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ABSTRACT 

This thesis presents a computational framework for representing, manipulating and 

merging rigid and deformable freeform objects in virtual reality (VR) environment. The 

core algorithms for collision detection, merging, and physics-based modeling used within 

this framework assume that all 3D deformable objects are B-spline surfaces. The 

interactive design tool can be represented as a B-spline surface, an implicit surface or a 

point, to allow the user a variety of rigid or deformable tools. The collision detection 

system utilizes the fact that the blending matrices used to discretize the B-spline surface 

are independent of the position of the control points and, therefore, can be pre-calculated. 

Complex B-spline surfaces can be generated by merging various B-spline surface patches 

using the B-spline surface patches merging algorithm presented in this thesis. Finally, the 

physics-based modeling system uses the mass-spring representation to determine the 

deformation and the reaction force values provided to the user. This helps to simulate 

realistic material behaviour of the model and assist the user in validating the design 

before performing extensive product detailing or finite element analysis using 

commercially available CAD software. The novelty of the proposed method stems from 

the pre-calculated blending matrices used to generate the points for graphical rendering, 

collision detection, merging of B-spline patches, and nodes for the mass spring system. 

This approach reduces computational time by avoiding the need to solve complex 

equations for blending functions of B-splines and perform the inversion of large matrices. 

This alternative approach to the mechanical concept design will also help to do away with 

the need to build prototypes for conceptualization and preliminary validation of the idea 

thereby reducing the time and cost of concept design phase and the wastage of resources. 

 

Keywords: collision detection; merging B-spline surfaces; virtual reality; interactive 

design; modeling and simulation; deformable object; B-spline surface. 
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NOMENCLATURE 

Au = Blending matrix for the B-spline surface in u direction 

Av = Blending matrix for the B-spline surface in v direction 

Cn = Continuity of order n for the B-spline surface 

cij = Material stiffness assigned to spring between nodes i and j 

D = Damping constant or damping coefficient 

[D] = Damping matrix 

dt = Δt = Time step 

E = Young's Modulus 

e =  Strain 

eij =  Strain in spring between nodes i and j after application of force 

F = Force 

fi,j,k = Force acting on node i, j, k 

fd = Damping force 

fext = External force 

fk = Force due to spring stiffness 

K = Spring constant or spring coefficient 

[K] = Stiffness matrix 

k = Degree of the B-spline surface in u direction 

l = Degree of the B-spline surface in v direction 

lij = New length of spring between nodes i and j after application of force 

Lij = Natural or rest length of spring between nodes i and j 

M = Matrix of discrete points on the B-spline surface 

m = Number of rows of matrix M 

N = Number of B-spline surfaces being merged simultaneously 

n = Number of columns of matrix M 

nei = Immediate neighborhood around node i 

Pij = Matrix of control points of B-spline surface 

r = Number of control points of the B-spline surface in u direction 

s = Number of control points of the B-spline surface in v direction 
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S = B-spline surface 

U = Knot vector of B-spline surface in u direction 

u, v = Parametric directions of B-spline surface 

V = Knot vector of B-spline surface in v direction 

x = Node position of location, representing VSOFM weight points 

x  = Node or weight point velocity 

x  = Node or weight point acceleration 

ν = Poisson's ratio 

σ = Stress 

ρi = Point mass of node i 

ζ = Damping factor 
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CHAPTER 1   INTRODUCTION 

1.1 Problem Statement 

During the normal design phase, the designer has the freedom to generate and explore 

ideas without being constrained by parameters that exist at later design stages. At the 

conceptual stage, if a large number of ideas can be created, modified or analyzed; there 

will be more chances of finding the best possible design. 

Modern computer-aided design (CAD) systems and software tools have played a 

significant role in improving the efficiency of the overall product design process, 

ensuring geometric accuracy and the exchange of product model data. However, the 

impact of these technologies is largely restricted to the detailed modeling and engineering 

analysis that occurs during the embodiment design phase. Conceptual design has not 

benefited from these sophisticated and highly precise software tools to the same degree 

because the creative activities associated with developing and communicating potential 

solutions with minimal detail is far less formulaic in its implementation. At the early 

stages of product design the specifications and constraints have not been fully 

established. The industrial designers and engineers need the freedom to change and 

modify the product configuration and mechanical behavior to investigate a wide range of 

alternative solutions. Any CAD system that seeks to support and enhance interactive 3D 

free form modeling must, therefore, enable natural and haptic modes of human-computer 

interaction. Therefore, industrial designers and engineers continue to seek new tools that 

provide them with the freedom to artistically modify product concepts. The need for a 

viable VR-based conceptual design tool comes from several case studies [Cheshire, 2001; 

Sener, 2002; Ye, 2006a; Ye, 2006b]. One key conclusion derived is that the human-

computer interface and related software tools for interacting with the virtual models must 

be intuitive to the user, provide sensory feedback during design, and mimic the natural 

way that the consumer would interact with the product concepts that are being created. 

Recent advancements in high-speed, multi-core computer hardware and virtual reality 

(VR) technology provide opportunities to link the more fluid processes of creative 

conceptual design with the rigidly defined tasks of product detailing and engineering 
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analysis. The objective of this thesis is to develop tools for a framework for an interactive 

design module in virtual reality environment. This will enable a designer to have natural 

and haptic modes of human-computer interaction for modeling and validating the 

conceptual designs. The proposed technique provides rapid verifications of the early 

design, before exchanging the information with commercially available CAD/CAM 

software to carry out detailed analysis and generate the final design. 

Figure 1.1 shows the basic architecture of a typical physics-based haptic system. The 

haptic device works as an interface between the real and the virtual worlds. A collision 

detection algorithm then provides the contact information of the virtual tool with the 

object. The haptic device takes the force exerted by the user, converts it into appropriate 

signals and transmits the signal to the virtual object so as to make it deform (deformable 

bodies) or show resistance (rigid bodies). The force exerted by the user and position of 

interaction with the object are used by a physics-based model to calculate the 

deformation of the object and reactive forces to be sent back to the user.  

 

Figure 1.1 Basic architecture of a physics-based haptic system. 
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Collision detection is an active research topic in engineering, computer graphics and 

virtual reality (VR) [Jimenez, 2001]. Collision detection is the necessary step before 

haptic interaction can be achieved. An efficient collision detection algorithm plays a very 

significant role towards achieving real-time haptic interaction. Most of the collision 

detection algorithms, available in literature, are mostly for rigid bodies. These rigid 

bodies are mostly represented as lower order implicit surfaces (spheres, cylinders, cones 

etc.) or tessellated surfaces. For applications in haptic-based modeling, mostly tessellated 

bodies are used, and many constraints are imposed on how the virtual model can deform. 

Shape modification of a virtual object can be simulated using either geometric- or 

physics-based algorithms [Basdogan, 1998]. Geometric techniques only adjust the 

vertices of the underlying mesh model in response to external forces. The reaction force 

is typically determined using Hooke’s law where the depth of haptic tool penetration is 

calculated based on the current and home positions of the node that is nearest to the 

contact point. The concept was originally suggested by [Sederberg, 1986] and was further 

extended by [Basdogan, 1998; Basdogan, 2004] for applications in medical simulation. 

This technique, though computationally efficient, cannot determine real behavior of a 

multiple-material or non-homogeneous material virtual model. Physics-based models, on 

the other hand, are able to both estimate the direction and magnitude of nodal movement 

based on realistic material properties and the external forces introduced to the model 

through the haptic tool.  

In the past decade, B-spline/NURBS representation has become the standard for 

CAD/CAM systems. Thus it is imperative that any haptic interactive design module 

should utilize B-spline surfaces to represent the virtual model in order to streamline the 

exchange of information with existing CAD/CAM systems. A major obstacle in using B-

spline surfaces to represent a deformable model is the absence of an efficient algorithm to 

detect collision between two or more B-spline surfaces having complex surface. For 

applications in interactive 3D free form modeling using haptics based virtual reality 

environment, a collision detection algorithm must be capable of tackling complex 

surfaces, large areas of contact, multiple contacts, and high deformations.  
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1.2 Basic Terminology 

Conceptual Design is the early identification and generation of ideas for a design 

solution. Virtual Reality (VR) is a technology that allows a user to interact with a 

computer simulated environment representing a real or imaginary word. Haptics means 

pertaining to touch. Haptic technology allows the user to interact with a virtual model via 

a Haptic Device which works as an interface between real and virtual world. The user 

feels the sense of touch through the application of force, vibrations, motion and resistance 

via a haptic device. Haptics has applications in the field of medicine (training for 

laparoscopic surgery), games, art, shape design and user training.  

There are three distinct features that any haptics-based interactive design module 

must have. The Haptic Rendering System is used for the visualization of the model and 

the tool. Haptic Rendering includes graphics animation and haptic feedback. Through 

haptic rendering, a user can feel and manipulate a virtual object using a haptic device. A 

Collision Detection algorithm calculates the position and extent of the interference of the 

virtual model(s) and the tool. A Physics-Based System uses the information provided by 

the collision detection algorithm to determine the deformation of the model(s) and the 

resultant reactive forces to be fed back to the user. Force Feedback is provided through 

haptic devices. The nature and amount of force feedback depends upon the haptic device 

used, and the underlying algorithm used to calculate the force feedback.  

1.3 Virtual Reality (VR) Environment 

Virtual reality provides real-time interaction with virtual world through several 

communication methodologies including visual (computer screen or stereoscopic 

display), tactile (force feedback) and audio (stereo sound) feedback. The overall goal of 

the virtual reality is to provide a far more natural environment to the user than that is 

possible by workstations. This can help to enhance the creativity of the user and increase 

productivity. This environment is especially suitable for free form shape design, wherein 

an industrial designer or engineer can explore all conceivable options without the 

constraints imposed by commercial CAD/CAM environments. 
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The goal of efficiently integrating sensory-motor functionalities and skills within a 

VR system poses extraordinary challenges for researchers and engineers in the field. 

There are many bottlenecks in efficient use of the virtual reality environment. Firstly, the 

real-time rendering of the complex word during simulation is not advanced enough for 

industrial applications. In the real word, people can use vision to estimate the distance 

between objects, and if, these are far or closer to them. The quality of the graphics has 

improved, of late, but still it has not reached the point of maturity. 

The second bottleneck is in the implementation of collision detection algorithms. At 

present most of the algorithms are limited to particular applications. Most of these 

algorithms are for rigid bodies. When applied to deformable objects having complex 

surface, it may not be possible to get real-time interaction. 

The third bottleneck is in providing physical properties to the virtual models. The 

sense of touch and force feed mechanisms allow the user, a rich experience in virtual 

world. However, to simulate the behavior of a real object, the simulation must include 

object rigidity/strength, mass, friction, surface texture, and heat transfer. Adding these 

physical characteristics to virtual objects require powerful computing hardware and 

efficient algorithms. 

However, virtual reality development is a fast growing area in computer graphics and 

engineering. Already, it is being used for training for laparoscopic surgery and games. 

The interactive design through virtual reality promises to be very intuitive, creative, and 

cost effective method. With better integration with existing CAD/CAM software, it can 

provide a very effective way for the industrial designers and engineers to exploit their 

creativity. One way to achieve it is by using B-spline surfaces to represent virtual model 

and tool. The development of efficient collision detection and mass spring system to 

incorporate physical properties is described later in this thesis. 

1.4 Haptics-based Interactive Design 

Various studies [Sener, 2002; Ye, 2006a] suggest that a haptics-based interactive design 

system is well suited to exploit the creativity of an industrial designer or engineer. It 

would make it possible to artistically modify and quickly evaluate different concepts. The 
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user gets real-time visual and force feedback, while interacting with the virtual model. 

Haptics allows the user to benefit from the natural way of working with the model, 

without the constraints imposed by commercially available CAD/CAM software. 

During traditional concept design phase, prototypes are sometimes built for 

conceptualization and preliminary validation of the idea which increases the time and the 

cost of the concept design phase and leads to the wastage of natural resources. The 3D 

visualization capabilities and the ability to directly interact with physics-based models 

using haptic tools suggest that Virtual Reality (VR) environments can provide new 

opportunities to assist the creative design process. Interactive modeling techniques, using 

the virtual reality, have rapidly evolved in recent times. This provides the designer, an 

insight to the physical characteristics of the concept, which can be evaluated before going 

in for a detailed design.  

Figure 1.2 shows the schematic representation of a general framework for a haptic 

interaction with a virtual object. 

 

Figure 1.2 Schematic representation of a haptic interaction with a virtual object. 
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There are three distinct features to enable any haptics interaction with a virtual 

object. As the user interacts with virtual object, the relative positions of the virtual tool 

and the object are calculated. The collision detection system provides the information 

regarding the details of the contact of the tool with the model and the tool penetration. 

The physics-based system uses the information provided by the collision detection 

algorithm to determine the deformation of the model(s) and the resultant reactive forces 

to be fed back to the user. The haptic rendering system is used for the visualization of the 

model and the tool.  

1.5 Outline of the Thesis 

The literature review, on virtual reality-based concept design, haptic interaction, virtual 

sculpting, surface representation techniques, collision detection and basic geometric- and 

physics-based modeling approaches, is discussed in Chapter 2. The chapter also 

summarises the approaches for haptics based shape design and development of 

deformable surface and solid models. The techniques discussed in the chapter includes 

collision detection of rigid and deformable bodies; implicit, tessellated and NURBS 

surface representation of virtual models; mass spring damper systems and finite element 

methods. The chapter also presents various types of surface representations of virtual 

models along with their relative merits and demerits and reasons of choosing B-spline 

surface representation for the haptic-based interactive design framework. 

Chapter 3 introduces the collision detection algorithm for B-spline surface patches. 

The algorithm is evaluated for its efficiency using the Big O notation for worst case 

scenario. The algorithm is further developed for merging multiple B-spline surface 

patches in Chapter 4. The development of initial mass spring damper system to introduce 

material properties to the virtual model is discussed in Chapter 5. It also presents the 

integration of the mass spring system with the collision detection system so as to achieve 

denser high computational efficiency. Chapter 6 takes a closer look at the efficacy of the 

algorithms developed for collision detection through simulation tests and performance. It 

verifies the efficiency and robustness of the collision detection, B-spline surface patches 

merging, and physically-based deformation model algorithms. The collision detection 
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algorithm, merging of B-spline surface patches and deformation and force response of the 

mass spring system are combined for the haptics-based interactive design framework. 

The performance of this integrated module is also evaluated in this chapter. Chapter 7 

presents deformable shape medications and user training in VR space. Chapter 8 

summarizes the performance of collision detection, B-spline merging algorithm, and 

mass spring system. It also provides the limitations of the proposed system, and 

recommendations for the improvement and future work. 
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CHAPTER 2 LITERATURE SURVEY 

2.1 Introduction 

In addition to realistic three dimensional graphics, a virtual reality environment based 

interactive design must support visual object collision detection, physics-based modeling, 

and haptic manipulation. The collision detection sub-system provides detailed 

information about when and how multiple virtual objects make contact and interact 

within the VR space. The physics-based sub-system uses the information provided by the 

collision detection algorithm to determine the reactive forces to be fed back to the user 

and degree of deformation of any non-rigid elastic and plastic objects. Finally, the haptic 

rendering sub-system is used for tactile and visual interaction with virtual objects and 

tools used during the creative design exercise. 

This chapter discusses the related research work involved in various aspects of a 

interactive design module. To better understand the idea behind the development of 

techniques for VR based interactive design and specific contribution of this thesis, it is 

necessary to review previous techniques used and their relative merits and demerits. 

Much of the work in rendering, sculpting, and collision detection has been in the field of 

computer graphics with applications in games and medical field in mind. Most of these 

techniques use tessellated surfaces for representing rigid bodies or deformable bodies 

with several constraints. The algorithms for rendering, collision detection, haptic 

interaction, and physics based system depend upon the type of surface representation of 

the models and tools in virtual reality environment. 

2.2 Virtual Reality in Concept Design 

The rapid advancement of virtual reality (VR) technology has led to the development of a 

variety of applications in computer graphics, gaming and entertainment, surgical training, 

engineering analysis, and industrial design. Specifically, virtual reality promises to be a 

very intuitive, creative and cost effective method for concept design [Cheshire, 2001; 

Sener, 2002; Ye, 2006a; Ye, 2006b]. The most prominent characteristic of virtual reality 
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systems concerns multimodal (real-time) sensory-motor interaction between the human 

operator (user) and the virtual environment. Such a natural and intuitive human/computer 

interaction should involve all the sensory channels of the human being.  

During conceptual design, product specifications are not fully established and 

designers have significant freedom to change and modify the product configuration so as 

to meet the design requirements. Industrial designers tend to make extensive use of 

physical models created with their hands as it is natural and intuitive process. 

Unfortunately, current CAD and geometric modeling systems lack a natural and intuitive 

human-computer interface.  

Initially, VR-enhanced 3D visualization and analysis systems were used, such as 

Virtual Design II [Astheimer, 1995], and ISAAC [Mine, 1997]. In these systems, the 

product models are initially created in existing 3D CAD systems and then appropriately 

translated into a VR environment. Such systems only permit designers to visualize and 

analyze CAD objects in a 3D virtual environment. Designers cannot directly create or 

modify pre-existing CAD models and so when any change or modification is required, 

they must go back to the conventional CAD systems. 

 A VR-based concept design system can provide industrial designers with more 

familiar interactive capabilities for creating and representing their design intent easily, 

flexibly and efficiently on computers [Ye, 2002]. Compared to conventional CAD 

systems, a VR-based CAD system allows more tools for the designers to perform various 

design activities. The COnceptual VIRtual Design System (COVIRDS) is a VR-based 

CAD modeling environment that allows rapid shape creation by using a bi-modal, voice, 

and hand tracking interface [Chu, 1997; Dani, 1997]. It provides parametric and free form 

design modes. Mouse/keyboard interface is replaced with voice recognition and 3D 

interaction devices. A voice command interface has several advantages including its 

simple input device (a microphone) and freedom to use hands for other operations. 

However, it also suffers from fundamental weaknesses including limited recognition 

capability and difficulty in specifying continuous and complex commands [Ye, 2005]. 

Many VR-based design system are reported in the literature such as 3-Draw [Sachs, 

1991], 3DM [Butterworth, 1992], DesignSpace [Chapin, 1994], CDS [Bowman, 1996], 
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and CUP [Anthony, 2001]. The 3DM allows the designer a better feel for the object's 

appearance in VR environment through a head mounded display. 3DM includes several 

grid and snap functions. It however lacks many other aids and constraints that are 

necessary to accomplish precise work. All of these techniques provide the designer with 

real-time interaction with the virtual object. However, each of these VR-based interaction 

techniques for CAD applications has its own potential and limitations. There is a 

limitation on the size of the model. When geometries get complex, a time lag sets into the 

system. Fully immersive design systems can create a more realistic environment but these 

often tend to make the system infrastructure more complex, cause uncomfortable 

intrusive viewing problems and make the system computationally expensive. 

The Loughborough University Conceptual Interactive Design (LUCID) system [Ye, 

2005; Ye, 2006a] was developed to integrate VR-based Human-Computer Interfaces 

(HCIs) into the design process in order to maximize its interactivity and efficiency so as 

to provide better support to conceptual design. It used a six degree of freedom (DOF) 

SpaceMouse Classic® input device from 3Dconnexion Corp. to create a two-handed 

operation mechanism. A 3D Phantom Desktop® haptic device from SensAble 

Technologies Inc. was used to implement haptic interaction. A NuVision GX60® 

stereoscopic display toolkit from MacNaughton Inc. was used to offer a stereoscopic 

display interface. A universal computer-supported speaker-based auditory system was 

employed to provide a sound feedback interface. This system can allow users to 

experience 3D haptic force feedback from the 3D Phantom Desktop® haptic device and 

navigate the virtual model through six DOF SpaceMouse Classic® input device. 

Weidlich et al. [Weidlich, 2007] focused on integrating VR as a user interface into 

the process of geometric modeling and detailing. It presents three paths towards a 

solution: VRAx®, Navigation Interface for Modeling (NavIMode), and Construct|Tool. 

Most of the preliminary work focused on the user interfaces and the modeling tools 

for the designers. Sener et al. [Sener, 2002] conducted several case studies that pointed 

out the expectations of the designers and industrial engineers. The designers expected 

that any interactive design framework must mimic the natural way designers interact with 

the physical world and provide direct sensory feedback during the interaction. Current 
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CAD systems do not fulfill these expectations. Robinson et al. [Robinson, 2007] 

evaluated Co-Star, an immersive stereoscopic system for cable harness design. Overall, 

the results obtained and the positive experience of the participants indicated that 3D 

immersive design and direct body motion tracked interfaces did provide a very intuitive, 

easy to use, and useful addition to the technologies available to design engineers. Bourdot 

et al. [Bourdot, 2010], presented an approach for the integration of Virtual Reality (VR) 

and Computer-Aided Design (CAD) by developing a VR-CAD framework. The 

framework allowed intuitive and direct 3D edition on CAD objects within virtual reality 

environments by combining the VR-CAD framework with multimodal immersive 

interaction (using 6 DoF tracking, speech, and gesture recognition systems) to gain direct 

and intuitive deformation of the objects' shapes within a VR environment. There are more 

research groups [Duriez, 2006; Gironimo, 2006] using virtual reality for concept design. 

Overall there is high demand for a virtual concept design tools in industry. 

2.3 Haptic Interaction with Virtual Model 

In the context of virtual reality applications, haptics is a force feedback technology which 

allows a user to use his/her sense of touch while interacting with a virtual model. By 

using haptics devices, the user can interact with a virtual model by feeding and receiving 

information through tactile/kinaesthetic sensation.  

Figure 2.1 shows the user interacting with a virtual model through a haptic device. 

The haptic sense is usually divided into two main distinct sensory modalities. The first 

sense is the kinaesthetic sense (motion and force sensing), which includes perception of 

muscular effort. The second sense is the tactile sense, which provides cutaneous 

information, related to contact between the skin of the human body and the external 

environment (pressure, vibration, temperature etc.). These sensory interactions enable the 

user to perceive physical properties such as rigidity of the model and the surface 

characteristics of model (roughness etc.). 

 



13 

 

 

Figure 2.1 Haptic interaction with a virtual model through a haptic device (PHANTOM® Omni of 
SensAble Technologies, 2008) located at the University of Western Ontario. 

Bloomenthal and Shoemaker [Bloomenthal, 1991] used implicit geometry techniques 

to represent clay-like objects proposed. A convolution surface was proposed as a natural 

and powerful extension to point-based field surfaces which was obtained by convolving a 

skeleton. In principle, this can comprise points, line segments, curves, polygons, or other 

geometrical primitives. This approach overcomes the drawback of bulges and curvature 

discontinuity in distance surfaces. Convolution surfaces offer many desirable advantages, 

such as intuitive shape design, well-behaved blending and fluid topology changes with 

the underlying skeleton. Computer vision research has shown that any 3D object can be 

defined entirely from a geometric skeleton [Attali, 1997], which implies that skeletons 

are natural abstractions for 3D objects. Convolution surfaces provide us with a means to 

control the shape of an underlying modeling object by controlling its skeleton, just as 

controlling a parametric surface by manipulating its control vertices. A major drawback 

of this approach is that the cost of field evaluation grows with the number of primitives. 

During sculpting, if the actions of the user results in creation of a new primitive, the field 

evaluation would quickly become prohibitive and interaction will become sluggish. The 

mathematical formulations of convolution surfaces also pose some open problems 

because there are limited choices of kernel functions and skeletal primitives that can be 

convolved together analytically. By using the superposition property of convolution 

surfaces and the separable property of Gaussian filters, Bloomenthal and Shoemaker 

[Bloomenthal, 1991] calculated field functions numerically based on a point-sampling 
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method, which unfortunately implies potential under-sampling artifacts and storage 

problems. McCormack and Sherstyuk [McCormack, 1998] addressed this weakness by 

employing a new kernel function, called Cauchy function, and were able to deduce 

analytical solutions for several useful primitives, namely, points, line segments, 

polygons, arcs, and planes.  

Field-based implicit surfaces have become an increasingly popular modeling 

approach [Bloomenthal, 1997a; Cani-Gascuel, 1997]. Their implicit representations, 

which have smooth-blending properties, make them convenient for modeling and 

animating smooth objects of complex topology that may change over time. Examples of 

such objects are liquids, clouds, plants, sea-life forms, and other organic shapes. In 

addition to object modeling, implicit surfaces have gained acceptance in other 

applications, namely, shape morphing [Turk, 1999b], surface reconstruction [Savchenko, 

1995], natural phenomena simulation [Dobashi, 2000; Nishita, 1997], and space 

deformation [Jin, 2000]. Since implicit surface can produce visually striking special 

effects, they have become a powerful tool for animators.  

Witkin et al. [Witkin, 1998] used a physically based particle approach to sample and 

control implicit surfaces. On the other hand, Raviv and Elber [Raviv, 2000] presented an 

interactive sculpting algorithm that used a set of uniform trivariate B-spline functions as 

the underlying representations. Martin et al. [Martin, 2001] used a trivariate spline based 

mathematical framework to represent and extract volumetric attributes. Park and Kunwoo 

[Park, 1997] used high dimensional NURBS representation for analyzing and visualizing 

fluid flow data. Schmitt et al. [Schmitt, 2001] presented an approach to constructive 

modeling of FRep solids defined by real-values functions using 4D uniform rational 

cubic B-spline volumes as primitives. The first three coordinates are used to represent the 

spatial component of the volume to be sculpted and the fourth coordinate corresponds to 

volume density. Knopf and Sangole [Knopf, 2002] investigated the Self Organization 

Feature Map (SOFM) as the starting point for haptic interaction. This technique has also 

been extended for use in surface fitting [Knopf, 2004], geometric parameterization 

[Knopf, 2003], and visual exploration of numerical data [Knopf, 2007]. 
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Zhong et al. [Zhong, 2005] presented a methodology for solid modelling in a virtual 

reality (VR) environment in an intuitive manner through constraint-based manipulations. 

The data model integrates a high-level constraint-based model for precise object 

definition, a mid-level Constructive Solid Geometry/Boundary representation 

(CSG/Brep) hybrid solid model for hierarchical geometry abstractions and object 

creation, and a low-level polygon model for real-time visualization and interaction in the 

VR environment. 

2.4 Virtual Sculpting 

Mathematically, virtual sculpting refers to the dynamic manipulation of virtual object by 

the user to generate different shapes. Galyean and Hughes [Galyean, 1991] presented 

interactive modeling technique based on the notion of sculpting a solid material. A 

sculpting tool is controlled by a 3D input device and the material is represented by voxel 

data. The tool acts by modifying the values in the voxel array and particular attention was 

made to prevent aliasing when tool was re-sampled into the field grid. The tool was able 

to remove material as well as smoothen the surface through convolution. Wang and 

Kaufman [Wang, 1995] further extended haptic interaction to carving and sawing. The 

affected regions are indicated directly on the 2D projected image of the 3D model. The 

carving tools are pre-generated using a volume sampling technique and stored in a 

volume raster of 20 × 20 × 20 resolution. Avila and Sobierajski [Avila, 1996] used a 

force feedback articulated arm to command a tool in a similar context. However, the tool 

size was limited to 3-5 voxels because in order to meet the requirements of the system, 

the contents of each voxel must contain a large number of physical properties. This 

includes a scalar value for density, values for material classification and shading 

properties, as well as values for mechanical properties such as stiffness, and viscosity.  

Alternative data structure to represent virtual sculpting has also be proposed such as, 

voxel-based system [McNeely, 1999], a voxel-based system with iso-surface extraction 

[Ferley, 2000], B-spline surfaces [Dachille, 1999], and sub-division surfaces [Gregory, 

2000b]. These are suitable for low to moderately complex virtual models. Research is 

underway to improve computational efficiency and flexibility of haptic sculpting. Multi-
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resolution surfaces have also been used to reduce computational cost of haptic 

interaction, particularly of collision detection. Baerentzen [Baerentzen, 1998] proposed 

an octree-based representation to accelerate ray-casting. The algorithm can be extended 

by allowing voxels to be inserted at different levels in the octree. This way, a sparsely 

represented voxel raster with dynamic resolution, can be obtained. Raviv and Elber 

[Raviv, 2000] proposed a hierarchical approach based on the combination of trivariate B-

spline volumes to represent the field. This allows sculpting at different levels of details 

and arbitrary orientations. The presented approach provides the user with intuitive 

sculpting abilities in an interactive speed for modeling arbitrary geometries and/or 

topologies. Ferley et al. [Ferley, 2001] proposed a sculpture metaphor based on a multi-

resolution volumetric representation. It allows the user to model both precise and coarse 

features while maintaining interactive updates and display rates. The modeled surface is 

an iso-surface of a scalar field, which is sampled on an adaptive hierarchical grid that 

dynamically subdivides or un-divides itself. Gao and Gibson [Gao, 2006] used multi-

resolution B-spline surfaces to reduce the computational cost of haptic interaction. 

Though the multi-resolution techniques reduce the computation cost of haptic interaction, 

the haptic force to be fed back to the user is not realistic. 

2.5 Surface Representations 

A variety of techniques is available for representing the surface of a virtual object 

representing a model or tool. Each technique has its advantages and disadvantages with 

respect to other techniques. Before selecting any particular type of representation, it is 

necessary to compare the characteristics of these techniques and how these would fit in 

the overall picture of concept generation. Some of the prominent techniques are discussed 

in detail in the following subsections. 

2.5.1 Implicit surfaces 

Implicit surfaces are two-dimensional geometric shapes that exist in three-dimensional 

space and are defined in a particular mathematical form [Liu, 2006]. This type of 

representation scheme is also called volumetric method. Implicit surfaces can be 
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generated using analytical, variational and multi-level partition of unity (MPU) approach. 

Implicit surfaces use 3D volumetric methods, 3D implicit primitives (e.g. blobby), level 

sets and radial basis functions to represent surfaces by superposition of weighted basis 

function. A consistent, smooth and water-tight surface can be represented using this 

approach. 

An implicit surface consists of those points in three dimensional space that satisfy a 

certain requirement represented mathematically by a function 'f ' whose argument is a 

point 'p'. By definition, a point 'p' would lie on the surface if, f (p) = 0. The function 'f ' 

may contain any mathematical expression. These expressions can be polynomials or may 

include transcendental expressions such as trigonometric or exponential expressions. For 

a continuous function 'f ', its value at any point 'p' is often a measure of proximity 

between the point 'p' and the surface [Bloomenthal, 1997b]. This property is unique to the 

implicit surfaces and can be very useful for collision detection. However the intersection 

test for implicit surfaces of degree higher than 3 is computationally very intensive.  

An implicit surface naturally describes an object’s interior. The ability to enclose 

volume and to represent blends of volumes provides a straightforward implicit alternative 

to fillets, rounds, and other ‘free-form’ parametric surfaces that require care in joining so 

that geometric continuity is established along the seams [Charrot, 1984]. Consequently, 

animations of organic shapes commonly employ implicit surfaces. Several types of 

implicit surfaces have been described in the literature. They include metaballs, [Wyvill, 

1989], distance surfaces [Bloomenthal, 1990], convolution surfaces [Bloomenthal, 1991], 

R-functions [Pasko, 1995], variational surfaces [Savchenko, 1995], and blob trees 

[Wyvill, 1999]. 

Both implicit surfaces and parametric surfaces are well developed in computer 

graphics. Implicit surfaces with a signed distance function are the generalization of 

implicit surfaces and have been extensively discussed in the computer graphics literature 

[Benko, 2001; Bloomenthal, 1997b; Liu, 2006]. However, parametric surfaces are 

preferred over implicit surfaces because parametric surfaces are simpler to render and 

more convenient for certain geometric operations, such as computation of curvature and 

the control of position and tangency. In particular, parametric surfaces are generally 
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easier to draw, tessellate or to perform any operation that requires a knowledge of 'where' 

of the surface [Rockwood, 1989]. 

Manipulation of an implicit surface is complex because properties like surface point 

and its normal are not easily specified. Turk and O’Brien [Turk, 1999a] first presented 

the concept of variational implicit surfaces to handle this problem. Variational implicit 

surface facilitate direct specification of both the location of points on the surface and 

surface normals and are defined with additional interior and exterior constraints. They 

demonstrated the use of variational implicit surfaces for shaped transformation [Turk, 

1999b]. This approach can successfully generate interpolating implicit surfaces [Turk, 

2002]. Bloomenthal [Bloomenthal, 1999] used skeltonization as effective way for storing 

and manipulation and projected this technique for applications involving animation. Shen 

et al. [Shen, 2004] developed a generalized approach of generating interpolating or 

approximating implicit surface from polygonal data with moving least squares (MLS) 

approach and iteratively fitted normal constraints. Implicit surfaces with sharp features 

are modeled by kernel approximation [Reuter, 2004] and dual-primal mesh optimization 

[Ohtake, 2002]. Reuter et al. [Reuter, 2004] used MLS methods and integrated sharp 

edges by specifying the implicit equation of half space that cuts the sharp edge with 

discontinuous implicit surface. Implicit surfaces are extensively used for character 

animations [Cani-Gascuel, 1997]. Implicit surfaces are generally used as an extra layer 

coating for any kind of structure that moves and deforms over time. 

2.5.2 Tessellated surfaces 

Tessellated surface modeling schemes attempt to interpolate the point clouds by mapping 

a flat 3D triangulated domain to generate 3D triangulated surface model. Delaunay and 

its derived methods are frequently used for generating triangulated surfaces. In Delaunay 

triangulation, each triangle is generated from three points in the point set 'P' in such a 

way that no other point from the data set 'P' lies within the circum-circle of the 

corresponding triangle. This condition minimizes sharp triangles. A detailed description 

of Delaunay triangulation, related issues, theory and algorithms have been described in 

literature [Cazals, 2004; Chew, 1989; Dey, 2007]. Tessellated surfaces are widely used 
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because of inherent simplicity of triangle-triangle collision detection and advantage of 

hardware compatibility with tessellated models for rendering and graphical 

representations. However, there are many disadvantages of using tessellated surfaces 

while representing deformable surfaces. The most significant disadvantage of using 

tessellated model is that graphical rendering, collision detection and the number of nodes 

for mass spring system are all dependent upon the number of triangles used to represent a 

model. 

The resolution of the surface cannot be changed during haptic interaction. A low 

resolution model can be used to decrease computation time. Conversely, a high resolution 

model can be used to increase accuracy of collision detection and better graphical 

representation. However, this trade off cannot be used during haptic interaction. 

Furthermore, as a tessellated surface model deforms during interaction with the tool or 

other model, the quality of the triangles deteriorate. This makes collision detection 

computationally extensive and inefficient. Other drawbacks of this approach include its 

incapability of modeling very smooth surfaces, and inability to represent smooth 

boundary edges. 

2.5.3 Parametric surfaces 

A parametric surface is a surface in the Euclidean space R3 which is defined by an 

equation with two parameters. In other words a parametric surface is a function with 

domain R2 and range R3. Typically variables u and v are used for the domain and x, y, and 

z for the range. These notations have been used in this thesis. These surfaces require 

fewer geometric parameters for their definitions. However, geometrically and 

topologically complex freeform surfaces cannot be represented with simple analytical 

surfaces (planes, quadrics, spheres, cones and cylinders etc.).  

Parametric surface representation is a well established geometric modeling approach 

of modern day geometric modeling software, because it facilitates compact storage, 

complex editing and modification tools and reliable data exchange for model sharing. 

Parametric modeling is quite effective modeling scheme for generating accurate, concise, 

and affine invariant approximate surface of relatively simple size. It requires less storage 



20 

 

for surface representation. However, this modeling scheme has not emerged as an 

effecting modeling tool for B-spline based shape modifications mainly because of the 

computationally expensive collision detection and complexity involved in estimating 

controls points from for the deformed surface. 

The general form of the parametric representation of a surface is p = p(u, v) = [x(u, v) 

y(u, v) z(u, v)]T. There are many types of synthetic parametric surfaces such as, Bilinear 

surfaces, Coons surface patches, Bicubic patches, Bezier surfaces, B-spline surfaces and 

NURBS surfaces [Farin, 1997; Piegl, 1997]. Of all these types of the surfaces, B-spline 

surfaces are the most widely used. 

Over the past decade, B-spline representation has become the standard for 

CAD/CAM systems. Thus it is imperative that any haptic interactive design module 

should utilize a B-spline surface to represent the virtual model in order to streamline the 

exchange of the information with existing CAD/CAM systems. A major obstacle in using 

the B-spline surface to represent a deformable model is the absence of an efficient 

algorithm to detect collision between two or more B-spline surfaces having a complex 

surface. A collision detection algorithm must be capable of tackling complex surfaces, a 

large area of contact, multiple contacts, and high deformation.  

2.6 Collision Detection 

Collision detection enables simulation-based interactive design, engineering analysis, 

assembly, motion planning, medical training and animation. Collision detection is 

considered a major computational bottleneck in these applications. The goal of collision 

detection is to automatically report a geometric contact when it is about to occur or has 

actually occurred. There are many collision detection algorithms proposed by various 

researchers. Lin and Gottschalk [Lin, 1998] presented a survey on the state of the art in 

collision detection between geometric models represented by smooth surfaces. These 

surfaces were sub-divided into four groups; constructive solid geometry, implicit 

surfaces, parametric surfaces and polygonal models. The collision detection algorithms 

can be further sub-divided in three groups; pair versus n-body, static versus dynamic, and 

rigid bodies versus deformable models. Another survey [Jimenez, 2001] focused more on 



21 

 

how the model representation leads to different collision detection algorithms. These 

algorithms were grouped into four approaches: space–time volume intersection, swept 

volume interference, multiple interference detection and trajectory parameterization.  

In this chapter, the collision detection algorithms have been grouped mainly as rigid 

body algorithms and deformable model algorithms. Most of these algorithms fall in the 

former category and there are not many efficient collision detection algorithms for 

deformable bodies having complex surface. This section briefly discusses some of the 

important algorithms. 

2.6.1 Collision detection of rigid bodies 

Ho et al. [Ho, 1999] proposed a Neighbourhood Watch algorithm that was capable of 

handling rigid bodies with both convex and concave surfaces. The Neighbourhood Watch 

algorithm took advantage of pre-computed connectivity information for detecting 

collisions between the end effector of a force-reflecting robot and polyhedral objects in 

VR environment. Using this method and a haptic interface device, the users can manually 

explore and feel the shape and surface details of virtual objects. Mirtich [Mirtich, 1997] 

employed two phased approach to detect collision of rigid, polyhedral geometries. For the 

broad phase, an algorithm using axes-aligned bounding boxes (AABB) and a hierarchical 

spatial hash table was described. For the narrow-phase, primarily, the Lin-Canny 

algorithm [Lin, 1991] was used. Various bounding geometries and spatial geometries 

help in performing a rejection test when two virtual objects are apart. Some of the well-

known examples include trees of sphere [Bradshaw, 2002; Hubbard, 1995; Quinlan, 

1994], Axis Aligned Bounding Boxes (AABB) [van-den-Bergen, 1997] OBBTrees 

[Barequet, 1996; Gottschalk, 1996; Gregory, 2000a], k-DOPs [Klosowski, 1998; 

Krishnan, 1998] and SSVs [Larsen, 2000]. Many other types of volume have been 

suggested as bounding volume namely cones, cylinders, spherical shells, ellipsoids and 

zonotopes [Ericson, 2005]. Spatial partitioning decomposes the workspace into uniform 

grids or cells, implemented as a hash table to efficiently deal with large storage 

requirements. At runtime, the algorithm can quickly find the cells containing the path 

swept out by the hand-held probe. Once the objects are in close proximity, spatial 
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decomposition is used to perform a rejection test for decomposed/subdivided parts of the 

objects. Gregory et al. [Gregory, 2000a] used a pre-computed hybrid hierarchical 

representation, consisting of uniform grids and trees of tight-fitting Oriented Bounding 

Box Trees (OBB Trees). At run time, these hybrid hierarchical representations exploit 

frame-to-frame coherence for fast proximity queries. Ehmann and Lin [Ehmann, 2001] 

presented a unified approach to perform a set of proximity queries for general, rigid 

polyhedral objects. Hubbard [Hubbard, 1995] used simple four-dimensional geometry to 

approximate motion, and hierarchies of spheres to approximate three-dimensional 

surfaces at multiple resolutions. For time-critical algorithms, such as interruptible 

collision detection, there are distinct advantages in using hierarchies of spheres, known as 

sphere-trees. Quinlan [Quinlan, 1994] described an efficient algorithm for computing the 

distance between non-convex objects. Objects were modeled as the union of a set of 

convex components. From this model a hierarchical bounding representation based on 

spheres was constructed. Bradshaw and O'Sullian [Bradshaw, 2002] also presented work 

in Sphere-Tree construction and medial axis approximation using the Veronoї diagrams 

[Okabe, 2000]. Hoffmann and Hopcroft [Hoffmann, 1987] approximated the object as the 

union of several cuboids enclosed by a single cuboid. The bounding geometry techniques 

work very well with rigid bodies but when applied to deformable bodies, the cost of 

updating these geometries, as the object deforms, slows down the collision detection 

response. If these bounding geometries are not updated in each frame to reduce the 

computational cost, the overlapping of bounding volumes make the rejection test 

inefficient. 

2.6.2 Collision detection of deformable bodies 

In general, rigid body collision detection methods pre-compute some geometric 

information of each object, such as bounding boxes, to be used for run-time collision 

detection. However, if the object deforms, the pre-computed information may not be 

valid anymore and hence needs to be recomputed in every frame while the object is 

deforming. Instead of rebuilding, most often, the bounding boxes are refitted as the object 

deforms. While this simplifies the bounding box updating, it often increases the 

overlapping areas of the bounding boxes. 



23 

 

Larsson and Möller [Larsson, 2001] proposed and evaluated suitable bounding 

volume trees for deforming bodies that can be pre-built and then updated during 

simulation. The technique was used to address the collision detection problem in 

applications where deformable bodies are used, which change their overall shape at every 

time step of the simulation. Several heuristics for updating the trees due to deformations 

were compared to each other. Deformable objects are very challenging for BVH 

(Bounding Volume Hierarchies) because hierarchy structures (trees) have to be updated 

when an object deforms itself. Teschner et al. [Teschner, 2005] presented various 

approaches based on bounding volume hierarchies, distance fields, and spatial 

partitioning for deformable bodies and used the techniques for surgical and cloth 

simulations. Various bounding volumes were considered, in particular, OBBs and k-

DOP's, and investigated for their efficiencies. 

For parametric surfaces, Herzen et al. [Herzen, 1990] developed an algorithm to 

detect geometric collisions between pairs of time-dependent parametric surfaces. It used 

the Lipschitz condition on a surface to create sets of bounding volumes that are 

guaranteed to bound the parametric surface. A surface-surface intersection test for a 

Bezier and B-spline surface by subdividing the surface patch till the sub-patches are 

sufficiently plane has also been proposed [Hughes, 1996]. The method constructed an 

AABB tree for each surface and used the pseudo-normal patch and Gauss map to detect 

self-collisions and the sweep-and-prune method to detect other collisions. However, the 

method needed to update the Axis Aligned Bounding Box (AABB) tree for each sub-

patch and to find the solution of many algebraic equations for testing self collision. This 

made the algorithm computationally expensive. For complex surfaces, the number of 

levels needs to be high, further escalating the cost. As the model is deformable, the sub-

patches that were plane initially may deform into curved surfaces and may no longer 

remain plane.  

Thompson et al. [Thompson, 1997] used a tracing algorithm, supporting the 

rendering of NURBS surface, which traced the closest point on a NURBS patch to the 

tool point. The system linked an advanced CAD modeling system with a Sarcos force-

reflecting exo-skeleton arm. Initially a rough check for surface proximity was done using 

bounding boxes around each surface. Later on nodal mapping was used to find a first 
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order approximation to the closest point on the surface. Dachille et al. [Dachille, 2001] 

used a polyhedral representation which makes it easier to search for the nearest point on 

the surface, unlike the complicated NURBS surface intersection task proposed by 

Thompson [Thompson, 1997]. In this case the nearest point on the surface did not need to 

be updated too frequently, so the system could compute the distance from the cursor to all 

the vertices of the polyhedral representation. In both of the techniques, the interaction 

with the virtual model was only at a point through a point based tool. This limits the 

utility of the approaches, particularly in the area of 3D free form shape design where the 

sculpting activity is required to be done by hands or other surface based tools. Another 

shortcoming of point-surface interaction is the difficulty in anticipating results in 

advance. The user often does not know exactly if the deformation is going to be highly 

curved or flatter. Gao and Gibson [Gao, 2005; 2006] used a B-spline patch to represent 

the surface of a virtual model and an implicit surface to represent the virtual tool. Nodes 

were generated on the B-spline surface by discretization. These were used to incorporate 

a mass spring system and to detect collision by inputting these nodes in the equation of 

the implicit surface of the tool. This technique cannot be used when two or more B-spline 

surfaces are present in the virtual environment and are interacting with each other. Only 

rigid and lower degree (up to 2) implicit surface tools had been used and the collision 

detection technique did not allow a point based tool which further limited the scope of 

sculpting. 

Galoppo et al. [Galoppo, 2007] used a two-level layered model representation. Low 

resolution layer was used for the collision detection and the force response while the high 

resolution tetrahedral mesh was used to show deformation.  

Recently specialized graphics processing units (GPUs) have been used for 

processing bounding volume generation. Lauterbach et al. [Lauterbach, 2009] presented 

two parallel algorithms for rapidly constructing bounding volume hierarchies on multi-

core GPUs. This Linear Bounding Volume Hierarchy (LBVH) algorithm is focused on 

minimizing the cost of construction, while still producing BVHs of good quality. The 

algorithm was implemented in CUDA on an NVIDIA GeForce 280 GTX GPU to 

compute axis-aligned bounding boxes (AABBs). The algorithm was used for ray tracing 

and can be implemented for collision detection. Avril et al. [Avril, 2010] has discussed 
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various approaches which use General-Purpose Processing on Graphics Processing Unit 

(GPGPU) and more recently using multi-core computers. 

In general if the model is represented as a tessellated surface, the cost of updating the 

bounding box during deformation is very high. In case of a parametric representation of a 

deformable model, the collision detection techniques for B-spline intersection require to 

calculate computationally intensive blending functions. Hence the intersection test of two 

parametric surfaces is complex as compared to the simplicity and efficiency of triangle-

triangle intersection test. The method proposed in this thesis uses the best of parametric 

representation of surface and efficiency of triangle-triangle intersection test. 

2.7 Force and Deformation Modeling Techniques 

Various techniques have been developed to generate fairly smooth surfaces and volumes 

that satisfy multiple constraints in deformable modeling. Shape modification of a virtual 

object can be simulated using either geometric- or physics-based algorithms. Sederberg 

and Parry [Sederberg, 1986] introduced free-form deformation by allowing object to 

change shape independent of its structure by embedding it in easily-parameterized 

domains. The scheme was based on trivariate Bernstein polynomials, and provided the 

designer with an intuitive appreciation for its effects. Terzopoulos et al. [Terzopoulos, 

1987] pioneered the work on physically-based deformable models in computer graphics. 

It applied the Lagrangian equations of motion using finite difference scheme to simulate 

elastic objects with regular parameterizations. This framework was further extended to 

include inelastic behaviours [Terzopoulos, 1988a] and to handle stiff rotating bodies 

using linearized equations [Terzopoulos, 1988b]. Physics-based deformation models give 

the designer, more opportunities to try different types of materials during the interactive 

design phase and validate product models in real-time. Major techniques and relevant 

research is presented in the following sub-sections.  

2.7.1 Geometric deformation techniques 

Geometric techniques are computationally efficient. These techniques only simulate the 

deformation and do not use the physical principles to calculate the deformation. In 
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Computer Aided Geometric Design (CAGD), mostly parametric curves and surface 

patches such as Bezier, B-spline, Rational B-spline, and non-uniform rational B-spline 

(NURBS) are used to represent a model. The model can be deformed by moving the 

control points, adding or deleting the control points or changing weights of the control 

points. The model can also be deformed by changing the knot vector. However, this is a 

cumbersome process and a perceptually simple change may require significant and 

simultaneous adjustments of several control points. 

Free-from deformation is a general geometric-based deformation method to deform 

objects. This method deforms the space in which the virtual model lies, thereby, 

deforming the model. Barr [Barr, 1984] presented this hierarchical solid modeling 

operations, which could simulate twisting, bending, tapering, or similar transformations 

of geometric objects. He used geometric mappings of three-dimensional space to examine 

model deformation. This mapping causes the objects to twist about z-axis. More complex 

deformations can be constructed by composing mappings. These operations extend the 

conventional operations of rotation, translation, Boolean union, intersection and 

difference. This technique can be applied to different graphical representations such as, 

points, polygons, splines, parametric patches, and implicit surface. Barr's method 

provides a powerful design tool, but the possible regions and types of deformation are 

limited. The user cannot control the deformations intuitively. Sederberg and Parry 

[Sederberg, 1986] introduced the term Free-Form Deformation (FFD). They generalized 

Barr's approach by embedding an object in a lattice of grid points of some standard 

geometry, such as a cube or cylinder. Manipulating nodes of the grid induces deformation 

on the space inside the grid, and these deformations transform the underlying primitives 

that for the object. FFD involves a mapping from R3 to R3 through a trivariate tensor 

product Bernstein polynomial. It can be applied to CSG based solid models as well as 

those using Euler operators. It can sculpt solids bounded by any analytic surface: planes, 

quadrics, parametric surfaces patches, or implicit surfaces. However, this technique 

restricted the parametric solid to a regular parallelepiped with uniform divisions and a 

Bernstein polynomial basis. The degree of parameterization of the solid in each 

parametric coordinate was set directly by the number of uniform divisions within the 

control lattice-two for a quadratic parameterization, three for a cubic, and so on. 
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 Griessmair and Purgathofer [Griessmair, 1989] presented an FFD based on a 

trivariate B-spline. Their technique, however, focused on an adaptive triangulation 

technique for tessellating the deformed surfaces. Coquillart [Coquillart, 1990] further 

extended this method by providing a toolkit of lattices with different sizes, resolutions 

and geometries. These geometries can be positioned over the object for selective control 

of sub-regions of the surface. Free-form deformation (FFD) is a powerful modeling tool, 

but controlling the shape of an object under complex deformations is often difficult. The 

difficulty in controlling the shape arises because the deformed object does not follow the 

control points exactly. Davis and Burton [Davis, 1991] subsequently demonstrated 

techniques for deforming the lattice in an interactive system that incorporated rational 

Bernstein bases. Bernstein-based formulations, however, yield an unfortunate relation 

between lattice divisions and the degree of the enclosing parametric solid. Lattices 

requiring more than two or three divisions for flexibility are undesirable, since evaluating 

the basis becomes computationally more expensive as the degrees of the polynomials 

increase. Hsu et al. [Hsu, 1992] allowed direct manipulation of surface or curve points by 

converting the desired movement of the point to an equivalent grid point movement. The 

under-constrained problem is solved by choosing the grid point movement with minimum 

least-squares energy that produces the desired object manipulation. Lamousin and 

Waggenspack Jr. [Lamousin, 1994] further extended current FFD techniques by basing 

them on non-uniform rational B-splines (NURBS). The resulting NURBS-based FFDs 

(NFFDs) offer more flexibility and control. McDonnel and Qin [McDonnell, 2007] 

presented an interactive, point-based technique for performing free-form deformation of 

polygonal meshes. In this technique, a volumetric deformation space is defined as the 

linear combination of overlapping, ellipsoidal radial basis functions (EBFs) of compact 

support. Mesh vertices are then parameterized with respect to local coordinate frames 

centered over the origins of the EBFs. Other important developments in FFD techniques 

include dynamic free-form deformations [Faloutsos, 1997], volume-preserving FFD 

[Hirota, 1999], sketch-driven FFD [Hua, 2003], and discontinuity-introducing 

deformations [Schein, 2004]. 
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2.7.2 Physics-based deformation techniques 

Unlike geometric techniques, computationally intensive physics-based techniques can 

yield real material behavior of a multiple-material/non-homogeneous virtual model 

[Knopf, 2005]. Physics-based deformation models give the designer, more opportunities 

to try different types of materials during the interactive design phase and validate product 

models in real-time. Important physics-based techniques are discussed in the following 

sub-sections. 

2.7.2.1 Mass spring method 

Mass spring systems are simple physical model with well understood dynamics. In 

physically-based techniques on mass-spring-damper models, an elastic object is 

constructed by applying a mass at each point of a mesh and using springs to link the 

points as edges and diagonals [Cotin, 2000; Lin, 2002; Nedel, 1998]. Elastic forces and 

damping forces act on mass points as internal forces, and gravity and the user induced 

forces act on them as external forces. These are easy to construct and computational cost 

is moderate. It is possible to achieve interactive real-time interaction with the virtual 

model using mass spring system, on the ubiquitous desktop computers. Mass spring 

systems are also suitable for parallel processing and hence can benefit from multi-core 

processors being used in desktop computers. The pioneering work of Terzopoulos et al. 

[Terzopoulos, 1987], Waters [Waters, 1992], and Platt and Barr [Platt, 1988] has shown 

the advantages of physically based models over geometric-based computer animation 

techniques. 

However, mass-spring-damper models have drawbacks. The model is a significant 

approximation of the true physics that occurs in a continuous body. The lattice is tuned 

through its spring constant, and proper values for these constants are not always easy to 

derive from measured material properties. The physical accuracy of modeling is often not 

sufficient and cannot realize the global deformation. The above models are linear, and to 

simulate nonlinear force responses, it is necessary to use a precise integration mechanism 

such as the finite element method (FEM). However, such a method generally cannot 

provide update rates that are sufficient for haptic interactions [Luo, 2007]. In addition, 

certain constraints are not naturally expressed in model such as incompressible 
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volumetric objects, or thin surfaces resistant to bending. Mass spring systems also 

sometimes exhibit stiffness problem which can occur when very large spring constants 

are used. Stiff systems are very problematic because they have poor stability even with 

longer time steps. 

Terzopoulos et al. [Terzopoulos, 1991] described a mass spring model for 

deformable bodies that experience state transition from solid to liquid. The deformable 

model features non-rigid dynamics governed by Lagrangian equations of motion and 

conductive heat transfer governed by the heat equation for non-homogeneous, non-

isotropic media. In its solid state, the discretized model is an assembly of hexahedral 

finite elements in which thermo-elastic units interconnect particles situated in a lattice. A 

discretized form of the heat equation is used to compute the diffusion of heat through the 

material. At melting point the stiffness reaches zero thereby severing the bond. The 

molten state of the model involves a molecular dynamics simulation in which fluid 

particles that have broken free from the lattice interact through long-range attraction 

forces and short-range repulsion forces. Tu and Terzopoulos [Tu, 1994] used mass spring 

system to generate artificial fish with internal contractile muscles that are activated to 

produce the desired motions. The fish model comprised of 23 mass points and 91 springs. 

The spring-mass system is simulated using implicit Euler method which maintains the 

stability of the simulation over the large dynamic range of forces. Christensen et al. 

[Christensen, 1997] embedded objects in a cubic eight nodes lattice connected by 28 

damped linear springs and used dynamic simulation and FFD's to animate the embedded 

objects. The simple Coulomb friction model is used, though friction is permitted to be 

stronger in one preferred direction if the animator so specifies. The resulting equations of 

motion are solved numerically by a variable time-step, fifth-order Runge-Kutta 

integration procedure. Actuation of the mass-spring lattices is achieved by varying the 

rest lengths of the springs. 

Mass-spring system has been extensively used for facial and modeling and 

animation. Terzopoulos and Waters [Terzopoulos, 1990] incorporated physically based 

approximation to facial tissue and muscle actuators. Different spring constants were used 

to model different layers based on tissue properties. Lee et al. [Lee, 1995] presented a 

physics-based model of the face which consisted of a biological tissue layer with 
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nonlinear deformation properties, a muscle layer knit together under the skin, and an 

impenetrable skull structure beneath the muscle layer. For improved realism, the model 

used a constraint which prevented muscles and facial nodes form penetrating the scull. 

Koch et al. [Koch, 1996] used a mass spring model to predict the postoperative 

appearance of patients whose underlying bone structure for surgical planning and 

prediction of human facial shape after craniofacial and maxillofacial surgery for patients 

with facial deformities. 

Mass-spring models have also been extensively used in surgical simulations due to 

their simplicity of implementation and their relatively low computational complexity 

[Baumann, 1996; Kuehnapfel, 1993]. Kuehnapfel and Neisius [Kuehnapfel, 1993] 

presented a simulation of endoscopic surgery based on a surface spring-mass model. 

Cotin et al. [Cotin, 2000] presented a hybrid model consisting of mass spring system and 

tensor-mass model based on continuum mechanics and linear elasticity theory. The 

tensor-mass model is used for the simulation of tearing and cutting. 

Mass-spring system has also been used for concept design validation. Igwe et al. 

[Igwe, 2008b] proposed to generate hexahedral mesh of mass spring system by using 

volumetric self-organizing feature map (VSOFM). The VSOFM exploits the adaptive and 

self-organizing ability of Kohonen’s original algorithm [Kohonen, 2001] to develop a 3D 

mesh where the position the exterior nodes represent surface points of the underlying 

object. Material removal and tearing are achieved by eliminating selected mass points 

and spring coefficients in the evolving mesh. Pungotra et al. [Pungotra, 2009a] used the 

mass spring system based on VSOFM for validating the concept design. 

The underlying geometry of mass spring models can easily be modified to represent 

topology changes. However, spring-mass models are discrete representations of a 

continuum, and the update of stiffness and mass values is hard to handle. This becomes a 

problem when complex models are to be deformed in real time. To avoid this problem, 

iterative method was used to solve the deformation at any localized region. 

2.7.2.2 Finite element method 

In the finite element method, the model's solution is subject to the constraints at the node 

points and the element boundaries so as to achieve continuity between the elements. 
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Unfortunately, finite element calculations are notoriously slow, making them not very 

appealing for real-time applications. Finite element methods are often considered to be 

less efficient than spring-mass models. In FEM, the applied forces must be converted to 

their equivalent force vectors. This requires numerically integrating distributed forces 

over the volume at each time step. This can lead to a significant pre-processing time for 

finite element methods. If the topology of the object changes during the simulation, mass 

and stiffness matrices must be re-evaluated during the simulation. Traditional FEM is 

more accurate in modeling materials such as metals, where the amount of deformation is 

limited. As the model deforms, the volume over which equivalent force, mass, and 

stiffness matrix integrations are performed will change. Real-time finite element 

modeling requires high computational power to achieve visual realism [Berkley, 2004]. 

FEM has been used for fairly simple physical systems to simulate tissue deformation 

[Cotin, 1996; Sagar, 1994].  

However, the finite element method (FEM) is a very common and accurate way to 

solve continuum-mechanical boundary-value problems [Bathe, 1996; Zienkiewicz, 2005]. 

Finite element methods provide a more physically realistic simulation than mass-spring 

system with fewer nodes. There is a growing trend in using finite element soft tissue 

models for real-time computation, as shown for instance by Székely et al. [Székely, 

2000] who simulated the deformation of a nonlinearly elastic material using a parallel 

processing architecture. 

2.7.2.3 Continuum method 

Instead of considering the model as a discrete object model, it can be considered as a 

continuum that is the solid bodies with mass and energies distributed throughout. Models 

can be discrete or continuous but the method used to solve in computer simulation is 

always discrete. The numerical integration techniques used to solve the model 

approximate the system at discrete time steps. However, unlike the mass-spring model, 

continuum models are derived from equations of continuum mechanics. The continuum 

model of a deformable object considers the equilibrium of a general body acted upon by 

external forces. The object deformation system is a function of these acting forces and 
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object's material properties. The object reaches equilibrium when its potential energy is at 

a minimum.  

Several authors have based their soft tissue models on continuum mechanics theory, 

and the use of elastic solids is widely described in the literature [Bainville, 1995; Speeter, 

1992]. Bayville et al. [Bainville, 1995] define the evolution of a set of rigid and 

deformable solids under the influence of various forces. In this case, the deformation law 

is represented by a hyper-elastic, quasi-static model, associated with a finite element 

method for the numerical resolution. Unfortunately, the computation time makes this 

approach impractical for real-time simulations. 

2.8 Concluding Remarks 

The designers may expect that any interactive design framework must mimic the natural 

way designers interact with the physical world and provide direct sensory feedback 

during the interaction. Current CAD systems do not fulfill these expectations. The 

literature survey on the role that Virtual Reality (VR) can play in the field of interactive 

design shows that VR can play a vital role in fulfilling the expectations of the engineers 

and industrial designers.  

This chapter provided a detailed discussion on the techniques for developing a 

virtual reality based interactive free form modeling framework. Firstly the virtual model 

representation needs to be decided. Some of the surface representation techniques that 

were considered include implicit surfaces, tessellated surfaces, and parametric surfaces. 

Implicit surfaces generated using analytical, variational, and multi-level partition of unity 

(MPU) approach, were considered. Implicit surfaces can represent water tight surfaces 

and solids. These surfaces are very efficient for collision detection for lower order 

surface. However, when the degree of implicit surface is large or when a large number of 

primitives are used to represent an implicit surface, the computational cost of collision 

detection is enormous. Tessellated surfaces are preferred to represent rigid bodies 

because of its compatibility with graphics hardware and efficiency of triangle-triangle 

collision detection. However, this is not efficient for deformable surface. Parametric 

surfaces and particularly B-splines have become the standard for CAD. Thus, it is 
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imperative that any interactive design module should use parametric representation for 

the virtual models so as to have easy exchange between CAD software and haptic model. 

For these reasons, B-spline surfaces were chosen to represent virtual model. 

The collision detection algorithms described in literature are not efficient enough for 

B-spline to B-spline collision detection. Thus, there is a need to have efficient collision 

detection algorithm which can efficiently tackle collision between two or more B-spline 

models and a B-spline and a point based or an implicit surface based tool. The collision 

detection should be compatible with the model deformation technique and should not be 

restricted to the use of a particular model. 

This chapter also provided discussion on various techniques for deformation of 

model. Physically based models can predict the deformation of a model more accurately, 

particularly, when the model consists of multiple or non-homogenous materials. A 

detailed study of the physics-based models provided the insight to choose mass-spring 

system. Although this is not the best model to accurately model the deformation of the 

model, it can provide reasonable accuracy and speed. 

The next chapter introduces an efficient collision detection algorithm for a 

deformable model represented as a B-spline surface. The tool can be represented as a B-

spline, a point, or an implicit surface. 
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CHAPTER 3 COLLISION DETECTION ALGORITHM 

3.1 Introduction 

Collision detection is an active research topic in engineering, computer graphics and 

virtual reality (VR) [Jimenez, 2001]. Collision detection is the necessary step before 

haptic interaction can be achieved. An efficient collision detection algorithm plays a very 

significant role towards achieving real-time haptic interaction. A general collision 

detection algorithm would be highly complex with high computational cost. Due to this 

reason, most of the collision detection algorithms are efficient only in a given domain. 

Most of the research has been carried out for applications in the video game industry and 

simulations for medical applications. The algorithms developed are mostly for the rigid 

bodies which can be represented as lower order implicit surfaces (spheres, cylinders, 

cones etc.) or tessellated surfaces. For applications in haptic-based interaction with 

virtual objects, mostly tessellated bodies are used, and many constraints imposed on 

model deformation under the influence of external force. 

In this thesis both the model and tool are represented as B-spline surfaces. A rigid 

tool can also be represented as a point, an implicit surface, or a tessellated surface. No 

constraint with regard to the shape and rigidity of the tool and model has been 

considered. Both the model as well as the tool can have complex shape, elastic or plastic 

properties, and multiple contacts. This chapter discusses the step by step implementation 

of the collision detection algorithm for deformable models. The comparison of the 

computations required for a tessellated surface with that for the B-Spline surface using 

the worst case scenario (Big O notation) is also presented. 

3.2 Background  

3.2.1 B-spline surface  

A B-spline surface with r and s number of control points in u and v directions is 

mathematically represented by the equation, 
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where Pij is the control points vector, Bik (u) and Bjl (v) are the B-spline basis functions of 

the surface with degrees k and l in u and v directions, respectively; defined over non-

periodic knot vectors,  
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The blending functions depend upon periodicity of the surface (in u or v or both 

directions), the knot vector, the degrees of the surface in u and v directions and the 

number of control points in u and v direction. However, the blending functions are 

independent of the position of the control points. A B-spline blending function has the 

property of recursion which is defined as: 
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If the B-spline surface is periodic in u direction, the blending function and the knot 

vector (U) are modified as: 
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The function, mod (r) in Eqn. (3.3), is the modulo function and is defined as: 
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A B-spline and NURBS based surface can be expressed as a tensor product. A point 

on the B-spline surface, within the knot span ui, ui+1; vj, vj+1, can be determined by using 

the tensor product as: 

T
lbbaka vBuBvuS )](][)][([),( ,,, P ; iaki  , jblj                          (3.4) 
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In Eqn. (3.4), ,[ ( )]a kB u  is a 1 × (k+1) row vector of scalars, ,[ ]a bP  is a (k+1) × (l+1) 

matrix of control points, and ,[ ( )]T
b lB v is a (l+1) x 1 column vector of scalars. This 

equation can also be written as: 

T
viju vBBuvuS ]][][][][[),( P

                      (3.5) 

where ]........1[][ 2 kuuuu   and ]........1[][ 2 lvvvv   

To generate a large number of points on the whole B-spline surface, Eqns. (3.4 -3.5) 

need to be computed many times. Instead of using a discrete value for u and v, a set of u 

and v parametric values can be used simultaneously. Equations (3.4-3.5) are modified to 

generate the matrix of a large number of points to discretize the B-spline surface patch 

into a set of a parametrically uniform grid of discrete points in u and v directions. The 

matrix of these discrete points M, is then given as: 

M = Au Pij Av; 10  ri , 10  sj                                                                (3.6) 

where Au and Av are blending matrices (also known as B-spline Blending Transformation 

Matrices or simply Transformation Matrices).  

The magnitudes of the entries of the blending matrices depend upon the blending 

functions and u and v parametric values. In Eqn. (3.6); M is an m×n vector of scalars, Au 

is an m×(r+1) vector of scalars, Pij is an r×s matrix of control points, and Av is an s×n 

vector of scalars.  

Equation (3.6) can be re-written as:  

 Pij = [Au
T Au]

-1 Au
T M Av

T [Av Av
T]-1,                                                                (3.7) 

to determine the position of the control points that can represent a B-spline surface 

approximating the parametrically uniform discrete points of matrix M. As the blending 

matrices are independent of the position of the control points, these matrices (Au, Av) and 

their inverses ([Au
T Au]

-1, [Av Av
T]-1) can be pre-calculated. 

Figure 3.1 shows a typical blending matrix, Au. It is a band matrix and any row of 

this matrix can have a maximum of k+1 number of non-zero terms.  



37 

 

 

      u = 1 

u = 0 

umin 

umax 

 1 .0 0 0   0 .0 0 0   0 .0 0 0   0 .0 0 0   0 .0 0 0   0 .0 0 0   0 .0 0 0  

 0 .5 1 2   0 .4 3 4   0 .0 5 3   0 .0 0 1   0 .0 0 0   0 .0 0 0   0 .0 0 0  

 0 .2 1 6   0 .5 9 2   0 .1 8 1   0 .0 1 1   0 .0 0 0   0 .0 0 0   0 .0 0 0  

 0 .0 6 4   0 .5 5 8   0 .3 4 2   0 .0 3 6   0 .0 0 0   0 .0 0 0   0 .0 0 0  

 

u A

0 .0 0 8  0 .4 1 6  0 .4 9 1   0 .0 8 5  0 .0 0 0   0 .0 0 0  0 .0 0 0 
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 0 .0 0 0   0 .1 2 8   0 .5 8 8   0 .2 8 3   0 .0 0 1   0 .0 0 0   0 .0 0 0  

0 .0 0 0  0 .0 5 4   0 .5 2 1   0 .4 1 5  0 .0 1 1  0 .0 0 0   0 .0 0 0  

 0 .0 0 0   0 .0 1 6   0 .4 0 9   0 .5 3 9   0 .0 3 6   0 .0 0 0   0 .0 0 0  

 0 .0 0 0   0 .0 0 2   0 .2 8 2   0 .6 3 1   0 .0 8 5   0 .0 0 0   0 .0 0 0  

 0 .0 0 0  0 .0 0 0  0 .1 6 7  0 .6 6 7  0 .1 6 7   0 .0 0 0  0 .0 0 0
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 0 .0 0 0   0 .0 0 0   0 .0 3 6   0 .5 3 9   0 .4 0 9   0 .0 1 6   0 .0 0 0  
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 0 .0 0 0   0 .0 0 0   0 .0 0 0   0 .1 6 7   0 .5 8 3   0 .2 5 0   0 .0 0 0  
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 0 .0 0 0   0 .0 0 0   0 .0 0 0   0 .0 3 6   0 .3 4 2   0 .5 5 8   0 .0 6 4  

 0 .0 0 0   0 .0 0 0   0 .0 0 0   0 .0 1 1   0 .1 8 1   0 .5 9 2   0 .2 1 6  

 0 .0 0 0   0 .0 0 0   0 .0 0 0   0 .0 0 1   0 .0 5 3   0 .4 3 4   0 .5 1 2  

 0 .0 0 0   0 .0 0 0   0 .0 0 0   0 .0 0 0   0 .0 0 0   0 .0 0 0   1 .0 0 0  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Figure 3.1 A typical blending matrix, Au. 

As shown in Figure 3.1, a part of the blending matrix can be used to discretize a part 

of the B-spline patch bounded by the minimum and maximum values of the parameters u 

and v (umin, vmin; umax, vmax). Thus, if a part of the B-spline model is colliding with the 

tool, only that part is discretized to detect collision.  

Equations (3.1), (3.6), and (3.7) will determine the correlation between control points 

and the discrete points generated on the B-spline surface. These equations can be used to 

discretize a B-spline surface and to calculate the control points which can represent a 

deformed B-spline surface.  

Figure 3.2 shows a discretized B-spline surface along with the set of control points 

Pij. 
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Figure 3.2 Discretized B-spline surface. 

3.2.2 Generation of blending matrices 

Once various parameters of a B-spline surface are known, a blending matrix can be 

generated. The size of this matrix will depend upon the number of control points and the 

maximum number of points to be generated in u and v direction. The maximum number 

of points to be generated depends upon the accuracy required for collision detection. The 

size of a blending matrix for generating m points in u direction with n control points will 

be m×n. For the same number of control points in the v direction, the matrix is transpose 

of the matrix in the u direction and its size will be n×m. This will generate a total of m2 

points on the B-spline surface. Similarly the blending matrices for finding tangents at 

each point in the u and v directions can be pre-computed. The cross multiplication of the 

tangents in the u and v directions yields the resultant surface normal at the point. 

As per Eqn. (3.7), the inverse of the blending matrix, to find new positions of control 

points, needs to be computed so that the deformed surface can be represented as a B-

spline surface. Finding the inverse of the matrix during real time haptic interaction will 

increase the computational cost and sometimes may be problematic or even impossible. 

Since the blending matrices are pre-computed and are independent of the position of the 

control points, their inverse can also be pre-computed. This reduces the computational 

cost of rendering the deformation of the B-spline surface. The algorithm can also use a 
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property of B-spline surfaces called local support, which indicates that each segment of 

the B-spline surface is influenced by only 'k+1' control points where 'k' is the degree of 

the surface. If only a small segment of the B-spline surface undergoes deformation due to 

interaction with another surface, only some of the control points need to be updated. This 

reduces the cost of updating convex hull and the nodes on the B-spline surface. However 

if the deformation of the model, based on real material properties is to be calculated, all 

control points need to be updated. 

3.2.3 Bounding volume for B-spline surfaces 

The entire B-spline surface lies in the convex hull of the control points Pij [Bloomenthal, 

1997b]. This is due to the property of positivity which ensures that a B-spline curve or 

surface always remains within its convex hull. This makes the convex hull, a good choice 

as a bounding volume. As the position of the control points is always known and their 

numbers limited, the cost of updating the bounding volume (convex hull) is minimal. 

Thus, the intersection test algorithm between two B-spline surfaces checks whether two 

convex hulls are overlapping. If convex hulls are not intersecting each other, the B-spline 

surfaces are not colliding. 

3.3 Collision Detection Algorithm 

The collision detection algorithm for deformable bodies assumes that all the deformable 

models and tools are represented as a single B-spline patch. The algorithm also allows the 

rigid tools to have point-, implicit surface-, or tessellated surface-based representation. 

3.3.1 Overview 

Figure 3.3 shows the flow chart of the proposed collision detection algorithm. The 

interaction of collision detection with the force response model is also shown in the flow 

chart. The algorithm has two phases: the pre-processing phase and the run-time phase. 
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Figure 3.3 Flowchart of the proposed algorithm. 

During the pre-processing phase the blending matrices (Au and Av) of the given B-

spline surfaces, along with their inverses ([Au
 T Au]

-1 and [Av Av
 T]-1), are calculated and 

stored. A convex hull is generated from the control point set.  

The run-time phase starts by checking for the intersection of convex hulls (bounding 

volume) of B-spline surfaces. If the convex hulls are intersecting, the corresponding 

minimum and maximum values of u and v parameters associated with the control points 

of these surfaces are determined. Within this range of u and v, sparse points are generated 
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on surfaces of the model and the tool, by using intermittent rows and columns of blending 

matrices. The points are used to generate spheres on both the model and the tool and 

these spheres are then checked for intersection. More points are generated within these 

intersecting spheres. This process of generating spheres at the lower levels of detail 

continues until all the rows and columns for the blending matrices have been used. The 

process of generating lower levels of detail is terminated if, at a particular level of detail, 

all the spheres on the model and the tool are intersecting. This is possible if the curvature 

of model and tool is similar in the region of probable collision.  

The points within the intersecting spheres at the lowest level of detail are 

subsequently used to generate a triangulated mesh. The triangle-triangle intersection test 

is then carried out to find out the parts of the surfaces which are intersecting. This 

information is used to map the forces, applied by the user, to the nodes of the mass spring 

system. The physics-based model then determines the resultant deformation and the 

reactive forces to be sent back to the user. Using the inverse blending matrices, new 

position of control points is determined and the convex hull for the B-spline surface is 

updated. Following sub-sections describe the algorithm in detail. 

3.3.2 Pre-processing phase 

3.3.2.1 Generation of blending matrices 

During the pre-processing stage, depending upon the parameters of the B-spline surface 

(periodic/non-periodic, number of control points in the u and v directions, the maximum 

number of points to be generated) blending matrices are generated and stored along with 

their inverse. 

A maximum of two blending matrices for generating points are needed per B-spline 

surface. Similarly their inverse is also calculated and stored. This inverse is calculated by 

the Gaussian Elimination Method using ‘complete pivoting’. The complete pivot method 

enhances the robustness of the algorithm and, as this is done during the preprocessing 

phase, the time required to calculate inverse of the matrix does not increase the 

computational cost during the run-time phase. The algorithm not only calculates surface 

normal at the points generated but also calculates tangents in the u and v direction. This is 
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useful if tangential properties, such as friction, are also to be considered to realistically 

model material properties. The surface normals also help in correctly mapping the forces 

to the surface by calculating the forces normal to the surface. The blending matrices for 

finding tangents are also generated and stored during the preprocessing phase. 

3.3.2.2 Generation of convex hull 

Many convex hull algorithms are available in literature. Avis [Avis, 1995] has considered 

most of the known classes of algorithms for generating convex hulls. Most of the 

algorithms deal with the general case of ‘d’ dimensions. In the present application, the 

control points will always be in three dimensional space, which simplifies the algorithm. 

The algorithm used for the generation of a convex hull is similar to the Quickhull 

Algorithm [Barber, 1996], which is a variation of the randomized incremental algorithm. 

It is a recursive algorithm and partitions the control points data into several sets. Instead 

of selecting a random point, it selects the point which is farthest from the existing plane 

of the partial convex hull. In the worst case scenario the computational cost of this 

algorithm is O (n log n), where n is the number of control points. As control points used 

for B-spline surfaces are usually small in number, the computational cost is quite small. 

3.3.3 Run-time phase 

During the pre-processing phase the control point matrices and blending matrices of the 

given B-spline surfaces and the inverse of these blending matrices are calculated and 

stored.  

The run-time phase starts by checking for the intersection of convex hulls of B-spline 

surfaces initially calculated during pre-processing phase. This is done to determine if 

there is a need to carry out complex intersection test between B-spline surfaces. If the 

convex hulls are not intersecting, the collision detection process exits. However, if the 

convex hulls are intersecting, the algorithm goes to lower levels of detail to determine 

exact regions of intersection. 

Figure 3.4 illustrates major steps during the run-time phase of the proposed 

algorithm. 
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(a) Tool intersecting the plane (triangle) on model (b) Points generated within maximum and 
minimum u and v values of intersecting triangle 

(c) Spheres generated from the points (d) Points generated within intersecting sphere 

(e) Expanded view of points generated within 
intersecting sphere 

(f) Spheres generated from the points 

(g) Intersecting spheres (h) Triangulation using the points of intersecting 
spheres 

Figure 3.4 Illustrations showing the major steps in the proposed algorithm. 
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Once the surfaces of the convex hulls intersect, the algorithm determines the 

corresponding minimum and maximum values of u and v parameters associated with the 

control points of these surfaces. It then generates sparse points within these limits on the 

surfaces of the model and tool. Spheres are generated using these sparse points in such a 

way that they cover the whole surface area. Spheres generated on the model surface are 

then checked for intersection with those on the tool or another surface model. If some of 

the spheres are intersecting, the algorithm generates more points (by using more values of 

u and v from the blending matrix) within the u and v parameter limits of the intersecting 

spheres and discards the points generated in non-intersecting spheres. This process of 

generating lower levels of details continues until all the rows of the blending matrix are 

used. The points generated at the end of this loop are then used for triangulation of the 

surface. 

If all the spheres generated on the model and the tool are intersecting, then the 

algorithm does not proceed to lower levels of details and rather stops at the last level of 

detail. It then compares the normals of new points being generated within the u and v 

parameters. If the difference between unit normal of the point generated and that of the 

previous point is less that a small number δ, the new point is discarded. The rest of the 

points are then used for tessellation of the surface. The triangle-triangle intersection test 

is then carried out to find out the parts of the surfaces which are intersecting. Once the 

region(s) undergoing collision are known, the forces on these regions can be used by a 

physics-based model to determine the deformation of the model and the tool and the force 

to be fed back to the user through a haptic device. Using the inverse blending matrices, 

new position of control points is determined and the convex hull for the B-spline surface 

is updated. Each step of the algorithm is elaborated in the following subsections. 

3.3.3.1 Intersection test of convex hulls 

Collision detection between convex polytopes has been extensively researched in 

computational geometry and robotics [Baraff, 1990; Gilbert, 1988]. These algorithms can 

be easily applied to a convex hull generated from the control points set. The algorithm 

presented by Gilbert uses information from previous time steps for fast initialization and 

can also be used successfully in this case. The algorithm presented by Baraff for the 
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intersection test of convex hulls, using linear programming and coherence, is more 

suitable. This algorithm uses the argument that if two convex polytopes are not 

intersecting, there exists a separating plane with the face or edge of one of the polytopes. 

This face is called the ‘witness’ and is used in computing the separating plane. A given 

plane can be verified as the separating plane between two convex polyhedra in O (n) time 

where n is the number of vertices of two convex hulls. The surfaces will not be 

intersecting with each other until a separating plane exists. 

3.3.3.2 Calculating minimum and maximum values of u and v 

Each control point of a B-spline surface has an influence within a particular range of knot 

vectors in u and v directions. Depending upon the degree of the surface in u and v 

direction and the knot vector in u and v direction, the minimum and maximum value of u 

and v associated with a control point can be calculated [Piegl, 1997; Zeid, 1991]. When 

two convex hull surfaces (or edges or an edge and a surface) intersect with each other 

such that there does not exist any separate plane, the vertices of the surface (edge) are 

noted. These vertices are the subset of the control points set of the B-spline surface. The 

corresponding u and v parametric values associated with these vertices (control points) of 

the intersecting surfaces are calculated. These values are then used for generating 

minimum and maximum values of u and v (umin, vmin; umax, vmax).  

3.3.3.3 Surface discretization 

When the convex hulls intersect, there is a strong possibility that the surface close to the 

intersecting surface will experience collision. The limits for discretization of the surface 

are set by minimum and maximum values of parameters u and v (umin, vmin; umax,vmax), as 

calculated in Section 3.3.3.2. The setting of limits on the surface for point generation and 

subsequent tessellation reduces the computational cost of point generation as compared to 

the algorithm proposed by Gao and Gibson [Gao, 2005; 2006]. 

Figure 3.5 shows a typical blending matrix for generation of points in the u direction 

and the selection of intermittent blending matrix for generating points on the surface 

within the selected maximum and minimum range of parameter u.  
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0.167  0.667  0.167  0.000  0.000  0.000  0.000  0.000 

0.032  0.527  0.429  0.012  0.000  0.000  0.000  0.000 

0.001  0.256  0.644  0.100  0.000  0.000  0.000  0.000 

0.000  0.067  0.607  0.324  0.003  0.000  0.000  0.000 

0.000  0.005  0.359  0.583  0.053  0.000  0.000  0.000 

0.000  0.000  0.119  0.656  0.224  0.000  0.000  0.000 

0.000  0.000  0.000  0.194  0.664  0.142  0.000  0.000 

0.000  0.000  0.000  0.042  0.556  0.394  0.008  0.000 

0.000  0.000  0.000  0.000  0.082  0.627  0.289  0.002 

0.000  0.000  0.000  0.000  0.008  0.394  0.556  0.042 

0.018  0.000  0.000  0.000  0.000  0.024  0.495  0.463 

0.119  0.000  0.000  0.000  0.000  0.000  0.224  0.656 

 

0.607  0.067  0.000  0.000  0.000  0.000  0.003  0.324 

0.644  0.256  0.001  0.000  0.000  0.000  0.000  0.100 

0.429  0.527  0.032  0.000  0.000  0.000  0.000  0.012 

0.167  0.667  0.167  0.000  0.000  0.000  0.000  0.000 

0.0000.000    0.018  0.4630.495  0.024  0.000  0.000   

0.0000.000  0.000    0.002  0.289  0.627  0.0820.000   

0.0000.000  0.000  0.000  0.000    0.1420.664  0.194   

0.3590.005  0.000  0.000  0.000  0.000    0.053  0.583
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Figure 3.5 Selecting intermittent blending matrix for generation of points within the selected range 
of parameter u. 

For generating points in the selected portion of the B-spline surface, a portion of the 

blending matrix is selected within minimum and maximum values of parameters u and v. 

Initially the B-spline surface is coarsely discretized. This is done by using intermittent 

rows and columns of the blending matrix for u and v directions, respectively. The matrix 

of the points generated is given by Eqn. (3.6), M = Aiu Pij Aiv, where subscript ‘i’ stands 

for intermittent while u and v stand for blending matrix in u and v directions respectively. 

Using these blending matrices points will be generated on the B-spline surface. Similarly 

tangents for all these points in u (Tiu ) and v direction (Tiv) can be calculated by using the 

equations: Tiu = ATiu Pij Aiv and Tiv = Aiu Pij ATiv 

These tangents can then be used to impart tangential properties such as friction on 

the surface and for accurate calculation of the net force acting on the surface when the 

applied force is not normal to the surface. The surface normal at any point (iu, iv) is 

calculated by cross multiplying Tiu and Tiv : N = Tiu x Tiv 
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3.3.3.4 Generation of spheres 

The sparse points generated on the surface are then used to generate spheres. As 

discussed in Section 3.3.3.3, the points are generated within minimum and maximum 

limits for parameter u and v. The algorithm to generate spheres starts from point at 

umin,vmin. It compares the diagonal distance between points at u1,v1; u2,v2; and u2,v1 ; u1,v2 

and selects two points of longer diagonal and one of the two remaining points. These 

three points in space can generate a unique circle of definite radius and center points. If a 

sphere is generated with the same center point and radius as of the circle, the fourth point 

will lie on or within the boundary of this sphere. This way of creating sphere ensures that 

there is no degenerative case, the computational cost is less and size of the sphere is 

optimal. This is better than creating a unique sphere from all the four points. This process 

continues with the next values of u and v until all points has been used.  

Figure 3.6(a) shows the selection of points to generate a sphere and Figure 3.6(b) 

shows the progress of the generation of spheres.  

 

 

u1          u2        u3            u4 

v4   

        

v3 

       
v2 

          

v1 

(a) Selection of points to generate the sphere (b) Progress of generation of spheres
 

Figure 3.6 Generation of spheres using the points generated on the B-spline surface. 

Spheres are generated on both the intersecting B-spline surfaces, and an intersection 

test is carried out between these spheres. The minimum and maximum u and v values for 

the intersecting spheres are noted. More points are generated within these intersecting 
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spheres by selecting more lines and columns of the blending matrices in both u and v 

directions. Again spheres are generated and intersection tests are carried out to generate 

lower levels of detail. 

The process is carried out alternatively for the model and the tool. This reduces the 

computational cost as compared to the case when the lower levels of details are generated 

simultaneously for the model and the tool. Initially more points are generated within the 

intersecting sphere(s) on the model, and the intersection test is carried out between these 

spheres and the intersecting sphere of the tool. At the next stage, more points and 

consequently spheres are generated within the intersecting sphere on the tool surface 

prior to the intersection test being performed. This loop, for generating lower levels of 

detail, works until all the values of u and v parameters have been used from the blending 

matrices. An exception occurs when the number of spheres generated at a particular level 

is equal to the number of intersecting spheres on both the tool and the model, in which 

case the loop is terminated. This is possible when two surfaces have a similar curvature in 

the region of collision. An interesting and computationally expensive situation will 

emerge when two flat surfaces come in contact. When both the model and the tool are 

deformable, there is strong possibility that both surfaces will deform during the 

interaction to yield a flatter surface of interaction. Similarly when a deformable model 

rests on a rigid plane (e.g. table) or is sculpted using a rigid plane tool, the region at 

collision will yield a flatter surface. During these interactions the region of contact is 

large and most of the collision detection algorithms for deformable models fail when the 

area of contact is so large. In this scenario all the spheres generated on the surfaces will 

be intersecting and lower levels of details will only add to the computational cost. The 

proposed algorithm for generating spheres stops generating more points and spheres in 

such a case and straightaway goes to the next step of tessellation of surface. 

3.3.3.5 Tessellation of surfaces 

3.3.3.5.1 Generation of points for tessellation 

There are two scenarios in which the algorithm for sphere generation ends the loop and 

moves to tessellation of the surface of probable collision. In the first scenario if all the 

values of u and v parameters have been used from the blending matrices, more points 
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inside the intersecting spheres cannot be generated. In such a scenario, tessellation of the 

surface starts using the points within the u and v parametric values of intersecting 

spheres. As the number of intersecting spheres is small, only a small number of points 

will be generated on the surface for tessellation. At the same time the tangents as well as 

normals at these points are generated using the tangent blending matrices as discussed in 

Section 3.3.3.3. 

In the second scenario the number of intersecting spheres is equal to the number of 

spheres generated for both the model and the tool. The number of points, and 

consequently triangles generated, will be large. This will not only increase the 

computational cost of the generation of triangles but also that of the intersection test of 

these triangles. To avoid the increase in computational cost, the proposed algorithm 

checks the normal of the points being generated in the region. If the normal of a point is 

within the limits of that of the previous point by a small number δ, this point is not 

generated. This way the points generated on the surface are significantly reduced, without 

sacrificing accuracy. This reduces the number of triangles to be generated.  

3.3.3.5.2 Triangulation of surface 

Tessellation of surfaces is a well researched topic. A large number of algorithms are 

available with varying cost of computation. Most of the algorithms, in the worst case 

scenario, achieve a computational cost of O(n log n). The most commonly used 

triangulation algorithms are Delaunay based. A major drawback of these algorithms is 

that while being efficient for a convex object, these tend to triangulate cavities in the case 

of non-convex objects. Thus, the tessellated surface does not show the cavities. The 

algorithm presented in the thesis does not generate too many points for triangulation to 

reduce computational cost. As the deformable model can have steep curvature and sharp 

cavities, a general Delaunay triangulation method will be unable to efficiently generate 

accurate triangulated surface. Fortunately, the method of generating spheres used in this 

algorithm helps us generate accurate triangulated surface. As per one of the definitions of 

the Delaunay triangle, “All interior edges of a triangulation Δ of a point set are locally 

optimal if and only if no point from this point set is interior to any circumcircle of the 

triangle in Δ” [Øyvind, 2006]. As per the algorithm of generating spheres, there is a 
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fourth point inside the sphere. This means that there cannot be an optimal triangle by 

joining the three points that are on the surface of sphere. Thus the fourth point is joined 

with all the points on the sphere surface. The distance between the three points on the 

surface is calculated. The largest side of the possible triangle between these three points 

is ignored and the rest of the lines are generated. This yields optimal triangles in an 

intersecting sphere. Figure 3.7(a) shows the spheres generated for the given points on the 

surface.  

 

(a) Four intersecting spheres shown in dotted lines (b) Triangulation of surface using points in the spheres   
 

Figure 3.7 Triangulation using the points inside intersecting spheres. 

Similarly if there are many intersecting spheres with common points as shown in 

Figure 3.7(b), the same process will result in triangulated surface. As two points will be 

common, a regular mesh within the region is generated. Another advantage of the process 

is that all the intersecting spheres can be triangulated simultaneously rather than by 

adding one point at a time as in the case of most of the algorithms. 

3.3.3.6 Triangle-triangle intersection test  

Once the regions of probable collision of the surfaces of the virtual model and tool are 

tessellated, a triangle-triangle intersection test is carried out. The simplest approach of 

testing all the triangles of the model against all the triangles of the tool requires an 

immense number of triangle-triangle intersection tests. Thus, many algorithms have been 

devised to reduce the computational cost. In this respect the algorithm, presented in this 

thesis first limits the number of triangles of the model which can intersect with that of the 

tool. Only those triangles are checked for intersection whose bounding spheres are 
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intersecting at the lowest level of detail. As the computational cost of a sphere-sphere 

intersection test is far less than that of a triangle-triangle test, the overall computational 

cost is reduced. 

Once it is determined as to which triangles have the probability of intersection, an 

actual triangle-triangle test is carried out. A simple method for determining whether two 

triangles in a three dimensional space intersect, requires the solution of six sets of linear 

equations, each corresponding to an intersection of one triangle’s edge with the surface of 

the other triangle. Two algorithms from the literature were considered that use less 

computation than this simplistic approach [Guigue, 2003; Möller, 1997]. The algorithm 

developed by Guigue [Guigue, 2003] is an improvement of that by Möller [Möller, 1997] 

and is computationally more efficient. The major limitation is that it cannot tackle 

degenerate cases. As the points are dynamically generated in our algorithm and the 

conditions are such that chances of degeneracy are minimal, this algorithm is very 

suitable. Depending upon the penetration of the tool in the model at various points, as 

computed by a triangle-triangle intersection test, the physics based model will calculate 

the deformation of the model and tool and the force feedback to the user. 

3.3.3.7 Updating bounding volume 

Once the physics based force response system determines the deformation and the new 

position of the points on the surface of the B-spline model, the control points are updated 

using the inverse matrices stored during pre-processing phase. Equation (3.7), 

 Pij = [Au
 T Au]

-1 Au
 T M Av

 T [Av Av
 T]-1,  

will determine the new set of control points. As matrices are already stored and the 

program does not need to do the inverse of a matrix, the computational cost is 

substantially decreased. The change in the position of the control points warrants the 

updating of a new convex hull. The same function, as described in Section 3.3.2.2 is 

called to update it. All the steps described in Section 3.3.3 are then repeated as per the 

requirement until the desired shape of the model is achieved and/or the model is 

validated. 
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3.4 Special Cases 

This algorithm is for collision detection between two or more B-spline surface model(s) 

and tool. In special cases a tool can be represented as a rigid implicit surface tool or a 

point based tool. This algorithm is capable of handling these special cases efficiently. In 

the case of a point based tool, the process discussed in Section 3.3.3 is followed for the 

model only. More points are generated in a sphere with which point-based tool is 

intersecting and the process continues till all the rows of the blending matrices have been 

used. Finally, two triangles will be generated within the intersecting sphere at the lowest 

level of detail. The intersection test of the point with these two triangles then determines 

the point where the tool is colliding with the model. 

In the special case of an implicit surface tool, only part of the algorithm is used. In 

the algorithm, first the tool is checked for intersection with the convex hull of the B-

spline. Once the implicit surface intersects the convex hull, the algorithm finds out the 

corresponding values of u and v parameters within which the intersecting surfaces of the 

convex hull lies. It then generates points on the surface within these limits using the 

blending matrices. These points are then input into the implicit surface to detect collision.  

3.5 Analytical Comparison and Performance 

The approach, presented in this thesis for collision detection, is to use the advantages of 

the B-spline surface representation and the computational efficiency of a triangle-triangle 

intersection test. Most of the existing algorithms use either of these (tessellated surface 

representation or B-spline/Bezier/NURBS surface representation) approaches. Hence we 

compare our algorithm with the tessellated surface representation and the B-

spline/Bezier/NURBS surface representation.  

3.5.1 Comparison with a tessellated model 

Figure 3.8 shows the various steps required for complete collision detection for the 

tessellated model and of the proposed model, along with the computational cost 

considering the worst case scenario.  
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t = number of triangles; n = number of control points; m = maximum number of points to 
be generated on B-spline surface 

Figure 3.8 Comparison of steps for collision detection for tessellated model with proposed 
algorithm. 

Most of the collision detection algorithms, based on tessellated geometry, are for 

rigid bodies. Some of these algorithms have been used for deformable objects or 

proposed for use in deformable objects. Bordegoni [Bordegoni, 2006] relied on the 

algorithm of Barraff [Baraff, 1990] for rigid bodies and Gottschalk [Gottschalk, 1996] 

has proposed that, in future, the algorithm can be adopted for deformable bodies. In the 

absence of any benchmark for comparison of different algorithms, the worst case 
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scenario represented as Big O notation, can be used as one of the tools to compare the 

results of proposed algorithm. Though constants and lower order terms are not used in the 

conventional representation of Big O notation, these terms have been used to provide a 

better comparison. For comparison, oriented bounding boxes (OBBs) are used as the 

bounding box [Gottschalk, 1996] for a deformable model represented as a tessellated 

surface. The total cost for each step is tabulated in Table 3.1.  

Table 3.1 Comparison of computational cost of collision detection for tessellated model with the 
proposed algorithm. 

Operations 

  

Computational Cost 

Tessellated 
Model 

Parametric Model 

Bounding Box O (t log t) O (n log n) 

Collision Prediction O (1) O (n) 

Discretization of B-Spline 
surface 

Nil O (n2m) 

Generation of Spheres Nil O (m) 

Intersection Test of 
Spheres 

Nil O (m) 

Tessellation of region of 
probable collision 

Nil O (m log m) 

Collision Detection O (ab2) O (m2) 

Total computation cost 
O (t log t) + O (1) 

+ O (ab2) 

O (n log n) + O (n) + O (n2m) + 
O (m) + O (m) + 

O (m log m) + O (m)2 

 

The number of triangles that can be generated from a given set of points depends 

upon the location of the points, the total number of points and the topology of the surface 

being discretized. In general, the number of triangles generated is given by equation, t = 

2m - 2 - e, where m is the number of points and e is the number of points on the convex 

hull of the triangulated surface. Considering that the number of triangles that can be 
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generated is 1.5 times the number of points, the computational cost required for 

tessellated model with an equivalent number of points generated, can be compared. 

Different percentages of area of contact are considered, assuming an even distribution of 

triangles on the surface of the model.  

Figure 3.9 shows the graphs for different areas of contact and the computational 

costs of the tessellated model and that of the B-spline surface model for various control 

points. 
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Figure 3.9 Comparison of total computations required in the worst case scenario for collision 
detection of tessellated model versus the B-spline model using proposed algorithm. 
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The "X" axis shows the number of triangles for the tessellated model and the 

equivalent number of triangles for the B-spline surface model. The "Y" axis shows the 

number of computations required for the worst case scenario. It is clear from the graphs 

that the computational cost of the proposed algorithm is much less than that of a 

tessellated model. This reduction in computational cost is more pronounced for a higher 

resolution. During the sculpting and evaluation of the model, multiple contacts and a 

large contact area are very common. The proposed algorithm is very suitable for this 

application, though it can be extended to other applications as well.  

Another aspect of sculpting is that during the early interaction with the objects, the 

contours are not very sharp but the area of contact is very large. As the sculpting process 

progresses further, the details get finer and the area of contact is reduced. The proposed 

algorithm can aptly take advantage of this fact. Figure 3.10 shows the total computation 

cost of collision detection for different areas of contact for a 12 × 12 control point B-

spline surface model. 
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Figure 3.10 Maintaining lower number of computations required for collision detection by changing 
resolution of the surface. 

The number of points generated on the surface can be decreased by using fewer rows 

and columns from the blending matrices as discussed in previous sections. Thus in the 

beginning when the surface to be sculpted does not have finer details but a large area of 

contact, the user can specify a lower resolution. This will reduce the number of points 
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generated and therefore the computational cost will be lower. It is shown by the dotted 

horizontal line in Figure 3.10. Thus, by changing the resolution of the model (using fewer 

number of equivalent triangles), the number of computations can be maintained to less 

than 8 × 106, even during the worst case scenario while maintaining high resolution and 

accuracy of collision detection during the sculpting of the finer details of the model. The 

number of computations in an average case will be much lower. As the sculpting process 

progresses to the finer details, the number of points generated and hence the resolution 

and accuracy of collision detection can be increased without increasing the computational 

cost, as the area of contact is also being reduced. 

3.5.2 Comparison with parametric surface models 

A number of collision detection algorithms for parametric surface models representing 

deformable objects have been proposed. Most of these algorithms are based on 

subdividing the surface into patches and sub-patches until these are sufficiently planer. 

This is done during the pre-processing phase or the run-time phase. These sub-patches are 

then bounded by bounding boxes, mostly AABB’s [Hughes, 1996]. If this process is 

carried out during the run-time, it is time consuming and computationally intensive. If it 

is done during the pre-processing phase, then the subsequent deformations of the model 

make the subdivision prone to large errors and inefficient collision detection. Most of 

these algorithms use point contact and are suitable for game engines and not for 

applications in interactive free form modeling. These algorithms also tend to fail when 

large surface areas are in contact. At the same time, these algorithms tend to deform a 

small region and change the position of a small number of control points. In physics 

based haptic interaction, collision at any point will change the geometry of a large part of 

the surface. Hence, a whole set of control points will need to be updated. As the proposed 

algorithm provides a different approach, it is not possible to compare this algorithm with 

these methods. Nonetheless, the proposed algorithm is capable of efficiently detecting the 

collision for any type of B-spline surface and any subsequent deformation does not affect 

the accuracy of collision detection. The user is given freedom to control the accuracy of 

collision detection and this increases the robustness of the system.  
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Gao and Gibson [Gao, 2005; 2006] used an implicit surface to represent the tool and 

used points generated to discretize the B-spline surface to detect collision. At any time, 

all the points are input in an implicit surface equation of the tool to determine if the 

surface is colliding with the tool. This limits the applications of the technique and it 

cannot handle a B-spline surface or point-based tool. The advantage of the proposed 

algorithm over the collision detection algorithm presented by Gao and Gibson, is that it 

uses the points only in the region of probable collision and not on the entire surface of the 

model. This reduces the cost of collision detection. Furthermore, if the tool and model are 

apart (convex hull of B-spline model not intersecting with implicit surface), there is no 

need to input a large number of points in the equation of implicit surface to detect 

collision. The proposed algorithm is also capable of detecting collision between a B-

spline surface and a point based tool unlike the algorithm used by Gao and Gibson. 

3.6 Concluding Remarks 

In this chapter, the collision detection algorithm for single B-spline surface patch was 

introduced. No limitation has been imposed on the shape, complexity, degree or the 

number of control points of the B-spline surface representing the tool or model. Both the 

model and the tool can have complex shape, elastic or plastic properties, and multiple 

contacts.  

The algorithm is also capable of detecting the collision of a B-spline surface model 

with a tessellated surface, implicit surface or a point based tool. This will allow the user 

to use rigid or deformable tools with complex shapes and enhance the ease and 

productivity during the sculpting or concept validation in virtual reality environment. The 

‘on the fly’ generation of points and triangles helps to maintain the quality of triangles. 

At the same time resolution of the model can be varied during haptic interaction, as 

needed, thereby reducing the overall computational cost. Although the algorithm uses a 

triangle-triangle intersection test for collision detection, it is far more efficient than a 

tessellated surface deformable model. The novel method of generating spheres at 

different levels of detail to find out the regions of the surface likely to collide, allows 

multiple contact collision detection. It is more efficient than an octree subdivision as 
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instead of subdividing whole space only the spheres which are intersecting are 

subdivided. The sphere-sphere intersection test being more efficient as compared to a 

triangle-triangle intersection test, reduces the cost of determining the regions of probable 

collision and helps reduce the number and hence the cost of generation and collision 

detection of triangles on the surface.  

The novel technique of comparing the normals of the points generated on a flat 

surface reduces the computational cost of collision detection between two flat B-spline 

surfaces. This makes the algorithm robust as it can handle a potentially computationally 

expensive situation at a much lower computational cost. In general, calculation of inverse 

of matrices is required to determine new set of control points representing the B-spline 

surface after deformation. A matrix inverse calculation can be problematic and 

sometimes impossible. The calculation and storage of blending matrices and their inverse 

during the preprocessing stage makes sure that no inverse need to be computed during 

run-time phase of the algorithm. This makes the algorithm robust and efficient. 
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CHAPTER 4 MERGING MULTIPLE B-SPLINE SURFACE PATCHES 

4.1  Introduction 

Computationally efficient bi-parametric functions, such as B-spline and NURBS (non-

uniform rational B-spline), are commonly used to model organic and freeform shapes 

and, therefore, provide a viable mathematical representation for describing the geometry 

of realistic objects in VR space. CAD systems are able to create shapes by stitching or 

joining together numerous low-order bi-parametric patches. Unfortunately, many 

collision detection algorithms used in VR environments [Jimenez, 2001; Lin, 2004] do 

not permit more than a single B-spline or NURBS surface patch to be considered at any 

instant in time. Even when a collision detection algorithm is designed to tackle multiple 

B-spline surface patches [Gao, 2006; Hughes, 1996; Pungotra, 2008], the physics-based 

system cannot determine the deformation of these multiple joined B-spline patches unless 

these are combined into a single, more complicated integral surface. This restriction 

exists because the physics engine will represent the solid contained within the closed 

surface as a mass-spring system. Consequently, stitching the surface patches does not 

automatically connect the underlying dissimilar mass-spring networks. Furthermore, if an 

object is represented by multiple B-spline surface patches stitched together with a pre-

defined continuity (C0, C1 or better), then any subsequent deformation of the object 

during haptic interaction would separate the patches and result in undesired surface 

representation.  

Generating a complex shape from a single B-spline patch is both tedious and limits 

the scope of a virtual reality based interactive shape design or other applications. This 

problem can be solved, if the virtual reality engine allows multiple B-spline patches to be 

easily merged into a single integral B-spline surface. This chapter discusses the step by 

step implementation of the computationally fast algorithm for combining two or more 

dissimilar B-spline surface patches in virtual reality environment. The proposed method 

extends the collision detection algorithm described in Chapter 3 and utilizes the blending 

matrices for efficiently merging two or more B-spline surface patches. No assumption 

regarding the complexity, degree, curvature at the edges, or the number of control points 
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representing the surface patches is imposed on the solution. The user would have the 

option to select the connectivity of the merged surfaces along the common edge. The 

developed algorithm performs more robustly than the common NURBS based modeling 

software tool, Rhino®. To illustrate the capabilities of the algorithm and verify its 

performance, several case studies are presented and an error analysis, based on standard 

deviation between the single merged surface and the original constituent surface patches 

is provided in this chapter. 

4.2 Related Work 

The early work on combining parametric functions was done on Bézier, B-spline and 

NURBS curves. The degree reduction and merging of Bézier/B-spline curves into a 

single representation have been addressed in the literature by a variety of different 

analytical approaches [Cheng, 2008; Hu, 2001; Piegl, 1994; 1995; Taia, 2003; Yong, 

2001]. Taia et al. [Taia, 2003] introduced an approximate solution for merging two 

adjacent B-spline curves by adjusting the control points through constrained 

optimization. The algorithm combines the two curves by letting both B-spline curves 

share a common derivative. Hu et al. [Hu, 2001] also proposed a Bézier curve merging 

technique using the constrained optimization method. The basic idea is to find conditions 

for the precise merging of Bézier curves first, and then compute the constrained 

optimization solution by moving all the control points. In contrast, Cheng and Wang 

[Cheng, 2008] proposed an alternative technique that creates a unified matrix 

representation from multiple adjacent Bézier curves that have different degrees of 

curvature. Continuity at the endpoints is achieved by using partitioned matrices so that 

the last point of a Bézier curve matches the first control point of the next curve during the 

merging process.  

The conditions of geometric continuity between two adjacent bi-parametric surface 

patches have been described in the literature [Du, 1990]. Shi [Shi, 2004] presented the 

algorithm to obtain G1 continuity for bicubic B-spline surfaces with single interior knots 

over an arbitrary quad partition of a polygonal model. Che [Che, 2005] presented an 

improved algorithm for G1 continuity conditions for two adjacent NURBS surfaces with 
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arbitrary degrees and generally structured knots. The continuity conditions allow the user 

to represent a model having multiple B-spline surface patches. However, if one or more 

of these patches are deformed then the continuity no longer exists. Hence, these 

techniques cannot be used in a VR environment when the user intends to deform the 

surface to obtain the desired shape. Figure 4.1(a) shows the two surfaces, stitched 

together with C1 continuity. As shown in Figure 4.1(b), when one of the surfaces is 

deformed, the continuity no longer exists. 

 

Patch 1                                             Patch 2       Patch 1 deformed                                Patch 2 

(a) (b) 

Figure 4.1 (a) Two B-spline surface patches matched with C1 continuity (b) Surfaces after one 
surface patch is deformed. 

To maintain continuity, even while the object is being deformed, the constituent 

patches need to be merged into a single B-spline surface. Unfortunately, the problem of 

merging B-spline surface patches is more complicated than curves because the individual 

control points have influence on the shape in both u and v direction. In addition, 

computational time and algorithm efficiency are important constraints on any virtual 

reality application where real-time force feedback is required for haptic interaction. Any 

viable technique for merging B-spline surface must also work in tandem with the 

collision detection algorithms in order to optimize system performance.  
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4.3 Merging Multiple B-spline Surface Patches 

In this section, the algorithm developed for merging two or more B-spline surface patches 

is discussed in detail. The algorithm uses blending matrices associated with each B-spline 

surface being merged. Since the algorithm uses the blending matrices that have been 

previously computed for collision detection [Pungotra, 2008], it is not necessary to re-

calculate these matrices while manipulating the patches in VR space. However, if the 

blending matrices are not pre-calculated, the algorithm can also generate blending 

matrices. 

The algorithm to merge N number of B-spline surface patches, S1, S2,…, SN; having 

(r1, s1), (r2, s2), …, (rN, sN) number of control points in u and v directions respectively, 

starts by discretizing the surfaces to be merged. These discretized matrices M1, M2,…, 

MN are combined together to generate a matrix M of discrete points. The algorithm 

calculates the revised number of control points “r” and “s” for the merged surface in u 

and v directions respectively. The knot vector U and V are computed by combining the 

knot vectors (U1, V1), (U2, V2),…., (UN, VN) of the surfaces being merged. Once this 

information is known, it can be used to calculate revised blending matrices Au and Av for 

the merged surface. These revised blending matrices help to find out the matrix of the 

control points Pij, which can generate the merged surface approximating the discrete 

points of the combined matrix M. 

Figure 4.2 shows the flow chart, describing the steps needed to generate a merged 

surface from two B-spline surface patches. This can be further extended to merge any 

number of B-spline surface patches. To understand the algorithm better, it will be initially 

assumed that there are only two B-spline surfaces patches of similar degree and these 

surfaces are spatially close but do not intersect each other. The special cases of 

intersecting surfaces, surfaces having different degrees, and merging of multiple (four) 

surfaces are described separately in Section 4.5. These steps are discussed in detail in the 

following sub-sections. 
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Figure 4.2 Flow chart of the proposed algorithm for merging two B-spline surface patches. 

4.3.1 Discretization of B-spline surfaces 

The surfaces that need to be merged are first moved closer together and allowed to touch 

at one or more points. The blending matrices representing the underlying surfaces are 

then used to discretize the individual B-spline surface patches. These discrete points are 

stored as matrices M1 = A1
u P

1
ij A

1
v and M2 = A2

u P
2

ij A
2

v. When the merging process 

starts, a combined matrix, M, is generated by the combination of these matrices. This can 

be expressed as M = [M1 M2] if the matrices are to be combined column-wise, or M = 
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[M1;M2] if these are to be combined row-wise, depending upon the direction in which 

these surface patches are being merged. The new number of rows (m) and columns (n) of 

the combined matrix, M, are determined. Figure 4.3 shows the two constituent B-spline 

surface patches and the dense distribution of discretized surface points obtained from the 

patches. 

(a) (b) 

Figure 4.3 (a) B-spline surface patches that are to be merged together (b) Discretized points on the 
surface, as generated by using the blending matrices. 

4.3.2 Determining revised number of control points 

When the B-spline surface patches are combined, the number of control points in u 

and/or v directions will change. Consider the situation where the surfaces are being joined 

only in the u direction. The new number of control points in the u direction is then given 

by r = r1+ r2 -1, where r is the number of control points of the merged surface in u 

direction, and r1 & r2 are the number of control points in u direction for the first and the 

second surface respectively. The number of control points in v direction would remain the 

same, provided the number of control points is the same for both the surfaces in that 

direction, that is, if s1= s2. If surfaces have a different number of control points in v 

direction then the larger number is assumed as the new number of control points. 

Similarly, if the two surfaces are joined in the v direction, the number of control points in 

v direction will be given by s = s1+ s2-1. 
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4.3.3 Determining the new knot vector 

A knot vector determines the area of influence of each control point on the B-spline 

surface. The two surfaces can have a uniform or non-uniform knot vector. Even if both 

the surfaces have a uniform knot vector, these may not align with each other. For this 

reason, it is better to recalculate the knot vector for the merged surface. Most often a 

uniform knot vector is best suited because the algorithm is designed to tackle any general 

case.  

If the degree of the initial surfaces is not being changed, the algorithm simply uses 

the knot vector of the first surface and then adds to it the knot vector of the second 

surface, in the direction of merging. As an example, if the knot vectors of the two cubic 

B-spline surface patches, being merged in u parametric direction, is given by U1 = [0, 0, 

0, 0, 0.2138, 0.4959, 0.7262, 1, 1, 1, 1] and U2 = [0, 0, 0, 0, 0.1215, 0.2512, 0.3689, 

0.5047, 0.7283, 0.8631, 1, 1, 1, 1]; then the combined knot vector, achieved by adding 

and normalizing these knot vectors, is given by U = [0, 0, 0, 0, 0.1069, 0.2478, 0.3631, 

0.5, 0.5, 0.5, 0.5608, 0.6845, 0.7524, 0. 8642, 0.9316, 1, 1, 1, 1]. Typically the average of 

the last multiple knots of the first knot vector (1, 1, 1, 1) and the first knots of the second 

knot vector (0, 0, 0, 0) generate the multiple knots at the common edge (0.5, 0.5, 0.5, 

0.5). However, only a maximum of k multiple knots can be retained, where k is the 

degree of the merged surface in the direction of merging. Thus in the given case, only 

three (k) multiple knots are retained at the common edges out of four obtained by 

combining the knot vectors, providing only C0 connectivity at the common edge. 

The multiple knots at the common edge are further reduced, depending upon the type 

of connectivity needed at the edge. For C1 connectivity, the number of multiple knots 

would be k-1 and so on. For the maximum connectivity (C2 for a degree 3 surface) only 

one knot is retained at the common edge. The other multiple knots are changed by 

averaging them with their neighboring knots. In this case, for C2 connectivity at the 

common edge, the knot vector will be given by U = [0, 0, 0, 0, 0.1069, 0.2480, 0.3631, 

0.4317, 0.5, 0.5304, 0.5608, 0.6845, 0.7524, 0. 8642, 0.9316, 1, 1, 1, 1]. The knot 0.4317 

was obtained by averaging the knots, 0.3631 and 0.5, whereas the knot 0.5304 was 

obtained by averaging the knots 0.5 and 0.5608. As shown in Figure 4.4(c) and Figure 
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4.4(f) the common edge of the merging surface patches remains straight even after 

merging, in case of C0 connectivity. Figure 4.4(b) and Figure 4.4(e) shows the merged 

surface with C2 continuity at the common edge. It can be seen that to maintain C2 

connectivity at the common edge, the flat surface patches deviate in the middle as well, 

whereas these remained flat for C0 connectivity. 

(a) Original surfaces with 
degree three. 

(b) Merged surface with C2 
continuity by deleting all 
multiple knots at the common 
edge. 

(c) Merged surface with C0 
continuity by retaining three 
multiple knots at the common 
edge. 

(d) Original surfaces, shown 
as wireframe, with degree 
three. 

(e) Merged surface, shown as 
wireframe, with C2 continuity 
by deleting all multiple knots at 
the common edge. 

(f) Merged surface, shown as 
wireframe, with C0 continuity 
by retaining three multiple 
knots at the common edge. 

Figure 4.4 The effect of multiple knots at the common edge of the merging  surfaces. 

In the other parametric direction, the knot vector is generally made uniform. 

However, by using the average of the knots of two surfaces in the second direction, the 

tolerance in some of the cases can be reduced. In general, a uniform knot also yields good 

results and avoids the computation of average knot vectors for the merged surface. 

4.3.4 Revised blending matrices 

As discussed in the previous section, the degrees of the final merged surface (k, l), its 

knot vectors (U, V), the number of control points (r, s) in the u and the v directions 
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respectively, and the total number of discrete points to be generated in the u and the v 

directions are calculated. Once these parameters are known, the new set of blending 

matrices, Au and Av, can be generated. The number of rows of the matrix Au and the 

number of columns of the matrix Av, are determined by the number of rows (m) and the 

number of columns (n) of the combined matrix of discrete points, M. The basis functions 

are evaluated for discrete values of parameter u and v. These parameter values are 

increased by a step of 1/(m-1) and 1/(n-1) in the u and the v directions respectively. As an 

example, for generating 101 number of points in u parametric direction, the basis 

functions are evaluated at u = 0, 0.01, 0.02, …, 0.99, 1. As the degrees and the knot 

vectors of the B-spline surface are known, these basis functions can be calculated and 

stored as matrices Au and Av. The following pseudo-code describes the process of 

computation of the revised blending matrix Au (Au in pseudo-code). 

Algorithm:   Computation of the revised blending matrix Au 

Parameters:  m, U, r, k 

for (u = 0:1/(m-1):1) 

 for (a = 0:1:k)   

  for (i = 0:1:r+k+1-a) 

   

, 1 1, 1
, 1

1 1

( ) ( )
( ) ( ) ( )i a i a

i a i i a
i a i i a i

B u B u
B u u U U U

U U U U
  

 
   

   
    

   

1
,

1,
( )

0,
i i

i a

U u U
B u

otherwise
 

 
  

  end 

 end 

 x = integer of (u x (m-1)) 

 for (j = 0:1:r) 

  Aux,j = Bi,k 

 end 
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end 

return Au 

 Once these blending matrices are computed, the inverse of these blending matrices 

([Au
 T Au]

-1, [Av Av
 T]-1) is also computed and stored. These newly calculated blending 

matrices of the merged surface (Au, Av), replace the earlier blending matrices (A1
u, A

2
u; 

A1
v, A

2
v) for the two B-spline surfaces. 

These new blending matrices are used to determine the position of the control points 

which can generate the matrix of discrete points (M). The position of the control points 

for the merged surface is once more calculated using Eqn. (3.6). The new blending 

matrices can also be used for collision detection and generation of nodes for a mass 

spring system as described in [Pungotra, 2009b]. 

4.4 Special Cases 

The proposed algorithm is suitable for VR environments because the user does not need 

to directly manipulate the control points of the various surfaces. Furthermore, the 

algorithm does not impose any kind of restriction such as the degree of the surfaces, the 

knot vectors, or the type of connectivity. The general case, in which the merging B-spline 

surface patches were near to each other but were not intersecting, was considered in the 

discussion to make the algorithm understandable. While working in a VR environment it 

may not be possible to position the B-spline surface patches close enough. The surfaces 

may start intersecting at some regions of the surfaces, when positioned close to each 

other. It is also possible that the two B-spline surface patches can have different degrees 

of surface curvature in one or both the directions. It will require the algorithm to increase 

or decrease the degree of one of the surfaces so that the resultant merged surface has the 

same degree in any parametric direction. There is a greater chance of unchanged 

geometry for an increase in the degree of a surface. Conversely if the degree of a surface 

is decreased then the end result cannot be guaranteed to have a low tolerance unless the 

surface has some redundant knots. The user may also like to merge a large number of 

patches simultaneously. This section considers an arbitrary case in which the surfaces are 

intersecting before merging, an arbitrary case in which the surfaces have different 
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degrees in both the directions, and a case for merging multiple (four) patches 

simultaneously. 

4.4.1 Intersecting and trimmed surfaces 

If the patches to be merged are intersecting, the resulting surface may turn out to be quite 

different than that intended by the user. The algorithm presented in this thesis uses a 

novel technique to merge two or more intersecting B-spline surface patches. First, the 

algorithm uses the collision detection algorithm [Pungotra, 2008] to determine if the two 

surfaces are intersecting (colliding). When the user intends to merge the surfaces, the 

collision detection algorithm calculates the regions which are colliding. The collision 

detection at the lowest level of detail determines the minimum and maximum values of 

the parameters u and v (umin, vmin; umax, vmax) for both the surfaces. These minimum and 

maximum values of u and v are used to set the limits on the surfaces to be discretized as 

M1 and M2. Figure 4.5 illustrates the intersecting surfaces. Figure 4.5(b) shows the 

portions of the surfaces that will be used for merging to generate matrix M. The discrete 

points generated in the intersecting region of the surfaces, shown in red, are discarded. 

 
 

 
 

(a) (b) 

Figure 4.5 (a) Intersecting surfaces to be merged (b) Region of the surface selected  for 
discretization (The points shown in red are discarded). 
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This methodology also helps if the user would like to remove the uneven end portion 

of the surface which is created unintentionally while manipulating the surface. One 

limiting factor of this technique is that only full rows of the points can be discarded. 

Thus, even if some part of the surface is not intersecting, it will have to be discarded so as 

to maintain the rectangular matrix of discrete points. 

Sometimes, a B-spline surface patch is trimmed. In this case, though the control 

point matrix and knot vector remain unchanged, the trimmed section of surface is not 

displayed to the user. For this reason, trimmed surfaces cannot be merged using 

commercially available CAD/CAM software. The present algorithm for intersecting 

surfaces can be easily extended to the merging of trimmed surfaces. If the user intends to 

merge a trimmed surface, the surfaces will actually be intersecting. The intersection will 

be occurring in the region which exists mathematically in the data base but is not 

displayed to the user. Hence, in case of trimmed surface, the discrete points belonging to 

the hidden surface (not being displayed the user) are discarded and only the points 

generated in the untrimmed region are used to generate matrix M.  

4.4.2 Surfaces having different degrees 

Frequently in CAD, particularly when a multiple B-spline patches surface, created from a 

point cloud data is imported, the degree of various surface patches may be different. 

Before the surfaces can be merged, the degree of the surfaces in u and v directions will 

have to be made uniform. Thus, the problem reduces to increasing or decreasing the 

degree of a surface to make it uniform with that of the other surface. There are many 

analytical techniques to increase or decrease the degree of a B-spline curve. Piegl and 

Tiller [Piegl, 1994; 1995] use a simple technique of first extracting Bézier segments from 

the curve. The degree of these Bézier segments is then increased/decreased by 

adding/deleting additional knots (control points) using constrained optimization. These 

Bézier segments are merged together and the multiple knots are deleted. However, for the 

surfaces the constrained optimization techniques are difficult to use. Degree reduction for 

surfaces can be achieved by first extracting iso-parametric curves from the surface and 

reducing their degree, before the B-spline surface is regenerated by lofting these lower 
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order curves. In general, the process of surface approximation consists of approximating 

the boundaries and a number of iso-parametric curves of the original surface. These 

curves are then lofted to form an approximating surface [Tuohy, 1993]. Knots are added 

to the knot vector of the boundary curves at locations where the error exceeds a given 

tolerance, and new iso-parametric curves are extracted and approximated. 

The proposed algorithm just needs to change the knot vector and the number of 

control points needed to represent the surface of higher or lower degree. If the degree is 

increased, the number of control points needed to represent the higher degree merged 

surface is increased by the same number. Thus, if the surfaces are merged in u direction 

then the resultant number of control points is given by r = r1+ r2 -1 + d, where r is the 

number of control points of the merged surface in u direction, r1 & r2 are the number of 

control points in u direction for the first and the second surface respectively, and ‘d’ is 

the increase in degree of one of the initial B-spline surface patch to match with the degree 

of the other surface in the u direction. The number of control points is decreased by ‘d’ if 

the degree of the higher order surface is decreased to match that of the lower order 

surface. However, reducing the degree of a surface may result in reduced accuracy of the 

resultant surface. The number of knots are also increased/decreased by ‘d’ when the 

degree of a surface is elevated /reduced in a given parametric direction. 

(a) (b) 

Figure 4.6 (a) Initial B-spline surface patches of order 4×4 and 5×6 respectively (b) Merged surface 
of order 5×6 with C4 connectivity in v direction, generated by proposed algorithm. 
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Figure 4.6(a) shows two surfaces of order 4×4 and 5×6 respectively. The surfaces are 

being merged in v direction. Thus, the first surface will have to be elevated to degree four 

in u direction and degree 5 in v direction (‘d’ is 1 in u direction and 2 in v direction). 

Figure 4.6(b) shows the merged surface of order 5×6 using the proposed algorithm. The 

proposed algorithm can also generate the merged surface by decreasing the degree of the 

higher order surface. On a standalone basis, this algorithm can be used to simply increase 

or decrease the degree of a surface. 

4.4.3 Multiple surfaces 

The algorithm is capable of merging any number of surfaces. The surfaces that are 

required to be merged are first moved closer together and allowed to touch at one or more 

points. The blending matrices representing the underlying surfaces are then used to 

discretize the individual B-spline surface patches. The discrete points of these N B-spline 

surface patches are stored as matrices M1 = A1
u P

1
ij A

1
v, …, MN = AN

u P
N

ij A
N

v. When 

the merging process starts, a combined matrix M is generated by the combination of 

these N matrices of discrete points. Consider a case where four B-spline surface patches 

are to be merged. The combined matrix of discrete points can be expressed as M = [M1 

M2; M3 M4] or any other such combination, depending upon the direction in which 

these surface patches are being merged. The new number of rows (m) and columns (n) of 

the combined matrix M are determined. 

The algorithm adds the knot vectors of the B-spline surface patches depending upon 

the direction in which these surface patches are being merged. Once again, consider the 

case where the combined matrix of discrete points is expressed as M = [M1 M2; M3 

M4]. The algorithm first calculates the combined knot vectors (U12, V12) of the surfaces 

S1 and S2, and the combined knot vectors (U34, V34) of the surfaces S3 and S4. As 

discussed in Section 4.3.3, certain number of multiple knots is retained at the common 

edge depending upon the connectivity required at the common edge. In a similar fashion, 

these knot vectors (U12, V12; U34, V34) are further combined to get the resultant knot 

vectors for the merged surface (U, V). 
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The revised number of control points are calculated as discussed in Section 4.3.2. 

The combined number of control points in v direction are given by s12 = s1+ s2 -1 and s34 

= s3+ s4 -1, where s1, s2, s3 & s4 are the number of control points in v direction for S1, S2, 

S3 and S4 surfaces respectively. If the number of control points in v direction, s12 and s34, 

are different then the larger number is assumed as the new number of control points (s). 

Similarly, the combined number of control points in u direction are given by r13 = r1+ r3 -

1 and r24 = r2+ r4 -1, where r1, r2, r3 & r4 are the number of control points in u direction 

for S1, S2, S3 and S4 surfaces respectively. The number of control points in u direction 

will then be given by the larger of r13, r24.  

Once the revised knot vectors (U, V), the revised number of control points (r, s), and 

the total number of discrete points to be generated in u and v direction (m, n) are known, 

the new set of blending matrices Au and Av can be generated. These revised blending 

matrices are generated as discussed in Section 4.3.4. When these revised blending 

matrices are known, the new set of control points representing the merged surface can be 

determined by using Eqn. (6). Figure 4.7(a) shows four B-spline surfaces to be merged 

and Figure 4.7(b) shows the resultant merged surface obtained by using the proposed 

algorithm.  

(a) (b) 

Figure 4.7 (a) Initial multiple B-spline surface patches (b) Merged surface with C2 connectivity 
generated by proposed algorithm. 
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4.5 Concluding Remarks 

Product concept generation within a virtual reality environment requires a large variety of 

interactive tools that enable the user to enhance his or her creativity. One problem, which 

had not been addressed so far, is efficiently creating complex shapes by combining 

multiple dissimilar B-spline surface patches in a VR environment. The algorithm 

presented in this chapter allows the user to combine multiple B-spline surface patches in 

to a single B-spline surface. The algorithm proposed in this chapter is computationally 

efficient and exploits blending matrices of the surface patches used by the collision 

detection algorithm. It creates new blending matrices for the merged surface, which 

replace those for the original surface patches. Once created, the new blending matrices 

are used for object shape representation and for any further collision detection 

requirements. In this manner, the proposed surface merging algorithm works in tandem 

with the collision detection algorithm and only a small number of additional 

computations are performed during the merging process.  

The algorithm is capable of handling all the cases that are acceptable for NURBS-

based surfaces. It does not impose any restriction on the degree of the surface patches, the 

number of control points, the type of continuity required at the common edge, knot vector 

or the number of surfaces being merged simultaneously. The proposed algorithm can 

efficiently merge B-spline surface patches having dissimilar curvatures at the common 

edge, intersecting B-spline surface patches, and the B-spline surface patches having 

trimmed edges. These types of patches cannot be merged by using the traditional 

approach used by commercially available CAD software. Overall the proposed algorithm 

is efficient, accurate, and robust. The surface generated by merging of two or more 

patches has better tolerance than that is acceptable for many VR applications.  
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CHAPTER 5 INTEGRATION OF MASS-SPRING SYSTEM WITH COLLISION 

DETECTION SYSTEM 

5.1 Introduction 

Product designers and engineers require interactive and graphical visualization tools that 

enable them to quickly modify the shape, style, and functionality of a product concept. 

The primary role of VR technology in creative product design is to provide the designer 

with the ability to intuitively create and manipulate the shape of complex freeform CAD 

models during concept generation.  

Deformable objects have been widely studied in computer graphics. The deformation 

of the model can be simulated by a geometric- or physics-based system. There are many 

geometric modeling techniques in the published literature to deform a solid model 

[Basdogan, 2004; Zheng, 2003]. One major limitation of the geometric models is that 

these cannot realistically simulate deformation of the model, particularly if the model 

consists of multiple materials. A physics-based technique, on the other hand, can 

realistically calculate the deformation and force response of the model, based on virtual 

material properties [Knopf, 2005]. A physics-based deformation model can provide the 

designer options to assign different materials properties to the virtual object and validate 

it in real-time for form and function.  

The collision detection algorithm and the physics-based deformation model should 

be compatible with each other for real time haptic interaction. Some physically-based 

models are computationally intensive and therefore, are unsuitable for real-time 

interaction. Over the years different modeling techniques have been developed. However, 

a mass spring damper system, consisting of a set of particles (nodes) connected through a 

network of springs and dampers can provide reasonable accuracy and speed for real time 

interaction. The representation of B-spline surfaces in terms of blending matrices 

facilitates the integration of collision detection and merging of B-spline surfaces with the 

mass spring system [Pungotra, 2010b]. 
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5.2 Mass Spring Damper System 

Mass spring damper system is one of the physics based modeling technique that has been 

widely used for modeling deformable objects. A mass spring system can provide 

reasonable accuracy and speed for real-time haptic interaction. The virtual object is 

modeled as a collection of point masses connected by springs and dampers in a lattice 

structure. In general, the spring forces are assumed to be linear. However, nonlinear 

springs can also be used to model objects which exhibit inelastic behaviour. Such a 

system contains a mass ρ, a spring with spring constant K that serves to restore the mass 

to a neutral position, and a damping element which opposes the motion of the vibratory 

response with a force proportional to the velocity of the system. The constant of 

proportionality, also known as damping constant, is denoted by D. Different 

combinations of linear springs and damper can be used to model deformable objects. 

Voigt model is the most commonly used combination of spring and damper and has been 

used in this thesis. Figure 5.1 shows a mass spring damper system with two mass nodes i 

and j. 

 

Figure 5.1 Voigt model of mass spring damper system. 

The stiffness of the material primarily affects the linear and non-linear elasticity 

range in the deformation zone. For solids, the stiffness in proportional to the elastic 

modulus and also depends upon an element's dimensions. The linear model stiffness can 

be express as, 

L

EA
K




             (5.1) 
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where A is the cross-sectional area, E is the Young's modulus of elasticity, and L is the 

length of the element. 

In one dimension, Young's modulus of elasticity can be considered as a measure of 

stiffness of material. Thus, stiffness and damping constants can be used to model a 

realistic behavior. The stiffness constant controls the elastic behavior and the 

combination of stiffness and damping constants control plastic behavior of the material. 

Damping is the phenomenon by which energy is dissipated in a vibratory system. 

Three significant types of damping that are generally encountered in dynamic behavior of 

the model are; coulomb, hysteresis, and viscous damping. In this thesis, these three types 

of damping are approximated as a velocity dependant viscous damping. The velocity 

dependent damping force exerted on the node i from the interaction with the node j is 

given by, 

)( jid xxDf  
             (5.2)  

where fd is the damping force, D is the damping coefficient, ix  is the velocity of node i, 

and jx is the velocity of node j. 

The fundamental Lagrange equation of motion can be expressed as, 

gx ffKxxDx  
            (5.3)  

where ρ (in kg) is the mass of the node, D (in N.s/m) is damping coefficient, K (in N/m) 

is the stiffness coefficient of each spring, fx and fg are the external and gravitational forces 

acing of the node. In the absence of external and gravitational forces, Eqn. (5.3) can be 

written as, 

0 KxxDx                          (5.4) 

Rearranging Eqn. (5.4), we get 

0 x
K

x
D

x



             (5.5) 

The natural frequency of this model is given by, 
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m

K
0

              (5.6) 

The time step of the system dt must not be equal to this natural frequency. Another 

important parameter is called damping factor. It is given by equation, 

Km

D

2


              (5.7)  

The values of damping factor can be zero (undamped model), less than one (under-

damped model), one (critically damped model), and greater than one (over-damped 

model). 

5.3 Integration of Mass Spring System with Collision Detection 

For an efficient haptic interaction with a physics-based virtual object, the collision 

detection and physics based system must work in tandem. The algorithm for collision 

detection, presented in this thesis is especially suitable for a mass spring system. The 

blending matrices (introduced in Chapter 3) are used to integrate collision detection 

algorithm with a mass spring damper model incorporating physical material properties 

assigned to the model. This way the interactive design module can be used for virtual 

sculpting and validating models before extensive product detailing is performed using 

commercially available CAD software [Pungotra, 2010b]. 

The mass spring damper mesh is generated during the pre-processing phase of the 

interactive design module. Once created, the mass spring system uses the information 

provided by the collision detection system, and the force applied by the user to determine 

the deformation of the model. The sculpting forces applied by the user are mapped on the 

mass spring nodes determined by the collision detection algorithm. The force is 

distributed on the nodes of the mass spring system, and subsequently used to calculate the 

deformation and force response. Once the mass spring system changes the model shape 

according to the materials properties assigned to it, new set of control points are 

determined to represent deformed B-spline surface. While interacting with a plane 

(working bench or table), the mass nodes resting on the plane are fixed. In such a case, 
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even though these points experience external or internal forces, the nodes remain 

stationary. The flow chart shown in Figure 5.2 describes various steps required to 

generate and interact with the mass spring mesh. These steps are discussed in detail in the 

following sub-sections. 

 

 

Figure 5.2 Flow chart for mass spring mesh generation and its integration with collision detection 
algorithm. 

5.3.1 Mass spring system node generation 

As discussed in Chapter 3, blending matrices and their inverses for the B-spline surface 

patches are calculated and stored during pre-processing phase. If the individual B-spline 
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surface patches are merged, then the revised blending matrices are calculated for the 

merged B-spline surface. This process has been explained in Chapter 4.  

These blending matrices can be used to discretize the corresponding B-spline 

surface. The density of the points generated on the B-spline surfaces can be varied by 

choosing intermittent rows and columns of the blending matrices. Depending upon the 

number of nodes required for the mass spring mesh, appropriate number of points are 

generated by using intermittent rows and columns of the blending matrices. Figure 5.3(a) 

shows the B-spline surface model and Figure 5.3(b) shows the points generated on the 

virtual model for calculating mass spring mesh. 

 

 

(a) (b) 

Figure 5.3 (a) B-spline surface deformable model (b) Discrete points as nodes for the mass spring 
system. 

5.3.2 Deformable mesh generation  

Tetrahedron and hexahedron solid elements are the most commonly used structures for 

creating the mass spring meshes. Although the algorithms for producing a tetrahedral 

mesh are easier to implement, the hexahedral meshes are computationally more efficient 

because fewer elements are required to represent the shape. Furthermore, a valid mesh 

can only be generated if the angles in the tetrahedral elements are neither too obtuse nor 

too acute. Consequently, a model of a simple flat plate may inadvertently result in a large 

number of tetrahedral elements. To correct for many of the geometric errors that occur 
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using tetrahedrons the designer must manually insert hexahedral elements and sub-

meshes in certain regions of the volume model. 

A variety of mesh generation techniques have been described in the literature for 

creating hexahedral meshes. Multi-block topology technique [Hsu, 1992] allows the 

designer to first partition the object geometry into multiple hexahedral blocks or super-

elements within which an array of solid elements is produced. Each block is then further 

sub-divided into an array of elements whose size depends on the desired grid density. The 

major advantage of this multi-block mesh generation approach is that it produces a highly 

structured grid. Once the block topology is determined, a variety of CAE software tools 

must be used to optimize the elements in the desired mesh.  

The volumetric self-organizing feature map (VSOFM) [Igwe, 2008b] is a viable 

skeletal framework for modeling realistic objects that dynamically change shape with 

time. The self-organizing feature map is a lattice of nodes arranged with predefined 

topological connections. The deformable VSOFM provides an adaptable mesh for 

representing a virtual lump of clay that dynamically changes shape under external forces. 

The lattice structure ensures a closed geometry with no gaps or breaks in the surface. This 

technique is used to generate hexahedral mass spring mesh for the physically-based 

model. The hexahedral mesh of the underlying object is constructed using a deformable 

volumetric self organizing feature maps with a three-dimensional lattice of uniformly 

distributed nodes or weight points. The sparse point cloud generated on the B-spline 

surfaces encloses the 3D lattice of the deformable VSOFM, having the required number 

of nodes attached through springs and dampers. The lattice is allowed to expand to the 

point cloud. This 3D ordered lattice of the deformable VSOFM maintains the relative 

connection of neighboring nodes in the mesh as it geometrically transforms into the B-

spline surface model shape. The surface nodes are connected to the neighboring surface 

nodes as well as the interior nodes that lie directly below. Connectivity and topology of 

the developed mesh is registered to prevent unstable dynamic behavior during modeling. 

In this manner, the points generated on the B-spline surface are assigned as exterior 

nodes of the mass spring damper mesh representation. The number of nodes in the 3D 

lattice limits the density of the hexahedral element in the final physics based deformable 

model. 
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Figure 5.4 shows the generation of a mass spring system. Figure 5.4(b) shows the 

deformable VSOFM mesh which adapted to the sparse point cloud generated on the B-

spline surface model using blending matrices. The connectivity of the VSOFM nodes is 

shown in Figure 5.4(c).  

 

 

(a) Sparse point cloud 
generated on the B-spline 
model are used as exterior 
nodes for the mass spring 

(b) Mass spring damper
mesh created using 
VSOFM. 

(c) Hexahedral 
mesh of the mass 
spring damper 

 

Figure 5.4 Generation of mass spring system. 

Igwe et al. [Igwe, 2006; Igwe, 2008b] used VSOFM technique with a large point 

cloud data. However, the number of points generated on the B-spline surface can be 

correlated to the size of the mass spring mesh being created. Hence, it is possible to have 

one to one mapping of point cloud with the 3D lattice. The small point cloud data ensures 

that the computational cost of generating the mass spring damper mesh through VSOFM 

is small.  

5.3.3 Mapping of forces to nodes of mass spring system 

The collision detection algorithm, described in Chapter 3, determines the point(s) or 

surfaces of intersection of two or more virtual models. Figure 5.5 shows a tool colliding 

with a deformable B-spline surface. Once the collision detection algorithm determines the 

point(s) or surfaces of intersection, the forces applied by the user are mapped on the mass 

spring system. 
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Figure 5.5 A tool colliding with a deformable B-spline surface model. 

To clearly show the procedure of mapping haptic force to the nearby nodes, Figure 

5.6 shows a case in which intersection is happening at a point.  

 

Figure 5.6 Mapping of the sculpting force acting on B-spline surface to nodes of mass spring system. 
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When two surfaces are in contact, there may be many points on which the sculpting 

forces are acting. In this case, the sculpting force acting at each point of contact is 

mapped to the nearest nodes of the mass spring system. The total virtual forces will then 

be the vector sums of the virtual forces mapped mass spring nodes from each point of 

contact. 

5.4 Model Deformation and Force Response 

When the user interacts with the deformable model with a tool, the system must be able 

to compute the estimated position of the dynamic model at the next time step from the 

current forces being applied through the haptic tool. Collision detection algorithm 

determines the region where tool is interacting with the model. This information is used 

to map the haptic forces to the model as discussed in previous sections.  

Figure 5.7 shows a deformable hexahedral mesh and the node-spring-node 

arrangement of mass and spring within the model. In this context, the spring located 

between nodes i and j has a natural or rest length of Lij.  

 

 Figure 5.7 Hexahedral mesh and the node (mass) spring representation. 
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This length will change under the application of the force and at any instant it will be 

given by, 

jiij xxl  ,                                  (5.8) 

and the location of a node in the three coordinate directions is denoted by the three-

dimensional vector,   

],,[ 321
iii

i xxxx  .                       (5.9) 

During shape deformation, the initial length can be used to calculate the strain of the 

spring once the sculpting forces are applied. The internal and external forces cause 

mechanical strain, ije , in the connecting spring, given by 

ij

ijij
ij L

Ll
e

)( 
                                           (5.10) 

This spring will then exert a force ijs on the node i. If ijK is the material stiffness 

assigned to the model, then this force will be given by  

)( jiijijij xxeKs                                 (5.11) 

Numerical simulation of the deformation process, while the object experiences 

external forces from the haptic device, is achieved using the discrete Lagrange equations 

of motion for a dynamic node-spring system. The system dynamics is given by the 

second-order differential equation, 

)()()()( tftgtxDtx iiiiii                                           (5.12) 

where iD is the velocity-dependent damping coefficient which dissipates kinetic energy 

in the lattice through friction; i is the point mass of node i, and fi (t) is the external force 

vector applied to node i. If nei is the immediate neighbourhood around node i, then the 

total internal spring forces ( )(tgi ) given by, 





inej

iji stg )(                       (5.13) 
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The rest length of the spring Lij is determined at the beginning of the deformation 

process. The spring is then allowed to vary in length (lij) due to the plastic deformations 

or other non-linear behavior that is to be modeled by the system of equations. To simulate 

the dynamic behavior of the adaptive mesh, it is necessary to provide the initial positions 

)0(ix and the initial velocities )0(ix for each node. The initial velocities are often 

assumed to be zero. It is then necessary to integrate the equation of motion forward 

through time until the mesh stabilizes; 0 ii xx  . At each time step Δt, it is necessary to 

evaluate the current nodal forces and accelerations, the new velocities, and the new node 

positions using the explicit Euler time-integration procedure [Knopf, 2005]. While the 

object experiences external forces from the haptic device, numerical simulation of the 

deformation process can be achieved using the discrete Lagrange equations of motion for 

a dynamic node-spring system. From Eqn. (5.12), it is possible to compute acceleration at 

node i as, 

iiiiii tgtxDtftx /))()()(()(   ,                   (5.14) 

and the new velocity can be computed as, 

)()()( txttxttx i                       (5.15) 

The new position of node i, is then calculated using the equation: 

)()()( ttxttxttx iii  
                    (5.16) 

Once the user applies force on the model through the tool, Eqns. (5.12 - 5.16) 

determine the deformation of the model.  

Geometric constraints are also applied to move several points within the defined 

neighborhood radius to the new location depending upon the magnitude of the applied 

force. Applying both physical and geometrical types of constraints, offer additional 

intuitive control over the shape during the design process. Constraining geometric and 

physical properties of a deformable model also facilitates feature-centered design, which 

can significantly improve the system simulation and performance. A neighborhood 

search radius is used to update the length of the neighboring springs [Knopf, 2005]. This 
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ensures that elongation is distributed over a given area and not just regions directly 

involved with the deformation force. 

Figure 5.8 illustrates the interaction of the tool with the hexahedron mass spring 

mesh of the model. A force is applied to determine its deformation in response to the 

applied force. 

 

Figure 5.8 Illustration of interaction of the tool with the model. 

The deformation of the model can be evaluated by applying varying amount of 

forces while keeping its material properties constant.  

 

 

Figure 5.9 The deformation of the model having properties of plasticine (spring stiffness = 13 
MN/m2, density = 2500 kg/m3) while applying different forces (F). 



89 

 

Figure 5.9 shows the deformation of the model when properties of plasticine were 

incorporated to the model. Varying amount of force was applied to the model. The model 

deforms more when a large force is applied to the model. 

In a similar fashion, the force can be kept constant while the material properties are 

changed. This is helpful when an industrial designer plans to use different materials for 

the model. If the deformation of the model is within the limits, the material is selected. 

However, if the deformation is more than the prescribed limits, the user can modify the 

design or use alternate material. Figure 5.10 shows the deformation of the model having 

different spring stiffness, when a constant force of 30 N was applied. The model having 

least spring stiffness deforms the most. This process can be used for sculpting as well as 

to validate a range of forces that can be resisted by the model without deforming beyond 

the prescribed limits based on its performance criteria [Pungotra, 2009a]. 

 

 

Figure 5.10 The deformation of the model with different spring stiffness, and constant force (30 N) 
while pulling out the nose of the artifact. 

5.5 Concluding Remarks 

A deformable mass spring system was introduced in this chapter as a geometric modeling 

tool for manipulating closed 3D shapes, using physics-based modeling. Material and 

dynamic properties are incorporated into the deformable mesh by treating the surface and 

the internal nodes as point masses connected by a network of springs. The initial mass 
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spring mesh was created automatically using the blending matrices. This was 

accomplished at the pre-processing stage and hence the computational cost of mesh 

generation would not impact the real-time interaction with the model.  

The mass spring mesh works in tandem with the collision detection algorithm. The 

same blending matrices, which are used for collision detection, generate exterior nodes 

for the model. VSOFM is used to uniformly positioning the interior nodes and linking all 

the nodes together with a spring and damper assembly. Once the mesh is generated, the 

designer will be able to reshape the virtual object by introducing external forces to the 

nodal mesh.  
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CHAPTER 6   SIMULATION STUDIES AND PERFORMANCE EVALUATION 

6.1 Introduction 

This chapter discusses the implementation of the algorithms presented in this thesis. The 

simulation study and performance evaluation of the algorithm was carried out to find out 

their computational efficiency. No constraint regarding the degree of the surfaces or 

complexity of the model was applied. However, for the majority of the cases, B-spline 

surface patches of degree three were used as these are the most common surfaces used in 

CAD applications. Overall the framework for interactive design consists of three distinct 

algorithms: the collision detection algorithm (Chapter 3), merging on B-spline surface 

patches (Chapter 4), and mass spring system for physically based deformation of the 

virtual model (Chapter 5). 

This chapter presents the computational efficiency of these three algorithms 

separately. Once the efficiency of these algorithms is proved independently, it was used 

to present a test case which incorporated all three algorithms so as to evaluate the 

performance of the integrated module. The presented results proved the evidence about 

the validity and computational efficiency of the proposed technique. 

6.2 Computational Efficiency of Collision Detection Algorithm 

The focus of the research was to develop a computationally efficient collision detection 

algorithm for real-time interaction with deformable model, represented by a B-spline 

surface, during the haptic interaction with the model. As discussed in Chapter 3, 

following measures ensured a computationally efficient algorithm. 

The algorithm uses pre-calculated blending matrices to discretize the B-spline 

surface. This eliminates the need to calculate blending functions during the runtime. 

These blending matrices are sparse having a maximum of "degree of surface + 1" number 

of non-zero entries. Thus, the cost of multiplication of these matrices with the control 

point matrix is small. 
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As the blending matrices are pre-calculated, their inverse can also be pre-calculated. 

Hence, no inverse of large matrices is required at runtime, further reducing the cost of 

collision detection. 

Intermittent rows and columns of blending matrices can be used to generate sparse 

points on the B-spline surfaces. It allows the algorithm to generate fewer points initially 

to detect collision and increase the density of points at the lower levels of detail. This 

reduces the overall cost of collision detection. 

Convex hull of B-spline surfaces is used as the bounding box. As the number of 

control points is always small and their position known, the cost of updating the 

bounding volume (convex hull) is minimal. 

Most of the collision detection is carried out by checking intersection test of spheres 

generated from discrete points generated on B-spline surface. As the sphere-sphere 

intersection test is very efficient, the computational cost of collision detection is minimal. 

The algorithm uses triangle-triangle intersect test at the lowest level of detail. As the 

number of triangles is small at the lowest level of detail, the computational cost is small. 

The proposed collision detection algorithm can detect the collision between two or more 

NURBS surfaces and/or between a NURBS surface and an implicit surface, a tessellated 

surface or a point. Figure 6.1 shows two NURBS surfaces, a plane and a sphere. 

 

Figure 6.1 Primitives (plane and sphere) and B-spline surfaces (a donut and a distorted donut) for 
calculating time of collision detection. 

To check the computational efficiency of the collision detection algorithm, different 

types of surfaces were used. A B-spline surface was made to collide with another B-

spline surface, a sphere, a plane and a point.  
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The computational cost of collision detection depends upon the size of the blending 

matrices and the area of contact. The size of the blending matrices depends upon the 

number of control points and the maximum number of points that can be generated on the 

B-spline surface. The collision detection was carried out for different number of control 

points, different number of the maximum points to be generated on the B-spline surface, 

and different overlap (thereby changing the area of contact). The collision detection was 

determined for B-spline surface - plane, B-spline surface - sphere, B-spline surface - 

point and B-spline surface - B-spline surface. The results for the computational cost for 

different parameters are discussed in the following sections.  

6.2.1 Effect of the number of control points 

A cubic B-spline surface needs a minimum of 4×4 number of control points. In fact such 

a surface will be a Bezier surface. For such a surface, any deformation at any point may 

result in change for whole geometry. However, to better represent a complex model and 

to allow localized deformation, more number of control points will be needed. Control 

points also determine the minimum number of nodes for the mass spring system that can 

be used to incorporate material properties. As soon as a model deforms, the new position 

of control points is calculated by using the new position of mass spring nodes. Hence, the 

number of nodes of mass spring mesh cannot be less than the number of control points 

used to define the B-spline surface. As an example, a minimum 16 nodes for mass spring 

system will have to be used for a B-spline model with 4×4 control point net. Thus, it is 

imperative that the effect of the number of control points on the computational efficiency 

be calculated.  

It must be emphasized at this point that the computational time recorded in the 

simulation may not be the best time that the collision detection algorithm is capable of. 

The simulation time may be larger because of inherent inefficiencies in programming 

skills. A professional programming technique may be able to better utilize the resources 

of modern multi-core computers. In fact the algorithm is very well suited to take 

advantage of multithreading. Even with the programming done without utilizing 

multithreading, the time needed to check the collision detection was small.  
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The time required for collision detection also depends upon the number of points 

generated on the B-spline surface. In this section the number of points matrix used to 

determine collision is kept at 82×82 matrix. This matrix gives very good resolution. For 

simulation study the numbers of control points were selected in the range of 4×4 to 

20×20. Most of the examples used in literature do not use more than a matrix of 12×12 

for control points. Dachille [Dachille, 2001] used a maximum of 12×12 control net with 

only 25×25 mesh of points for collision detection compared to an 82×82 matrix of nodes 

used in this study. The time taken for simulation for a B-spline surface represented by a 

12×12 control point net with 25×25 mesh was 780 ms with implicit solver [Dachille, 

2001]. It used only a point to interact with the B-spline model. Gao and Gibson [Gao, 

2006] used a resolution of 40×40 and used implicit surface rigid tools. 

Table 6.1 shows the computation times for collision detection of B-spline surface 

having different number of control points. 

Table 6.1 Computational time for collision detection of B-spline surface having different number of 
control points with a point, a sphere, and a plane. 

Control points 
net 

Computational time (ms) 

Point based tool 
Sphere based 

tool 
Plane based tool 

4×4 <1 <1 2 

6×6 <1 2 3 

8×8 <1 3 4 

10×10 2 4 8 

12×12 4 5 10 

14×14 5 8 15 

16×16 6 12 22 

18×18 8 13 26 

20×20 10 17 31 
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A point-based tool, a sphere-based tool, and a plane-based tool were allowed to 

collide with the B-spline surface. Different B-spline surfaces were considered and the 

time for collision detection was noted. The resolution of the model was same for all the 

cases and was kept at 82×82. The entries of Table 6.1 represent the average of the 

collision detection time. A plane can be used for two purposes. It can be used as 

supporting surface such as a table on which B-spline surface based model can rest. It can 

also be used as tool to push, pull, or cut the model. The code was written in C++ and 

implemented with Microsoft Visual Studio 2008 on desktop computer having 6 GB RAM 

with Intel(R) Core(TM) i7 CPU @ 3.06 GHz running on Windows 7 Professional. 

As expected the computational cost increases with increase in the number of control 

points used to represent the B-spline surface. The graph shown in Figure 6.2, represents 

the trend of computational cost, as the numbers of control points are increased. 

 

 

Figure 6.2 Variation of the computational time of collision detection for a point, sphere, and plane 
with respect to the number of control points used. 

 



96 

 

The computational time for collision detection of a point with the B-spline surface is 

the least. A plane takes more time to check collision detection with the B-spline surface. 

This is due to the reason that it is closer to the B-spline surface over a larger area, thereby 

increasing the number of spheres being generated at different levels of detail. As the 

number of control points increase, the computational cost of generating more points and 

subsequent generation of spheres increases. Since more spheres are generated for a plane, 

the cost of collision detection will be more. Overall the computational time for collision 

detection is small. Particularly for B-spline surfaces having 12×12 control points, it takes 

5 ms or less for the collision detection algorithm to check intersection with a point or 

sphere. It takes about 10 ms to detect collision with a plane. 

A unique feature of the collision detection algorithm is its ability to detect collision 

between a deformable B-splines and implicit surfaces as well as between two or more 

deformable B-spline surfaces. This would allow the user to have better control about the 

type of tools used for interacting with a deformable model. The ability to detect collision 

between two or more B-splines is also utilized by the B-spline surface patch merging 

algorithm discussed in Section 6.3.  

Figure 6.3 shows the computational cost of collision detection between two B-spline 

surfaces. Again, the results are the average of the time taken by the algorithm to detect 

collision for different types of B-spline surfaces when these surfaces just start colliding. 

The control points of the two B-spline surfaces were increased independently and the 

computational cost was determined. 

The computational cost increases with increase in the number of control points used 

to represent the B-spline surface. The resolution of the model was same for all the cases 

and was kept at 82×82. Time required to detect collision between two B-spline surfaces 

represented by 8×8 control points net was 15 ms. For higher number of control points, the 

computational time increases, reaching to about 91 ms for B-spline surfaces when both 

the surfaces have 20×20 control points mesh. For smaller control points mesh, the 

computational time is very small and reduces to 6 ms when both the surfaces have 4×4 

control points net. Thus, the collision detection algorithm can be used for real time 

interaction with virtual models. 
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Figure 6.3 Variation of the computational time (ms) of collision detection for a B-spline surface with 
another deformable B-spline surface for different number of control points. 

6.2.2 Effect of the maximum number of points that can be generated 

The number of points generated on the B-spline surface defines the resolution and 

accuracy of the collision detection. This also determines the maximum number of nodes 

that can be generated for the mass spring mesh. A larger number increases the size of the 

blending matrices, Au and Av, used to generate these points using Eqn. (3.6). As a 

consequence of the large size of the blending matrices, the size of inverse of these 

blending matrices will also be large. 

The collision detection algorithm does not generate all the points simultaneously 

during collision detection process. Initially it generates sparse points in the region of 

probable collision. It generates denser points within the intersecting spheres, at lower 

levels of detail, to increase the accuracy of the collision detection as discussed in Section 

3.3. To clearly determine the effect of the maximum number of points that can be 
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generated at the lowest level of detail, a tear shaped deformable model with 8×8 number 

of control point net was checked for intersection with a point, a sphere, and a plane. 

Figure 6.4(a) shows a sphere colliding with a tear drop shape and Figure 6.4(b) shows a 

sphere colliding with the deformed tear drop represented as B-spline surface having 8×8 

control point mesh. 

(a) At point of contact (b) After contact 

Figure 6.4 A sphere colliding with (a) A tear shaped B-spline surface (b) A deformed tear shaped B-
spline surface. 

The time taken for collision detection was computed for different shapes of B-spline 

surfaces. Table 6.2 shows the cost of computation for different number of the maximum 

points that can be generated on the B-spline surface.  

Table 6.2 Computational time for collision detection of B-spline surface having different number of 
the maximum points generated at lowest level of detail with a point, sphere, and plane. 

Maximum points at 
lowest level of detail 

Computational time (ms) 

Point based 
tool 

Sphere based 
tool 

Plane based 
tool 

28×28 (784 points) <1 ~1 1 

28×82 (2296 points) <1 2 2 

82×82 (6724 points) ~1 3 4 

82×244 (20008 points) 2 4 7 

244×244 (59536 points) 3 6 15 
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When a large number of points are used, the accuracy of the collision detection is 

higher. The time shown in the table is average of the times noted for different B-spline 

surfaces. 

 Figure 6.5 shows the graph representing the trend of the computation cost with 

respect to the maximum number of points that can be generated on the B-spline surface. 

 

Figure 6.5 Variation of the computational cost of collision detection for a point, sphere, and plane 
with respect to the maximum number of points generated. 

The number of control points of the model was the same for all the cases and were 

kept at 8×8. The computational cost for collision detection increases when the maximum 

number of points to be generated on the B-spline surface, at the lowest level of detail, is 

increased. When 82×82 mesh is used, the computational time is 1 ms for a point, 3 ms for 

a sphere and 4 ms for a plane. A mesh of size 82×82 means that a total of 6724 points can 

be generated on the B-spline surface. This gives high resolution for collision detection. 

For comparison, only 625 points (25×25 mesh of points) were used by Dachille et al. 

[Dachille, 2001] and Gao and Gibbson [Gao, 2006] used 1600 points (40×40 mesh of 

points). This shows that the collision detection algorithm can efficiently detect collision 

even when a large number of points are generated to achieve higher resolution. 
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The variation of the computational cost of collision detection will more pronounced 

if the resolution of two or more B-spline surfaces is changed simultaneously. During the 

simulation of collision detection for two B-spline surfaces the maximum number of 

points that can be generated was changed for both the surfaces and its effect on the 

computational time was recorded. The maximum number of points to be generated for the 

two B-spline surfaces were increased independently. The number of control points for 

both the surfaces were kept unchanged at 8×8. 

The graph representing the trend of the computation cost is shown in Figure 6.6. The 

computational cost for collision detection increases when the maximum number of points 

that can be generated at the lowest level of detail is increased. When 82×82 mesh is used, 

the computational time is 15 ms. A mesh of size 82×82 means that a total of 6724 points 

can be generated on both the B-spline surfaces. When the number of points is decreased 

to a mesh of 28×28, the computational time decreases to 4 ms. 

 

 

Figure 6.6 Variation of the computational time(ms) of collision detection for a B-spline surface with 
another deformable B-spline surface with respect to the maximum number of points 
generated. 
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6.2.3 Effect of the area of contact 

When two surfaces begin to collide, the area of collision is small. Thus, denser points and 

subsequent spheres are generated only in a small region, at lower levels of detail. This 

reduces the cost of collision detection. However, in some cases, the area of contact can be 

very large. This would increase the region where denser points are generated and 

consequently, increase the number of spheres for which intersection test is to be carried 

out. It would also increase the number of triangles for which the triangle-triangle 

intersection test will have to be carried out. 

When the maximum number of points to be generated on the surface is selected by 

the user, the size of the model will not affect the computational cost of collision 

detection. It will be the percentage of the surface area of the model which will affect the 

overall computational cost. For the closed B-spline surfaces used to represent solids, it is 

difficult to calculate the percentage of the surface area colliding with tool. In this case, 

open flat surfaces can be used to test the cost of collision detection. For simulation, a 

square flat B-spline surface of degree 3 and represented by an 8×8 control points mesh 

was used. The resolution of the surface was kept at 82×82 (82 points generated at lowest 

level of detail in both parametric directions). For the intersection test with a sphere, the 

sphere was placed at the center of the B-spline surface and its size was increased so that 

more and more area of the B-spline surface was inside the sphere. This increased the area 

of collision detection and computational time was noted for different percentages of area. 

Similarly, the area of contact with plane was increased by increasing the overlap of the 

plane with the B-spline surface. 

Another square plane represented as a B-spline surface was used for B-spline - B-

spline collision detection. The area of overlap was increased from 1 to 100 percent. High 

computational times, when a large percentage of the area is colliding, may not permit 

real-time collision detection and haptic interaction. The computational cost increases with 

an increase in the percentage of the area colliding. As both the B-spline surfaces were flat 

and overlapping each other, all the spheres at all levels of detail would be colliding. This 

increases the cost of collision detection when the area of contact is large. The trend is 

show as a graph in Figure 6.7.  



102 

 

 

 

Figure 6.7 Variation of the computational time (ms) of collision detection for a B-spline surface with 
a sphere, plane, and another deformable B-spline surface for different percentage area of 
contact. 

The algorithm presented in this thesis uses another unique feature to reduce the 

computational cost for collision detection, as discussed in Section 3.3.3.5. The algorithm 

checks the intersection of spheres at lower level of details. At any level, if all the spheres 

generated on a B-spline surface are intersecting with the tool, the collision detection 

algorithm does not go to the lower level of detail.  

Interrupting the algorithm from going to lower levels of detail, the computational 

time will decrease significantly. This makes algorithm robust enough to efficiently tackle 

collision detection, when a large percentage of area is colliding, thereby permitting real-

time collision detection, and haptic interaction.  

The trend of computational cost is show as a graph in Figure 6.8. As the percentage 

of area increases, the cost of computation increases. However, this cost is much lower 

than that achieved without interrupting the algorithm. 
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Figure 6.8 Variation of the computational time (ms) of collision detection for a B-spline surface with 
a sphere, a plane, and another deformable B-spline surface for different percentage area 
of contact, when interrupting the algorithm from going to lower levels of detail. 

6.3 Performance of B-spline Surface Patches Merging Algorithm 

One major requirement for representing 3D objects in a VR environment is that the user 

should interact with the virtual model as if it were a visually realistic surface or solid. In 

commercially available CAD software, if the underlying algorithm is unable to merge 

surfaces, the user has some options at modifying the surfaces to prepare them for 

merging. This may be achieved by tweaking control points, trimming the surface along a 

knot, or matching the surfaces before merging. In contrast, a virtual model in a VR 

application is not considered a B-spline surface by the user but a physical 3D object and 

hence any algorithm used to combine surfaces must be sufficiently robust to incorporate 

all possible cases that may arise. The algorithm described in this thesis (Chapter 4) 

achieves the merging process without imposing any constraints. An important factor in 

determining the versatility of the algorithm is that it should be able to tackle all the cases 

during haptic interaction. In this section, different cases are considered to compare the 

robustness and accuracy of the merging algorithm. 
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The process of merging B-spline surface patches is not carried out on regular basis 

during the haptic interaction. Hence, the efficiency of merging algorithm does not affect 

the real-time interaction. However, if the user has to wait for the merging process, it may 

distract an industrial designer from creative process. Thus, it is imperative that this 

process be made as fast as possible. 

6.3.1 Robustness and accuracy of the algorithm 

The virtual model is not considered a B-spline surface by the user in VR environment. 

Hence, any algorithm must be robust so as to incorporate all the types of situations that 

may arise during merging in VR environment. 

The proposed algorithm is suitable for VR environments because the user does not 

need to directly manipulate the control points of the various surfaces. Furthermore, the 

algorithm does not impose any kind of restriction such as the degree of the surfaces, the 

knot vectors, or the type of connectivity. It utilizes the same blending matrices as those 

used by the collision detection algorithm and, thus, it is not necessary to perform 

additional or duplicate computations [Pungotra, 2010a]. For comparison purposes, a few 

cases were considered and the merged surfaces generated by the proposed technique were 

compared with the results generated by a commercially available NURBS modeling 

software package, Rhinoceros® (Rhino®). For this analysis, B-spline surface patches of 

order four are used because these are commonly combined to create complex surfaces in 

CAD and computer graphics. B-spline surface patches of higher order are considered in 

Section 6.3.2 as special cases. The algorithm was used to generate surfaces with C0, C1, 

and C2 connectivity. As Rhino® does not permit the user to edit the knot vector, or to 

select an option for the type of desired connectivity during the merging process, only C2 

continuous surfaces were generated for Rhino®. Although C0 and C2 connectivity are 

presented for comparison in this study, it is possible for the proposed algorithm to create 

the merged surface with any desired level of connectivity (K-2 or lower). 
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6.3.1.1 Case 1: Similar curvatures and knot vectors 

This is the simplest case that can be encountered when combining B-spline surface 

patches. Two arbitrary surfaces with the same degree and uniform knot vectors were used 

to generate a single integral surface.  

Figure 6.9 shows the results for the commercial software and the proposed surface 

merging approach. 

 

 

Figure 6.9 (a) Initial B-spline surface patches (b) Merged surface with C2 connectivity generated by 
Rhino® (c) Merged surface with C2 connectivity generated by proposed algorithm (d) 
Merged surface with C0 connectivity generated by proposed algorithm. 

Rhino® generates surface with C2 connectivity by default (Figure 6.9 (b)) and does 

not allow the merging of the surfaces with C0 or C1 connectivity. The proposed algorithm 

can generate a merged surface with C0, C1 or C2 connectivity. Figure 6.9(c) and Figure 

6.9(d) show the merged surface with C0, and C2 connectivity, respectively. The results for 
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the deviation of the merged surface from the original surfaces are shown in Table 6.3. 

The detailed results of the error analysis are given in Appendix A.  

The results show that the standard deviation of the merged surface, generated by 

using the proposed technique, is lower than that generated by Rhino®. The surfaces 

considered in this example are, in fact, Bézier surfaces and hence the deviation is large. 

However, when these are joined with C0 connectivity the standard deviation reduces to a 

very small value and within the tolerance required even for CAD/CAM applications. In a 

virtual reality environment a deviation of less than 0.5 mm can be considered adequate. 

Table 6.3  Comparison of the point set deviation of the merged surfaces generated  by Rhino® and 
the proposed algorithm. 

Test Cases 
Error Analysis  

(using point set 
deviation) 

Merged Surface 

Rhino® C2 
Proposed 

Method C2 
Proposed 

Method C0

1: Similar curvature 
and knot vectors 

 

Average distance 0.2242 0.3568 0.0104 

Standard deviation 0.2704 0.2452 0.0164 

21: Different curvatures 
but similar knot vectors 

 

Average distance 0.0778 0.0837 0.0458 

Standard deviation 0.1708 0.1093 0.0621 

3: Similar curvature 
but different knot 
vectors 

 

Average distance 0.0259 0.0273 0.0110 

Standard deviation 0.0364 0.0283 0.0096 

42: Similar curvatures 
but different knot 
vectors and dimensions 

 

Average distance - 0.0215 0.0233 

Standard deviation - 0.0263 0.0228 

1 The surfaces were matched (fitted without merging) before merging for Rhino®. It did not allow 
the merging of these surfaces for being too far apart, without matching. 
2 Rhino® did not merge the surfaces even after matching. 
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6.3.1.2 Case 2: Different curvatures but similar knot vectors 

In many cases, particularly when the user is manipulating surfaces derived from CAD or 

reverse engineering, the curvature of the patch edges may not be similar, as shown in 

Figure 6.10(a).  

 

Figure 6.10 (a) Initial B-spline surface patches (b) Merged surface with C2 connectivity generated by 
Rhino® after matching the surfaces (c) Merged surface with C2 connectivity generated 
by proposed algorithm (d) Merged surface with C0 connectivity generated by proposed 
algorithm (e) Point set deviation for the C2 surface generated by Rhino® after matching 
the surfaces (f) Point set deviation for the C2 surface generated by proposed algorithm. 
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The traditional methods of joining the surfaces do not work well if the curvatures do 

not match at the joining edge. Rhino® did not allow the surfaces to be merged because the 

surfaces were considered to be too far apart. In some cases, the CAD/CAM software 

allows the user to match surfaces (fitting the surfaces with certain connectivity without 

merging), thereby reducing, to a large extent, the gaps between the two surfaces. Once 

the gaps are closed, it might be possible to merge the surfaces. However, there is no 

guarantee that the surfaces will merge after matching. A merged surface was created by 

using this process on Rhino® as shown in Figure 6.10(b). 

In contrast, the proposed algorithm does not consider the curvature of the edges of 

the merging surfaces. Figure 6.10(c) and Figure 6.10(d) show the merged surface using 

the proposed algorithm, without going through the process of matching the surface, with 

C2 and C0 connectivity respectively. This feature is important, particularly in a virtual 

reality environment, because the user considers the models as objects and does not treat 

them as B-spline surface patches. Although the distance between the rows of discrete 

points near the edges can vary significantly, causing a deviation in parameterization for 

these points, the overall result is still satisfactory. As shown in Table 6.4, the standard 

deviation, even for C2 continuity, is about 0.1 mm, and reduces further to 0.06 mm, for C0 

continuity. In contrast, even after going through an extra process of matching the 

surfaces, the standard deviation for the surface generated by Rhino® is more than 0.17 

mm. The results of the point set deviation analysis generated by Rhino® are also shown. 

Figure 6.10(e) shows the deviation between discrete points of the original surfaces and 

the surface generated by Rhino®, having C2 continuity, and Figure 6.10(f) shows it for the 

surface with C2 continuity generated by the proposed algorithm. It is clear from the 

figures that Rhino® shows large deviation in the vicinity of the common edge. This is 

because Rhino® manipulates the control points only in the vicinity of the common edge. 

The proposed algorithm, on the other hand, is able to manipulate large number of control 

points and hence has lower standard deviation. With the proposed algorithm, the user 

does not have to close the gaps by manipulating the surfaces before these can be merged. 

This makes the task of joining surfaces easier for the user while working in a VR 

environment. The tolerance is also low, which makes this technique suitable, even for 

other CAD/CAM applications. 
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6.3.1.3 Case 3: Similar curvature but different knot vectors 

One constraint for NURBS-based surfaces is that an integral surface needs to have a 

continuous knot vector, though it can be uniform or non-uniform. If two surfaces with 

different knot vectors are to be merged into a single surface, then this constraint must be 

addressed. The traditional approach is to insert additional knots in the surfaces to achieve 

a continuous knot for the integral surface. Theoretically it is possible to insert a knot into 

a surface without changing its geometry, though many times, a slight change in the shape 

of the surface is observed. Even if there is no change in the geometry of the surface, 

additional knots increase the number of control points needed to represent the surface. 

These additional control points carry no significant geometric information and are added 

only to satisfy the constraint of having a continuous knot vector. The additional control 

points are a nuisance for designers because these require the designer to deal with more 

data and make it difficult to manipulate the geometry by moving the control points. In a 

virtual reality environment, the increased number of control points increases the 

computational cost of collision detection and manipulation.  

The proposed technique does not introduce additional knot vectors. It just readjusts 

the knot vectors, by averaging, in such a way that the merged surface has a common knot 

vector. Consider a case where the two surfaces being merged have knots given by U1 = 

[0, 0, 0, 0.25, 0.49, 0.67, 0.75, 0.9, 1, 1, 1] and U2 = [0, 0, 0, 0.20, 0.45, 0.61, 0.71, 0.85, 

1, 1, 1]. Then the resultant knot is calculated as average of the respective knot vectors of 

merging surfaces and will be given by U = [0, 0, 0, 0.22, 0.47, 0.64, 0.73, 0.87, 1, 1, 1]. 

Figure 6.11(a) shows the B-spline surface patches with different knot vectors and Figure 

6.11(b) shows the merged surface generated by Rhino®. The merged surface created by 

Rhino® had four more control points in v direction as compared to the original surface 

patches. The surface generated by using the present algorithm with C2 and C0 

connectivity, as shown in Figure 6.11(c) and Figure 6.11(d) respectively, had the same 

number of control points (6) as the surfaces that were merged. The merged surface 

generated by the proposed algorithm exhibits a better standard deviation even for C2 

connectivity, as shown in Table 6.4. In the case of C0 connectivity, the standard deviation 

was observed to be less than 0.01 mm. 
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(a) (b) 

 

(c) (d) 

Figure 6.11 (a) Initial B-spline surface patches (b) Merged surface with C2 connectivity generated by 
Rhino® with increased knots (c) Merged surface with C2 connectivity generated by 
proposed algorithm (d) Merged surface with C0 connectivity generated by proposed 
algorithm. 

6.3.1.4 Case 4: Similar curvatures but different knot vectors and dimensions 

In many cases, the edges of the patches to be merged do not have the same length. As the 

merged surface should have same parameter throughout the surface, the two surfaces 

need to deviate a lot from the original geometry. In commercially available CAD/CAM 

software, any two surfaces which do not have almost the same dimension cannot be 

merged. Rhino® could not merge the surfaces even after matching these surfaces. 

The present algorithm does not put any of these constraints on the surfaces to be 

merged. Figure 6.12 shows initial B-spline surface patches and the merged surface 

generated by using the proposed algorithm. The merged surface generated by the 

proposed algorithm does show a deviation when compared to the original surface, but 

overall, the result is satisfactory. As shown in Table 6.4, the standard deviation from the 

surface is 0.026 mm for C2 connectivity which is very small considering the large 

differences in the length of the edges at which the two surfaces were to be joined. 
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(a) (b) 

Figure 6.12 (a) Initial B-spline surface patches (b) Merged surface with C2 connectivity generated by 
the proposed algorithm. 

6.3.1.5 Case 5: Intersecting and trimmed surfaces 

If the patches to be merged are intersecting, the surface may not merge as intended by the 

user or may not merge at all. Rhino does not merge intersecting surfaces. The algorithm 

presented in this thesis uses collision detection to merge two or more intersecting B-

spline surface patches, as discussed in Section 4.4.1.  

 

(a) (b) 

Figure 6.13 (a) Initial B-spline surface patches (b) Merged surface with C2 connectivity generated by 
proposed algorithm. 

Figure 6.13 shows the merged surface generated by using the algorithm presented in 

this section. Except for the method of determining the matrix of combined points of 
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discretization (M), the rest of the algorithm is the same as described in the previous 

sections. It is clear from Table 6.4 that the surface generated is within the tolerance 

needed during the haptic interaction with the model. Detailed error analysis of merged 

surface is provided in Appendix A. 

Table 6.4 Comparison of the point set deviation of the merged surfaces generated  by Rhino® and 
the proposed algorithm. 

Test Case 
Error Analysis  

(using point set 
deviation) 

Merged Surface 

Rhino® 
C2 

Proposed 
Method 

C2 

Proposed 
Method 

C0 

5: Intersecting and 
trimmed surfaces 

 

Average distance - 0.0423 0.0451 

Standard deviation - 0.0792 0.0771 

6: Surfaces having 
different degrees

 

Average distance 0.0126 0.0139 0.0157 

Standard deviation 0.0125 0.0117 0.0154 

7: Multiple surfaces 
having different curvature 
and knot vectors

 

Average distance - 0.0882 0.0454 

Standard deviation - 0.1218 0.0525 

 

6.3.1.6 Case 6: Surfaces having different degrees 

Before the surfaces having different degrees can be merged, the degree of the surfaces in 

u and v directions need to be made uniform. Thus, the problem reduces to increasing or 

decreasing the degree of a surface to make it uniform with that of the other surface. The 

proposed algorithm can increase or decrease the degree of the surfaces as discussed in 

Section 4.4.2. 
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(a) (b) 

(c) (d) 

Figure 6.14 (a) Initial B-spline surface patches (b) Merged surface of order 5×6, with C4 connectivity 
in v direction, generated by Rhino® with increased knots (c) Merged surface of order 5×6 
with C4 connectivity in v direction, generated by proposed algorithm (d) Merged surface 
of order 4×4 with C2 connectivity generated by proposed algorithm. 

Figure 6.14 shows the results of merging two surfaces having different degrees. The 

first surface has 6×6 control points and degree three in both the directions. The second 

surface has 8×12 control points and degree four in u direction and degree five in v 

direction. The surfaces are being merged in v direction. Thus, the first surface will have 

to be elevated to degree four in u direction and degree 5 in v direction. Rhino®, by default 

increases the degree of lower order surface and merges these two surfaces with degree 

five in v direction with connectivity of C4 and degree four in u direction. In order to have 

a common degree for the integral surface, the proposed algorithm can generate the 

merged surface by increasing the degree of the lower order surface or decreasing the 

degree of the higher order surface. The surface generated by the proposed algorithm does 
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not require additional knots to be introduced and, hence, has a lower number of control 

points as compared to the one generated by Rhino®. Table 6.4 shows the deviation of the 

merged surface generated by Rhino® and proposed algorithm from the original surfaces.  

6.3.1.7 Case 7: Multiple surfaces 

The algorithm is capable of merging any number of surfaces. Figure 6.15(a) shows four 

B-spline surfaces to be merged and Figure 6.15(b) shows the resultant merged surface 

obtained by using the proposed algorithm. Rhino® could not merge the surfaces even 

after matching the surfaces and merging these in pairs. As shown in Table 6.4, the 

merged surface shows very small standard deviation from the original surfaces. 

(a) (b) 

Figure 6.15 (a) Initial B-spline surface patches (b) Merged surface with C2 connectivity generated by 
proposed algorithm. 

6.3.2 Computational efficiency of the merging algorithm 

The algorithm achieves computational efficiency by utilizing all available resources. It 

efficiently uses the blending matrices already calculated and stored for collision 

detection. The revised blending matrices generated during the merging process are used 

later by the collision detection algorithm, thereby minimizing the number of redundant 

calculations. The efficiency of the algorithm stems from the fact that it works in tandem 
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with the collision detection algorithm. The main computational cost comes from the 

discretization of the surfaces to be merged and the computation of the revised blending 

matrices and their inverses.  

Discretization of the surfaces to generate common matrix M is done by multiplying 

blending matrices with their respective control point matrices. The blending matrices are 

band matrices, having a maximum of “degree + 1” number of non-zero terms in each 

row. Thus, the cost of discretization is minimal. Only two revised blending matrices (and 

their inverses) need to be calculated for all the surfaces being merged simultaneously. 

Again, because a revised blending matrix is a band matrix, its inverse can be safely found 

by Gaussian Elimination Method without using a pivot. This reduces the overall 

computational cost. Table 6.5 enumerates the time taken by the algorithm to merge 

surfaces in two different scenarios. 

Table 6.5 Computational time of the algorithm for merging B-spline surface patches. 

Test Cases 

Time (seconds)  

when using the pre-
calculated blending 

matrices 

Time (seconds)  

when calculating all the 
blending matrices and 

loading B-spline 
surfaces 

1: Similar curvature and 
knot vectors 

0.0025 0.044 

2: Different curvatures but 
similar knot vectors 

0.0037 0.061 

3: Similar curvature but 
different knot vectors 

0.0028 0.073 

4: Similar curvatures but 
different knot vectors and 
dimensions 

0.0033 0.097 

5: Intersecting and 
trimmed surfaces 

0.0031 0.094 

6: Surfaces having 
different degrees 

0.0039 0.131 

7: Multiple surfaces with 
different curvatures and 
different knot vectors 

0.0048 0.145 
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For this study the code was efficiently run on a computer with "Intel(R) core(TM) 2 

Quad CPU with 4 GB RAM @ 2.66 GHz". In the first scenario, the algorithm uses the 

data stored by the collision detection algorithm. The time taken to merge the surfaces is 

enumerated in column 2. In the second scenario, the proposed algorithm does not use the 

resources stored by the collision detection algorithm. The computational cost in such a 

scenario would include loading the surfaces being merged and calculating their blending 

matrices. Column 3 of Table 6.5 shows the time taken to merge the surfaces in the second 

scenario. This scenario does not include the computational cost to find out the regions to 

be discretized, during the merging of intersecting surfaces (case 5). The computational 

cost to find the intersecting regions will depend upon the efficiency of the collision 

detection algorithm. As is clear from Table 6.5, the time required to merge the test 

surfaces described in the chapter is less than five milliseconds. Even when this code is 

independently run without using the resources for collision detection algorithm (blending 

matrices, knot vectors, control point matrices and other related information of the B-

spline surface patches to be merged), the maximum time taken to merge the surfaces is 

0.145 seconds for the test case # 7. The computational time for the proposed algorithm is 

very small and proves its efficiency. 

6.4 Computational Efficiency of Physics-based Deformation Algorithm 

The B-spline collision detection and merging algorithms can work independent of the 

physics-based deformation system used. However, in this thesis, the mass spring mesh 

has been used to impart material properties to the virtual model. This mass spring mesh is 

created during the pre-processing stage using VSOFM [Igwe, 2008a] in order to provide 

more realistic virtual experience. A denser mesh of mass spring nodes increases the 

accuracy of the deformation behaviour for the virtual model. Unfortunately, a denser 

mesh will also increase the computational cost for calculating the shape change and 

resultant forces that must be fed back to the user.  

To simulate realistic material behavior, the mass spring damper system requires 

small time-step to simulate physics based deformation of model characterized by a 

material from low to high stiffness. The running time depends upon the size of the node 
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mesh for the mass spring system and the number of training cycles. The mass spring 

damper system can be used for local deformation and global deformation.  

If the user desires to slightly change the shape or features of an existing object, local 

deformation will be a better approach. In this case the number of training cycles can be 

small (up to 50). During these iterations, the nodes which are in the vicinity of the 

colliding surfaces will move under the influence of external and internal forces. As the 

number of iterations (training cycles) increase, larger number of mass spring nodes will 

be affected by the external and internal forces. If the user desires to determine the 

characteristics of the model under the influence of external forces, depending upon the 

material properties assigned to the model to represent his/her concept, global deformation 

will be a better approach. In this case a large number of iterations will be needed so that 

all the nodes of mass spring system get sufficient time to settle under the influence of 

external and internal forces. 

Table 6.6 shows the update time of single iteration for different size of the mass 

spring damper node. The update time was noted when the algorithm was run on Intel 

Pentium (R) D/3.2 GHz [Igwe, 2008a]. 

Table 6.6 Update time for single iteration of mass spring system for different node sizes. 

Number of nodes Update time (ms)  

10×10×10 0.1 

15×15×15 0.4 

30×30×30 3.0 

6.5 Computational Efficiency of the Interactive Design Framework 

The interactive design framework consists of collision detection algorithm, B-spline 

surface patches merging algorithm, and mass spring system. In previous sections, these 

algorithms were independently implemented to determine the efficiency and accuracy of 
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these algorithms. In this section, these algorithms were combined and the overall 

computational time was determined. As discussed in Sections 3.3 and 5.2, the collision 

detection and mass spring system algorithm has two phases. In the pre-processing phase, 

blending matrices and their inverses are determined. At the same time the nodes for the 

mass spring system and the properties of the springs and dampers are determined, based 

on the material properties assigned to the virtual model. The computational cost of pre-

processing phase does not affect the run-time computational time. During the run-time 

phase, the total computational cost includes the cost of collision detection, and cost of 

determining the deformation of the model using mass spring system. 

6.5.1 Pre-processing phase 

During the pre-processing phase the algorithm receives input of the control points, knot 

vector, type of surface (open or closed), maximum number of points to be generated on 

the B-spline surface at the lowest level of detail, the number of nodes for the mass spring 

system, and the material properties to be assigned to the model. If the knot vector is not 

given, it is calculated by the algorithm. 

As discussed in Section 3.3, two blending matrices are generated for each B-spline 

surface. At the same time, the inverse of these blending matrices is calculated. The 

computation time for calculating these blending matrices is small. For a B-spline surface 

with a control point mesh of size 50×50 and having a maximum of 244×244 number of 

points that can be generated on the B-spline surface at the lowest level of detail, the 

computational time to calculate blending matrices and their inverses is 1.434 seconds. 

The size of the blending matrix in u direction will be 50×244 and the size of the blending 

matrix in v direction will be 244×50. This time reduces to 8 milliseconds for a B-spline 

surface having a control point mesh of size 8×8 and 82×82 number of points that can be 

generated on the B-spline surface at the lowest level of detail. 

The computation time to generate nodes for mass spring system depends upon the 

size of the mass spring mesh and the number of learning cycles used to generate VSOFM 

mesh. More cycles (up to 1000) are needed when the VSOFM models is required to 

generate the mass spring mesh from a very large cloud point set. In the algorithm 
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presented in this thesis, very small number of nodes is given for generation of mass 

spring nodes. Thus, fewer learning cycles (100) give very good results. In the present 

algorithm, 300 learning cycles were used. For a 12×12×12 mass spring mesh, it takes 

3.471 seconds to generate the mass spring damper model. Table 6.7 shows the 

computational time for generation of mass spring mesh of different sizes. Even for 

20×20×20 mass spring mesh the pre-processing time is less than half minute, which is 

very reasonable.  

Table 6.7 Pre-processing time for generation of mass spring system for different node sizes. 

Number of nodes Pre-Processing Time (seconds)  

10×10×10 2.44 

15×15×15 7.88 

20×20×20 28.48 

25×25×25 76.90 

30×30×30 213.02 

35×35×35 353.19 

40×40×40 958.10 

 

The computation time increase with increased size nodes for the mass spring system. 

Figure 6.16 shows the correlation between the size of the mass spring mesh being 

generated and the pre-processing time for calculating the mesh by using volumetric self 

organizing feature map. 
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Figure 6.16 Pre-processing time for calculating the mass spring mesh of different sizes. 

6.5.2 Run-time phase 

During the run-time phase the total computational time is sum total of the computation 

times for collision detection and force response system. Number of control points used to 

represent the B-spline surface and the maximum number of points to be generated on the 

B-spline surface determine the computational time for collision detection. At the same 

time, the number of nodes needed to represent mass-spring system mesh and the number 

of iterations performed to calculate deformation of the model determines the 

computational cost for the force response model. 

The computational times for different algorithms were enumerated in Sections 6.2, 

6.3, and 6.4 under different conditions. For implementing the interactive design 

framework B-spline surface was represented by a control point net of size 8×8. Maximum 

of 82×82 points can be generated on the B-spline surface at the lowest level of detail. 

Thus the B-spline surface can be represented at very good resolution with sufficient 

number of control points. The size of the nodes for the mass spring system was 

12×12×12. The variables were assigned for a general case. However, these variables can 

be varied by the user as per his/her requirements. 
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Figure 6.17 (a) Deformable B-spline model (b) Points for collision detection (c) Mass spring mesh. 

Figure 6.17(a) show a deformable tear drop B-spline model, the maximum number 

of points that can be generated at the lowest level of detail (Figure 6.17(b)), and the mass 

spring system for the model (Figure 6.17(c)). The thick red lines in Figure 6.17(c) show 

the boundaries of the hexahedron mass spring mesh. These boundaries were the edges of 

a cube and adapt to the shape of the B-spline model. The model was made to interact with 

different types of tools. These included point-based, implicit surface-based (sphere, 

plane), and deformable B-spline surface-based tools. The algorithm can generate frame 

rate in excess of 30 Hz.  

6.6 Concluding Remarks 

In this chapter, the algorithms developed for collision detection, merging B-spline surface 

patches, and mass spring damper based deformation system were implemented. 

Computational efficiency and robustness of these algorithms were checked during the 

implementation. The proposed algorithms are robust as these are capable of handling all 

the cases that are acceptable for NURBS-based surfaces. These algorithms do not impose 

any restriction on the degree of the surface patches, the number of control points, 

convexity or concavity of the surface, and extent of deformation. 



122 

 

Collision detection algorithm can efficiently carry out the intersection test for a 

variety of surfaces, such as, point, implicit surfaces, tessellated surfaces, and deformable 

B-spline surfaces. Even when the area of contact is large, the collision detection 

algorithm can maintain reasonable frame rate. B-spline surface patch merging algorithm 

additionally does not impose any restriction regarding the type of continuity required at 

the common edge, the knot vector, or the number of surfaces being merged 

simultaneously. The proposed algorithm can efficiently merge B-spline surface patches 

having dissimilar curvatures at the common edge, intersecting B-spline surface patches, 

and the B-spline surface patches having trimmed edges. The user will not have to face a 

situation where the two surfaces cannot be merged due to intersection, dissimilar 

curvature at common edge or similar situations. This adds to the robustness of the 

algorithm. All the algorithms work in tandem and use the pre-computed blending 

matrices efficiently. This increases the robustness and efficiency of the framework 

developed in this thesis.  

The virtual interactive design module which consists of the collision detection and 

merging of B-spline surfaces and mass spring mesh, can achieve frame rates in excess of 

30 Hz. This will allow the user to interaction with the deformable model in real-time. 

However, if a very dense mass spring mesh is used or if the numbers of control points of 

the B-spline surfaces are very large, the computation time will increase. 
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CHAPTER 7   DEFORMABLE MODELS FOR INTERACTIVE DESIGN AND 

USER TRAINING 

7.1 Introduction 

Modeling deformable objects for freeform interactive design is an active research topic in 

engineering. Physically based virtual models provide a sense of realism to the user for 

many applications in engineering. Over the past decade, B-spline modeling has become 

the standard mathematical model for representing freeform or organic objects in 

CAD/CAM systems. Using a B-spline surface to represent the virtual model in a haptic 

interactive design module helps to streamline the exchange of the information with 

existing CAD/CAM systems. B-spline surfaces also help increase visual realism because 

these represent continuous surface. At the same time, the algorithms used for interaction 

with the virtual model should be computationally efficient to maintain acceptable level of 

virtual realism of 30 Hz required for human eye to perceive the dynamic simulation as 

continuous with no time lag. 

Figure 7.1 shows the various modeling techniques developed in this thesis and their 

relationship to the interactive design problem. These techniques are integrated to develop 

a B-spline surface based interactive design module for various applications in virtual 

reality environment. The same virtual reality issues exist for user training and the 

modeling techniques developed in thesis can be used to provide a virtual environment to 

the user similar to the real world applications. This will help users to benefit from the 

unique features of the design concept. At the same time, the users can provide valuable 

insight to an industrial designer during their interaction with various design concepts. 

Simple illustrations of an application familiar to everyone are presented in this 

chapter to demonstrate the capability of the developed algorithm for freeform interactive 

shape design and user training. B-spline surface based deformable models have been used 

for the illustrations. The tools have been represented as rigid implicit surfaces (plane and 

sphere) as well as deformable B-spline surfaces. 
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Figure 7.1 Integration of various modeling techniques proposed in this thesis to develop B-spline 
surface based interactive design module for various applications in virtual reality 
environment. 

7.2 Conceptual Product Design 

The concept design process needs creativity and freedom to innovate and explore 

alternative solutions [Morris, 2009]. During the concept generation phase a rough idea, 

which can come from the background research or from a previous design, is expanded 

into several solution alternatives. Physical product design and production may require 

major investments and can lead to significant financial implications in the event of a 

solution not meeting design requirements or specifications. However, these risks can be 

managed by developing and testing new solutions at the concept stage. The product 

concepts can be evaluated depending on the design considerations and identified 

customer needs. 

Based on the results of a user study, an industrial designer first outlines requirements 

of the users. Concept design process starts by defining the user groups and describing the 

usage of the final concept product. The designer then defines a hypothetical user activity 
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and starts generating more detailed solutions for the products to support this activity. This 

process includes a description of the basic functions, design specification requirements, 

functional requirements, ergonomic shape features, constraints, and other important 

technical attributes.  

The evaluation of product concept solutions is one of the critical steps in the concept 

development process. The target of the evaluation is to make a decision on whether to 

discontinue the concept, further iterate the concept, or start utilising the concept. 

Valuable insight into refining the concepts can be gained using evaluation methods 

involving end-users. An important goal is to identify whether the new product concepts 

find acceptance amongst the intended target user group. Another goal may be to evaluate 

the design from a human factors perspective. User evaluation is useful as a tool for 

iteratively refining the designs based on user feedback in accordance with the concept of 

user-centred design.  

The modeling techniques developed in this thesis can enable an industrial designer to 

sculpt and validate the concepts in the virtual reality environment. A group of users, 

fairly representative of the intended user's segment, can evaluate the concept in VR 

environment. Further design modifications may be guided by different sets of users. 

These different sets of user may be based on different cultures, geographies, age groups, 

or medical conditions. These modifications will often deal with a variety of needs that 

can be fulfilled using innovative but easily implemented changes to the existing generic 

model. 

Concept design focuses on the fundamental characteristics of the product that 

distinguishes it from the existing products or concepts. These characteristics may include 

appearance, product size, shape, ergonomics, interaction, and intended user segment of 

population. These characteristics may result in tangible benefits for different user 

segments. In this context, the term easy-to-use may be a vague generalized idea. Different 

user segments will find varying degree of ease while using a product.  

In order for product design to fulfill the requirements of diverse set of users, several 

methods for supporting design activities have been developed. Computer Aided Design 

(CAD) systems support the precise and detailed specifications of the geometry of the 
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product. However, before the precise and detailed specification of product design is 

carried out, several concepts must be developed. These concepts must be tested by 

various user segments. Virtual reality can be used to design and test these concepts. The 

modeling tools developed in this thesis can be used for the purpose. B-spline surface 

representation of the model ensures streamlined exchange of information with CAD 

systems for precise and detailed specifications. The following sections illustrate the use 

of the modeling methodologies developed in this thesis for shape design, validation of 

concept, and user training. 

7.3 Interactive Design of an Ergonomic Spoon 

Real-time interaction with a product model during interactive development provides a 

quick insight into the overall performance of the proposed solution. The example of 

designing a functional, stylistic spoon for different user segments is used to establish the 

application and desirability of the modeling tools developed in this thesis. Figure 7.2 

shows many of the commercially available spoons.  

 

Figure 7.2 Photograph of typical commercially available spoons. Product designs mainly focus on 
contemporary style, ease of use, and comfort of the user. 

These designs presume that the intended users can efficiently work with their hands 

and fingers. However, for different sets of users, these designs may not be suitable from 



127 

 

an ergonomic point of view in terms of ease-of-use and providing comfortable grip. One 

of the user segments is of the patients suffering from rheumatoid arthritis. Rheumatoid 

arthritis is a chronic inflammatory disorder that most typically affects the small joints in 

hands and feet [The, Arthritis Society, 2010]. The patients often experience lack of 

movement in their upper body joints. Eating is one of basic tasks that can be impaired by 

rheumatoid arthritis. The spoons that are commercially available may not be helpful for 

this user segment. Virtual reality can make it possible for an industrial designer to imitate 

a rheumatoid arthritis patient and develop ergonomic spoons for the users.  

Figure 7.3(a-b) shows natural way of fetching and eating food. Figure 7.3(c) shows 

the hand of a patient suffering from rheumatoid arthritis. This limits the movement of 

fingers and wrist. It is generally accepted that a user would hold a spoon in particular way 

and turn wrist to eat as shown in Figure 7.3(a-b). However, this may not be possible for 

different users such as patients suffering from rheumatoid arthritis, children, and aged 

people. Due to a weak grip (as in case of children and aged people) or restricted motion 

(as in case of patients suffering from rheumatoid arthritis), it possible that a user cannot 

put the food properly in the spoon or can get the food in the spoon, but cannot turn 

his/her wrist enough to bring it to mouth without spilling it. Even for other users, it is 

possible to come up with different concepts to develop ergonomic spoons. 

   

(a) (b) (c) 

Figure 7.3 Generally accepted motions (a) Holding a spoon and (b) Rotating wrist while eating (c) 
Rheumatoid arthritis restricts movements of fingers and wrist, modified picture from 
[Joint, Pain Solutions, 2010]. 

In a similar fashion, different materials can be incorporated in product design to 

reduce overall weight and enhance features such as high friction gripping surface to 

prevent slippage of spoon during use. In this context, a variety of concepts that cannot be 
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addressed effectively using conventional CAD design packages may be examined using 

interactive design simulation tools in virtual reality environment. The haptic technologies 

associated with virtual reality based design can also enable the designer to alternate 

concepts depending upon the range of motion and examine the effectiveness of the 

concept while holding and manipulating the proposed solution.  

An initial design can be obtained by digitizing an existing design using reverse 

engineering approach. Point cloud data or tessellated surface can be used to obtain an 

initial design represented as a B-spline surface. Conventional CAD system can also be 

used to create the initial form. Alternatively, the initial design can be created from a 

virtual lump of clay. Figure 7.4 shows the generation of initial design by different 

methods.  

 

Figure 7.4 Different methods to generate initial design represented as a B-spline surface. 
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Initial analysis can be carried out in VR space to determine if the product meets the 

requirements for all/intended user segments or if it needs modifications for particular 

segments of users. The industrial designer can investigate different shapes, sizes, and 

material of the spoon to determine a valid concept before finally deciding on the best 

design for intended user segments. 

In terms of function, a spoon is primarily used for serving or eating food, although, 

these spoons can be further classified based on the basis of drink or food with which they 

are most often used. Based on the function, two different designs are considered in this 

thesis, a spoon for eating food and a spoon for serving food. 

A spoon has two distinct parts, a handle for holding and a small shallow bowl (or 

shell), oval or round, at the end of the handle for fetching food. Figure 7.5 shows two 

parts of a spoon.  

 

 

Figure 7.5 Parts of a spoon. 

A spoon can be modified as a whole or the two parts (handle and bowl) can be 

designed separately and later merged to get the desired shape. Separate parts are easier to 

manipulate and can give rise to more concept models by different combinations. 

7.3.1.1 Spoon for eating food 

The handle of a spoon can be modified in different shapes and sizes to accommodate 

impaired wrist movements or weak grip of fingers. To reduce the computational cost, the 

Bowl or shell 

Handle 
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bowl (shell) part and handle are used as separate B-spline models. One of the solutions is 

to bend the handle so that the bowl part of the spoon faces the person and he/she does not 

need to bend the wrist to eat from the spoon.  

Using the interactive design frame work, bending can be achieved by fixing one end 

of the spoon handle and applying force on the other part. Figure 7.6(a) shows the handle 

of initial spoon design. In the design framework, a plane is used to fix a portion of handle 

and the force is applied by a sphere based tool. Figure 7.6(b) shows the vertical plane and 

the sphere used to push the handle.  

 

Figure 7.6 (a) Handle of spoon from the initial design (b) A plane is used to fix nodes on one side of 
the plane (opposite to the direction of normal vector) and a sphere is used to apply force. 

During the pre-processing phase, a mass spring mesh is created for the handle shown 

in Figure 7.6(a) (Please refer to Chapter 5 for detail). A 12×12×12 node mesh was 

created, from the points generated by using blending matrices. Figure 7.7(a) shows the 

mass spring mesh of the spoon handle.  
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Figure 7.7 (a) Mass spring mesh for the spoon handle (b) Fixed nodes (green) and the nodes 
colliding with the sphere tool (red) (c) Side view the B-spline model showing fixed and 
colliding nodes. 

Collision detection algorithm, developed in this thesis, checks the intersection of the 

plane with the spoon handle (Please refer to Chapter 3 for detail). All the nodes on one 

side of the plane (opposite side of the normal vector of plane) are fixed. The fixed nodes 

do not experience any movement or deformation. Even if these nodes experience internal 

or external force through spring damper system, these nodes do not move. The nodes 

(green color) shown in Figure 7.7(b-c), are the fixed nodes detected by the collision 

detection algorithm.  

At the same time, the collision detection algorithm checks the intersection of the tool 

sphere and the B-spline model. It first determines the intersection of sphere and the 

convex hull of the spoon handle. Points are generated within the minimum and maximum 

range of u and v parameters, determined from the intersection of the tool sphere and the 

convex hull. Spheres are generated using these points and intersection test is carried out 

between the tool spheres and the spheres created on the B-spline surface. More points are 

generated within the intersecting spheres at the lower level of detail. This process is 

carried out until the collision detection algorithm determines the region of the B-spline 
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model colliding with the tool sphere and determines the nodes of the mass spring system 

which will be experiencing external force. The process of collision detection was 

explained in Section 3.3. The information about the magnitude of the external force 

applied through the sphere and the nodes experiencing this force is transmitted the mass 

spring deformation system. Figure 7.7(b-c) shows the nodes (red color), determined by 

the collision detection algorithm, which will experience external force. 

As soon as a force is applied through the sphere, the B-spline model starts 

deforming. The upper part of the handle shown in Figure 7.7(b-c) has fixed nodes and 

therefore, cannot move under the influence of applied force. However, the bottom side of 

handle is free to move. Figure 7.8 (a) shows the initial design of the spoon handle, 

experiencing the external force through the tool sphere. Figure 7.8(b) shows an 

intermediate shape of the handle after a force was applied. Initially the middle portion of 

the handle was deformed and the free end of the spoon lagged behind the middle portion. 

However, as the number of iterations increased, the middle and bottom portions got 

straightened up. Figure 7.8(c) shows the bending of the handle under application of force. 

 

Figure 7.8 Deformation of handle under the application of external force with one end fixed. 
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It should be noted that the lower end of the handle will remain straight only if global 

deformation is allowed. With higher number of iterations the free side of the handle gets 

enough time to straighten up. In case of local deformation, the portion where force is 

applied will deform but this deformation will not get enough time to propagate 

throughout the mass spring mesh. Due to global deformation, the free end of the handle 

moves enough to keep the bottom side of the handle straight. 

By applying forces at different points, the shape is further changed as shown in 

Figure 7.9(a). Once the initial spoon handle shape is modified using the tools developed 

in this thesis, the B-spline model is imported in commercially available CAD software 

(Rhino®) to refine and add finer details to the model. The refined model for the handle of 

the spoon is shown in Figure 7.9(b).  

 

(a) (b) 

Figure 7.9 Modified shape of spoon to accommodate lack of wrist movement. 

It is possible that the user cannot use fingers to hold the spoon due to lack of 

movement of fingers, or weak grip. If the user cannot hold the spoon with fingers, then 

the handle can be modified to for a firm grip using all the fingers. This will also help to 

effectively counter the torque resulting from the modified design. Again, the tools 

developed in this thesis can be used to change the shape of the handle. 
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(a) Handle of the spoon 

interacting with too sphere
(b) Deformation due to 

applied force 
(c) Modified shape of handle 

after several interactions 

Figure 7.10 Modifying the shape of spoon handle to grip it with all the fingers of hand. 

Figure 7.10(a) shows the spoon handle a tool sphere. Again, the collision detection 

algorithm determines the colliding nodes of the mass spring mesh, which would 

experience the external force applied through this sphere. As soon as the tool sphere is 

pulled out, the nodes of the mass spring mesh colliding with the tool sphere (determined 

by the collision detection algorithm) experience force in the outward direction. The 

external force acting on the colliding nodes starts pulling these mass spring nodes in the 

direction of the external force. In this case, local modification is more appropriate 

because we only intend to change the shape in a small region. Local modification uses 

small number of iterations and hence, the nodes which are away from the colliding 

surface do not get enough time to move under the application of the external force. Due 

to this reason, there is no need to have a plane to fix some of the nodes. Figure 7.10(b) 

shows the deformation of the handle under the influence of external force applied through 

the sphere tool. By repeating this process at different points, the handle can be modified 

to accommodate all the four fingers to grab the handle while eating. Figure 7.10(c) shows 

the spoon the with modified handle shape.  

Once various shapes of the spoon handle are generated, these handles need to be 

merged with the bowl section of the spoon. The B-spline surface patches merging 

Force 
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algorithm can be used to merge the bowl and handle part to generate various models 

(Please refer to Chapter 4 for detail).  

 

 
(a) Bowl and handle of 

spoon 
(b) Point cloud of the bowl 

and handle of the spoon 
(c) Merged B-spline model 

of spoon 

Figure 7.11 Merging bowl and modified spoon handle to generate the B-spline model of a of spoon. 

Figure 7.11(a) shows the bowl and the modified spoon model. These parts must be 

merged to generate an integrated B-spline model of the design concept for a spoon. Due 

to the modification of the shape of the handle, the knot vector and the common edge of 

the bowl and handle did not match. Rhino could not merge these B-spline models to 

generate a single B-spline surface patch. Even when the edges were matched 

(establishing tangency at the common edge without merging) Rhino did not allow the 

merging of the surface for being too far apart. The main reason was that when the knot 

vectors are different, even after matching of the surfaces, certain gaps remain at the 

common edges. However, the B-spline merging algorithm can merge these surfaces even 

without matching or manipulating the control points of the B-spline surfaces. Figure 

7.11(b) shows the point cloud of the bowl and handle, generated by using blending 

matrices stored during the pre-processing phase. These point clouds are merged to 

generate single matrix of the point clouds, M. Revised number of control points, knot 

vector are calculated as discussed in Chapter 4. Using the matrix of points M, revised 

knot vector, and revised number of control points new blending matrices are generated. 
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These revised blending matrices are further sued to generate a merged, single patch B-

spline surface is of the spoon as shown in Figure 7.11(c). 

This design can accommodate the lack of wrist movement and the user does not have 

to rotate his/her wrist. However, due to the bend, the user will experience a torque. Figure 

7.12(a) shows the initial design and Figure 7.12 (b-d) show different variations of the 

design. The design shown in Figure 7.12 (b) can accommodate lack of wrist movement of 

the user. The designs shown in Figure 7.12 (c-d) provide better grip for different sets of 

users. These grips can be further modified to suit grip of the user. 

 

  
 

 

(a)  (b)  (c) (d) 

Figure 7.12 Investigation of different shapes of a spoon for eating food to accommodate impaired 
wrist movements or weak grip of fingers. The original design is shown in (a) and design 
modifications are presented from (b) to (d).  

These designs can be evaluated by an industrial designer or a user in the virtual 

reality environment. The evaluation of the model and user training with a finalized model 

is presented in Section 7.4. 

7.3.1.2 Spoon for serving food 

A serving spoon, in general, would have deeper shell and longer handle. A general 

design, as shown in Figure 7.13(a), consists of a straight handle and a bowl. While 



137 

 

serving from a deep container, the user must raise his/her arm to fetch food from the 

container. Restricted movement of the arm (or short arm in case of children) may make it 

harder to serve food. Hence, the design must be modified to accommodate this user 

group. Figure 7.13(b) shows a design which can be used to fetch food without raising 

arm. The handle of the spoon was bent in manner as discussed in previous section. The 

handle allows the user to fetch food from a deep container without raising the arm. 

However, it would take more torque to pour food in plate due to the bent handle. To 

accommodate it, one side of the bowl part of the spoon can be dipped to allow easy 

serving of the food. Figure 7.13(c) shows this variation which makes it easy to pour food 

into the plate. These modifications can be carried out using the methodologies developed 

in this thesis. 

 

 

  

(a)  (b)  (c) 

Figure 7.13 Investigation of different shapes of a serving spoon to accommodate impaired shoulder 
movements. The original design is shown in (a) and design modifications are presented in 
(b) and (c). 

7.4 Evaluation of Model and User Training 

Once an industrial designer comes up with different concepts, these can be evaluated 

before moving on to the next step of detailed design. The models can be evaluated in 

relation to its ergonomic shape and size, suitability for intended user group, strength and 

weight. Once the design is finalized for form and function, it can be used to impart 

training to the user group. 
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7.4.1 Evaluation of model 

Considering the group of users affected by rheumatoid arthritis, aged people, and 

children, it will be pertinent to know if these users can eat with the spoon without spilling 

the food. The collision detection algorithm, developed in this thesis is capable of 

handling collision of two or more deformable B-spline surfaces.  

A B-spline surface patch having 8×8 control points net was used to represent food 

(jelly) for interaction with the spoon to mimic eating with a spoon. A 12×12×12 mass 

spring damper mesh was used to incorporate material properties of jelly to this model. 

Figure 7.14(a) shows the B-spline model and Figure 7.14 (b-c) show the mass spring 

mesh of this model. 

 
  

(a) B-spline model (b) Mass spring model 
shown with facets. The 

nodes are shown as green 
dots 

(c) Mass spring model. 
The thick red lines 

represent the boundries 
of hexahedron mesh 

Figure 7.14 (a) B-spline model representing food (jelly) (b-c) Mass spring mesh to incorporate 
material properties to the model. 

The methodologies developed in this thesis, make it possible to model food (jelly) as 

a B-spline deformable model and simulate an environment in which a user can interact 

with food and spoon represented as B-spline surfaces. Figure 7.15(a) shows a spoon with 

a jelly on it, while the spoon was kept straight. Again, the collision detection algorithm 

detects the regions of the B-spline models colliding in the virtual reality environment. 
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(a) Jelly on spoon (b) Jelly starts 

flowing under its 
own weight 

(c) Jell stops flowing 
further due to its 

own weight 

(d) Other view of the 
jelly flowing due to 

its own weight 

Figure 7.15 Simulation of food (jelly) in a spoon without tilting it. 

Due to its own weight, jelly started flowing downwards as shown in Figure 7.15(b). 

As soon as jelly deforms, the control points net of this B-spline model gets updated to 

represent deformed jelly. By using the blending matrices and the revised matrix of 

control points, points are once again generated on jelly. Spheres are generated on the jelly 

surface using these points. Same process is carried out for the spoon. The spheres 

generated on jelly and spoon are checked for intersection and more points and 

subsequently spheres are generated at the lower levels of detail. At the lowest level, the 

collision detection algorithm determines the nodes which will experience external force 

due to the collision. Thus the nodes of the mass spring mesh of jelly, which collide with 

spoon experience reactive force and do not move downwards. However, other nodes 

continue to move and their movements are determined by the mass spring mesh and the 

physical properties assigned to it. The control points of the B-spline models are updated 

and this process continues. As the mass spring model of spoon has more stiffness (given 

properties of steel), there is no noticeable change in the shape of spoon. However, if 

different material is chosen, the shape of spoon may also change. 
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 As shown in Figure 7.15(b-d), jelly starts spilling out of the spoon. This means that 

if this design is used, the user cannot eat jelly by using this size without spilling it. Figure 

7.15(d) shows the close up of the bowl of spoon. It is clear that the jelly is spilling from 

the front portion of the spoon bowl. At this point, an industrial designer can start 

modifying the design in such a way that the jelly does not get spilled. It is clear from 

Figure 7.15 (b-d) that the jelly was spilling from the front portion of the spoon bowl 

while the back portion was empty. The design of the spoon can be modified to see how 

the jelly will behave, if the bowl is tilted about 10 degree in the backward (clockwise for 

the spoon shown in Figure 7.15, when seen from the handle side along the handle) 

direction. Figure 7.16(a) shows the jelly put in a spoon with tilted bowl. The jelly starts 

flowing due to its own weight as shown in Figure 7.16(a-d). However, this time it does 

not spill out of the spoon as shown in Figure 7.16(d). It spreads in the spoon evenly. This 

shows that there was improvement in the design. 

 

(a) Jelly on spoon (b) Jelly starts 
flowing under its 

own weight 

(c) Jell stops flowing 
further due to its 

own weight 

(d) Other view of the 
spoon. Jelly does not 

spill out of spoon 

Figure 7.16 Simulation of food (jelly) in a spoon when the bowl is tilted by ten degree. 

The bowl was tilted by 20 degree to see if it further improves the design. However, 

as shown in Figure 7.17, the jelly started flowing from the back part of the spoon. This 



141 

 

means that by tilting the bowl by twenty degrees, the design deteriorated rather than 

improving its functionality. 

 

 

(a) Jelly on spoon (b) Jelly starts 
flowing under its 

own weight 

(c) Jell stops flowing 
further due to its 

own weight 

(d) Bottom view of the 
spoon. Jelly spills out 

of spoon 

Figure 7.17 Simulation of food (jelly) in a spoon when the bowl is tilted by twenty degree. 

The simulation suggests that the spoon bowl should be tilted by 10 degree to 

improve the design. In a similar fashion, other parameters of the spoon such as depth of 

the bowl, curvature of the bowl, or the width of the bowl, can be varied to determine best 

suitable design. 

The industrial designer can also determine weight of the spoon, the deflection of the 

spoon due to its own weight and that of the food, while using different materials for the 

spoon. The preliminary evaluation of the concepts in the virtual reality environment 

would help the industrial designer to come up with the designs which can be successfully 

implemented. The tools developed in this thesis, can provide this environment to the 

industrial designer. 
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7.4.2 User training 

Even when a product design for a given user segment is ready, the users may require 

training to benefit from the unique features of the design. Even when a variety of shapes 

is available for a spoon, adaptations needed for eating may still be overwhelming for 

patients suffering from rheumatoid arthritis or aged people having weak grips. An 

occupational therapist can help train these people. However, this would require that 

products are readily available in the market. In the absence of a suitable product, it might 

be difficult for an occupational therapist to train this user segment. Virtual reality 

environment can be used to efficiently train these users. Various shapes discussed in 

Section 7.3 can be used to assess how a user eats his/her food and determine which 

design will work for a particular user or a set of users. At the same time, an industrial 

designer can have better understanding of the difficulties of the user group. This can help 

the industrial designer to come up with better design after receiving valuable inputs from 

the users. 

A major challenge for patients of rheumatoid arthritis or aged people is to eat food 

with a spoon without spilling it. There are primarily two reasons for spilling food from 

the spoon; tilting of spoon and shaking of hands while eating with a spoon. Virtual reality 

environment can provide various scenarios in which a user can interact with spoon while 

eating food. A variety of spoons developed during the interactive design phase can be 

used to determine the best fit for the user.  

In the simulation study, different scenarios were considered, which included 

different angle of tilt for the spoon and shaking of hands. Acceleration was imparted to 

spoon to simulate shaking of hands. When the spoon gets tilted, jelly may start spilling 

out of the spoon. A larger tilt will increase the rate of spilling of jelly. However, by 

practicing with the virtual spoon, a user can be trained to eat without spilling food. Figure 

7.18(a) shows the interaction of spoon and food to simulate a user tilting his/her spoon 

while eating food. Different angle of tilt were considered which resulted in spilling of 

jelly by different magnitudes. Figure 7.18(b) shows spilling of jelly when the spoon was 

tilted by ten degrees. The spilling of jelly increased with increased angle of tilt as shown 

by Figure 7.18(b-d). Figure 7.18(e-h) show the side view of the spoon and jelly. 
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(a) Jelly on spoon (b) Jelly spills out of 
spoon when spoon 

is tilted by 10 
degrees 

(c) Jelly spills out of 
spoon when spoon 

is tilted by 20 
degrees 

(d) Jelly spills out of 
spoon when spoon 

is tilted by 30 
degrees 

   

(e) Side veiw of the 
jelly on spoon  

(f) Side view of the 
spilling jelly, when 
the spoon tilted by 

10 degree 

(g) Side view of the 
spilling jelly, when 
the spoon tilted by 

20 degree 

(h) Side view of the 
spilling jelly, when 
the spoon tilted by 

30 degree 

Figure 7.18 Simulation of food (jelly) in a spoon when the spoon is tilted by different degrees. 

The spilling of spoon gets aggravated when the tilting of spoon is accompanied by 

the shaking of hands while eating with a spoon. By incorporating the acceleration to the 

spoon and eventually to the food, both the tilting of spoon as well as shaking of hands can 

be simulated. Figure 7.19(a) shows the jelly on the spoon bowl. Its side view is shown in 

Figure 7.19(e). If the user tilts the spoon (anti-clockwise rotation of the spoon when seen 

from the side of the handle of the spoon) and his/her hands are shaking in the same 

direction, the jelly will experience force due to its own weight as well as due to the 

inertial forces. Figure 7.19(b and f) show the result of simulation. It is clear from the 

figure that shaking of hand exacerbates the slipping of jelly from the spoon. However, 
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when the shaking of hands happened in the transverse direction, the jelly slipped to lesser 

extent as shown in Figure 7.19(c and g). 

 

  

(a) Jelly on spoon (b) Jelly spills out of 
spoon when spoon is 
tilted by 30 degrees 

and the user's hand is 
shaking in the same 

direction 

(c) Jelly spills out of 
spoon when spoon 

is tilted by 30 
degrees and the 
user's hand is 
shaking in the 

transverse direction

(d) Jelly spills out of 
spoon when spoon 

is tilted by 30 
degrees sideways 

and the user's hand 
is shaking in the 
same direction 

 
 

(e) Side veiw of the 
jelly on the spoon  

(f) Side view of the 
spilling jelly 

(g) Side view of the 
spilling jelly 

(h) Side view of the 
spilling jelly 

Figure 7.19 Simulation of food (jelly) in a spoon when the spoon is tilted by different degrees and the 
hand of the user is shaking. 

In the same way, when the tilting and the shaking of hand happens in transverse 

direction (along the major axis of the handle of the spoon), the jelly slips and starts 

falling down from the side. This is shown in Figure 7.19(d and h). At this point if an 

industrial designer concludes that the user cannot eat without the tiling and shaking of 

hands, the spoon design can be reviewed. Some modification such as raising one side of 
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the spoon bowl or tilting the bowl part of the spoon in the other direction can be carried 

out at this stage. 

7.5 Concluding Remarks 

Various techniques developed in this thesis can be used to simulate various scenarios in 

virtual reality environment. The collision detection algorithm allows both rigid implicit 

surfaces and deformable B-spline surface-based tools. The B-spline surface merging 

algorithm allows the users to merge different deformable models to generate a large 

number of shapes.  

The simulations can provide an industrial designer, an enhanced insight into the form 

and function of the concept required for a given group of users. A variety of models can 

be generated and tested by the industrial engineer and real-time information can be used 

to improve their form and function. At the same time, the interactive design framework 

can be used to provide training to the users in the virtual reality environment. All these 

processes can be carried out without physically fabricating various prototypes, thereby, 

reducing the wastage caused by scraped models and prototypes which were fabricated at 

the preliminary stage. 

The simulations proved the effectiveness of the methodologies developed in this 

thesis to provide an intuitive environment to an industrial designer or engineer. The 

manipulation of deformable handle to change its shape and merging of spoon handle with 

bowl was accomplished in real-time. The simulation of spoon and jelly was performed at 

a higher rate than 30 Hz. 
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 

8.1 Review of Methodologies Developed for Deformable Modelling 

In this thesis, the development of methodologies for enabling seamless interaction of 

deformable virtual models was presented. The main focus was to develop a framework 

for efficient collision detection, merging of B-spline surfaces representing the deformable 

virtual objects, and modeling the shape of the virtual objects based on physical 

properties. The application for illustrating the proposed methodology was virtual 

interactive design. However, the core algorithms are versatile for use in medical 

simulations, games and other haptic interactive applications. It was assumed that all the 

deformable models were represented as B-spline surfaces. Although, the mass damper 

spring mesh had been used in thesis, other geometric or physically based deformation 

models can also be used in conjunction with the collision detection and B-spline surface 

merging algorithms. 

All the components of the framework for interaction with deformable models used 

pre-computed blending matrices. These blending matrices are independent of the control 

points of the B-spline surface and hence, can be pre-computed. Once computed, these 

blending matrices could be used to find the new position of control points to represent 

deformed B-spline surface without calculating blending functions. As there was no need 

to calculate computationally intensive blending functions, various algorithms could work 

efficiently. In fact these blending matrices enabled the algorithm to efficiently merge B-

spline surface patches, accurately check the collision, and generate nodes for the mass 

spring system to determine deformation using the physics-based model. 

The collision detection algorithm was capable of handling intersection test of virtual 

models with haptic tools. These haptic tools were represented as a point, an implicit 

surface, a tessellated surface, and B-spline surface. No restriction was imposed on the 

number of control points representing a B-spline surface, degree of the B-spline surface, 

knot vectors, or extent of deformation. The B-spline surfaces can be merged without 

imposing restrictions which are generally imposed by commercially available software. 

The algorithm can merge surfaces which are intersecting, trimmed or do not have 
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common edge at which these are joined. Most of the commercially available software 

cannot tackle these cases. Material properties like Young's modulus and Poisson ratio 

were incorporated into the model while generating mass spring system by volumetric self 

organizing feature maps. 

8.2 Novel Features of the Proposed Method 

In order to demonstrate the novel features and computation efficiency of the collision 

detection algorithm, B-spline surface patches algorithm, mass spring system, and 

integrated interactive design module, different simulations were performed. Deformable 

model was represented as B-spline surface for easy exchange with commercially 

available CAD software. Merging of B-spline surface patches algorithm provided an 

efficient and robust framework for integrating B-spline surface models to generate more 

complex and interesting designs. The mass spring system allowed simulating real 

material behaviour for the model depending upon the physical properties assigned to it by 

the user. All the algorithms used common resources (blending matrices) for efficient use 

of the pre-computed information and worked in tandem. 

8.2.1 Blending matrices  

B-spline representation is one of the main methods for free-form surface modeling and 

has become the standard for CAD systems. However, the high computational cost of 

continuously computing the blending functions for merging, collision detection and 

physics-based deformation system, while the model is deforming, restricts the use of B-

spline representation in a Virtual Reality (VR) environment. In this thesis an alternative 

method to represent B-spline surface patches had been presented for an interactive VR 

environment.  

A uniformly discretized B-spline surface patch can be represented by a set of control 

points and two pre-calculated B-spline blending matrices. The proposed technique 

exploited the fact that these B-spline blending matrices were independent of the position 

of control points and therefore could be pre-calculated. The blending matrices enabled 

the algorithm to merge B-spline surface patches, accurately check the collision, and 
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generate nodes for the mass spring system to determine deformation using the physics-

based model. This technique does away with the need to calculate computationally 

intensive blending functions for the B-spline surfaces, and inverse of large matrices 

during the run-time. The computational efficiency achieved by using blending matrices 

helped to achieve real time interactions between the virtual model and the tool, in a 

virtual reality environment. 

An essential aspect in B-spline surface modeling is the conversion between different 

representations of B-spline surfaces. These arise in various aspects of B-spline surface 

modeling/manipulation such as shape control, degree control, and merging of B-spline 

surface patches. Blending matrices can be used to establish a uniform mathematical 

model for all aspects of B-spline surface modeling/manipulation needed in a virtual 

interactive design process and provide a general tool for the conversions between 

different representations of B-spline surfaces.  

Once these blending matrices are calculated and stored, they can be used for a 

variety of applications in a VR environment. Two or more B-spline patches can be 

merged in a VR environment. The same blending matrices can be used for efficient 

collision detection as well as generating nodes for the mass spring system. In this manner, 

all the aspects of B-spline manipulation work in tandem and reduce the computational 

cost without affecting the accuracy of various interactions. For all these applications, the 

blending matrices played a significant role in making the whole process computationally 

efficient.  

8.2.2 Collision detection algorithm 

The collision detection algorithm utilized the best qualities of parametric representation 

for free form surfaces and the ease and efficiency of triangle-triangle intersection test. 

The density of points generated on the surface was increased at lower levels of detail 

within the area of probable collision. The on-the-fly generation of points and triangles 

also helped maintaining the quality of the triangles. Although the algorithm used triangle-

triangle intersection test for collision detection at the lowest level of detail, it was more 

efficient than a tessellated surface deformable model. The novel method of generating 
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spheres to find out the regions of the surface likely to collide, allowed multiple contact 

collision detection. The algorithm is also capable of detecting collision with a tessellated 

surface, implicit surface, or point-based tool. Hence, a variety of rigid and deformable 

tools could be used during sculpting or validation of the model. No limitations were 

imposed on the shape, complexity, degree or the number of control points of the B-spline 

surface representing the tool or model. Both the model and the tool could have complex 

shapes, elastic or plastic properties, and multiple contacts. This would allow the user to 

use rigid or deformable tools with complex shapes with greater ease and productivity 

during the sculpting exercise or model validation within a virtual reality environment.  

The novel technique of comparing the normals of the points generated on a flat 

surface reduced the computational cost of collision detection between two flat B-spline 

surfaces. A fewer number of points were generated for tessellation on a flat surface which 

further reduced the number of triangles generated for triangle-triangle intersection test. 

This made the algorithm robust as it could handle a potentially computationally 

expensive situation at a much lower computational cost. The calculation and storage of 

transformation matrices and their inverse during the preprocessing stage also ensured that 

no inverse was needed to be computed during the run-time phase of the algorithm. The 

matrix inverse calculations would have increased the computational cost. This reduced 

the computational cost of rendering the deformation of the B-spline surface and made the 

algorithm robust and efficient. 

The collision detection algorithm can detect collision with multiple B-spline patches. 

However, it creates problems for the mass spring system. Hence, the B-spline surface 

used to represent the model or the tool was limited to single patch. If there are multiple 

patches, these can be combined into single B-spline patch by using the B-spline surface 

patches merging algorithm.  

However, the collision detection algorithm, presented in this chapter, cannot detect 

the extent of tool penetration. The calculation of tool penetration helps to calculate the 

magnitude of the forces to be fed back to the user during haptic interaction. In future, this 

algorithm will be extended further to include the calculation of tool penetration depth. 
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Another limitation of the collision detection algorithm is that it cannot detect self 

collision.  

8.2.3 B-spline surface patches merging algorithm 

B-spline surfaces have been used in a VR environment but one problem, which had not 

been addressed so far, is efficiently creating complex shapes by combining multiple 

dissimilar B-spline surface patches. The algorithm presented in this thesis allows the user 

to combine multiple B-spline surface patches in to a single B-spline surface. This 

algorithm also exploited the blending matrices of the surface patches used by the 

collision detection algorithm, thereby, making it computationally efficient. It created new 

blending matrices for the merged surface, which replaced those for the original surface 

patches. The revised blending matrices generated during the merging process were used 

later by the collision detection algorithm, thereby minimizing the number of redundant 

calculations. In this manner, the B-spline surface patches merging algorithm worked in 

tandem with the collision detection algorithm and only a small number of additional 

computations were performed during the merging process.  

A major constraint in a VR environment is that the user treats the virtual model as a 

surface or solid rather than a B-spline surface. For this reason, the user is not supposed to 

tweak the control points before merging the surfaces. This algorithm is capable of 

handling all the cases, which are acceptable for NURBS-based surfaces. It does not 

impose any restriction on the degree of the surface patches, the number of control points, 

the type of continuity required at the common edge, knot vector or the number of surfaces 

being merged simultaneously. It could efficiently merge B-spline surface patches having 

dissimilar curvatures at the common edge, intersecting B-spline surface patches, and the 

B-spline surface patches having trimmed edges. These types of patches cannot be merged 

by using the traditional approach used by commercially available CAD software. Overall 

the proposed algorithm was efficient, accurate, and robust. The surface generated by 

merging of two or more patches had better tolerance than that is acceptable for many VR 

applications. The user would not face a situation where the two surfaces were not being 
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merged due to intersection, dissimilar curvature at common edge or similar situations. 

This added to the robustness of the algorithm. 

8.2.4 Integration of mass spring system 

In this thesis a mass spring damper system was integrated with the collision detection 

algorithm for real-time interactive simulation of deformable models. Both the model and 

the tool could have complex shapes, elastic or plastic properties, and multiple contacts. 

This allows the user to use rigid or deformable tools with complex shapes with greater 

ease and productivity during the sculpting or model validation in a virtual reality 

environment. However, the collision detection algorithm could work independent of a 

physics-based model used to calculate deformation.  

The number of nodes of the mass spring system was independent of the number of 

points generated for collision detection. This allowed the collision detection and the 

haptic force response through the mass spring system to work independent of each other.  

The process of mechanical interactive design is essentially moving the exterior nodes 

in response to the applied external forces. The interior nodes will move according to the 

dynamics of the mass spring structure and applied forces. Global and local deformations 

were possible and were achieved by changing the number of iterations used by 

deformation algorithm. Lower number of iteration allowed only local deformation and 

global deformation was achieved by increasing number of iterations. The mass spring 

system allowed the interactive design framework to efficiently simulate deformation of 

deformable models. 

8.3 Other applications  

Aside from interactive product design, the modeling tools developed in this thesis can be 

used for many other applications. Collision detection can be independently used for 

medical applications and games. The B-spline surface patches algorithm can be used for 

merging B-spline patches in commercially available software as it can tackle all the cases 

that are mathematically possible to merge. The overall interactive design module can be 

used for training in the area of surgery simulation and many cases of rehabilitation. In 
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biomedical applications, soft tissues can be modeled as B-spline surface and assigned 

appropriate properties using mass spring system. 

8.4 Recommendations to Resolve Limitations 

The collision detection algorithm, presented in this thesis, cannot detect self collision. 

However, this algorithm can be integrated with a mass spring damper mesh to impart 

physical properties to a deformable model. The springs used in the mass spring damper 

mesh have minimum solid length and hence, the model would resist self intersection. 

Unfortunately, during high deformation, the mass spring system may not be valid and self 

intersection may happen. 

The collision detection algorithm cannot calculate the tool penetration depth while 

interacting with the virtual model. This information is required to calculate the resultant 

force feedback to be provided to the user. This information will be necessary when this 

algorithm is interfaced with haptic tools. The goal of this thesis was to develop 

techniques which can be used for interactive design. Hence, no haptic tool was interfaced 

with these algorithms. However, the collision detection algorithm will need to be 

extended to include tool penetration depth before it is integrated with a haptic tool. 

The continuity conditions for the joined multiple B-spline surface patches allow the 

user to represent a model having multiple surfaces. The technique used in this thesis to 

detect collision works efficiently with single or multiple B-spline surface patches. 

However, if one or more of these patches are deformed, the continuity will no longer 

exist. Hence, these techniques cannot be used in a VR environment when the user intends 

to deform the surface to obtain the desired shape. A mass spring system can be developed 

to integrate multiple patches which are joined rather than merged. 

In the absence of a mass spring system which can integrate multiple B-spline surface 

patches, a B-spline surface patches merging algorithm was developed. However, NURBS 

surface representation imposes certain limitations on merging process and in many 

situations, virtual models represented as B-spline surfaces cannot be merged. As an 

example, the branching of a surface is not possible to achieve by partly merging two or 

more surfaces. In such a scenario, an enhanced mass spring system that can integrate 
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different patches joined together by some continuity conditions can be developed. This 

will make it possible for the designer to come up with more shapes than that are possible 

while merging these patches. 

8.5 Future Work 

The work presented in this thesis was primarily to demonstrate the efficiency and 

robustness achieved by using the collision detection algorithm, B-spline surface patches 

merging algorithm and integrating these algorithms with mass spring damper system to 

develop interactive product design framework. The deformable virtual model was 

represented as a B-spline surface patch and the tools could be represented as a point, an 

implicit surface, a tessellated surface, or a B-spline surface patch. Research is underway 

to make these algorithms computationally more efficient to make interactive modeling 

more realistic and effective. 

The implementation of collision detection algorithm was done in Microsoft® Visual 

Studio® using C++. During the implementation, more emphasis was put on making the 

coding readable than on making it efficient. The intersection test between spheres, to 

generate more points at the lower levels of details, was carried out using hierarchical "for 

loop". However, if these intersection tests are performed simultaneously, using 

multithreading techniques, computational cost of collision detection can be further 

reduced. As the intersection test of each sphere is independent of the result of intersection 

test of other spheres, multithreading should be performed to reduce the computational 

cost.  

A uniform mass spring system is used in this thesis. Although more points are 

generated in the vicinity of collision detection to accurately check the collision of virtual 

objects, the number of springs in the area remains constant. By subdividing the 

hexahedron mass spring mesh and appropriately distributing the properties assigned to 

springs and dampers, denser mass spring mesh can be generated on-the-fly in the vicinity 

of collision detection. This will increase the accuracy and resolution of the deformation in 

the vicinity of collision detection. In this manner, a sparse uniform mass spring system 

can be used in conjunction with a denser mass spring system in the vicinity of collision 
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detection. The efficiency and the effectiveness of on-the-fly generation of a denser mass 

spring mesh, to realistically deform the virtual object as per the assigned properties, 

should be explored. 

A hexahedral mesh of mass spring was used so as to mimic B-spline surface as a 

solid. However, if the user would like to work with surfaces, a two dimensional mass 

spring system can be used. This way, a designer can manipulate surfaces and later on 

merge or join these surfaces to come up with various shapes. A two dimensional mass 

spring system should also be developed for this purpose. 

Though mass spring system has been used in this thesis, other physics based 

deformation model can also be used in conjunction with the collision detection and B-

spline surface patches merging algorithms. Different types of physics based techniques 

may be appropriate for a variety of applications. Hence it is recommended that the 

integration of other physics based techniques with the collision detection algorithm be 

explored and compared with the mass spring system implemented in this thesis. 

8.6 Final Remarks 

A preliminary design and analysis tool that supports quick conceptualization and 

modification of 3D geometry has been proposed in this thesis. The proposed technique 

provides rapid verification of early design ideas and adds more information to the 

interactive design paradigm. This is particularly suitable for modifying and identifying an 

optimal concept for a particular user segment so as to increase the chances of satisfying 

customers. By providing industrial designers a variety of rigid and deformable tools to 

quickly create, modify and analyze alternative concepts, a large number of models can be 

created before choosing the most appropriate model for a given user segment. The users 

can be trained in virtual reality environment and their inputs can also be used by an 

industrial designer to generate better concepts. 

In conclusion, this research work helped in understanding several aspects of collision 

detection, manipulation and merging of B-spline surfaces, and the mass spring damper 

system. It has clearly established that there is merit in perusing further research in 

deformable model represented as B-spline surface using the tools developed in this thesis. 
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The research work has also established a definite need to further explore the potential of 

interactive design framework; developed in this thesis, by integrating it with 

commercially available NURBS based software. 
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APPENDIX A: ERROR ANALYSIS OF THE MERGED B-SPLINE SURFACE 

A.1 Introduction 

One major requirement for representing 3D objects in a VR environment is that the user 

should interact with the virtual model as if it were a visually realistic surface or solid. The 

algorithm described in this thesis (Chapter 4) achieves the merging process without 

imposing any constraints. An important factor in determining the versatility of the 

algorithm is that it should be able to tackle all the cases during haptic interaction. At the 

same time, the deviation of the merged surface should be small. 

In this appendix, different cases are compared for accuracy of the merging algorithm 

and detailed error analysis is presented. For comparison purposes, a few cases were 

considered and the merged surfaces generated by the proposed technique were compared 

with the results generated by a commercially available NURBS modeling software 

package, Rhinoceros® (Rhino®). The algorithm was used to generate surfaces with C0, 

C1, and C2 connectivity. As Rhino® does not permit the user to edit the knot vector, or to 

select an option for the type of desired connectivity during the merging process, only C2 

continuous surfaces were generated for Rhino®. 

The data generated for error analysis depends upon the characteristics of the surfaces 

used for merging. Hence, the results may vary if the characteristics of the surfaces being 

merged are changed or the number of points generated for merging process is varied. 

However, this data can be used for comparing the results achieved by the proposed 

algorithm and that by generated by Rhino®. Same cases were discussed in Chapter 6 and 

concise data was presented for error analysis. 

A.2 Case 1: Similar Curvatures and Knot Vectors 

This is the simplest case that can be encountered when combining B-spline surface 

patches. Two arbitrary surfaces with the same degree and uniform knot vectors were used 

to generate a single integral surface. The results of the deviation analysis of the merged 

surface from the original surfaces are shown in Table A.1. The surface generated by 

proposed algorithm results in lower standard deviation. Similarly, the maximum distance 
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of the points is lower for the proposed algorithm. The results are much better when only 

C0 connectivity is required. 

Table A.1 Comparison of the point set deviation of the merged surfaces generated  by Rhino® and 
the proposed algorithm for surface having similar curvatures and knot vectors. 

Test Cases 
Error Analysis  

(using point set 
deviation) 

Merged Surface 

Rhino® 
C2 

Proposed 
Method C2 

Proposed 
Method C0 

1: Similar 
curvature and knot 
vectors 

 

 

Total points 20402 20402 20402 

Close points 18136 18262 20134 

Average distance 0.2242 0.3568 0.0104 

Median distance 0.3154 0.3119 0.0056 

Standard deviation 0.2704 0.2452 0.0164 

Maximum distance 0.9726 0.9561 0.0855 

 

A.3 Case 2: Different Curvatures but Similar Knot Vectors 

In many cases, the curvature of the patch edges may not be similar. The traditional 

methods for merging surfaces require a common edge and do not work well if the 

curvatures do not match at the joining edge. Rhino® did not allow the surfaces to be 

merged because the surfaces were considered to be too far apart. In some cases, the 

CAD/CAM software allows the user to match surfaces (fitting the surfaces with certain 

connectivity without merging), thereby reducing, to a large extent, the gaps between the 

two surfaces. Once the gaps are closed, it might be possible to merge the surfaces. 
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However, there is no guarantee that the surfaces will merge after matching. A merged 

surface was created by using this process on Rhino®. 

In contrast, the proposed algorithm does not to match the surfaces at common edge. 

This feature is important, particularly in a virtual reality environment, because the user 

considers the models as objects and does not treat them as B-spline surface patches. As 

shown in Table A.2, the standard deviation, even for C2 continuity, is about 0.1 mm, and 

reduces further to 0.06 mm, for C0 continuity. The maximum deviation of the merged 

surface by using proposed algorithm is much less compared to that merged by Rhino, 

even after matching the surfaces. 

Table A.2 Comparison of the point set deviation of the merged surfaces generated  by Rhino® and 
the proposed algorithm for surface having different curvatures but similar knot vectors. 

 

Test Cases 
Error Analysis  

(using point set 
deviation) 

Merged Surface 

Rhino® C2 
Proposed 

Method C2 
Proposed 

Method C0 

21: Different 
curvatures but 
similar knot vectors 

 

Total points 20402 20402 20402 

Close points 20153 20145 19974 

Average distance 0.0778 0.0837 0.0458 

Median distance 0.0180 0.0498 0.0273 

Standard deviation 0.1708 0.1093 0.0621 

Maximum distance 0.8071 0.5046 0.2713 

1 The surfaces were matched (fitted without merging) before merging for Rhino®. It did not allow the 
merging of these surfaces for being too far apart, without matching. 
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A.4 Case 3: Similar Curvature but Different Knot Vectors 

One constraint for NURBS-based surfaces is that an integral surface needs to have a 

continuous knot vector. The traditional approach is to insert additional knots in the 

surfaces to achieve a continuous knot for the integral surface. Theoretically it is possible 

to insert a knot into a surface without changing its geometry. Even if there is no change in 

the geometry of the surface, additional knots increase the number of control points 

needed to represent the surface. In a virtual reality environment, the increased number of 

control points increases the computational cost of collision detection and manipulation. 

Table A.3 shows the results of merging for proposed algorithm and Rhino®. 

Table A.3 Comparison of the point set deviation of the merged surfaces generated  by Rhino® and 
the proposed algorithm for surface having similar curvature but different knot vectors. 

Test Cases 
Error Analysis  

(using point set 
deviation) 

Merged Surface 

Rhino® C2 
Proposed 

Method C2 
Proposed 

Method C0 

31: Similar 
curvatures but 
different knot 
vectors 

 

 

Total points 20402 20402 20402 

Close points 20137 20133 20098 

Average distance 0.0259 0.0273 0.0110 

Median distance 0.0133 0.0190 0.0084 

Standard deviation 0.0364 0.0283 0.0096 

Maximum distance 0.1888 0.1394 0.0411 

1The merged surface created by Rhino increased the number of knots and control points. The proposed 
algorithm merged surfaces without increasing the number of control points. 
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The merged surface created by Rhino® had four more control points in v direction as 

compared to the original surface patches. These additional control points carry no 

significant geometric information and are added only to satisfy the constraint of having a 

continuous knot vector. The surface generated by using the present algorithm with C2 and 

C0 connectivity had the same number of control points (6) as the surfaces that were 

merged. In addition, the merged surface generated by the proposed algorithm exhibits a 

better standard deviation even for C2 connectivity, as shown in Table A.3. In the case of 

C0 connectivity, the standard deviation was observed to be less than 0.01 mm. At the 

same time, the maximum deviation of the surface from the original surface is less when 

surfaces are merged using the proposed algorithm. The maximum deviation is the least 

for merged surface with C0 connectivity using the proposed algorithm. 

A.5 Case 4: Similar Curvatures but Different Knot Vectors and Dimensions 

In many cases, the edges of the patches to be merged do not have the same length. As the 

merged surface should have same parameter throughout the surface, the two surfaces 

need to deviate a lot from the original geometry. In commercially available CAD/CAM 

software, any two surfaces which do not have almost the same dimension cannot be 

merged. Rhino® could not merge the surfaces even after matching these surfaces. 

The algorithm proposed in this thesis does not put any of these constraints on the 

surfaces to be merged. The merged surface generated by the proposed algorithm does 

show a deviation when compared to the original surface, but overall, the result is 

satisfactory. As shown in Table A.4, the standard deviation from the surface is 0.026 mm 

for C2 connectivity which is very small considering the large differences in the length of 

the edges at which the two surfaces were to be joined. 

The maximum deviation of the merged surface is about 0.11 mm while maintaining 

C2 connectivity. These results show that in addition to the robustness of the algorithm, the 

deviation of the merged surface is also very small. 
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Table A.4 Comparison of the point set deviation of the merged surfaces generated  by Rhino® and 
the proposed algorithm for surface having similar curvatures but different knot vectors 
and dimensions. 

Test Cases 
Error Analysis  

(using point set 
deviation) 

Merged Surface 

Rhino® C2 
Proposed 

Method C2 
Proposed 

Method C0 

41: Similar 
curvatures but 
different knot 
vectors and 
dimensions 

 

 

Total points - 20402 20402 

Close points - 19891 19935 

Average distance - 0.0215 0.0233 

Median distance - 0.0137 0.0159 

Standard deviation - 0.0263 0.0228 

Maximum distance - 0.1131 0.1254 

1 Rhino® did not merge the surfaces even after matching. 

 

A.6 Case 5: Intersecting and Trimmed Surfaces 

If the patches to be merged are intersecting, the surface may not merge as intended by the 

user or may not merge at all. Rhino® does not merge intersecting surfaces. The algorithm 

presented in this thesis uses collision detection to merge two or more intersecting B-

spline surface patches. The algorithm for merging intersecting or trimmed surface is 

discussed in detail in Section 4.4.1. The point set deviation analysis of the merged 

surfaces is shown in Table A.5. It is clear from Table A.5 that the surface generated is 

within the tolerance needed during the haptic interaction with the model. However, as 

some of the regions of intersecting surfaces were not used for merging, the maximum 

deviation of the merged surfaces from the original surfaces is large in this case. 
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Table A.5 Comparison of the point set deviation of the merged surfaces generated  by Rhino® and 
the proposed algorithm for intersecting and trimmed surfaces. 

Test Cases 
Error Analysis  

(using point set 
deviation) 

Merged Surface 

Rhino® C2 
Proposed 

Method C2 
Proposed 

Method C0 

51: Intersecting and 
trimmed surfaces 

 

 

 

Total points - 20402 20402 

Close points - 19339 19112 

Average distance - 0.0423 0.0451 

Median distance - 0.0144 0.0221 

Standard deviation - 0.0792 0.0771 

Maximum distance - 0.4759 0.3251 

1 Rhino® did not merge the surfaces even after matching. 

 

A.7 Case 6: Surfaces having Different Degrees 

Before the surfaces having different degrees can be merged, the degree of the surfaces in 

u and v directions need to be made uniform. Thus, the problem reduces to increasing or 

decreasing the degree of a surface to make it uniform with that of the other surface. The 

proposed algorithm can increase or decrease the degree of the surfaces as discussed in 

Section 4.4.2. 

For the analysis, two surfaces of different degrees were considered. The first surface 

had 6×6 control points and degree three in both the directions. The second surface had 

8×12 control points and degree four in u direction and degree five in v direction. The 

surfaces were merged in v direction. Thus, the first surface was elevated to degree four in 

u direction and degree 5 in v direction. Rhino®, by default increases the degree of lower 
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order surface and merges these two surfaces with degree five in v direction with 

connectivity of C4 and degree four in u direction. The surface generated by the proposed 

algorithm did not require additional knots to be introduced and, hence, had a lower 

number of control points as compared to the one generated by Rhino®.  

Table A.6 shows the deviation of the merged surface generated by Rhino® and 

proposed algorithm from the original surfaces. It is clear from the point set deviation 

analysis that the proposed algorithm results in a merged surface with lower standard 

deviation compared to that merged by Rhino®. The maximum deviation of the merged 

surface is also lower for the surface merged by using the proposed algorithm. 

Table A.6 Comparison of the point set deviation of the merged surfaces generated  by Rhino® and 
the proposed algorithm for surface having different degrees. 

Test Cases 
Error Analysis  

(using point set 
deviation) 

Merged Surface 

Rhino® C2 
Proposed 

Method C2 
Proposed 

Method C0 

6: Surfaces having 
different degrees 

 

 

 

Total points 20402 20402 20402 

Close points 20109 20178 20121 

Average distance 0.0126 0.0139 0.0157 

Median distance 0.0087 0.0085 0.0081 

Standard deviation 0.0125 0.0117 0.0154 

Maximum distance 0.0563 0.0455 0.0396 
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A.7 Case 7: Multiple Surfaces 

The algorithm is capable of merging any number of surfaces. Rhino® could not merge the 

surfaces even after matching the surfaces and merging these in pairs. As shown in Table 

A.7, the merged surface shows very small standard deviation from the original surfaces.  

Table A.7 Comparison of the point set deviation of the merged surfaces generated  by Rhino® and 
the proposed algorithm for multiple surfaces. 

Test Cases 
Error Analysis  

(using point set 
deviation) 

Merged Surface 

Rhino® C2 
Proposed 

Method C2 
Proposed 

Method C0 

71: Multiple 
surfaces 

 

 

 

Total points - 40804 40804 

Close points - 39151 39469 

Average distance - 0.0811 0.0448 

Median distance - 0.0523 0.0241 

Standard deviation - 0.0961 0.0705 

Maximum distance - 0.3880 0.3050 

1 Rhino® did not merge the surfaces even after matching. 
 

A.8 Concluding Remarks 

B-spline surface patch merging algorithm does not impose any restriction regarding the 

type of continuity required at the common edge, the knot vector, or the number of 

surfaces being merged simultaneously. The proposed algorithm can efficiently merge B-

spline surface patches having dissimilar curvatures at the common edge, intersecting B-
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spline surface patches, and the B-spline surface patches having trimmed edges. The user 

will not have to face a situation where the two surfaces cannot be merged due to 

intersection, dissimilar curvature at common edge or similar situations. This adds to the 

robustness of the algorithm. At the same time, the algorithm is capable of merging 

multiple B-spline surfaces with small deviation. This deviation is lower than that 

exhibited by the surfaces merged by Rhino®. In many cases, Rhino® was not able to 

merge surfaces, whereas the proposed algorithm could achieve it. 

However, it should be noted that the mathematical representation of NURBS 

surfaces does not allow certain type of merging. Two surfaces cannot be merged if these 

produce 'T junction'. As an example, if a B-spline cylindrical surface is lying on a flat 

open B-spline surface, these cannot be merged. The algorithm proposed in this thesis 

cannot merge surfaces if this merging is not allowed due to the constraints imposed by 

the mathematical representation of NURBS surfaces. 
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