

0.5). However, only a maximum of k multiple knots can be retained, where k is the

degree of the merged surface in the direction of merging. Thus in the given case, only

three (k) multiple knots are retained at the common edges out of four obtained by

combining the knot vectors, providing only C0 connectivity at the common edge.

The multiple knots at the common edge are further reduced, depending upon the type

of connectivity needed at the edge. For C1 connectivity, the number of multiple knots

would be k-1 and so on. For the maximum connectivity (C2 for a degree 3 surface) only

one knot is retained at the common edge. The other multiple knots are changed by

averaging them with their neighboring knots. In this case, for C2 connectivity at the

common edge, the knot vector will be given by U = [0, 0, 0, 0, 0.1069, 0.2480, 0.3631,

0.4317, 0.5, 0.5304, 0.5608, 0.6845, 0.7524, 0. 8642, 0.9316, 1, 1, 1, 1]. The knot 0.4317

was obtained by averaging the knots, 0.3631 and 0.5, whereas the knot 0.5304 was

obtained by averaging the knots 0.5 and 0.5608. As shown in Figure 4.4(c) and Figure

67

4.4(f) the common edge of the merging surface patches remains straight even after

merging, in case of C0 connectivity. Figure 4.4(b) and Figure 4.4(e) shows the merged

surface with C2 continuity at the common edge. It can be seen that to maintain C2

connectivity at the common edge, the flat surface patches deviate in the middle as well,

whereas these remained flat for C0 connectivity.

(a) Original surfaces with
degree three.

(b) Merged surface with C2
continuity by deleting all
multiple knots at the common
edge.

(c) Merged surface with C0
continuity by retaining three
multiple knots at the common
edge.

(d) Original surfaces, shown
as wireframe, with degree
three.

(e) Merged surface, shown as
wireframe, with C2 continuity
by deleting all multiple knots at
the common edge.

(f) Merged surface, shown as
wireframe, with C0 continuity
by retaining three multiple
knots at the common edge.

Figure 4.4 The effect of multiple knots at the common edge of the merging surfaces.

In the other parametric direction, the knot vector is generally made uniform.

However, by using the average of the knots of two surfaces in the second direction, the

tolerance in some of the cases can be reduced. In general, a uniform knot also yields good

results and avoids the computation of average knot vectors for the merged surface.

4.3.4 Revised blending matrices

As discussed in the previous section, the degrees of the final merged surface (k, l), its

knot vectors (U, V), the number of control points (r, s) in the u and the v directions

68

respectively, and the total number of discrete points to be generated in the u and the v

directions are calculated. Once these parameters are known, the new set of blending

matrices, Au and Av, can be generated. The number of rows of the matrix Au and the

number of columns of the matrix Av, are determined by the number of rows (m) and the

number of columns (n) of the combined matrix of discrete points, M. The basis functions

are evaluated for discrete values of parameter u and v. These parameter values are

increased by a step of 1/(m-1) and 1/(n-1) in the u and the v directions respectively. As an

example, for generating 101 number of points in u parametric direction, the basis

functions are evaluated at u = 0, 0.01, 0.02, …, 0.99, 1. As the degrees and the knot

vectors of the B-spline surface are known, these basis functions can be calculated and

stored as matrices Au and Av. The following pseudo-code describes the process of

computation of the revised blending matrix Au (Au in pseudo-code).

Algorithm: Computation of the revised blending matrix Au

Parameters: m, U, r, k

for (u = 0:1/(m-1):1)

 for (a = 0:1:k)

 for (i = 0:1:r+k+1-a)

, 1 1, 1
, 1

1 1

() ()
() () ()i a i a

i a i i a
i a i i a i

B u B u
B u u U U U

U U U U

1
,

1,
()

0,
i i

i a

U u U
B u

otherwise

 end

 end

 x = integer of (u x (m-1))

 for (j = 0:1:r)

 Aux,j = Bi,k

 end

69

end

return Au

 Once these blending matrices are computed, the inverse of these blending matrices

([Au
 T Au]

-1, [Av Av
 T]-1) is also computed and stored. These newly calculated blending

matrices of the merged surface (Au, Av), replace the earlier blending matrices (A1
u, A

2
u;

A1
v, A

2
v) for the two B-spline surfaces.

These new blending matrices are used to determine the position of the control points

which can generate the matrix of discrete points (M). The position of the control points

for the merged surface is once more calculated using Eqn. (3.6). The new blending

matrices can also be used for collision detection and generation of nodes for a mass

spring system as described in [Pungotra, 2009b].

4.4 Special Cases

The proposed algorithm is suitable for VR environments because the user does not need

to directly manipulate the control points of the various surfaces. Furthermore, the

algorithm does not impose any kind of restriction such as the degree of the surfaces, the

knot vectors, or the type of connectivity. The general case, in which the merging B-spline

surface patches were near to each other but were not intersecting, was considered in the

discussion to make the algorithm understandable. While working in a VR environment it

may not be possible to position the B-spline surface patches close enough. The surfaces

may start intersecting at some regions of the surfaces, when positioned close to each

other. It is also possible that the two B-spline surface patches can have different degrees

of surface curvature in one or both the directions. It will require the algorithm to increase

or decrease the degree of one of the surfaces so that the resultant merged surface has the

same degree in any parametric direction. There is a greater chance of unchanged

geometry for an increase in the degree of a surface. Conversely if the degree of a surface

is decreased then the end result cannot be guaranteed to have a low tolerance unless the

surface has some redundant knots. The user may also like to merge a large number of

patches simultaneously. This section considers an arbitrary case in which the surfaces are

intersecting before merging, an arbitrary case in which the surfaces have different

70

degrees in both the directions, and a case for merging multiple (four) patches

simultaneously.

4.4.1 Intersecting and trimmed surfaces

If the patches to be merged are intersecting, the resulting surface may turn out to be quite

different than that intended by the user. The algorithm presented in this thesis uses a

novel technique to merge two or more intersecting B-spline surface patches. First, the

algorithm uses the collision detection algorithm [Pungotra, 2008] to determine if the two

surfaces are intersecting (colliding). When the user intends to merge the surfaces, the

collision detection algorithm calculates the regions which are colliding. The collision

detection at the lowest level of detail determines the minimum and maximum values of

the parameters u and v (umin, vmin; umax, vmax) for both the surfaces. These minimum and

maximum values of u and v are used to set the limits on the surfaces to be discretized as

M1 and M2. Figure 4.5 illustrates the intersecting surfaces. Figure 4.5(b) shows the

portions of the surfaces that will be used for merging to generate matrix M. The discrete

points generated in the intersecting region of the surfaces, shown in red, are discarded.

(a) (b)

Figure 4.5 (a) Intersecting surfaces to be merged (b) Region of the surface selected for
discretization (The points shown in red are discarded).

71

This methodology also helps if the user would like to remove the uneven end portion

of the surface which is created unintentionally while manipulating the surface. One

limiting factor of this technique is that only full rows of the points can be discarded.

Thus, even if some part of the surface is not intersecting, it will have to be discarded so as

to maintain the rectangular matrix of discrete points.

Sometimes, a B-spline surface patch is trimmed. In this case, though the control

point matrix and knot vector remain unchanged, the trimmed section of surface is not

displayed to the user. For this reason, trimmed surfaces cannot be merged using

commercially available CAD/CAM software. The present algorithm for intersecting

surfaces can be easily extended to the merging of trimmed surfaces. If the user intends to

merge a trimmed surface, the surfaces will actually be intersecting. The intersection will

be occurring in the region which exists mathematically in the data base but is not

displayed to the user. Hence, in case of trimmed surface, the discrete points belonging to

the hidden surface (not being displayed the user) are discarded and only the points

generated in the untrimmed region are used to generate matrix M.

4.4.2 Surfaces having different degrees

Frequently in CAD, particularly when a multiple B-spline patches surface, created from a

point cloud data is imported, the degree of various surface patches may be different.

Before the surfaces can be merged, the degree of the surfaces in u and v directions will

have to be made uniform. Thus, the problem reduces to increasing or decreasing the

degree of a surface to make it uniform with that of the other surface. There are many

analytical techniques to increase or decrease the degree of a B-spline curve. Piegl and

Tiller [Piegl, 1994; 1995] use a simple technique of first extracting Bézier segments from

the curve. The degree of these Bézier segments is then increased/decreased by

adding/deleting additional knots (control points) using constrained optimization. These

Bézier segments are merged together and the multiple knots are deleted. However, for the

surfaces the constrained optimization techniques are difficult to use. Degree reduction for

surfaces can be achieved by first extracting iso-parametric curves from the surface and

reducing their degree, before the B-spline surface is regenerated by lofting these lower

72

order curves. In general, the process of surface approximation consists of approximating

the boundaries and a number of iso-parametric curves of the original surface. These

curves are then lofted to form an approximating surface [Tuohy, 1993]. Knots are added

to the knot vector of the boundary curves at locations where the error exceeds a given

tolerance, and new iso-parametric curves are extracted and approximated.

The proposed algorithm just needs to change the knot vector and the number of

control points needed to represent the surface of higher or lower degree. If the degree is

increased, the number of control points needed to represent the higher degree merged

surface is increased by the same number. Thus, if the surfaces are merged in u direction

then the resultant number of control points is given by r = r1+ r2 -1 + d, where r is the

number of control points of the merged surface in u direction, r1 & r2 are the number of

control points in u direction for the first and the second surface respectively, and ‘d’ is

the increase in degree of one of the initial B-spline surface patch to match with the degree

of the other surface in the u direction. The number of control points is decreased by ‘d’ if

the degree of the higher order surface is decreased to match that of the lower order

surface. However, reducing the degree of a surface may result in reduced accuracy of the

resultant surface. The number of knots are also increased/decreased by ‘d’ when the

degree of a surface is elevated /reduced in a given parametric direction.

(a) (b)

Figure 4.6 (a) Initial B-spline surface patches of order 4×4 and 5×6 respectively (b) Merged surface
of order 5×6 with C4 connectivity in v direction, generated by proposed algorithm.

73

Figure 4.6(a) shows two surfaces of order 4×4 and 5×6 respectively. The surfaces are

being merged in v direction. Thus, the first surface will have to be elevated to degree four

in u direction and degree 5 in v direction (‘d’ is 1 in u direction and 2 in v direction).

Figure 4.6(b) shows the merged surface of order 5×6 using the proposed algorithm. The

proposed algorithm can also generate the merged surface by decreasing the degree of the

higher order surface. On a standalone basis, this algorithm can be used to simply increase

or decrease the degree of a surface.

4.4.3 Multiple surfaces

The algorithm is capable of merging any number of surfaces. The surfaces that are

required to be merged are first moved closer together and allowed to touch at one or more

points. The blending matrices representing the underlying surfaces are then used to

discretize the individual B-spline surface patches. The discrete points of these N B-spline

surface patches are stored as matrices M1 = A1
u P

1
ij A

1
v, …, MN = AN

u P
N

ij A
N

v. When

the merging process starts, a combined matrix M is generated by the combination of

these N matrices of discrete points. Consider a case where four B-spline surface patches

are to be merged. The combined matrix of discrete points can be expressed as M = [M1

M2; M3 M4] or any other such combination, depending upon the direction in which

these surface patches are being merged. The new number of rows (m) and columns (n) of

the combined matrix M are determined.

The algorithm adds the knot vectors of the B-spline surface patches depending upon

the direction in which these surface patches are being merged. Once again, consider the

case where the combined matrix of discrete points is expressed as M = [M1 M2; M3

M4]. The algorithm first calculates the combined knot vectors (U12, V12) of the surfaces

S1 and S2, and the combined knot vectors (U34, V34) of the surfaces S3 and S4. As

discussed in Section 4.3.3, certain number of multiple knots is retained at the common

edge depending upon the connectivity required at the common edge. In a similar fashion,

these knot vectors (U12, V12; U34, V34) are further combined to get the resultant knot

vectors for the merged surface (U, V).

74

The revised number of control points are calculated as discussed in Section 4.3.2.

The combined number of control points in v direction are given by s12 = s1+ s2 -1 and s34

= s3+ s4 -1, where s1, s2, s3 & s4 are the number of control points in v direction for S1, S2,

S3 and S4 surfaces respectively. If the number of control points in v direction, s12 and s34,

are different then the larger number is assumed as the new number of control points (s).

Similarly, the combined number of control points in u direction are given by r13 = r1+ r3 -

1 and r24 = r2+ r4 -1, where r1, r2, r3 & r4 are the number of control points in u direction

for S1, S2, S3 and S4 surfaces respectively. The number of control points in u direction

will then be given by the larger of r13, r24.

Once the revised knot vectors (U, V), the revised number of control points (r, s), and

the total number of discrete points to be generated in u and v direction (m, n) are known,

the new set of blending matrices Au and Av can be generated. These revised blending

matrices are generated as discussed in Section 4.3.4. When these revised blending

matrices are known, the new set of control points representing the merged surface can be

determined by using Eqn. (6). Figure 4.7(a) shows four B-spline surfaces to be merged

and Figure 4.7(b) shows the resultant merged surface obtained by using the proposed

algorithm.

(a) (b)

Figure 4.7 (a) Initial multiple B-spline surface patches (b) Merged surface with C2 connectivity
generated by proposed algorithm.

75

4.5 Concluding Remarks

Product concept generation within a virtual reality environment requires a large variety of

interactive tools that enable the user to enhance his or her creativity. One problem, which

had not been addressed so far, is efficiently creating complex shapes by combining

multiple dissimilar B-spline surface patches in a VR environment. The algorithm

presented in this chapter allows the user to combine multiple B-spline surface patches in

to a single B-spline surface. The algorithm proposed in this chapter is computationally

efficient and exploits blending matrices of the surface patches used by the collision

detection algorithm. It creates new blending matrices for the merged surface, which

replace those for the original surface patches. Once created, the new blending matrices

are used for object shape representation and for any further collision detection

requirements. In this manner, the proposed surface merging algorithm works in tandem

with the collision detection algorithm and only a small number of additional

computations are performed during the merging process.

The algorithm is capable of handling all the cases that are acceptable for NURBS-

based surfaces. It does not impose any restriction on the degree of the surface patches, the

number of control points, the type of continuity required at the common edge, knot vector

or the number of surfaces being merged simultaneously. The proposed algorithm can

efficiently merge B-spline surface patches having dissimilar curvatures at the common

edge, intersecting B-spline surface patches, and the B-spline surface patches having

trimmed edges. These types of patches cannot be merged by using the traditional

approach used by commercially available CAD software. Overall the proposed algorithm

is efficient, accurate, and robust. The surface generated by merging of two or more

patches has better tolerance than that is acceptable for many VR applications.

76

CHAPTER 5 INTEGRATION OF MASS-SPRING SYSTEM WITH COLLISION

DETECTION SYSTEM

5.1 Introduction

Product designers and engineers require interactive and graphical visualization tools that

enable them to quickly modify the shape, style, and functionality of a product concept.

The primary role of VR technology in creative product design is to provide the designer

with the ability to intuitively create and manipulate the shape of complex freeform CAD

models during concept generation.

Deformable objects have been widely studied in computer graphics. The deformation

of the model can be simulated by a geometric- or physics-based system. There are many

geometric modeling techniques in the published literature to deform a solid model

[Basdogan, 2004; Zheng, 2003]. One major limitation of the geometric models is that

these cannot realistically simulate deformation of the model, particularly if the model

consists of multiple materials. A physics-based technique, on the other hand, can

realistically calculate the deformation and force response of the model, based on virtual

material properties [Knopf, 2005]. A physics-based deformation model can provide the

designer options to assign different materials properties to the virtual object and validate

it in real-time for form and function.

The collision detection algorithm and the physics-based deformation model should

be compatible with each other for real time haptic interaction. Some physically-based

models are computationally intensive and therefore, are unsuitable for real-time

interaction. Over the years different modeling techniques have been developed. However,

a mass spring damper system, consisting of a set of particles (nodes) connected through a

network of springs and dampers can provide reasonable accuracy and speed for real time

interaction. The representation of B-spline surfaces in terms of blending matrices

facilitates the integration of collision detection and merging of B-spline surfaces with the

mass spring system [Pungotra, 2010b].

77

5.2 Mass Spring Damper System

Mass spring damper system is one of the physics based modeling technique that has been

widely used for modeling deformable objects. A mass spring system can provide

reasonable accuracy and speed for real-time haptic interaction. The virtual object is

modeled as a collection of point masses connected by springs and dampers in a lattice

structure. In general, the spring forces are assumed to be linear. However, nonlinear

springs can also be used to model objects which exhibit inelastic behaviour. Such a

system contains a mass ρ, a spring with spring constant K that serves to restore the mass

to a neutral position, and a damping element which opposes the motion of the vibratory

response with a force proportional to the velocity of the system. The constant of

proportionality, also known as damping constant, is denoted by D. Different

combinations of linear springs and damper can be used to model deformable objects.

Voigt model is the most commonly used combination of spring and damper and has been

used in this thesis. Figure 5.1 shows a mass spring damper system with two mass nodes i

and j.

Figure 5.1 Voigt model of mass spring damper system.

The stiffness of the material primarily affects the linear and non-linear elasticity

range in the deformation zone. For solids, the stiffness in proportional to the elastic

modulus and also depends upon an element's dimensions. The linear model stiffness can

be express as,

L

EA
K

 (5.1)

78

where A is the cross-sectional area, E is the Young's modulus of elasticity, and L is the

length of the element.

In one dimension, Young's modulus of elasticity can be considered as a measure of

stiffness of material. Thus, stiffness and damping constants can be used to model a

realistic behavior. The stiffness constant controls the elastic behavior and the

combination of stiffness and damping constants control plastic behavior of the material.

Damping is the phenomenon by which energy is dissipated in a vibratory system.

Three significant types of damping that are generally encountered in dynamic behavior of

the model are; coulomb, hysteresis, and viscous damping. In this thesis, these three types

of damping are approximated as a velocity dependant viscous damping. The velocity

dependent damping force exerted on the node i from the interaction with the node j is

given by,

)(jid xxDf
 (5.2)

where fd is the damping force, D is the damping coefficient, ix is the velocity of node i,

and jx is the velocity of node j.

The fundamental Lagrange equation of motion can be expressed as,

gx ffKxxDx
 (5.3)

where ρ (in kg) is the mass of the node, D (in N.s/m) is damping coefficient, K (in N/m)

is the stiffness coefficient of each spring, fx and fg are the external and gravitational forces

acing of the node. In the absence of external and gravitational forces, Eqn. (5.3) can be

written as,

0 KxxDx (5.4)

Rearranging Eqn. (5.4), we get

0 x
K

x
D

x

 (5.5)

The natural frequency of this model is given by,

79

m

K
0

 (5.6)

The time step of the system dt must not be equal to this natural frequency. Another

important parameter is called damping factor. It is given by equation,

Km

D

2

 (5.7)

The values of damping factor can be zero (undamped model), less than one (under-

damped model), one (critically damped model), and greater than one (over-damped

model).

5.3 Integration of Mass Spring System with Collision Detection

For an efficient haptic interaction with a physics-based virtual object, the collision

detection and physics based system must work in tandem. The algorithm for collision

detection, presented in this thesis is especially suitable for a mass spring system. The

blending matrices (introduced in Chapter 3) are used to integrate collision detection

algorithm with a mass spring damper model incorporating physical material properties

assigned to the model. This way the interactive design module can be used for virtual

sculpting and validating models before extensive product detailing is performed using

commercially available CAD software [Pungotra, 2010b].

The mass spring damper mesh is generated during the pre-processing phase of the

interactive design module. Once created, the mass spring system uses the information

provided by the collision detection system, and the force applied by the user to determine

the deformation of the model. The sculpting forces applied by the user are mapped on the

mass spring nodes determined by the collision detection algorithm. The force is

distributed on the nodes of the mass spring system, and subsequently used to calculate the

deformation and force response. Once the mass spring system changes the model shape

according to the materials properties assigned to it, new set of control points are

determined to represent deformed B-spline surface. While interacting with a plane

(working bench or table), the mass nodes resting on the plane are fixed. In such a case,

80

even though these points experience external or internal forces, the nodes remain

stationary. The flow chart shown in Figure 5.2 describes various steps required to

generate and interact with the mass spring mesh. These steps are discussed in detail in the

following sub-sections.

Figure 5.2 Flow chart for mass spring mesh generation and its integration with collision detection
algorithm.

5.3.1 Mass spring system node generation

As discussed in Chapter 3, blending matrices and their inverses for the B-spline surface

patches are calculated and stored during pre-processing phase. If the individual B-spline

81

surface patches are merged, then the revised blending matrices are calculated for the

merged B-spline surface. This process has been explained in Chapter 4.

These blending matrices can be used to discretize the corresponding B-spline

surface. The density of the points generated on the B-spline surfaces can be varied by

choosing intermittent rows and columns of the blending matrices. Depending upon the

number of nodes required for the mass spring mesh, appropriate number of points are

generated by using intermittent rows and columns of the blending matrices. Figure 5.3(a)

shows the B-spline surface model and Figure 5.3(b) shows the points generated on the

virtual model for calculating mass spring mesh.

(a) (b)

Figure 5.3 (a) B-spline surface deformable model (b) Discrete points as nodes for the mass spring
system.

5.3.2 Deformable mesh generation

Tetrahedron and hexahedron solid elements are the most commonly used structures for

creating the mass spring meshes. Although the algorithms for producing a tetrahedral

mesh are easier to implement, the hexahedral meshes are computationally more efficient

because fewer elements are required to represent the shape. Furthermore, a valid mesh

can only be generated if the angles in the tetrahedral elements are neither too obtuse nor

too acute. Consequently, a model of a simple flat plate may inadvertently result in a large

number of tetrahedral elements. To correct for many of the geometric errors that occur

82

using tetrahedrons the designer must manually insert hexahedral elements and sub-

meshes in certain regions of the volume model.

A variety of mesh generation techniques have been described in the literature for

creating hexahedral meshes. Multi-block topology technique [Hsu, 1992] allows the

designer to first partition the object geometry into multiple hexahedral blocks or super-

elements within which an array of solid elements is produced. Each block is then further

sub-divided into an array of elements whose size depends on the desired grid density. The

major advantage of this multi-block mesh generation approach is that it produces a highly

structured grid. Once the block topology is determined, a variety of CAE software tools

must be used to optimize the elements in the desired mesh.

The volumetric self-organizing feature map (VSOFM) [Igwe, 2008b] is a viable

skeletal framework for modeling realistic objects that dynamically change shape with

time. The self-organizing feature map is a lattice of nodes arranged with predefined

topological connections. The deformable VSOFM provides an adaptable mesh for

representing a virtual lump of clay that dynamically changes shape under external forces.

The lattice structure ensures a closed geometry with no gaps or breaks in the surface. This

technique is used to generate hexahedral mass spring mesh for the physically-based

model. The hexahedral mesh of the underlying object is constructed using a deformable

volumetric self organizing feature maps with a three-dimensional lattice of uniformly

distributed nodes or weight points. The sparse point cloud generated on the B-spline

surfaces encloses the 3D lattice of the deformable VSOFM, having the required number

of nodes attached through springs and dampers. The lattice is allowed to expand to the

point cloud. This 3D ordered lattice of the deformable VSOFM maintains the relative

connection of neighboring nodes in the mesh as it geometrically transforms into the B-

spline surface model shape. The surface nodes are connected to the neighboring surface

nodes as well as the interior nodes that lie directly below. Connectivity and topology of

the developed mesh is registered to prevent unstable dynamic behavior during modeling.

In this manner, the points generated on the B-spline surface are assigned as exterior

nodes of the mass spring damper mesh representation. The number of nodes in the 3D

lattice limits the density of the hexahedral element in the final physics based deformable

model.

83

Figure 5.4 shows the generation of a mass spring system. Figure 5.4(b) shows the

deformable VSOFM mesh which adapted to the sparse point cloud generated on the B-

spline surface model using blending matrices. The connectivity of the VSOFM nodes is

shown in Figure 5.4(c).

(a) Sparse point cloud
generated on the B-spline
model are used as exterior
nodes for the mass spring

(b) Mass spring damper
mesh created using
VSOFM.

(c) Hexahedral
mesh of the mass
spring damper

Figure 5.4 Generation of mass spring system.

Igwe et al. [Igwe, 2006; Igwe, 2008b] used VSOFM technique with a large point

cloud data. However, the number of points generated on the B-spline surface can be

correlated to the size of the mass spring mesh being created. Hence, it is possible to have

one to one mapping of point cloud with the 3D lattice. The small point cloud data ensures

that the computational cost of generating the mass spring damper mesh through VSOFM

is small.

5.3.3 Mapping of forces to nodes of mass spring system

The collision detection algorithm, described in Chapter 3, determines the point(s) or

surfaces of intersection of two or more virtual models. Figure 5.5 shows a tool colliding

with a deformable B-spline surface. Once the collision detection algorithm determines the

point(s) or surfaces of intersection, the forces applied by the user are mapped on the mass

spring system.

84

Figure 5.5 A tool colliding with a deformable B-spline surface model.

To clearly show the procedure of mapping haptic force to the nearby nodes, Figure

5.6 shows a case in which intersection is happening at a point.

Figure 5.6 Mapping of the sculpting force acting on B-spline surface to nodes of mass spring system.

85

When two surfaces are in contact, there may be many points on which the sculpting

forces are acting. In this case, the sculpting force acting at each point of contact is

mapped to the nearest nodes of the mass spring system. The total virtual forces will then

be the vector sums of the virtual forces mapped mass spring nodes from each point of

contact.

5.4 Model Deformation and Force Response

When the user interacts with the deformable model with a tool, the system must be able

to compute the estimated position of the dynamic model at the next time step from the

current forces being applied through the haptic tool. Collision detection algorithm

determines the region where tool is interacting with the model. This information is used

to map the haptic forces to the model as discussed in previous sections.

Figure 5.7 shows a deformable hexahedral mesh and the node-spring-node

arrangement of mass and spring within the model. In this context, the spring located

between nodes i and j has a natural or rest length of Lij.

 Figure 5.7 Hexahedral mesh and the node (mass) spring representation.

86

This length will change under the application of the force and at any instant it will be

given by,

jiij xxl , (5.8)

and the location of a node in the three coordinate directions is denoted by the three-

dimensional vector,

],,[321
iii

i xxxx . (5.9)

During shape deformation, the initial length can be used to calculate the strain of the

spring once the sculpting forces are applied. The internal and external forces cause

mechanical strain, ije , in the connecting spring, given by

ij

ijij
ij L

Ll
e

)(
 (5.10)

This spring will then exert a force ijs on the node i. If ijK is the material stiffness

assigned to the model, then this force will be given by

)(jiijijij xxeKs (5.11)

Numerical simulation of the deformation process, while the object experiences

external forces from the haptic device, is achieved using the discrete Lagrange equations

of motion for a dynamic node-spring system. The system dynamics is given by the

second-order differential equation,

)()()()(tftgtxDtx iiiiii (5.12)

where iD is the velocity-dependent damping coefficient which dissipates kinetic energy

in the lattice through friction; i is the point mass of node i, and fi (t) is the external force

vector applied to node i. If nei is the immediate neighbourhood around node i, then the

total internal spring forces ()(tgi) given by,

inej

iji stg)((5.13)

87

The rest length of the spring Lij is determined at the beginning of the deformation

process. The spring is then allowed to vary in length (lij) due to the plastic deformations

or other non-linear behavior that is to be modeled by the system of equations. To simulate

the dynamic behavior of the adaptive mesh, it is necessary to provide the initial positions

)0(ix and the initial velocities)0(ix for each node. The initial velocities are often

assumed to be zero. It is then necessary to integrate the equation of motion forward

through time until the mesh stabilizes; 0 ii xx . At each time step Δt, it is necessary to

evaluate the current nodal forces and accelerations, the new velocities, and the new node

positions using the explicit Euler time-integration procedure [Knopf, 2005]. While the

object experiences external forces from the haptic device, numerical simulation of the

deformation process can be achieved using the discrete Lagrange equations of motion for

a dynamic node-spring system. From Eqn. (5.12), it is possible to compute acceleration at

node i as,

iiiiii tgtxDtftx /))()()(()(, (5.14)

and the new velocity can be computed as,

)()()(txttxttx i (5.15)

The new position of node i, is then calculated using the equation:

)()()(ttxttxttx iii
 (5.16)

Once the user applies force on the model through the tool, Eqns. (5.12 - 5.16)

determine the deformation of the model.

Geometric constraints are also applied to move several points within the defined

neighborhood radius to the new location depending upon the magnitude of the applied

force. Applying both physical and geometrical types of constraints, offer additional

intuitive control over the shape during the design process. Constraining geometric and

physical properties of a deformable model also facilitates feature-centered design, which

can significantly improve the system simulation and performance. A neighborhood

search radius is used to update the length of the neighboring springs [Knopf, 2005]. This

88

ensures that elongation is distributed over a given area and not just regions directly

involved with the deformation force.

Figure 5.8 illustrates the interaction of the tool with the hexahedron mass spring

mesh of the model. A force is applied to determine its deformation in response to the

applied force.

Figure 5.8 Illustration of interaction of the tool with the model.

The deformation of the model can be evaluated by applying varying amount of

forces while keeping its material properties constant.

Figure 5.9 The deformation of the model having properties of plasticine (spring stiffness = 13
MN/m2, density = 2500 kg/m3) while applying different forces (F).

89

Figure 5.9 shows the deformation of the model when properties of plasticine were

incorporated to the model. Varying amount of force was applied to the model. The model

deforms more when a large force is applied to the model.

In a similar fashion, the force can be kept constant while the material properties are

changed. This is helpful when an industrial designer plans to use different materials for

the model. If the deformation of the model is within the limits, the material is selected.

However, if the deformation is more than the prescribed limits, the user can modify the

design or use alternate material. Figure 5.10 shows the deformation of the model having

different spring stiffness, when a constant force of 30 N was applied. The model having

least spring stiffness deforms the most. This process can be used for sculpting as well as

to validate a range of forces that can be resisted by the model without deforming beyond

the prescribed limits based on its performance criteria [Pungotra, 2009a].

Figure 5.10 The deformation of the model with different spring stiffness, and constant force (30 N)
while pulling out the nose of the artifact.

5.5 Concluding Remarks

A deformable mass spring system was introduced in this chapter as a geometric modeling

tool for manipulating closed 3D shapes, using physics-based modeling. Material and

dynamic properties are incorporated into the deformable mesh by treating the surface and

the internal nodes as point masses connected by a network of springs. The initial mass

90

spring mesh was created automatically using the blending matrices. This was

accomplished at the pre-processing stage and hence the computational cost of mesh

generation would not impact the real-time interaction with the model.

The mass spring mesh works in tandem with the collision detection algorithm. The

same blending matrices, which are used for collision detection, generate exterior nodes

for the model. VSOFM is used to uniformly positioning the interior nodes and linking all

the nodes together with a spring and damper assembly. Once the mesh is generated, the

designer will be able to reshape the virtual object by introducing external forces to the

nodal mesh.

91

CHAPTER 6 SIMULATION STUDIES AND PERFORMANCE EVALUATION

6.1 Introduction

This chapter discusses the implementation of the algorithms presented in this thesis. The

simulation study and performance evaluation of the algorithm was carried out to find out

their computational efficiency. No constraint regarding the degree of the surfaces or

complexity of the model was applied. However, for the majority of the cases, B-spline

surface patches of degree three were used as these are the most common surfaces used in

CAD applications. Overall the framework for interactive design consists of three distinct

algorithms: the collision detection algorithm (Chapter 3), merging on B-spline surface

patches (Chapter 4), and mass spring system for physically based deformation of the

virtual model (Chapter 5).

This chapter presents the computational efficiency of these three algorithms

separately. Once the efficiency of these algorithms is proved independently, it was used

to present a test case which incorporated all three algorithms so as to evaluate the

performance of the integrated module. The presented results proved the evidence about

the validity and computational efficiency of the proposed technique.

6.2 Computational Efficiency of Collision Detection Algorithm

The focus of the research was to develop a computationally efficient collision detection

algorithm for real-time interaction with deformable model, represented by a B-spline

surface, during the haptic interaction with the model. As discussed in Chapter 3,

following measures ensured a computationally efficient algorithm.

The algorithm uses pre-calculated blending matrices to discretize the B-spline

surface. This eliminates the need to calculate blending functions during the runtime.

These blending matrices are sparse having a maximum of "degree of surface + 1" number

of non-zero entries. Thus, the cost of multiplication of these matrices with the control

point matrix is small.

92

As the blending matrices are pre-calculated, their inverse can also be pre-calculated.

Hence, no inverse of large matrices is required at runtime, further reducing the cost of

collision detection.

Intermittent rows and columns of blending matrices can be used to generate sparse

points on the B-spline surfaces. It allows the algorithm to generate fewer points initially

to detect collision and increase the density of points at the lower levels of detail. This

reduces the overall cost of collision detection.

Convex hull of B-spline surfaces is used as the bounding box. As the number of

control points is always small and their position known, the cost of updating the

bounding volume (convex hull) is minimal.

Most of the collision detection is carried out by checking intersection test of spheres

generated from discrete points generated on B-spline surface. As the sphere-sphere

intersection test is very efficient, the computational cost of collision detection is minimal.

The algorithm uses triangle-triangle intersect test at the lowest level of detail. As the

number of triangles is small at the lowest level of detail, the computational cost is small.

The proposed collision detection algorithm can detect the collision between two or more

NURBS surfaces and/or between a NURBS surface and an implicit surface, a tessellated

surface or a point. Figure 6.1 shows two NURBS surfaces, a plane and a sphere.

Figure 6.1 Primitives (plane and sphere) and B-spline surfaces (a donut and a distorted donut) for
calculating time of collision detection.

To check the computational efficiency of the collision detection algorithm, different

types of surfaces were used. A B-spline surface was made to collide with another B-

spline surface, a sphere, a plane and a point.

93

The computational cost of collision detection depends upon the size of the blending

matrices and the area of contact. The size of the blending matrices depends upon the

number of control points and the maximum number of points that can be generated on the

B-spline surface. The collision detection was carried out for different number of control

points, different number of the maximum points to be generated on the B-spline surface,

and different overlap (thereby changing the area of contact). The collision detection was

determined for B-spline surface - plane, B-spline surface - sphere, B-spline surface -

point and B-spline surface - B-spline surface. The results for the computational cost for

different parameters are discussed in the following sections.

6.2.1 Effect of the number of control points

A cubic B-spline surface needs a minimum of 4×4 number of control points. In fact such

a surface will be a Bezier surface. For such a surface, any deformation at any point may

result in change for whole geometry. However, to better represent a complex model and

to allow localized deformation, more number of control points will be needed. Control

points also determine the minimum number of nodes for the mass spring system that can

be used to incorporate material properties. As soon as a model deforms, the new position

of control points is calculated by using the new position of mass spring nodes. Hence, the

number of nodes of mass spring mesh cannot be less than the number of control points

used to define the B-spline surface. As an example, a minimum 16 nodes for mass spring

system will have to be used for a B-spline model with 4×4 control point net. Thus, it is

imperative that the effect of the number of control points on the computational efficiency

be calculated.

It must be emphasized at this point that the computational time recorded in the

simulation may not be the best time that the collision detection algorithm is capable of.

The simulation time may be larger because of inherent inefficiencies in programming

skills. A professional programming technique may be able to better utilize the resources

of modern multi-core computers. In fact the algorithm is very well suited to take

advantage of multithreading. Even with the programming done without utilizing

multithreading, the time needed to check the collision detection was small.

94

The time required for collision detection also depends upon the number of points

generated on the B-spline surface. In this section the number of points matrix used to

determine collision is kept at 82×82 matrix. This matrix gives very good resolution. For

simulation study the numbers of control points were selected in the range of 4×4 to

20×20. Most of the examples used in literature do not use more than a matrix of 12×12

for control points. Dachille [Dachille, 2001] used a maximum of 12×12 control net with

only 25×25 mesh of points for collision detection compared to an 82×82 matrix of nodes

used in this study. The time taken for simulation for a B-spline surface represented by a

12×12 control point net with 25×25 mesh was 780 ms with implicit solver [Dachille,

2001]. It used only a point to interact with the B-spline model. Gao and Gibson [Gao,

2006] used a resolution of 40×40 and used implicit surface rigid tools.

Table 6.1 shows the computation times for collision detection of B-spline surface

having different number of control points.

Table 6.1 Computational time for collision detection of B-spline surface having different number of
control points with a point, a sphere, and a plane.

Control points
net

Computational time (ms)

Point based tool
Sphere based

tool
Plane based tool

4×4 <1 <1 2

6×6 <1 2 3

8×8 <1 3 4

10×10 2 4 8

12×12 4 5 10

14×14 5 8 15

16×16 6 12 22

18×18 8 13 26

20×20 10 17 31

95

A point-based tool, a sphere-based tool, and a plane-based tool were allowed to

collide with the B-spline surface. Different B-spline surfaces were considered and the

time for collision detection was noted. The resolution of the model was same for all the

cases and was kept at 82×82. The entries of Table 6.1 represent the average of the

collision detection time. A plane can be used for two purposes. It can be used as

supporting surface such as a table on which B-spline surface based model can rest. It can

also be used as tool to push, pull, or cut the model. The code was written in C++ and

implemented with Microsoft Visual Studio 2008 on desktop computer having 6 GB RAM

with Intel(R) Core(TM) i7 CPU @ 3.06 GHz running on Windows 7 Professional.

As expected the computational cost increases with increase in the number of control

points used to represent the B-spline surface. The graph shown in Figure 6.2, represents

the trend of computational cost, as the numbers of control points are increased.

Figure 6.2 Variation of the computational time of collision detection for a point, sphere, and plane
with respect to the number of control points used.

96

The computational time for collision detection of a point with the B-spline surface is

the least. A plane takes more time to check collision detection with the B-spline surface.

This is due to the reason that it is closer to the B-spline surface over a larger area, thereby

increasing the number of spheres being generated at different levels of detail. As the

number of control points increase, the computational cost of generating more points and

subsequent generation of spheres increases. Since more spheres are generated for a plane,

the cost of collision detection will be more. Overall the computational time for collision

detection is small. Particularly for B-spline surfaces having 12×12 control points, it takes

5 ms or less for the collision detection algorithm to check intersection with a point or

sphere. It takes about 10 ms to detect collision with a plane.

A unique feature of the collision detection algorithm is its ability to detect collision

between a deformable B-splines and implicit surfaces as well as between two or more

deformable B-spline surfaces. This would allow the user to have better control about the

type of tools used for interacting with a deformable model. The ability to detect collision

between two or more B-splines is also utilized by the B-spline surface patch merging

algorithm discussed in Section 6.3.

Figure 6.3 shows the computational cost of collision detection between two B-spline

surfaces. Again, the results are the average of the time taken by the algorithm to detect

collision for different types of B-spline surfaces when these surfaces just start colliding.

The control points of the two B-spline surfaces were increased independently and the

computational cost was determined.

The computational cost increases with increase in the number of control points used

to represent the B-spline surface. The resolution of the model was same for all the cases

and was kept at 82×82. Time required to detect collision between two B-spline surfaces

represented by 8×8 control points net was 15 ms. For higher number of control points, the

computational time increases, reaching to about 91 ms for B-spline surfaces when both

the surfaces have 20×20 control points mesh. For smaller control points mesh, the

computational time is very small and reduces to 6 ms when both the surfaces have 4×4

control points net. Thus, the collision detection algorithm can be used for real time

interaction with virtual models.

97

Figure 6.3 Variation of the computational time (ms) of collision detection for a B-spline surface with
another deformable B-spline surface for different number of control points.

6.2.2 Effect of the maximum number of points that can be generated

The number of points generated on the B-spline surface defines the resolution and

accuracy of the collision detection. This also determines the maximum number of nodes

that can be generated for the mass spring mesh. A larger number increases the size of the

blending matrices, Au and Av, used to generate these points using Eqn. (3.6). As a

consequence of the large size of the blending matrices, the size of inverse of these

blending matrices will also be large.

The collision detection algorithm does not generate all the points simultaneously

during collision detection process. Initially it generates sparse points in the region of

probable collision. It generates denser points within the intersecting spheres, at lower

levels of detail, to increase the accuracy of the collision detection as discussed in Section

3.3. To clearly determine the effect of the maximum number of points that can be

98

generated at the lowest level of detail, a tear shaped deformable model with 8×8 number

of control point net was checked for intersection with a point, a sphere, and a plane.

Figure 6.4(a) shows a sphere colliding with a tear drop shape and Figure 6.4(b) shows a

sphere colliding with the deformed tear drop represented as B-spline surface having 8×8

control point mesh.

(a) At point of contact (b) After contact

Figure 6.4 A sphere colliding with (a) A tear shaped B-spline surface (b) A deformed tear shaped B-
spline surface.

The time taken for collision detection was computed for different shapes of B-spline

surfaces. Table 6.2 shows the cost of computation for different number of the maximum

points that can be generated on the B-spline surface.

Table 6.2 Computational time for collision detection of B-spline surface having different number of
the maximum points generated at lowest level of detail with a point, sphere, and plane.

Maximum points at
lowest level of detail

Computational time (ms)

Point based
tool

Sphere based
tool

Plane based
tool

28×28 (784 points) <1 ~1 1

28×82 (2296 points) <1 2 2

82×82 (6724 points) ~1 3 4

82×244 (20008 points) 2 4 7

244×244 (59536 points) 3 6 15

99

When a large number of points are used, the accuracy of the collision detection is

higher. The time shown in the table is average of the times noted for different B-spline

surfaces.

 Figure 6.5 shows the graph representing the trend of the computation cost with

respect to the maximum number of points that can be generated on the B-spline surface.

Figure 6.5 Variation of the computational cost of collision detection for a point, sphere, and plane
with respect to the maximum number of points generated.

The number of control points of the model was the same for all the cases and were

kept at 8×8. The computational cost for collision detection increases when the maximum

number of points to be generated on the B-spline surface, at the lowest level of detail, is

increased. When 82×82 mesh is used, the computational time is 1 ms for a point, 3 ms for

a sphere and 4 ms for a plane. A mesh of size 82×82 means that a total of 6724 points can

be generated on the B-spline surface. This gives high resolution for collision detection.

For comparison, only 625 points (25×25 mesh of points) were used by Dachille et al.

[Dachille, 2001] and Gao and Gibbson [Gao, 2006] used 1600 points (40×40 mesh of

points). This shows that the collision detection algorithm can efficiently detect collision

even when a large number of points are generated to achieve higher resolution.

100

The variation of the computational cost of collision detection will more pronounced

if the resolution of two or more B-spline surfaces is changed simultaneously. During the

simulation of collision detection for two B-spline surfaces the maximum number of

points that can be generated was changed for both the surfaces and its effect on the

computational time was recorded. The maximum number of points to be generated for the

two B-spline surfaces were increased independently. The number of control points for

both the surfaces were kept unchanged at 8×8.

The graph representing the trend of the computation cost is shown in Figure 6.6. The

computational cost for collision detection increases when the maximum number of points

that can be generated at the lowest level of detail is increased. When 82×82 mesh is used,

the computational time is 15 ms. A mesh of size 82×82 means that a total of 6724 points

can be generated on both the B-spline surfaces. When the number of points is decreased

to a mesh of 28×28, the computational time decreases to 4 ms.

Figure 6.6 Variation of the computational time(ms) of collision detection for a B-spline surface with
another deformable B-spline surface with respect to the maximum number of points
generated.

101

6.2.3 Effect of the area of contact

When two surfaces begin to collide, the area of collision is small. Thus, denser points and

subsequent spheres are generated only in a small region, at lower levels of detail. This

reduces the cost of collision detection. However, in some cases, the area of contact can be

very large. This would increase the region where denser points are generated and

consequently, increase the number of spheres for which intersection test is to be carried

out. It would also increase the number of triangles for which the triangle-triangle

intersection test will have to be carried out.

When the maximum number of points to be generated on the surface is selected by

the user, the size of the model will not affect the computational cost of collision

detection. It will be the percentage of the surface area of the model which will affect the

overall computational cost. For the closed B-spline surfaces used to represent solids, it is

difficult to calculate the percentage of the surface area colliding with tool. In this case,

open flat surfaces can be used to test the cost of collision detection. For simulation, a

square flat B-spline surface of degree 3 and represented by an 8×8 control points mesh

was used. The resolution of the surface was kept at 82×82 (82 points generated at lowest

level of detail in both parametric directions). For the intersection test with a sphere, the

sphere was placed at the center of the B-spline surface and its size was increased so that

more and more area of the B-spline surface was inside the sphere. This increased the area

of collision detection and computational time was noted for different percentages of area.

Similarly, the area of contact with plane was increased by increasing the overlap of the

plane with the B-spline surface.

Another square plane represented as a B-spline surface was used for B-spline - B-

spline collision detection. The area of overlap was increased from 1 to 100 percent. High

computational times, when a large percentage of the area is colliding, may not permit

real-time collision detection and haptic interaction. The computational cost increases with

an increase in the percentage of the area colliding. As both the B-spline surfaces were flat

and overlapping each other, all the spheres at all levels of detail would be colliding. This

increases the cost of collision detection when the area of contact is large. The trend is

show as a graph in Figure 6.7.

102

Figure 6.7 Variation of the computational time (ms) of collision detection for a B-spline surface with
a sphere, plane, and another deformable B-spline surface for different percentage area of
contact.

The algorithm presented in this thesis uses another unique feature to reduce the

computational cost for collision detection, as discussed in Section 3.3.3.5. The algorithm

checks the intersection of spheres at lower level of details. At any level, if all the spheres

generated on a B-spline surface are intersecting with the tool, the collision detection

algorithm does not go to the lower level of detail.

Interrupting the algorithm from going to lower levels of detail, the computational

time will decrease significantly. This makes algorithm robust enough to efficiently tackle

collision detection, when a large percentage of area is colliding, thereby permitting real-

time collision detection, and haptic interaction.

The trend of computational cost is show as a graph in Figure 6.8. As the percentage

of area increases, the cost of computation increases. However, this cost is much lower

than that achieved without interrupting the algorithm.

103

Figure 6.8 Variation of the computational time (ms) of collision detection for a B-spline surface with
a sphere, a plane, and another deformable B-spline surface for different percentage area
of contact, when interrupting the algorithm from going to lower levels of detail.

6.3 Performance of B-spline Surface Patches Merging Algorithm

One major requirement for representing 3D objects in a VR environment is that the user

should interact with the virtual model as if it were a visually realistic surface or solid. In

commercially available CAD software, if the underlying algorithm is unable to merge

surfaces, the user has some options at modifying the surfaces to prepare them for

merging. This may be achieved by tweaking control points, trimming the surface along a

knot, or matching the surfaces before merging. In contrast, a virtual model in a VR

application is not considered a B-spline surface by the user but a physical 3D object and

hence any algorithm used to combine surfaces must be sufficiently robust to incorporate

all possible cases that may arise. The algorithm described in this thesis (Chapter 4)

achieves the merging process without imposing any constraints. An important factor in

determining the versatility of the algorithm is that it should be able to tackle all the cases

during haptic interaction. In this section, different cases are considered to compare the

robustness and accuracy of the merging algorithm.

104

The process of merging B-spline surface patches is not carried out on regular basis

during the haptic interaction. Hence, the efficiency of merging algorithm does not affect

the real-time interaction. However, if the user has to wait for the merging process, it may

distract an industrial designer from creative process. Thus, it is imperative that this

process be made as fast as possible.

6.3.1 Robustness and accuracy of the algorithm

The virtual model is not considered a B-spline surface by the user in VR environment.

Hence, any algorithm must be robust so as to incorporate all the types of situations that

may arise during merging in VR environment.

The proposed algorithm is suitable for VR environments because the user does not

need to directly manipulate the control points of the various surfaces. Furthermore, the

algorithm does not impose any kind of restriction such as the degree of the surfaces, the

knot vectors, or the type of connectivity. It utilizes the same blending matrices as those

used by the collision detection algorithm and, thus, it is not necessary to perform

additional or duplicate computations [Pungotra, 2010a]. For comparison purposes, a few

cases were considered and the merged surfaces generated by the proposed technique were

compared with the results generated by a commercially available NURBS modeling

software package, Rhinoceros® (Rhino®). For this analysis, B-spline surface patches of

order four are used because these are commonly combined to create complex surfaces in

CAD and computer graphics. B-spline surface patches of higher order are considered in

Section 6.3.2 as special cases. The algorithm was used to generate surfaces with C0, C1,

and C2 connectivity. As Rhino® does not permit the user to edit the knot vector, or to

select an option for the type of desired connectivity during the merging process, only C2

continuous surfaces were generated for Rhino®. Although C0 and C2 connectivity are

presented for comparison in this study, it is possible for the proposed algorithm to create

the merged surface with any desired level of connectivity (K-2 or lower).

105

6.3.1.1 Case 1: Similar curvatures and knot vectors

This is the simplest case that can be encountered when combining B-spline surface

patches. Two arbitrary surfaces with the same degree and uniform knot vectors were used

to generate a single integral surface.

Figure 6.9 shows the results for the commercial software and the proposed surface

merging approach.

Figure 6.9 (a) Initial B-spline surface patches (b) Merged surface with C2 connectivity generated by
Rhino® (c) Merged surface with C2 connectivity generated by proposed algorithm (d)
Merged surface with C0 connectivity generated by proposed algorithm.

Rhino® generates surface with C2 connectivity by default (Figure 6.9 (b)) and does

not allow the merging of the surfaces with C0 or C1 connectivity. The proposed algorithm

can generate a merged surface with C0, C1 or C2 connectivity. Figure 6.9(c) and Figure

6.9(d) show the merged surface with C0, and C2 connectivity, respectively. The results for

106

the deviation of the merged surface from the original surfaces are shown in Table 6.3.

The detailed results of the error analysis are given in Appendix A.

The results show that the standard deviation of the merged surface, generated by

using the proposed technique, is lower than that generated by Rhino®. The surfaces

considered in this example are, in fact, Bézier surfaces and hence the deviation is large.

However, when these are joined with C0 connectivity the standard deviation reduces to a

very small value and within the tolerance required even for CAD/CAM applications. In a

virtual reality environment a deviation of less than 0.5 mm can be considered adequate.

Table 6.3 Comparison of the point set deviation of the merged surfaces generated by Rhino® and
the proposed algorithm.

Test Cases
Error Analysis

(using point set
deviation)

Merged Surface

Rhino® C2
Proposed

Method C2
Proposed

Method C0

1: Similar curvature
and knot vectors

Average distance 0.2242 0.3568 0.0104

Standard deviation 0.2704 0.2452 0.0164

21: Different curvatures
but similar knot vectors

Average distance 0.0778 0.0837 0.0458

Standard deviation 0.1708 0.1093 0.0621

3: Similar curvature
but different knot
vectors

Average distance 0.0259 0.0273 0.0110

Standard deviation 0.0364 0.0283 0.0096

42: Similar curvatures
but different knot
vectors and dimensions

Average distance - 0.0215 0.0233

Standard deviation - 0.0263 0.0228

1 The surfaces were matched (fitted without merging) before merging for Rhino®. It did not allow
the merging of these surfaces for being too far apart, without matching.
2 Rhino® did not merge the surfaces even after matching.

107

6.3.1.2 Case 2: Different curvatures but similar knot vectors

In many cases, particularly when the user is manipulating surfaces derived from CAD or

reverse engineering, the curvature of the patch edges may not be similar, as shown in

Figure 6.10(a).

Figure 6.10 (a) Initial B-spline surface patches (b) Merged surface with C2 connectivity generated by
Rhino® after matching the surfaces (c) Merged surface with C2 connectivity generated
by proposed algorithm (d) Merged surface with C0 connectivity generated by proposed
algorithm (e) Point set deviation for the C2 surface generated by Rhino® after matching
the surfaces (f) Point set deviation for the C2 surface generated by proposed algorithm.

108

The traditional methods of joining the surfaces do not work well if the curvatures do

not match at the joining edge. Rhino® did not allow the surfaces to be merged because the

surfaces were considered to be too far apart. In some cases, the CAD/CAM software

allows the user to match surfaces (fitting the surfaces with certain connectivity without

merging), thereby reducing, to a large extent, the gaps between the two surfaces. Once

the gaps are closed, it might be possible to merge the surfaces. However, there is no

guarantee that the surfaces will merge after matching. A merged surface was created by

using this process on Rhino® as shown in Figure 6.10(b).

In contrast, the proposed algorithm does not consider the curvature of the edges of

the merging surfaces. Figure 6.10(c) and Figure 6.10(d) show the merged surface using

the proposed algorithm, without going through the process of matching the surface, with

C2 and C0 connectivity respectively. This feature is important, particularly in a virtual

reality environment, because the user considers the models as objects and does not treat

them as B-spline surface patches. Although the distance between the rows of discrete

points near the edges can vary significantly, causing a deviation in parameterization for

these points, the overall result is still satisfactory. As shown in Table 6.4, the standard

deviation, even for C2 continuity, is about 0.1 mm, and reduces further to 0.06 mm, for C0

continuity. In contrast, even after going through an extra process of matching the

surfaces, the standard deviation for the surface generated by Rhino® is more than 0.17

mm. The results of the point set deviation analysis generated by Rhino® are also shown.

Figure 6.10(e) shows the deviation between discrete points of the original surfaces and

the surface generated by Rhino®, having C2 continuity, and Figure 6.10(f) shows it for the

surface with C2 continuity generated by the proposed algorithm. It is clear from the

figures that Rhino® shows large deviation in the vicinity of the common edge. This is

because Rhino® manipulates the control points only in the vicinity of the common edge.

The proposed algorithm, on the other hand, is able to manipulate large number of control

points and hence has lower standard deviation. With the proposed algorithm, the user

does not have to close the gaps by manipulating the surfaces before these can be merged.

This makes the task of joining surfaces easier for the user while working in a VR

environment. The tolerance is also low, which makes this technique suitable, even for

other CAD/CAM applications.

109

6.3.1.3 Case 3: Similar curvature but different knot vectors

One constraint for NURBS-based surfaces is that an integral surface needs to have a

continuous knot vector, though it can be uniform or non-uniform. If two surfaces with

different knot vectors are to be merged into a single surface, then this constraint must be

addressed. The traditional approach is to insert additional knots in the surfaces to achieve

a continuous knot for the integral surface. Theoretically it is possible to insert a knot into

a surface without changing its geometry, though many times, a slight change in the shape

of the surface is observed. Even if there is no change in the geometry of the surface,

additional knots increase the number of control points needed to represent the surface.

These additional control points carry no significant geometric information and are added

only to satisfy the constraint of having a continuous knot vector. The additional control

points are a nuisance for designers because these require the designer to deal with more

data and make it difficult to manipulate the geometry by moving the control points. In a

virtual reality environment, the increased number of control points increases the

computational cost of collision detection and manipulation.

The proposed technique does not introduce additional knot vectors. It just readjusts

the knot vectors, by averaging, in such a way that the merged surface has a common knot

vector. Consider a case where the two surfaces being merged have knots given by U1 =

[0, 0, 0, 0.25, 0.49, 0.67, 0.75, 0.9, 1, 1, 1] and U2 = [0, 0, 0, 0.20, 0.45, 0.61, 0.71, 0.85,

1, 1, 1]. Then the resultant knot is calculated as average of the respective knot vectors of

merging surfaces and will be given by U = [0, 0, 0, 0.22, 0.47, 0.64, 0.73, 0.87, 1, 1, 1].

Figure 6.11(a) shows the B-spline surface patches with different knot vectors and Figure

6.11(b) shows the merged surface generated by Rhino®. The merged surface created by

Rhino® had four more control points in v direction as compared to the original surface

patches. The surface generated by using the present algorithm with C2 and C0

connectivity, as shown in Figure 6.11(c) and Figure 6.11(d) respectively, had the same

number of control points (6) as the surfaces that were merged. The merged surface

generated by the proposed algorithm exhibits a better standard deviation even for C2

connectivity, as shown in Table 6.4. In the case of C0 connectivity, the standard deviation

was observed to be less than 0.01 mm.

110

(a) (b)

(c) (d)

Figure 6.11 (a) Initial B-spline surface patches (b) Merged surface with C2 connectivity generated by
Rhino® with increased knots (c) Merged surface with C2 connectivity generated by
proposed algorithm (d) Merged surface with C0 connectivity generated by proposed
algorithm.

6.3.1.4 Case 4: Similar curvatures but different knot vectors and dimensions

In many cases, the edges of the patches to be merged do not have the same length. As the

merged surface should have same parameter throughout the surface, the two surfaces

need to deviate a lot from the original geometry. In commercially available CAD/CAM

software, any two surfaces which do not have almost the same dimension cannot be

merged. Rhino® could not merge the surfaces even after matching these surfaces.

The present algorithm does not put any of these constraints on the surfaces to be

merged. Figure 6.12 shows initial B-spline surface patches and the merged surface

generated by using the proposed algorithm. The merged surface generated by the

proposed algorithm does show a deviation when compared to the original surface, but

overall, the result is satisfactory. As shown in Table 6.4, the standard deviation from the

surface is 0.026 mm for C2 connectivity which is very small considering the large

differences in the length of the edges at which the two surfaces were to be joined.

111

(a) (b)

Figure 6.12 (a) Initial B-spline surface patches (b) Merged surface with C2 connectivity generated by
the proposed algorithm.

6.3.1.5 Case 5: Intersecting and trimmed surfaces

If the patches to be merged are intersecting, the surface may not merge as intended by the

user or may not merge at all. Rhino does not merge intersecting surfaces. The algorithm

presented in this thesis uses collision detection to merge two or more intersecting B-

spline surface patches, as discussed in Section 4.4.1.

(a) (b)

Figure 6.13 (a) Initial B-spline surface patches (b) Merged surface with C2 connectivity generated by
proposed algorithm.

Figure 6.13 shows the merged surface generated by using the algorithm presented in

this section. Except for the method of determining the matrix of combined points of

112

discretization (M), the rest of the algorithm is the same as described in the previous

sections. It is clear from Table 6.4 that the surface generated is within the tolerance

needed during the haptic interaction with the model. Detailed error analysis of merged

surface is provided in Appendix A.

Table 6.4 Comparison of the point set deviation of the merged surfaces generated by Rhino® and
the proposed algorithm.

Test Case
Error Analysis

(using point set
deviation)

Merged Surface

Rhino®
C2

Proposed
Method

C2

Proposed
Method

C0

5: Intersecting and
trimmed surfaces

Average distance - 0.0423 0.0451

Standard deviation - 0.0792 0.0771

6: Surfaces having
different degrees

Average distance 0.0126 0.0139 0.0157

Standard deviation 0.0125 0.0117 0.0154

7: Multiple surfaces
having different curvature
and knot vectors

Average distance - 0.0882 0.0454

Standard deviation - 0.1218 0.0525

6.3.1.6 Case 6: Surfaces having different degrees

Before the surfaces having different degrees can be merged, the degree of the surfaces in

u and v directions need to be made uniform. Thus, the problem reduces to increasing or

decreasing the degree of a surface to make it uniform with that of the other surface. The

proposed algorithm can increase or decrease the degree of the surfaces as discussed in

Section 4.4.2.

113

(a) (b)

(c) (d)

Figure 6.14 (a) Initial B-spline surface patches (b) Merged surface of order 5×6, with C4 connectivity
in v direction, generated by Rhino® with increased knots (c) Merged surface of order 5×6
with C4 connectivity in v direction, generated by proposed algorithm (d) Merged surface
of order 4×4 with C2 connectivity generated by proposed algorithm.

Figure 6.14 shows the results of merging two surfaces having different degrees. The

first surface has 6×6 control points and degree three in both the directions. The second

surface has 8×12 control points and degree four in u direction and degree five in v

direction. The surfaces are being merged in v direction. Thus, the first surface will have

to be elevated to degree four in u direction and degree 5 in v direction. Rhino®, by default

increases the degree of lower order surface and merges these two surfaces with degree

five in v direction with connectivity of C4 and degree four in u direction. In order to have

a common degree for the integral surface, the proposed algorithm can generate the

merged surface by increasing the degree of the lower order surface or decreasing the

degree of the higher order surface. The surface generated by the proposed algorithm does

114

not require additional knots to be introduced and, hence, has a lower number of control

points as compared to the one generated by Rhino®. Table 6.4 shows the deviation of the

merged surface generated by Rhino® and proposed algorithm from the original surfaces.

6.3.1.7 Case 7: Multiple surfaces

The algorithm is capable of merging any number of surfaces. Figure 6.15(a) shows four

B-spline surfaces to be merged and Figure 6.15(b) shows the resultant merged surface

obtained by using the proposed algorithm. Rhino® could not merge the surfaces even

after matching the surfaces and merging these in pairs. As shown in Table 6.4, the

merged surface shows very small standard deviation from the original surfaces.

(a) (b)

Figure 6.15 (a) Initial B-spline surface patches (b) Merged surface with C2 connectivity generated by
proposed algorithm.

6.3.2 Computational efficiency of the merging algorithm

The algorithm achieves computational efficiency by utilizing all available resources. It

efficiently uses the blending matrices already calculated and stored for collision

detection. The revised blending matrices generated during the merging process are used

later by the collision detection algorithm, thereby minimizing the number of redundant

calculations. The efficiency of the algorithm stems from the fact that it works in tandem

115

with the collision detection algorithm. The main computational cost comes from the

discretization of the surfaces to be merged and the computation of the revised blending

matrices and their inverses.

Discretization of the surfaces to generate common matrix M is done by multiplying

blending matrices with their respective control point matrices. The blending matrices are

band matrices, having a maximum of “degree + 1” number of non-zero terms in each

row. Thus, the cost of discretization is minimal. Only two revised blending matrices (and

their inverses) need to be calculated for all the surfaces being merged simultaneously.

Again, because a revised blending matrix is a band matrix, its inverse can be safely found

by Gaussian Elimination Method without using a pivot. This reduces the overall

computational cost. Table 6.5 enumerates the time taken by the algorithm to merge

surfaces in two different scenarios.

Table 6.5 Computational time of the algorithm for merging B-spline surface patches.

Test Cases

Time (seconds)

when using the pre-
calculated blending

matrices

Time (seconds)

when calculating all the
blending matrices and

loading B-spline
surfaces

1: Similar curvature and
knot vectors

0.0025 0.044

2: Different curvatures but
similar knot vectors

0.0037 0.061

3: Similar curvature but
different knot vectors

0.0028 0.073

4: Similar curvatures but
different knot vectors and
dimensions

0.0033 0.097

5: Intersecting and
trimmed surfaces

0.0031 0.094

6: Surfaces having
different degrees

0.0039 0.131

7: Multiple surfaces with
different curvatures and
different knot vectors

0.0048 0.145

116

For this study the code was efficiently run on a computer with "Intel(R) core(TM) 2

Quad CPU with 4 GB RAM @ 2.66 GHz". In the first scenario, the algorithm uses the

data stored by the collision detection algorithm. The time taken to merge the surfaces is

enumerated in column 2. In the second scenario, the proposed algorithm does not use the

resources stored by the collision detection algorithm. The computational cost in such a

scenario would include loading the surfaces being merged and calculating their blending

matrices. Column 3 of Table 6.5 shows the time taken to merge the surfaces in the second

scenario. This scenario does not include the computational cost to find out the regions to

be discretized, during the merging of intersecting surfaces (case 5). The computational

cost to find the intersecting regions will depend upon the efficiency of the collision

detection algorithm. As is clear from Table 6.5, the time required to merge the test

surfaces described in the chapter is less than five milliseconds. Even when this code is

independently run without using the resources for collision detection algorithm (blending

matrices, knot vectors, control point matrices and other related information of the B-

spline surface patches to be merged), the maximum time taken to merge the surfaces is

0.145 seconds for the test case # 7. The computational time for the proposed algorithm is

very small and proves its efficiency.

6.4 Computational Efficiency of Physics-based Deformation Algorithm

The B-spline collision detection and merging algorithms can work independent of the

physics-based deformation system used. However, in this thesis, the mass spring mesh

has been used to impart material properties to the virtual model. This mass spring mesh is

created during the pre-processing stage using VSOFM [Igwe, 2008a] in order to provide

more realistic virtual experience. A denser mesh of mass spring nodes increases the

accuracy of the deformation behaviour for the virtual model. Unfortunately, a denser

mesh will also increase the computational cost for calculating the shape change and

resultant forces that must be fed back to the user.

To simulate realistic material behavior, the mass spring damper system requires

small time-step to simulate physics based deformation of model characterized by a

material from low to high stiffness. The running time depends upon the size of the node

117

mesh for the mass spring system and the number of training cycles. The mass spring

damper system can be used for local deformation and global deformation.

If the user desires to slightly change the shape or features of an existing object, local

deformation will be a better approach. In this case the number of training cycles can be

small (up to 50). During these iterations, the nodes which are in the vicinity of the

colliding surfaces will move under the influence of external and internal forces. As the

number of iterations (training cycles) increase, larger number of mass spring nodes will

be affected by the external and internal forces. If the user desires to determine the

characteristics of the model under the influence of external forces, depending upon the

material properties assigned to the model to represent his/her concept, global deformation

will be a better approach. In this case a large number of iterations will be needed so that

all the nodes of mass spring system get sufficient time to settle under the influence of

external and internal forces.

Table 6.6 shows the update time of single iteration for different size of the mass

spring damper node. The update time was noted when the algorithm was run on Intel

Pentium (R) D/3.2 GHz [Igwe, 2008a].

Table 6.6 Update time for single iteration of mass spring system for different node sizes.

Number of nodes Update time (ms)

10×10×10 0.1

15×15×15 0.4

30×30×30 3.0

6.5 Computational Efficiency of the Interactive Design Framework

The interactive design framework consists of collision detection algorithm, B-spline

surface patches merging algorithm, and mass spring system. In previous sections, these

algorithms were independently implemented to determine the efficiency and accuracy of

118

these algorithms. In this section, these algorithms were combined and the overall

computational time was determined. As discussed in Sections 3.3 and 5.2, the collision

detection and mass spring system algorithm has two phases. In the pre-processing phase,

blending matrices and their inverses are determined. At the same time the nodes for the

mass spring system and the properties of the springs and dampers are determined, based

on the material properties assigned to the virtual model. The computational cost of pre-

processing phase does not affect the run-time computational time. During the run-time

phase, the total computational cost includes the cost of collision detection, and cost of

determining the deformation of the model using mass spring system.

6.5.1 Pre-processing phase

During the pre-processing phase the algorithm receives input of the control points, knot

vector, type of surface (open or closed), maximum number of points to be generated on

the B-spline surface at the lowest level of detail, the number of nodes for the mass spring

system, and the material properties to be assigned to the model. If the knot vector is not

given, it is calculated by the algorithm.

As discussed in Section 3.3, two blending matrices are generated for each B-spline

surface. At the same time, the inverse of these blending matrices is calculated. The

computation time for calculating these blending matrices is small. For a B-spline surface

with a control point mesh of size 50×50 and having a maximum of 244×244 number of

points that can be generated on the B-spline surface at the lowest level of detail, the

computational time to calculate blending matrices and their inverses is 1.434 seconds.

The size of the blending matrix in u direction will be 50×244 and the size of the blending

matrix in v direction will be 244×50. This time reduces to 8 milliseconds for a B-spline

surface having a control point mesh of size 8×8 and 82×82 number of points that can be

generated on the B-spline surface at the lowest level of detail.

The computation time to generate nodes for mass spring system depends upon the

size of the mass spring mesh and the number of learning cycles used to generate VSOFM

mesh. More cycles (up to 1000) are needed when the VSOFM models is required to

generate the mass spring mesh from a very large cloud point set. In the algorithm

119

presented in this thesis, very small number of nodes is given for generation of mass

spring nodes. Thus, fewer learning cycles (100) give very good results. In the present

algorithm, 300 learning cycles were used. For a 12×12×12 mass spring mesh, it takes

3.471 seconds to generate the mass spring damper model. Table 6.7 shows the

computational time for generation of mass spring mesh of different sizes. Even for

20×20×20 mass spring mesh the pre-processing time is less than half minute, which is

very reasonable.

Table 6.7 Pre-processing time for generation of mass spring system for different node sizes.

Number of nodes Pre-Processing Time (seconds)

10×10×10 2.44

15×15×15 7.88

20×20×20 28.48

25×25×25 76.90

30×30×30 213.02

35×35×35 353.19

40×40×40 958.10

The computation time increase with increased size nodes for the mass spring system.

Figure 6.16 shows the correlation between the size of the mass spring mesh being

generated and the pre-processing time for calculating the mesh by using volumetric self

organizing feature map.

120

Figure 6.16 Pre-processing time for calculating the mass spring mesh of different sizes.

6.5.2 Run-time phase

During the run-time phase the total computational time is sum total of the computation

times for collision detection and force response system. Number of control points used to

represent the B-spline surface and the maximum number of points to be generated on the

B-spline surface determine the computational time for collision detection. At the same

time, the number of nodes needed to represent mass-spring system mesh and the number

of iterations performed to calculate deformation of the model determines the

computational cost for the force response model.

The computational times for different algorithms were enumerated in Sections 6.2,

6.3, and 6.4 under different conditions. For implementing the interactive design

framework B-spline surface was represented by a control point net of size 8×8. Maximum

of 82×82 points can be generated on the B-spline surface at the lowest level of detail.

Thus the B-spline surface can be represented at very good resolution with sufficient

number of control points. The size of the nodes for the mass spring system was

12×12×12. The variables were assigned for a general case. However, these variables can

be varied by the user as per his/her requirements.

121

Figure 6.17 (a) Deformable B-spline model (b) Points for collision detection (c) Mass spring mesh.

Figure 6.17(a) show a deformable tear drop B-spline model, the maximum number

of points that can be generated at the lowest level of detail (Figure 6.17(b)), and the mass

spring system for the model (Figure 6.17(c)). The thick red lines in Figure 6.17(c) show

the boundaries of the hexahedron mass spring mesh. These boundaries were the edges of

a cube and adapt to the shape of the B-spline model. The model was made to interact with

different types of tools. These included point-based, implicit surface-based (sphere,

plane), and deformable B-spline surface-based tools. The algorithm can generate frame

rate in excess of 30 Hz.

6.6 Concluding Remarks

In this chapter, the algorithms developed for collision detection, merging B-spline surface

patches, and mass spring damper based deformation system were implemented.

Computational efficiency and robustness of these algorithms were checked during the

implementation. The proposed algorithms are robust as these are capable of handling all

the cases that are acceptable for NURBS-based surfaces. These algorithms do not impose

any restriction on the degree of the surface patches, the number of control points,

convexity or concavity of the surface, and extent of deformation.

122

Collision detection algorithm can efficiently carry out the intersection test for a

variety of surfaces, such as, point, implicit surfaces, tessellated surfaces, and deformable

B-spline surfaces. Even when the area of contact is large, the collision detection

algorithm can maintain reasonable frame rate. B-spline surface patch merging algorithm

additionally does not impose any restriction regarding the type of continuity required at

the common edge, the knot vector, or the number of surfaces being merged

simultaneously. The proposed algorithm can efficiently merge B-spline surface patches

having dissimilar curvatures at the common edge, intersecting B-spline surface patches,

and the B-spline surface patches having trimmed edges. The user will not have to face a

situation where the two surfaces cannot be merged due to intersection, dissimilar

curvature at common edge or similar situations. This adds to the robustness of the

algorithm. All the algorithms work in tandem and use the pre-computed blending

matrices efficiently. This increases the robustness and efficiency of the framework

developed in this thesis.

The virtual interactive design module which consists of the collision detection and

merging of B-spline surfaces and mass spring mesh, can achieve frame rates in excess of

30 Hz. This will allow the user to interaction with the deformable model in real-time.

However, if a very dense mass spring mesh is used or if the numbers of control points of

the B-spline surfaces are very large, the computation time will increase.

123

CHAPTER 7 DEFORMABLE MODELS FOR INTERACTIVE DESIGN AND

USER TRAINING

7.1 Introduction

Modeling deformable objects for freeform interactive design is an active research topic in

engineering. Physically based virtual models provide a sense of realism to the user for

many applications in engineering. Over the past decade, B-spline modeling has become

the standard mathematical model for representing freeform or organic objects in

CAD/CAM systems. Using a B-spline surface to represent the virtual model in a haptic

interactive design module helps to streamline the exchange of the information with

existing CAD/CAM systems. B-spline surfaces also help increase visual realism because

these represent continuous surface. At the same time, the algorithms used for interaction

with the virtual model should be computationally efficient to maintain acceptable level of

virtual realism of 30 Hz required for human eye to perceive the dynamic simulation as

continuous with no time lag.

Figure 7.1 shows the various modeling techniques developed in this thesis and their

relationship to the interactive design problem. These techniques are integrated to develop

a B-spline surface based interactive design module for various applications in virtual

reality environment. The same virtual reality issues exist for user training and the

modeling techniques developed in thesis can be used to provide a virtual environment to

the user similar to the real world applications. This will help users to benefit from the

unique features of the design concept. At the same time, the users can provide valuable

insight to an industrial designer during their interaction with various design concepts.

Simple illustrations of an application familiar to everyone are presented in this

chapter to demonstrate the capability of the developed algorithm for freeform interactive

shape design and user training. B-spline surface based deformable models have been used

for the illustrations. The tools have been represented as rigid implicit surfaces (plane and

sphere) as well as deformable B-spline surfaces.

124

Figure 7.1 Integration of various modeling techniques proposed in this thesis to develop B-spline
surface based interactive design module for various applications in virtual reality
environment.

7.2 Conceptual Product Design

The concept design process needs creativity and freedom to innovate and explore

alternative solutions [Morris, 2009]. During the concept generation phase a rough idea,

which can come from the background research or from a previous design, is expanded

into several solution alternatives. Physical product design and production may require

major investments and can lead to significant financial implications in the event of a

solution not meeting design requirements or specifications. However, these risks can be

managed by developing and testing new solutions at the concept stage. The product

concepts can be evaluated depending on the design considerations and identified

customer needs.

Based on the results of a user study, an industrial designer first outlines requirements

of the users. Concept design process starts by defining the user groups and describing the

usage of the final concept product. The designer then defines a hypothetical user activity

Collision detection

for deformable B-

spline surface models

(Chapter 3)

Merging B-

spline surfaces

(Chapter 4)

Mass spring

damper system

(Chapter 5)

Modeling

Techniques

Proposed

System

Collision Detection and Merging of Deformable B-spline Surfaces

for Interactive Design in Virtual Reality Environment

Applications
Shape

Design

Object

Sculpting

Medical

Simulations

User

Training

125

and starts generating more detailed solutions for the products to support this activity. This

process includes a description of the basic functions, design specification requirements,

functional requirements, ergonomic shape features, constraints, and other important

technical attributes.

The evaluation of product concept solutions is one of the critical steps in the concept

development process. The target of the evaluation is to make a decision on whether to

discontinue the concept, further iterate the concept, or start utilising the concept.

Valuable insight into refining the concepts can be gained using evaluation methods

involving end-users. An important goal is to identify whether the new product concepts

find acceptance amongst the intended target user group. Another goal may be to evaluate

the design from a human factors perspective. User evaluation is useful as a tool for

iteratively refining the designs based on user feedback in accordance with the concept of

user-centred design.

The modeling techniques developed in this thesis can enable an industrial designer to

sculpt and validate the concepts in the virtual reality environment. A group of users,

fairly representative of the intended user's segment, can evaluate the concept in VR

environment. Further design modifications may be guided by different sets of users.

These different sets of user may be based on different cultures, geographies, age groups,

or medical conditions. These modifications will often deal with a variety of needs that

can be fulfilled using innovative but easily implemented changes to the existing generic

model.

Concept design focuses on the fundamental characteristics of the product that

distinguishes it from the existing products or concepts. These characteristics may include

appearance, product size, shape, ergonomics, interaction, and intended user segment of

population. These characteristics may result in tangible benefits for different user

segments. In this context, the term easy-to-use may be a vague generalized idea. Different

user segments will find varying degree of ease while using a product.

In order for product design to fulfill the requirements of diverse set of users, several

methods for supporting design activities have been developed. Computer Aided Design

(CAD) systems support the precise and detailed specifications of the geometry of the

126

product. However, before the precise and detailed specification of product design is

carried out, several concepts must be developed. These concepts must be tested by

various user segments. Virtual reality can be used to design and test these concepts. The

modeling tools developed in this thesis can be used for the purpose. B-spline surface

representation of the model ensures streamlined exchange of information with CAD

systems for precise and detailed specifications. The following sections illustrate the use

of the modeling methodologies developed in this thesis for shape design, validation of

concept, and user training.

7.3 Interactive Design of an Ergonomic Spoon

Real-time interaction with a product model during interactive development provides a

quick insight into the overall performance of the proposed solution. The example of

designing a functional, stylistic spoon for different user segments is used to establish the

application and desirability of the modeling tools developed in this thesis. Figure 7.2

shows many of the commercially available spoons.

Figure 7.2 Photograph of typical commercially available spoons. Product designs mainly focus on
contemporary style, ease of use, and comfort of the user.

These designs presume that the intended users can efficiently work with their hands

and fingers. However, for different sets of users, these designs may not be suitable from

127

an ergonomic point of view in terms of ease-of-use and providing comfortable grip. One

of the user segments is of the patients suffering from rheumatoid arthritis. Rheumatoid

arthritis is a chronic inflammatory disorder that most typically affects the small joints in

hands and feet [The, Arthritis Society, 2010]. The patients often experience lack of

movement in their upper body joints. Eating is one of basic tasks that can be impaired by

rheumatoid arthritis. The spoons that are commercially available may not be helpful for

this user segment. Virtual reality can make it possible for an industrial designer to imitate

a rheumatoid arthritis patient and develop ergonomic spoons for the users.

Figure 7.3(a-b) shows natural way of fetching and eating food. Figure 7.3(c) shows

the hand of a patient suffering from rheumatoid arthritis. This limits the movement of

fingers and wrist. It is generally accepted that a user would hold a spoon in particular way

and turn wrist to eat as shown in Figure 7.3(a-b). However, this may not be possible for

different users such as patients suffering from rheumatoid arthritis, children, and aged

people. Due to a weak grip (as in case of children and aged people) or restricted motion

(as in case of patients suffering from rheumatoid arthritis), it possible that a user cannot

put the food properly in the spoon or can get the food in the spoon, but cannot turn

his/her wrist enough to bring it to mouth without spilling it. Even for other users, it is

possible to come up with different concepts to develop ergonomic spoons.

(a) (b) (c)

Figure 7.3 Generally accepted motions (a) Holding a spoon and (b) Rotating wrist while eating (c)
Rheumatoid arthritis restricts movements of fingers and wrist, modified picture from
[Joint, Pain Solutions, 2010].

In a similar fashion, different materials can be incorporated in product design to

reduce overall weight and enhance features such as high friction gripping surface to

prevent slippage of spoon during use. In this context, a variety of concepts that cannot be

128

addressed effectively using conventional CAD design packages may be examined using

interactive design simulation tools in virtual reality environment. The haptic technologies

associated with virtual reality based design can also enable the designer to alternate

concepts depending upon the range of motion and examine the effectiveness of the

concept while holding and manipulating the proposed solution.

An initial design can be obtained by digitizing an existing design using reverse

engineering approach. Point cloud data or tessellated surface can be used to obtain an

initial design represented as a B-spline surface. Conventional CAD system can also be

used to create the initial form. Alternatively, the initial design can be created from a

virtual lump of clay. Figure 7.4 shows the generation of initial design by different

methods.

Figure 7.4 Different methods to generate initial design represented as a B-spline surface.

129

Initial analysis can be carried out in VR space to determine if the product meets the

requirements for all/intended user segments or if it needs modifications for particular

segments of users. The industrial designer can investigate different shapes, sizes, and

material of the spoon to determine a valid concept before finally deciding on the best

design for intended user segments.

In terms of function, a spoon is primarily used for serving or eating food, although,

these spoons can be further classified based on the basis of drink or food with which they

are most often used. Based on the function, two different designs are considered in this

thesis, a spoon for eating food and a spoon for serving food.

A spoon has two distinct parts, a handle for holding and a small shallow bowl (or

shell), oval or round, at the end of the handle for fetching food. Figure 7.5 shows two

parts of a spoon.

Figure 7.5 Parts of a spoon.

A spoon can be modified as a whole or the two parts (handle and bowl) can be

designed separately and later merged to get the desired shape. Separate parts are easier to

manipulate and can give rise to more concept models by different combinations.

7.3.1.1 Spoon for eating food

The handle of a spoon can be modified in different shapes and sizes to accommodate

impaired wrist movements or weak grip of fingers. To reduce the computational cost, the

Bowl or shell

Handle

130

bowl (shell) part and handle are used as separate B-spline models. One of the solutions is

to bend the handle so that the bowl part of the spoon faces the person and he/she does not

need to bend the wrist to eat from the spoon.

Using the interactive design frame work, bending can be achieved by fixing one end

of the spoon handle and applying force on the other part. Figure 7.6(a) shows the handle

of initial spoon design. In the design framework, a plane is used to fix a portion of handle

and the force is applied by a sphere based tool. Figure 7.6(b) shows the vertical plane and

the sphere used to push the handle.

Figure 7.6 (a) Handle of spoon from the initial design (b) A plane is used to fix nodes on one side of
the plane (opposite to the direction of normal vector) and a sphere is used to apply force.

During the pre-processing phase, a mass spring mesh is created for the handle shown

in Figure 7.6(a) (Please refer to Chapter 5 for detail). A 12×12×12 node mesh was

created, from the points generated by using blending matrices. Figure 7.7(a) shows the

mass spring mesh of the spoon handle.

131

Figure 7.7 (a) Mass spring mesh for the spoon handle (b) Fixed nodes (green) and the nodes
colliding with the sphere tool (red) (c) Side view the B-spline model showing fixed and
colliding nodes.

Collision detection algorithm, developed in this thesis, checks the intersection of the

plane with the spoon handle (Please refer to Chapter 3 for detail). All the nodes on one

side of the plane (opposite side of the normal vector of plane) are fixed. The fixed nodes

do not experience any movement or deformation. Even if these nodes experience internal

or external force through spring damper system, these nodes do not move. The nodes

(green color) shown in Figure 7.7(b-c), are the fixed nodes detected by the collision

detection algorithm.

At the same time, the collision detection algorithm checks the intersection of the tool

sphere and the B-spline model. It first determines the intersection of sphere and the

convex hull of the spoon handle. Points are generated within the minimum and maximum

range of u and v parameters, determined from the intersection of the tool sphere and the

convex hull. Spheres are generated using these points and intersection test is carried out

between the tool spheres and the spheres created on the B-spline surface. More points are

generated within the intersecting spheres at the lower level of detail. This process is

carried out until the collision detection algorithm determines the region of the B-spline

132

model colliding with the tool sphere and determines the nodes of the mass spring system

which will be experiencing external force. The process of collision detection was

explained in Section 3.3. The information about the magnitude of the external force

applied through the sphere and the nodes experiencing this force is transmitted the mass

spring deformation system. Figure 7.7(b-c) shows the nodes (red color), determined by

the collision detection algorithm, which will experience external force.

As soon as a force is applied through the sphere, the B-spline model starts

deforming. The upper part of the handle shown in Figure 7.7(b-c) has fixed nodes and

therefore, cannot move under the influence of applied force. However, the bottom side of

handle is free to move. Figure 7.8 (a) shows the initial design of the spoon handle,

experiencing the external force through the tool sphere. Figure 7.8(b) shows an

intermediate shape of the handle after a force was applied. Initially the middle portion of

the handle was deformed and the free end of the spoon lagged behind the middle portion.

However, as the number of iterations increased, the middle and bottom portions got

straightened up. Figure 7.8(c) shows the bending of the handle under application of force.

Figure 7.8 Deformation of handle under the application of external force with one end fixed.

133

It should be noted that the lower end of the handle will remain straight only if global

deformation is allowed. With higher number of iterations the free side of the handle gets

enough time to straighten up. In case of local deformation, the portion where force is

applied will deform but this deformation will not get enough time to propagate

throughout the mass spring mesh. Due to global deformation, the free end of the handle

moves enough to keep the bottom side of the handle straight.

By applying forces at different points, the shape is further changed as shown in

Figure 7.9(a). Once the initial spoon handle shape is modified using the tools developed

in this thesis, the B-spline model is imported in commercially available CAD software

(Rhino®) to refine and add finer details to the model. The refined model for the handle of

the spoon is shown in Figure 7.9(b).

(a) (b)

Figure 7.9 Modified shape of spoon to accommodate lack of wrist movement.

It is possible that the user cannot use fingers to hold the spoon due to lack of

movement of fingers, or weak grip. If the user cannot hold the spoon with fingers, then

the handle can be modified to for a firm grip using all the fingers. This will also help to

effectively counter the torque resulting from the modified design. Again, the tools

developed in this thesis can be used to change the shape of the handle.

134

(a) Handle of the spoon

interacting with too sphere
(b) Deformation due to

applied force
(c) Modified shape of handle

after several interactions

Figure 7.10 Modifying the shape of spoon handle to grip it with all the fingers of hand.

Figure 7.10(a) shows the spoon handle a tool sphere. Again, the collision detection

algorithm determines the colliding nodes of the mass spring mesh, which would

experience the external force applied through this sphere. As soon as the tool sphere is

pulled out, the nodes of the mass spring mesh colliding with the tool sphere (determined

by the collision detection algorithm) experience force in the outward direction. The

external force acting on the colliding nodes starts pulling these mass spring nodes in the

direction of the external force. In this case, local modification is more appropriate

because we only intend to change the shape in a small region. Local modification uses

small number of iterations and hence, the nodes which are away from the colliding

surface do not get enough time to move under the application of the external force. Due

to this reason, there is no need to have a plane to fix some of the nodes. Figure 7.10(b)

shows the deformation of the handle under the influence of external force applied through

the sphere tool. By repeating this process at different points, the handle can be modified

to accommodate all the four fingers to grab the handle while eating. Figure 7.10(c) shows

the spoon the with modified handle shape.

Once various shapes of the spoon handle are generated, these handles need to be

merged with the bowl section of the spoon. The B-spline surface patches merging

Force

135

algorithm can be used to merge the bowl and handle part to generate various models

(Please refer to Chapter 4 for detail).

(a) Bowl and handle of

spoon
(b) Point cloud of the bowl

and handle of the spoon
(c) Merged B-spline model

of spoon

Figure 7.11 Merging bowl and modified spoon handle to generate the B-spline model of a of spoon.

Figure 7.11(a) shows the bowl and the modified spoon model. These parts must be

merged to generate an integrated B-spline model of the design concept for a spoon. Due

to the modification of the shape of the handle, the knot vector and the common edge of

the bowl and handle did not match. Rhino could not merge these B-spline models to

generate a single B-spline surface patch. Even when the edges were matched

(establishing tangency at the common edge without merging) Rhino did not allow the

merging of the surface for being too far apart. The main reason was that when the knot

vectors are different, even after matching of the surfaces, certain gaps remain at the

common edges. However, the B-spline merging algorithm can merge these surfaces even

without matching or manipulating the control points of the B-spline surfaces. Figure

7.11(b) shows the point cloud of the bowl and handle, generated by using blending

matrices stored during the pre-processing phase. These point clouds are merged to

generate single matrix of the point clouds, M. Revised number of control points, knot

vector are calculated as discussed in Chapter 4. Using the matrix of points M, revised

knot vector, and revised number of control points new blending matrices are generated.

136

These revised blending matrices are further sued to generate a merged, single patch B-

spline surface is of the spoon as shown in Figure 7.11(c).

This design can accommodate the lack of wrist movement and the user does not have

to rotate his/her wrist. However, due to the bend, the user will experience a torque. Figure

7.12(a) shows the initial design and Figure 7.12 (b-d) show different variations of the

design. The design shown in Figure 7.12 (b) can accommodate lack of wrist movement of

the user. The designs shown in Figure 7.12 (c-d) provide better grip for different sets of

users. These grips can be further modified to suit grip of the user.

(a) (b) (c) (d)

Figure 7.12 Investigation of different shapes of a spoon for eating food to accommodate impaired
wrist movements or weak grip of fingers. The original design is shown in (a) and design
modifications are presented from (b) to (d).

These designs can be evaluated by an industrial designer or a user in the virtual

reality environment. The evaluation of the model and user training with a finalized model

is presented in Section 7.4.

7.3.1.2 Spoon for serving food

A serving spoon, in general, would have deeper shell and longer handle. A general

design, as shown in Figure 7.13(a), consists of a straight handle and a bowl. While

137

serving from a deep container, the user must raise his/her arm to fetch food from the

container. Restricted movement of the arm (or short arm in case of children) may make it

harder to serve food. Hence, the design must be modified to accommodate this user

group. Figure 7.13(b) shows a design which can be used to fetch food without raising

arm. The handle of the spoon was bent in manner as discussed in previous section. The

handle allows the user to fetch food from a deep container without raising the arm.

However, it would take more torque to pour food in plate due to the bent handle. To

accommodate it, one side of the bowl part of the spoon can be dipped to allow easy

serving of the food. Figure 7.13(c) shows this variation which makes it easy to pour food

into the plate. These modifications can be carried out using the methodologies developed

in this thesis.

(a) (b) (c)

Figure 7.13 Investigation of different shapes of a serving spoon to accommodate impaired shoulder
movements. The original design is shown in (a) and design modifications are presented in
(b) and (c).

7.4 Evaluation of Model and User Training

Once an industrial designer comes up with different concepts, these can be evaluated

before moving on to the next step of detailed design. The models can be evaluated in

relation to its ergonomic shape and size, suitability for intended user group, strength and

weight. Once the design is finalized for form and function, it can be used to impart

training to the user group.

138

7.4.1 Evaluation of model

Considering the group of users affected by rheumatoid arthritis, aged people, and

children, it will be pertinent to know if these users can eat with the spoon without spilling

the food. The collision detection algorithm, developed in this thesis is capable of

handling collision of two or more deformable B-spline surfaces.

A B-spline surface patch having 8×8 control points net was used to represent food

(jelly) for interaction with the spoon to mimic eating with a spoon. A 12×12×12 mass

spring damper mesh was used to incorporate material properties of jelly to this model.

Figure 7.14(a) shows the B-spline model and Figure 7.14 (b-c) show the mass spring

mesh of this model.

(a) B-spline model (b) Mass spring model
shown with facets. The

nodes are shown as green
dots

(c) Mass spring model.
The thick red lines

represent the boundries
of hexahedron mesh

Figure 7.14 (a) B-spline model representing food (jelly) (b-c) Mass spring mesh to incorporate
material properties to the model.

The methodologies developed in this thesis, make it possible to model food (jelly) as

a B-spline deformable model and simulate an environment in which a user can interact

with food and spoon represented as B-spline surfaces. Figure 7.15(a) shows a spoon with

a jelly on it, while the spoon was kept straight. Again, the collision detection algorithm

detects the regions of the B-spline models colliding in the virtual reality environment.

139

(a) Jelly on spoon (b) Jelly starts

flowing under its
own weight

(c) Jell stops flowing
further due to its

own weight

(d) Other view of the
jelly flowing due to

its own weight

Figure 7.15 Simulation of food (jelly) in a spoon without tilting it.

Due to its own weight, jelly started flowing downwards as shown in Figure 7.15(b).

As soon as jelly deforms, the control points net of this B-spline model gets updated to

represent deformed jelly. By using the blending matrices and the revised matrix of

control points, points are once again generated on jelly. Spheres are generated on the jelly

surface using these points. Same process is carried out for the spoon. The spheres

generated on jelly and spoon are checked for intersection and more points and

subsequently spheres are generated at the lower levels of detail. At the lowest level, the

collision detection algorithm determines the nodes which will experience external force

due to the collision. Thus the nodes of the mass spring mesh of jelly, which collide with

spoon experience reactive force and do not move downwards. However, other nodes

continue to move and their movements are determined by the mass spring mesh and the

physical properties assigned to it. The control points of the B-spline models are updated

and this process continues. As the mass spring model of spoon has more stiffness (given

properties of steel), there is no noticeable change in the shape of spoon. However, if

different material is chosen, the shape of spoon may also change.

140

 As shown in Figure 7.15(b-d), jelly starts spilling out of the spoon. This means that

if this design is used, the user cannot eat jelly by using this size without spilling it. Figure

7.15(d) shows the close up of the bowl of spoon. It is clear that the jelly is spilling from

the front portion of the spoon bowl. At this point, an industrial designer can start

modifying the design in such a way that the jelly does not get spilled. It is clear from

Figure 7.15 (b-d) that the jelly was spilling from the front portion of the spoon bowl

while the back portion was empty. The design of the spoon can be modified to see how

the jelly will behave, if the bowl is tilted about 10 degree in the backward (clockwise for

the spoon shown in Figure 7.15, when seen from the handle side along the handle)

direction. Figure 7.16(a) shows the jelly put in a spoon with tilted bowl. The jelly starts

flowing due to its own weight as shown in Figure 7.16(a-d). However, this time it does

not spill out of the spoon as shown in Figure 7.16(d). It spreads in the spoon evenly. This

shows that there was improvement in the design.

(a) Jelly on spoon (b) Jelly starts
flowing under its

own weight

(c) Jell stops flowing
further due to its

own weight

(d) Other view of the
spoon. Jelly does not

spill out of spoon

Figure 7.16 Simulation of food (jelly) in a spoon when the bowl is tilted by ten degree.

The bowl was tilted by 20 degree to see if it further improves the design. However,

as shown in Figure 7.17, the jelly started flowing from the back part of the spoon. This

141

means that by tilting the bowl by twenty degrees, the design deteriorated rather than

improving its functionality.

(a) Jelly on spoon (b) Jelly starts
flowing under its

own weight

(c) Jell stops flowing
further due to its

own weight

(d) Bottom view of the
spoon. Jelly spills out

of spoon

Figure 7.17 Simulation of food (jelly) in a spoon when the bowl is tilted by twenty degree.

The simulation suggests that the spoon bowl should be tilted by 10 degree to

improve the design. In a similar fashion, other parameters of the spoon such as depth of

the bowl, curvature of the bowl, or the width of the bowl, can be varied to determine best

suitable design.

The industrial designer can also determine weight of the spoon, the deflection of the

spoon due to its own weight and that of the food, while using different materials for the

spoon. The preliminary evaluation of the concepts in the virtual reality environment

would help the industrial designer to come up with the designs which can be successfully

implemented. The tools developed in this thesis, can provide this environment to the

industrial designer.

142

7.4.2 User training

Even when a product design for a given user segment is ready, the users may require

training to benefit from the unique features of the design. Even when a variety of shapes

is available for a spoon, adaptations needed for eating may still be overwhelming for

patients suffering from rheumatoid arthritis or aged people having weak grips. An

occupational therapist can help train these people. However, this would require that

products are readily available in the market. In the absence of a suitable product, it might

be difficult for an occupational therapist to train this user segment. Virtual reality

environment can be used to efficiently train these users. Various shapes discussed in

Section 7.3 can be used to assess how a user eats his/her food and determine which

design will work for a particular user or a set of users. At the same time, an industrial

designer can have better understanding of the difficulties of the user group. This can help

the industrial designer to come up with better design after receiving valuable inputs from

the users.

A major challenge for patients of rheumatoid arthritis or aged people is to eat food

with a spoon without spilling it. There are primarily two reasons for spilling food from

the spoon; tilting of spoon and shaking of hands while eating with a spoon. Virtual reality

environment can provide various scenarios in which a user can interact with spoon while

eating food. A variety of spoons developed during the interactive design phase can be

used to determine the best fit for the user.

In the simulation study, different scenarios were considered, which included

different angle of tilt for the spoon and shaking of hands. Acceleration was imparted to

spoon to simulate shaking of hands. When the spoon gets tilted, jelly may start spilling

out of the spoon. A larger tilt will increase the rate of spilling of jelly. However, by

practicing with the virtual spoon, a user can be trained to eat without spilling food. Figure

7.18(a) shows the interaction of spoon and food to simulate a user tilting his/her spoon

while eating food. Different angle of tilt were considered which resulted in spilling of

jelly by different magnitudes. Figure 7.18(b) shows spilling of jelly when the spoon was

tilted by ten degrees. The spilling of jelly increased with increased angle of tilt as shown

by Figure 7.18(b-d). Figure 7.18(e-h) show the side view of the spoon and jelly.

143

(a) Jelly on spoon (b) Jelly spills out of
spoon when spoon

is tilted by 10
degrees

(c) Jelly spills out of
spoon when spoon

is tilted by 20
degrees

(d) Jelly spills out of
spoon when spoon

is tilted by 30
degrees

(e) Side veiw of the
jelly on spoon

(f) Side view of the
spilling jelly, when
the spoon tilted by

10 degree

(g) Side view of the
spilling jelly, when
the spoon tilted by

20 degree

(h) Side view of the
spilling jelly, when
the spoon tilted by

30 degree

Figure 7.18 Simulation of food (jelly) in a spoon when the spoon is tilted by different degrees.

The spilling of spoon gets aggravated when the tilting of spoon is accompanied by

the shaking of hands while eating with a spoon. By incorporating the acceleration to the

spoon and eventually to the food, both the tilting of spoon as well as shaking of hands can

be simulated. Figure 7.19(a) shows the jelly on the spoon bowl. Its side view is shown in

Figure 7.19(e). If the user tilts the spoon (anti-clockwise rotation of the spoon when seen

from the side of the handle of the spoon) and his/her hands are shaking in the same

direction, the jelly will experience force due to its own weight as well as due to the

inertial forces. Figure 7.19(b and f) show the result of simulation. It is clear from the

figure that shaking of hand exacerbates the slipping of jelly from the spoon. However,

144

when the shaking of hands happened in the transverse direction, the jelly slipped to lesser

extent as shown in Figure 7.19(c and g).

(a) Jelly on spoon (b) Jelly spills out of
spoon when spoon is
tilted by 30 degrees

and the user's hand is
shaking in the same

direction

(c) Jelly spills out of
spoon when spoon

is tilted by 30
degrees and the
user's hand is
shaking in the

transverse direction

(d) Jelly spills out of
spoon when spoon

is tilted by 30
degrees sideways

and the user's hand
is shaking in the
same direction

(e) Side veiw of the
jelly on the spoon

(f) Side view of the
spilling jelly

(g) Side view of the
spilling jelly

(h) Side view of the
spilling jelly

Figure 7.19 Simulation of food (jelly) in a spoon when the spoon is tilted by different degrees and the
hand of the user is shaking.

In the same way, when the tilting and the shaking of hand happens in transverse

direction (along the major axis of the handle of the spoon), the jelly slips and starts

falling down from the side. This is shown in Figure 7.19(d and h). At this point if an

industrial designer concludes that the user cannot eat without the tiling and shaking of

hands, the spoon design can be reviewed. Some modification such as raising one side of

145

the spoon bowl or tilting the bowl part of the spoon in the other direction can be carried

out at this stage.

7.5 Concluding Remarks

Various techniques developed in this thesis can be used to simulate various scenarios in

virtual reality environment. The collision detection algorithm allows both rigid implicit

surfaces and deformable B-spline surface-based tools. The B-spline surface merging

algorithm allows the users to merge different deformable models to generate a large

number of shapes.

The simulations can provide an industrial designer, an enhanced insight into the form

and function of the concept required for a given group of users. A variety of models can

be generated and tested by the industrial engineer and real-time information can be used

to improve their form and function. At the same time, the interactive design framework

can be used to provide training to the users in the virtual reality environment. All these

processes can be carried out without physically fabricating various prototypes, thereby,

reducing the wastage caused by scraped models and prototypes which were fabricated at

the preliminary stage.

The simulations proved the effectiveness of the methodologies developed in this

thesis to provide an intuitive environment to an industrial designer or engineer. The

manipulation of deformable handle to change its shape and merging of spoon handle with

bowl was accomplished in real-time. The simulation of spoon and jelly was performed at

a higher rate than 30 Hz.

146

CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Review of Methodologies Developed for Deformable Modelling

In this thesis, the development of methodologies for enabling seamless interaction of

deformable virtual models was presented. The main focus was to develop a framework

for efficient collision detection, merging of B-spline surfaces representing the deformable

virtual objects, and modeling the shape of the virtual objects based on physical

properties. The application for illustrating the proposed methodology was virtual

interactive design. However, the core algorithms are versatile for use in medical

simulations, games and other haptic interactive applications. It was assumed that all the

deformable models were represented as B-spline surfaces. Although, the mass damper

spring mesh had been used in thesis, other geometric or physically based deformation

models can also be used in conjunction with the collision detection and B-spline surface

merging algorithms.

All the components of the framework for interaction with deformable models used

pre-computed blending matrices. These blending matrices are independent of the control

points of the B-spline surface and hence, can be pre-computed. Once computed, these

blending matrices could be used to find the new position of control points to represent

deformed B-spline surface without calculating blending functions. As there was no need

to calculate computationally intensive blending functions, various algorithms could work

efficiently. In fact these blending matrices enabled the algorithm to efficiently merge B-

spline surface patches, accurately check the collision, and generate nodes for the mass

spring system to determine deformation using the physics-based model.

The collision detection algorithm was capable of handling intersection test of virtual

models with haptic tools. These haptic tools were represented as a point, an implicit

surface, a tessellated surface, and B-spline surface. No restriction was imposed on the

number of control points representing a B-spline surface, degree of the B-spline surface,

knot vectors, or extent of deformation. The B-spline surfaces can be merged without

imposing restrictions which are generally imposed by commercially available software.

The algorithm can merge surfaces which are intersecting, trimmed or do not have

147

common edge at which these are joined. Most of the commercially available software

cannot tackle these cases. Material properties like Young's modulus and Poisson ratio

were incorporated into the model while generating mass spring system by volumetric self

organizing feature maps.

8.2 Novel Features of the Proposed Method

In order to demonstrate the novel features and computation efficiency of the collision

detection algorithm, B-spline surface patches algorithm, mass spring system, and

integrated interactive design module, different simulations were performed. Deformable

model was represented as B-spline surface for easy exchange with commercially

available CAD software. Merging of B-spline surface patches algorithm provided an

efficient and robust framework for integrating B-spline surface models to generate more

complex and interesting designs. The mass spring system allowed simulating real

material behaviour for the model depending upon the physical properties assigned to it by

the user. All the algorithms used common resources (blending matrices) for efficient use

of the pre-computed information and worked in tandem.

8.2.1 Blending matrices

B-spline representation is one of the main methods for free-form surface modeling and

has become the standard for CAD systems. However, the high computational cost of

continuously computing the blending functions for merging, collision detection and

physics-based deformation system, while the model is deforming, restricts the use of B-

spline representation in a Virtual Reality (VR) environment. In this thesis an alternative

method to represent B-spline surface patches had been presented for an interactive VR

environment.

A uniformly discretized B-spline surface patch can be represented by a set of control

points and two pre-calculated B-spline blending matrices. The proposed technique

exploited the fact that these B-spline blending matrices were independent of the position

of control points and therefore could be pre-calculated. The blending matrices enabled

the algorithm to merge B-spline surface patches, accurately check the collision, and

148

generate nodes for the mass spring system to determine deformation using the physics-

based model. This technique does away with the need to calculate computationally

intensive blending functions for the B-spline surfaces, and inverse of large matrices

during the run-time. The computational efficiency achieved by using blending matrices

helped to achieve real time interactions between the virtual model and the tool, in a

virtual reality environment.

An essential aspect in B-spline surface modeling is the conversion between different

representations of B-spline surfaces. These arise in various aspects of B-spline surface

modeling/manipulation such as shape control, degree control, and merging of B-spline

surface patches. Blending matrices can be used to establish a uniform mathematical

model for all aspects of B-spline surface modeling/manipulation needed in a virtual

interactive design process and provide a general tool for the conversions between

different representations of B-spline surfaces.

Once these blending matrices are calculated and stored, they can be used for a

variety of applications in a VR environment. Two or more B-spline patches can be

merged in a VR environment. The same blending matrices can be used for efficient

collision detection as well as generating nodes for the mass spring system. In this manner,

all the aspects of B-spline manipulation work in tandem and reduce the computational

cost without affecting the accuracy of various interactions. For all these applications, the

blending matrices played a significant role in making the whole process computationally

efficient.

8.2.2 Collision detection algorithm

The collision detection algorithm utilized the best qualities of parametric representation

for free form surfaces and the ease and efficiency of triangle-triangle intersection test.

The density of points generated on the surface was increased at lower levels of detail

within the area of probable collision. The on-the-fly generation of points and triangles

also helped maintaining the quality of the triangles. Although the algorithm used triangle-

triangle intersection test for collision detection at the lowest level of detail, it was more

efficient than a tessellated surface deformable model. The novel method of generating

149

spheres to find out the regions of the surface likely to collide, allowed multiple contact

collision detection. The algorithm is also capable of detecting collision with a tessellated

surface, implicit surface, or point-based tool. Hence, a variety of rigid and deformable

tools could be used during sculpting or validation of the model. No limitations were

imposed on the shape, complexity, degree or the number of control points of the B-spline

surface representing the tool or model. Both the model and the tool could have complex

shapes, elastic or plastic properties, and multiple contacts. This would allow the user to

use rigid or deformable tools with complex shapes with greater ease and productivity

during the sculpting exercise or model validation within a virtual reality environment.

The novel technique of comparing the normals of the points generated on a flat

surface reduced the computational cost of collision detection between two flat B-spline

surfaces. A fewer number of points were generated for tessellation on a flat surface which

further reduced the number of triangles generated for triangle-triangle intersection test.

This made the algorithm robust as it could handle a potentially computationally

expensive situation at a much lower computational cost. The calculation and storage of

transformation matrices and their inverse during the preprocessing stage also ensured that

no inverse was needed to be computed during the run-time phase of the algorithm. The

matrix inverse calculations would have increased the computational cost. This reduced

the computational cost of rendering the deformation of the B-spline surface and made the

algorithm robust and efficient.

The collision detection algorithm can detect collision with multiple B-spline patches.

However, it creates problems for the mass spring system. Hence, the B-spline surface

used to represent the model or the tool was limited to single patch. If there are multiple

patches, these can be combined into single B-spline patch by using the B-spline surface

patches merging algorithm.

However, the collision detection algorithm, presented in this chapter, cannot detect

the extent of tool penetration. The calculation of tool penetration helps to calculate the

magnitude of the forces to be fed back to the user during haptic interaction. In future, this

algorithm will be extended further to include the calculation of tool penetration depth.

150

Another limitation of the collision detection algorithm is that it cannot detect self

collision.

8.2.3 B-spline surface patches merging algorithm

B-spline surfaces have been used in a VR environment but one problem, which had not

been addressed so far, is efficiently creating complex shapes by combining multiple

dissimilar B-spline surface patches. The algorithm presented in this thesis allows the user

to combine multiple B-spline surface patches in to a single B-spline surface. This

algorithm also exploited the blending matrices of the surface patches used by the

collision detection algorithm, thereby, making it computationally efficient. It created new

blending matrices for the merged surface, which replaced those for the original surface

patches. The revised blending matrices generated during the merging process were used

later by the collision detection algorithm, thereby minimizing the number of redundant

calculations. In this manner, the B-spline surface patches merging algorithm worked in

tandem with the collision detection algorithm and only a small number of additional

computations were performed during the merging process.

A major constraint in a VR environment is that the user treats the virtual model as a

surface or solid rather than a B-spline surface. For this reason, the user is not supposed to

tweak the control points before merging the surfaces. This algorithm is capable of

handling all the cases, which are acceptable for NURBS-based surfaces. It does not

impose any restriction on the degree of the surface patches, the number of control points,

the type of continuity required at the common edge, knot vector or the number of surfaces

being merged simultaneously. It could efficiently merge B-spline surface patches having

dissimilar curvatures at the common edge, intersecting B-spline surface patches, and the

B-spline surface patches having trimmed edges. These types of patches cannot be merged

by using the traditional approach used by commercially available CAD software. Overall

the proposed algorithm was efficient, accurate, and robust. The surface generated by

merging of two or more patches had better tolerance than that is acceptable for many VR

applications. The user would not face a situation where the two surfaces were not being

151

merged due to intersection, dissimilar curvature at common edge or similar situations.

This added to the robustness of the algorithm.

8.2.4 Integration of mass spring system

In this thesis a mass spring damper system was integrated with the collision detection

algorithm for real-time interactive simulation of deformable models. Both the model and

the tool could have complex shapes, elastic or plastic properties, and multiple contacts.

This allows the user to use rigid or deformable tools with complex shapes with greater

ease and productivity during the sculpting or model validation in a virtual reality

environment. However, the collision detection algorithm could work independent of a

physics-based model used to calculate deformation.

The number of nodes of the mass spring system was independent of the number of

points generated for collision detection. This allowed the collision detection and the

haptic force response through the mass spring system to work independent of each other.

The process of mechanical interactive design is essentially moving the exterior nodes

in response to the applied external forces. The interior nodes will move according to the

dynamics of the mass spring structure and applied forces. Global and local deformations

were possible and were achieved by changing the number of iterations used by

deformation algorithm. Lower number of iteration allowed only local deformation and

global deformation was achieved by increasing number of iterations. The mass spring

system allowed the interactive design framework to efficiently simulate deformation of

deformable models.

8.3 Other applications

Aside from interactive product design, the modeling tools developed in this thesis can be

used for many other applications. Collision detection can be independently used for

medical applications and games. The B-spline surface patches algorithm can be used for

merging B-spline patches in commercially available software as it can tackle all the cases

that are mathematically possible to merge. The overall interactive design module can be

used for training in the area of surgery simulation and many cases of rehabilitation. In

152

biomedical applications, soft tissues can be modeled as B-spline surface and assigned

appropriate properties using mass spring system.

8.4 Recommendations to Resolve Limitations

The collision detection algorithm, presented in this thesis, cannot detect self collision.

However, this algorithm can be integrated with a mass spring damper mesh to impart

physical properties to a deformable model. The springs used in the mass spring damper

mesh have minimum solid length and hence, the model would resist self intersection.

Unfortunately, during high deformation, the mass spring system may not be valid and self

intersection may happen.

The collision detection algorithm cannot calculate the tool penetration depth while

interacting with the virtual model. This information is required to calculate the resultant

force feedback to be provided to the user. This information will be necessary when this

algorithm is interfaced with haptic tools. The goal of this thesis was to develop

techniques which can be used for interactive design. Hence, no haptic tool was interfaced

with these algorithms. However, the collision detection algorithm will need to be

extended to include tool penetration depth before it is integrated with a haptic tool.

The continuity conditions for the joined multiple B-spline surface patches allow the

user to represent a model having multiple surfaces. The technique used in this thesis to

detect collision works efficiently with single or multiple B-spline surface patches.

However, if one or more of these patches are deformed, the continuity will no longer

exist. Hence, these techniques cannot be used in a VR environment when the user intends

to deform the surface to obtain the desired shape. A mass spring system can be developed

to integrate multiple patches which are joined rather than merged.

In the absence of a mass spring system which can integrate multiple B-spline surface

patches, a B-spline surface patches merging algorithm was developed. However, NURBS

surface representation imposes certain limitations on merging process and in many

situations, virtual models represented as B-spline surfaces cannot be merged. As an

example, the branching of a surface is not possible to achieve by partly merging two or

more surfaces. In such a scenario, an enhanced mass spring system that can integrate

153

different patches joined together by some continuity conditions can be developed. This

will make it possible for the designer to come up with more shapes than that are possible

while merging these patches.

8.5 Future Work

The work presented in this thesis was primarily to demonstrate the efficiency and

robustness achieved by using the collision detection algorithm, B-spline surface patches

merging algorithm and integrating these algorithms with mass spring damper system to

develop interactive product design framework. The deformable virtual model was

represented as a B-spline surface patch and the tools could be represented as a point, an

implicit surface, a tessellated surface, or a B-spline surface patch. Research is underway

to make these algorithms computationally more efficient to make interactive modeling

more realistic and effective.

The implementation of collision detection algorithm was done in Microsoft® Visual

Studio® using C++. During the implementation, more emphasis was put on making the

coding readable than on making it efficient. The intersection test between spheres, to

generate more points at the lower levels of details, was carried out using hierarchical "for

loop". However, if these intersection tests are performed simultaneously, using

multithreading techniques, computational cost of collision detection can be further

reduced. As the intersection test of each sphere is independent of the result of intersection

test of other spheres, multithreading should be performed to reduce the computational

cost.

A uniform mass spring system is used in this thesis. Although more points are

generated in the vicinity of collision detection to accurately check the collision of virtual

objects, the number of springs in the area remains constant. By subdividing the

hexahedron mass spring mesh and appropriately distributing the properties assigned to

springs and dampers, denser mass spring mesh can be generated on-the-fly in the vicinity

of collision detection. This will increase the accuracy and resolution of the deformation in

the vicinity of collision detection. In this manner, a sparse uniform mass spring system

can be used in conjunction with a denser mass spring system in the vicinity of collision

154

detection. The efficiency and the effectiveness of on-the-fly generation of a denser mass

spring mesh, to realistically deform the virtual object as per the assigned properties,

should be explored.

A hexahedral mesh of mass spring was used so as to mimic B-spline surface as a

solid. However, if the user would like to work with surfaces, a two dimensional mass

spring system can be used. This way, a designer can manipulate surfaces and later on

merge or join these surfaces to come up with various shapes. A two dimensional mass

spring system should also be developed for this purpose.

Though mass spring system has been used in this thesis, other physics based

deformation model can also be used in conjunction with the collision detection and B-

spline surface patches merging algorithms. Different types of physics based techniques

may be appropriate for a variety of applications. Hence it is recommended that the

integration of other physics based techniques with the collision detection algorithm be

explored and compared with the mass spring system implemented in this thesis.

8.6 Final Remarks

A preliminary design and analysis tool that supports quick conceptualization and

modification of 3D geometry has been proposed in this thesis. The proposed technique

provides rapid verification of early design ideas and adds more information to the

interactive design paradigm. This is particularly suitable for modifying and identifying an

optimal concept for a particular user segment so as to increase the chances of satisfying

customers. By providing industrial designers a variety of rigid and deformable tools to

quickly create, modify and analyze alternative concepts, a large number of models can be

created before choosing the most appropriate model for a given user segment. The users

can be trained in virtual reality environment and their inputs can also be used by an

industrial designer to generate better concepts.

In conclusion, this research work helped in understanding several aspects of collision

detection, manipulation and merging of B-spline surfaces, and the mass spring damper

system. It has clearly established that there is merit in perusing further research in

deformable model represented as B-spline surface using the tools developed in this thesis.

155

The research work has also established a definite need to further explore the potential of

interactive design framework; developed in this thesis, by integrating it with

commercially available NURBS based software.

156

BIBLIOGRAPHY

Anthony, L., Regli, W. C., John, J. E. and Lombeyda, S. V., 2001, " CUP: A computer-
aided conceptual design environment for assembly modeling", The ASME Journal
of Computer and Information Science in Engineering, 1(2), 186-192.

Astheimer, P., Dai, F., Felger, W., Göbel, M., Haase, H., Müller, S. and Ziegler, R., 1995,
"Virtual design II – an advanced VR system for industrial applications", In:
Proceedings of Virtual Reality World '95, Stuttgart, Germany, 337-363.

Attali, D. and Montanvert, A., 1997, "Computing and simplifying 2D and 3D semi-
continuous skeletons of 2D and 3D shapes", Computer Vision and Image
Understanding, 67(3), 261-273.

Avila, R. S. and Sobierajski, L. M., 1996, "A haptic interaction method for volume
visualization", In: Proceedings of the 7th Conference on Visualization '96, San
Francisco, California, United States, 197 - 204.

Avis, D. and Bremner, D., 1995, "How good are convex hull algorithms?", In:
Proceedings of the 11th Annual Symposium on Computational Geometry,
Vancouver, Canada, 20-28.

Avril, Q., Gouranton, V. and Arnaldi, B., 2010, "A broad phase collision detection
algorithm adapted to multi-cores architectures", In: Proceedings of Virtual Reality
International Conference (VRIC 2010), Laval, France, 1-6.

Baerentzen, J. A., 1998, "Octree-based volume sculpting?", In: Proceedings of the IEEE
Visualization Conference (Vis98), NC, USA, 9-12.

Bainville, E., Chaffanjon, P. and Cinouin, P., 1995, "Computer generated visual
assistance during retroperitoneoscopy ", Computers in Biology and Medicine,
25(2), 165-171.

Baraff, D., 1990, "Curved surfaces and coherence for non-penetrating rigid body
simulation", Computer Graphics, 24(4), 19-28.

Barber, C. B., Dobkin, D. P. and Huhdanpaa, H., 1996, "The quickhull algorithm for
convex hulls", ACM Trans. on Mathematical Software, 22(4), 469-483.

Barequet, G., Chazelle, B., Guibas, L., Mitchell, J. and Tal, A., 1996, "Boxtree: A
hierarchical representation of surfaces in 3D", In: Proceedings of
Eurographics’96, 387-396.

Barr, A. H., 1984, "Global and local deformations of solid primitives", SIGGRAPH
Computer Graphics, 18(3), 21-30.

Basdogan, C., Ho, C., Srinivasan, M., Smal, S. and Dawson, S., 1998, "Force interactions
in laparoscopic simulations: haptic rendering of soft tissues", In: Proceedings of
Medicine Meets Virtual Reality Conference, San Diego, CA, USA, 385-391.

Basdogan, C., Suvranue, D., Jung, K., Muniyandi, M., Kim, H. and Srinivasan, M., 2004,
"Haptics in minimally invasive surgical simulation and training", IEEE Trans. on
Computer Graphics and Applications, 24(2), 56-64.

157

Bathe, K. J., 1996, Finite element procedures, Prentice Hall, Englewood Cliffs, NJ.

Baumann, R. and Glauser, D., 1996, "Force feedback for virtual reality based minimally
invasive surgery simulator", In: Proceedings of Medicine Meets Virtual Reality,
San Diego, CA, USA, 564-579.

Benko, P., Martin, R. R. and Varady, T., 2001, "Algorithm for reverse engineering
boundary representation models", Computer Aided Design, 33(11), 839-851.

Berkley, J., Turkiyyah, G., Berg, D., Ganter, M. and Weghorst, S., 2004, "Real-time
finite element modeling for surgery simulation: an application to virtual suturing",
IEEE Trans. on Visualization and Computer Graphics, 10(3), 314-325.

Bloomenthal, J., 1997a, "Bulge elimination in convolution surfaces", Computer Graphics
Forum, 16(1), 31-41.

Bloomenthal, J. and B, W., 1990, " Interactive techniques for implicit modeling",
Computer Graphics, 24(2), 109-116.

Bloomenthal, J., Bajaj, C., Blin, J., Gascuel, M., Rockwood, A., Wyvill, B. and Wyvill,
G., 1997b, Introduction to implicit surfaces, Morgan Kaufmann Publishers Inc,
San Fransisco, CA, USA.

Bloomenthal, J. and Chek, L., 1999, "Skeletal methods of shape manipulation", In:
Proceedings of Proceeding of Shape Modeling and Applications 1999, Aizu-
Wakamatsu, Japan, 44-47.

Bloomenthal, J. and Shoemaker, K., 1991, "Convolution surfaces", In: Proceedings of
SIGGRAPH '91 on Computer Graphics, 251-256.

Bordegoni, M., Colombo, G. and Formentini, L., 2006, "Haptic technologies for the
conceptual and validation phases of product design", Computer & Graphics,
30(3), 377-390.

Bourdot, P., Convard, T., Picon, F., Ammi, M., Touraine, D. and Vézien, J.-M., 2010,
"VR–CAD integration: Multimodal immersive interaction and advanced haptic
paradigms for implicit edition of CAD models", Computer-Aided Design, 42(5),
445-461.

Bowman, D., 1996, Conceptual design space – beyond walk-through to immersive
design, (a chapter in Designing digital space), John Wiley & Sons, New York,
USA.

Bradshaw, G. and O’Sullian, C., 2002, "Sphere-tree construction using dynamic medial
axis approximation", In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, San Antonio, Texas, USA, 33-40.

Butterworth, J., Davidson, A., Hench, S. and Olano, T. M., 1992, "3DM: a three-
dimensional modeler using a head-mounted display", In: Proceedings of the 1992
Symposium on Interactive 3D Graphics, Cambridge, Massachusetts, USA, 135-
138.

158

Cani-Gascuel, M.-P. and Desbrun, M., 1997, "Animation of deformable models using
implicit surfaces", IEEE Trans. on Visualization and Computer Graphics, 3(1),
39-50.

Cazals, F. and Giesen, J., "Delaunay triangulation based surface reconstruction: Ideas and
algorithms", Technical report 5393, INRIA, 2004, 42 pages.

Chapin, W. L., Lacey, T. A. and Leifer, L., 1994, "DesignSpace: a manual interaction
environment for computer aided design", In: Proceedings of the Conference
Companion on Human Factors in Computing Systems, Boston, Massachusetts,
USA, 33-34.

Charrot, P. and Gregory, J., 1984, "A pentagonal surface patch for computer-aided
geometric design", Computer-Aided Geometric Design, 1(1), 87-94.

Che, X., Liang, X. and Li, Q., 2005, "G1 continuity conditions of adjacent NURBS
surfaces", Computer Aided Geometric Design, 22(4), 285-298.

Cheng, M. and Wang, G., 2008, "Approximate merging of multiple Bezier segments",
Progress in Natural Science, 18(6), 757-762.

Cheshire, D., Evans, M. and Dean, C., 2001, "Haptic modeling an alternative industrial
design methodology?", In: Proceedings of EuroHaptics 2001, Birmingham, UK,
124-129.

Chew, P., "Guaranteed quality triangular meshes", Technical Report TR89-983, BU-CS-
96-006, Cornell University, 1989, 20 pages.

Christensen, J., Marks, J. and Ngo, J. T., 1997, "Automatic motion synthesis for 3D
mass-spring models", The Visual Computer, 13(1), 20-28.

Chu, C. C., Dani, T. H. and Gadh, R., 1997, "Multisensory interface for a virtual reality
based computer aided design system", Computer-Aided Design, 29(10), 709-725.

Coquillart, S., 1990, "Extended free-form deformation: a sculpturing tool for 3D
geometric modeling", Computer Graphics, 24(4), 187-193.

Cotin, S., Delingette, H. and Ayache, N., 2000, "A hybrid elastic model allowing real-
time cutting, deformations and force-feedback for surgery training and
simulation", The Visual Computer, 16(8), 437-452.

Cotin, S., Delingette, H., Clement, J. M., Bro-Nielsen, M., Ayache, N. and Marescaux, J.,
1996, "Geometrical and physical representations for a simulator of hepatic
surgery", Studies in Health Technology and Informatics, 29(1), 139-151.

Dachille, F., Kaufman, A. and Qin, H., 2001, "A novel haptics based interface and
sculpting system for physics-based geometric design", Computer Aided Design,
33(5), 403-420.

Dachille, F., Qin, H., Kaufman, A. and El-Sanat, J., 1999, "Haptic sculpting of dynamic
surfaces", In: Proceedings of Symposium on Interactive 3D Graphics, Atlanta,
GA, USA, 103-110.

Dani, T. H. and Gadh, R., 1997, "Creation of concept shade designs via a virtual reality
interface", Computer Aided Design, 29(8), 555-563.

159

Davis, O. R. and Burton, R. P., 1991, "Free-form deformation as an interactive modeling
tool", Imaging Technology, 17(4), 181-187.

Dey, T. K., "Delaunay mesh generation of three dimensional domains", Technical Report
OSU-CISRC - TR64, 2007, 32 pages.

Dobashi, Y., Kaneda, K., Yamashita, H., Okita, T. and Nishita, T., 2000, "A simple,
efficient method for realistic animation of clouds", In: Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive Techniques, New
Orleans, Louisiana, USA, 19-28.

Du, W.-H. and Schmitt, F. J. M., 1990, "On the G1 continuity of piecewise Bézier
surfaces: a review with new results", Computer- Aided Design, 22(9), 556-573.

Duriez, C., Dubois, F., Kheddar, F. and Andriot, C., 2006, "Realistic haptic rendering of
interacting deformable objects in virtual reality environments", IEEE Trans. on
Visualization and Computer Graphics, 12(1), 36-47.

Ehmann, S. and Lin, C., 2001, "Accurate and fast proximity queries between polyhedra
using convex surface decomposition", Computer Graphics Forum, 20(3), 500-
510.

Ericson, C., 2005, Real-time collision detection, The Morgan Kaufmann Series in
Interactive 3D Technology, Morgan Kaufmann Publishers, San Francisco, USA.

Faloutsos, P., Panne, M. and Terzopoulos, D., 1997, "Dynamic free-form deformations
for animation synthesis", IEEE Trans. on Visualization and Computer Graphics,
3(3), 201-214.

Farin, G., 1997, Curves and surfaces for computer-aided geometric design: a practical
guide, Academic Press, New York, USA.

Ferley, E., Cani, M.-P. and Gascuel, J.-D., 2000, "Practical volumetric sculpting", Visual
Computer, 16(8), 469-480.

Ferley, E., Cani, M.-P. and Gascuel, J.-D., 2001, "Resolution adaptive volume sculpting",
Graphical Models, 63(6), 459-478.

Galoppo, N., Tekin, S., Otaduy, M. A., Gross, M. and Lin, M. C., 2007, "Interactive
haptic rendering of high-resolution deformable objects", In: Proceedings of 2nd
Int. Conference on Virtual Reality, Beijing, China, 215-223.

Galyean, T. A. and Hughes, J. F., 1991, "Sculpting: an interactive volumetric modeling
technique", Computer Graphics, 25(4), 267-274.

Gao, Z. and Gibson, I., 2005, "Haptic B-spline surface sculpting with a shaped tool of
implicit surface", Computer Aided Design & Applications 2(1-4), 263-272.

Gao, Z. and Gibson, I., 2006, "Haptic sculpting of multi-resolution B-spline surfaces with
shaped tools", Computer Aided Design, 38(6), 661-676.

Gilbert, E., Johnson, D. and Keerthi, S., 1988, "A fast procedure for computing the
distance between complex objects in three-dimensional space", IEEE Robotics
and Automation, 4(2), 193-203.

160

Gironimo, G. D., Lanzotti, A. and Vanacore, A., 2006, "Concept design for quality in
virtual environment", Computers & Graphics, 30(6), 1011-1019.

Gottschalk, S., Lin, M. C. and Manocha, D., 1996, "OBBTree: A hierarchical structure
for rapid interference detection", In: Proceedings of 23rd Annual Int. Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH 96, New Orleans,
Louisiana, USA, 171-180.

Gregory, A., Lin, M., Gottschalk, S. and Taylor, R., 2000a, "Fast and accurate collision
detection for haptic interaction using a three degree of freedom force feedback
device", Computational Geometry, 15(1), 69-89.

Gregory, A. D., Ehmann, S. A. and Lin, M. C., 2000b, "inTouch: interactive
multiresolution modeling and 3D painting with a haptic interface", In:
Proceedings of the IEEE Virtual Reality 2000 Conference, New Brunswick, New
Jersey, USA, 45-52.

Griessmair, J. and Purgathofer, W., 1989, "Deformation of solids with trivariate B-
splines", In: Proceedings of Eurographics '89, Elsevier Science Publishers,
North-Holland, 137 - 148.

Guigue, P. and Devilers, O., 2003, "Fast and robust triangle-triangle overlap test using
orientation predicates", Graphics Tools, 8(1), 25-42.

Herzen, B., Barr, A. and Zatz, H., 1990, "Geometric collisions for time-dependent
parametric surfaces", In: Proceedings of ACM SIGGRAPH’90, Dallas, Texas,
USA, 39-48.

Hirota, G., Maheshwari, R. and Lin, M. C., 1999, "Fast volume-preserving free-form
deformation using multi-level optimization", In: Proceedings of the Fifth ACM
Symposium on Solid Modeling and Applications, SMA '99, Ann Arbor, Michigan,
United States, 234-245.

Ho, C., Basdogan, C. and Srinivasan, M., 1999, "Efficient point-based rendering
techniques for haptic display of virtual objects", Presence, 8(5), 447-491.

Hoffmann, C. M. and Hopcroft, J. E., 1987, "Simulation of physical systems from
geometric models", IEEE Robotics and Automation, 3(3), 194-206.

Hsu, W. M., Hughes, J. F. and Kaufman, H., 1992, "Direct manipulation of free-form
deformations", ACM Computer Graphics, 26(2), 177 - 184.

Hu, S.-M., Tong, R.-F., Ju, T. and Sun, J.-G., 2001, "Approximate merging of a pair of
Bézier curves", Computer-Aided Design, 33(2), 125-136.

Hua, J. and Qin, H., 2003, "Free-form deformations via sketching and manipulating
scalar fields", In: Proceedings of the 8th ACM Symposium on Solid Modeling and
Applications, Seattle, Washington, USA, 328 - 333.

Hubbard, P. M., 1995, "Collision detection for interactive graphics applications", IEEE
Transactions on Visualization and Computer Graphics, 1(3), 218-230.

161

Hughes, M., DiMattia, C., Lin, M. and Manocha, D., 1996, "Efficient and accurate
interference detection for polynomial deformation", In: Proceedings of the IEEE
Computer Animation Conference, Washington DC, USA, 155-166.

Igwe, P. C., Deformable volumetric self-organising feature maps and physics-based
mdoeling for concept design, Ph.D Thesis, Department of Mechanical and
Material Engineering, The University of Western Ontario, London, 2008a

Igwe, P. C. and Knopf, G. K., 2006, "Modeling deformable objects for computer-aided
sculpting (CAS)", In: Proceedings of the IEEE Conference on Geometric
Modeling and Imaging: New Trends, IEEE Computer Society, Washington, DC,
USA, 9 - 14.

Igwe, P. C., Knopf, G. K. and Canas, R., 2008b, "Developing alternative design concepts
in VR environments using volumetric self organizing feature maps", Intelligent
Manufacturing, 19(6), 661-675.

Jimenez, P., Thomas, F. and Torras, C., 2001, "3D collision detection: a survey",
Computer and Graphics, 25(2), 269-285.

Jin, X., Li, Y. and Peng, Q., 2000, "General constrained deformation based on
generalized metaballs", Computer Graphics, 24(2), 219-231.

Joint Pain Solutions, 2010 http://www.joint-pain-solutions.com/rheumatoid-arthritis-
pictures.html.

Klosowski, J. T., Held, M., Mitchell, J., Sowizral, H. and Zikan, K., 1998, "Efficient
collision detection using bounding volume hierarchies of k- dops", IEEE Trans.
on Visualization and Computer Graphics, 4(1), 21-36.

Knopf, G. K. and Igwe, P. C., 2005, "Deformable mesh for virtual shape sculpting",
Robotics and Computer Integrated Manufacturing, 21(4), 302-311.

Knopf, G. K. and Pungotra, H., 2007, "Visual exploration of numeric data using 3D self
organising feature maps", In: Proceedings of Int. Conference on Artificial Neural
Network in Engineering (ANNIE 2007), St. Louis, Missouri, USA, 17, 297-302.

Knopf, G. K. and Sangole, A., 2002, "Intelligent systems for interactive design and
visualization", In: Proceedings of IEEE Conference of Industrial Electronics
Society, Sevilla, Spain, 2995-3001.

Knopf, G. K. and Sangole, A., 2004, "Interpolating scattered data using 2D self-
organizing feature maps", Graphical Models, 66(1), 50-69.

Knopf, G. K., Sangole, A. and Igwe, P., 2003, "Parameterization of scattered surface
points using a SOFM", In: Proceedings of Intelligent Engineering Systems
Through Artificial Neural Networks: ASME Press, Missouri, St. Louis, USA, 33-
38.

Koch, R. M., Gross, M. H., Carls, F. R., von-Büren, D. F., Fankhauser, G. and Parish, Y.
I., 1996, "Simulating facial surgery using finite element models", In: Proceedings
of the 23rd Annual Conference on Computer Graphics and interactive Techniques
SIGGRAPH '96, 421-428.

162

Kohonen, T., 2001, Self organizing map, Springer Series in Information Sciences,
Heidelberg, New York.

Krishnan, S., Pattekar, A., Lin, M. C. and Manocha, D., 1998, "A higher order bounding
volume for fast proximity queries", In: Proceedings of 3rd International Workshop
on Algorithmic Foundations of Robotics, 122–136.

Kuehnapfel, U. and Neisius, B., 1993, "CAD-based graphical computer simulation in
endoscopic surgery", Endoscopic Surgery and Allied Technologies, 1(3), 181-184.

Lamousin, H. J. and Waggenspack-Jr., W. N., 1994, "NURBS-based free-form
deformations", IEEE Computer Graphics and Applications, 14(6), 59 - 65.

Larsen, E., Gottschalk, S., Lin, M. and Manocha, D., 2000, "Fast distance queries with
rectangular swept sphere volumes", In: Proceedings of IEEE Int. Conference on
Robotics and Automation, San Francisco, USA, 3719 - 3726.

Larsson, T. and Akenine-Möller, T., 2001, "Collision detection for continuously
deforming bodies", In: Proceedings of Eurographics 2001, 325-333.

Lauterbach, C., Garland, M., Sengupta, S., Luebke, D. and Manocha, D., 2009, "Fast
BVH construction on GPUs", Computer Graphics Forum, 28(2), 375-384.

Lee, Y., Terzopoulos, D. and Waters, K., 1995, "Realistic modeling for facial animation",
In: Proceedings of the 22nd Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH '95, 55-62.

Lin, M. C., Baxter, W., Foskey, M., Otaduy, M. A. and Scheib, V., 2002, "Haptic
interaction for creative processes with simulated media", In: Proceedings of the
IEEE International Conference on Robotics and Automation, Washington DC,
USA, 598–604.

Lin, M. C. and Canny, J. F., 1991, "A fast algorithm for incremental distance
calculation", In: Proceedings of IEEE International Conference on Robotics and
Automation, Sacramento, CA, 1008 - 1014.

Lin, M. C. and Gotttschalk, S., 1998, "Collision detection between geometric models: A
survey", In: Proceedings of IMA Conference of Mathematics of Surfaces, UK,
602-608.

Lin, M. C. and Manocha, D., 2004, Collision and proximity Queries, in J. E. Goodman
and J. O'Rourke, eds., Handbook of Discrete and Computational Geometry,
Chapman & Hall, Boca Raton, Florida, USA.

Liu, Y., Pottmann, H. and Wang, W., 2006, "Constrained 3D shape reconstruction using
a combination of surface fitting and registration", Computer Aided Design, 38(6),
572-583.

Luo, Q. and Xiao, J., 2007, "Contact and deformation modeling for interactive
environments", IEEE Trans. on Robotics, 23(3), 416-430.

Martin, W. and Cohen, E., 2001, "Representation and extraction of volumetric attributes
using trivariate splines: a mathematical framework", In: Proceedings of Sixth

163

ACM Symposium on Solid Modeling and Applications, SMA '01, Ann Arbor,
Michigan, United States, 234-240.

McCormack, J. and Sherstyuk, A., 1998, "Creating and rendering convolution surfaces",
Computer Graphics Forum, 17(2), 113-120.

McDonnell, K. T. and Qin, H., 2007, "PB-FFD: A point-based technique for free-form
deformation ", Graphics, GPU, & Game Tools, 12(3), 25 - 41.

McNeely, W. A., Puterbaugh, K. D. and Troy, J. J., 1999, "Six degree-of-freedom haptic
rendering using voxel sampling", In: Proceedings of the 26th Annual Conference
on Computer Graphics and Interactive Techniques, Los Angeles, California,
USA, 401 - 408.

Mine, M. R., 1997, "ISAAC: a Meta-CAD system for virtual environments", Computer-
Aided Design, 29(8), 547-553.

Mirtich, B., "Efficient algorithms for two-phase collision detection", Technical Report,
TR-97-23, MERL, 1997, 26 pages.

Möller, T., 1997, "A fast triangle-triangle intersection test", Graphics Tools 2(2), 25-30.

Morris, R., 2009, "The fundamentals of product design", AVA Publishing SA,
Switzerland.

Nedel, L. P. and Thalmann, D., 1998, "Real time muscle deformations using mass spring
systems", In: Proceedings of the Computer Graphics International Conference,
CGI '98, Hannover, Germany, 156–165.

Nishita, T., Iwasaki, H., Dobashi, Y. and Nakamae, E., 1997, "A modeling and rendering
method for snow by using metaballs", Computer Graphics Forum, 16(3), 357-
364.

Ohtake, Y. and Belyaev, A. G., 2002, "Dual-primal mesh optimization for polygonized
implicit surfaces with sharp features", Transactions of ASME, Journal of
Computing and Information Science in Engineering, 2(2), 277-284.

Okabe, A., Boots, B., Sugihara, K. and Chiu, S., 2000, Spatial tessellations: Concepts
and applications of Voronoi diagrams, John Wiley, Chichester, UK.

Øyvind, H. and Morten, D., 2006, "Triangulations and Applications", Springer-Verlag
Berlin Heidlberg, The Netherlands.

Park, S. and Kunwoo, L., 1997, "High-dimensional trivariate NURBS representation for
analyzing and visualizing fluid flow data", Computers & Graphics, 21(4), 473-
482.

Pasko, A., Adzhiev, V., Sourin, A. and Savchenko, V., 1995, "Function representation in
geometric modeling: concepts, implementation and applications", Visual
Computer, 11(8), 429-446.

Piegl, L. and Tiller, W., 1994, "Software engineering approach to degree elevation of B-
spline curves", Computer Aided Design, 26(1), 17-28.

Piegl, L. and Tiller, W., 1995, "Algorithm for degree reduction of B-spline curves",
Computer Aided Design, 27(2), 101-110.

164

Piegl, L. and Tiller, W., 1997, The NURBS book, Monographs in visual communications,
Springer, New York.

Platt, J. C. and Barr, A. H., 1988, "Constraint methods for flexible models", Computer
Graphics, 22(4), 279-288.

Pungotra, H., Knopf, G. K. and Canas, R., 2008, "Efficient algorithm to detect collision
between deformable B-spline surface for virtual sculpting", Computer-Aided
Design, 40(10-11), 1055-1066.

Pungotra, H., Knopf, G. K. and Canas, R., 2009a, "Framework for modeling and
validating conept designs in virtual reality environments", In: Proceedings of the
IEEE Virtual Reality 2009 Conference (Symposium on Human Factors and
Ergonomics), Toronto, Canada, 393-398.

Pungotra, H., Knopf, G. K. and Canas, R., 2009b, "Novel collision detection algorithm
for physics-based simulation of deformable B-spline shapes", Computer Aided
Design & Applications, 6(1), 43-54.

Pungotra, H., Knopf, G. K. and Canas, R., 2010a, "Merging multiple B-spline surface
patches in a virtual reality environment", Computer Aided Design, 42(10), 847 -
859.

Pungotra, H., Knopf, G. K. and Canas, R., 2010b, "Representation of objects in virtual
reality environment using B-spline blending matrices", In: Proceedings of the 21st

IASTED Int. Conference on Modeling and Simulation (MS 2010), Banff, Alberta,
Canada, 281-288.

Quinlan, S., 1994, "Efficient distance computation between non-convex objects", In:
Proceedings of IEEE Int. Conference on Robotics and Automation, New Orleans,
LA, USA, 3324-3329.

Raviv, A. and Elber, G., 2000, "Three-dimensional freeform sculpting via zero sets of
scalar trivariate functions", Computer-Aided Design, 32(8-9), 513-526.

Reuter, P., Joyot, P., Trunzler, J., Boubekeur, T. and Schlick, C., "Reconstructing implicit
surfaces with sharp edges via enriched reproducing kernel approximation",
Research report RR-1334-04, 2004, 20 pages.

Robinson, G., Ritchie, J. M., Day, P. N. and Dewar, R. G., 2007, "System design and user
evaluation of Co-Star: an immersive stereoscopic system for cable harness
design", Computer-Aided Design, 39(4), 245-257.

Rockwood, A., 1989, "The Displacement method for implicit blending surfaces in solid
models", ACM Trans. on Graphics, 8(4), 279-297.

Sachs, E., Roberts, A. and Stoops, D., 1991, "3-Draw: a tool for designing 3D shapes",
IEEE Computer Graphics and Applications, 11(6), 18-24.

Sagar, M. A., Bullivant, D., Mallinson, G. D., Hunter, P. J. and Hunter, I. W., 1994, "A
virtual environment and model of the eye for surgical simulation", In:
Proceedings of the 21st Annual Conference on Computer Graphics and Interactive
Techniques SIGGRAPH '94, ACM, New York, NY, 205-212.

165

Savchenko, V., Pasko, A., Okunev, O. and Kunii, T., 1995, "Function representation of
solids reconstructed from scattered surface points and contours", Computer
Graphics Forum, 14(4), 181- 188.

Schein, S. and Elber, G., 2004, "Discontinuous free-form deformations", In: Proceedings
of the 12th Pacific Conference on Computer Graphics and Applications, IEEE
Computer Society, Washington, DC, 227 - 236.

Schmitt, B., Pasko, A. and Schlick, C., 2001, "Constructive modeling of FRep solids
using spline volumes", In: Proceedings of Sixth ACM Symposium on Solid
Modeling and Applications, Ann Arbor, Michigan, USA, 321 - 322.

Sederberg, T. and Perry, S., 1986, "Free-form deformation of solid geometric models",
In: Proceedings of the 13th annual conference on computer graphics and
interactive techniques, 20 (4), 151-160.

Sener, B., Wormald, P. and Campbell, R., 2002, "Evaluating a haptic modeling system
with industrial designers", In: Proceedings of EuroHaptics International
Conference, Edinburgh, Scotland, 165 -169.

Shen, C., O'Brien, J. F. and Shewchuk, J. R., 2004, "Interpolating and approximating
implicit surfaces from polygon soup", In: Proceedings of ACM SIGGRAPH04,
Los Angeles, California, 1-9.

Shi, X., Wang, T., Wu, P. and Liu, F., 2004, "Reconstruction of convergent G1 smooth B-
spline surfaces", Computer Aided Geometric Design, 21(9), 893-913.

Speeter, T. H., 1992, "Three-dimensional finite element analysis of elastic continua for
tactile sensing", Robotics Research, 11(1), 1-19.

Székely, G., Brechbühlera, C., Huttera, R., Rhomberga, A., Ironmongera, N. and
Schmida, 2000, "Modelling of soft tissue deformation for laparoscopic surgery
simulation", Medical Image Analysis, 4(1), 57-66.

Taia, C. L., Hub, S. M. and Huangb, Q. X., 2003, "Approximate merging of B-spline
curves via knot adjustment and constrained optimization", Computer-Aided
Design, 35(10), 893-899.

Terzopoulos, D. and Fleischer, K., 1988a, "Modeling inelastic deformation:
viscoelasticity, plasticity, fracture", Computer Graphics, 22(4), 269-278.

Terzopoulos, D., Platt, J., Barr, A. and Fleischer, K., 1987, "Elastically deformable
models", Computer Graphics, 21(4), 205 - 214.

Terzopoulos, D., Platt, J. and Fleischer, K., 1991, "Heating and melting deformable
models", Visualization and Computer Animation, 2(2), 68-73.

Terzopoulos, D. and Waters, K., 1990, "Physically-based facial modeling, analysis, and
animation", Visualization and Computer Animation, 1(2), 73 - 80.

Terzopoulos, D. and Witkin, A., 1988b, "Physically based model with rigid and
deformable components", IEEE Trans. on Visualization and Computer Graphics,
8(6), 41-51.

166

Teschner, M., Kimmerle, S., Zachmann, G., Heidelberger, B., Raghupathi, L., Fuhrmann,
A., Cani, M.-P., Faure, F., Magnetat-Thalmann, N. and Strasser, W., 2005,
"Collision detection for deformable objects", Computer Graphics Forum, 24(1),
61-81.

The Arthritis Society, 2010 http://www.arthritis.ca/types%20of%20arthritis/ra/default.

 asp?s=1&province=on.

Thompson, T., Johnson, D. and Cohen, E., 1997, "Direct haptic rendering of sculptured
models", In: Proceedings of 1997 Symposium on Interactive 3D Graphics,
Providence, Rhode Island, United States, 167-176.

Tu, X. and Terzopoulos, D., 1994, "Artificial fishes: physics, locomotion, perception,
behavior", In: Proceedings of the 21st Annual Conference on Computer Graphics
and Interactive Techniques, 43 - 50.

Tuohy, S. T. and Bardis, L., 1993, "Low-Degree Approximation of High-Degree B-
Spline Surfaces", Engineering with Computers, 9(4), 198-209.

Turk, G. and O'Brien, J. F., "Variational implicit surfaces", Technical Report GIT-GVU-
99-15, Graphics, Visualization, and Usability Center, Georgia Institute of
Technology, 1999a, 9 pages.

Turk, G. and O'Brien, J. F., 2002, "Modelling with implicit surfaces that interpolate",
ACM Transaction on Graphics, 21(4), 855-873.

Turk, G. and O'Brien, J. F., 1999b, "Shape transformation using variational implicit
functions", In: Proceedings of ACM SIGGRAPH 99, Los Angeles, California,
335-342.

van-den-Bergen, G., 1997, "Efficient collision detection of complex deformable models
using AABB trees", Graphics Tools, 2(4), 1-13.

Wang, S. W. and Kaufman, A. E., 1995, "Volume sculpting", In: Proceedings of the 1995
Symposium on Interactive 3D Graphics, I3D '95, Monterey, California, USA,
151-156.

Waters, K., 1992, "A physical model of facial tissue and muscle articulation derived from
computer tomography data", In: Proceedings of Visualization in Biomedical
Computing (VBC ’92), Chapel Hill, N.C., USA, 574–583.

Weidlich, D., Cser, L., Polzin, T., D.Cristiano and Zickner, H., 2007, "Virtual reality
approaches for immersive design", CIRP Annals - Manufacturing Technology,
56(1), 139-142.

Witkin, A. P. and Heckbert, P. S., 1998, "Using particles to sample and control impict
surfaces", In: Proceedings of 21st Annual Conference on Computer Graphics and
Interactive Techniques, Orlando, Florida, USA, 269-277.

Wyvill, B., Galin, E. and Guy, A., 1999, "Extending the CSG tree: warping, blending and
boolean operations in an implicit surface modeling system", Computer Graphics
Forum, 18(2), 149 -158.

167

Wyvill, B. and Wyvill, G., 1989, "Field functions for implicit surfaces", Visual
Computer, 5(1-2), 75-82.

Ye, J., Integration of virtual reality techniques into computer aided product design, PhD
Thesis, Department of Design and Technology, Loughborough University,
Leicestershire, UK, 2005

Ye, J. and Campbell, R., 2006a, "Supporting conceptual design with multiple VR based
interfaces", Virtual and Physical Prototyping, 1(3), 171-181.

Ye, J., Campbell, R., Page, T. and Badni, K., 2006b, "An investigation into the
implementation of virtual reality technologies in support of conceptual design",
Design Studies, 27(1), 77-97.

Ye, J. and Campbell, R. I., 2002, "New CAD interfaces for the conceptual design
process", In: Proceedings of the 3rd Annual International Conference on Rapid
Product Development, Bloemfontein, South Africa, 150 - 162.

Yong, J.-H., Hu, S.-M., Sun, J.-G. and Tan, X.-Y., 2001, "Degree reduction of B-spline
curves", Computer Aided Geometric Design, 18(2), 117-127.

Zeid, I., 1991, CAD/CAM – theory and practice, McGraw-Hill, New York, USA.

Zheng, J. M., Chan, K. W. and Gibson, I., 2003, "Constrained deformation of freeform
surfaces using surface features for interactive design", Advanced Manufacturing
Technology, 22(2), 54-67.

Zhong, Y., Ma, W. and Shirinzadeh, B., 2005, "A methodology for solid modelling in a
virtual reality environment", Robotics and Computer-Integrated Manufacturing,
21(6), 528-549.

Zienkiewicz, O. C., Taylor, R. L., Taylor, R. L. and Zhu, J. Z., 2005, "The finite element
method: its basis and fundamentals", 6th ed., Elsevier Butterworth–Heinemann,
Burlington, MA, USA.

168

APPENDIX A: ERROR ANALYSIS OF THE MERGED B-SPLINE SURFACE

A.1 Introduction

One major requirement for representing 3D objects in a VR environment is that the user

should interact with the virtual model as if it were a visually realistic surface or solid. The

algorithm described in this thesis (Chapter 4) achieves the merging process without

imposing any constraints. An important factor in determining the versatility of the

algorithm is that it should be able to tackle all the cases during haptic interaction. At the

same time, the deviation of the merged surface should be small.

In this appendix, different cases are compared for accuracy of the merging algorithm

and detailed error analysis is presented. For comparison purposes, a few cases were

considered and the merged surfaces generated by the proposed technique were compared

with the results generated by a commercially available NURBS modeling software

package, Rhinoceros® (Rhino®). The algorithm was used to generate surfaces with C0,

C1, and C2 connectivity. As Rhino® does not permit the user to edit the knot vector, or to

select an option for the type of desired connectivity during the merging process, only C2

continuous surfaces were generated for Rhino®.

The data generated for error analysis depends upon the characteristics of the surfaces

used for merging. Hence, the results may vary if the characteristics of the surfaces being

merged are changed or the number of points generated for merging process is varied.

However, this data can be used for comparing the results achieved by the proposed

algorithm and that by generated by Rhino®. Same cases were discussed in Chapter 6 and

concise data was presented for error analysis.

A.2 Case 1: Similar Curvatures and Knot Vectors

This is the simplest case that can be encountered when combining B-spline surface

patches. Two arbitrary surfaces with the same degree and uniform knot vectors were used

to generate a single integral surface. The results of the deviation analysis of the merged

surface from the original surfaces are shown in Table A.1. The surface generated by

proposed algorithm results in lower standard deviation. Similarly, the maximum distance

169

of the points is lower for the proposed algorithm. The results are much better when only

C0 connectivity is required.

Table A.1 Comparison of the point set deviation of the merged surfaces generated by Rhino® and
the proposed algorithm for surface having similar curvatures and knot vectors.

Test Cases
Error Analysis

(using point set
deviation)

Merged Surface

Rhino®
C2

Proposed
Method C2

Proposed
Method C0

1: Similar
curvature and knot
vectors

Total points 20402 20402 20402

Close points 18136 18262 20134

Average distance 0.2242 0.3568 0.0104

Median distance 0.3154 0.3119 0.0056

Standard deviation 0.2704 0.2452 0.0164

Maximum distance 0.9726 0.9561 0.0855

A.3 Case 2: Different Curvatures but Similar Knot Vectors

In many cases, the curvature of the patch edges may not be similar. The traditional

methods for merging surfaces require a common edge and do not work well if the

curvatures do not match at the joining edge. Rhino® did not allow the surfaces to be

merged because the surfaces were considered to be too far apart. In some cases, the

CAD/CAM software allows the user to match surfaces (fitting the surfaces with certain

connectivity without merging), thereby reducing, to a large extent, the gaps between the

two surfaces. Once the gaps are closed, it might be possible to merge the surfaces.

170

However, there is no guarantee that the surfaces will merge after matching. A merged

surface was created by using this process on Rhino®.

In contrast, the proposed algorithm does not to match the surfaces at common edge.

This feature is important, particularly in a virtual reality environment, because the user

considers the models as objects and does not treat them as B-spline surface patches. As

shown in Table A.2, the standard deviation, even for C2 continuity, is about 0.1 mm, and

reduces further to 0.06 mm, for C0 continuity. The maximum deviation of the merged

surface by using proposed algorithm is much less compared to that merged by Rhino,

even after matching the surfaces.

Table A.2 Comparison of the point set deviation of the merged surfaces generated by Rhino® and
the proposed algorithm for surface having different curvatures but similar knot vectors.

Test Cases
Error Analysis

(using point set
deviation)

Merged Surface

Rhino® C2
Proposed

Method C2
Proposed

Method C0

21: Different
curvatures but
similar knot vectors

Total points 20402 20402 20402

Close points 20153 20145 19974

Average distance 0.0778 0.0837 0.0458

Median distance 0.0180 0.0498 0.0273

Standard deviation 0.1708 0.1093 0.0621

Maximum distance 0.8071 0.5046 0.2713

1 The surfaces were matched (fitted without merging) before merging for Rhino®. It did not allow the
merging of these surfaces for being too far apart, without matching.

171

A.4 Case 3: Similar Curvature but Different Knot Vectors

One constraint for NURBS-based surfaces is that an integral surface needs to have a

continuous knot vector. The traditional approach is to insert additional knots in the

surfaces to achieve a continuous knot for the integral surface. Theoretically it is possible

to insert a knot into a surface without changing its geometry. Even if there is no change in

the geometry of the surface, additional knots increase the number of control points

needed to represent the surface. In a virtual reality environment, the increased number of

control points increases the computational cost of collision detection and manipulation.

Table A.3 shows the results of merging for proposed algorithm and Rhino®.

Table A.3 Comparison of the point set deviation of the merged surfaces generated by Rhino® and
the proposed algorithm for surface having similar curvature but different knot vectors.

Test Cases
Error Analysis

(using point set
deviation)

Merged Surface

Rhino® C2
Proposed

Method C2
Proposed

Method C0

31: Similar
curvatures but
different knot
vectors

Total points 20402 20402 20402

Close points 20137 20133 20098

Average distance 0.0259 0.0273 0.0110

Median distance 0.0133 0.0190 0.0084

Standard deviation 0.0364 0.0283 0.0096

Maximum distance 0.1888 0.1394 0.0411

1The merged surface created by Rhino increased the number of knots and control points. The proposed
algorithm merged surfaces without increasing the number of control points.

172

The merged surface created by Rhino® had four more control points in v direction as

compared to the original surface patches. These additional control points carry no

significant geometric information and are added only to satisfy the constraint of having a

continuous knot vector. The surface generated by using the present algorithm with C2 and

C0 connectivity had the same number of control points (6) as the surfaces that were

merged. In addition, the merged surface generated by the proposed algorithm exhibits a

better standard deviation even for C2 connectivity, as shown in Table A.3. In the case of

C0 connectivity, the standard deviation was observed to be less than 0.01 mm. At the

same time, the maximum deviation of the surface from the original surface is less when

surfaces are merged using the proposed algorithm. The maximum deviation is the least

for merged surface with C0 connectivity using the proposed algorithm.

A.5 Case 4: Similar Curvatures but Different Knot Vectors and Dimensions

In many cases, the edges of the patches to be merged do not have the same length. As the

merged surface should have same parameter throughout the surface, the two surfaces

need to deviate a lot from the original geometry. In commercially available CAD/CAM

software, any two surfaces which do not have almost the same dimension cannot be

merged. Rhino® could not merge the surfaces even after matching these surfaces.

The algorithm proposed in this thesis does not put any of these constraints on the

surfaces to be merged. The merged surface generated by the proposed algorithm does

show a deviation when compared to the original surface, but overall, the result is

satisfactory. As shown in Table A.4, the standard deviation from the surface is 0.026 mm

for C2 connectivity which is very small considering the large differences in the length of

the edges at which the two surfaces were to be joined.

The maximum deviation of the merged surface is about 0.11 mm while maintaining

C2 connectivity. These results show that in addition to the robustness of the algorithm, the

deviation of the merged surface is also very small.

173

Table A.4 Comparison of the point set deviation of the merged surfaces generated by Rhino® and
the proposed algorithm for surface having similar curvatures but different knot vectors
and dimensions.

Test Cases
Error Analysis

(using point set
deviation)

Merged Surface

Rhino® C2
Proposed

Method C2
Proposed

Method C0

41: Similar
curvatures but
different knot
vectors and
dimensions

Total points - 20402 20402

Close points - 19891 19935

Average distance - 0.0215 0.0233

Median distance - 0.0137 0.0159

Standard deviation - 0.0263 0.0228

Maximum distance - 0.1131 0.1254

1 Rhino® did not merge the surfaces even after matching.

A.6 Case 5: Intersecting and Trimmed Surfaces

If the patches to be merged are intersecting, the surface may not merge as intended by the

user or may not merge at all. Rhino® does not merge intersecting surfaces. The algorithm

presented in this thesis uses collision detection to merge two or more intersecting B-

spline surface patches. The algorithm for merging intersecting or trimmed surface is

discussed in detail in Section 4.4.1. The point set deviation analysis of the merged

surfaces is shown in Table A.5. It is clear from Table A.5 that the surface generated is

within the tolerance needed during the haptic interaction with the model. However, as

some of the regions of intersecting surfaces were not used for merging, the maximum

deviation of the merged surfaces from the original surfaces is large in this case.

174

Table A.5 Comparison of the point set deviation of the merged surfaces generated by Rhino® and
the proposed algorithm for intersecting and trimmed surfaces.

Test Cases
Error Analysis

(using point set
deviation)

Merged Surface

Rhino® C2
Proposed

Method C2
Proposed

Method C0

51: Intersecting and
trimmed surfaces

Total points - 20402 20402

Close points - 19339 19112

Average distance - 0.0423 0.0451

Median distance - 0.0144 0.0221

Standard deviation - 0.0792 0.0771

Maximum distance - 0.4759 0.3251

1 Rhino® did not merge the surfaces even after matching.

A.7 Case 6: Surfaces having Different Degrees

Before the surfaces having different degrees can be merged, the degree of the surfaces in

u and v directions need to be made uniform. Thus, the problem reduces to increasing or

decreasing the degree of a surface to make it uniform with that of the other surface. The

proposed algorithm can increase or decrease the degree of the surfaces as discussed in

Section 4.4.2.

For the analysis, two surfaces of different degrees were considered. The first surface

had 6×6 control points and degree three in both the directions. The second surface had

8×12 control points and degree four in u direction and degree five in v direction. The

surfaces were merged in v direction. Thus, the first surface was elevated to degree four in

u direction and degree 5 in v direction. Rhino®, by default increases the degree of lower

175

order surface and merges these two surfaces with degree five in v direction with

connectivity of C4 and degree four in u direction. The surface generated by the proposed

algorithm did not require additional knots to be introduced and, hence, had a lower

number of control points as compared to the one generated by Rhino®.

Table A.6 shows the deviation of the merged surface generated by Rhino® and

proposed algorithm from the original surfaces. It is clear from the point set deviation

analysis that the proposed algorithm results in a merged surface with lower standard

deviation compared to that merged by Rhino®. The maximum deviation of the merged

surface is also lower for the surface merged by using the proposed algorithm.

Table A.6 Comparison of the point set deviation of the merged surfaces generated by Rhino® and
the proposed algorithm for surface having different degrees.

Test Cases
Error Analysis

(using point set
deviation)

Merged Surface

Rhino® C2
Proposed

Method C2
Proposed

Method C0

6: Surfaces having
different degrees

Total points 20402 20402 20402

Close points 20109 20178 20121

Average distance 0.0126 0.0139 0.0157

Median distance 0.0087 0.0085 0.0081

Standard deviation 0.0125 0.0117 0.0154

Maximum distance 0.0563 0.0455 0.0396

176

A.7 Case 7: Multiple Surfaces

The algorithm is capable of merging any number of surfaces. Rhino® could not merge the

surfaces even after matching the surfaces and merging these in pairs. As shown in Table

A.7, the merged surface shows very small standard deviation from the original surfaces.

Table A.7 Comparison of the point set deviation of the merged surfaces generated by Rhino® and
the proposed algorithm for multiple surfaces.

Test Cases
Error Analysis

(using point set
deviation)

Merged Surface

Rhino® C2
Proposed

Method C2
Proposed

Method C0

71: Multiple
surfaces

Total points - 40804 40804

Close points - 39151 39469

Average distance - 0.0811 0.0448

Median distance - 0.0523 0.0241

Standard deviation - 0.0961 0.0705

Maximum distance - 0.3880 0.3050

1 Rhino® did not merge the surfaces even after matching.

A.8 Concluding Remarks

B-spline surface patch merging algorithm does not impose any restriction regarding the

type of continuity required at the common edge, the knot vector, or the number of

surfaces being merged simultaneously. The proposed algorithm can efficiently merge B-

spline surface patches having dissimilar curvatures at the common edge, intersecting B-

177

spline surface patches, and the B-spline surface patches having trimmed edges. The user

will not have to face a situation where the two surfaces cannot be merged due to

intersection, dissimilar curvature at common edge or similar situations. This adds to the

robustness of the algorithm. At the same time, the algorithm is capable of merging

multiple B-spline surfaces with small deviation. This deviation is lower than that

exhibited by the surfaces merged by Rhino®. In many cases, Rhino® was not able to

merge surfaces, whereas the proposed algorithm could achieve it.

However, it should be noted that the mathematical representation of NURBS

surfaces does not allow certain type of merging. Two surfaces cannot be merged if these

produce 'T junction'. As an example, if a B-spline cylindrical surface is lying on a flat

open B-spline surface, these cannot be merged. The algorithm proposed in this thesis

cannot merge surfaces if this merging is not allowed due to the constraints imposed by

the mathematical representation of NURBS surfaces.

178

CURRICULUM VITAE

Name: Harish Pungotra

Post-secondary Panjab University
Education and Chandigarh, Punjab, India
Degrees: 1989-1993 B.E.(Mechanical Engineering)

Panjab University
Chandigarh, Punjab, India
1993-1997 M.E.(Mechanical Engineering)

 The University of Western Ontario
London, Ontario, Canada
2006-2010 Ph.D.

Honors and Ministry of Human Resources Graduate Scholarship (GATE)
Awards: India
 1993-1995

 Distinction in M.E.
 Panjab University
 Chandigarh, Punjab, India
 1997

Related Work Teaching/Research Assistant, Mechanical & Material Engineering
Experience The University of Western Ontario
 London, Ontario, Canada

2006-2010

Guest Worker, National Research Council of Canada (NRC)
Institute for Research in Construction
London, Ontario, Canada
2006-2010

Publications:

Theses

Pungotra, H. (2010) Collision Detection and Merging of Deformable B-spline Surfaces in

Virtual Reality Environment. Doctor of Philosophy (Ph.D.), Department of
Mechanical and Materials Engineering, Faculty of Engineering. The University of
Western Ontario, London, Ontario, Canada.

179

Pungotra, H. (1997) Computer Aided Design of Bearings and Design Charts for

Industrial Applications. Master of Engineering (M.E.), Department of Mechanical
Engineering, Faculty of Engineering. Panjab University, Chandigarh, Punjab,
India.

Refereed Journal Papers

Pungotra H., Knopf G.K., Canas R. 2010, “Merging multiple B-spline surface patches in

a virtual reality environment ”, Computer Aided Design, 42(10), 847-859.

Pungotra, H., Knopf, G. K. and Canas, R., 2009, "Novel collision detection algorithm

for physics-based simulation of deformable B-spline shapes", Computer Aided
Design & Applications, 6(1), 43-54.

Pungotra, H., Knopf, G. K. and Canas, R., 2008, "Efficient algorithm to detect collision

between deformable B-spline surface for virtual sculpting", Computer-Aided
Design, 40(10-11), 1055-1066.

Refereed Conference Papers

Pungotra H., Knopf G. K., Canas R., 2010, "Representation of objects in virtual reality

environment using B-spline blending matrices", In: Proceedings of the 21st
IASTED Int. Conference on Modeling and Simulation (MS 2010), Banff, Alberta,
Canada, 281-288.

Pungotra, H., Knopf, G. K. and Canas, R., 2009, "Framework for modeling and

validating concept designs in virtual reality environments", In: Proceedings of the
IEEE Virtual Reality 2009 Conference (Symposium on Human Factors and
Ergonomics), Toronto, Canada, 393-398.

Knopf, G. K. and Pungotra, H., 2007, "Visual exploration of numeric data using 3D self

organizing feature maps", In: Proceedings of Int. Conference on Artificial Neural
Network in Engineering (ANNIE 2007), St. Louis, Missouri, USA, 297-302.

Pungotra H., 2000,"Computer aided design of ball bearings and design charts for

industrial applications", In: Proceedings of Int. Conference on Intelligent and
Flexible Manufacturing Systems (IAFMS 2000), 172-176.

180

Conference Presentations:

Pungotra H., Knopf G.K., Canas R., 2009, "Novel collision detection algorithm for
physics-based simulation of deformable B-spline shapes", CAD Conference ‘09,
June 08-12, Reno, Nevada, USA.

Igwe P. C., Pungotra H., Canas R. and Knopf G. K., 2007, "Conceptual design by haptic
modeling", The Seventh Int. Conference on Advanced Manufacturing
Technologies, June 4-6, London, ON, Canada.

	Collision Detection and Merging of Deformable B-Spline Surfaces in Virtual Reality Environment
	Recommended Citation

	Collision Detection and Merging of Deformable B-Spline Surfaces in Virtual Reality Environment

