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Abstract 

The ability to adeptly interact with a cluttered and dynamic world requires that the brain 

simultaneously encode multiple objects. Theoretical frameworks of selective visuomotor 

attention provide evidence for parallel encoding (Baldauf & Deubel, 2010; Cisek & 

Kalaska, 2010; Duncan, 2006) where concurrent object processing results in neural 

competition.  Since the end goal of object representation is usually action, these 

frameworks argue that the competitive activity is best characterized as the development 

of visuomotor biases.  While some behavioural and neural evidence has been 

accumulated in favour of this explanation, one of the most striking, yet deceptively 

common, demonstrations of this capacity is often overlooked; the movement of the arm 

away from an obstacle while reaching for a target object is definitive proof that both 

objects are encoded and affect behaviour.  In the current thesis, I discuss three 

experiments exploring obstacle avoidance. 

While some previous studies have shown how visuomotor biases develop prior to 

movement onset, the dynamics of the bias during movement remains largely unexplored.  

In the first experiment I use the availability and predictability of vision during movement 

as a means of exploring whether obstacle representations might change during a reach 

(Chapter 2, Chapman & Goodale, 2010b).  While the visuomotor system seems 

optimized to use vision, I found no difference between reaching with and without vision, 

providing no evidence that obstacle representations were altered.  To more directly test 

this question, in the second experiment participants made reaches to a target that 

sometimes changed position during the reach (Chapter 3, Chapman & Goodale, 2010a).  

The automatic online corrections to the new target location were sometimes interfered 

with by an obstacle.  Using this more direct approach we found definitive evidence that 

obstacle representations were accessed or updated during movement.   

In the third experiment, I directly tested the neural encoding of obstacles using functional 

magnetic resonance imaging (Chapter 4, Chapman, Gallivan, Culham, & Goodale, 2010).  

When participants planned a grasp movement that was interfered with by an obstacle 



 

 

iv 

 

versus when the grasp was not interfered with, one area in the left posterior intraparietal 

sulcus was activated. This activity was concurrent with a suppression of early visual areas 

that were responsive to the position of the obstacle.  This study confirmed that the PPC 

was involved with the encoding of obstacles, and demonstrated that one effect of 

interference was the suppression of the visual cortical signal associated with the obstacle. 

These findings extend our understanding of competitive visuomotor biases.  Critically, in 

a world filled with potential action targets, the selection of one target necessarily means 

all other objects in the workspace are potential obstacles.  My results indicate that the 

visuomotor biasing signal to inhibit obstacle activity is putatively provided by the PPC, 

which in turn causes the visual cortical representation of the obstacle to be suppressed.  

The behavioural result of biasing the visual input is the propogation of this suppression to 

the motor output - ultimately resulting in a reach which intelligently deviates away from 

potential obstacles.   

 

Keywords: obstacle avoidance, reaching, grasping, selective visuomotor attention, 

inhibition, competitive bias, visual feedback, online correction, fMRI, posterior parietal 

cortex   
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Chapter 1 

1. General Introduction 

1.1. Preamble 

1.1.1. Why Study Action? 

In order to gain experimental traction, the careful scientist asks very specific questions.  

Specific questions can be the most meaningful precisely because they are the most 

answerable.  But, by necessarily asking specific questions, we sometimes lose sight of the 

big picture – the overarching principles that simply must be true.  If our very specific 

answers are to questions that have become too far removed from the real world, then we 

may have gained traction, but it is on a road that goes nowhere.  Two general truths that 

mainstream psychology sometimes strays from are revealed in the two following quotes, 

each by authors whose thinking has shaped my own.  The first, in a recent review by Dr. 

Paul Cisek and his collaborator Dr. John Kalaska reads, ―One of the most important facts 

we know about the brain is that it evolved‖ (2010, p. 275).  The second by Dr. Alan 

Allport states, ―Indeed, I find it difficult to get any clear conception of what ‗perception‘ 

might be, as a subject of scientific study, isolated from its role in the control of action‖ 

(1987, p. 395).  Taken together, these quotes remind us that the human brain didn‘t 

evolve to solve math problems, write novels, ruminate on the beauty of the world or 

conduct science, but rather it evolved to control our actions.  The first simple organism 

that could not just sense where there was a higher concentration of a nutrient, but could 

propel itself toward it had a huge evolutionary advantage.  Scaling the analogy up several 

orders of magnitude, complex animals that make economical action choices expend less 

energy accomplishing more rewarding goals.  This filter of efficient action choices must 

necessarily, I believe, inform how we think about people‘s performance in almost every 

experimental psychology task.  Certainly, as Dr. Allport argued, the idea of action 

choices must be applied when studying how we visually perceive the world.  Visual 

perception is, after all, merely a part of the processing that necessarily concludes with (at 

least) the intention to act.  Our conscious experience of the world may be breathtaking, 

but it is also almost entirely without meaning if it does not result in action.  Given the 
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complexity of the human brain, these actions can, of course, be abstract and complicated, 

but a percept without an action is like that organism that senses the nutrient but cannot 

move. 

Studying action, therefore, is a window into one of the most primitive, and by extension 

most important, aspects of the human condition – the ‗Why we are here?‘ (to shape our 

environments to our greatest benefit) and ‗How do we do it?‘ (by performing maximally 

efficient actions) questions.  Of course these are big questions, and by virtue of what I 

said earlier, not suitable for good science.  An intelligent scientist, however, will remain 

cognizant of these fundamental principles as he or she approaches the more narrowly 

defined questions that are the tools of the trade. 

1.1.2. Why Study Obstacles? 

The current thesis explores the more specific questions of how obstacles to action affect 

our behaviour and where obstacles are coded in the brain.   I say more specific, because 

even these questions are not completely amenable to careful scientific inquiry.  Consider 

even the notion of what an obstacle to an action is (even restricting the definition of 

action to reaching movements, which is the topic of the current thesis).  It is one of those 

deceptively simple yet complicated concepts.  Is an object an obstacle to a reach only if 

the intended movement would result in a collision with the obstacle?  This seems 

unlikely, given that motor variability demands a margin of error be incorporated into 

almost every movement.  The regress of questions from this simple answer is obvious: 

how much of a margin is necessary, does this margin change with context, and a myriad 

of other questions.  Given these problems, I provide a tentative answer to the question of 

what an obstacle is that avoids some of the problems of definition, but inevitably creates 

many more problems that must be solved.  For the purposes of this thesis, an obstacle is 

any object in our immediate environment that is not the current target of action.  That 

means that we encounter obstacles everywhere, all the time.  It suggests that, given that 

most of our actions will have only a single target among many other objects, objects that 

are obstacles are more ubiquitous than objects that are targets.  It also suggests that 

studying actions performed toward single objects presented in isolation does not provide 

an accurate depiction of the demands that shaped the evolution of our visuomotor system.  
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Figure 1.1. Comparative photographs of my desk. (A) An environment where the target 

object (red computer mouse) is presented in isolation, representative of how visuomotor 

experiments are usually conducted. (B) A more realistic cluttered environment, where 

objects other than the target compete for selection and can function as obstacles.  
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Consider the photograph of my desk shown in Figure 1.1a.  Imagine that I want to reach 

out and grab the red computer mouse.  It is presented in relative isolation (though the 

edge of the desk and the computer monitor are obviously other objects in the environment 

that could shape my behaviour).  But my desk is never that clean (unless I clear it to take 

a photograph).  Instead, my desk usually appears as it does in Figure 1.1b. Admittedly, 

my desk is messy, but the introduction of even the mouse pad, or just the lab book, 

completely changes the type of reaching movement I can make toward the red mouse.  

But when moving in our environments, we rarely consider the targets of our action (the 

red mouse) let alone all the other objects that surround them and affect our movements.  

This suggests two critical and related features of the visuomotor system.  First, it 

demands that multiple objects be processed automatically and in parallel.  The simple fact 

that a reach toward a target object is different than a reach toward a target object when a 

second object is present is strong evidence of parallel processing.  Second, by extension, 

the fact that there is simultaneous encoding of multiple objects requires that the 

visuomotor system select and specify targets from non-targets.  Consider again my 

cluttered desk in Figure 1.1b.  The target red computer mouse actually shares many 

features (similar size and shape, and similar colour) with the orange tape measure to the 

left.  Given that both objects obviously give rise to a visual response, but only the mouse 

is the target of my action, the visuomotor system must selectively process the mouse 

rather than the tape measure.  Visuomotor selection, then, lies at the heart of target-

directed reaching, and by extension, determines the role and influence of non-selected 

objects in the workspace (for which one label is obstacles).  Therefore, I start my 

Introduction with a review of three theoretical frameworks that speculate on how 

visuomotor selection might be implemented and provide evidence for some of their most 

important claims.  That section ends with a summary of how the critical points from these 

frameworks directly pertain to obstacles, and how this shaped the current thesis, 

including the remainder of the Introduction. 

1.2. Theoretical frameworks of visuomotor selection 

Obstacles are an interesting category of objects in our environment.  They must certainly 

demand attention (the repercussions of colliding with a dangerous object could be dire) 
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yet, unlike other objects in our environment which automatically capture attention and 

compete for selection, they cannot act as attractors to movement.  Moreover, it may not 

be enough to simply ignore an obstacle, or treat it as if it were not there, since it must be 

avoided.  This implies some sort of active inhibition of obstacles.  Active inhibition, 

however, may not be as complicated as it sounds.  If one imagines that all objects – and 

potential motor plans for that matter – compete for selection (or execution in the case of 

motor plans), then for one object to be actively inhibited it means only that the ‗strength‘ 

of its representation needs to be less than all other objects currently represented.  That is, 

selection and inhibition are relative.  Consider the simple case of reaching toward one 

object in the presence of a second non-target object.  Both objects will initially be coded 

with some positive activation (a virtue of being an identifiable visual object).  Should 

both objects act as potential targets even until movement execution, then this would result 

in a reach trajectory at the midpoint between the two objects (as we have recently shown, 

C. S. Chapman, Gallivan et al., 2010a).  If prior to movement onset, however, one of the 

targets is clearly selected as the target for action, then the neural activity associated with 

its representation will be increased, leading to a hand path that is attracted (or moves 

straight toward) the position of that object.  Importantly, if one of the objects is identified 

as a potential obstacle prior to movement onset, then the neural activity associated with 

its representation will be suppressed, leading to the avoidance of its position.  Notice that 

the coding of the obstacle location could still be above baseline; i.e., its representation 

need be reduced only relative to that of the other in order for that object to be avoided. 

Underlying this explanation of avoidance is the premise that the representation of objects 

(and motor plans) compete for selection (and specification).  Here I outline three 

theoretical frameworks which have recently been advanced that describe how and where 

competitive representations might be implemented in the brain, and describe evidence for 

this competition in a variety of domains.  While only the last framework (attentional 

landscapes hypothesis, section 1.2.3) specifically describes evidence from tasks involving 

obstacles, all three raise issues important to understanding how obstacles and other 

objects in our cluttered environments compete for neural resources and ultimately affect 

behaviour. 
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1.2.1. Biased competition hypothesis 

One of the most formal descriptions of competitive interactions in the brain comes from 

John Duncan and Robert Desimone‘s account of selective attention as the result of 

‗biased competition‘ (also referred to as integrated competition) between sensory 

information (for reviews, see Desimone, 1998; Desimone & Duncan, 1995; Duncan, 

1996, 1998, 2006). The majority of the examples they discuss come from the domain of 

selective visual attention, which will also be the focus here.  A recent review of the 

theory integrating new neural evidence has also been written (Beck & Kastner, 2009).  

The problem which motivated the development of this framework is best summarized by 

Duncan: 

―Vision is selective: at any given moment, only a small fraction of the total 

available visual input can be consciously identified or used in the control of 

behaviour. Subjectively, attention is paid to some things but withheld from others. 

How is selectivity implemented in the multiple brain systems activated by visual 

input?‖ (1996, p. 551) 

This led Duncan to propose three tenets (which I have reordered to improve the 

coherence of my argument) at the core of the biased competition hypothesis: 

―1. Of the many brain systems responding to visual input, perceptual and motor, 

cortical and subcortical, many and perhaps most are competitive (Rizzolatti and 

Camarda 1987). Within each system, a gain in activation or representation for one 

object is bought at a loss to others; for example, representations of different 

objects may be mutually inhibitory. 

3. Competition is controlled…by advance priming of units responding to one kind 

of object rather than another (see Harter and Aine 1984; Walley and Weiden 

1973). Suppose, for example, that the animal searches for fruit of a particular 

colour. Units selectively responsive to that colour are preactivated in one or more 

brain systems in which colour is coded. Inputs with the desired colour gain a 

competitive advantage in the primed system; as such an input gains ascendancy in 

that system, it tends also to take control of others.  

2. Between systems…competition is integrated. As an object gains ascendancy in 

one system, this ascendancy tends also to be transmitted to others. "Attention" is 

the state that emerges as different brain systems converge to work on the same 

dominant object (e.g., Duncan 1993; Farah 1990; Kinsbourne 1987)…‖ (Duncan, 

1996, pp. 551-552). 
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It is important to note that each of these three components is crucial to understanding 

how obstacles are encoded in the brain: first, that the neural coding of obstacles competes 

with the neural coding of other objects in the environment, and the inhibition of obstacle-

related activity could facilitate the selection of other objects or targets; second, that the 

inhibition of obstacle codes could be generated from other (top-down) signals in the brain 

and that this inhibition would be contingent on the obstacle‘s task relevance (in this case, 

task relevance could directly correspond to the amount an obstacle interfered with a 

desired movement); and third, that the inhibition of obstacle codes could propagate 

throughout brain networks resulting in avoidance during motor execution. 
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Figure 1.2. Examples of competitive parallel encoding of objects from the three 

attentional frameworks discussed in section 1.2. (A) Biased competition hypothesis (from 

Desimone, 1998): Recordings from 88 cells in macaque IT cortex initially respond 

equally to two complex objects (e.g. a flower).  After 170 ms the ‗Good‘ stimuli response 

is enhanced and the ‗Poor‘ stimuli response is reduced. This selection occurs prior to the 

eye-movement response (short vertical bar on x-axis). (B) Affordance competition 

hypothesis (from Cisek & Kalaska, 2010): Population encoding across 100 dorsal 

premotor cells in macaque monkeys.  Two possible reach targets (Spatial cues) are 

encoded across a delay (Memory period) even in the absence of a visual target.  When 

one is selected (Colour cue) its corresponding activity is enhanced while the activity for 

the non-selected target is reduced.  Premotor cells are also heavily recruited during the 

movement (after the Go cue). (C) Attentional landscape hypothesis (from Baldauf, Cui, 

& Andersen, 2008): Recordings from 112 PPC cells in macaque monkeys.  Targets 

within the receptive field of the cell gave rise to a significant increase in activity 

(maintained across a memory delay) whether they were the first (blue trace) or second 

(red line) target in a rapid reach to two consecutive locations.  Targets outside the 

receptive field (black line) showed no enhancement (dashed grey lines show activity on 

single target trials where the target is inside or outside the receptive field of the cell).  
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While a discussion of all of the evidence supporting the three major tenets is beyond the 

scope of this thesis, a summary of some of the key findings and their implications to 

obstacle representations is useful.  First, in support of the notion of competition between 

visual objects both neurophysiological recordings in monkeys (e.g. Chelazzi, Duncan, 

Miller, & Desimone, 1998; Chelazzi, Miller, Duncan, & Desimone, 1993) and 

neuroimaging in humans (e.g. Kastner, De Weerd, Desimone, & Ungerleider, 1998) 

demonstrates that presenting two or more objects simultaneously (especially within the 

receptive field of a cell) reduces the visual response (from primary visual cortex (V1) 

through to inferior temporal (IT) cortex) when compared to activity generated by a single 

object (though the response to multiple objects is still positive).  This is taken as evidence 

of the suppressive effects of competition.  Moreover, after an initial rise to this level of 

competitive activation (objects are mutually suppressed and equally weighted), when one 

of the objects is selected, its neural activity continues to rise to a level comparable to the 

response generated when it is presented in isolation.  Importantly for this thesis, the 

activity of the non-selected target is now significantly suppressed, evidence that the 

selection of one target is accompanied by the inhibition of another (see Figure 1.2a). 

Desimone summarizes this process as ―…an initial parallel activation of cortical 

representations by several stimuli in the visual field, and the ultimate suppression of 

response to the behaviourally irrelevant distractor‖ (1998, p. 1248).  

Evidence for the control of competitive bias (i.e. top-down selection of some task-

relevant object features over others) is an expansive topic in and of itself (e.g. Corbetta, 

Patel, & Shulman, 2008; Corbetta & Shulman, 2002).  For the purposes of the current 

thesis, it is enough to say that studies have demonstrated that a cue which precedes the 

onset of a stimulus activates visual areas in the brain which are sensitive to that cue (e.g. 

complex shape in monkey V4/IT neurophysiology (Chelazzi et al., 1998) or spatial 

location in human neuroimaging of V1-V4 (Kastner, Pinsk, De Weerd, Desimone, & 

Ungerleider, 1999)), and that this activity persists even after the cue is gone – anticipating 

the upcoming stimulus and biasing future neural events.  Duncan makes one remark 

regarding the control of bias that is particularly relevant to the current thesis, ―Perhaps 

the most important point is its flexibility – potentially, any type of object can be relevant 

to behaviour, and, correspondingly, there are many ways to direct attention to targets‖ 
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(2006, p. 5).  One could imagine that, in one task, tall grey objects are the targets of 

action, and thus areas in the brain selecting for colour and shape would show a bias for 

those features.  However, in a different task (like those described in this thesis) tall grey 

objects could act as obstacles, and never be selected as targets.  In these cases, the 

relevance of the tall grey object might be determined by its position with respect to the 

current movement goal, and the attention it receives may be generated from areas in the 

brain that are specifically involved with generating and maintaining movement plans. 

One final issue regarding the control of competitive bias is the ‗source‘ of the biasing 

signals.  I use the word source tentatively since Duncan argues that, ―integrated 

competition does not sit well with a firm site-source distinction…bias can begin at any 

part of the system, spreading both to ―higher‖ and ―lower‖ levels‖ (2006, p. 21).  He does 

suggest, however, that ―flexibility and selectivity…may reach their peak in regions of 

frontal and parietal cortex‖ (2006, p. 14).  This identification of a frontoparietal network 

implicated in the control of attention (or selective bias) fits well with a substantive 

literature providing evidence for that claim (Beck & Kastner, 2009; Corbetta et al., 2008; 

Corbetta & Shulman, 2002; Kastner & Ungerleider, 2000; Pessoa, Kastner, & 

Ungerleider, 2003; Riddoch et al., 2010; Serences & Yantis, 2007).  Moreover, many of 

these studies demonstrate that this frontoparietal network can modulate the visual cortical 

representation of objects – enhancing activity at attended locations and suppressing 

activity at unattended locations in retinotopic cortex.  The most relevant of these studies, 

those specifically dealing with the suppression of a signal at a location corresponding to a 

distracting stimulus are discussed in section 1.3. 

Finally, the tenet of the biased competition hypothesis that has received the least 

experimental evidence is for the integration of representations across systems.  That is, as 

Duncan puts it, ―…effective behaviour will require selective focus on particular sensory 

inputs, on particular action goals, on particular information from semantic memory and 

so on; usually, we ―attend‖ to all these things as a coherent whole‖ (2006, p. 21).  Two 

lines of evidence do suggest that integration does occur.  First, with improved detection 

of retinotopic maps extending into frontal and parietal cortex (e.g. the frontal eye fields 

(FEF) and intraparietal sulcus (IPS)), it has been shown that attention to a specific 
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quadrant of the visual field led to an enhanced signal in that field across the nearly 20 

maps identified throughout the frontoparietal network (Beck & Kastner, 2009).  Second, 

when participants were asked to attend to only one feature of an object (say the colour of 

a patch of moving dots), selective biases also developed in regions responding to an 

orthogonal dimension (e.g. motion areas were also selectively biased, McMains, Fehd, 

Emmanouil, & Kastner, 2007); this speaks to the integration of object encoding across 

several areas of cortex (O'Craven, Downing, & Kanwisher, 1999).  In the current thesis, 

we are specifically interested in the integration of object encoding that is relevant because 

of its implications to an upcoming action.  That is, if an object obstructs a ‗particular 

action goal‘ (as Duncan remarked) would its neural representation be selectively biased at 

other points in the brain?  The two additional theoretical frameworks discussed next 

address this point in more detail. 

1.2.2. Affordance competition hypothesis 

First outlined by Paul Cisek in 2007 and recently presented more broadly with additional 

accompanying evidence (Cisek & Kalaska, 2010) the affordance competition hypothesis 

argues that the competing representations in the brain occur between the potential actions 

afforded by the environment.  In many ways, the affordance competition hypothesis 

operates on the same principles as the biased competition hypothesis, a point Cisek and 

Kalaska acknowledge, ―…models of action selection…are functionally equivalent to the 

biased competition model used to explain data on visual attention‖ (2010, p. 283).  The 

critical difference emerges in that the affordance competition hypothesis is completely 

grounded in an ethological and evolutionary explanation.  As I have already quoted, but 

will repeat since I firmly believe it is a point worth repeating, Cisek and Kalaska state, 

―One of the most important facts we know about the brain is that it evolved‖ (2010, p. 

275).  Moreover: 

―Continuous interaction with the world often does not allow one to stop and think 

or to collect information and build complete knowledge of one‘s surroundings.  

To survive in a hostile environment, one must be ready to act at short notice, 

releasing into execution actions that are at least partially prepared.  These are the 

fundamental demands which shaped brain evolution.  They motivate animals to 

process sensory information in an action-dependant manner to build 
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representations of the potential actions which the environment currently affords‖ 

(Cisek, 2007, p. 1586). 

Thus, the selective biases that develop in the brain are selective of and biased toward 

actions.  Ultimately, task relevance must be dictated by actions, since the task (from an 

evolutionary perspective) is always to perform the most beneficial action and thus the 

relevance of any object is intrinsically tied to how it shapes movements.  From this 

perspective, it is clear that obstacle objects (which clearly impact actions) are an 

important component of the competitive framework. 

Since the key difference between the biased competition and affordance competition 

hypotheses is the nature of what is being represented in the brain (which is difficult to test 

experimentally), not where and how, the evidence for both hypotheses is similar.  That is, 

like Duncan, Cisek argues that, ―the competition between potential actions plays out in 

large part within the reciprocally interconnected fronto-parietal system‖ (Cisek, 2007, p. 

1588).  One study by Cisek and Kalaska, which therefore could support both frameworks 

of competition, involved recording activity from the premotor cortex of a monkey 

performing a delayed reach task (Cisek & Kalaska, 2002, 2005).  Here, the monkey was 

shown a simple display with two differently coloured targets (a red and blue circle 

equally eccentric from a central fixation) either of which could be the target of a reach 

action on a given trial.  After a delay, a colour cue presented at fixation indicated to the 

monkey which target to reach for.  The critical finding was that, during the delay, across 

a population of neurons in the premotor cortex, two discrete peaks of activity were 

recorded – one for each of the two potential target locations (see Figure 1.2b).  

Importantly, once the colour cue indicated which target was to be acted on, the activity 

corresponding to that target location increased dramatically, while activity corresponding 

to the non-selected location was reduced to baseline.  Equally importantly, the same 

premotor neurons that were active during the delay and showed selectivity for the target 

with the presentation of the colour cue were also robustly active during the movement.  

This provides critical evidence that the final reach target was not just selected but was 

specifically selected for action.  The fact that the same neurons were responsible from the 

visual specification of both targets, through the selection of one target and, critically, 

during the movement execution toward that target, favours an interpretation that 
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competitive neural representations are ultimately there to shape action.  Given this 

hypothesis – which favours an interpretation of attentional distribution based on an 

object‘s relevance to the planned action – we would predict that obstacle objects should 

show competitive / selective effects comparable to other task / action relevant objects.  

One aspect of this hypothesis regarding obstacles is tested and described in the third and 

final framework discussed below. 

1.2.3. Attentional landscapes hypothesis 

Recently put forward by Baldauf and Deubel (2010), the attentional landscapes 

hypothesis represents a sort of compromise between the biased competition hypothesis 

(which is primarily concerned with visual selective attention) and the affordance 

competition hypothesis (which is primarily concerned with the implications of 

competitive representations of motor plans).  In their review, they introduce a concept 

called visual preparation, ―the spatially selective, action-specific extraction of motor-

relevant information from the visual scene by means of attentional mechanisms‖ (Baldauf 

& Deubel, 2010, p. 999).  They go on to argue that,  

―Visual preparation involves the top-down weighting of incoming visual 

information via feedback routes from action planning areas of the brain. We 

suggest that any kind of goal-directed action preparation is accompanied by a 

visual preparation process and that the top-down signals that weight visual 

information at early processing stages may therefore have various possible 

sources, depending on which motor system is in use. Although understood as a 

top-down weighting of visual input, the process of visual preparation is automatic 

in the sense that it is a mandatory component of preparing a goal-directed action‖ 

(2010, p. 999). 

Baldauf and Duebel conceptualize the resulting allocation of visual attention as an 

‗attentional landscape‘ with peaks of activation facilitating the visual representation of 

task relevant objects (from a goal directed motor sense) and valleys of activation 

inhibiting the representation of irrelevant, distracting or interfering objects.  Among the 

many examples of experimental evidence presented in their review (Baldauf & Deubel, 

2010), several of the studies deserve specific attention in the current thesis. A group of 

the studies have used a similar paradigm to demonstrate how the allocation of visual 

attention is linked to the planning of movements.  Specifically, participants are required 
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to perform two tasks: the first is a target directed action (here I restrict myself to a 

discussion of reach movements, but similar work has been done with eye movements, 

Baldauf & Deubel, 2008; Deubel & Schneider, 1996; Schneider & Deubel, 2002) and the 

second is a perceptual identification (see Figure 1.3).  The perceptual identification 

requires participants to indicate whether a target briefly (~100ms) presented among 

distractors, then immediately masked, was an ‗E‘ or was a reverse E (similar to a digital 

‗3‘).  The target is presented after the participants are cued to make a movement but 

before the movement has been initiated.  The critical comparison examines identification 

performance when the target is presented at action-relevant (i.e. the goal of an action) or 

action-irrelevant locations.  Several studies using this paradigm provide insight that is 

significant to the current thesis.  First, it was found that the preparation of a reach 

movement to a target position facilitated detection specifically at that location (Duebel, 

Schneider, & Paprotta, 1998).  Second, impressively, this finding extended to cases 

where participants were making sequential movements (Baldauf, Wolf, & Deubel, 2006).  

In this study, participants planned movements where they reached to an initial target 

position and then to a target position one removed in a clockwise direction (equivalent to 

pointing to the 1 and then the 3 on a standard clock).  Identification at both movement 

goals was enhanced.  Moreover, when participants were required to extend the movement 

to include a 3
rd

 location (either once more removed from the second target (like 1, 3, 5 on 

a clock), or directly across the circle (like 1, 3, 9 on a clock)) the identification 

enhancement was seen at all three locations.  Importantly, the enhancement at multiple 

locations did not come at a cost to the enhancement at a single location – that is, 

participants were as good at detecting targets at the first movement goal regardless of 

whether it was the only target, or the first of three targets.  This finding provides strong 

evidence for the parallel specification of movement goals and the attentional 

enhancement at multiple points in the attentional landscape – likely a necessary 

requirement when avoiding an obstacle while reaching to a specific target. 
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Figure 1.3. Stimuli arrangement for two studies using the dual-task perceptual 

identification / reaching paradigm (A) From Shiegg et al. (2003): A cross could be 

grasped with the thumb and forefinger at opposite ends of either cross-beam.  Targets and 

distractors could be presented at one of 16 locations, some of which aligned with the 

grasp points.  (B) From Duebel and Schneider (2004): Participants made reaches with 

either their left or right hand (starting at Sleft or Sright respectively) to one of two goal 

targets (aligned directly ahead of the left and right start positions). An obstacle was 

sometimes present in the middle of the workspace.  Targets and distractors could be 

presented at either of the goal locations or at the obstacle location. (C) Example of targets 

and distractors used for the perceptual identification. 
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Two additional studies are particularly relevant to the current thesis.  The first (of 

consequence to the experiment described in Chapter 4, C. S. Chapman, Gallivan, 

Culham, & Goodale, 2010) showed that when participants planned a grasp toward an 

object shaped like an ‗X‘ (finger and thumb on opposite ends of one arm of the ‗X‘) 

identification enhancement was seen for targets presented at both the index finger and the 

thumb targets, but not at the ends of the other arm of the ‗X‘ (see Figure 1.3a, Schiegg et 

al., 2003).  This suggests that grasping also requires the parallel processing of multiple 

target positions, in this case both the finger and thumb goals.  Finally, most relevant to 

the current study, these researchers examined the allocation of attention in a task 

requiring the avoidance of an obstacle (Deubel & Schneider, 2004).  In this study 

participants made reaches with either their left or their right hand, each of which started 

from its own start position (see Figure 1.3b).  Reaches with either hand could be toward 

one of two targets – straight ahead or across the workspace (to the straight-ahead target 

for the opposite hand).  On half the trials, an obstacle was placed in the middle of the 

workspace (midpoint of the square formed by start and target positions).  Identification 

was tested at three locations – the two target locations and the location of the obstacle.  

Of most interest, identification performance was enhanced at the obstacle location only 

when an obstacle was present and only when an across-workspace reach was required.  

That is, on straight ahead reaches with either hand (where avoidance was not required 

and trajectory deviations were not observed) there was no perceptual enhancement at the 

obstacle location.  In comparison, on trials when the arm crossed the workspace, and 

deviations were required in order to avoid the obstacle, perceptual enhancement was seen 

at the obstacle location.  Critically, this finding suggests that the obstacle position was 

automatically coded (as measured by attentional enhancement) prior to movement onset, 

and that this enhancement was specifically tied to the current movement goal and level of 

interference provided by the obstacle. 

Finally, two recent studies by the same research group have examined the neural 

correlates of this attentional enhancement at action-relevant locations.  Using the known 

event related potential (ERP) response difference to flashed items at attended versus 

unattended locations (known as the dot-probe paradigm), Baldauf and Duebel (2009) 

demonstrated that attention was preferentially allocated to both of the upcoming targets in 
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a sequential pointing task.  While source localization is a difficult problem with ERPs, 

these researchers speculated that the prefrontal cortex and posterior parietal cortex (PPC) 

were likely involved. The involvement of the PPC was directly tested using neural 

recordings from the PPC of behaving monkeys (Baldauf et al., 2008).  The majority of 

cells with a preferred reach direction showed an enhanced response when either the first 

or second of the sequential targets was present in their receptive field, and this 

enhancement persisted across a delay period (see Figure 1.2c). 

Several principles can be extracted from the attentional landscape hypothesis that 

resonate with the two previously discussed frameworks and that have important 

implications for the current thesis and obstacle representation in general.  First, as with 

both the biased competition and affordance competition hypotheses, the attentional 

landscape hypothesis argues for the parallel representation of multiple visual objects (or 

parts of objects, as is the case in grasping).  While the attentional landscape hypothesis 

does not make a direct claim for competition, parallel encoding when (usually) only one 

target is selected implies a competitive interaction.  Second, and more akin to the 

affordance competition hypothesis, the peaks of facilitation within an attentional 

landscape are intrinsically bound to action goals.  Third, a frontoparietal network is 

implicated in the control (or manifestation) of selective biases, with potential effects 

visible in the early visual cortical representation of selected or inhibited objects.  Finally, 

and specific to the evidence presented for the attentional landscape hypothesis, the 

representation at obstacle locations is enhanced prior to movement onset and is 

contingent on the level of interference the obstacle presents to the current reach 

movement. 

1.2.4. Conclusions from frameworks 

Here I summarize three key points of convergence across the three frameworks described 

above.  For each point, how it specifically affects our understanding of obstacles, and 

how it motivated the current thesis is discussed.   

Suppression of non-target objects  
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At the start of this section I proposed that one way obstacles might influence action is for 

their neural coding to be actively inhibited relative to the encoding of a target object.  

This proposal requires that there is an initial positive coding for both the target and 

obstacle object, followed by the inhibition of the obstacle-related activity and a 

corresponding boost to the target-related activity.  Studies that have been motivated by all 

three frameworks provide evidence supporting the notion of an initial parallel encoding 

of objects, where an initial response to two or more objects in the workspace has been 

demonstrated (see Figure 1.2).  Both the competitive bias and affordance competition 

hypotheses have argued that the activity associated with non-target objects (but not 

necessarily obstacles) is suppressed once a target is specified.  What is still unknown is 

whether or not the neural encoding of obstacles will show the same suppression as the 

neural encoding of non-selected objects; that is, if an obstacle‘s non-target status is 

implied, rather than cued, will there still be evidence for suppression?  That is one of the 

specific questions tackled in the current thesis. 

Dynamics of non-target representations – from planning to execution 

Another feature uniting all three frameworks is the evidence that parallel selective biases 

develop prior to movement initiation.  This indicates that parallel object/motor-plan 

specification develops and is maintained across delays during movement planning – an 

aspect that will become important both when we consider the obstacle effects in 

neuropsychological patients discussed in section 1.6 and the design of the functional 

magnetic resonance imaging (fMRI) study discussed in Chapter 4 (C. S. Chapman, 

Gallivan, Culham et al., 2010).  Furthermore, the idea of the dynamics of the obstacle 

representation (i.e. how they evolve during movement execution) – a relatively 

unexplored aspect of non-target representations – also provided the motivation for the 

behavioural studies (C. S. Chapman & Goodale, 2010a, 2010b) conducted in the current 

thesis.   

Frontoparietal (dorsal stream) control of visuomotor bias  

A final point of commonality between the three frameworks that is significant to the 

current thesis is the notion that visuomotor biases are developed and maintained in a 
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frontoparietal network.  This network is putatively responsible for the flexible selection 

of action relevant objects and inhibition of objects that are irrelevant or interfere with 

movements.  As will be discussed in section 1.6, frontoparietal circuits are also part of the 

dorsal visual stream, known to carry and transform visual information important for the 

control of action and implicated in obstacle avoidance in neuropsychological populations.  

In the current thesis, I aim to specifically test the involvement and capabilities of the 

dorsal stream in obstacle avoidance both behaviourally and through neuroimaging. 

The remainder of the Introduction loosely follows the order of the three topics presented 

above.  First, I review experimental evidence in support of the suppression of non-target 

(or distractor) visual information in both neuroimaging and behavioural work.  Since the 

current thesis presents the first neuroimaging experiment directly looking for the 

suppression of neural activity associated with obstacles, the neuroimaging portion of this 

review is restricted to an examination of the suppression of activity associated with non-

obstacle distractors in predominantly non-action tasks.  The behavioural portion focuses 

entirely on work examining the effect of distractors on reaching and grasping 

movements.  A complementary literature in the domain of eye-movements is likely 

relevant, but is not discussed for the sake of brevity.  The second and third topics – 

namely the dynamics of obstacle representation and its control by the dorsal visual stream 

– while distinct motivating factors for the current thesis, are largely inseparable in the 

relevant work that is reviewed.  As such, the remaining sections in the Introduction 

discuss the dynamics and dorsal stream control of obstacle avoidance together.  First, I 

review the (limited) work on obstacle avoidance in non-human animals before turning the 

focus to work on neuropsychological patients.  I conclude the Introduction with a 

summary of previous behavioural work on obstacle avoidance during reach and grasp 

movements. 

1.3. Neural correlates of distractor suppression 

1.3.1. Suppression in an action task 

As discussed above, within a biased competition framework, an obstacle can be 

conceptualized as a non-target object in the workspace whose representation must be 
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suppressed, resulting in its avoidance during movement execution (for further speculation 

of the exact mechanism that might underlie such suppression, refer to section 5.3 in the 

Discussion).  To my knowledge, prior to the work described in this thesis  (Chapter 4, C. 

S. Chapman, Gallivan, Culham et al., 2010) only one study has examined human neural 

activity when performing real reach actions in the presence of real non-target objects (H. 

Chapman et al., 2007).  In this experiment participants reached out and grasped spherical 

targets (attached to a rod which allowed the targets to be retracted) at one of three 

locations.  There were two experimental conditions (run as a blocked fMRI design): 1) 

the target could appear in isolation prior to its location being cued, or 2) the target could 

appear together with identical objects at the two other locations prior to being cued (all 

locations had an equal likelihood of being selected as the target on any given trial).  

Critically in the three-target condition simultaneous presentation of multiple targets 

meant that potential motor plans may have been generated toward all three locations.  In 

agreement with other neuroimaging work demonstrating an automatic response to objects 

within reach (Gallivan, Cavina-Pratesi, & Culham, 2009), H. Chapman et al. (2007) 

found greater activation for the three-target than the single-target condition in the 

superior parietal occipital cortex, which they label as precuneus activity.  This finding is 

in accord with the involvement of the frontoparietal network in visual selection of and the 

specification of actions toward relevant objects. Given the nature of this task, however, it 

is unclear exactly what process was being measured.  If it was a purely motor planning 

response, then this activity could have corresponded to an increase in the number of 

motor plans being specified.  If it was a response selection response, however, then this 

activation could have corresponded to the selection of one target amongst many and/or 

the suppression of non-selected locations.  Finally, if the response was related to motor 

execution then it may have been driven by the act of reaching in the presence of non-

target objects, which could have functioned as obstacles (whose level of interference 

would have shifted with the specific location reached to, a factor not discussed in this 

study).  Therefore, while this study suggests an important role of the PPC when 

performing reaches in the presence of non-target objects, other methods are required to 

tease out the specific components of the planning to execution continuum. 
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1.3.2. Suppression in visual cortex and parietal top-down control 

In this vein, experiments have been conducted to examine the brain network responsible 

specifically for the suppression of unwanted visual information (though not in the context 

of action).  In two studies, participants were required to respond to the angle of one of 

two visual stimuli, while being scanned with fMRI (Sylvester, Jack, Corbetta, & 

Shulman, 2008; Sylvester, Shulman, Jack, & Corbetta, 2007).  Which stimulus they were 

required to attend to was cued with one of two auditory beeps 6-10s prior to the 

presentation of the visual stimuli.  This pre-cue and subsequent delay allowed the 

researchers to measure the neural signature of the allocation of attention to both the cued 

and uncued target locations during this preparatory period.  They found that the allocation 

of attention led to a correlated difference in the visual cortical representations of the 

attended (activity enhanced) and non-attended (activity suppressed) locations (Sylvester 

et al., 2007), and that the suppression of activity at non-attended locations was larger 

when the expected discrimination was going to be more difficult (lower contrast, 

Sylvester et al., 2008).  These results fit well within a competitive framework where 

attention toward the cued location is accompanied by a suppression of activity at the non-

cued location, especially when the difficulty demands even greater attentional resources.  

Additional findings from these studies also suggest that the modulations in preparatory 

activity observed in early visual cortex were generated by top-down attentional control 

signals from a frontoparietal network (see also Bressler, Tang, Sylvester, Shulman, & 

Corbetta, 2008; Silver, Ress, & Heeger, 2007).  A similar result was found in another 

experiment (where the likelihood of the appearance of distractors was cued) which 

demonstrated that the amount of preparatory activity observed in visual cortex was 

contingent upon whether or not participants expected distractors to appear together with 

the targets (Serences, Yantis, Culberson, & Awh, 2004). 

One neurophysiological study, where recordings were made from the IPS (specifically 

the lateral intraparietal (LIP) area) of rhesus monkeys during a visual search task (Ipata, 

Gee, Gottlieb, Bisley, & Goldberg, 2006), also provides neural evidence for the role of 

the parietal cortex in distractor suppression.  In this experiment, search displays always 

contained a target that was difficult to detect amongst several distractors one of which 
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was highly-salient and ‗popped out‘.  Initially, neuron responses to the pop-out distractor 

were higher than for non-pop-out distractors.  However, with training, the responses of 

the neuron for the pop-out distractor became slower and smaller than the responses for 

the non-pop-out distractors.  This was taken as evidence that with sufficient knowledge 

(in this case training) the representation of salient but irrelevant information in the IPS 

could be suppressed. 

Finally, a recent set of experiments has used fMRI and transcranial magnetic stimulation 

(TMS) to confirm the role of the parietal cortex when human participants responded to 

one set of visual information while ignoring another (Mevorach, Hodsoll, Allen, Shalev, 

& Humphreys, 2010; Mevorach, Humphreys, & Shalev, 2005, 2006, 2009; Mevorach, 

Shalev, Allen, & Humphreys, 2009).  Specifically, these researchers used compound 

letter stimuli where a larger letter is comprised of smaller elements of a different letter 

(e.g. a large letter ‗H‘ comprised of small letter ‗D‘s, see Figure 1.4).  In these compound 

stimuli there are two orthogonal dimensions, the global, large letter and the smaller, local 

letters, whose salience can be varied (i.e. blurring the local elements makes the large 

letter more salient, while making local elements different colours makes them the more 

salient dimension, see Figure 1.4).  Importantly, one can then contrast behaviour and 

neural activity on trials when participants are responding to the high-salience or low-

salience dimension independent of whether that dimension is the global or local target.  

Brain areas responding to this contrast would then specifically be implicated in the 

selection (or suppression) of high- or low-salience information.  Using repetitive TMS 

(10 min of stimulation over one site, which leads to a disruption of that area for several 

minutes) these researchers showed that disrupting the right PPC interfered with 

participants‘ ability to respond to the high salient dimension (again, irrespective of 

whether it was global or local) while disrupting the left PPC interfered with participants‘ 

ability to respond to the low salient dimension (Mevorach et al., 2006).  The most 

relevant conclusion to the current thesis, that the left PPC biases selection away from the 

salient dimension (i.e. enabling one to ignore distracting information), was replicated and 

extended in two follow up studies.  First, using transient TMS (where a brief burst of 

TMS is given at different points in a trial), Mevorach et al. (2009) showed that the deficit 

in responding to low-salience information after left PPC disruption was maximal with 
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TMS prior to stimulus onset, indicating that the suppressive response was preparatory in 

nature.  Second, using fMRI, these researchers (Mevorach, Shalev et al., 2009) further 

localized the preparatory left PPC activity to the IPS.   
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Figure 1.4. Compound letter stimuli used by Mevorach and colleagues (from Mevorach et 

al., 2010).  A large global letter (in this case H) is made up of smaller local-element 

letters that are either congruent (in this case H) or incongruent (in this case S or D) with 

the larger letter.  By providing a high resolution stimulus (top row) with different 

coloured local elements, the local dimension can be made more salient.  By blurring the 

stimulus (bottom row) the global dimension can be made more salient.  A contrast can 

therefore be made between high and low salient information that is independent of the 

global / local level of the information. 
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One recent study (Mevorach et al., 2010) brings together the work showing a suppression 

of visual cortex activity at the location of an anticipated distractor (Sylvester et al., 2008; 

Sylvester et al., 2007) and the increase in left PPC activity when suppression is required 

(Mevorach, Shalev et al., 2009).  In this study, Mevorach and colleagues (2010) 

combined TMS and fMRI to specify a causal relationship between left IPS activation and 

visual cortex suppression.  First, in a pre-TMS fMRI scan, they confirmed that the left 

IPS was activated more on trials where participants were required to respond to low 

salient, as compared to high salient information.  From this data, they also demonstrated 

that the increased left-IPS activation was correlated with a decrease in activity in visual 

cortex.  Finally, using repetitive TMS followed immediately by an fMRI scan (such that 

the disruptive TMS effects were still evident) they showed that left-IPS disruption led to 

an increase in the blood oxygenation level dependent (BOLD) fMRI response in visual 

cortex, but only when participants were required to respond to the low-salience 

dimension of a compound stimulus.  That is, in cases where the left IPS should have been 

generating the suppressive response required to ignore the irrelevant high salient 

information, its disruption led to an increased visual response, corresponding, they 

argued, to a lack of suppression.  Taken together, these TMS and neuroimaging studies of 

the suppression of distracting visual information suggest that the detection of irrelevant 

information is generated by preparatory activity in the PPC (specifically the left IPS) 

which leads to the suppression of the corresponding retinotopic location in early visual 

cortex. 

It should be noted that there are many other tasks which likely rely on suppressive 

mechanisms which are similar to those described in this section, including Go/No-Go (or 

cancellation, e.g. Curtis, Cole, Rao, & D'Esposito, 2005) tasks (where the participant is 

required to countermand a planned response, e.g. Rubia et al., 2001) anti-saccade tasks 

(where the participant is required to make an eye movement to a location opposite a 

visual cue, e.g. Connolly, Goodale, Desouza, Menon, & Vilis, 2000; Connolly, Goodale, 

Menon, & Munoz, 2002) and, perhaps most relevantly, anti-pointing tasks (e.g. Connolly 

et al., 2000).  Interestingly, as was the case for the distractor suppression studies 

described above, a frontoparietal network (in which the PPC plays a crucial role) has 

been implicated in all of these related tasks.  Key differences between these tasks and 
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obstacle avoidance, however, make a further discussion of them beyond the scope of this 

thesis. In anti-pointing and anti-saccade tasks, while a movement to the visual cue must 

be suppressed, there is also considerable remapping required to generate a movement to 

the new anti-location, which is not required in an obstacle task where no target 

remapping is needed.  For Go/No-Go tasks neural activity resulting from the complete 

cancellation and corresponding lack of response is likely to be very different from 

obstacle tasks where an action is always performed, and only a single object, and not an 

entire action, must be suppressed.  

1.3.3. Conclusions from distractor suppression 

As predicted by the frameworks described in section 1.2, acting in the presence of 

distracting objects or attending to one visual stimulus (or one dimension of stimulus) in 

the presence of a second stimulus (or dimension) recruits a frontoparietal network – 

specifically, the PPC.  Interestingly, in these tasks a suppression signal can result in 

changes to the early visual response – enhancing activity at attended locations and 

suppressing activity at unattended or irrelevant-object locations.  None of these studies, 

however, has looked at the neural activity and possible suppression related to obstacles, a 

key component of the current thesis. 

1.4. Distractor interference in reaching tasks 

Work examining the effect of non-target objects on reach behaviour was borne out of the 

same ideas that drove researchers to examine selective attention.  That is, just as it is 

necessary to filter the overwhelming influx of visual information that constantly arrives at 

our retina, so too is it necessary to filter the possible objects on which we might act.  Of 

course, as has already been argued above (see section 1.2), recent theoretical frameworks 

posit that these two selective process are actually a unified phenomenon of a brain that 

has evolved to visually select action relevant objects.  The described frameworks, 

however, were in part inspired by researchers exploring what was specifically known as 

―selection-for-action‖.  Alan Allport was one of the first to recognize the problem of 

selection specifically as it pertained to action, and he describes the problem as follows: 
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―The action is, say, picking apples.  Many fruit are within reach, and clearly 

visible, yet for each individual reach of the hand, for each act of plucking, 

information about just one of them must govern the particular pattern and 

direction of movements.  The disposition of the other apples, already encoded by 

the brain, must be in some way temporarily decoupled from the direct control of 

reaching, though it may of course still influence the action, for example as 

representing an obstacle to be reached around, not to be dislodged, and so on.‖ 

(1987, p. 396) 

While Allport makes a distinction between the processes of selection and obstacle 

avoidance (which may in fact be part of the same competitive process) the demands of 

selection for action are clear – actions must be performed toward a limited (usually one) 

number of objects in an environment full of other distracting objects.   

1.4.1. Reaching in the presence of distractors – Tipper and 
colleagues 

In an important paper, Tipper and colleagues presented some of the first experiments 

looking directly at selective attention using reach responses (Tipper, Lortie, & Baylis, 

1992).  In these experiments, participants made reaches to buttons at different target 

positions signalled each trial by a light emitting diode (LED).  On some trials a second 

target button would be signalled with a different coloured LED, which participants were 

told to ignore.  The results showed that the cuing of non-target locations interfered with 

reaches to target locations, indicated by slower response times.  This pattern of 

interference indicated that non-target locations in the path of the reach (or, in a slightly 

modified version, non-targets closest to the hand, Meegan & Tipper, 1998) interfered the 

most, while non-targets presented past the reach target showed reduced interference 

(Tipper et al., 1992).  That the interference effects were contingent on the anticipated 

reach trajectory (or position of the moving hand) provides strong support that the 

selective attentional effects arose from the relevance of the distractors to the action.  In 

several follow-up studies, the trajectories of reaching movements were monitored in a 

similar task (Howard & Tipper, 1997; Tipper, Howard, & Houghton, 2000).  It was found 

that trajectories deviated both toward (Tipper et al., 2000) and away (Howard & Tipper, 

1997) from distractor locations.  This somewhat confusing result is discussed in further 

detail in below. 
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The results described above were restricted to examining the effects of LED distractors.  

Thus, to extend their investigations, in one study Tipper and colleagues (Tipper, Howard, 

& Jackson, 1997) examined reach-to-grasp movements directed toward coloured cubes in 

the presence of other non-target cubes.  Target and distractor cubes were placed in one of 

four spots, arranged in a square on a table (resulting in ‗far‘ and ‗near‘ positions in 

combination with ‗right‘ and ‗left‘ positions) and the trajectory of the hand through space 

was measured (see Figure 1.5).  When reaching for a ‗near‘ cube, with a distracting cube 

in one of the ‗far‘ positions slight deviations toward the non-target cube were observed 

(see Figure 1.5a), while reaches to ‗far‘ cubes with a distracting object in one of the 

‗near‘ positions had deviations away from the non-target cube (see Figure 1.5b).  In this 

study, it was acknowledged that the ‗near right‘ non-targets likely functioned as obstacles 

and this accounted for some of the observed deviations.  However, the researchers 

claimed that objects in the ‗near left‘ location did not physically obstruct the movement; 

thus deviations away from this distractor did not represent avoidance.  In contrast to this, 

I would argue that all of these ‗near‘ deviations can be attributed to obstacle effects 

(Tresilian, 1998; 1999, makes the same argument) since, as we have shown in a number 

of studies (C. S. Chapman & Goodale, 2008, 2010a, 2010b), an obstacle does not need to 

physically impede a movement to induce avoidance.  The demonstration of the (very 

slight) deviation toward ‗far‘ distractors likely represents those objects functioning as 

competing targets, a point of distinction we return to later in this section. 
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Figure 1.5. Overhead view of reach trajectories showing the effects of distractor 

interference in the Tipper reach-to-grasp task (Figure from Tipper, Howard, & Houghton, 

1998; Results from Tipper et al., 1997).  Reaches to targets (black squares) in the 

presence of distractors (grey squares) deviated slightly (7 mm) toward far distractors (A) 

or away (14 mm) from near distractors (B).  Solid lines correspond to reaches with a 

distractor present, dashed lines correspond to reaches with only a target present. 
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One of the striking parts of the above study involving the grasping of cubes (Tipper et al., 

1997) was the researchers‘ treatment of distractors and obstacles as being separable 

phenomena.  In a follow-up review article they state, ―…hand deviations away from 

distractors may not reflect inhibitory mechanisms so much as the avoidance of a collision 

between the reaching hand and the distractor‖ (Tipper et al., 1998, p. 1390).  Unlike what 

I have been arguing – namely that obstacles, like distractors, are in some sense to-be-

ignored stimuli – this statement appears to argue that the avoidance of obstacles lies 

outside the domain of inhibition / suppression (though no description of how obstacles 

are avoided is ever offered).  Their stance on this issue is confirmed in two more recent 

studies (Meegan & Tipper, 1999; Tipper, Meegan, & Howard, 2002) where an obstacle 

was used to modulate the level of distractor interference.  That these researchers use an 

obstacle to independently alter distractor effects implies that they believe obstacle 

avoidance and distractor interference are not related processes.  Specifically, they adapted 

the LED-distractor paradigm described above (Tipper et al., 1992) by placing a 

transparent obstacle in front of one of the target locations (Meegan & Tipper, 1999).  In 

general, they found that distractors behind transparent obstacles interfered with reaches 

(measured only by response time) to other locations less than distractors that were not 

behind obstacles. This reduction of distractor interference at obstacle locations was 

accompanied by longer response times when participants were asked to act at the obstacle 

location (with no distractors present).  They argued that, ―The obstacle successfully 

decreased motor processing efficiency (i.e. increased response time)…As predicted by 

the visuomotor processing hypothesis, this decreased motor processing efficiency also 

produced a decrease in interference from a distractor…‖ (Meegan & Tipper, 1999, p. 

1355).  What they do not consider is why the motor efficiency would be reduced at the 

obstacle location.  Of course, as I have argued, the representation of the obstacle might 

itself be suppressed, which in turn could account for the distractors reduced effect.  It is 

quite surprising that they neglect the potential evidence for the suppression of an obstacle 

that their own reaction time measure of interference indicates.  
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1.4.2. Reaching and grasping in the presence of distractors – other 
work 

Other research groups have also examined distractor effects in movement tasks.  This 

remaining work can fall into roughly two categories:  studies examining the influences of 

distractors on grasping movements (Ansuini, Tognin, Turella, & Castiello, 2007; 

Bonfiglioli & Castiello, 1998; Castiello, 1996, 1998, 1999, 2001; Castiello, Badcock, & 

Bennett, 1999; Gangitano, Daprati, & Gentilucci, 1998; Jackson, Jackson, & Rosicky, 

1995; Kritikos, Bennett, Dunai, & Castiello, 2000; Kritikos, Dunai, & Castiello, 2001) 

and studies examining the influences of distractors on reaching movements (Chang & 

Abrams, 2004; Fischer & Adam, 2001; Keulen, Adam, Fischer, Kuipers, & Jolles, 2002, 

2003; Kurniawan et al., 2010; Song & Nakayama, 2006, 2009; Trommershauser, Landy, 

& Maloney, 2006; Trommershauser, Maloney, & Landy, 2003a, 2003b; 

Trommershauser, Mattis, Maloney, & Landy, 2006; Weir et al., 2003; Welsh & Elliot, 

2005; Welsh & Elliott, 2004; Welsh, Elliott, & Weeks, 1999; Welsh & Zbinden, 2009).  

Obviously it is beyond the scope of the current thesis to describe the results from all these 

studies in any detail, but a few important results are highlighted.  Focussing on grasping 

studies, the bulk of the research comes from the research group led by Umberto Castiello.  

A theme across the majority of their studies is having participants make reaches to more 

ecologically relevant stimuli, specifically fruits, in the presence of related non-target 

objects, usually the same or different types of fruit (Bonfiglioli & Castiello, 1998; 

Castiello, 1996, 1998, 1999, 2001; Castiello et al., 1999; Kritikos et al., 2000; Kritikos et 

al., 2001).  Across studies, these researchers find consistent evidence for the automatic 

processing of distractor features in a way that interferes with reach-to-grasp movements – 

but only when attention is directed toward the distractor.  For example, in one 

experiment, Castiello had participants reach toward an apple that could be presented 

alone, with a three dimensional (3D) fruit distractor (apple or cherry), or with a two 

dimensional (2D) photograph of the fruit distractor (Castiello, 2001).  Here, he reports 

that attention needs to be drawn to the distractor (by sudden illumination) in order for it 

to influence the reach, and when the distractor does interfere, it does so in a manner that 

is task relevant.  That is, when the distractor is 3D, it impacts both the reach and grasp 

components of the movement, while a 2D distractor only influences the reach component.  
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This, Castiello argues, supports the notion that automatic processing of distractor features 

is specific to those features that are relevant to the intended action; since 2D photographs 

can be pointed at but cannot be grasped, their interference is seen only in reaching, and 

not grasping (Castiello, 2001).  Most commonly, distractor effects in these studies 

suggest that parameters from the attended distractor leak into the motor execution toward 

the target – for example, reaching for an apple in the presence of a cherry leads to smaller 

grip apertures than reaching toward the apple alone.  These size effects are not consistent 

(Jackson et al., 1995), however, indicating the exact nature of the distractor interference 

in these tasks remains unclear. 

As was already noted above in discussing the work from Steve Tipper‘s group (section 

1.4.1), a similar inconsistency in results is found in the reaching literature.  Specifically, 

reaches toward targets can deviate either toward distractors (Chang & Abrams, 2004; 

Keulen et al., 2002; Welsh & Elliot, 2005; Welsh & Elliott, 2004; Welsh et al., 1999) or 

away from them (Fischer & Adam, 2001; Keulen et al., 2002; Welsh & Elliott, 2004).  

One possible interpretation for deviations toward distractors is that they are coded as 

potential targets, and thus, in a competitive framework, some biasing toward their 

location is noted during reaching.  We have developed a novel rapid-reaching paradigm 

that has directly tested this idea (C. S. Chapman, Gallivan et al., 2010a, 2010b; Gallivan 

et al., 2010) and found convincing evidence for the encoding of multiple targets which 

results in profound shifts in reach trajectory (most notably initial trajectories which aim 

directly toward the midpoint of two potential targets, prior to one of them being selected 

in-flight).  By forcing participants to treat all visual stimuli as potential targets, rather 

than presenting only one target among some distractors, our work improves upon the 

explanatory power of other rapid reaching tasks (for review see Song & Nakayama, 

2009) where distractor effects were seen to ‗leak‘ into movement execution (akin to the 

effects described above during grasping tasks).  This thesis, however, is concerned with 

non-target objects that function as obstacles, and I will not discuss the literature on 

distractors that attract movements in any more detail.  

This leads to a discussion of cases where reaches deviate away from distracting stimuli, 

an area of research that is likely to be more relevant since these deviations would appear 
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to mirror the behaviour that occurs when someone avoids a physical obstacle.   The two 

groups that have noted reach deviations away from distractors both have hypothesized 

that the deviations away are the result of a distractor whose representation has been 

inhibited and pushed below baseline (Houghton & Tipper, 1999; Tipper et al., 1998; 

Welsh & Elliott, 2004; Welsh et al., 1999).  These researchers also believe that deviations 

toward distractors represent inhibitory processes – just ones that are weak (Houghton & 

Tipper, 1999; Tipper et al., 1998) or have not had sufficient time to develop (Welsh & 

Elliott, 2004) [Note that this explanation of deviations toward distractors does not 

exclude the interpretation of these deviations being representative of multiple target 

encoding.  It is just that, at some point, the non-targets must be inhibited, and that this 

inhibition can be incomplete.]  From this explanation, then, the representation of 

obstacles and distractors could have a shared fate – namely that inhibition of their 

representation is required and as a result the hand and arm deviate away from that 

position (for further speculation regarding the details of obstacle inhibition, see section 

5.3).  Of course, the amount a given distractor or obstacle interferes with a reach (and 

thus the amount of inhibition it receives and deviation it results in) is likely to be tied to 

factors other than its location.  In several studies, Julia Trommershauser, and colleagues 

(Kurniawan et al., 2010; Trommershauser, Landy et al., 2006; Trommershauser et al., 

2003a, 2003b; Trommershauser, Mattis et al., 2006) have demonstrated that this is indeed 

the case.  In these studies, target areas and penalty areas are displayed on a computer 

screen and each is given a point value (positive for target and negative for penalty), with 

the task being to rapidly point to the screen on each trial and accumulate as many points 

as possible.  By varying the position and value of the two areas, the experimenters have 

shown that participants accurately adjust their reaches to maximize point gain, and do so 

without changing their reaction times. In one recent study, the negative consequence 

assigned to penalty regions was a mild pain stimulus delivered to the non-acting hand 

(Kurniawan et al., 2010) and similar results were found.  In all cases, participants do not 

merely adopt a strategy in which they simply avoid penalty regions, but rather their 

deviations away from penalty regions scale precisely with the location and negative value 

(or relative pain) assigned to both the penalty and target. This parallels the way that 

deviations around obstacles scale precisely to the location and degree of interference (e.g. 
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size) of each obstacle (C. S. Chapman & Goodale, 2008, see section 1.7) and suggests 

that the notion of negative consequences may be important when interpreting obstacles as 

inhibited distractors. 

1.4.3. Conclusions from distractor interference  

Earlier I argued that obstacles could be conceptualized as a special class of distracting 

stimuli that needed to be actively ignored and avoided.  Behaviour from studies 

examining reaching and grasping in the presence of distracting visual stimuli (that are not 

usually physically obstructing the reach) indicate that this might be true, though the 

evidence is contradictory.  That is, if deviations away from obstacles are the behavioural 

hallmark of avoidance (as described in section 1.7) then only some studies report 

deviations away from distractors.  More studies suggest that rather than having a 

repulsive effect, distractors act as attractors – or more generally, distractor properties (of 

which only one is location) influence reaches and grasps by ‗leaking‘ into the movement, 

causing it to become a sort of hybrid movement with parameters from both the target and 

distractor.  Perhaps these apparently discrepant results demonstrate that there are different 

types (or degrees) of distracting stimuli.  Thus, it may be necessary to think of distractors 

along a continuum from those that are perceptually similar to the target and compete as 

potential targets, to those that are easily distinguished from the target and thus easily 

ignored, to those that are clearly not targets and have negative consequences requiring 

avoidance.  It is critical to remember, however, that regardless of the exact nature of a 

distracting stimulus, it will initially generate a positive visual response. From the 

theoretical competitive frameworks described earlier (section 1.2), this neural encoding 

of the distractor automatically competes for visuomotor attentional selection.  Ultimately, 

since an action toward the distractor location is not selected, its neural representation 

must have lost out, indicating that, relative to the target, its neural activity was inhibited.  

One goal of the current thesis was to test the prediction that the neural encoding of 

obstacles would result in suppression effects. 



36 

 

 

1.5. Obstacle encoding in non-human animals 

1.5.1. Obstacle avoidance in monkeys 

I now shift the focus of the Introduction from a review of the effects of non-targets as 

distractors to a review of the effects of non-targets as obstacles.  Like research exploring 

obstacle avoidance in humans (see section 1.7), the study of obstacle avoidance in non-

human species is remarkably sparse.  Nonetheless, the few studies that have examined 

movements of non-human animals in cluttered environments are revealing.  In one 

behavioural study examining the reaching behaviour of macaque monkeys (Torres & 

Andersen, 2006), the researchers were interested in how hand path deviations around 

obstacles evolved with learning.  Impressively, the spatial trajectory of the monkey‘s 

hand around the obstacle emerged on the very first reach and remained almost identical 

across months of training.  The temporal characteristics, however, showed evidence of 

learning, eventually converging on an optimal spatiotemporal trajectory that became 

‗second nature‘ to the animal.  Overall, Torres and Andersen (2006) conclude that an 

ideal spatial path is automatically available during perceptual planning and that the 

consistency of the spatial path allows for the observed temporal learning to take place. 

One older study examined the effects of various lesions on complex reaching tasks in 

macaque monkeys (Haaxma & Kuypers, 1975).  While the details of all the experiments 

and lesion sites explored in this study are not relevant to this thesis, one particular finding 

is.  Specifically, in one set of 10 monkeys, the researchers performed a unilateral 

leucotomy of the white matter in the parietal lobe with the aim of disrupting all 

intrahemispheric connections within the parietal lobule.  One comment regarding the 

resulting behaviour is especially illuminating, 

―Yet, in all the leucotomized animals one phenomenon persisted, which was also 

observed in the occipital lobectomized and commissurotomized animals. When 

food was held in front of the cage the intact arm and hand, after a few trials, 

reached swiftly for the food through a 10 cm by 10 cm opening in the cage front, 

15 cm above the cage floor. However, the contralateral arm and hand were much 

less inclined to follow this strategy and generally kept trying to reach straight 

forward through the spaces between the cage bars.‖ (Haaxma & Kuypers, 1975, p. 

247). 
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This comment specifically identifies that the most persistent deficit in animals with white 

matter lesions in the parietal lobe was an inability to integrate the movement restrictions 

imposed by the environment into the goal-directed reaching of the contralesional arm.  

These monkeys could successfully identify the target and execute a reach toward it, but, 

put simply, they could not avoid obstacles.  A follow-up study (Moll & Kuypers, 1977) 

found similar results in monkeys with unilateral ablations of the premotor cortex, leading 

the authors to conclude, ―ablation of these frontal areas impairs the capacity of the 

animals to reach around an obstacle with the contralateral arm in order to obtain a visible 

food reward, and results in a tendency of this arm to reach straight to where the food is 

visible.‖ (Moll & Kuypers, 1977, p. 317). 

1.5.2. Obstacle avoidance in cats 

Recent studies of the locomotion of cats provides strong evidence for obstacle encoding 

in this species (Andujar, Lajoie, & Drew, 2010; Grahn & Owen, 2006; Lajoie, Andujar, 

Pearson, & Drew, 2010; Lajoie & Drew, 2007; McVea & Pearson, 2006, 2007; McVea, 

Taylor, & Pearson, 2009) and a role for the PPC in controlling the subsequent avoidance.  

In one paradigm, cats were required to step over an obstacle with their front paws before 

being distracted with food.  While the cat ate, the straddled obstacle was removed.  After 

a variable delay, the cat resumed walking, and the hind legs were lifted to a height that 

cleared the now-absent obstacle (McVea & Pearson, 2006).  Impressively, this hind leg 

‗avoidance‘ persisted over delays as long as 10 minutes and was sensitive to the size and 

position of the obstacle.  In a second study, McVea et al. (2009) demonstrated that 

bilateral lesions to area 5 (in cat PPC) disrupted this obstacle encoding such that the 

delayed hind limb avoidance was diminished or absent after delays longer than 1.5 

seconds.  Immediate avoidance by the hind limbs (no delay) was preserved.  In addition 

to another result suggesting that the act of stepping over the obstacle with the front limb 

is critical to the encoding of obstacles (McVea & Pearson, 2007) these researchers argue 

that area 5 in the cat PPC is crucial for integrating recently experienced motor events 

with recently viewed visual objects into a neural code for the obstacle that it then 

maintains. 
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In a second paradigm examining the avoidance of obstacles during cat locomotion, 

researchers had cats walked on a treadmill with obstacles that moved at a speed that 

matched their walking speed or was different (Andujar et al., 2010; Lajoie et al., 2010; 

Lajoie & Drew, 2007).  In cats with lesions to area 5, obstacles were not successfully 

avoided, often leading to collisions (Lajoie & Drew, 2007).  This was especially true 

when the speed of the obstacle was slower than the speed of walking, leading to the 

conclusion that: 

―… despite the extent of the damage…none of the three cats showed any overt 

behavioural deficits in their regular overground locomotor behaviour in the 

laboratory. This suggests that the deficits that we observed in our locomotor task 

reflect an important contribution of the PPC in situations in which there is a need 

to integrate visual information with information about self-motion and are not the 

result of generalized problems of motor behaviour.‖ (Lajoie & Drew, 2007, p. 

2350). 

To further specify the role of the cat PPC in encoding obstacles, another similar 

experiment was conducted while neurophysiological recordings were made from area 5 

(Andujar et al., 2010).  This study demonstrated that a subset of cells in this area fired 

specifically when the cat stepped over an obstacle (called step-related cells) confirming 

the PPC‘s role in the control of movements affected by obstacles.  Interestingly, a larger 

set of cells responded to the presence of the obstacle well in advance of the cat having to 

step over it (called step-advanced cells).  The researchers argue that this activity is not a 

purely visual response (since it was contingent on the proximity of the obstacle to the cat, 

and not on the mere presence of the obstacle) but rather must reflect the planning 

response when the gait needed modification.  This suggests the role of the PPC is to 

integrate the visual information with the motor execution information to encode obstacles 

only when they actually interfere with the movement of the cat.  

1.5.3. Conclusions from animal obstacle avoidance  

These studies in non-human animals reveal several properties of obstacle encoding that 

are important to this thesis.  First, that the encoding of obstacles is a completely 

automatic process, and critically, that a desired trajectory (that persists across time) is 

automatically afforded by the visual apprehension of the arrangement of objects in the 
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workspace.  Second, that a parietal-frontal circuit is largely responsible for the encoding 

of obstacles in both monkeys and cats. Third, that the neural encoding of obstacles is 

complex (have information about size and position) and can persist across long delays.  

Fourth, that the neurophysiological effects of obstacles are independently present in both 

the planning and the online control of a movement.  Finally, fifth, that objects in the 

environment are only coded as obstacles when they interfere with a movement, 

suggesting a crucial role of the PPC is to integrate visual information with motor 

intention to code the task relevant level of interference of non-target objects. 

1.6. Obstacle avoidance in neuropsychological patients 

1.6.1. Two visual streams hypothesis 

Before entering into a detailed summary of the specific neuropsychological evidence for 

the role of the PPC in the control of obstacle avoidance, it is useful to describe the 

theoretical motivation for this work.  While in this thesis I put sequential precedent on 

describing three selective attention frameworks, historically work on the anatomical and 

functional flow of visual information came first.  Originally, Ungerleider and Mishkin 

(1982) assembled anatomical and experimental evidence to demonstrate that there were 

two parallel pathways that visual information followed in the brain.  In brief, after 

arriving at the retina, the majority of visual information is relayed through the lateral 

geniculate nucleus (LGN) to V1.  After V1 (or even within different layers of V1 and the 

LGN), visual information is split into two streams of information, which Ungerleider and 

Mishkin separately called the ‗what‘ and ‗where‘ pathways.  The ‗what‘ stream flows 

from V1 ventrally into IT cortex where the processing of complex object shape ultimately 

allows for object identification (this matches well with the findings from Chelazzi et al., 

1998; Chelazzi et al., 1993 showing competitive biases developing in IT cortex 

responsive to complex shape, see section 1.2).  The ‗where‘ stream flows from V1 

dorsally to PPC, and thus is anatomically the same network that is implicated in the 

control of biased visuomotor attention (see section 1.2 on theoretical frameworks).  The 

Ungerleider and Mishkin (1982) definition of the ‗where‘ stream, however, lacked what 

has become acknowledged as a crucial component of the visual information in the dorsal 

stream – namely that this information, while carrying a spatial component, is primarily 
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used to define how visually guided actions are planned and executed.  This modified 

theory of the two visual streams – a ventral vision-for-perception and dorsal vision-for-

action stream – was postulated by Goodale and Milner (Goodale & Milner, 1992; Milner 

& Goodale, 1995, see Figure 1.6).  Of course, the fact that the PPC (and the rest of the 

frontoparietal network) is primarily encoding actions and action relevant targets is a key 

component of both the affordance competition hypothesis and the attentional landscapes 

hypothesis (see section 1.2).  
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Figure 1.6. A Schematic diagram of the two visual streams (from Milner & Goodale, 

1995).  Visual information from the retina primarily projects through the LGN to V1.  

From there it splits into two streams, one dorsal that flows into PPC and one ventral that 

flows into IT cortex.  A secondary route for vision to reach the PPC from the retina is 

through the superior colliculus (SC) and pulvinar (Pulv).  The secondary route is thought 

to be evolutionarily older and provide the mechanisms for some residual sight in patients 

with damage to V1.  
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Perhaps the most compelling evidence for Goodale and Milner‘s characterization of the 

two visual streams came from work with patients who had specific brain lesions to one of 

the two visual streams. In the case of damage to the dorsal stream (e.g. lesions to the 

PPC) patients are likely to develop optic ataxia (OA), a condition associated with 

visuomotor deficits.  Patients with damage to the ventral stream (e.g. lesions to the lateral 

occipital complex in IT cortex) often develop visual form agnosia (VFA), a condition 

associated with impairments in identifying visual objects (from complete reviews, see 

Goodale & Milner, 2004; Goodale & Westwood, 2004; Milner & Goodale, 1995).  As a 

specific example, patient D.F., with profound VFA was unable to identify the orientation 

of a slot in front of her.  However, when asked to put a card into the slot (as though she 

were mailing a letter) she accurately grasped the card and rotated it to the correct 

orientation (Goodale, Milner, Jakobson, & Carey, 1991; Milner et al., 1991).  In 

comparison, patients with OA tested on the same task (Perenin & Vighetto, 1988) were 

able to correctly identify the orientation of the slot when asked to give a verbal report, but 

when asked to insert the card into the slot their actions were clumsy – missing the slot 

entirely or rotating the card to the wrong orientation.  Given the dissociation of deficits 

and areas of brain damage (for neuroanatomical images of patient D.F. and an OA patient 

I.G. see Figure 1.7) in VFA compared to OA patients these populations provide an 

interesting test for theories postulating the role of the frontoparietal (i.e. dorsal) network 

in selective visual attention.  For succinctness, here I review only the pertinent literature 

on the performance of these neuropsychological patients on an obstacle avoidance task. 
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Figure 1.7. Comparison of neuroanatomy of patients with VFA vs. OA. (A) From (James, 

Culham, Humphrey, Milner, & Goodale, 2003): A 3D reconstruction of the brain of VFA 

patient D.F., with lesions coloured in blue.  The rightmost image shows a slice through 

the lesions, outlined in orange.  Note that these lesions fall along the ventral stream.  (B) 

From (Rossetti et al., 2005):  MRI scans of OA patient I.G.  Lesions appear white on 

these images; note that they fall along the dorsal stream. 

  



44 

 

 

1.6.2. Impaired obstacle avoidance in patients with dorsal stream 
damage 

In an experiment testing patients with bilateral OA (Schindler et al., 2004), participants 

were required to make reaches from a start button, pass their hand between two obstacles, 

and touch anywhere on a strip 45cm away (see Figure 1.8a).  Notably, vision of the hand 

was occluded at movement onset, meaning that participants were reaching in visual open-

loop.  What varied between trials was the position of the two obstacles.  On some trials, 

they were placed an equal distance from midline on either side (i.e. symmetrical, either 

close to midline (both-in) or further from midline (both-out), Figure 1.8b).  On other 

trials, the object on one side was further from midline, while the other was close (i.e. 

asymmetrical, either the right object was further away (right-out) or the left object was 

further away (left-out), Figure 1.8b).  When testing normal participants, reaches between 

asymmetrically aligned objects were always shifted to the side away from the closer 

object.  When testing patients with OA, however, hand paths across the different obstacle 

configurations were virtually identical (see Figure 1.8c).  This finding was replicated in a 

follow up study on a second patient who suffered from unilateral OA (Rice et al., 2008).  

In this case, unilateral damage to the patient‘s left PPC led to a specific reaching deficit 

with their right hand with objects in the right visual field.  On the same task, this patient 

showed no sensitivity to obstacle position changes occurring on the right side of space. 

These findings suggest that the patients with damage to their PPC (resulting in OA) were 

not sensitive to (or were not encoding) the position of the obstacle contralateral to the 

damaged hemisphere, thus supporting the hypothesis that the PPC is critical to obstacle 

avoidance. 
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Figure 1.8. Experimental setup and results from obstacle avoidance experiment in OA 

patients and control participants (Schindler et al., 2004). (A) Overhead view of 

experimental apparatus. Small black circle is reach start point, grey strip is reach target, 

open circles are possible obstacle locations, cross is fixation. (B) Possible obstacle 

configurations. Two symmetrical and two asymmetrical (Left-Out and Right-Out). (C) 

Overhead views of reach trajectories under each obstacle configuration. Two left graphs 

are OA patient data. Rightmost graph is an average of control participants. OA patients 

do not show sensitivity to obstacle configuration while control subjects do.   
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1.6.3. Spared obstacle avoidance in patients with ventral stream 
damage  

While patients with OA show impaired obstacle avoidance, several different patient 

populations show preserved avoidance.  Most notably, when patient D.F. – who suffers 

profound VFA after localized damage to her ventral stream – was asked to perform the 

same task as described above, her hand path trajectories were sensitive to the position of 

obstacles (Rice et al., 2006).  Thus, despite impairments in the ability to consciously 

report the obstacle locations, D.F. nonetheless took those obstacles into account when 

performing visually guided reach actions. It is worth mentioning that D.F. also shows 

preserved obstacle avoidance during locomotion (Patla & Goodale, 1996).  The question 

of obstacles and locomotion is another area of active research (e.g. Fink, Foo, & Warren, 

2007; Marigold, Weerdesteyn, Patla, & Duysens, 2007) but for succinctness I restrict this 

review and the review of behavioural work (see section 1.7) to reaching and grasping 

tasks.  Other evidence of preserved obstacle avoidance in neuropsychological patients 

comes from studies of patients with hemi-spatial neglect (McIntosh, McClements, 

Dijkerman, Birchall, & Milner, 2004; McIntosh, McClements, Schindler et al., 2004; 

Milner & McIntosh, 2004). Patients who suffer from visuospatial neglect have difficulty 

directing their attention to one of their visual hemi-fields.  This disorder almost always 

results from right hemisphere brain damage leading to neglect of the left visual field.  In 

some cases, this disorder can be accompanied by a symptom known as visual extinction, 

where two simultaneously presented stimuli, one to each visual field, will result in the 

contralesional stimuli (again, almost always on the left side) not being perceived.  

Despite these problems attending to and perceiving stimuli in contralesional space, 

neglect patients, including those with extinction, show sensitivity to obstacles (McIntosh, 

McClements, Dijkerman et al., 2004; McIntosh, McClements, Schindler et al., 2004; 

Milner & McIntosh, 2004).  Specifically, on the same task used for the VFA and OA 

patients, neglect patients show patterns of deviation to obstacle asymmetries that match 

control subjects (McIntosh, McClements, Dijkerman et al., 2004; Milner & McIntosh, 

2004).  In a related test with a patient who showed visual extinction, obstacles could be 

presented alone or in pairs (always symmetrical when paired).  When presented in pairs 

this sometimes led to the patient reporting only one obstacle;  their reach trajectory, 
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however, was identical regardless of whether they perceived both obstacles or not 

(McIntosh, McClements, Schindler et al., 2004; Milner & McIntosh, 2004).  This 

sensitivity to obstacles without conscious awareness again provides evidence for dorsal 

stream control over obstacle avoidance.  One additional experiment demonstrating 

preserved obstacle avoidance in a neuropsychological population actually comes from the 

study described above with the unilateral OA patients (Rice et al., 2008).  As was noted 

above, when asked to perform the obstacle task under normal circumstances, avoidance 

was impaired in the patients with OA.  However, when the researchers introduced a 5s 

delay between the presentation of the obstacles and the cue to reach (note during the 

delay, vision was absent, as it was during the reach in the non-delay task) the avoidance 

performance of the OA patients returned to normal.  Introducing a delay without visual 

feedback is thought to shift the representation of the workspace from brain areas in the 

dorsal stream – which code, in real-time, the visuomotor relevance of objects – to brain 

areas in the ventral stream – which are responsible for the perceptual encoding of objects 

that are retrieved (and stored) in memory (Milner, Paulignan, Dijkerman, Michel, & 

Jeannerod, 1999).  Thus, when the workspace representation was shifted from the dorsal 

stream to the ventral stream in this study of OA patients (Rice et al., 2008) a sensitivity to 

obstacle position emerged.   

Finally, one recent study that we conducted (Striemer, Chapman, & Goodale, 2009) also 

speaks to the representation of obstacles by the dorsal stream.  In this study, we tested a 

patient with extensive damage to his primary visual cortex in the right hemisphere, 

resulting in a dense left visual field hemianopia.  We used a task similar to the one 

described above (see Figure 1.8a) but included trials where only a single object appeared 

(at each of the four different locations).  In addition, we asked our participant to provide a 

verbal report of the location of any obstacles he saw after each reach trial was completed.  

In the first experiment, the participant performed the task without a delay between the 

visual presentation of objects and the reach.  In this immediate reach condition, our 

patient showed a preserved sensitivity to obstacle position in both his good right visual 

field and his blind left visual field (where he never reported seeing objects).  In a second 

experiment, however, in which we introduced a 2-s no-vision delay between the 

presentation of the obstacles and the initiation of the reach, the sensitivity to obstacles 
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was observed only when the obstacles were located in the right visual field.  The patient 

showed no sensitivity to obstacles located in his left (blind) field.   Taken together, these 

results suggest that in this patient, visual input into the dorsal stream from his blind field 

was somehow mediating his real-time obstacle avoidance while visual input to his ventral 

stream from his blind field was not available, leading to a failure in the avoidance of 

obstacles in delay.  But, if vision flows through occipital cortex before being separating 

into the parallel dorsal and ventral processing pathways, why do we see any preserved 

avoidance?  We speculate that information from this patient‘s blind visual field is still 

reaching dorsal-stream visuomotor networks in the PPC via the retino-tectal-pulvinar 

pathway (Kaas & Lyon, 2007; Lyon, Nassi, & Callaway, 2010, see Figure 1.6 for 

schematic diagram).  This evolutionarily older pathway bypasses primary visual cortex 

and has been implicated in other studies demonstrating preserved visual ability in blind 

participants (termed ‗blindsight‘, see Cowey, 2010 for recent review).  

1.6.4. Conclusions from the neuropsychological studies of obstacle 
avoidance 

The evidence from patients with impaired obstacle avoidance and damage to the dorsal 

stream and those with preserved obstacle avoidance and damage outside the dorsal stream 

confirms that frontoparietal circuitry is indeed necessary to successfully avoid obstacles.  

The task that was used in these studies also supports the claim that the observed obstacle 

encoding deficits are largely the result of impairments in visuomotor planning.  That is, 

since vision of the limb was never available in flight, participants were not able to use 

vision to correct their movements.  Thus, the trajectory deviations observed in the 

presence of obstacles must reflect deviations that were generated prior to movement 

onset.  Motivated by the work outlined above we sought to specifically quantify what 

properties of obstacles were important to their avoidance in normal participants‘ reaching 

behaviour (C. S. Chapman & Goodale, 2008).  The results of this study are described in 

the next section, which also includes a discussion of other related behavioural work 

involving the avoidance of obstacles while reaching and grasping. 
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1.7. Obstacle avoidance in healthy individuals 

1.7.1. Obstacle avoidance in reach-to-grasp movements 

The first study to directly test how arm and hand movements were affected by the 

placement of obstacles was conducted by James Tresilian (1998). In this experiment, 

participants made reach-to-grasp movements toward a tall rectangular block in the 

presence of a similarly sized cylindrical block.  The cylindrical obstacle could be 

positioned to the sides of the rectangular target, directly behind the target, or in front and 

to the side of the target (see Figure 1.9).  The type of grip on each trial could change, with 

participants cued to grasp with their thumb and forefinger opposing each other on the 

front and back of the rectangle, or on the left and right of the rectangle.  Tresilian (1998) 

found that when making front and back grasps obstacles behind the target interfered with 

the movement, while side to side grasps were interfered with by objects beside the target.  

This interference was manifest as smaller grip apertures and slower movement times as 

compared to the trials without interference.  In this study, it was also noted that the 

presence of obstacles, particularly in front of the target caused slower reach trajectories 

and deviations in the reach path around them.  In a later study, the effect of obstacle 

position, as well as the effect of the number of obstacles was further quantified (Mon-

Williams, Tresilian, Coppard, & Carson, 2001).  Here, one or two obstacles could appear 

to the side or to the side and in front of the reach-to-grasp target.  It was found that 

obstacles close to the target interfered with grip aperture more than those further away, 

while obstacles in front of the target had the largest effects on the transport phase of the 

reach (i.e. deviations of the entire hand path).  Further, two obstacles caused significantly 

slower movements than one, suggesting that obstacles avoidance was sensitive to the 

constraints across the entire workspace (Mon-Williams et al., 2001).  Other studies have 

used the obstacle avoidance paradigm to examine different accounts of the control of 

prehension (digit channel hypothesis, Biegstraaten, Smeets, & Brenner, 2003; visumotor 

account, Mon-Williams & McIntosh, 2000) as well as to look at the development of 

visuomotor behaviour (Tresilian, Mon-Williams, Coppard, & Carson, 2005).  It should be 

noted that obstacles have been used as a tool in other research tasks (most notably to 

increase the duration, shape or complexity of a movement, Jax & Rosenbaum, 2007; Liu 
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& Todorov, 2007; Saling, Alberts, Stelmach, & Bloedel, 1998) but these studies were not 

designed specifically to examine obstacle effects.  Similarly, motor control theorists have 

used the problem of obstacle avoidance as a method of introducing constraints into their 

models of reach behaviour, and then tested their models against human participants‘ 

actual avoidance behaviour (Dean & Bruwer, 1994; Hamilton & Wolpert, 2002; 

Rosenbaum, Meulenbroek, Vaughan, & Jansen, 1999; Sabes & Jordan, 1997; Sabes, 

Jordan, & Wolpert, 1998; Vaughan, Rosenbaum, & Meulenbroek, 2001).  Again, while 

interesting and related to obstacle avoidance, these models were not specifically 

interested in the representation of obstacles and their subsequent effects (that is, the 

obstacle was not the variable of interest), but rather in their usefulness in shaping 

behaviour.  Therefore, for the sake of space, these studies are not reviewed here. 
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Figure 1.9. Experimental setup for the obstacle avoidance while grasping task (from 

Tresilian, 1998). Participants reached for and grasped a target object (black square) using 

one of two wrist postures: with the wrist extended (as shown in main figure, leading to 

the placement of the thumb to the side of the target) or wrist flexed (as shown in inset, 

leading to the placement of the thumb to the front of the target). Five IRED markers 

(small black circles) tracked the motion of the arm and hand. A single obstacle presented 

on each trial could be placed in one of seven locations (large black circles). This setup 

was adapted for use in the fMRI experiment described in Chapter 4. 
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Figure 1.10. Experimental setup from obstacle avoidance while reaching task (from C. S. 

Chapman & Goodale, 2008). (A) In Experiment 1, participants made reaches from the 

start button to the target strip while fixating on an elevated fixation point.  When 

obstacles were present, one was to either side of midline at the same depth.  All possible 

obstacle locations are shown (squares), indicating they could appear at 4 depths and in 4 

configurations: Depths = Near (10cm), Middle (25cm), At Reach (45cm), Beyond 

(65cm); Configurations = Both-In (Black), Left-Out (Blue), Both-Out (Green), Right-Out 

(Red).  Movements were recorded using two OPTOTRAK cameras (one right, one in 

front) at 100hz. (B) In Experiment 2 similar methods (minus the Both-In configuration 

and Near depths) were used with the addition of the size of the object as a factor.  Object 

pairs could now be Both-tall, Both-short or One-short / One-tall.  
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1.7.2. Obstacle avoidance in reach-to-point movements 

In our own work, as mentioned above, we adapted the obstacle paradigm used in 

neuropsychological testing (e.g. Schindler et al., 2004) to quantify the effect of two 

obstacle parameters – namely their position and size (C. S. Chapman & Goodale, 2008).  

Notably, this paradigm differs from that used by Tresilian (1998) and Mon-Williams et 

al. (2001) in that we were interested in obstacle effects on reach-to-point rather than 

reach-to-grasp movements.  In the first of two experiments, the layout and configurations 

were identical to that described by the patient work in section 1.6 with the exception that 

we now included the depth of the obstacles as a factor in the experiment (see Figure 

1.10a).  Obstacles (which could still be either absent or in one of the two symmetrical 

(Both-In or Both-Out) or two asymmetrical (Left-Out or Right-Out) configurations) could 

now be placed at one of four depths: Near (10 cm from start position), Middle (25 cm 

from start position) At Reach (45 cm from start position) or Beyond (65 cm from start 

position).  The critical test in this experiment was to see if objects placed past the reach 

target still functioned as obstacles.  The results were clear: any obstacles placed between 

the start and end positions of the reach significantly interfered with the reach, slowing the 

resulting movement and causing large deviations in reach trajectory away from the closer 

of two objects in asymmetrical configurations (see Figure 1.11a).  By comparison, 

objects placed past the reach target had almost no effect on avoidance behaviour (see 

Figure 1.11a).  This result resonates with theoretical frameworks arguing for attentional 

selection processes that are action specific.  After all, the objects placed past the reach 

target were still clearly salient visual items, yet had almost no impact on the movement. 
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Figure 1.11. Results from Chapman & Goodale (2008) (A) Results from Experiment 1. 

Overhead view of average reach trajectories. Each separate plot shows configuration 

trajectories for a different depth. Grey squares = possible object locations, ‗F‘ = fixation 

location, horizontal lines = start and end of target strip. Configuration trajectories = Both-

In (Black), Left-Out (Blue), Right-Out (Red), Both-Out (Green), No Obstacles (Dashed-

black). Areas = Difference between Both-In and Right-Out (Light-red), Difference 

between Both-In and Left-Out (Light-blue) (B) Results from Experiment 2. Mid-reach 

horizontal deviations caused by an asymmetric obstacle configuration to the right (Right-

Out – Both-In, red bars) and left (Left-Out – Both-In, blue bars). Separate bar graphs are 

shown for each depth. Separate bars in each graph are for each size pair.  
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In the second experiment, we extended the methods to include the size of the object as a 

factor (see Figure 1.10b) such that now, one or both obstacles could be short or tall (we 

removed the Near depth and Both-Out configuration to allow for the increase in trial 

types).  In addition to replicating our depth effect (that is, objects past the reach target had 

no effect on the reach movement), we now demonstrated an interesting size effect (see 

Figure 1.11b).  All obstacles placed at the same depth as the reach target influenced 

trajectories similarly regardless of size (that is, reaches deviated away from the closer of 

two objects in the asymmetrical configurations).  By contrast, obstacles placed mid-reach 

resulted in trajectory deviations that were sensitive both to the position and the size of the 

obstacles.  Specifically, participants continued to avoid the closer of two asymmetrically 

aligned obstacles, but avoided tall objects more than short objects.  These findings are 

intuitive: obstacles placed at the reach depth, where the hand is required to contact the 

table surface, should affect movements similarly regardless of height.  When placed mid-

reach, however, smaller obstacles are easier to avoid with the extra degree of freedom 

allowed by moving the hand vertically. 

1.7.3. Conclusions from obstacle avoidance in healthy individuals  

Together with the work of Tresilian (1998) and Mon-Williams et al. (2001) our findings 

(C. S. Chapman & Goodale, 2008) indicate that the visuomotor system precisely encodes 

the level of interference of at least two obstacles during reach planning. Moreover 

obstacles can interfere with both the grasp and reach component of a movement, resulting 

in hand or digit paths that move away from an obstacle and slower movements.  Given 

the obstacle avoidance impairments of patients with damage to PPC, these behavioural 

findings in normal participants fit well within the competitive frameworks detailed in 

section 1.2.  Obstacles appear to be encoded in parallel during reach planning, with the 

control of this process likely residing in the PPC.   

1.8. Summary and Motivation of current thesis 

As a general aim, I was interested in testing if the encoding of obstacles and the 

subsequent avoidance behaviour that result from reaches in their presence fits within a 

theory of competitive visuomotor attention.  At the start of this Introduction (section 1.2) 



56 

 

 

I introduced three critical concepts (suppression of distractors, dynamics of object 

representations and frontoparietal control) that were distilled from the theoretical 

frameworks of selective visuomotor attention which shaped my thinking and were 

motivating factors for the current thesis.  I now briefly introduce the three experiments 

that comprise this thesis, and describe how they were motivated from these concepts. 

In Chapter 2 of this thesis, I describe an experiment in which we manipulated whether 

participants had visual feedback of their hand when avoiding obstacles while reaching (C. 

S. Chapman & Goodale, 2010b).  Manipulating both the availability and predictability of 

visual feedback is known to influence the degree to which participants use visual 

information to correct their reaches in flight.  While much is known about the influence 

of obstacles that are encoded prior to movement onset, as Baldauf and Deubel say in their 

review on attentional landscapes, ―Unfortunately, not much is known about the dynamics 

of the attentional landscapes before and during goal-directed manual movements‖ 

(Baldauf & Deubel, 2010, p. 1002). Thus, this experiment was designed to examine how 

obstacle representations were updated while the hand was in flight. Interestingly, we 

found no evidence that reaching in the presence of obstacles was altered by the 

availability or predictability of visual information.  In many ways, the experiment 

described in Chapter 2 was necessary to set the groundwork for the experiment described 

in Chapter 3, namely to quantify the effects of vision, single obstacles and targeted 

reaching. 

Chapter 3 of this thesis describes a second behavioural study which more directly tested 

the possibility that obstacle representation could be accessed during movement execution. 

In this study (C. S. Chapman & Goodale, 2010a) participants made reaches toward an 

initial target that sometimes jumped to a new target position at reach onset.  These so-

called double-step paradigms are known to induce automatic corrections of the hand 

toward the new target location.  Interestingly, the neural control of these automatic 

corrections has been localized to the PPC in the dorsal stream – the same regions thought 

to control obstacle avoidance. Critically, in our experiment, the corrected movement was 

sometimes interfered with by the position of a single obstacle.  Thus, this study represents 

a convergence of two critical concepts: the dynamics of obstacle representations and the 
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posterior parietal control of visuomotor tasks.  We find clear evidence that obstacle 

representations can influence the corrected movement (with corrected reaches 

automatically avoiding obstacles only when they interfere), providing some of the first 

evidence for the dynamics of visuomotor attention during movement execution.  

Moreover, I believe that this result provides evidence for a close link between behaviours 

mediated by the PPC, namely, obstacle avoidance and online corrections. 

Finally, in Chapter 4 of this thesis, I outline an fMRI experiment that was conducted to 

specifically examine how the planning of a grasp movement was affected by the position 

of an obstacle (C. S. Chapman, Gallivan, Culham et al., 2010). We were specifically 

interested to see if there was any evidence of the suppression of neural activity associated 

with the obstacle, given that previous neuroimaging studies have showed a reduced visual 

response at the location of a to-be-ignored stimulus.  We found that an area in the left 

posterior IPS was more active during the planning of movements that were interfered 

with by an obstacle, and that this activity occurred in conjunction with an area of the 

visual cortex that was less active during interference trials.  The visual cortical 

suppression was in exactly the same region that coded for the position of the obstacle 

prior to movement planning and thus we interpret our results as strong evidence 

favouring a common mechanism (or perhaps the same process) for the suppression of 

distractor and obstacle information.  In addition to aligning with the conceptualization of 

an obstacle as a non-target object that gets suppressed, these results align with an account 

of the PPC being crucial to generating and maintaining visuomotor biases contingent on 

the flexibly encoded relevance of multiple objects and intended actions.   

In sum, these experiments provide a richer understanding of how obstacles are encoded 

and affect behaviour.  Specifically, after initially competing for selective visuomotor 

attention, the specification of an intended action toward a target marks the obstacle as 

interfering with the planned reach.  The subsequent suppression of visual information at 

the obstacle location results in reaching behaviour that deviates away from this position 

(for complete description, see section 5.3).  Moreover, since an obstacle affects 

automatically corrected movements, the partial suppression of an obstacle representation 

likely occurs any time it is present in the workspace, and can be rapidly updated with the 
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demands of the movement.  The ability to plan a reach sensitive to both a target and an 

obstacle indicates that the visuomotor system is capable of parallel encoding.  With 

parallel encoding comes the difficult problem of target selection (or non-target 

inhibition).  I believe the theoretical solution to this problem is provided by the notion of 

competitive visuomotor attention and that the results of the current thesis fit well within 

that framework. 
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Chapter 2 

2. Seeing All the Obstacles in Your Way: The effect of visual 
feedback and visual feedback schedule on obstacle 
avoidance while reaching

1
  

2.1. Introduction 

Humans are adept at reaching to targets in cluttered environments.  This suggests the 

existence of a sophisticated goal-directed reaching system that can rapidly select targets 

and plan trajectories toward them while avoiding potential obstacles.  Experiments 

examining reaching and grasping movements in the presence of non-target objects have 

indeed shown that obstacles, distracting stimuli and other potential goal objects all effect 

the kinematics of the performed action (e.g. Castiello, 1996; Deubel & Schneider, 2004; 

Jackson, Jackson, & Rosicky, 1995; Jax & Rosenbaum, 2007; Mon-Williams, Tresilian, 

Coppard, & Carson, 2001; Tipper, Howard, & Jackson, 1997; Tresilian, 1998; van der 

Wel, Fleckenstein, Jax, & Rosenbaum, 2007).  Those studies specifically quantifying 

obstacle avoidance behaviour have shown that objects interfering with the transport or 

grip phase of a movement result in automatic deviations away from the obstacle and a 

slowing of the reach (Chapman & Goodale, 2008; Mon-Williams et al., 2001; Tresilian, 

1998).  Our own work (Chapman & Goodale, 2008) exploring this behaviour was 

motivated by the finding from the patient literature that the dorsal visual stream plays a 

key role in obstacle avoidance.  These patient studies demonstrate both preserved 

avoidance in patients with preserved dorsal stream function (i.e. neglect (McIntosh, 

McClements, Dijkerman, Birchall, & Milner, 2004; Milner & McIntosh, 2004), 

extinction (McIntosh, McClements, Schindler et al., 2004; Milner & McIntosh, 2004) and 

visual form agnosia (Rice et al., 2006)), and impaired avoidance in patients with damage 

to the dorsal stream (i.e. optic ataxia (Rice et al., 2008; Schindler et al., 2004)).  In 

                                                 
1
 A version of this chapter has been published. Chapman, C. S., & Goodale, M. A. (2010). Seeing all the 

obstacles in your way: the effect of visual feedback and visual feedback schedule on obstacle avoidance 

while reaching. Exp Brain Res, 202(2), 363-375. 
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extending the patient work, we adopted a similar paradigm, a reaching task where 

participants made reaches to a target strip (i.e. specified in depth but not direction) 

without visual feedback of the hand.  Removing visual feedback at movement onset is an 

important aspect of the studies with patients as it ensures that one can isolate deficits in 

movement planning as opposed to deficits in online control.  In the real world, however, 

vision of your hand is rarely occluded at the precise moment you begin to move; nor do 

you typically perform reaches to a target whose location is not specified.  It is possible 

that denying participants‘ vision during the reaching movement affected their avoidance 

behaviour.  For example, knowing that they would not be able to see their hand, the 

obstacle or the goal during the reach, participants may have reacted cautiously and given 

more room for error in their reach, leading to increased avoidance.  To test this 

possibility, the current study examines obstacle avoidance behaviour during reaches to a 

specific target location when vision of the hand is available in flight (V) with the same 

reaches when vision is not available (NV).  

However, the possible effects of visual feedback during obstacle avoidance may not be as 

simple as an effect of allowing or removing vision.  Instead, effects could be driven by 

the expectation of having or not having vision during an upcoming reaching.  Indeed, 

when manipulating visual feedback in reach tasks, it has been shown that not only are 

there differences between V and NV trials (Elliott, Binsted, & Heath, 1999; Elliott, 

Carson, Goodman, & Chua, 1991; Elliott, Chua, Pollock, & Lyons, 1995; Heath, 2005; 

Heath, Westwood, & Binsted, 2004), but also that the order of the V and NV trials within 

an experimental block plays an important role (Chua & Elliott, 1993; Elliott & Allard, 

1985; Elliott, Helsen, & Chua, 2001; Heath, Rival, & Neely, 2006; Jakobson & Goodale, 

1991; Khan, Elliott, Coull, Chua, & Lyons, 2002; Neely, Tessmer, Binsted, & Heath, 

2008; Whitwell & Goodale, 2009; Whitwell, Lambert, & Goodale, 2008; Zelaznik, 

Hawkins, & Kisselburgh, 1983).  It should be noted that the majority of the 

aforementioned studies manipulated vision by occluding both the target and the limb 

while two occluded only the limb (Chua & Elliott, 1993; Elliott et al., 1995).  One study 

provided a direct test of the effects of target and limb occlusion separately and together 

(Heath, 2005), and demonstrated that occlusion of both the limb and target yields the 

most robust NV versus V differences.  In one early study investigating the role of 
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feedback and feedback schedule in a simple reach-to-point task, researchers showed that 

lateral errors were larger for NV trials than V trials, and importantly, that the difference 

in error between NV and V trials was larger when trials were blocked as opposed to 

randomized (Zelaznik et al., 1983).  That the blocked schedule, where all the trials of one 

type of feedback are received consecutively, shows larger differences than a randomized 

schedule, where the visual feedback on any given trial is randomly determined, has at 

least two possible explanations.  It could be the case that the unpredictability of feedback 

associated with the randomized schedule caused participants to adopt a different strategy 

from the one they used in the blocked schedules where feedback was perfectly 

predictable.  In other words, in the blocked trials, they could use their knowledge of what 

was going to happen next to plan the action on the upcoming trial.  Alternatively, it could 

be the case that the repetitive nature of the blocked trials causes the motor system to 

simply repeat what it did on the last trial(s) and to use knowledge about the nature of the 

schedule to predict what will happen next.  To test between these alternatives, Zelaznik 

and colleagues (1983) ran an experiment where the availability of visual feedback 

alternated from trial to trial.  With an alternating schedule, the predictability of the type 

of feedback is high, just as high as it is in the blocked trials.   But in terms of making use 

of trial to trial consistency, the alternating schedule is no different from the randomized 

schedule.  In fact, given that there are likely to be small runs of consecutive trials with the 

same feedback type in the random schedule, the alternating schedule has minimal 

consistency.  Therefore, if reaching behaviour with the alternating schedule resembles 

reaching behaviour with the blocked schedules, and has large NV versus V differences, 

then this would suggest that participants can use their knowledge about the nature of the 

schedule to predict what to do on an upcoming trial.  However, if the alternating schedule 

is more like the random schedule with small differences between NV and V, then this 

would suggest that the motor system controlling reaching in these situations is simply 

relying on trial history.  Under the alternating schedule, Zelaznik et al. found significant 

differences in errors between NV and V trials.  Unfortunately, as the alternating condition 

was run in a separate experiment in this study, the magnitude of this difference between 

conditions could not be compared to the blocked or random schedules.  Neverthless, the 
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authors concluded that accuracy on V trials is superior to NV trials and that this 

difference is independent of the type of feedback that was experienced on earlier trials. 

Since the Zelaznik et al. study (1983), there have been several studies targeting the 

differences in reaching and grasping kinematics between blocked and random visual 

feedback schedules.  In reach to grasp studies (Fukui & Inui, 2006; Heath et al., 2006; 

Jakobson & Goodale, 1991; Whitwell & Goodale, 2009; Whitwell et al., 2008), the 

difference between V and NV trials in blocked schedules is characterized by a larger 

opening of the hand and more time spent in the later phase of the movement for NV as 

compared to V trials, presumably reflecting the need to build in a margin of error when 

visual feedback is not available.  In one grasping study, when trials were presented with a 

random feedback schedule (Jakobson & Goodale, 1991), the hand now opened wider on 

both V and NV trials as compared to the blocked-V trials.  These results suggest that 

when performing grasping during a random feedback schedule, the uncertainty causes V 

trials to be treated like NV trials.  More recent studies both support (Heath et al., 2006) 

and challenge (Fukui & Inui, 2006; Whitwell & Goodale, 2009; Whitwell et al., 2008) 

this view.  Those that challenge the view show that with longer reaches, V trials, even 

during random schedules, show smaller hand openings (albeit the opening remains larger 

than the blocked-V trials).  This suggests that with longer movements, there is enough 

time for participants to use visual information, despite its unpredictability (Fukui & Inui, 

2006; Whitwell & Goodale, 2009; Whitwell et al., 2008).  Other research has supported 

the original view that in random schedules with high uncertainty, participants adopt a 

strategy that matches the blocked-NV trials – that is they prepare themselves as though 

they will not receive, and therefore cannot maximally use, vision (Heath et al., 2006). 

Only one of the above grasping studies directly tested the effects of predictability by 

introducing an alternating feedback schedule (Whitwell et al., 2008).  Here, the results 

from the alternating and random schedules showed identical differences between NV and 

V trials.  This gives strong support for the idea that differences between blocked and 

random schedules have more to do with the motor system using recent trial history than 

with the employment of a cognitive strategy based on predictability.  Recently, this view 

has received more support in a grasping study showing that the effect of having vision 
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(i.e. smaller hand openings) accumulates over trials, such that consecutive V trials show 

progressively smaller hand openings, while consecutive NV trials show progressively 

larger hand openings (Whitwell & Goodale, 2009). 

Although some progress has been made in determining whether the motor system uses 

conscious prediction or trial history to cope with changes in the availability of visual 

feedback during grasping, there is almost no work that has examined this question in the 

case of pointing, particularly in the context of a more complicated reaching task like 

obstacle avoidance.  Since the initial Zelaznik study (1983), pointing on blocked trials 

with visual feedback (V) has been shown to result in faster reaction times (Khan et al., 

2002), increased accuracy (Chua & Elliott, 1993; Elliott & Allard, 1985; Heath, 2005; 

Heath et al., 2004; Khan et al., 2002), and more time spent during the later phases of 

movement (i.e. decelerating, or time spent after peak velocity) (Chua & Elliott, 1993; 

Elliott et al., 1991; Khan et al., 2002) than pointing on blocked trials without visual 

feedback (NV).  In a randomized schedule of V and NV trials, the differences between 

feedback trials tend to become smaller (Chua & Elliott, 1993; Elliott & Allard, 1985; 

Khan et al., 2002; Neely et al., 2008; Zelaznik et al., 1983).   Reach-to-point studies that 

have included an alternating feedback schedule (Khan et al., 2002; Zelaznik et al., 1983), 

which theoretically could have addressed whether the motor system makes use of 

conscious knowledge or trial history, have not run this schedule in the same experiment 

alongside blocked and random schedules making direct comparison difficult.  In both 

these studies, however, the alternating schedule still showed a significant difference 

between the V and NV trials, providing at least some suggestion that pointing movements 

made with an alternating schedule may be closer to those made with blocked schedules.  

Despite the ambiguity surrounding the results of the alternating schedule, and the 

reduction of the NV/V difference when randomized, it is clear that whenever visual 

feedback is available, it can be used to increase endpoint accuracy – usually resulting in 

movements with longer deceleration phases (for review see: Elliott et al., 2001).  A 

sensitive technique that reveals the accuracy benefits of V trials is to compare how well 

positions throughout the movement predict the variability observed in the movement 

endpoint (Heath, 2005; Heath et al., 2004; Neely et al., 2008); for extensive review of this 

and other procedures analyzing variability see: (Khan et al., 2006; Messier & Kalaska, 
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1999).  In general, NV trials show higher correlations between mid-reach or late-reach 

positions and endpoint than the V trials do.  This is likely due to the fact that visual 

feedback can modulate the late reach response, and thus reduce how well the position of 

an earlier point predicts endpoint position.  This correlation analysis was recently used in 

a reach-to-point study that examined blocked versus random feedback schedules (Neely 

et al., 2008).  This elegant study replicated the finding that hand position at 50% and 75% 

of movement during blocked-NV trials showed a much higher correlation with endpoint 

than the 50% and 75% position of blocked-V trials.  Importantly, both NV and V trials in 

the random schedule showed the higher correlation between earlier position and endpoint 

that was characteristic of the blocked-NV trials.  This provides strong evidence that in 

this reach-to-point study, a random schedule led to an offline control strategy whereby all 

randomly ordered trials were treated like NV trials.  

While the primary aim of the current study is to investigate how the availability of vision 

affects obstacle avoidance behaviour, as the above discussion demonstrates it is equally 

important to consider what effects the expectation of vision (or not) and recent trial 

history may have in this experiment.  It is possible that a more complicated reaching task 

involving the encoding and avoidance of potential obstacles will reveal different 

strategies than have been shown for simpler pointing tasks that have previously 

investigated the effect of feedback schedule.  Thus, in the current experiment, every 

participant completed both NV (both limb and target occluded) and V trials under the 

three feedback schedules: blocked, random, and alternating.  In addition to the kinematic 

measures we have previously used to test for the effects of obstacles (Chapman & 

Goodale, 2008), we included both an endpoint variability analysis and the correlation 

analysis discussed above in an effort to quantify the feedback and schedule effects in this 

experiment.  We predicted that participants would still show sensitivity to the position of 

obstacles on V trials and when reaching to a specific target.  It is possible, however, that 

with visual feedback participants would be less conservative executing their movements 

in the presence of obstacles and as a consequence their deviations away from the 

obstacles would decrease;  this would be manifest as an interaction between obstacle 

position and the availability of feedback.  With respect to visual feedback and visual 

feedback schedule, previous results from reach-to-point studies suggest that NV trials, 
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regardless of schedule, will result in more endpoint variability, higher correlations 

between mid-reach positions and endpoint and shorter deceleration phases.  In contrast, V 

trials should show an effect of schedule, with blocked-V trials showing prolonged 

deceleration and lower correlations between position and endpoint than the random-V 

trials.  In all cases, we would predict that visual feedback will reduce endpoint variability, 

but perhaps to less of an extent when trials are randomized as compared to blocked.  The 

critical case of alternating V and NV trials remains an open and interesting question and 

we were not certain what to expect.    

2.2. Materials and Methods 

2.2.1. Participants 

A group of 24 right-handed (determined by self-report) adults (16 male) were included in 

this study. All participants had normal or corrected-to-normal vision and all participants 

were naïve to the purpose of the experiment. The present study is part of ongoing 

research that has been approved by the local ethics committee. 

2.2.2. Materials and design 

With the exception of the manipulation of vision, all methods and materials were 

identical to our previous study investigating obstacle avoidance (Chapman & Goodale, 

2008).  Participants sat in front of a dimly lit 1m x 1m table covered in black fabric with a 

laterally centered start button 15 cm from the front edge of the table, and a target LED 45 

cm away from the start button (see Figure 2.1). Participants wore PLATO liquid crystal 

display (LCD) goggles (Translucent Technologies, Toronto, Canada), which allowed the 

manipulation of visual feedback, and had OPTOTRAK (Northern Digital Inc., Waterloo, 

Canada) infrared markers (IREDs) taped to the tip of their right index finger and the base 

of their right pinky finger.  When recording, the position of each IRED was tracked by 

two OPTOTRAK cameras at a rate of 100 Hz for 3 s.  Marker wires were held in place 

with elastic wrist and elbow bands to allow for unrestricted arm movement.  

Tall rectangular objects (4x4x25 cm, with  IREDs in the middle of the top facing surface) 

were placed on the table in one of 8 configurations (including one with no objects, None) 
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at a depth of 24 cm.  There were four different configurations with one object; Left-Out 

(object inside edge 15 cm to the left of midline, 1-L-Out), Left-In (10 cm to the left of 

midline 1-L-In), Right-Out (15 cm to the right of midline, 1-R-Out), and Right-In (10 cm 

to the right of midline, 1-R-In), and three configurations with two objects, Both-In (inside 

edges 10 cm to either side of midline, 1-B-In), Left-In/Right-Out (Left 10 cm, Right 15 

cm away from midline, 2-L-In) and Left-Out/Right-In (Left 15 cm, Right 10 cm away 

from midline, 2-R-In).  A Both-Out configuration has previously been shown to be 

redundant (Chapman & Goodale, 2008) and was therefore not included in the current 

study.  For details of the arrangements, see Figure 2.1. 
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Figure 2.1. Experimental setup and obstacle configurations.  Participants made reaches 

from the start button to the target-LED which were on a 1 m x 1 m black fabric board.  

When obstacles (4 cm square base, 25 cm tall) were present they appeared in one of eight 

configurations (shown on left) at a depth of 25 cm.  Movements were recorded using two 

OPTOTRAK cameras (one right, one in front) at 100 Hz. 
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2.2.3. Procedure 

Each trial started with participants placing their right index finger on the start button. The 

goggles were closed, allowing the experimenter to place the objects in one of the above 

arrangements without the participant seeing the object positions. The trial was triggered 

by the experimenter, which caused the goggles to open and started the OPTOTRAK 

recording for 3 s.  The participants were instructed to reach to the target (red LED) 

quickly and accurately as soon as it became visible (i.e. the goggles opened). They were 

told to ignore other objects that were present in the array and that there could be one, two, 

or no objects present on any given trial.  If a participant made contact with an object, they 

were instructed to avoid hitting them on subsequent trials.  The release of the start button 

upon movement initiation caused the goggles to close on trials with no visual feedback 

(NV).  On trials with visual feedback (V), the goggles remained open for the duration of 

the data collection.  

The experiment consisted of 192 trials, 64 each of three visual feedback schedules: 

blocked, random, and alternating.  In the blocked schedule, visual feedback remained 

constant (i.e. 32 NV trials followed by 32 V trials, with the order of NV and V trials 

counterbalanced across participants).  The randomized schedule consisted of 32 NV and 

32 V trials being randomly mixed.  The alternating schedule consisted of 32 NV trials 

alternating with 32 V trials.  The order in which participants received the blocked, 

random, or alternating schedules was counterbalanced.  Before starting each block, the 

experimenter ensured that the participant was aware of what schedule they were about to 

receive.   

Before starting the experiment, participants were given practice trials until they reported 

being comfortable with the timing (always <10).  For the practice trials, participants 

received the visual feedback schedule they were to encounter first. 

2.2.4. Data processing  

All analyses were conducted on data from the IRED on the right index finger.  Raw 3D 

data for each trial was filtered using a low-pass Butterworth filter (dual pass, 8 Hz-cutoff, 
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2
nd

 order).  Instantaneous velocities in each cardinal dimension (x,y,z) were calculated for 

each time point and the resulting velocity profiles were filtered (low-pass Butterworth 

filter, dual pass, 12 Hz-cutoff, 2
nd

 order) and combined to create a vector velocity (i.e. 

three-dimensional) profile for each trial.  Onset of reaches were defined as the first of 

four consecutive vector velocity readings of greater than 20 mm/s where there was a total 

acceleration of 20 mm/s
2
 across the four points. Reaches were said to terminate with 

whichever of two conditions was first met: the first of three consecutive displacement 

readings back toward the start button (i.e. three negative displacements in the y-direction) 

or the first time the velocity dropped below 20 mm/s.   

Missing data from an index finger IRED that was temporarily blocked from the view of 

the OPTOTRAK cameras due to the positioning of the objects was filled in with data 

from the pinky IRED.  This was accomplished by translating the pinky IRED data to the 

last known position of the finger IRED, using the pinky IRED data over the missing 

segment, then stretching (in all three dimensions) the endpoint of the filled sequence to 

match the position of the finger IRED where it reappeared.  When both the index and 

pinky IREDs were missing, the data were linearly interpolated across the missing region.  

Linear interpolation was required on <2% of trials, and, where required, was interpolated 

across an average of less than 16 time points.  No trials were rejected due to requiring 

interpolation. 

Trials were rejected for the following reasons: the reach never attained the defined 

minimum velocity, the reach did not terminate within the recording window, the reach 

was too short in either duration (<100 ms) or distance (<250 mm in depth), or errors in 

OPTOTRAK recording (usually due to blocked IREDs) caused velocity spikes of >6000 

mm/s. Under these criteria, <1% of the trials were rejected. 

All trajectories were translated such that the first reading of the index finger IRED was 

taken as the origin of the trajectory (i.e. 0,0,0 in 3D Cartesian space, x = horizontal, y = 

depth, z = vertical) and were normalized to movement time such that they had 100 

position measurements, allowing for averaging. 
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2.2.5. Dependent measures and analysis 

Reaction Time (ms): Time from the start of the trial to the first frame defined as 

movement onset. 

Movement Time (ms):  Measured as the time between movement onset and the last frame 

of the reach movement. 

Peak Velocity (mm/s): The highest vector velocity obtained during the movement time. 

Time to Peak Velocity (ms): The time from the onset of movement until the peak velocity 

was reached. 

Deceleration Time (ms): The time from peak velocity until the end of the movement. 

X@100, X@250, X@End (mm): Three measures of lateral deviation (x) were taken, one 

near the start of the reach (100 mm in depth (y) from start button), one near the middle of 

the reach (250 mm), and one at the end of the reach (x position of the last frame). 

StdX@End and StdY@End (mm): The average standard deviation for each participant‘s 

2D (x,y) endpoints in each condition of interest (see below). 

R
2
-25%, R

2
-50%, R

2
-75%: Squared correlations calculated for each participant in each 

condition of interest (see below) relating the spatial position of the limb in the main 

movement direction (y) to ultimate movement endpoint in that direction.  Separate 

correlations were calculated between endpoint and points occurring at 25%, 50% and 

75% of total movement.  

For each participant, each of the temporal and spatial dependent measures (reaction time, 

movement time, peak velocity, time to peak velocity, deceleration time, x-positions) was 

calculated on every trial, averaged for each of the 48 conditions and entered into a three-

factor Feedback x Schedule x Configuration (2x3x8) repeated-measures (RM) ANOVA.  

Where significant, an interaction of Feedback and Schedule or Feedback and 

Configuration was followed up with simple main effects single-factor RM-ANOVAs of 
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Schedule or Configuration at each level of Feedback.  The variability (StdX@End and 

StdY@End) and correlation (R
2
) measures were specifically designed to test the 

Feedback x Schedule interaction.  As such, each participant‘s average was calculated for 

the 6 conditions of interest and entered into a two-factor Feedback x Schedule (2x3) RM-

ANOVA.  Significant interactions for these measures were tested as above.  Post-hoc 

follow-ups to significant main effects and simple main effects compared all possible 

pairwise comparisons of the relevant factor. All repeated-measures ANOVAs were 

analyzed using the Greenhouse-Geisser correction for sphericity and taken to be 

significant at corrected p < 0.05.  Post-hoc pairwise contrasts used the Bonferroni 

correction for multiple comparisons with a corrected p < 0.05 taken as significant. 

2.3. Results 

For all dependent measures except two (see below) there were no interactions between 

Configuration and Feedback or Configuration and Schedule.  This indicates that the 

results of this experiment can be broken into two categories (described in separate 

sections below), effects due to obstacles and effects due to the presence and schedule of 

visual feedback.  It also demonstrates that our hypothesis regarding the possible use of 

different obstacle avoidance strategies for V as compared to NV trials was not supported; 

instead, it appears that participants avoided obstacles similarly when they had vision as 

when they did not have vision of their hand and the workspace while reaching (see Figure 

2.2).  
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Figure 2.2. Overhead view (x,y) of average reach trajectories made for trials with no 

vision (NV, left panel) and trials with vision (V, right panel) under all eight obstacle 

configurations.  Thick grey line = object depth, Open circle = target location. 

Configuration trajectories are coded as follows: Blue = configurations expected to result 

in left-shifted trajectories (1-R-Out, 1-R-In, 2-R-In), Red = configurations expected to 

result in right-shifted trajectories (1-L-Out, 1-L-In, 2-L-In), black = symmetrical (2-Both-

In) or no object trajectories.  Dotted-line = No Objects, Dash-Dot = 1-Object-Out, 

Dashed = 1-Object-In, Solid = 2-objects.  Note the remarkable similarity in trajectories 

made with and without vision. 
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2.3.1. Effects due to Obstacles 

All temporal and spatial dependent measures showed a significant effect due to object 

configuration and are summarized in Table 2.1.  As predicted from previous work 

(Chapman & Goodale, 2008), the effects observed due to the positioning of non-target 

objects between the participant and the reach target demonstrate that the objects were 

functioning as obstacles, caused interference, and were being avoided.  Configurations 

with objects close to the right (reaching) arm of the participant (2-B-In, 2-R-In, 1-R-In) 

caused the most interference, yielding longer overall movement times (longer in both the 

early and late phase of movement) and lower peak velocities.  Configurations with 

objects placed further away on the right (1-R-Out, 2-L-In) caused some interference 

while configurations with objects only on the left, or no objects (1-L-In, 1-L-Out, None) 

caused the least interference as characterized by these temporal measures (see Table 2.1).  

Reaction time effects were largely due to the longest reaction times occurring on trials 

with no objects, an effect we attribute to the relative novelty of these trials. 
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Table 2.1 – Dependent measures showing an effect due to obstacle Configuration 

Rxn Time (ms) 

2 B-In 2 R-In 2-L-In 1 L-In 1 R-In 1 L-Out 1 R-Out None F 

372.85 373.48 358.26 377.12 384.13 374.53 367.20 393.71 ** 

2-L-In < 1-R-In,None; 

Mvmt Time (ms) 

2 B-In 2 R-In 2-L-In 1 L-In 1 R-In 1 L-Out 1 R-Out None F 

669.25 663.00 648.24 638.09 668.19 638.17 647.91 641.23 ** 

2-B-In, 2-R-In, 1-R-In > 1-L-In, 1-R-Out; 2-B-In, 1-R-In > 2-L-In, 1-L-In, 1-L-Out, None; 

Time To PV (ms) 

2 B-In 2 R-In 2-L-In 1 L-In 1 R-In 1 L-Out 1 R-Out None F 

267.34 270.57 264.56 255.70 271.97 258.94 264.33 257.85 ** 

2-R-In,1-R-In > 1-L-In,1-L-Out,1-R-Out,None; 2-B-In,2-L-In,1-R-Out > 1-L-In; 2-B-In > None; 

Decel Time (ms) 

2 B-In 2 R-In 2-L-In 1 L-In 1 R-In 1 L-Out 1 R-Out None F 

401.91 392.43 383.68 382.39 396.23 379.22 383.58 383.38 ** 

2-B-In > 1-L-Out; 1-R-In > 1-R-Out; 

Peak V (mm/s) 

2 B-In 2 R-In 2-L-In 1 L-In 1 R-In 1 L-Out 1 R-Out None F 

1487.75 1498.59 1535.71 1579.85 1505.01 1594.21 1554.99 1587.73 ** 

2-B-In,2-R-In,1-R-In < 1-L-In,1-L-Out,1-R-Out,None; 2-B-In < 2-L-In; 2-L-In < 1-L-Out; 

X@100 (mm) 

2 B-In 2 R-In 2-L-In 1 L-In 1 R-In 1 L-Out 1 R-Out None F 

-7.29 -11.26 -1.80 4.38 -14.19 0.76 -6.76 -0.68 ** 

1-R-In < 2-R-In < 2-B-In,1-R-Out < 2-L-In,None < 1-L-Out < 1-L-In; 

X@250 (mm) 

2 B-In 2 R-In 2-L-In 1 L-In 1 R-In 1 L-Out 1 R-Out None F 

-12.00 -17.65 -2.26 7.17 -21.33 1.92 -9.16 -0.15 ** 

1-R-In < 2-R-In < 2-B-In,1-R-Out < 2-L-In,None < 1-L-Out < 1-L-In; 

X@End NV (mm) 
2 B-In 2 R-In 2-L-In 1 L-In 1 R-In 1 L-Out 1 R-Out None F 

1.22 1.95 -0.88 -0.54 1.60 -1.06 -0.16 -0.74 * 

X@End V (mm) 
2 B-In 2 R-In 2-L-In 1 L-In 1 R-In 1 L-Out 1 R-Out None F 

2.59 3.67 3.28 3.42 3.42 3.25 3.30 3.19 NS 

The ‗F‘ column shows an F-test of the main effect.  Where significant, results from 

pairwise contrasts for each dependent measure are shown below the compared means.  * 

& < or > = p<0.05, **  = p<0.005. NS = not significant. 
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Patterns of lateral deviation early (X@100) and mid-reach (X@250) for trials with two 

objects matched our previous work (Chapman & Goodale, 2008).  The trajectories with 

the 2-R-In objects were shifted the most leftward and the trajectories with the 2-L-In 

were shifted most rightward.  The trajectories with the 2-B-In fell in between (see Table 

2.1 and Figure 2.2).  The current experiment makes two important additions in 

quantifying how we react to obstacles.  First, when compared to two-object trials, the 

deviations on one object trials were larger.  For example, the 1-R-In trials resulted in 

leftward deviations that were even larger than those observed on the 2-R-In trials, 

indicating that the second object in the two-object trials was, not surprisingly, having an 

effect.  This pattern was observed for objects on both sides of space (see Table 2.1 and 

Figure 2.2).  Second, when making reaches to a specific point in space (as opposed to the 

target strip used in previous work), the lateral deviation at the endpoint (X@End) was 

largely unaffected by the object configuration.  We did observe, however, an interaction 

between Feedback and Configuration for the X@End measure F(5.27,94.91) = 3.50, 

p<0.01.  Simple main effect follow-ups revealed that there was no significant effect of 

configuration on V trials and a small but significant effect of configuration on NV trials.  

Specifically, it appears that on NV trials there is an overshoot, whereby the finger  ended 

slightly further to the right on trials where the reach was initially pushed to the left (e.g. 

2-R-In) than it did on trials where the reach was initially pushed to the right (e.g. 2-L-In).  

Overshooting the target along the primary axis of movement on NV trials has been shown 

previously (e.g. Heath et al., 2004), and our results are likely an extension of these 

findings to the curved trajectories produced when avoiding obstacles. 
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Table 2.2 – Dependent measures showing an interaction between Feedback and Schedule 

Mvmt Time (ms) Interaction* feedback x schedule   

 Blocked Random Alternating F  
No Vision 635.25 672.68 655.51 * Blk<Rnd 

With Vision 654.02 651.67 642.36 NS - 

      
Decel Time (ms) Interaction* feedback x schedule   

 Blocked Random Alternating F  
No Vision 376.42 403.29 394.91 * none 

With Vision 387.97 383.46 381.26 NS - 

      
Peak V (mm/s) Interaction* feedback x schedule   

 Blocked Random Alternating F  
No Vision 1607.11 1514.49 1542.81 * Blk>Rnd 

With Vision 1511.65 1528.91 1550.55 NS - 

      
X@250 (mm) Interaction* feedback x schedule   

 Blocked Random Alternating F  
No Vision -9.56 -5.27 -6.21 * Blk<Rnd 

With Vision -6.87 -5.25 -7.08 NS - 

      
Std X@End (mm) Interaction* feedback x schedule   

 Blocked Random Alternating F  
No Vision 10.55 9.56 8.85 * none 

With Vision 4.79 4.27 4.22 NS - 

  

The strength of the interaction is indicated in the row with the measure name. F-tests 

results are shown comparing simple main effect means of each level of Feedback row 

across the three levels of Schedule. Results from pairwise contrasts are shown next to 

each significant F-test. * & < or > = p<0.05.  NS = not significant. 
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2.3.2. Effects due to Visual Feedback and Schedule 

The analysis of the impact of visual feedback and its schedule on the dependent measures 

in the current experiment affected variables in three different ways.  One group of 

variables showed no significant effect of either factor individually or of an interaction.  A 

second group of variables showed only an effect of visual feedback (see Table 2.3).  A 

final group of variables showed an interaction between the two factors (see Table 2.2).  

The variables showing no significant Feedback or Schedule effects were two spatial 

measures (X@100, X@End), reaction time, and time to peak velocity.  The fact that 

reaction time was not modulated by visual feedback or its schedule is a first indication 

that in our reaching task, the motor strategies employed were different than in previous 

studies, where reaction time effects were observed due to differences in feedback 

schedule.  The lack of a Feedback or Schedule effect on time to peak velocity is 

interesting when considered together with the effects of these factors on movement time, 

deceleration time, and peak velocity measures, which all show a significant interaction 

between Feedback and Schedule (see Table 2.2 and Figure 2.3).  Examining these means 

reveals that V trials yield a similar velocity profile (variables do not statistically differ), 

regardless of schedule, while NV trials show a marked difference in velocity profiles 

across schedules.  Specifically, the blocked-NV trials are characterized by higher peak 

velocities and shorter deceleration times compared to the random-NV trials, with the 

alternating-NV trials falling somewhere in the middle, but closer to the random-NV trials. 

The X@250 and StdX@End variables are the other variables that show an interaction 

effect, and they follow the same pattern of no difference in schedule across V trials and a 

difference across NV trials (see Table 2.2).  For the X@250 measure, blocked-NV 

trajectories are, on average, slightly leftward of the random-NV and alternating-NV 

trajectories (see Table 2.2). The lack of an interaction involving Configuration for this 

measure indicates that this leftward bias was not the result of participants adopting a 

different strategy when avoiding obstacles without visual feedback, but rather an 

accumulated bias that developed across the blocked-NV trials.  For the endpoint standard 

deviation measures, there was, not surprisingly, more variability in endpoint for the NV 

trials than the V trials, and the endpoint variability did not change across schedules for 
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the V trials.  At the same time, the lateral variability across the NV-trials was modulated 

by schedule such that the blocked-NV trials showed the largest StdX@End with the 

random and alternating NV trials showing less variability (see Tables 2.2 and 2.3 and 

Figure 2.4).  
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Figure 2.3. The effect of visual feedback (Vision (V) = blue, No Vision (NV) = Red) and 

schedule (separate sets of bars, blocked, random and alternating) on time to peak velocity 

(bottom/dark portion of bar) and deceleration time (light/top portion of bar).  There are 

no significant differences on time to peak velocity across all conditions and no difference 

on deceleration time between the V trials.  However, the blocked-NV trials show a 

significantly shorter deceleration time than the random and alternating-NV trials.  
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Figure 2.4. Scatter plots of all reach endpoints made with vision (V = Blue) and with no 

vision (NV = Red) separated into reaches made under the three feedback schedules 

(blocked, random and alternating).  Overlaid are standard deviation ellipses with a width 

= twice StdX@End and height = twice StdY@End.  V trials are more accurate than NV 

trials and have similar endpoint variability across all schedules.  Blocked-NV trials show 

significantly higher lateral variability than the random and alternating NV trials.  
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Based on previous work (Neely et al., 2008), we predicted that the correlation measures 

(R
2
) would provide the most sensitive measure of any differences in the effects of 

Feedback, Schedule, and the interaction between the two.  Our results for these measures 

are shown in Figure 2.5.  As predicted, the NV trials show a significantly higher 

correlation between y-position during the reach and final y-position than the V trials.  

This is true for correlations between endpoints and points near the beginning (R
2
-25%) , 

endpoints and points in the middle (R
2
-50%), and endpoints and points near the end of 

the reach (R
2
-75%)(see Table 2.3).  Critically, however, none of the correlation measures 

was close to showing a significant interaction between Feedback and Schedule (test of 

interaction: R
2
-25%, F(1.91,34.35) < 1; R

2
-50%, F(1.98,35.67) < 1; R

2
-75%, 

F(1.91,34.34) = 1.09, p=0.35).  This represents the clearest evidence that the previously 

reported use of an off-line control strategy in the face of unreliable visual feedback 

(Heath et al., 2006; Neely et al., 2008) was not at play in the current experiment. 
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Table 2.3 – Dependent measures showing an effect due to Feedback only 

 NV V F 

Std Y@End (mm) 11.59 6.19 ** 

R
2
-25% 0.09 0.05 * 

R
2
-50% 0.19 0.05 ** 

R
2
-75% 0.62 0.18 ** 

NV = No vision, V = Vision. The ‗F‘ column shows an F-test of the main effect. * = 

p<0.05, **  = p<0.005. 
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Figure 2.5. The proportion of endpoint variance (R
2
) in the depth (y) dimension 

accounted for by the location of the limb (in the depth (y) dimension) at 25, 50 and 75% 

of the movement as a function of visual feedback (NV = no vision, dashed lines; V = 

with vision, solid lines) and schedule (blocked = light grey, random = dark grey, 

alternating = black).  As predicted, NV trials show significantly higher correlations than 

V trials.  However, this is not modulated by schedule, as no interaction effects were 

found. 
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2.4. Discussion 

This study had two aims: first, to test if obstacle avoidance is different when visual 

feedback of the hand is available in flight (V) as compared to when it is not (NV) and 

second, to test the effect of visual feedback schedule (blocked, random or alternating 

trials) in a more complex reach-to-point task.  Avoidance behaviour, as measured by 

lateral deviations at several points along the reach, was not affected by the availability of 

visual feedback.  In a previous study, we had shown that participants performing reaches 

without visual feedback were sensitive to the size and position of two objects placed 

between the start and end of their reach (Chapman & Goodale, 2008).  In the current 

study, we extend those findings and show that this avoidance is the same when 

participants can see their hand in flight.  In addition, we included trials in which only one 

obstacle appeared and show that the avoidance behaviour is exactly as would be 

predicted, with single obstacles causing more lateral deviation than comparable two-

obstacle configurations.  In addition, we found that single obstacles close to the right 

(reaching) arm of the participants caused the most deviation, replicating the earlier work 

with two obstacles.  Finally, we show that participants can make reaches to a specific 

point in space (not a strip as was used previously) and remain sensitive to the position of 

obstacles, while converging on a common endpoint across all configurations. 

Previous studies have shown that when participants perform simple rapid reach 

movements under different feedback schedules, they show large differences between V 

and NV conditions when trials are blocked and smaller differences when trials are 

randomized (Chua & Elliott, 1993; Elliott & Allard, 1985; Khan et al., 2002; Neely et al., 

2008; Zelaznik et al., 1983).  Specifically, blocked-V trials have faster reaction times, 

less endpoint error, and longer deceleration phases compared to blocked-NV trials.  If 

one considers performance on only the blocked schedules, the observed effects in the 

current experiment would appear to be entirely consistent with previous work; with 

performance on blocked-V trials having less endpoint error and a longer deceleration 

time than performance on blocked-NV trials (see Figures 2.3 and 2.4).  But as soon as 

one includes performance on the non-blocked schedules, the pattern of results does not 
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conform to what one would expect from the results of previous studies.  The most 

striking difference between the current experiment and previous work is the performance 

on V and NV trials in a randomized schedule.  Previous work has shown only small 

changes in performance on randomized-NV trials relative blocked-NV trials but a 

dramatic shift in performance on randomized-V trials away from blocked-V performance 

towards blocked-NV performance (Heath et al., 2006; Jakobson & Goodale, 1991; Khan 

et al., 2002; Neely et al., 2008).  In striking contrast, the current study finds the opposite 

result: the performance on V trials does not change with schedule while the performance 

on NV trials does.  In fact, all five variables showing a significant interaction between 

Feedback and Schedule in the current experiment had the identical pattern of results: no 

difference in performance on V trials across different schedules and marked changes in 

performance on NV trials.  Perhaps the strongest evidence that changes in schedule do 

not affect performance on V trials comes from the correlation analysis.  Here we replicate 

the well-established result that reaches made on NV trials show a higher correlation 

between positions throughout the movement and endpoint than reaches made on blocked-

V trials (Heath, 2005; Heath et al., 2004; Neely et al., 2008).  Critically, however, 

corresponding correlations on V trials are not different across the schedules: on both 

random-V and alternating-V trials, correlations remain smaller than those observed on 

NV trials. 

As discussed in the Introduction, if differences in performance on trials with and without 

visual feedback is due to a conscious control strategy based on knowledge of the 

upcoming trial type, then one would have expected differences in performance between 

V and NV trials on the alternating schedule to be similar to the differences observed 

between blocked V and NV trials.  But if the differences in performance between the two 

kinds of feedback trials are simply a reflection of trial history, then performance on 

alternating feedback trials should resemble performance on randomized trials.  Although 

no statistically conclusive answer emerged, both the magnitude and direction of V versus 

NV differences in an alternating schedule were more similar to differences observed with 

the randomized schedule than with the blocked schedule.  This suggests that a motor 

strategy emerging from trial history was predominantly responsible for behaviour in the 

alternating schedule.  However, given that the alternating schedule has minimal trial 
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consistency and the random schedule will have runs of consecutive trials with the same 

feedback, the fact that behaviour on the alternating schedule falls between behaviour on 

the blocked and random schedules suggests some modulation of behaviour based on the 

knowledge of what was going to happen on an upcoming trial.   

What appears to be the driving force behind the results in the current study is that when 

participants were allowed visual feedback, regardless of its trial-to-trial predictability or 

the motor system‘s experience on recent trials, this feedback was exploited to optimize 

performance.  Conversely, when vision was taken away, behaviour was different whether 

the NV trials occurred consecutively (blocked) or were mixed together (randomized or 

alternating).  When there were consecutive NV trials, there was a significant increase in 

endpoint variability and peak velocity, a leftward shift of reach trajectories, and a 

significant decrease in deceleration time.  When NV trials were mixed, endpoint 

variability and peak velocity both decreased while deceleration time increased.  

Both the finding of stable performance with vision across schedules and changes in 

performance on NV trials across schedules are at odds with previous work and require 

explanation.  The stability of the V trials is perhaps not as surprising as it initially 

appears.  As mentioned before, it is well established that regardless of the predictability 

of the availability of feedback, the visuomotor system uses vision and online control to 

improve the endpoint accuracy of a reaching movement (for review see: Elliott et al., 

2001).  This indicates that given enough time on a trial where visual feedback was 

available (regardless of whether its availability was predictable or not), it can still be used 

to improve performance.  This raises a critical question: In the current study, was there 

enough time for visual feedback to be used in the same way across all schedules? We 

believe the answer is yes.  Previous studies showing schedule effects in reach-to-point 

tasks have typically had average reaction times of ~200 ms and movement times of ~400 

ms (Khan et al., 2002; Neely et al., 2008).  This stands in stark contrast to the current task 

where reaction times had an average of ~350 ms and movement times an average of ~625 

ms.  While differences in movement amplitude (45 cm in the current experiment versus 

32 cm in Khan et al. 2002 and ~20 cm in Neely et al. 2008) can account for some of the 

movement time differences, as we report here and have shown previously (Chapman & 



96 

 

 

Goodale, 2008), obstacle interference results in slower movements.  This suggests that in 

obstacle avoidance tasks of this kind participants might take more time preparing and 

executing a movement than the speeded movements typically studied in the laboratory.  

This extra time spent planning the reach prior to movement and the extra time spent 

allowing for online control may all be an optimization designed to take advantage of 

vision when it is available.  After all, we are an extremely visual species and it makes 

more sense to default to a strategy where we expect vision to be routinely available.  

There are few situations in nature where one has vision during the programming phase 

but not the execution of the movement.   

If when performing natural reaches in a more complex environment we are strategically 

prepared to take full advantage of vision, this could start to explain the changes we 

observed across schedule for the NV trials.  When NV trials are blocked perhaps the 

repetition of movements made in the absence of online visual control results in an 

accumulation of error and thus a qualitative shift in the type of reach performed.  Instead 

of a natural reach with a lower peak velocity and longer deceleration time (designed to 

allow for online control), the reach becomes faster with less deceleration – possibly to get 

to the endpoint before the representation of the target decays (an argument made 

previously: Elliott & Allard, 1985; Elliott et al., 1991).  Importantly, this atypical reach 

may be observed only when visual feedback is consistently unavailable.  Other recent 

research has shown the profound effects of repetition on the motor performance (for 

reviews see: Dixon & Glover, 2004; Rosenbaum et al., 2009; Rosenbaum, Cohen, Jax, 

Weiss, & van der Wel, 2007).  Specifically, Jax and Rosenbaum have shown that the 

trajectory taken avoiding a virtual obstacle on one trial will influence the trajectory on 

subsequent trials, even if no obstacle is present (Jax & Rosenbaum, 2007, 2008).  In a 

similar type of experiment, rhythmic tapping movements made in an arc in front of the 

body showed residual effects from the hand jumping over an obstacle in the subsequent 

movements where no obstacle was present (van der Wel et al., 2007).  Critically, in these 

experiments, the ‗hand-path priming‘ that was observed was shown to accumulate and 

decay across a set of trials, indicating the existence of at least a short term motor 

memory.  In an extremely relevant study with reach-to-grasp movements, it was shown 

that the wider hand opening associated with NV trials developed gradually over a 
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sequence of four trials (Whitwell & Goodale, 2009).  Similarly, the narrower opening for 

V trials also developed over time.  This line of research clearly demonstrates why it is 

consecutive trials in the blocked schedule where we see the NV effect in the current 

experiment.  With both the random and alternating schedules participants receive visual 

feedback approximately every second trial, giving an error signal for use on subsequent 

trials and resetting and calibrating the visuomotor system.  This lack of a long unbroken 

sequence of NV trials explains why we see a reduction in variability in random-NV and 

alternating-NV as compared to blocked-NV trials.  As was noted earlier, however, there 

are also sequence differences between the random and alternating schedules.  Within the 

random schedule there are going to be small runs of consecutive trials that by definition 

are not present in the alternating schedule.  Despite this difference, we do not find any 

effects in our dependent measures that differentiate between the behaviour during random 

as compared to alternating schedules.  We argue, therefore, that on any given trial in a 

mixed sequence, the visuomotor system is prepared to receive and take advantage of 

visual feedback.  This explains why on the random-NV and alternating-NV trials a 

prolonged deceleration phase was observed.  After all, if the system is prepared to take 

advantage of visual feedback on a given trial, and then this crucial information is taken 

away, it is plausible that the reach would slow down and be more conservative – 

especially in the context of an obstacle avoidance task where the consequence of an error 

is a potential collision.  Although the current study was not designed to systematically 

investigate the effects of visual feedback repetition, it would be interesting to pursue this 

avenue of research with this type of natural reaching in complex environments. 

To conclude, we show that the avoidance of one or two obstacles when making reaches to 

a specific point with full vision of the hand is no different than the avoidance behaviour 

observed when executing reaches with no vision.  Moreover, regardless of the 

predictability or repeated availability of vision, participants perform actions the same way 

when they have visual feedback.  In contrast, when vision is repeatedly unavailable 

(blocked-NV trials in the current experiment) performance on no vision trials is markedly 

different from performance in schedules where vision is only periodically unavailable 

(random-NV and alternating-NV trials).  Under the unnatural scenario of a repeated 

absence of vision during the reach, movements become faster and more variable.  But 
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when reaching without visual feedback immediately after a trial when vision was 

available, participants slow down and show less variability in performance.  This finding 

differs from previous work, and likely reflects different task demands.  When participants 

must avoid obstacles, the planned reach is more complex than a simple reach-to-point 

movement.  In the presence of obstacles, the reaching system needs to encode more than 

just the target position, and the potential for collision gives reaching errors a tangible 

consequence.  As a result, reaction times and movement times are slower.  We believe 

our findings of consistent reach behaviour across all trials in which vision was available 

demonstrates that the reach system, when presented with a more natural and complex task 

like obstacle avoidance, is optimized to take advantage of visual feedback. 
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Chapter 3 

3. Obstacle avoidance during online corrections
2
 

3.1. Introduction 

Reaching for an object in the real world is different from reaching movements studied in 

the typical laboratory experiment in two important respects.   First, the position of targets 

and other objects in the real world often change in a dynamic fashion and second, the 

workspace in the real world is often cluttered with many different objects.  Although the 

effects of changes in target position and the effects of obstacles have been investigated 

separately in the laboratory, there have been few studies looking at them together (Aivar, 

Brenner, & Smeets, 2008; Liu & Todorov, 2007) and none where a real object becomes 

an obstacle while the hand is in flight.  The goal of the current experiment, therefore, was 

to combine these two aspects of real-world reaching and examine how responses to 

changes in target position would be affected by a physical obstacle whose level of 

interference was contingent on the direction of the corrected movement.   

Research that has studied the effects of sudden changes in the environment on reaching 

movements has examined at least two different types of environmental perturbations – 

changing the target position and changing the ‗visual context‘ (by suddenly introducing 

other objects or visual stimuli into the workspace, see Gomi, 2008 for succinct review).  

In both cases, if the change occurs while the hand is in flight, it will often induce an 

automatic response (known as an online correction) toward the new target position (e.g. 

Brenner & Smeets, 1997; Day & Lyon, 2000; Soechting & Lacquaniti, 1983) or with 

respect to the change in the visual context (Brenner & Smeets, 1997; Gomi, Abekawa, & 

Nishida, 2006; Proteau & Masson, 1997; Saijo, Murakami, Nishida, & Gomi, 2005; 

Whitney, Westwood, & Goodale, 2003) – even if the changes occur without awareness 

(Goodale, Pelisson, & Prablanc, 1986; Pelisson, Prablanc, Goodale, & Jeannerod, 1986; 

Prablanc & Martin, 1992).  Several elegant studies have shown that the visual 

                                                 
2
 A version of this chapter has been published. Chapman, C. S., & Goodale, M. A. (2010). Obstacle 

avoidance during online corrections. J Vis 10(11), 1-14. 
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information required to respond to changes in target position flows through the dorsal 

visual stream - from early visual areas to the posterior parietal cortex, which has 

reciprocal connections with premotor areas (Desmurget et al., 1999; Desmurget & 

Grafton, 2000; Desmurget et al., 2001; Grea et al., 2002; Pisella et al., 2000).  

Specifically, studies of patients with optic ataxia (whose dorsal stream is damaged) show 

that these individuals do not respond normally to a perturbation in target position (Pisella 

et al., 2000).  Similarly, disrupting dorsal-stream processing by applying transcranial 

magnetic stimulation (TMS) at the precise moment a reach is initiated and target position 

is perturbed selectively impairs the ability to correct the movement towards the new 

target location (Desmurget et al., 1999).  It remains open to debate as to whether online 

corrections in response to changes in visual context are mediated by the same 

automatically engaged dorsal-stream processes that control responses to changes in target 

position.  While one prominent theory (Glover, 2004) argues that only visuomotor 

processes involved in planning a movement should have access to contextual 

information, other research (Aivar et al., 2008; Brenner & Smeets, 1997; Cameron, 

Franks, Enns, & Chua, 2007; Coello & Magne, 2000; Gomi et al., 2006; Saijo et al., 

2005; Whitney et al., 2003) has demonstrated that online corrections can be influenced by 

visual context.  Indeed, simply by adding contextual features while the hand is in flight, 

endpoint accuracy improves (Coello & Magne, 2000).  Similarly, motion of background 

elements presented around the target while the hand is moving induces trajectory 

deviation in the direction of motion, although it is unclear whether the change in 

trajectory is due to a perceived shift in target position (Brenner & Smeets, 1997; Whitney 

et al., 2003) or to a reflexive response to retinal motion (Gomi et al., 2006; Saijo et al., 

2005). In two recent studies, the effect of suddenly shifting the position of discrete non-

target objects (rather than background texture) demonstrated that changes in the position 

of non-targets can affect reaches with a latency and magnitude that is similar to responses 

induced by changes in the target position (Aivar et al., 2008; Cameron et al., 2007).  One 

aim of the current study was to contribute to the debate about the effects of visual context 

by specifically testing how the presence of a non-target object (which can be construed as 

contextual information) can affect adjustments to reaching movements that are made 

when the position of the target is suddenly perturbed. 
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When reaching for an object in the presence of other non-target objects, the other objects 

can have a profound impact on the performed action.  If the non-target objects are treated 

like potential targets (Chapman et al., 2010) or share critical features with the target 

(Chang & Abrams, 2004; Howard & Tipper, 1997; Keulen, Adam, Fischer, Kuipers, & 

Jolles, 2003; Sailer, Eggert, Ditterich, & Straube, 2002; Song & Nakayama, 2006; 

Tipper, Lortie, & Baylis, 1992; Tipper, Meegan, & Howard, 2002; Welsh & Elliott, 

2004) they can act as competing or distracting stimuli and cause large deviations in the 

path of the hand.  Depending on the timing, the task, and the location of non-target 

objects, these deviations can be made either toward the distracting stimuli or away from 

them.  If the non-target objects act as obstacles that physically restrict the path of the 

hand, then they are always avoided (Chapman & Goodale, 2008, 2010; Mon-Williams, 

Tresilian, Coppard, & Carson, 2001; Tresilian, 1998, 1999) with the hand moving away 

from them and following a path that reduces the likelihood of collision (Hamilton & 

Wolpert, 2002; Liu & Todorov, 2007; Sabes & Jordan, 1997; Sabes, Jordan, & Wolpert, 

1998).  Again, work with optic ataxic patients strongly suggests that the dorsal visual 

stream controls the observed automatic avoidance of obstacles (Schindler et al., 2004), 

although our own recent work with a patient with damage to primary visual cortex 

(Striemer, Chapman, & Goodale, 2009) suggests that information about the location of 

the obstacle can reach dorsal-stream areas via pathways outside of the geniculostriate 

pathway.   

Even though the dorsal stream has been implicated in both online corrections and 

obstacle avoidance, it remains an open question as to whether or not it is capable of 

performing both these functions simultaneously.  One recent study in our laboratory 

(Chapman & Goodale, 2010) suggests that the avoidance of obstacles may be relatively 

unaffected by online control.  In this study, we manipulated whether or not vision of the 

hand and environment was available while reaching.  Although removing vision of the 

hand has been found to significantly reduce the degree to which on-line adjustments are 

made to the reach trajectory (Elliott, Binsted, & Heath, 1999; Elliott, Carson, Goodman, 

& Chua, 1991; Elliott, Helsen, & Chua, 2001; Heath, 2005; Heath, Westwood, & 

Binsted, 2004; Reichenbach, Thielscher, Peer, Bulthoff, & Bresciani, 2009; Sarlegna et 

al., 2003), removing vision of both the hand and the obstacles during movement 
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execution did not affect the participants‘ ability to avoid the obstacles.  In other words, 

providing vision during movement execution did not change the obstacle avoidance 

behaviour – a result that suggests that, in our previous experiment (Chapman & Goodale, 

2010), the encoding of the obstacle and the planned reach trajectory were not updated in 

flight.  It is possible, however, that in our previous study the task did not require the 

motor plan to be altered during the action, and hence, we did not observe any online 

alterations.  To properly test whether or not the representation and effect of an obstacle 

can be updated during a reach movement, the current study introduced a target 

perturbation which dynamically altered the degree to which an obstacle interfered with 

the reach. 

One recent study has examined the effects of perturbing the location of either the target 

or one or two virtual obstacles (placed between the start and target positions) during a 

rapid pointing movement with a stylus on a touchpad (Aivar et al., 2008).  While this 

study was primarily interested in examining the response latency differences between 

target and obstacle changes, it elegantly demonstrated that changes in visual context 

occurring during rapid reach movements can alter trajectories, with participants showing 

a slightly shorter latency when responding to target changes as compared to obstacle 

changes.  It is unclear, however, how well these results translate to a more natural reach 

setting involving real obstacles where the consequences of collision are literally tangible.  

In fact, in the Aivar et al. study (2008), the average incidence of ‗collision‘ (where the 

hand passed through the virtual obstacle) was close to 40% in some perturbation 

conditions.  In our experience testing the avoidance of real obstacles, participants rarely 

(<1%) touch an obstacle (even when instructed to ignore it) and are quite alarmed when 

they do collide with it (Chapman & Goodale, 2008, 2010).  As Aivar et al. (2008) 

suggest, the initial reach deviation they observe in response to the obstacle perturbation 

probably represents a response to moving visual context (i.e. a moving background e.g. 

Whitney et al., 2003) and may not be related to an avoidance strategy (though a later 

second correction in some participants might).  To build on their finding, the current 

study examined natural reach responses to a perturbation in target position in the 

presence of a three-dimensional object to examine real obstacle avoidance during online 

corrections. 
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The overall goal of the current study, therefore, was to investigate what the effect of 

obstacles would be when they specifically interfered with a corrected movement. This 

necessitated that the effects of the obstacle be isolated to the portion of the reach 

occurring after the target was perturbed.  That is, if an obstacle was shown to affect a 

reach prior to the online correction, then any avoidance we observed during the online 

correction would not be guaranteed to reflect an updated obstacle representation, but 

rather could merely reflect the correction of an already deviated reach (e.g. see Liu & 

Todorov, 2007 where they take advantage of planned deviations around obstacles in 

order to observe online corrections in longer duration movements).  To overcome this 

problem, we capitalized on our earlier observation that obstacles placed at a depth beyond 

a target no longer affect reach trajectories (Chapman & Goodale, 2008).  Participants 

therefore made reaches to an initial target position in the presence of a single obstacle 

whose position varied but, critically, remained behind the initial target.  When the 

position of the target was rapidly changed (at reach onset on one third of trials), it was 

moved both laterally (left or right) and further in depth.  Therefore, an obstacle which had 

been beyond the initial position of the target could now be located between the hand and 

the new position of the target. We predicted that reaches would be affected by obstacles 

only when the target jumped to the side of space where the obstacle was positioned; for 

example, a reach correcting for a rightward jump of a target would be unaffected by an 

obstacle on the left. 

3.2. Methods 

3.2.1. Participants 

A group of 21 right-handed (determined by self-report) adults (4 male, mean age 21.9 

years, range 18 to 51) were included in this study. All participants had normal or 

corrected-to-normal vision and all participants were naïve to the purpose of the 

experiment. The present study is part of ongoing research that has been approved by the 

local ethics committee. 
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3.2.2. Materials and Design 

Participants sat in front of a dimly lit 1 m x 1 m table covered in black fabric with a 

laterally centered start button located 15 cm from the front edge of the table. Participants 

wore PLATO LCD goggles (Translucent Technologies, Toronto, Canada) to control 

visual feedback and had OPTOTRAK (Northern Digital Inc., Waterloo, Canada) infrared 

markers (IREDs) taped to the tip and the base of their right index finger. During 

recording, the position of each IRED was tracked by two OPTOTRAK cameras at a rate 

of 100 Hz for 3 s.  Marker wires were held in place with elastic wrist and elbow bands to 

allow for unrestricted arm movement.   
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Figure 3.1. Experimental setup with target and object positions.  Participants made 

reaches from the start button to the Initial Target (green circle) which were on a 1 m x 1 

m black fabric board.  On 1/3 of trials, the target jumped in depth and to the Left (blue 

circle) or Right (red circle). When an object was present it appeared in one of four 

positions (indicated by coloured squares, size and position to scale).  Movements were 

recorded using two OPTOTRAK cameras (one left, one in front) at 100 Hz. 
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Tall rectangular objects (4x4x25 cm, with IREDs in the middle of the top facing surface), 

were placed in four different positions (2 depths x 2 sides of space): near-right (the centre 

of the inside edge of the object was 10 cm right of the midline and 35 cm in depth from 

the start button), far-right (the centre of the front edge of the object was 5 cm right of the 

midline, 40 cm from start button), near-left (the centre of the inside edge of the object 

was 5 cm left of midline, 35 cm from start button) and far-left (the centre of the front 

edge of the object was 10 cm left of midline, 40 cm from start button) [see Figure 3.1]. A 

fifth condition was included in which no objects were placed on the table. 

3.2.3. Procedure 

Each trial started with participants placing their right index finger on the start button. The 

goggles were closed, allowing the experimenter to place the objects without the 

participant seeing. The trial was triggered by the experimenter, causing the goggles to 

open and the OPTOTRAK to start recording. Participants were instructed to reach to the 

target (red LED placed 30 cm directly in front of the start position) quickly and 

accurately as soon as it became visible (i.e. when the goggles opened). They were told to 

ignore any objects that were on the table and that there could be one or no objects present 

on any given trial. On most trials (160/240), the target position remained unchanged.  On 

some trials (80/240), however, the target would ‗jump‘ to a new location when the 

participants released the start button.  Of the 80 target jump trials, 40 were jumps to the 

left (10 cm to the left and 10 cm further in depth) and 40 were jumps to the right (10 cm 

to the right and 10 cm further in depth) [see Figure 3.1].  The 40 jump-left and 40 jump-

right trials were evenly split across the five obstacle conditions, such that there were 8 

repetitions of each obstacle condition and jump direction.  All trials were completely 

randomized.  Prior to the experiment participants were given 24 practice trials where no 

objects were present. On 16 of the practice trials, the target did not jump; on 4 trials, there 

was a rightward jump; and on 4 trials there was a leftward jump. 

3.2.4. Data Processing 

All analyses were conducted on data from the IRED on the tip of the right index finger.  

Raw 3D data for each trial was filtered using a low-pass Butterworth filter (dual pass, 10 
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Hz-cutoff, 2
nd

 order).  Instantaneous velocities in each cardinal dimension (x,y,z) were 

calculated for each time point and the resulting velocity profiles were filtered (low-pass 

Butterworth filter, dual pass, 12 Hz-cutoff, 2
nd

 order) and combined to create a vector 

velocity (i.e. three-dimensional) profile for each trial.   Onset of reaches were defined as 

the first of four consecutive vector velocity readings of greater than 20 mm/s where there 

was a total acceleration of 20 mm/s
2
 across the four points. Reaches were said to 

terminate when whichever of two conditions was first met: the first of three consecutive 

displacement readings back toward the start button (i.e. three negative displacements in 

the y-direction) or the first time the velocity dropped below 20 mm/s.   

Missing data from a fingertip IRED that was temporarily blocked from the view of the 

OPTOTRAK cameras due to the positioning of the objects was filled in with data from 

the finger-base IRED.  This was accomplished by translating the base IRED data to the 

last known position of the tip IRED, using the base IRED data over the missing segment, 

then stretching (in all three dimensions) the endpoint of the filled sequence to match the 

position of the tip IRED when it reappeared.  When both IREDs were missing, the data 

were interpolated using the inpaint_nans function (available online at: 

http://www.mathworks.com/matlabcentral/fileexchange/4551) in Matlab.  

Interpolation was required on only 5 trials across an average of less than 3 time points.  

Trials were rejected for the following reasons: The reach was too short in either duration 

(<100 ms) or distance (<150 mm in depth), the obstacle was misplaced by the 

experimenter, or a collision with an object was detected (object moved by more than 5 

cm). Under these criteria, <1% of the trials were rejected (for complete analysis of 

removed trials, see section 3.3.3). All trajectories were translated such that the first 

reading of the index finger IRED was taken as the origin of the trajectory (i.e. 0,0,0 in 3D 

Cartesian space, x = horizontal, y = depth, z = vertical).  Trials were then spatially 

normalized using functional data analysis techniques (Ramsay & Silverman, 2005) 

whereby B-splines were fit to each dimension of the raw data.  This allowed us to extract 

the lateral (x) values from 200 points equally spaced across the reach distance (y) (for 

details, see Chapman et al., 2010). 

http://www.mathworks.com/matlabcentral/fileexchange/4551
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3.3. Results 

We analyzed data from experimental trials only. To identify reaches to an incorrect target 

position (i.e. not reacting to a target jump), we performed a cluster analysis of each 

participant‘s reach endpoints (in the x and y dimension) when they reached toward each 

of the three target positions (collapsed across all object positions) and removed any 

reaches with endpoints further than 5 cm from the mean of their largest cluster.  Every 

participant‘s largest cluster of points was within 5 cm of the actual target position and 

less than 2% of trials were removed for having an incorrect endpoint.  To account for 

trials where participants performed two discrete movements (rather than one continuous 

online correction) we also removed trials where there was a reacceleration in the y-

dimension that exceeded 20% of the peak y-velocity.  While some reacceleration was 

expected (given that targets jumped 10 cm in depth) we wanted to isolate true online 

corrective behaviour; less than 2% of trials were removed for exceeding the 

reacceleration criterion (for complete analysis of removed trials, see section 3.3.3).  After 

trial removal, any participant with fewer than 4 repetitions of any condition (jump-type x 

obstacle-position) was excluded from analysis.  Three participants were removed with the 

application of this criterion, leaving n=18 for all statistical analysis. 

3.3.1. Spatial trajectories 

For each participant the spatially normalized reach trajectories were averaged across each 

of the 15 experimental conditions (3 jump-types x 5 object-positions).  We then 

conducted a set of planned repeated-measures functional-ANOVAs (implemented in 

Matlab 7, using custom code adapted from: http://www.psych.mcgill.ca/misc/fda/) to 

separately examine the effects of obstacles when participants reached to the initial target 

position and the effects of obstacles when they made a correction to a jumped-target. The 

functional-ANOVA compared the lateral (x) deviation at different reach distances (y) 

across the different conditions. This statistically sensitive technique, which extends a 

traditional univariate ANOVA to all points in a curve, allows a quantification of not only 

if, but also where and with what magnitude, the trajectories differed (Ramsay & 

Silverman, 2005, see Chapman et al., 2010 for recent use and details of this technique). 

Because we used a repeated-measures design in the functional-ANOVAs, we applied a 
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Greenhouse-Geisser correction for correlations across conditions at each time point. The 

obvious advantage of using functional versus discrete measures of movements is that a 

more complete description of the evolution of differences is available.  However, this 

necessitates that each trajectory be fit mathematically, and, as a relatively new analysis 

technique, statistical conventions (i.e. appropriate alpha levels) have yet to be agreed 

upon.  For this reason, we present the functional output corresponding to the range (p < 

0.1 to p < 0.00001) of statistical significance across the movement (see significance bars 

and legends in Figures 3.2 and 3.3) to allow for a complete depiction of the pattern of 

differences. 

3.3.1.1. Reaches to initial target position 

Since it was important to establish the baseline effects of the objects, we compared 

reaches made to the initial target position with objects in each position. The results of the 

repeated-measures functional-ANOVA are shown with the grey significance bar in 

Figure 3.2.  The position of the grey colouring corresponds to the locations along the 

reach distance (y) where the trajectories differed in the lateral (x) dimension, with the 

intensity of the colour corresponding to the magnitude of the statistical difference.  As 

can be seen, the objects had a significant effect on lateral deviation throughout the reach.  

To investigate this effect, we conducted functional pair-wise comparisons (implemented 

as two-level repeated measures functional-ANOVAs) between all pairs of trajectories 

(see inset, Figure 3.2).  This analysis revealed that the differences in trajectories due to 

objects were entirely driven by the objects in the ‗near‘ positions.  That is, when an object 

is in the near-right position (black trace, Figure 3.2) the average trajectory was 

significantly shifted to the left and when the object was in the near-left position (red 

trace) the trajectory was shifted to the right.  These two trajectories were significantly 

different from all the other trajectories, and no other trajectories significantly differed 

from one another.  It should be noted that while there were clearly significant differences 

due to the presence of obstacles, these effects are very small (x-axis magnified 8 times in 

Figure 3.2) with the largest difference from baseline spanning less than 5 mm.  This 

subtle yet significant deviation speaks to the remarkable sensitivity of the visuomotor 

system when avoiding potential obstacles.  However, it does indicate that the two ‗near‘ 



113 

 

 

object positions interfered with the reach even during unperturbed reaches, and thus may 

result in different reach behaviour when online corrections are required.  
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Figure 3.2. Overhead view (x,y) of average (average of 18 participants‘ individual 

average) reach trajectories to the initial target (small red circle) with objects in each 

position (position and size not to scale). Trajectory traces are colour coded to match the 

object positions (green = no objects, note: x-axis magnified 8x). Shaded area around 

trajectory traces represents average standard error across 18 participants. Grey 

significance bar to the left gives a measure of where there were statistical differences 

(magnitude of difference is proportional to intensity of grey – see P-Value legend, note P-

values are Greenhouse-Geisser corrected) between trajectories in the lateral dimension. 

Inset: Functional pair-wise comparisons between all possible pairs of trajectories 

arranged as a matrix. Each row (colour inside of box) and column (border of box) 

corresponds to a different object position with the intersection being the comparison 

between those two trajectories. Within each intersection box, the position of the coloured 

area corresponds to where along the reach distance (y) the trajectories differed in the 

lateral (x) dimension with the intensity of the colour corresponding to the magnitude of 

the statistical difference (see P-value legend and exploded box to side, where the (red) 

Near-Left trajectory is being compared to the (green) No-Object trajectory). 
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3.3.1.2. Reaches to jumped target positions 

For clarity, we separately analyzed reaches on jump-target trials with objects to the left of 

midline (near-left and far-left, Figure 3.3a) and reaches made on jump-target trials with 

objects to the right of midline (near-right and far-right, Figure 3.3b).  Within each of 

these sets of trajectories (objects-left and objects-right) we conducted three functional-

ANOVAs: one comparing jump-left versus jump-right trials (results indicated with green 

significance bars), and the second and third comparing the effect of the objects on the 

jump-left and jump-right trials respectively (results indicated with the grey significance 

bars on the left and right of plots). 

For both the objects-left and the objects-right, the difference between jump-left and 

jump-right trials begins to be (and thereafter remains) significant (p < 0.05) 

approximately 17 cm (or 43%) into the y-movement (see green significance bars, Figure 

3.3).  This is markedly different from how the reaches on no-jump trials were affected by 

the objects. 
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Figure 3.3. Overhead view (x,y) of average reach trajectories to the jumped target 

positions with objects on the Left (A) or Right (B). Trajectory traces are colour coded to 

match the object positions (green = no objects, object size not to scale). Shaded area 

around trajectory traces represents average standard error across 18 participants. The grey 

significance bars denote where there was an effect due to obstacles for a given jump 

direction and the green significance bars denote where the jump-left and jump-right trials 

were significantly different (magnitude of lateral deviation difference is proportional to 

intensity of colour – see P-Value legend – note its location does not obscure any part of 

the significance bar in (B). Insets: Functional pair wise comparisons between trajectories 

for target jumps left and obstacles-left (A) and target jumps right and obstacles-right (B).  

Configuration of pair wise comparison boxes is identical to Figure 3.2.  
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On object-left trials (Figure 3.3a), the effect due to objects emerges much later in the 

reach (25 cm or 63% of y-movement, grey significance bar to the left, Figure 3.3a) but 

only on trials where the target jumped to the left.  That is, when the target jumped to the 

right there was no difference between either of the object conditions or the baseline (no 

object, green-trace) trials.  When we investigated the effect of left-objects on left-jump 

trials further,  the pair-wise functional comparisons (see inset Figure 3.3a) confirmed 

what is visually apparent – the left-near (red-trace) reaches were driven further in depth 

and to the right, while the left far (blue-trace) reaches were driven closer in depth and to 

the left relative to the baseline (no-object, green-trace) reaches. 

The pattern observed on the object-right trials (Figure 3.3b) is similar, though it is 

somewhat obscured by the interference that was observed when participants reached to 

the initial target position (described above).  That is, reaches with objects in the near-right 

location (black-traces) were initially shifted slightly left, leading to significant differences 

in trajectories early in the movement (grey significance bars to the left and right, Figure 

3.3b). Importantly, however, these differences were observed for both jump-left and 

jump-right trials.  Critically, only on the jump-right trials did the effects due to objects 

persist (and become more significant) late in the reach. The pair-wise functional 

comparisons (inset Figure 3.3b) confirmed this finding, with only the near-right trace 

being significantly different from the baseline (no-object, green trace) trials early in the 

movement.  The pair-wise comparisons also revealed how the objects affected the 

reaches during the online correction.  Similar to the left-object trials, on the right-object 

trials the near-right location (black-trace) drove the hand further in depth and to the left, 

while the far-right location (pink trace) drove the hand closer in depth and to the right.   

Overall, once the initial interference effects were accounted for, there were two major 

findings from the analysis of the reach trajectories on jump-target trials.  First, the 

deviation due to the hand reacting to the jumped target occurred earlier (in space) than 

the effects due to objects.  Second, these object effects, which occurred exclusively 

during the online correction, showed a clear pattern of obstacle avoidance, consistently 

moving the hand away from the object position. 
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3.3.2. Temporal profiles 

Of course, it is not possible to characterize the effect of obstacles by analyzing only the 

spatial component of the reach. What appear to be automatic and fluid spatial deviations 

away from objects that interfere with corrected movements could actually come at the 

expense of significant velocity reductions.  To examine the temporal component of the 

reaches we analyzed three dependent measures determined from the vector (3D) velocity: 

peak-velocity, time to peak velocity and percent time to peak velocity.  To complement 

the velocity analysis, we also examined reaction time and movement time.  Above, we 

described a spatial definition of where trajectories on target-jump trials became 

significantly different from no-jump trials, but here we wanted to provide a rigorous 

temporal definition of correction latency for reactions to jumps in both directions.  To 

calculate this, we performed 2 two-level (jump-left vs. no-jump and jump-right vs. no-

jump) MANOVAs (with three dependent variables, one each for x, y and z velocities) at 

each time point (defined by frames) for each participant.  The correction latencies were 

defined as the first time point where these MANOVAs became (p<0.05) and remained 

significant for the longest number of consecutive frames. 

For each participant, each of the non-latency measures was entered into a two-factor 

jump-type x object-position (3x5) repeated-measures (RM) ANOVA and the latency 

measure was entered into a two-factor jump-direction x object-position (2x5) RM-

ANOVA (all RM-ANOVAs Greenhouse-Geisser corrected, significant at p<0.05).  

Means and results for these tests are shown in Table 3.1. The average vector velocity and 

lateral velocity (where the greatest differences due to jumped targets were expected) 

traces for no-object trials, as well as the left and right correction latencies are shown in 

Figure 3.4a.  The vector and lateral velocity traces for trials with objects are shown in 

Figure 3.4b. The results naturally fell into two categories – effects due to jump direction 

and effects due to object position. 
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Table 3.1 – The means and statistical results for the temporal dependant measures.      

 

Where significant, the strength of an interaction is indicated in the row with the measure 

name. The ‗F‘ column shows the results of an F-test of the main effect (or simple main 

effect) of the means in a given row (Greehouse-Geisser corrected). Results from pair wise 

contrasts (Bonferroni corrected) are shown next to each significant F-test.  * & < or > = 

p<0.05, ** = p<0.005. ns = not significant. 

 

  

Reaction time (ms)  

 No-Obj Near-L Far-L Far-R Near-R F  
 351.79 331.65 331.59 335.26 333.92 ** No-Obj > Rest 

       
Movement time (ms) Interaction** Jump-type x Object-position 

 No-Obj Near-L Far-L Far-R Near-R F  
No-jump 471.44 468.93 470.03 471.97 468.33 ns  
Jump-L 695.78 719.98 714.65 692.96 696.49 * Near-L > No-Obj, Far-R, Near-R 
Jump-R 625.91 615.85 608.59 635.85 759.27 ** Near-R > Rest; Far-R > Near-L 

       
Peak velocity (mm/s) Interaction* Jump-type x Object-position 

 No-Obj Near-L Far-L Far-R Near-R F  
No jump 1334.78 1325.37 1323.28 1326.80 1322.42 ns  
Jump-L 1319.81 1320.90 1307.08 1319.77 1332.48 ns  
Jump-R 1402.48 1389.38 1400.22 1392.95 1344.26 * none 

       
Time to peak velocity (ms) Interaction* Jump-type x Object-position 

 No-Obj Near-L Far-L Far-R Near-R F  
No jump 223.70 221.90 222.74 223.48 223.07 ns  
Jump-L 217.56 228.11 229.94 223.53 226.94 ns  
Jump-R 250.66 250.72 256.52 250.63 231.67 * Near-R < Near-L, Far-L 

       
Percent time to peak vel (%) Interaction** Jump-type x Object-position 

 No-Obj Near-L Far-L Far-R Near-R F  
No jump 47.44 47.17 47.44 47.39 47.50 ns  
Jump-L 31.44 31.72 32.33 32.39 32.72 ns  
Jump-R 40.72 41.28 42.50 39.89 31.11 ** Near-R < Rest; Far-R < Near-L 

       
Correction latency (ms)      

 No-Obj Near-L Far-L Far-R Near-R F  
Jump-L 299.44 317.78 309.44 310.55 313.89 ns  
Jump-R 268.89 266.67 269.44  278.89 286.11 ns  
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3.3.2.1. Effects due to jump direction 

Overall reaches requiring corrections to the left were much slower than reaches requiring 

corrections to the right (independent of object position).  This resulted in reaches with 

longer movement times, lower peak velocities and more time spent decelerating (earlier 

peak velocities) for jump-left as compared to jump-right trials. Given these velocity 

differences, it is not surprising that we also observed longer correction latencies for 

reaches correcting left than for reaches correcting right (see Table 3.1 and Figure 3.4a, 

correct-left versus correct-right differences are also reflected in our analysis of error 

trials, see section 3.3.3). This finding replicates the result that is obtained when right-

handed participants make online corrections to the left and right with their right hand 

(Carnahan, 1998) and is consistent with biomechanical factors like limb inertia (Gordon, 

Ghilardi, Cooper, & Ghez, 1994). 

3.3.2.2. Effects due to object position 

Of more interest to the current study were the effects of the non-target objects on trials 

when the target jumped at reach onset.  Since we predicted that objects to the left and 

right of midline would have different effects depending on the direction of the target 

jump, we were specifically interested in investigating interactions between jump-type (or 

jump-direction) and object-position.  As such, any variable with a significant interaction 

between these factors was further investigated by running a single factor RM-ANOVA of 

the five obstacle positions for each of the three jump-types (see Table 3.1). 

It should be noted that reaction time showed a significant effect only for object position.  

This was driven by slower responses when no object was present, a finding which 

replicates our previous work (Chapman & Goodale, 2010).  Aside from reaction time, all 

other non-latency measures showed a significant interaction between jump-type and 

object-position.  The results from movement time follow from the trajectory results. 

Reaches that deviated from the no-object trajectories showed longer movements.  That is, 

there was no significant effect of object position on movement time when making reaches 

to the initial target position but a significant effect of object position on both jump-left 

and jump-right trials.  For both left and right jumps, the movement times were longer 
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when objects were on the side of the final target position (i.e. left objects for left jumps) 

and longest for the objects in the near positions. 

From only movement times, however, it is difficult to tell if these longer duration 

movements are the result of a larger distance travelled by the hand or a decrease in 

velocity.  When examining the interaction between target-position and object-position for 

the velocity variables (peak velocity, time to peak velocity and percent time to peak 

velocity) it appears that only for jump-right trials does the position of the object actually 

cause a significant slowing of the reach.  Specifically, there was no effect of object-

position when the target remained in the initial position or when the target jumped to the 

left, but for jump-right trials, all velocity variables showed an object-position effect. 

From pair-wise comparisons (Bonferroni corrected, p<0.05), the significant object effect 

on jump-right velocities was shown to be caused almost entirely by a significant slowing 

of the reach (lower peak velocity and longer deceleration phase) only when the object 

was in the near-right location.  While no specific velocity measure showed an effect of 

obstacle position on jump-left trials, it should be noted that there was evidence of 

temporal interference caused by the near-left location, as suggested by the velocity 

profiles (Figure 3.4b) where the jump-left trials with objects in the near-left position (red 

dashed trace) show departures from the no-object trials (green shaded region) especially 

in the lateral velocity profile. 
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Figure 3.4. Average vector velocity (top) and lateral velocity (bottom) traces for trials 

with (A) No objects and (B) Objects. (A) Trace colour denotes jump direction: green = no 

jump, blue = jump left, red = jump right. Shaded area around trajectory traces represents 

average standard error across 18 participants. Vertical lines denote the correction latency 

for jumps to the right (red) and left (blue). (B) Trace colour denotes the position of the 

object: blue = Far-Left, red = Near-Left, magenta = Far-Right, black = Near-Right.  The 

style of the line denotes the jump direction: thin = No-Jump, dashed = Jump-Left, thick = 

Jump-Right.  The green shaded region corresponds to the shaded regions in A) (No 

Objects) and serves as a baseline. 
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From the observed effects, it is clear that objects that become obstacles during an online 

correction can interfere with the movement spatially and temporally.  However, it is 

critical to know if this interference occurs before or after the correction is initiated.  To 

test this, we looked at the effect of object position on the correction latencies.  If the 

position of the object had an effect on correction latencies, then it could be argued that 

the observed obstacle interference occurred prior to the initiation of the online correction. 

Importantly, the correction latencies showed neither a significant interaction between 

object-position and jump-direction, nor a significant main effect of object position for 

either the jump-left or jump-right trials.  This suggests that the observed obstacle 

interference occurs only after the correction has been initiated.   

Taken together, the results from analyzing the temporal profiles of the reach suggest that 

the fluid avoidance of obstacle during online corrections seen in the spatial trajectories 

can occur without any significant alteration in the velocity of the reach.  However, if the 

risk for collision during a correction was high (which is certainly the case for the near-

right position, which accounted for all 10 collisions detected across all participants, see 

section 3.3.3) we saw that the spatial avoidance was accompanied by significant velocity 

reductions.  This effect can be seen in Figure 3.4b.  Here, for reaches with objects on the 

left, only reaches corrected left and with an object in the near-left position (dashed red 

trace) showed some evidence of temporal interference.  This effect was much stronger for 

reaches with objects on the right, where reaches corrected right with an object in the near-

right position (thick black trace) showed large velocity reductions.   

3.3.3. Supplemental Error Analysis 

Some trials were rejected prior to extracting the reach trajectory from the recorded data.  

Here we elaborate on the exact number of trials that were rejected for each of the 

following reasons: (1) The reach was too short in either duration (<100ms, 3 total trials) 

or distance (<150mm in depth, 6 total trials), (2) the obstacle was misplaced by the 

experimenter (18 total trials), (3) or a collision with an object was detected (object moved 

by more than 5 cm, 13 total trials).  
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The most interesting of these rejected trials are the collisions.  Of the 13 collisions 

detected, 10 occurred on trials where a target jumped (these 10 collisions were spread 

across 8 subjects, meaning that 10 subjects had no collisions on jump trials).  The three 

that occurred on the non-jump trials were likely the result of the table being shifted (thus 

causing the obstacle to topple) or the experimenter moving the obstacle prior to the 

completion of data recording (thus the object would appear to move during the trial).  

Interestingly, all 10 of the collision trials occurred when the target jumped to the right 

and the obstacle was in the Near-Right position.  This confirms that in this configuration 

the chance for collision was highest, thereby lending credence to our interpretation of the 

velocity slowing observed on these trials being related to the potential for collision.  It is 

possible (though highly unlikely given that less than 50% of our subjects (8/18) had 

collisions on less than 25% (2/8) of trials in this configuration) that by excluding these 

trials we may have biased our results and exaggerated the avoidance effect.  To rule out 

this possibility, we show in Figure 3.5 the trajectory traces (thin black lines) from each of 

the 10 collision trials overlaid on the relevant average trajectories from Figure 3.3b.  It is 

clear from this figure that on only one collision trial was the trajectory significantly closer 

to the object than on the trials when it was successfully avoided.  The remaining nine 

collision trials are all pushed away from the obstacle position, relative to the baseline 

trials (green) and the majority of them (7/9) are actually further from baseline than the 

plotted average.  Overall, this indicates that even if had we included these 10 trials, the 

average would – if anything – be shifted even further from baseline.  It also indicates that 

it may not have been the hand but the forearm that was colliding with the obstacles (in 

fact from anecdotal observation it was almost always the forearm that struck the 

obstacle).  Finally, we would also argue that on trials when the obstacle was successfully 

avoided in this configuration, the margin for error was quite small – again strengthening 

our claim that for corrections to the right with an object in the near right location special 

care is required (as reflected in our velocity analysis).  
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Figure 3.5. Collision trajectories (thin black traces) from Jump-right, obstacle Near-Right 

trials overlaid on average trajectory traces taken from Figure 3.3b.  Only one collision 

trial seems to follow a path significantly different than the non-collision trials from the 

same configuration (thick black trace with average standard error).  

 

  



126 

 

 

A second set of trials was removed after reach extraction for having an incorrect endpoint 

(61 total trials, see Table 3.2).  Again, it could be the case that by removing only these 

trials, we were removing some set of data that biased our results to show a larger 

avoidance effect (there does appear to be some bias toward removing trials that jumped 

left with obstacles on the left, see Table 3.2).   To argue against this possibility we show a 

scatter plot of the endpoints of trials rejected due to this criterion (see Figure 3.6).  On 

only one trial did a participant incorrectly point to a jumped target location when in fact 

the target did not jump (green dot). By comparison, the vast majority (42/61) of these 

trials were rejected because participants failed to correct to the jumped target location, 

instead completing a movement toward to the initial target position (red and blue dots 

within the green circle).  Of the remaining trials (18/61), 3 incorrectly ended to the right 

when the target jumped left (blue dots in the red circle) while 15/61 appear to be the 

result of partially corrected movements, mostly ending beyond the initial target and 

between the two jump locations.  Of trials that were rejected for an incorrect endpoint, 

39/61 were on trials when the target jumped left (blue dots) and 21/61 were on trials 

when the target jumped right (red dots).  This pattern confirms that participants had a 

slightly harder time correcting to leftward jumps.  More importantly, this analysis of 

endpoint errors shows that these rejected trials were due to problems in correction and 

had no specific relevance to the reported avoidance effect. 

 

  



127 

 

 

Table 3.2 – Tally of rejected trials.      

 

 

Jump-Left 

 

Jump-Right 

 

No Near-L Far-L Far-R Near-R 

 

No Near-L Far-L Far-R Near-R 

Endpt 12 9 13 5 0 

 

8 1 3 6 3 

Accel 9 7 15 5 6 

 

5 2 0 6 1 

 

Rejected trials broken across reason for rejection (Endpoint, row 1, see  Figure 3.6; 

Acceleration, row 2, Figure 3.7), Jump-direction and Obstacle Position.  More trials were 

rejected that Jumped-Left, corresponding to the greater difficulty correcting in this 

direction.  There appears to be some bias for rejecting trials that jumped left, specifically 

when obstacles were on the left – justifying further analysis of behaviour on these error 

trials to confirm we did not selectively bias our data to show an avoidance effect. Note 

one trial rejected due to endpoint came from a No-Jump trial and is not represented in this 

table (but see green dot in Figure 3.6) 
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Figure 3.6. Analysis of endpoints of trials removed for having an incorrect endpoint. 

Green dot = no-jump trial, Blue-dots = jump-left trial, Red-dots = jump-right trial.  Large 

green, blue and red circles indicate the approximate size and location of the cluster 

regions defined as correct for each of the initial, jump-left and jump-right trials 

respectively (note actual cluster location determined for each individual - see main text).  

The majority of rejected trials were ones that terminated at the initial target when a 

correction was required. 
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A final set of trials was removed after reach extraction for having re-accelerations 

suggesting a non-continuous correction toward a jumped target (56 total trials, Table 3.2).  

Of these, the majority (42/56) were on jump-left trials compared to only 14/56 on jump-

right trials.  This again confirms that correcting to the right occurred more automatically 

in the current study.  Again, it is possible that the subset of trials that were removed could 

have biased our data (this again appears as if it may be true since more trials that jumped 

left with obstacles on the left were removed, see Table 3.2).  To clarify this issue we plot 

the average trajectories on the rejected trials in cases where an obstacle needed to be 

avoided.  The most important thing to note about these trajectories is that they all come 

much closer to (indeed in most cases cross) the initial target position.  This confirms that 

these trials represent cases where participants likely completed the reach to the initial 

target before making a second movement toward the jumped location.  As such, we had 

good reason to reject these trials as not being representative of true online corrections.  It 

is also clear, however, that even during these double movements the position of the 

obstacle still influenced the latter half of the movement.  This is specifically true on the 

left where the obstacles induced a clear pattern of avoidance.  On the right, the pattern of 

avoidance is slight, but these trajectories represent the average of only 6 trials (magenta) 

and a single trial (black) so it is difficult to draw conclusions from this specific pattern. 
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Figure 3.7. Trajectories of trials removed for having significant re-accelerations during 

online corrections.  Left panel – Jump-left trials with objects on the left.  Right panel – 

Jump-right trials with objects on the right. Green lines = no-object trials, Red line = 

Object Near-Left,  Blue line = Object Far-Left, Magneta = Object Far-Right, Black = 

Object Near Right.  Note all trajectories come close to crossing the initial target position, 

suggesting two separate movements.  Despite this, obstacle avoidance effects persist, 

especially for Jump-Left trials (left-panel). 
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3.4. Discussion 

The primary aim of the current study was to test whether or not participants could avoid 

an obstacle that became an impediment to a reach only after the initial reach target 

changed position during the movement.  The results from the analysis of the spatial 

trajectories (Figure 3.3) clearly demonstrate that obstacle avoidance while correcting a 

reach toward a new jumped-target is possible.  Critically, avoidance was observed only 

when the new target position caused an object to become an obstacle (i.e. when the new 

position was on the same side of space as the object) and not when the target jumped 

away from the object.  The results from the analysis of the velocity profiles of these 

reaches (Figure 3.4) demonstrated that in some cases, this spatial avoidance was 

accompanied by a significant slowing of the reach (when objects were between the hand 

and the new target, especially on the right) and in others, the spatial avoidance occurred 

without a significant alteration in the speed of the movement (when objects were at the 

same depth as the new target). 

The design of the current study allowed us some insight into two questions currently 

being debated in the field of visuomotor control.  First, by isolating the obstacle 

avoidance to the corrected portion of the reach, we were able to provide evidence that the 

visual context (i.e. objects other than the participant‘s hand and the target) can affect a 

reach during online corrections.  To make this claim, it was necessary to show that the 

avoidance effects occurred after the correction to the jumped target.  We confirmed this 

using both a spatial definition of when the correction occurred (reactions to jumped 

targets occurred closer in depth than avoidance effects, see Figure 3.3) and a temporal 

definition of when the correction occurred (correction latencies were unaffected by 

obstacle position, see Table 3.1).  The finding that a non-target object has an effect on 

reaching that is restricted to the automatically corrected portion of the reach is consistent 

with two recent studies showing that position changes of items other than the target that 

occurred while the hand was in flight caused deviations in the trajectory of the reach.  In 

one case, the non-target object was the target of an upcoming movement (Cameron et al., 

2007) and in the other, the non-target objects were virtual obstacles (Aivar et al., 2008).  
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The response to perturbations of virtual obstacles observed by Aivar et al. (2008) leads to 

the second question we were able to investigate: whether or not reacting to real objects 

during the online correction of a real reach would be different than that observed for 

corrections in the presence of virtual obstacles during a rapid stylus-pointing task.  By 

varying both the side of space the objects were on and the depth at which they were 

placed, we were able to show that objects with a higher risk for collision altered not only 

the spatial trajectories but also significantly slowed the reach.  This was especially 

evident on trials with objects placed in the near-right position when targets jumped to the 

right (thick black line, Figure 3.4b).  The noticeable slowing of reaches on these near-

right / jump-right trials may have been caused by the near-right obstacle position being 

occluded by the moving arm.  We do not favour this explanation for two reasons.  First, 

the objects were 25 cm tall and at least some part of the object was always visible 

regardless of the position of the arm.  Second, in previous work (Chapman & Goodale, 

2008), short objects which could have been completely occluded by the moving arm 

resulted in less interference, opposite to the current result for the near-right / jump-right 

trials.  Indeed, we believe the significant slowing noted on these trials was a result of the 

biomechanics and physical arrangement of the hand and arm which meant the direct path 

to the new target position was blocked by the near-right object (the difficulty of this 

configuration was confirmed in an analysis of the collision trials, see section 3.3.3 and 

Figure 3.5).  We also observed some slowing on trials with an object in the near-left 

position where targets jumped left (dashed red trace, Figure 3.4), but no slowing when 

objects were in the far positions, or when they were on the side opposite the target jump.  

This almost parametric slowing is entirely consistent with the degree to which the object 

was actually an obstacle to the corrected movement.  While there are other 

methodological differences between the current study and the work conducted by Aivar 

and colleagues (2008), we believe that this novel finding of reach slowing in accord with 

obstacle interference demonstrates that the real-world consequences of collision with a 

three-dimensional object results in different reaches from those performed in a virtual 

context.      

It is possible that the different effects we observed between near and far objects on 

corrected movements had to do with the interference we saw for near objects on non-
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jump trials (see Figure 3.2).  That is, it could be that the slow-down we observed later in 

the reach for corrected movements toward near objects was actually a consequence of the 

original deviations induced in the early trajectory by objects in these positions.  We do 

not support this interpretation for two reasons: first the deviation induced by the near 

objects on non-jump trials was very small (less than 5 mm for both the near-left and near-

right object) and occurred only in the lateral dimension, while deviations that occurred 

during avoidance were much larger (more than 10 mm) and occurred laterally and in 

depth.  Second, the onset of the correction was independent of the position of the objects 

(see Table 3.1).  Specifically, for both the jump-right and jump-left trials, the difference 

between the correction latency for the near and far locations of objects on the same side 

of the jump was less than 5 ms.  It appears then, that the visuomotor system automatically 

avoids obstacles in a sensible fashion – providing a margin of error around all objects 

near the hand path, but slowing the reach only for corrected movements where obstacles 

truly impede the movement.  This extra time likely allows for more deliberate control of 

an action where the chance of an undesirable collision is high.  

Given this study and previous findings, what can be concluded about the representation 

and encoding of obstacles during movement planning and execution?  First, we believe 

that non-target objects in the reach environment are encoded and accessed similarly to 

target objects – that is a representation is available during both planning and execution. 

Until now, there was plenty of evidence showing that obstacles encoded during 

movement planning affected the subsequent reach movement (Chapman & Goodale, 

2008, 2010; Mon-Williams et al., 2001; Tresilian, 1998, 1999).  It remained inconclusive, 

however, whether or not this obstacle representation could be accessed in flight causing 

the reach (and/or the obstacle representation) to be updated online.  Here we show that, 

like the position of a target, the position of an obstacle can be dynamically accessed and 

can influence corrected movements.  Although we were successful in isolating the 

obstacle effects to the corrected portion of the reach, we are unable to state conclusively 

that the observed avoidance during a corrected movement was the result of planned 

obstacle representations being integrated into the trajectory rather than the result of a new 

obstacle representation being created in-flight.  This issue is ultimately related to whether 

online correction mechanisms – which use feedback to reduce the error between the 



134 

 

 

original and corrected movement goals – include a feed-forward/predictive signal in the 

error estimate or whether the error signal arises from purely sensory mechanisms (for 

discussion of this point see Desmurget & Grafton, 2000).  Given the inherent delays in 

sensory feedback, however, some sort of feed-forward mechanism seems necessary.  

Recent behavioural and modeling studies confirm the role of prediction in successful 

online correction (e.g. Danion & Sarlegna, 2007; Gritsenko, Yakovenko, & Kalaska, 

2009).  One particularly relevant finding is that online corrections to a new target position 

made while a person was holding a mass in a pinched-grip showed that the grip force 

adjustments required to accelerate the mass toward a corrected target position preceded 

the actual in-flight trajectory adjustment (Danion & Sarlegna, 2007).  That the grip 

adjustment can lead the trajectory shift suggests that the consequences of the corrected 

movement were predicted and compensated for before the trajectory was altered.  In the 

context of the current study, it therefore suggests that the consequences of the corrected 

movement and the subsequent deviation around the obstacle are predicted and rely on 

planned obstacle representations.  It also suggests that one should be able to see obstacle 

influences prior to the correction if the expectation is that a corrected movement will be 

interfered with.  That is, if one designed an experiment where the expectation of a target 

jump was high (much greater than the 1/3 used here) and the direction of the corrected 

movement was predictable (the target always jumped in one direction) then even the 

initial movement should be affected by an obstacle that interfered only with the corrected 

movement.  In this case, it would make sense for predictive mechanisms to anticipate the 

obstacles potential interference and adopt an initial reach that made the upcoming 

correction easier to perform. 

The second conclusion regarding obstacle representations that we infer from the current 

study is that non-target objects are encoded and accessed by the dorsal visual stream.  

Since dorsal stream structures have been implicated in both the avoidance of obstacles 

during non-corrected movements (Schindler et al., 2004) and in performing online 

corrections toward jumped-targets (Desmurget et al., 1999; Pisella et al., 2000) it follows 

logically that a task combining both would recruit similar neural pathways.  To support 

this idea, studies recording from cells in the monkey dorsal visual stream have shown 

populations of neurons that encode multiple potential reach targets (Cisek & Kalaska, 
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2002, 2005).  Given our findings demonstrating sensitivity to obstacles during corrected 

movements, we believe that the encoding of multiple objects extends to both target and 

non-target objects. Moreover, recent neuroimaging work in humans (Gallivan, Cavina-

Pratesi, & Culham, 2009) has shown that objects within reachable space were 

preferentially encoded (relative to objects beyond reach) when participants were 

passively viewing the workspace.  While these objects were sometimes the targets of 

action, on trials in which no action was performed, there was still evidence of encoding in 

the superior parietal cortex, a critical structure for visuomotor processing in the dorsal 

stream.  

This notion of reachable space provides an elegant way of summarizing our results.  

When performing reaches to the initial target position where no jump occurred (the 

majority of trials) the evidence for obstacle encoding was minimal (near objects) or non-

existent (far objects).  However, on trials where the target did jump and an object 

impeded the corrected movement, we observed automatic avoidance sensitive to the risks 

of collision. This suggests that the potential obstacles were encoded on every trial and 

that reachable space is defined not just by the part of our environment we are most likely 

to act in but includes everything within reach of our acting hand. This conclusion 

resonates with a recent review (Baldauf & Deubel, 2010) which argues that visuomotor 

planning (or ‗visual preparation‘) automatically results in the dynamic deployment of 

attention across all of reachable space.  This attentional landscape allows for multiple 

relevant locations in the workspace to be processed in parallel.  Following from this idea, 

in the current experiment potential targets and potential obstacles must have been 

encoded simultaneously in order to produce the reported effects on reach behaviour. 

Presumably there are limits on both the number of objects that can be represented in 

parallel as well as the spatial extent over which the concurrent representation of objects 

can occur (explaining why objects well out of reach have no effect on movements). 

Exactly what defines reachable space, the objects in it and how it must be dynamically 

modulated both by our movements through the environment and by our goals remains an 

open and interesting question.  



136 

 

 

3.5. Conclusion 

Rather than consider only the encoding of the hand and target, it should be acknowledged 

that the entire reach environment must be represented in order for humans to successfully 

act in the real world. It is obvious that obstacles in the environment necessarily affect our 

movements; after all the consequences of colliding with a particularly dangerous obstacle 

are likely more dire than the consequences of missing a target.  Here we provide evidence 

that obstacle encoding shares one critical feature with target encoding in that movements 

were automatically deviated in reaction to changes in both target and obstacle 

information that occurred while the hand was in flight.  
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Chapter 4 

4. Mental Blocks: fMRI reveals top-down modulation of early 
visual cortex when obstacles interfere with grasp planning3 

4.1. Introduction  

Even after the visuomotor system has solved the difficult problem of selecting a specific 

target from the many that occupy our cluttered environment, non-target objects can 

function as obstacles that significantly alter the trajectory of the movement (Chapman & 

Goodale, 2008, 2010a, 2010b; Mon-Williams, Tresilian, Coppard, & Carson, 2001; 

Tresilian, 1998, 1999).  This suggests the brain must flexibly encode objects to both 

attract and repel movements depending on whether the object is a potential target or a 

potential obstacle.  Studies of patients with damage to the dorsal visual stream (Goodale 

& Milner, 1992) have implicated the posterior parietal cortex as being critical for obstacle 

encoding (Milner & McIntosh, 2004; Rice et al., 2008; Rice et al., 2006; Schindler et al., 

2004).  Specifically, optic ataxic patients with damage to dorsal stream structures show 

significantly less deviation away from obstacles than normal participants (Schindler et 

al., 2004).  Using functional magnetic resonance imaging (fMRI), we sought to identify 

what brain areas encode obstacles in normal individuals. 

Studying real actions in the MRI environment is difficult due to the spatial constraints 

and the artifacts introduced by hand motion (Culham, 2006).  To overcome these 

difficulties we adapted an obstacle task that interferes with grasping movements (which 

are easier to perform with less space, Tresilian, 1998, see Figure 1.9) for use in a slow 

event-related planning paradigm designed to isolate the visuomotor planning response 

(where artifacts do not occur).  FMRI paradigms using delay periods have isolated 

planning responses in eye-movement tasks (Curtis, Cole, Rao, & D'Esposito, 2005; Curtis 

                                                 
3
 A version of this chapter has been submitted for publication. Chapman, C. S., Gallivan, J. P., Culham, J. 

C., & Goodale, M. A. (2010). Mental Blocks: fMRI reveals top-down modulation of early visual cortex 

when obstacles interfere with grasp planning. Neuropsychologia. Submitted. 
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& Connolly, 2008; Curtis & D'Esposito, 2006; Curtis, Rao, & D'Esposito, 2004; Ikkai & 

Curtis, 2008) and have demonstrated preparatory activity in attentional cueing paradigms 

(Bressler, Tang, Sylvester, Shulman, & Corbetta, 2008; Kastner, Pinsk, De Weerd, 

Desimone, & Ungerleider, 1999; Serences, Yantis, Culberson, & Awh, 2004; Sylvester, 

Jack, Corbetta, & Shulman, 2008).  Importantly, separating instructions with delay 

periods has also been used to isolate movement planning responses in reaching tasks 

(Beurze, de Lange, Toni, & Medendorp, 2007, 2009). 

Interestingly, tasks requiring attentional direction recruit a network of brain areas that are 

similar to those active in movement planning.  Specifically, a dorsal parietal-frontal 

network has been shown to control the locus of attention (Beck & Kastner, 2009; 

Corbetta, Patel, & Shulman, 2008; Corbetta & Shulman, 2002; Kastner & Ungerleider, 

2000; Riddoch et al., 2010; Serences & Yantis, 2007), with the intraparietal sulcus (IPS) 

playing a central role.  This IPS activity aligns with parietal areas of activation when 

participants perform actions (Andersen & Buneo, 2002; Andersen & Cui, 2009; Astafiev 

et al., 2003; Beurze et al., 2007, 2009; Culham, Cavina-Pratesi, & Singhal, 2006; Culham 

& Valyear, 2006; Curtis & Connolly, 2008) as well as with the lesion sites of patients in 

the obstacle studies described above (e.g. Milner & McIntosh, 2004; Schindler et al., 

2004).  Recent studies using fMRI (Mevorach, Shalev, Allen, & Humphreys, 2009), 

transcranial magnetic stimulation (TMS, Mevorach, Humphreys, & Shalev, 2006b, 2009; 

Silvanto, Muggleton, Lavie, & Walsh, 2009), and both techniques together (Mevorach, 

Hodsoll, Allen, Shalev, & Humphreys, 2010; Ruff et al., 2008) have shown that the IPS 

exerts top-down control over early visual areas.  One particularly relevant study 

demonstrated that applying TMS over the left IPS interfered with participants‘ ability to 

ignore salient information and reduced distractor suppression in early visual areas 

(Mevorach et al., 2010).   

These previous studies, however, have relied on response-irrelevant spatial cues (i.e. 

arrows or verbal instructions to attend to one side of space or stimulus feature) to indicate 

which parts of a display are to be attended and which are to be ignored.  Although this 

type of cueing is sufficient to produce IPS activation and the corresponding modulation 

of visual cortex (enhancement of attended locations and suppression of unattended 
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locations), it is far removed from real-world settings where the demands of attention are 

directly linked to our interactions with the environment.  That is, in real-world tasks – 

such as reaching for objects in cluttered environments – our goal-directed actions dictate 

which objects should be selected as targets and which should be ignored as non-targets.  

Furthermore, when non-targets are physical objects that could impede a desired 

movement, they require avoidance, which some researchers have argued may be 

implemented by inhibiting activity at obstacle locations (Howard & Tipper, 1997; Tipper, 

Howard, & Jackson, 1997; Welsh & Elliott, 2004).  With this in mind, we were 

specifically interested in what would happen to the coding of non-target objects in visual 

cortex when those objects were potential obstacles as a consequence of their position 

with respect to the path of a planned movement.  Thus, rather than relying on an arbitrary 

instruction to indicate whether or not a non-target object should be ignored (or avoided), 

we used an action task in which the requirements of the movement naturally determined 

how a non-target object should be treated.  In this real-world scenario where non-target 

objects must be avoided in order to successfully complete the required response, we 

predicted that coding of those objects in visual cortex would be suppressed, similar to 

what happens with irrelevant stimuli or unattended visual locations in more cognitive 

tasks.  In addition, given the previous patient literature, the overlap in attention and action 

networks, and the shared visual properties of distractors and obstacles, we predicted that 

the IPS would play a critical role in obstacle encoding, perhaps providing a source for the 

signals that modulate the activity associated with non-target objects in early visual cortex.  

4.2. Materials and Methods 

4.2.1. Participants 

Fifteen (8 males, mean age 26.2) right-handed (determined by questionnaire, Oldfield, 

1971) participants were scanned using blood-oxygenation-level-dependent functional 

magnetic resonance imaging (BOLD fMRI, Kwong et al., 1992; Ogawa et al., 1992).  

Informed consent was obtained in accordance with procedures approved by the 

University of Western Ontario‘s (London, Ontario, Canada) Health Sciences Research 

Ethics Board. All participants were naive with respect to the experimental hypothesis and 

were only informed of the required experimental tasks. 
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4.2.2. Setup and Apparatus 

Participants directly viewed (head was stabilized by foam and tilted ~30°,) and grasped a 

centrally located target object (10 cm tall square (4 cm sides) white wooden block) placed 

on an angled black platform that straddled the participants‘ hips (see Figure 4.1 and 

Figure 4.2a). Two obstacles (10 cm tall 3.5 cm diameter white wooden cylinders) were 

controlled by the experimenter via handles that extended outside the bore of the scanner.  

The obstacles were invisible beneath the platform when lowered, but were visible and 

directly to the left of or behind the target object (3.5 cm away from facing surface) when 

raised (see Figure 4.1 and Figure 4.2c). The exact placement of the platform was adjusted 

to match each participant‘s arm length such that the required grasp movements were 

comfortable.  A small green fixation light-emitting-diode (LED; too dim to illuminate the 

scene) and bright yellow illuminator LED were attached to flexible plastic stalks (Loc-

Line, Lockwood Products, Lake Oswego, OR) and placed immediately above the target 

object (fixation) and in front of the platform (illuminator). 
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Figure 4.1: (A) Schematic (not to scale) top-down view of platform (see Figure 4.2). 

Square target object (which was set into a slight recess in the platform) was rotated 

slightly (20°) to allow for comfortable grasps. Note, the depth of the fixation LED was at 

the center of the target object. When raised (as for Obstacle-Side in figure), the closest 

edge of an obstacle was 3.5 cm directly perpendicular from the facing side of the square 

target object. Each obstacle was controlled by turning a long (1 m) plastic handle that 

extended outside the bore of the magnet.  When lowered (as for Obstacle-Behind in 

figure) the entire obstacle was lowered into a slot (dashed box) below the surface of the 

platform and was not visible. (B) Target object and obstacle object are shown 

schematically to provide dimensions.
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4.2.3. Procedure 

Participants were required to grasp the target object using one of two wrist postures 

(Thumb-Front or Thumb-Side) and obstacles could be in one of three configurations (not 

present, to the side or behind the target object), leading to 6 total conditions in a 2x3 

design (see Figure 4.2c).  All grasps used only the index finger and thumb placed on 

opposing surfaces of the target object. A strip of black tape was placed on the target 

object to indicate the required height of the thumb and index finger placement, ensuring 

that all grasps were positioned at the same height on the object (see Figure 4.1).  A 

‗Thumb-Front‘ grasp required the wrist to be flexed with the thumb on the front and 

index finger on the back of the object while a ‗Thumb-Side‘ grasp required the wrist to be 

extended and the thumb on the left and the index finger on the right of the object (see 

Figure 4.2c). Thus, it was only the required wrist posture together with the particular 

position of the obstacle which determined whether or not the placement of the index 

finger or thumb would be interfered with (Tresilian, 1998).  

To isolate the visuomotor planning response from the visual and motor execution 

responses, we used a slow event-related planning paradigm consisting of three distinct 

phases: ‗Preview‘, ‗Plan‘ and ‗Execute‘ (see Figure 4.2b). We adapted this paradigm 

from previous work with eye-movements and working memory that have successfully 

parsed delay activity from the transient responses to the onset of visual input and 

movement execution (Curtis et al., 2005; Curtis & D'Esposito, 2003; Curtis et al., 2004).  

Each trial was preceded by a period where participants were in complete darkness except 

for the fixation LED upon which they maintained their gaze.  The trial began with the 

illumination of the workspace.  For the Preview phase, participants were told to fixate the 

middle of the black strip on the target object. After 11 s of the Preview phase, a 1 s 

auditory cue was given that instructed either ―Thumb-Front‖ or ―Thumb-Side‖ and 

marked the onset of the Plan phase.  Throughout the Plan phase participants were 

instructed to maintain fixation of the black strip on the target object.  Although 

participants knew the object to be grasped during the Preview phase, only in the Plan 

phase did they have all the information necessary to prepare the upcoming movement.  

After 11 s of the Plan phase, a 1 s auditory ―Go‖ cue instructed participants to 
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immediately execute the instructed action, initiating the Execute phase where the subject 

performed the instructed hand movement (approximately 2-3 s).  Two seconds after the 

end of the Go cue, the illuminator was extinguished.  Once the illuminator was 

extinguished, participants returned their gaze to the fixation point. Fourteen seconds of 

darkness/fixation then allowed the BOLD response to return to baseline prior to the next 

trial. Small LEDs were positioned underneath the platform and directed towards the 

experimenter (not visible to the participant) to cue them about the upcoming obstacle 

position without the participant‘s knowledge. Regardless of the obstacle change between 

two trials, the experimenter always turned both obstacle handles to equate any 

somatosensory stimulation that occurred from this event.  The six trial types were 

pseudo-randomly intermixed twice within each run (twelve 40 s trials per run) so that 

each trial type was preceded and followed equally often by every other trial type across 

the entire experiment.  Participants completed eight experimental runs.  During the 

anatomical scan and prior to entering the scanner, a brief practice session was conducted 

(equivalent to the length of one experimental functional run) in order to familiarize 

participants with the paradigm, especially the delay timing which required performing the 

cued action only at the ―Go‖ cue.  
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Figure 4.2: Experimental setup, timing, conditions and contrasts. (A) Participant setup 

from side view.  Participants‘ heads were tilted to allow direct viewing of the target 

object. (B) Timing of one event related planning trial.  Trials were preceded by a period 

of darkness with participants maintaining fixation and started with the ‗Preview‘ phase 

commencing with the illumination of the bore (0 s, fixation extinguished, illuminator 

remains on).  Auditory cue for wrist posture (@12 s) signaled the start of the ―Plan‖ 

phase.  A second auditory ―Go‖ cue (@24 s) signaled the start of the ―Execute‖ phase and 

cued participants to perform the grasp.  The illuminator was extinguished and replaced by 

fixation 2 s after the ―Go‖ cue, followed by 14 s of darkness/fixation before the start of 

the next trial. (C) The experimental conditions shown from participant‘s point of view in 

the 2 (Wrist Posture) x 3 (Obstacle Position) design.  Participants grasped a square target 

object at a set height (black strip) using one of two wrist postures (Thumb-front or 

Thumb-side) with no obstacle present, an obstacle beside the target object or an obstacle 

behind the target object.  Border around the right-most 4 boxes indicates the 2x2 design 

used for analysis (see D). (D) A deconvolution design was used to analyze the data with a 

spike predictor at each volume (20x2s volumes for each trial).  The first 6 volumes 

comprised the ―Preview‖ phase (green spikes), the 7-12 volumes the ―Plan‖ phase (black 

spikes), the 13-18 volumes the ―Execute‖ phase (grey spikes) and the final two volumes 

(dashed spikes) were used as baseline. A 2x2x6 (time) RFX-ANOVA (see C) tested for 

effects of Wrist Posture, Obstacle Position and Interference, as well as changes of each 

effect over time, in the Plan phase.  
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4.2.4. Acquisition and preprocessing of fMRI data 

Scanning was performed on a 3 Tesla Siemens MAGNETOM Tim Trio MRI scanner. 

Functional MRI volumes were collected using an optimized T2*‐weighted echoplanar 

imaging (EPI) (TR = 2000 ms, TE = 30, 3.3 mm isotropic voxels, field of view = 211 x 

211 mm, matrix size = 64 x 64, flip angle = 78°). Anatomical MRI volumes were 

collected with an ADNI T1-weighted MPRAGE sequence (TR = 2300 ms, TE = 2.98 ms, 

field of view and matrix size = 192 x 240 x 256, flip angle = 9°, 1 mm isotropic voxels).  

We used a combination of parallel imaging coils to achieve a good signal:noise ratio and 

to enable the subject to view the workspace directly (without mirrors) without occlusion.  

Beneath the head, we tilted (by ~20-30°) the bottom half (6 elements) of the system‘s 

standard 12-channel head coil; above the forehead (but not occluding vision), we 

suspended a 4-channel flex coil (see figure 4.2a). Physiologic fluctuations were 

compensated for every segment of every slice using a point‐based navigator correction 

scheme collected at the beginning of every spiral read‐out. Each volume was comprised 

of 38 contiguous oblique slices acquired at a 30° caudal tilt with respect to the anterior 

commissure to posterior commissure line (Damasio, 1995), providing near whole brain 

coverage. Following slice scan-time correction, 3D motion correction (with intersession 

alignment to the volume closest in time to the anatomical scan; trilinear-sync 

interpolation), high-pass temporal filtering (3 cycles/run)  and functional-to-anatomical 

co-registration, functional and anatomical images were transformed into Talairach space 

(Talairach & Tournoux, 1988). Functional data were spatially smoothed using a Gaussian 

kernel of 6 mm (full‐width at half‐maximum). 

An MR‐compatible infrared‐sensitive camera (MRC Systems GmbH, bore cam, see 

figure 4.2a) was optimally positioned to record the participant‘s movements during 

functional runs.  Any trials with early initiation errors or errors in wrist posture (6 trials 

across all subjects) were modeled as predictors of no interest and were excluded from 

statistical contrasts. For each participant, functional data from each session were screened 

for motion and/or magnet artifacts with cine‐loop animation. No extreme motion (> 1 

mm) was detected for any run of any participant. 
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4.2.5. Data Analysis 

4.2.5.1. Analysis motivation 

 We were both theoretically and practically motivated to restrict our analysis to 

brain activations prior to movement execution.  Theoretically, the previous 

neuropsychological work which forced participants to perform actions without vision 

following a brief visual preview of the workspace (e.g. Schindler et al., 2004), 

specifically implied that a deficit in motor planning was at the root of impaired obstacle 

avoidance.  Practically, motion artifacts motivated us to restrict our analysis only to 

periods in which no movement was required (see section 4.5.1 for further discussion of 

this point).  Modeling neural activity changes during the delay phases (Preview and 

Plan), however, raises important analytical considerations. Traditional single event GLM 

designs (e.g. a convolved spike predictor at the start of the Preview or Plan phase) prove 

to be a poor model for capturing activity that is sustained (or even increasing) near the 

end of the expected hemodynamic response (Curtis & D'Esposito, 2003).  To account for 

this limitation, previous researchers using delay paradigms have elected to separately 

model several within trial events (for example the stimulus onset, the delay activity, and 

the response, Curtis et al., 2005; Curtis & Connolly, 2008; Curtis & D'Esposito, 2003, 

2006; Curtis et al., 2004; Ikkai & Curtis, 2008).  A variety of techniques following this 

general logic have been employed.  In most studies, the transient events are modeled as 

single events (spike predictors) convolved with a given hemodynamic response function 

(HRF).  What differs is the modeling of the delay response.  In some, the delay is also 

modeled as an HRF-convolved single event (Yoon, Curtis, & D'Esposito, 2006), while in 

others it takes the form of an HRF convolved with a sustained boxcar (or zero degree 

polynomial, Curtis & D'Esposito, 2006; Curtis et al., 2004).  Most recently, this research 

group has used a shifted (4 s) linear combination of a non-convolved boxcar and line 

(first order polynomial) to capture delay activity (Curtis & Connolly, 2008; Ikkai & 

Curtis, 2008; Srimal & Curtis, 2008).  Finally, in one study, these researchers elected to 

model the activity with non-convolved spike predictors at every time point (a 

deconvolution design, Curtis et al., 2005). A problem with any of the above delay models 

using a convolved boxcar or non-convolved but shifted boxcar and line when applied to 
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the current data is that, depending on the shape of the HRF or the amount of the shift, the 

delay activity may not have reached baseline before the onset of the Execute phase.  

Given the above comments and evidence for motion artifacts during the early Execute 

phase, these time points with problematic activation would therefore be attributed in part 

to the Plan delay activity response.  The previously mentioned research has examined eye 

movement responses, and was therefore relatively unaffected by motion artifacts.  

4.2.5.2. Analysis overview  

Given the problems associated with modeling delay activity in the context of a task with 

motion artifacts, we adopted a full deconvolution design (spike predictors at each 

volume) to eliminate any motion artifact contamination.  One potential limitation of the 

deconvolution design is that it loses the characteristic shape associated with a typical 

hemodynamic response predictor.  That is, while a typical convolved predictor accounts 

for variations in time based on the shape of the underlying HRF, the single deconvolution 

predictors lacks this temporal sensitivity.  To account for these changes across time, we 

therefore include time as a factor in our analyses of the Preview and Plan phase activity 

(see section 4.2.5.4). Given that most previous studies of obstacle avoidance (Chapman & 

Goodale, 2008, 2010b; Mon-Williams et al., 2001; Tresilian, 1998) have not introduced a 

delay between the visual presentation of the workspace and the cue to execute, we did not 

know at what point in the Plan phase the encoding of obstacles would occur. Although 

the hemodynamic response function peaks approximately 4-6 s after the event, the rise 

can begin immediately.  If the neural activity is transient, the BOLD response then falls; 

however, planning may very well be a sustained process, in which case the activation 

could remain high for the duration of the planning phase.  Thus the initial and final 

predictors in any phase may still carry a signal, albeit a smaller one than the peak, and we 

evaluated the full period.   

As a result, all data were analyzed using a group voxelwise random effects (RFX) 

analysis of a deconvolution design.  Our design was an adaptation of the previous delay 

paradigm studies that separately modeled several within-trial events to properly measure 

delay period activity (Curtis et al., 2005; Curtis & D'Esposito, 2003; Curtis et al., 2004). 

Single spike predictors were inserted at every volume of a trial, similar to previous work 
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(Curtis et al., 2005).  The 20 predictors were subdivided with the first six being classified 

as ‗Preview‘, the next six (7-12) as ‗Plan‘, the next six (13-18) as ‗Execute‘ and the final 

two (19-20) as baseline (see figure 4.2d).  Data were processed using a percent signal 

change transformation. All analyses were performed using Brain Voyager (BV) QX 

(version 2.08, Maastricht, The Netherlands).  

4.2.5.3. Isolating a Plan network 

Given our theoretical motivation to explore movement planning, our first objective was 

to characterize the network of brain areas involved in the planning of a grasp movement. 

We reasoned that areas involved in movement planning should show heightened 

responses once grasp instruction has been given (Plan phase) as compared to a simple 

visual response when subjects did not know which movement would be performed 

(Preview phase).  This logic is an extension of recent studies that examined planning 

responses to temporally spaced instructions about target location and effector in fMRI 

movement tasks (Beurze et al., 2007, 2009).  These researchers argued that brain areas 

responsible for integrating target location and effector information would show activation 

to the first of the two instructions (the order of instructions was randomized) and a higher 

activation when the second instruction was given – suggesting that the second response 

was higher because of the role of those areas role in integrating the two motor-relevant 

signals.    

For this analysis, we had no a priori reason to select some subset of spike predictors (i.e. 

those in the middle portion of each phase) as being more or less indicative of Preview and 

Plan phase activity.  Therefore, to identify a Plan network, we looked across the whole 

brain for voxels where the average response to the six Plan predictors was higher than the 

average for the six Preview predictors (we also examined areas with a Preview > Baseline 

response, see section 4.5.2 and Figure 4.7).  We used a minimum statistical threshold of 

p<0.001 and analyzed only clusters of voxels larger than 324 mm
3
 (minimum cluster size 

estimated by Monte Carlo simulations of p<0.05, implemented in the cluster threshold 

plug-in for BVQX).  The resulting statistical map of all positively active voxels (see 

Figure 4.3) was then used as a mask for further analysis.  From the Plan > Preview map, 
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we extracted foci of activity within a 10 mm cube centered on a peak voxel, provided that 

they were more than 10 mm apart (see Figure 4.3). 

4.2.5.4. Obstacle effects in the Preview and Plan phases 

Within the Plan network (see preceding section), we wanted to isolate brain areas that 

were modulated by our conditions of interest.  For the Plan phase, we analyzed the subset 

of our trials that formed a 2x2 (Wrist-posture x Obstacle-Position) design (see figure 4.2c 

and 4.2d). Of course, as described above, it was important to remain sensitive to the 

temporal evolution of the hemodynamic response, and thus time was included as a factor, 

resulting in a 2x2x6 (6 time points in the Plan phase) RFX ANOVA applied to all voxels 

within the Plan network. This analysis allows us to look for three ‗main effects‘ of 

interest: 1) main effect of Wrist-Posture (collapsed across Obstacle-Position and Time), 

2) main effect of Obstacle-Position (collapsed across Wrist-Posture and Time), 3) an 

interaction between Wrist-Posture and Obstacle-Position which, critically, is a ‗main 

effect‘ of Obstacle-Interference.  That is, there are two cases where the alignment of the 

grasping digits is not interfered with by the position of the obstacle (Thumb-front / 

Obstacle-Side, and Thumb-Side / Obstacle-Behind) and two cases where the alignment of 

the digits is interfered with by the obstacle (Thumb-front / Obstacle-Behind and, Thumb-

side / Obstacle-Side).  Importantly, any area showing activation related to this interaction 

would be independent from the effects of obstacle position or wrist posture alone, 

suggesting a higher-level obstacle encoding specific to movement interference, a factor 

unique and important in a task requiring the planning of real actions.  Including Time as a 

factor meant we could also examine how each of these three effects interacted 

temporally.  That is, not only could we ask the question of whether a brain area was 

preferentially activated for a given effect, but also were there any areas where the 

magnitude of these effects differentially varied across time.  We report all areas that 

showed any of these three effects or any of the three effects that interacted with Time. 

The main effect of Time was not analyzed since all areas within the Plan network were 

selected because they were active, and would necessarily have shown this effect.  

The analysis for the Preview phase was identical, save for the fact that no information 

about Wrist-Posture is known during this phase.  As a result, the RFX ANOVA applied 
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to the Preview phase reduced to a 2x6 (Obstacle-Position x Time) design, applied to all 

voxels with the Plan network.  We report activity from all voxels active for a main effect 

of Obstacle-Position or interaction of this effect across time, considered significant at p < 

0.001 with a minimum cluster size of 108 mm
3
 (determined by Monte Carlo simulation 

of p<0.01, BVQX cluster threshold plug-in).  

4.3. Results 

4.3.1. Plan > Preview network and mask 

In addition to bilateral temporal lobe activation consistent with a response to an auditory 

cue, we identified a plan network encompassing a large swath of cortex contralateral to 

the moving hand (left-hemisphere) extending from early visual areas in the occipital lobe 

(where activity is bilateral) dorsally along the left intraparietal sulcus (IPS) and into both 

left motor and medial frontal areas including premotor cortex (see figure 4.3).  This 

network matches well with the results of previous work that has isolated the planning 

response of right hand movements (Beurze et al., 2007, 2009). Our analysis of the peak 

voxels of activation (separated by > 10 mm) within this network reveal at least 6 distinct 

foci of activity (in descending order of activity): Right and left auditory cortex 

(accounting for the three highest peak voxels, see Figure 4.3), left premotor cortex, left 

motor cortex, left visual cortex and left IPS. All active voxels were included as part of the 

mask used for our further analysis. 
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Figure 4.3: Regions active during grasp-planning. A group voxelwise analysis identified 

areas that were more active (p<0.001, minimum cluster size 324 mm
3
) during the ―Plan‖ 

phase (average of volumes 7-12) than the ―Preview‖ phase (average of volumes 1-6).  

The resulting statistical map is presented on an average anatomical MRI of all 15 

participants in standardized space and was used as a mask for the remaining analysis.  

Peak voxels were obtained that were more than 1cm apart (see table top left).  All active 

voxels within a 1 cm
3
 box centered on each peak voxel were selected and the resulting % 

BOLD signal change throughout the trial for these areas is shown on the right (note scale 

differences for [4] and [5]).  Data is shown from the six most active hotspots (numbers 

corresponding to descending significance).  Differences between plan and preview 

emerging in the time courses are necessarily true given the contrast performed and are 

shown to illustrate qualitative differences between areas involved in grasp planning. 

*Note a 7
th

 area (3
rd

 most active voxel, see table) was found in L-Auditory cortex just 

beyond 1cm from the other peak voxel – as their activity was almost identical, we treated 

them as one area for ordering the hotspots. 
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For a qualitative characterization of the differences between these six areas within the 

Plan > Preview network, we plot the average percent signal change from all active voxels 

within a 1 cm cube centered on the peak voxel (see right side, Figure 4.3) averaged across 

the 15 subjects.  Given the contrast used to define this network of areas, it is not 

surprising that Plan activity was higher than the Preview activity in each plot. Despite 

this, striking variation in the time courses is evident across areas.  While auditory cortex 

shows the characteristic hemodynamic response (e.g. Sylvester et al., 2008 who also used 

an auditory cue in a delay paradigm) known to accompany a transient auditory event 

elicited by an instruction (in the Plan and less so during the Execute phase) the activity in 

the other areas is more complex.  The L-Premotor, L-Visual and L-IPS ([3], [5] and [6] in 

Figure 4.3 respectively) show a definitive rise and fall of activation across the plan phase 

but the L-Motor ([4] in Figure 4.3) remains relatively flat, instead showing a gradual 

ramping up of activity prior to movement.  More importantly, both the L-Visual and L-

IPS areas show activity above baseline during the preview phase (see Figure 4.7).  These 

latter areas, which show both a distinct visual and planning response, are ideal candidates 

to perform the necessary visuomotor integration (Beurze et al., 2007, 2009) to encode 

obstacles – after all, interference is defined by the interaction between the purely visual 

properties of the scene and the planned action, and only taken together can these two 

features combine to determine the level a given object interferes with an upcoming 

movement. 

4.3.2. Wrist-Posture 

There were no areas showing any effects of Wrist-Posture or any showing interactions 

between Wrist-Posture and Time in the Plan phase. This suggests that the encoding of 

wrist posture, which, unlike obstacle position and interference does not rely on any visual 

property of the workspace, is likely occurring during the movement itself.  Due to the 

motion artifacts and somatosensory confounds introduced into the data during movement 

execution (which may significantly differ with wrist posture) we elected to focus our 

analysis on neural activity that occurred during the Preview and Plan phases. 
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4.3.3. Preview Phase 

4.3.3.1. Right Visual Cortex 

One area in right visual cortex showed a significant interaction between Obstacle-

Position and Time during the Preview phase (see Figure 4.4 and Table 4.1).  No areas 

showed a main effect of Obstacle-Position and no other areas showed the Obstacle-

Position x Time interaction. To characterize this interaction, comparisons across obstacle 

positions were conducted at each time point (significant (p<0.05) comparisons indicated 

with an asterisk in the time course plot in Figure 4.4).  This analysis revealed that activity 

on Obstacle-Side trials ramped up more quickly, and reached higher sustained levels than 

activity on Obstacle-Behind trials.  This resulted in smaller differences due to Obstacle-

Position at the early time points and larger differences at later time points.  The higher 

activity for the Obstacle-Side trials is intuitive, given that participants were fixating the 

centrally located target object and the Obstacle-Side position would have a much larger 

left visual field presence, activating right occipital cortex.  
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Figure 4.4: Right Visual area showing significant Obstacle-Position x Time interaction 

(p<0.001, minimum cluster 108 mm
3
) during the Preview phase. The resulting statistical 

map is presented on an average anatomical MRI of all 15 participants in standardized 

space. The % BOLD signal change throughout the trial is shown to the right (Green line 

= Ob-side, Black line = Ob-behind). The plotted differences emerging in the Preview 

phase are necessarily true by virtue of the contrast being shown and the full time course is 

shown for illustrative purposes of activity across the entire trial.  Asterisk (*) above 

Preview time points in the time course plot denotes significant differences in post-hoc 

comparisons (p < 0.05).
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4.3.4. Plan Phase 

4.3.4.1. Right Visual Cortex 

Two clusters of voxels within the right visual cortex area that was defined during the 

Preview phase (see Figure 4.4 and green outline in Figure 4.5) also showed significant 

effects from the 2x2x6 (Wrist-Posture x Obstacle-Position x Time) RFX ANOVA during 

the Plan phase (see Figure 4.5 and Table 4.1).  The first, dorsal to the calcarine sulcus 

(Figure 4.5a) showed a main effect of Obstacle-Position, responding more strongly on 

Obstacle-Side trials (green trace in time course and green outline in bar plots, Figure 

4.5a) than on Obstacle-Behind trials (black trace and outline in Figure 4.5a).  The second, 

ventral to the calcarine sulcus (Figure 4.5b) showed an effect of Interference (that is, an 

interaction between Wrist-Posture and Obstacle-Position), with lower activity on trials 

where the position of the obstacle interfered with the planned movement (red trace in 

time course, red fill in bar plots, Figure 4.5b) than on trials when the position of the 

obstacle did not interfere with the movement (blue trace and fill in Figure 4.5b). These 

effects were confirmed by extracting the average beta value across the six Plan predictors 

for both areas for each of the 15 subjects and running a traditional 2x2 (Wrist-Posture x 

Obstacle-Position) repeated-measures (RM) ANOVA.  As this is identical to the contrast 

performed to identify the regions, the main effect of Obstacle-Position for the first area 

(F(1,14) = 69.36, p < 10
-6

) and Interference interaction for the second area (F(1,14) = 

28.21, p < 10
-4

) were of course significant.  More interestingly, this examination of beta 

values revealed that in addition to the Obstacle-Position main effect which defined the 

first area, this cluster of voxels also showed a significant effect of interference (F(1,14) = 

8.96, p < 0.01).  Moreover, the second area, defined by the Interference interaction, also 

showed a main effect of obstacle position (F(1,14) = 16.81, p < 0.001). Post-hoc 

comparisons (four total, comparing beta values between Obstacle-Positions within each 

Wrist-Posture, then between Wrist-Postures within each Obstacle-Position, significant 

(p<0.05) comparisons denoted by asterisks in bar plots of Figure 4.5) showed that for 

both areas, betas for the thumb-front wrist-posture (broken fill) were larger when 

planning a movement with an obstacle behind (green border) than an obstacle to the side 

(black border) of the object (first area, p < 10
-5

; second area, p < 10
-4

).  This is consistent 
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with both the Obstacle-Position and the Interference effect.  Importantly, for both areas, 

within the obstacle-behind trials (the Obstacle-Position with the lower activity) betas for 

trials when planning a thumb-side wrist posture (solid fills) were larger than betas when 

planning a thumb-front Wrist-Posture (first area, p < 0.05; second area, p < 0.01).  

Additionally, within obstacle-side trials, the reverse pattern was visible (though 

significant only in the second area) with larger betas when planning a thumb-front than 

thumb-side Wrist-Posture (first area, p = 0.146; second area p < 0.01).  Given that the 

Obstacle-Position and Interference effects would counteract each other for the obstacle-

side/thumb-side (high beta for Obstacle-Position, low beta due to Interference) and 

obstacle-behind/thumb-side (low beta for Obstacle-Position, high beta due to lack of 

Interference) it is not surprising that no significant differences in either area were found 

between Obstacle-Positions within the thumb-side Wrist-Posture. 
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Figure 4.5: (A) Right Visual area showing significant Obstacle-Position effect (p<0.001, 

minimum cluster 108 mm
3
) during the Plan phase.  (B) Right Visual area showing 

significant Interference effect (p<0.001, minimum cluster 108 mm
3
) during the Plan 

phase. The resulting statistical maps are presented on an average anatomical MRI of all 

15 participants in standardized space. The green outline on anatomical images 

corresponds to the Right Visual area indentified during the Preview phase (see Figure 

4.4).The % BOLD signal change throughout the trial is shown to the right of each area 

(A: Green line = Ob-side, Black line = Ob-behind; B: Red line = Interfere, Blue line = 

No-Interfere). The plotted differences emerging in the Plan phase are necessarily true by 

virtue of the contrast being shown and the full time course is shown for illustrative 

purposes of activity across the entire trial. Above each time course is a bar-plot depicting 

the significant effect where bar border colour denotes Obstacle-Position (Green = Ob-

side, Black = Ob-behind), bar fill colour denotes Interference (Red = Interfere, Blue = 

No-Interfere) and bar fill type denotes Wrist-Posture (Solid = Th-Side, broken = Th-

Front). Asterisk (*) above bar plots denotes significant differences in post-hoc 

comparisons (p < 0.05).  
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Overall, this pattern of results suggests that the encoding of objects in right-visual cortex 

is suppressed on trials where the object interferes with the planned movement.  This 

interference effect is embedded within a more general activation preference for the 

obstacle-side trials where the obstacle falls to the left of fixation.  This general 

interpretation was confirmed by extracting the betas from predictors during the Plan 

phase for the entire right visual cortex area identified as coding obstacle position in the 

Preview phase (see Figure 4.4).  Within this larger area, there was still a strong obstacle-

position effect (F(1,14) = 34.02, p < 10
-4

) and, importantly, a significant interference 

effect (F(1,14) = 7.69, p < 0.05).  Moreover, the same comparisons as described above 

revealed that within each obstacle position, the interference condition was lower than the 

no-interfere condition (obstacle-side, p<0.05, obstacle-behind, p<0.05).  Comparisons 

within wrist postures also followed the same pattern as above with a significant 

difference between obstacle positions within the thumb-front trials (p < 10
-4

), and no 

difference between obstacle positions on thumb-side trials.  

4.3.4.2. Left Posterior IPS 

One area in the left posterior parietal cortex showed a significant Interference x Time 

interaction (Obstacle-Position x Wrist-Posture x Time) during the Plan phase (see Figure 

4.6 and Table 4.1).  Located near the posterior end of the left IPS (Left-pIPS, 

contralateral to the acting hand), this area thus showed an interference effect that changed 

across the Plan phase.  To characterize this interaction, we again extracted the beta values 

from each participant for each Obstacle-Position x Wrist-Posture combination – this time 

for each of the six time points since this was an effect that changed across time.  We then 

ran a 2x2x6 RM-ANOVA on the extracted betas, necessarily showing the expected 3-

way interaction (Interference x Time, F(5,70) = 6.17, p < 10
-4

).  To unpack this 

interaction, we ran two separate RM-ANOVAs examining the interference difference 

(Interfere – No-Interfere) for each wrist posture across the six time points.  The resulting 

interference differences across time are shown for both the thumb-front (dashed purple 

line) and thumb-side (solid purple line) wrist postures (Figure 4.6, line plot above time 

course).  For both wrist postures, this RM-ANOVA showed that the interference 

difference was significantly changing across time (Thumb-Front, F(5,70) = 2.73, p<0.05; 
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Thumb-Side, F(5,70) = 4.21, p<0.005).  To understand exactly how this difference was 

evolving, we examined the slope of the line (linear trend) that fit the interference 

difference collapsed across Wrist-Postures.  The resulting mean slope was significantly 

greater than 0 (mean = 0.0217, p < 0.05, shown as the thick black line in top plot, Figure 

4.6.  The thin grey lines are the slopes for the linear fit to each individual subjects‘ data, 

and the thicker dashed purple and solid purple lines are the mean slopes for each wrist 

posture separately). This positive slope indicated that activation on trials when 

movements were planned where the wrist posture and obstacle position resulted in 

interference increased across the Plan phase relative to activation on trials when 

movements were planned where the obstacle position did not interfere with the required 

wrist posture. 
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Figure 4.6: Left Posterior IPS area showing significant Interference x Time interaction 

(p<0.001, minimum cluster 108 mm
3
) during the Plan phase. The resulting statistical map 

is presented on an average anatomical MRI of all 15 participants in standardized space. 

The % BOLD signal change throughout the trial is shown below and to the right (Red 

line = Interfere, Blue line = No-Interfere). The plotted differences emerging in the Plan 

phase are necessarily true by virtue of the contrast being shown and the full time course is 

shown for illustrative purposes of activity across the entire trial. Above the time course is 

a line-plot depicting how the difference between Interfere and No-Interfere trials (purple 

lines) develops across the Plan phase (Solid line = Th-Side, Broken line = Th-Front).  

Above the line-plot is a plot of the grand mean slope (thick black line) of the linear fit to 

the difference plot (collapsed across Wrist-Posture). Each subject‘s mean slope is shown 

with the thin grey lines. Also shown is the mean slope for each Wrist-Posture (Solid line 

= Th-Side, Broken line = Th-Front). Asterisk (*) next to grand mean slope indicates it 

was significantly positive (p < 0.05).
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4.3.4.3. Other Activated Areas 

Two other areas within the Plan network showed a significant main effect of Obstacle-

Position during the Plan phase (see Table 4.1).  Both a cluster of voxels in the medial 

frontal gyrus (MFG, slightly lateralized to the right) and a cluster of voxels in left visual 

cortex showed higher activity for Obstacle-Side as compared to Obstacle-Behind trials.  

Extracted betas from both areas necessarily showed a significant effect of obstacle 

position (MFG F(1,14) = 27.83, p<0.001; left-visual F(1,14) = 31.45, p<10
-4

).  The same 

comparisons described above revealed that for the MFG, across both wrist postures, the 

obstacle-side betas were larger than the obstacle-behind beta (thumb-front, p<0.05; 

thumb-side p<0.001).  The results were similar for the left visual area, though only the 

thumb-front comparison reached significance (thumb-front, p<0.005; thumb-side, 

p=0.121).  Importantly, neither of these areas showed any sign of an Interference effect 

(premotor, F(1,14)  < 1, p>0.50; left-visual, F(1,14)  < 1, p>0.66). 
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Table 4.1 – Peak voxel Talaraich coordinates of all active areas 

Area Time Effect Cluster Peak Voxel 

    X Y Z d.f. F 

R Visual Prev Ob-Position x Time 3861 mm
3
 18 -88 10 (5,70) 16.13 

R Visual Plan Ob-Position 648 mm
3
 9 -88 10 (1,14) 46.32 

R Visual Plan Interference 270 mm
3
 18 -70 -17 (1,14) 26.57 

L pIPS Plan Interference x Time 135 mm
3
 -21 -85 25 (5,70) 5.85 

MFG Plan Ob-Position 135 mm
3
 3 -10 67 (1,14) 26.67 

L Visual Plan Ob-Position 135 mm
3
 -21 -91 -2 (1,14) 27.42 

 

All areas within the Plan network (see section 4.3.1) showing significant effects from an 

RFX ANOVA applied to the Preview (2x6, Obstacle-Position x Time) and Plan (2x2x6 

Obstacle-Position x Wrist-Posture x Time) phases.  For each area, the experimental 

phase, significant effect, cluster size and Talairach coordinates and F-statistic (with 

degrees of freedom) of the peak voxel is shown. 
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4.4. Discussion  

4.4.1. Summary 

We adapted a reach-to-grasp obstacle paradigm (Tresilian, 1998) for use in an fMRI 

experiment to examine the encoding of obstacles in normal individuals.  We employed a 

slow event-related planning paradigm that allowed us to isolate brain areas that were 

preferentially involved with visuomotor planning (Plan) as compared to the visual 

presentation of the workspace (Preview, see Figure 4.3).  Within this planning network, 

we first identified a region of right visual cortex that had higher activity during the 

Preview phase (steeper BOLD response, group voxelwise design) on trials with an 

obstacle to the side of the target object than on trials with an obstacle behind the target 

object (see Figure 4.4).  We then applied a 2x2x6 Wrist-Posture x Obstacle-Position x 

Time RFX ANOVA to the Plan phase predictors to examine how neural activity varied as 

a function of whether or not the position of an obstacle interfered with the planned 

placement of the fingers during an upcoming grasping movement.  Importantly, this 

design allowed us to test for the effects of obstacle Interference (Obstacle-Position x 

Wrist-Posture interaction) independently from the effects of Obstacle-Position and Wrist-

Posture.  Moreover, the inclusion of time as a factor enabled us to remain sensitive to 

temporal variations of these effects across the Plan phase.  

As we were specifically interested to see how the visual cortical encoding of obstacle 

objects changed once the motor requirements of the task were known, we had a special 

interest in any Plan phase activity that fell within right visual cortex area which had 

shown obstacle position sensitivity during the Preview phase.  Indeed, we found that two 

clusters of activation from within the same right visual cortex region defined during 

Preview (see Figure 4.4) were shown to have effects from the RFX analysis of the Plan 

phase (see Figure 4.5).  One of the areas was extracted as showing a main effect of 

Obstacle-Position (the same effect that defined the larger region during the Preview 

phase) and a second area was extracted as showing an Interference interaction.  On closer 

examination, activity from both smaller areas and from the entire Preview-defined right 

visual cortex region all showed both an Obstacle-Position main effect and an Interference 
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effect.  Importantly, the Interference effect showed that on trials where the obstacle 

interfered with an upcoming movement activity was reduced relative to trials when the 

obstacle did not interfere.  We believe this provides strong evidence that the motor 

implications of objects can result in alterations of their cortical representation. In this 

case, an obstacle that required avoidance resulted in a suppressed visual signal. 

We also found that one area in the left posterior IPS showed significantly increasing 

activity across the Plan phase on those trials in which the obstacles interfered with the 

grasp compared to trials with no interference (see Figure 4.6).  This is consistent with the 

suggestion from work with neurological patients that the dorsal visual stream plays a 

critical role in the avoidance of obstacles (Milner & McIntosh, 2004; Rice et al., 2008; 

Rice et al., 2006; Schindler et al., 2004).  It should be noted that these neuropsychological 

experiments investigated the effects of obstacles that interfered with reach-to-point 

movements.  It remains an open and interesting theoretical question as to whether or not 

avoidance during pointing relies on the same neural mechanisms as those reported here 

for reaching-to-grasp actions.   

Finally, we found two additional areas within the plan network which showed a small 

obstacle position effect – one in the medial frontal gyrus and one in left visual cortex (for 

Talairach coordinates of all areas, see Table 4.1).  In both cases, trials with an obstacle to 

the side of the target object resulted in higher activity than trials with an obstacle behind 

the target object. 

4.4.2. The role of Right-Visual Cortex and the Left-pIPS 

Given that the obstacle-side placement of the non-target object was further to the left of 

the fixated target object than the obstacle-behind placement, the observed contralateral 

right visual cortex preference for this configuration was predictable.  However, the 

resulting modulation of the right visual cortex activity during the Plan phase, where the 

only additional information was a motor instruction, is a novel and important finding.  

Specifically, on trials in which the non-target object could potentially interfere with the 

planned movement, activity in the right visual cortex was suppressed relative to trials in 

which the non-target object did not interfere with the planned movement.  As an 
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interaction, this effect was independent of the main effect of obstacle position, and 

statistical analysis revealed that activity was reduced on interference trials for the 

obstacle in both positions. 

The modulation of visual cortex has been reported previously in work that looked 

exclusively at spatial attention.  These studies showed that visual cortical activity when a 

target is present (Gazzaley, Cooney, McEvoy, Knight, & D'Esposito, 2005; Mevorach et 

al., 2010; Ruff et al., 2008) and preparatory activity in anticipation of a target  (Bressler 

et al., 2008; Kastner et al., 1999; Serences et al., 2004; Sylvester et al., 2008) are 

modulated by attentional cues.  Most often, activity at retinotopic locations coinciding 

with the focus of attention is higher, while activity at other areas is reduced (Beck & 

Kastner, 2009; Kastner & Ungerleider, 2000, 2001; Pessoa, Kastner, & Ungerleider, 

2003; Smith, Singh, & Greenlee, 2000).  This modulation is thought to sharpen the 

encoding of objects at the attended location (Fischer & Whitney, 2009) while at the same 

time reducing the suppressive effects of distractors at other locations (Kastner, De Weerd, 

Desimone, & Ungerleider, 1998).  Our study, however, is the first to show that the 

suppression of the neural encoding of an object can be tied to its role as an obstacle to 

movement.  Whether obstacle avoidance requires that obstacle representations be 

suppressed has remained a point of debate (Castiello, 1999; Tresilian, 1999) and here we 

provide evidence that suppression is indeed occurring at obstacle locations, but only 

when participants plan a movement that is (potentially) interfered with by the obstacle. 

That we find increasing activity in the left-pIPS that is concurrent with the visual cortex 

modulation is also in line with previous work on the allocation of attention.  In this work, 

the modulation of activity in the visual cortex by the IPS and other frontal-parietal areas 

(e.g. frontal eye-fields) is a common finding from research into directed spatial attention 

(Beck & Kastner, 2009; Corbetta et al., 2008; Corbetta & Shulman, 2002; Desimone & 

Duncan, 1995; Pessoa et al., 2003; Serences & Yantis, 2007).  In fact, several recent 

studies have reported visual cortex modulation (and IPS involvement) that is tied 

specifically to the suppression of salient, but irrelevant, visual distractors (Mevorach et 

al., 2010; Mevorach, Humphreys, & Shalev, 2006a; Mevorach et al., 2006b; Mevorach, 

Humphreys et al., 2009; Mevorach, Shalev et al., 2009).  Although the distracting 



170 

 

 

information in these studies was not a physical obstacle that had to be avoided, obstacles 

do represent a class of objects that require that they be ignored – at least as potential 

targets for the ensuing movement. In one particularly relevant study, Mevorach and 

colleagues (Mevorach et al., 2010) had participants perform a global/local task using 

compound letter stimuli (e.g., a large letter ‗H‘ comprised of smaller letter ‗D‘s).  By 

varying stimuli parameters, these investigators were able to make either the local or the 

global elements the more salient dimension.  In cases where participants were required to 

respond to the less salient dimension, the left IPS was shown to be active and activity in 

early visual cortex was suppressed.  Their interpretation was that the left IPS was 

specifically involved in providing the top-down signals needed to ignore the highly 

salient distractors.  These authors demonstrated a causal link between activity in IPS and 

these visual areas by combining fMRI with repetitive TMS, disrupting the function of the 

left IPS and showing more activity (i.e. a reduction in suppression) in the early visual 

areas.  Given these results, we believe the observed left pIPS activity in the current 

experiment is linked to the top-down control of attention which modulates activity in 

early visual cortex. 

We do not claim that the results of the current study can speak directly to the question of 

a causal role for the IPS in modulating visual cortex.  In fact, if anything, the observed 

right visual cortex modulation due to obstacle interference appears to develop more 

quickly than the increase in left pIPS activity.  We raise two considerations regarding this 

apparent temporal discontinuity.  First, the hemodynamic response is notoriously 

sluggish, meaning that the temporal resolution of any fMRI effect is relatively poor.  

Therefore, trying to draw conclusions about relative timing in this study should be 

approached with caution.  Second, and more importantly, the hemodynamic response to 

suppression is relatively unknown. It could be the case that the visual cortex suppression 

might appear earlier because the BOLD response in visual cortex was already high, and 

reducing activity in an already active area may occur relatively quickly.  Because the 

response in the IPS to the interference represents the generation of a new signal (and not 

the reduction of an already active one), the hemodynamic response in this region might 

be expected to lag behind the one in visual cortex, and thus appear later in the time 
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course.  Therefore, instead of trying to make claims about causality from the current 

experiment (which was not designed to test for these effects), we have based our 

interpretation of the results (namely that the reported concurrent left pIPS and right visual 

cortex modulations based on obstacle interference represent a top down effect) on the 

significant amount of previous work showing the direction of modulation is from the IPS 

to visual cortex (Mevorach et al., 2010; Mevorach et al., 2006b; Mevorach, Humphreys et 

al., 2009; Mevorach, Shalev et al., 2009; Ruff et al., 2008; Silvanto et al., 2009).   

4.4.3. The role of MFG and Left-Visual cortex 

In addition to the region in right visual cortex, one region in the medial frontal gyrus 

(MFG, closest to the premotor area defined in Figure 4.3) and one in left visual cortex 

responded more during the Plan phase on trials when an obstacle was to the side of the 

target object relative to trials when an obstacle was behind the target object.  While more 

medial than traditionally defined premotor areas, the reported MFG activity is near areas  

that have been implicated in visually guided action planning (e.g. Chouinard & Paus, 

2006).  In contrast, the left visual cortex activity, in the absence of any visual objects on 

the right side of space, appears somewhat puzzling.  In offering our speculation of what 

this activity might represent, it is important to consider two key ways in which the left 

visual cortex activity differs from the right visual cortex activity described earlier.  First, 

the left visual activity showed an Obstacle-Position preference only during the Plan 

phase.  This is unlike the right visual activity where the obstacle encoding was 

established during the Preview phase.  Second, the left visual activity showed no 

indication that the Object-Position preference was modulated by obstacle interference.  

This is in stark contrast to the right visual cortex region where the entire swath of cortical 

tissue identified during the Preview phase (Figure 4.4) showed evidence of an 

Interference effect.  Moreover, this suggests that whatever role this activity plays in 

visuomotor planning it must be equivalent across trials for a given object position.  

Finally, we believe an explanation of the left visual activity that also offers an 

explanation for the concurrent MFG activity is ideal. 

With these considerations in mind, we would argue that the MFG and left visual activity 

we report corresponds to visuomotor target selection processes.  Furthermore, we support 
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a view of visuomotor selection within a more general framework of competitive object / 

action-plan representations (Baldauf & Deubel, 2010; Beck & Kastner, 2009; Cisek, 

2007; Cisek & Kalaska, 2010; Desimone & Duncan, 1995) and the view that selection 

processes are mirrored by inhibitory processes (Houghton & Tipper, 1994).  That is, if 

objects compete in parallel for limited resources, the selection of one object necessarily 

comes at the expense of inhibiting other objects within the visual workspace.  In addition, 

capacity limits mean that selection and inhibition effects can extend throughout the visual 

field, even in the absence of objects (similar to the anticipatory attentional effects 

described earlier, Bressler et al., 2008; Kastner et al., 1999; Serences et al., 2004; 

Sylvester et al., 2008). The role of medial frontal cortex (particularly dorsal premotor 

cortex) in response-related target selection has been clearly established in both monkeys 

(e.g. Cisek & Kalaska, 2005) and humans (for review see Chouinard & Paus, 2006).  The 

fact that the activation appears only during the Plan phase lends support to the proposal 

that the observed activity in the MFG and the left visual field is intrinsically linked to 

action planning.  Moreover, since target selection demands remain stable across the 

experiment, this would explain why the observed effects were not modulated by 

interference. 

This interpretation still leaves the confusion as to why a visuomotor target-selection 

response would result in differential activity based on the position of the obstacle.  We 

believe that the reason this occurs is due to the automatic inhibition of non-target objects.  

According to one model of selection/inhibition (Houghton & Tipper, 1994), objects that 

match an internal template of a target (in this experiment, a feature of the target could be 

‗rectangular‘) are automatically enhanced, while those that do not match the target (in 

this case the mismatching feature could be ‗circular‘) are inhibited.  If, as we argue 

above, the repercussions of object selection and inhibition extend to all parts of the visual 

field, then the automatic inhibition of an object in the obstacle-side position (which is 

more lateral than the relatively central obstacle-behind position) may result in a relative 

boost in signal to the field opposite the inhibited object.  In this case, that would mean we 

would see an increase in the left visual cortex during only reach planning, which is what 

we observe.  Additionally, the likely overlap between the visual encoding of the target 

object and an object in the obstacle-behind position means that enhancement of the 
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target-related activity in these cases may be somewhat obscured by the counteractive 

inhibition of the obstacle.  This could mean that target selection on obstacle-side trials 

proceeds more easily with greater net enhancement, resulting in the increased MFG 

activation on these trials. This of course raises the question of why we did not detect the 

inhibition in the right visual field, and only saw the corresponding boost in the left visual 

field.  We believe this is a result of the strong bottom-up visual signal driving the 

obstacle encoding in right visual cortex – only in the absence of a visual object (as in the 

left visual field) can we see these subtle target selection effects (note the magnitude of 

obstacle position effects in left visual cortex are approximately half of those in right 

visual cortex). 

We acknowledge that this interpretation is highly speculative, and that it requires that the 

process of target selection (and corresponding non-target inhibition) occur independently 

from the suppression due to interference that we noted earlier.  However, it does have the 

advantage that it explains why this activity would manifest only during the Plan phase 

and why the interference effect would be absent from these areas and that it fits with a 

previously demonstrated role of the medial frontal cortex. 

4.4.4. A Unified Perspective of Posterior Parietal Activity 

The major finding from the current experiment is that the visual encoding of an obstacle 

in right visual cortex is suppressed when planning a reach that is interfered with by that 

obstacle. This visual suppression on trials with interference occurs at the same time as 

activity in the left pIPS is increasing.  We propose that the left pIPS is providing the top 

down signal to modulate the visual cortical activity.  The exact role of the IPS remains an 

open question, and we have discussed the IPS activity in two separate contexts.  On one 

hand, since it is known that obstacles cause altered hand and finger trajectories (Chapman 

& Goodale, 2008, 2010a, 2010b; Mon-Williams et al., 2001; Tresilian, 1998) and that the 

IPS is recruited during visuomotor control (Andersen & Buneo, 2002; Andersen & Cui, 

2009; Culham et al., 2006; Culham & Valyear, 2006), the left pIPS activity we observed 

could reflect its role in the planning and eventual programming of the required 

adjustments to the grasping movements in the presence of obstacles.  On the other hand, 

the IPS has been shown to be recruited during the directing of spatial attention (Desimone 
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and Duncan, 1995; Corbetta and Shulman, 2002; Pessoa et al., 2003; Serences and 

Yantis, 2007; Corbetta et al., 2008; Beck and Kastner, 2009) and our results nicely 

parallel recent work specifically implicating the left IPS in suppressing unwanted visual 

information (Mevorach et al., 2010). 

The left pIPS activity and the concurrent suppression we observed in right visual cortex 

could therefore, from a traditional standpoint, be due either to the role of the IPS in motor 

planning or to its role in directing spatial attention; after all, the anatomical overlap 

between action-planning and attention networks is well established (Andersen & Buneo, 

2002; Andersen & Cui, 2009; Astafiev et al., 2003; Culham & Kanwisher, 2001).  But, as 

has been argued elsewhere, perhaps the allocation of spatial attention is equivalent to the 

selection and partial specification of actions toward that location (Baldauf & Deubel, 

2010; Cisek, 2007; Cisek & Kalaska, 2010).  In other words, perhaps the IPS activity in 

our study is performing only one job, and previous work in separate fields has just given 

it two different names.  According to this view, objects in the workspace compete for 

action-selection (Cisek & Kalaska, 2010) forming an ―attentional landscape‖ (Baldauf & 

Deubel, 2010) with peaks of activity at the locations of objects of potential interest.  The 

competitive bias that develops in the visual representation of space (Desimone & 

Duncan, 1995) and the attentional modulations of this bias (Beck & Kastner, 2009; 

Kastner & Ungerleider, 2000, 2001; Pessoa et al., 2003) are the same representations and 

biases that exist simultaneously and in parallel throughout the visuomotor parietal-frontal 

network – representations that are both the encoding of motor plans and the directing of 

attention.  Ultimately when one object ‗wins out‘ and is selected for processing, this is 

identical to one motor plan winning out and being fully specified and subsequently 

executed.  Under this framework, one can ask what a visual distractor is in the real world.  

Given that the end product of object representation is almost always action (action is, 

after all, the only way we can influence our environment) and that (usually) only one 

action can be performed at any one time, the visual objects in our workspace that we 

ignore as targets become potential obstacles to our action.  Thus, previous reports of 

distractor suppression might actually be seen as a special case of a more general 

visuomotor suppression of unselected action targets.  This may also explain why the 

putative target-selection process we assigned to the activity we observed in the MFG 
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results in a slight positive bias of activity in the visual field contralateral to the obstacle.  

If positive activations ultimately attract movements, then this left visual cortex / right 

visual field bias might represent a low grade bias away from the non-target obstacles.  

Automatically then, the selection of a target inhibits non-targets and may bias movements 

away from non-target (i.e. potential obstacle) locations. 

We propose that parallel to the target selection / non-target inhibition (like that described 

in Houghton & Tipper, 1994), the IPS is specifically responsible for detecting objects 

which impede actions and suppressing their neural representation.  Note that this does not 

mean that the responses to other objects that do not interfere with movements are also 

actively suppressed, but rather, the reduction in the signal in early visual areas only 

occurs when those objects can potentially interfere with the planned movement.  In our 

experiment, only when the obstacle was likely to interfere with the upcoming reach did 

we see the suppression of its neural encoding.  Here again, our results bridge research 

demonstrating that the IPS plays a crucial role in the control of action – namely the 

patient work implicating the dorsal stream in obstacle avoidance (Milner & McIntosh, 

2004; Rice et al., 2008; Rice et al., 2006; Schindler et al., 2004) – and research showing 

that the IPS as crucial to attention – namely that the IPS is specifically recruited when 

encoding the task relevance of stimuli (Corbetta et al., 2008; Corbetta & Shulman, 2002; 

Mevorach et al., 2010; Riddoch et al., 2010; Ruff et al., 2008; Serences & Yantis, 2007). 

From this unified perspective, the utility of suppressing the cortical activity 

corresponding to an interfering obstacle is much easier to understand.  If an obstacle 

object competes in an attentional landscape, and interferes with a specified movement 

(i.e., is task relevant), then the easiest way to implement avoidance is by reducing that the 

strength of its signal (see Howard & Tipper, 1997; Tipper et al., 1997; Welsh & Elliott, 

2004 for a similar argument).  The effect of reducing the obstacle encoding (or diverting 

attention away from it) is to give an advantage to all other simultaneously encoded motor 

plans (or increase the attentional allocation to all other objects in the workspace) – the net 

motor result is a trajectory biased away from (or avoiding) that obstacle position.  This 

explanation represents a simple implementation of obstacle avoidance while providing a 



176 

 

 

more grounded interpretation of exactly what relevance might mean in everyday 

situations. 

The visuomotor planning/programming network we defined in the current experiment 

functions as an elegant feedback loop.  Initially, all objects in the workspace are encoded 

and compete for action-selection.  When the specific movement is instructed during the 

plan phase, the left IPS encodes the task-relevant level of interference of an obstacle, and 

the activity in early visual areas is suppressed when interference is high.  The top-down 

suppression of activity in early visual cortex is an efficient way of influencing all the 

other competitive biases that are based on that initial activity.  As a consequence, the loop 

is completed, such that any action selected from those currently encoded in the dorsal 

stream is inherently biased by the presence of other potentially interfering objects in the 

workspace. 

4.5. Supplemental Results and Discussion 

4.5.1. Note on motion artifacts 

As was mentioned above, the motion of the hand and arm through the magnetic field is 

known to introduce artifacts into the fMRI data (Culham, 2006).  Evidence of these 

artifacts is visible in the plots of the time course data in Figure 4.3.  Specifically, an 

examination of the early Execute phase reveals discontinuities in the time courses that are 

not attributed to any real signal.  For example, in the L-Auditory [2], L-Premotor [3], L-

Visual [5] and L-IPS [6] time course plots (Figure 4.3) there appears to be a sudden 

change in BOLD activity between the 2
nd

 and 3
rd

 volume (30 s).  But isn‘t this 

discontinuity appearing too late to be attributed to the hand movement, which was cued at 

24 s?  Given that response times and movement times varied across participants, and that 

participants performed a reach toward the target, grasped and held the object for a 

moment, then returned their hand to the rest position (right side of the platform), on the 

majority of trials, participants took more than 2 s to complete the entire movement (this 

was confirmed from the bore cam video).  Thus, motion artifacts were expected for both 

the volume immediately after the movement was cued (24-26 s) and for the next volume 

(26-28 s).  If both of these time points are affected then interpreting them is necessarily 
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problematic, and, any points connected to them in a time course plot may be 

discontinuous with them.  Thus, the activity recorded at the 30 s mark is likely to be 

veridical, however the two preceding points are likely contaminated by motion artifacts, 

creating the observed discontinuity. 

4.5.2. Preview network 

Above we describe and show the results of isolating the network showing activity higher 

for the Plan phase than the Preview phase (see Figure 4.3).  For the theoretical reasons 

described, we were interested in these areas since we were specifically interested in the 

planning response.  It is interesting, however, to examine other networks that can be 

extracted – demonstrating the power of the slow event-related design.  For example we 

identified a Preview network that responded more during the Preview phase (average of 

predictors 1-6) than during Baseline (average of predictors 19-20, see Figure 4.7). As 

when defining the Plan network, we used a minimum statistical threshold of p<0.001 and 

only analyzed clusters of voxels larger than 294 mm
3
 (minimum cluster size estimated by 

Monte Carlo simulations of p<0.05, implemented in the cluster threshold plug-in for 

BVQX). Not surprisingly the Preview network is characterized by strong visual cortical 

activity as well as the bilateral activation of the ventral stream structures usually 

implicated in the construction of rich visual representations of the world (Milner & 

Goodale, 1995).  Interestingly, we do see a largely left lateralized activation of the dorsal 

visual stream that overlaps with the Plan network shown in Figure 4.3.  This suggests 

that, as predicted by the attentional landscape (Baldauf & Deubel, 2010) and the 

affordance competition (Cisek, 2007; Cisek & Kalaska, 2010) hypotheses the simple 

visual presentation of objects in the workspace activates a network of areas not only 

involved with representation, but also in the competitive coding of potential action 

targets. 
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Figure 4.7: Regions active during object preview. A group voxelwise analysis identified 

areas that were more active (p<0.001, minimum cluster size 294 mm
3
) during the 

Preview phase (average of volumes 1-6) than the Baseline predictors (average of 19-20).  

The resulting statistical map is presented on an average anatomical MRI of all 15 

participants in standardized space with layout to match Figure 4.4.  This layout allows for 

a direct comparison of the Plan and Preview networks.  Of note, both the Right Visual 

and Left pIPS areas are included in this Preview network, while the MFG (and premotor 

areas) are not. 
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Moreover, the two distinct areas where we observed Interference effects (Right-visual 

and Left pIPS, see Figures 4.4, 4.5 and 4.6) overlap with this network (Figure 4.7).  This 

suggests that interference encoding, and its modulation of early visual cortical activity, is 

likely contingent on the area having a visual response to the object and a motor 

representation of the planned action.  This idea is consistent with previous fMRI studies 

of action planning showing the IPS to be involved in the integration of visual information 

of the target position with motor information about the effector required to act on the 

target (Beurze et al., 2007, 2009).  This is intuitive since during planning, interference is 

defined by the interaction between the purely visual properties of the scene and the 

planned action – only taken together can these two features combine to determine the 

task-relevant interference of a given object.  Additionally, the lack of overlap between the 

MFG object-position encoding and the Preview network provides further evidence that 

the MFG response is tied specifically to the motor representation of the workspace. 

4.5.3. Other roles of the IPS – can they all be unified? 

In section 4.4.4, we make the argument that the apparently separate roles of the IPS in 

directing spatial attention (thereby modulating early visual cortex) and planning 

movements are actually one in the same phenomenon.  Of course, we are not the first to 

have suggested that this might be the case (Baldauf & Deubel, 2010; Cisek, 2007; Cisek 

& Kalaska, 2010; Ikkai & Curtis, 2008).  Moreover, the IPS has been implicated in many 

tasks outside of attentional direction (e.g. Corbetta et al., 2008; Corbetta & Shulman, 

2002) and movement planning (e.g. Andersen & Cui, 2009; Beurze et al., 2009; Culham 

et al., 2006), including sustained attention (e.g. Ikkai & Curtis, 2008), spatial working 

memory (e.g. Srimal & Curtis, 2008), decision making (e.g. Gold & Shadlen, 2007) and 

numerical or magnitude encoding (e.g. Cohen Kadosh & Walsh, 2009; Nieder & 

Dehaene, 2009) (for reviews see: Culham & Kanwisher, 2001; Duncan & Owen, 2000).  

It seems unlikely that one brain area is specialized to perform this entire dizzying array of 

capabilities.  More likely, as we and others have argued, the IPS is performing a single 

task which is central to all of these tasks.  As put by Ikkai and Curtis (2008) in a recent 

paper, ―Implicit in this idea is that a unitary mechanism, like a dynamic spatial priority 

map, could contribute to a variety of cognitive behaviours, like attention, intention and 



180 

 

 

working memory, depending on the afferents used to construct the map and the efferents 

that readout the map‖ (pg 1393).  Put more generally, and in the context of the current 

paper, we believe this ‗dynamic spatial priority map‘ is another name for an attentional 

landscape (Baldauf & Deubel, 2010) which itself is a result of the competitive processes 

that develop between objects in our environment upon which we might act (Cisek, 2007; 

Cisek & Kalaska, 2010).  If these competitive biases are also the variables in an ongoing 

decision process, then invariably the same areas will be implicated in decision making.  

Of course, if the task is to remember the location of an upcoming movement then an area, 

like the IPS, which codes this information initially, is likely to maintain this encoding 

across a delay – thus providing a possible explanation of the role of the IPS in spatial 

working memory.  In addition, as the attentional landscape is spread to multiple items in 

the workspace, the rudiments of a counting system emerge.  The catch, of course, is that 

there must be a limit on the number of items that can be processed in parallel, a reason 

that we believe a limit of approximately 4 is prevalent in working memory, subitizing 

and, most recently motor planning tasks (Gallivan et al., 2010).   

Of course, trying to paint all of these tasks with a single brush obscures many of the 

intricacies of the role of the IPS (Andersen & Cui, 2009).  For example, many studies 

show effector specific encoding within the IPS, which would require that more than a 

single attentional landscape be maintained – at least one for each effector. While much of 

this is therefore speculation, with continued investigation and – more importantly – a 

synthesis of information for what appear to be separate research domains, we believe a 

parsimonious and unified explanation for the role of the IPS, and the fronto-parietal 

network in general, will emerge. 
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Chapter 5 

5. General Discussion 

5.1. Summary 

The goal of the current thesis was to investigate the neural coding of objects that 

obstructed reaching and grasping behaviour in intact humans and to further specify how 

these obstacle representations affected movements.  In the first experiment (Chapter 2, 

Chapman & Goodale, 2010b), I extended the findings of my previous behavioural work 

(Chapman & Goodale, 2008) to demonstrate that obstacle avoidance during reaching 

persisted: 1) when the reach was made toward a specific location in space, 2) when 

avoiding one or two obstacles, and 3) when vision of the hand was available during the 

reach.  Furthermore, I directly tested one aspect of expectancy in this experiment by 

manipulating the predictability of visual feedback.  I demonstrated that under the more 

natural and complex reaching conditions imposed by multi-object environments, there 

were no effects of the predictability of visual feedback, concluding that in this context the 

visuomotor system is predisposed to use vision when available.  The second experiment 

(Chapter 3, Chapman & Goodale, 2010a) was designed to test one aspect of obstacle 

avoidance behaviour that remained inconclusive following the experiment described in 

Chapter 2.  Specifically, the results from Chapter 2 suggested that obstacle avoidance 

behaviour was the same regardless of whether or not vision of the hand was available 

during the reach.  This could mean that the visuomotor system does not update the reach 

trajectory in flight, indicating perhaps that obstacle representations are not available to 

online correction mechanisms.  To test this directly, we had participants perform reaches 

to a target that sometimes switched position at movement onset.  Such abrupt target 

‗jumps‘ are known to induce automatic corrections toward the new location.  To test 

whether or not obstacle information could be incorporated into corrected movements, we 

placed single objects behind the initial target position (where they have been shown to 

have significantly reduced interference effects, Chapman & Goodale, 2008) on one side 

of space.  We demonstrated that only when a target jump caused an object to become an 
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obstacle (i.e. the target jumped further in depth and to the right, with an obstacle on the 

right hand side of space) did we observe spatial avoidance in the reach trajectory.  

Importantly, this avoidance occurred after the initial response to the jumped target, and 

could unfold without disrupting the speed of the movement, speaking to the automaticity 

of these deviations.  We did observe, however, significant slowing of the corrected 

movement when the risk for collision was high.  Taken together, the results from Chapter 

3 indicate that obstacle representations can be accessed or updated in flight, and that the 

avoidance system is sensitive to the risks for collision.  Finally, in Chapter 4 of this thesis 

(Chapman, Gallivan, Culham, & Goodale, 2010), we describe results from a 

neuroimaging study where participants grasped a square target object with an obstacle 

object either behind or to the side of the target.  Importantly, the two obstacle positions 

interfered differentially with two wrist postures such that for each obstacle position and 

wrist posture, there were trials where the obstacle interfered and trials where the obstacle 

did not interfere with the grasp.  Using a slow event-related paradigm, we isolated brain 

areas that were active during the planning of the movement and demonstrated that within 

this plan network one area in the left IPS exhibited increasing activity on trials where 

there was interference compared to no-interference trials.  This IPS activation was 

accompanied by suppression in visual cortex, which previous work suggests could 

indicate the top-down modulation of the visual activity.  Importantly, this experiment is 

the first to show that the neural coding of a non-target object that interfered with a 

planned action was suppressed. 

This thesis was also motivated by theoretical frameworks that suggest objects are 

encoded in parallel and compete for action specification and selection (see section 1.2, 

Baldauf & Deubel, 2010; Cisek & Kalaska, 2010; Duncan, 2006).  These frameworks all 

postulate that a frontoparietal network is engaged when competition is being resolved.  

None of the frameworks, however, propose how the visuomotor system deals with 

objects that are relevant for action but need to be avoided.  I believe my results fit within 

these frameworks and can extend our understanding of how visuomotor attention is 

deployed across the workspace.  First, the fact that we observed avoidance (movements 

away from obstacles) that precisely scaled with the degree to which an obstacle interferes 
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with movement (Chapter 2 and Chapman & Goodale, 2008) suggests that competitive 

biases must be sensitive to the nature of interference and that object coding in the brain 

can result in movements away from the position of non-target objects.  Second, the fact 

that we observed avoidance during online corrections (Chapter 3) suggests the PPC 

(which has been shown from neuropsychology to be crucial to both tasks in isolation) is 

involved and that all potential obstacles are at least partially represented, even if they do 

not interfere with an uncorrected movement.  That is, the attentional landscape is flexible 

and dynamic when deploying visuomotor biases across the workspace.  Finally, the fact 

that we observe simultaneously the activation of the PPC and the suppression of visual 

cortex (Chapter 4) suggests that the competitive biases are controlled by the PPC and 

impose their effects by modulating the initial coding of objects in early visual areas. 

The remainder of the Discussion is centered on two questions which emerge from my 

integration of obstacle encoding into a framework of visuomotor competition.  First, 

while all frameworks propose that visuomotor biases are controlled by a frontoparietal 

network, the specific identification of the PPC in Chapter 4, combined with the PPC‘s 

recruitment in a wide array of tasks, raises the question of what exactly the role of this 

part of the brain is.  Second, since the notion of suppression or inhibition of obstacle-

related neural activity is critical to the interpretation of my effects, I provide insight into 

how this inhibitory signal might evolve both spatially and temporally.  In combining 

information pertaining to both these questions, I propose that the PPC is specifically 

involved in integrating visual scene information from visual cortex with goal-directed 

motor preparation signals from frontal cortex to produce a visuomotor biasing signal.  A 

crucial component of this PPC-generated bias is the suppression of the neural coding of 

obstacles (or non-targets).  I end with a discussion of the most pertinent outstanding 

questions and some general remarks.   

5.2. What does the PPC do? 

Throughout this thesis the PPC has been assigned many different roles.  As the primary 

area responsible for transforming visual cortical information into signals critical to the 

execution of actions it represents the early part of the dorsal visual stream (Milner & 
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Goodale, 1995) or, more generally, the frontoparietal network discussed at length in the 

context of visuomotor selective attentional frameworks (see section 1.2).  In this thesis, I 

have presented evidence that the PPC is involved in obstacle avoidance (Chapman, 

Gallivan, Culham et al., 2010; Rice et al., 2006; Schindler et al., 2004), online corrections 

(Chapman & Goodale, 2010a; Desmurget et al., 1999; Pisella et al., 2000), movement 

planning (e.g. Andersen & Buneo, 2002; Beurze, de Lange, Toni, & Medendorp, 2007, 

2009; Chapman, Gallivan, Culham et al., 2010), movement execution (e.g. Andersen & 

Cui, 2009; Culham, Cavina-Pratesi, & Singhal, 2006; Culham & Valyear, 2006), directed 

spatial attention (e.g. Corbetta, Patel, & Shulman, 2008; Corbetta & Shulman, 2002) and 

top-down cortical suppression (e.g. Beck & Kastner, 2009; Mevorach, Hodsoll, Allen, 

Shalev, & Humphreys, 2010; Pessoa, Kastner, & Ungerleider, 2003).  As I discussed in 

Chapter 4 (section 4.5.3), this list does not include studies showing the involvement of 

the PPC in spatial working memory (e.g. Srimal & Curtis, 2008), decision making (e.g. 

Gold & Shadlen, 2007), numerical or magnitude encoding (e.g. Cohen Kadosh & Walsh, 

2009; Nieder & Dehaene, 2009) and effector specificity (which by extension includes 

visuomotor transformations, e.g. Andersen & Buneo, 2002; Andersen & Cui, 2009).  I am 

by no means the first person to realize the incredible number of functions that have been 

proposed for the PPC or, more generally, for the parietal cortex.  As Culham and 

Kanwisher state in a review of parietal cortex function: 

―…parietal activation has also been reported for a stunningly diverse range of 

stimuli and tasks. These include motion processing [52•,66•,67,68], stereo vision 

[69], spatial [70,71] and non-spatial working memory (which shows considerable 

overlap with visual attention activation [72••]), mental imagery [73], mental 

rotation [74], response inhibition [75,76], task switching [77], alertness [78], 

calculation [79,80], and even functions not typically attributed to parietal cortex 

such as pain processing [81], swallowing [82] or meditation [83]. Clearly, it 

would be absurd to claim that parietal areas are specialized for any one of these 

processes and some means of integrating the diversity of findings is required‖ 

(2001, p. 159). 

John Duncan in collaboration with Adrian Owen provided a systematic meta-analysis of 

areas involved in 5 cognitive tasks: response conflict, task novelty, number of elements in 

working memory, working memory delay and perceptual difficulty (2000).  Not 

surprisingly the parietal cortex (and a network of frontal regions) was involved in all 
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tasks (see also Duncan, 2006 for updated review).  Culham and Kanwisher (2001) 

provide some enlightening comments regarding how to make sense of the overwhelming 

generality of parietal function.  They suggest five possible reasons why the parietal cortex 

is implicated in so many tasks, two of which are specific to neuroimaging and are not 

discussed here.  First, they argue that the parietal cortex might truly be ‗association 

cortex‘ where, by definition, information specific to all these tasks necessarily converges.  

Second, the parietal cortex could be serving one purpose that is so general that it is 

recruited in almost every task (they give examples of attention or coordinate 

transformation).  Finally, third, researchers may be inherently misunderstanding the 

nature of the parietal cortex, and only with better definitions of its functional organization 

can we ask the right types of questions to understand its role (Culham & Kanwisher, 

2001).   

While Culham and Kanwisher perhaps intended for these options to be separate, I believe 

they are correct on all three points.  I also believe the questions they raise pertaining to all 

of parietal cortex are also relevant when considering only the PPC.  Working backwards 

through their three points, if we have not been asking the right types of questions to 

tackle the generality of the PPC, then what are the right types of questions?  At the start 

of the Introduction, I argued that the ‗right‘ questions for the careful scientist are ones 

that are specific enough to be experimentally tractable.  But perhaps this level of 

specificity just does not work when one is trying to describe something that by its very 

nature is not specific.  In this case, perhaps the right types of questions to ask when trying 

to determine the function of the PPC are the big questions: to echo my Introduction, 

questions like ―‗Why we are here?‘ (to shape our environments to our greatest benefit) 

and ‗How do we do it?‘ (by performing maximally efficient actions)‖ (section 1.1.1).  

Seen through this more remote lens, perhaps the role of the PPC is to select the action 

that accomplishes the current goal most efficiently.  This definition matches with Culham 

and Kanwisher‘s second speculation that the function of the parietal cortex (and by 

extension the PPC) is sufficiently general to be involved in the myriad of tasks where it 

has been shown to be active.  How does this general definition of efficient-action-selector 

fit with the first of Culham and Kanwisher‘s options that the PPC is associative cortex 
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where specific information relevant to each task converges?  Given that the predominant 

form of information processed in the human brain is visual and the only output (be it 

verbal report, button pressing or reaching) is a motor response, then the PPC is exactly 

the region for the association of visual and motor information.  Moreover, as the 

specification of the current goal is likely generated by frontal regions then this 

information must also flow into the PPC to provide goal direction to the mapping of 

visual objects and intended actions.  The product of this association is the specification of 

action relevant (or, more generically, response relevant) targets and the partial 

preparation of movements toward them. 

If this interpretation of the function of the PPC sounds familiar, that is because the PPC 

plays an integral part within the frontoparietal network that was discussed in the context 

of the three theoretical frameworks of visuomotor selection introduced in section 1.2.  

Recall that those frameworks each argue that multiple visual objects compete for action 

relevant neural encoding.  The putative result is a bias map or attentional landscape 

across the workspace with peaks of activation and valleys of inhibition at action-relevant 

and action-irrelevant (or interfering) locations respectively.  Given the above discussion 

of the PPC, what is its role in the context of a competitive landscape across the 

visuomotor workspace?  I would argue that the PPC is not involved in the generation of 

the visual map of space – that is a job almost certainly done by early visual areas which 

we know show retinotopic coding and parse visual scenes into different objects and 

regions.  Nor do I believe the PPC is involved in specifying a particular goal-directed 

action (i.e. the goal to reach from this start button to that red LED) – that is probably 

mediated by frontal areas including premotor cortex.  Rather, the PPC is the source of the 

task-relevant bias – controlling which objects and locations in the neural map of the 

workspace are enhanced and which are inhibited.  Ultimately, the PPC integrates visual 

information and goal intentions to produce selectivity.  This conclusion echoes the work 

of previous researchers, including Bisley and Goldberg (2003), who have argued that the 

PPC is responsible for creating a map of salient parts of space.  In their words (speaking 

of the activity of LIP in monkeys), 
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―Thus one cannot ascertain a monkey‘s locus of attention by measuring the 

activity of a single neuron in LIP, or even by measuring the activity of all the 

neurons in whose receptive field a given object lies. Instead, one must look at the 

activity of the ensemble of LIP neurons representing all of the visual field. In this 

case, we can interpret the graded responses of the discharge at a given site in LIP 

as providing an attentional priority associated with the object in the subtended 

receptive field…However, the anatomical projections and graded responses seen 

in most of these areas suggest that they participate, along with LIP, in a 

distributed network that drives visual attention. We suggest that it is this 

distributed network that provides the bias for the biased competition model of 

attention postulated by Desimone and Duncan…‖ (Bisley & Goldberg, 2003, p. 

85). 

Although their interpretation of LIP activity is similar to the role I ascribe to the PPC in 

this section, Bisley and Goldberg are quick to point out that, a ―motor intention 

interpretation is unlikely for a number of reasons‖ (2003, p. 85).  On this point, I disagree 

with their explanation.  Rather, I believe (in following from the affordance competition 

hypothesis (Cisek, 2007; Cisek & Kalaska, 2010) and the attentional landscape 

hypothesis (Baldauf & Deubel, 2010), see section 1.2) that not only does the PPC provide 

a salience map, but also that this salience map is intrinsically tied to actions.  The 

evidence for this interpretation is found throughout this thesis.  To reiterate a few 

examples, in studies with cats walking over obstacles (see section 1.5.2), it was not the 

visual presentation of the object that activated the cat PPC, but the movement of the 

object to a location where it became action relevant (Andujar, Lajoie, & Drew, 2010).  

Neuroimaging work conducted by Gallivan et al. (2009) showed that the PPC was 

preferentially activated for objects within reach – again, indicating the PPC is not simply 

encoding a visual response, but specifically a visual response that is relevant to action.  

Finally, as mentioned at several points in Chapter 4, Beurze and colleagues (Beurze et al., 

2007, 2009) used a partial instruction technique (information about target location or 

required effector was presented in a random order and separated with a delay) to 

specifically identify areas of the brain that were crucial to the integration of the two types 

of information present in each instructional cue.  In support of the current interpretation 

of the PPC, they showed it (along with premotor cortex) had a heightened response to the 

second of the two cues, regardless of which cue it was, demonstrating that these areas are 

crucial for visuomotor integration.   
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The characterization of the PPC as the source of action-relevant biases also explains why 

this region is critical to obstacle avoidance.  As I have argued throughout this thesis (and 

describe in a detailed mechanistic speculation below, see section 5.4) obstacles are 

objects whose representations have to be inhibited so that the resulting motor behaviours 

avoid their location.  In many ways then, obstacles are the reciprocal of target objects, 

whose representations require enhancement so that motor behaviours can be directed 

toward their location.  Not surprisingly, patients with damage to the PPC have trouble 

with both target-directed reaching (e.g. Perenin & Vighetto, 1988) and obstacle 

avoidance (Schindler et al., 2004).  If a patient is unable to generate a visuomotor bias 

that integrates the coding of objects conveyed to the PPC by the visual cortex with the 

generation of goals by the frontal cortex, then there will a fundamental breakdown in the 

patient‘s target-directed motor behaviour.  It is important to note that it is neither their 

ability to see nor their ability to execute actions (though this may appear impaired) that is 

causing the problem.  It is instead a failure to integrate the information required to bias 

behaviour towards and away from action-relevant locations (for a recent detailed account 

of the neuropsychological implications of impairments to the PPC and the rest of the 

frontoparietal selection network, see Riddoch et al., 2010).  

This account can also help to explain the results of the experiments described in this 

thesis.  The fact that a target-directed action deviates more from obstacles that are closer 

to the moving limb (Chapter 2 and Chapman & Goodale, 2008) suggests that deviations 

resulting from putatively PPC-generated biases scale precisely with the degree to which 

an object could potentially interfere with the intended action.  That objects placed past a 

reach target initially do not interfere with a movement (Chapter 3 and Chapman & 

Goodale, 2008) but are automatically incorporated into a corrected movement, reveals 

that biases are ‗intelligently‘ distributed across a defined workspace, and at the same time 

are flexible enough to incorporate potential changes to the environment.  Moreover, the 

fact that the PPC is implicated in online corrective movements in general (Desmurget et 

al., 1999; Glover, 2004; Pisella et al., 2000) is not surprising given that moving the hand 

to a new target location in-flight is easily conceptualized as an updating in real time of 

the visually defined task demands (i.e. a mismatch between the intended action and new 



194 

 

 

goal location is detected, resulting in the generation of a new bias and a shift in the 

movement).  Together with the findings from Chapter 3, this speaks to the complicated 

temporal and spatial dynamics of the competitive-bias maps generated by the PPC.  

Finally, most concretely, the neuroimaging results from Chapter 4, directly implicate the 

PPC as detecting the task-relevant interference caused by a non-target obstacle.  That this 

interference signal was independent of the object position and the intended action speaks 

convincingly toward the putative role of the PPC in integrating the visual environment 

with action demands while remaining separate from each individual process in isolation. 

Of course, even if we accept this role for the PPC (which is simplistic and probably 

incorrect, as scientific hypotheses almost always are), it still leaves open the question of 

how the bias is implemented and thus affects behaviour.  Some clues are evident from the 

Introduction section on suppression in visual cortex (section 1.3), which resonates with 

the findings from Chapter 4 of the current thesis.  That is, the bias introduced by the PPC 

manifests in the actual visual coding of space in early visual cortex.  The PPC might not 

code the map of space, but it alters how the map is coded.  There is an elegant efficiency 

to this strategy.  If, as argued by the proponents of competitive-bias frameworks (section 

1.2), we envision the frontoparietal network as a series of reciprocally connected, nested 

feedback loops which fill the gap between visual input and motor output, then the easiest 

way to influence the output (action) is to bias the input (visual map).  This way the bias 

will propagate throughout any areas processing the information that will ultimately 

determine behaviour.  One element that has been lacking in our discussion of the PPC has 

been its general (though not absolute) division into effector-specific areas (e.g. Andersen 

& Buneo, 2002; Andersen & Cui, 2009).  These subdivisions suggest that rather than a 

single competitive map (which is how I have discussed its role so far) the PPC may 

simultaneously code several effector specific maps (e.g. eye and hand).  Given that these 

effector specific maps would be generated from a common input with common or 

converging outputs (e.g. the eye and hand may arrive at the same target) and rather 

loosely specified goals, this necessitates that the PPC have the neural machinery to 

transform information between effector specific coordinate frames (or alternatively from 

a common frame to each effector independently).  
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This discussion of the function of the PPC does not appear to relate directly to some of 

the more purely cognitive roles of the PPC such as its putative role in short term memory 

and numerical processing.  It is beyond the scope of this thesis to elaborate on how these 

seemingly disparate tasks might actually be explained by the PPC‘s role in generating 

visuomotor biases.  It is worth noting, however, that in a recent rapid reaching task, we 

were able to demonstrate that the capacity limit for parallel action planning is 

approximately four (Gallivan et al., 2010).  The fact that this limit is the same as that 

noted in other cognitive tasks (like subitizing) provides an encouraging link between 

visuomotor control and higher level cognition. 

5.3. How does inhibition work? 

A critical component of the hypothesized role of the PPC outlined above is not only to 

positively bias the visuomotor encoding of target objects, but to negatively bias the 

visuomotor encoding of objects that are not targets.  Moreover, when non-target objects 

are obstacles that interfere with movements, this inhibitory biasing signal takes on an 

even greater importance.  In the following section, I review three related models which 

outline how an inhibitory biasing signal might be implemented. 

5.3.1. Houghton-Tipper (H&T) model of inhibition 

Because the notion of the need to inhibit distracting stimuli is based on the idea that 

stimuli compete for selection, the Houghton-Tipper model of inhibition argues for many 

of the same tenets that are central to the competitive frameworks described earlier (see 

section 1.2).  Specifically, it states that, ―vision and action systems evolved together to 

enable successful interactions with the environment‖ (p. 1385) and that, ―the actions 

which different objects evoke (afford) can automatically be encoded in parallel, and that 

competition and selection take place between these action representations‖ (Tipper et al., 

1998, p. 1386).  What makes their model unique from the more general frameworks is 

that they propose a mechanism by which inhibition might occur and they tie the 

predictions of their model to the specific behavioural findings they observe.  Upon 

careful inspection, what is referred to as the Houghton-Tipper model of inhibition is 
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actually two different but related models.  The first, forwarded by Houghton and Tipper 

in 1994, is a properly formalized model that provides a general framework for how 

inhibition could be implemented to solve many different input-to-output selection 

problems (referred to here as H&T, Houghton & Tipper, 1994).  The second is an 

application of the original model to the specific case of reaching in the presence of 

distractors (referred to here as H&T-reach, Houghton & Tipper, 1999; Tipper et al., 1998; 

Tipper, Howard, & Houghton, 2000). The second model, however, includes additional 

theoretical components that are not completely formalized, thus leading to some 

confusion and difficulty in interpretation.  In this section, I provide a description of the 

original model (H&T) and in the following section (5.3.2) I describe the modified version 

applicable to reaching (H&T-reach). 
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Figure 5.1. Schematic depiction of the H&T model (Houghton & Tipper, 1994) of 

selection and inhibition. (A) Overall flow of information.  External inputs are represented 

as objects, which are compared (matched) with an internal template of the target. Objects 

with property units matching the target are enhanced, while those that do not match are 

inhibited.  Ultimately objects are bound to responses which lead to outputs. Inset: 

diagram of a single property unit.  Within the inset a solid line indicates an excitatory 

connection and a dashed line is an inhibitory connection.  The resulting connections mean 

the property unit functions as a self contained feedback loop, though in the model it is 

reciprocally connected with all property units defining an object. (B) The modeled 

timeline of selection/inhibition in a verbal naming task.  Both objects / responses give 

rise to the same initial activation.  Once the selection / inhibition has sufficient time to 

develop, the activity for the object matching the target (in this case ―CAT‖) is enhanced 

while the activity for the non-target (―GUITAR‖) is inhibited.  This model closely 

matches the actual neural activity for competing targets depicted in Figure 1.2. 

  



198 

 

 

The major components of the H&T model (Houghton & Tipper, 1994) are shown in 

Figure 5.1a.  At the highest level of generalization, incoming inputs from the 

environment are organized into objects (OBJECT FIELD) which are compared with an 

internally generated representation of the target (TARGET FIELD).  Each object is itself 

comprised of several property units (PROPERTY UNIT, which include colour, location 

etc, see inset Figure 5.1a) while the target is simply a list of properties (this distinction 

between property units and properties is explained below).  Properties of the target are 

compared with property units of the objects by a MATCH/MISMATCH DETECTOR.  

When an object property unit matches with a target property, that property unit is 

selectively enhanced via feedback mechanisms within the property unit (thus a property 

unit is actually a feedback circuit that influences the overall strength of signal associated 

with an object, while a property is simply that – a feature of the target).  Importantly, all 

property units that comprise an object are interconnected such that the enhancement of 

one property unit will spread to all object properties.  Conversely, if there is a mismatch 

between a target property and an object property unit, then that property unit is 

selectively inhibited via feedback mechanisms, and this inhibition will spread to all 

property units of that object.  Each object is bound to a specific response and thus 

competition between objects is ultimately a competition between potential responses 

(COMPETITIVE VARIABLE BINDING). Eventually, when one of the object-response 

pairs is sufficiently enhanced (presumably because its property units match the target), it 

is selected and its response is executed.  The H&T model is made clearer when the 

timeline of activity for two competing object-response pairs is examined (Figure 5.1b).  

In this example, the competition is an identification problem where the response is to 

name the object (a CAT versus a GUITAR).  Importantly, the initial activation of both 

responses is identical.  Only after enough time has elapsed for the relevant object features 

to have been compared with the internal CAT target do we see the selective enhancement 

of the CAT response and inhibition of the GUITAR response (at approximately time 

point 6).  The pattern of model activation bears a striking resemblance to that shown in 

Figure 1.2 of neural data supporting the notion of parallel encoding and selection in the 

attentional frameworks. 
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5.3.2. Houghton & Tipper model of reaching (H&T-reach)  

In applying the H&T model to reaching data (which I refer to as H&T-reach), Houghton, 

Tipper and colleagues (Houghton & Tipper, 1999; Tipper et al., 1998, 2000) introduced 

some significant additions.  First, they assume that the direction of a target-directed reach 

is coded by a neural population (for which there is abundant evidence, e.g. Georgopoulos, 

Schwartz, & Kettner, 1986).  The result for any reach is a distributed encoding of 

preferred direction across a number of cells (see Figure 5.2).  Second, they assume that a 

population of cells can code for more than one target-directed reach (i.e. parallel 

encoding of a reach toward a distractor) at a time (as was shown by Cisek & Kalaska, 

2005, see Figures 1.2, 5.2c and 5.2g).  Finally – and most importantly – they argue that 

there are two separate inhibitory processes which are engaged differentially depending on 

the relative salience of a distractor.  If the salience of the distractor is low relative to the 

target, then no top-down inhibitory signal is generated (top-down inhibition is the type 

explained in the H&T model), and the distractor-related activity is filtered out by a 

version of lateral inhibition (see Figure 5.2 left panel).  That is, cells with a preferred 

direction toward the target are amplified (on-center) and cells with a preferred direction 

away from the target (including the distractor) are inhibited (off-surround).  The result of 

this ‗weak‘ form of inhibition is distractor-related activity that is not completely 

inhibited, resulting in trajectories that deviate toward distractors (see Figure 5.2d).  

Conversely if the salience of a distractor is high relative to the target, and thus demands a 

large inhibitory response, then the process described in the H&T model is engaged 

(which they refer to as reactive inhibition).  That is, a match/mismatch detector compares 

an internal template of the target to the distractor which generates a strong top-down 

suppressive signal toward the distractor (that also should enhance the target, but this is 

never specified).  The result of this ‗strong‘ form of inhibition is a suppression of the 

distractor population code below baseline, resulting in deviations away from the 

distractor (see Figure 5.2h). 
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Figure 5.2. Schematic depiction of the H&T-reach model (Houghton & Tipper, 1999; 

Figure from Tipper et al., 1998) of reaching in the presence of distractors. Reach 

direction is depicted as the peak of a distribution of activity across a population (direction 

indicated with black arrows).  Targets (A,E) and distractors (B,F) presented in isolation 

lead to unimodal distributions with a reach directed toward the target. Summing the target 

and distractor distributions (C,G) gives a bimodal distribution with a reach direction in 

the middle of the two peaks, suggestive of parallel encoding.  Inhibitory processes lead to 

shifts in reach direction either toward (D) or away (H) from the distractor. Left Panel: (A) 

a strong response to a near target and (B) a weak response to a far distractor results in (D) 

incomplete inhibition of the distractor and deviations toward its location. Right panel: (E) 

a weak response to a far target and (F) a strong response to a near distractor results in (H) 

reactive inhibition which suppresses the distractor below baseline and results in 

deviations away from its location.  
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Unfortunately, the H&T-reach model, which is obviously the most applicable to the 

current thesis, is not properly formalized (like the H&T model) and is rife with 

inconsistencies which make applying it to other tasks difficult.  Most problematic is the 

notion that the relative salience of the distractor determines which of two independent 

inhibitory mechanisms is engaged.  Tipper and colleagues (2000) seem to acknowledge 

this point.  In an adapted version of the distractor reach paradigm, participants were now 

required – on some trials – to reach toward the distractor LED.  Regarding their model‘s 

predictions, they state: 

―Unfortunately, it is not possible to predict the effect of this new procedure on 

reaching trajectory. We have argued that the weakly activated reaching response 

does not trigger reactive inhibition. Rather, selection can be resolved via lateral 

inhibition between cells in the activated populations. We simply did not know 

whether the increased salience of the reaching response to the LED would be 

sufficient to trigger reactive inhibition, and thus reduce deviations toward, or even 

cause deviations away from, the LED.‖ (Tipper et al., 2000, p. 236) 

This comment illustrates that the notion of relative salience is poorly understood.  In fact, 

I would argue that it is not defined at all, but rather is interpreted for each experiment 

differently to account for the observed results.  The only clear variable that Tipper and 

colleagues argue directly affects relative saliency is ‗visuomotor processing efficiency‘ 

(for summary see Meegan & Tipper, 1999; Tipper, Meegan, & Howard, 2002).  They 

argue that targets or distractors presented closer to the responding hand (proximity-to-

hand effect, Meegan & Tipper, 1998) or on the same side of space as the responding hand 

(ipsilateral effect, Meegan & Tipper, 1998; Tipper, Lortie, & Baylis, 1992) are processed 

more quickly (that is, reaches toward them are planned more efficiently).  Since distractor 

inhibition is tied to relative salience, this leads to the following argument, ―Because near 

distractors win the race for the control of action, they interfere more, and hence require 

greater levels of inhibition‖ (Tipper et al., 2002, p. 593).  The authors make the opposite 

argument when a distractor location is obstructed by a clear obstacle, ―In the obstacle 

condition...the hand has to deviate around the transparent surface.  Therefore this action 

is far more complex, and hence will lose the race for the control of action‖ (Tipper et al., 

2002, p. 599).  By extension, the more complex (i.e. less efficient) action toward the 

obstacle location requires less inhibition.  If this sounds confusing, that is because it is.  
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The confusion arises because ‗visuomotor processing efficiency‘ is as nebulous a term as 

salience was in the first place.  I agree that there are likely stronger biases toward objects 

within reach of the acting (and/or dominant) hand, and thus distractors occupying that 

space may require additional inhibition.  But to base a non-formalized model on these 

concepts where ‗salience‘ of a distractor or ‗efficiency‘ of visuomotor planning response 

provides the (arbitrarily determined and relatively unknown) switch between ‗weak‘ and 

‗strong‘ inhibition is quite simply a formula that will not work for describing behaviour.  

Less severe but equally troubling problems are strewn throughout the descriptions of the 

H&T-reach model.  The most problematic for the current thesis is their treatment of 

obstacles.  As indicated in the quote above (from a 2002 paper describing the H&T-reach 

model), an obstacle is something other than a non-target object in the environment.  This 

is a departure from the original description of the H&T model, where it was argued, 

―...we propose that to achieve the behavioural goal [reaching for a bag of chips on a 

cluttered coffee table], the accommodation of a detailed form of an action to the 

nontarget objects is required, such as when reaching around or over obstacles‖ (Houghton 

& Tipper, 1994, p. 56).  Here, clearly, obstacles are non-target objects to be avoided, and 

thus, according to the H&T model, require inhibition.  If, as argued in the original 

formulation of the H&T model, obstacles do require inhibition, then it would seem 

necessary to account for that suppressive effect when trying to interpret the distractor-at-

obstacle-location effects reported in their later study (Tipper et al., 2002). 

5.3.3. Welsh & Elliot’s Response Activation Model (RAM)  

Overall, the application of the H&T-reach model to describe the neural suppression and 

avoidance behaviour in the current thesis does not look promising.  There is, however, an 

alternative theory posited by Welsh and Elliot (2004).  In their Response Activation 

Model (RAM), Welsh and Elliot agree that competing motor plans (coded by populations 

of neurons) are automatically initiated in parallel.  However, rather than relying on the 

postulation of two inhibitory mechanisms to explain behaviour, they argue that 

deviations-toward or deviations-away from distractors are a result of timing.  That is, 
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―The critical difference between the response vector [H&T-reach] and the 

response activation models, however, is that the latter acknowledges that 

inhibitory processes require time to develop. As such, the initial characteristics of 

the movement are dependent upon how complete selection is at the moment of 

response initiation, not solely on the salience of the competing stimulus. Indeed, 

we predict the opposite effects of salience—objects of greater action relevance 

(salience) will initiate responses that are more difficult to inhibit because of a 

tighter and more efficient perception–action link. The result of this tighter link is 

that the responses to stimuli of greater action relevance will remain in an active 

state for a longer period of time, resulting in more of the competing action being 

incorporated into the initial response and, in this case, causing deviation towards 

the nontarget location.‖ (Welsh & Elliott, 2004, p. 1035) 

Thus, according to the RAM, deviations toward distractors are the result of actions 

initiated before inhibition of distractor responses has had time to completely develop 

(resulting in behaviour like that depicted in Figure 5.2, left panel).  Deviations-away, 

however, represent cases where inhibition has reduced activation at the distractor location 

below baseline, inducing shifts in population codes away from its position (as in Figure 

5.2, right panel).  In a more recent finding, Welsh and Elliot also demonstrate that 

information presented prior to the presentation of targets and distractors (so called pre-

cues) can also influence behaviour (Welsh & Elliot, 2005).  They interpret these findings 

as evidence that the visuomotor system can develop and maintain biases across an 

experiment, not just within a given trial.  My discussion of these models of inhibition and 

their implications and potential application to obstacle avoidance is discussed in the next 

section where I outline my own ideas for a model of reaching behaviour in the presence 

of non-target objects. 

5.4. Obstacle Inhibition Model 

The RAM forwarded by Welsh and Elliot (2004) and described above (see section 5.3.3) 

definitely improves upon the H&T-reach model (see section 5.3.2) in that separate 

inhibitory processes are not required to account for the difference between deviations 

toward and away from distractors.  Rather, Welsh and Elliot argue this difference is due 

to the development of the inhibitory signal across time.  Despite the improvement, there 

are still two points of contention I have with the RAM model.  First, it quite clearly 

asserts that distractor inhibition is not the same as obstacle avoidance.  Second, it 
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hypothesizes that deviations away from distractors occur only when the response to a 

non-target is reduced below baseline.  Both these points are evident in the following 

passage:  

―In sum, what is proposed to be the important determining factor of movement 

trajectories, under competitive conditions in which obstacle avoidance is not at 

issue, is the completeness of inhibitory process intervention on the competing 

nontarget responses. If the nontarget response is in an active state (above baseline 

levels), the combination of the active target and nontarget response population 

codes will result in initial movement trajectories that deviate towards the 

nontarget location. On the other hand, if a competing response has been inhibited 

(activation levels returned to below baseline) prior to movement initiation, then 

the resulting combination of codes should result in a trajectory that veers away 

from the nontarget location‖ (Welsh & Elliott, 2004, p. 1036). 

Hopefully by now, I have managed to make it clear why I believe treating obstacles as 

separate from distracting stimuli is a problem.  Provided that real-world distracting 

stimuli have three-dimensional shape, then their identification as non-targets renders 

them as obstacles.  Similar to what I argued in Chapter 4 (section 4.4.4), two-dimensional 

LED distractors (like those used by both Tipper and Welsh) are therefore likely the 

exception rather than the rule.  Since humans evolved to interact in a dynamic three-

dimensional environment, then an account of visuomotor selection and inhibition should 

be applicable to the demands of such an environment.   

My concern with deviations away from distractors requiring that those locations be 

deactivated (i.e. drop below baseline) is that the experimental evidence does not support 

this premise.  In the work described in Chapter 4, as well as that reviewed in the 

Introduction (see section 1.3), the noted suppressive effects are always relative 

suppression.  That is, the initial response to a visual object is always positive (or 

activated, to use Welsh and Elliot‘s terminology).  This is clear in Chapter 4 (see Figure 

4.4) where the response to the obstacle object during the Preview phase was robust.  In 

the following two sections, I first outline a modified version of a response activation 

model that is extended to include the inhibition of obstacles and incorporate the notion of 

relative inhibition.  Second, I focus on evidence across a number of studies which provide 

a suggestion of the precise timeline for these selective/inhibitory processes to unfold. 
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5.4.1. Stages of obstacle inhibition 

I hesitate to use the word ‗model‘ since what I describe here is not mathematically 

formalized (though, potentially it could be, which would be an interesting avenue to 

pursue).  Rather, it is a model in the sense that Welsh and Elliot (2004) and Tipper et al. 

(i.e. H&T-reach, Houghton & Tipper, 1999; Tipper et al., 1998, 2000) use the term – a 

descriptive definition of how visuomotor selection might occur.  It borrows heavily from 

the competitive frameworks described in the Introduction (see section 1.2), and my 

choice to depict task relevant objects with ‗peaks and valleys‘ of activity distributed 

across the workspace is taken directly from Baldauf and Deubel‘s attentional landscapes 

hypothesis (2010).  I use in my examples the type of obstacle avoidance we tested in 

Chapter 2.  Specifically, I consider trials with a single object present (e.g. on the left in 

the Figures for this section) when reaching toward a localized target (e.g. red LED).  The 

described processes should extend to all the studies I describe in the current thesis 

(though the nature of grasping avoidance may differ), as well as to my previous 

behavioural study with obstacles (Chapman & Goodale, 2008). 

The first step in the model is to acknowledge one of its inherent limitations – namely that 

the workspace appears as a visual transient, and requires that only a single reach be 

performed per trial.  As Cisek and Kalaska argue, ―…interaction with a complex and ever 

changing environment…cannot be broken down into a sequence of distinct self-contained 

events that start with a discrete stimulus and end with a specific response‖ (2010, p. 275).  

Of course, they recognize, as I do, that this trial-based approach allows for us to test 

specific questions, but they caution that, ―…the apparent serial order of these events 

[responses to objects, followed by their selection] is largely the result of the experimental 

strategy of dividing behaviour into a sequence of discrete and independent trials‖ (Cisek 

& Kalaska, 2010, p. 288).  With the caveat that the visuomotor selective processes that 

are discussed rarely, if ever, occur discretely during natural behaviour, we start with the 

onset of the visual stimulus.  In the specific case in question, this would be produced by 

the LCD goggles opening, revealing the workspace (a black table, with red LED target, 

tall grey obstacle and start button see Figure 5.3a).  As Cisek and Kalaska state: ―When 
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the stimulus is first presented, we should expect an initial fast feedforward sweep of 

activity along the dorsal stream, crudely representing the potential actions that are most 

directly specified by the stimulus‖ (Cisek & Kalaska, 2010, p. 285).  In our example, 

there are two objects which are visually salient and could potentiate actions – the red 

LED target and the grey obstacle.  Assuming there are no biases introduced prior to 

visual onset (i.e. expectation or trial history – this is a point I return to later in this 

section), both the LED and obstacle would therefore have a positive activation.  This 

initial activation is depicted in Figure 5.3b as two Gaussian hills of activity centered on 

both the target and obstacle locations (this is identical to how activity was presented by 

Baldauf & Deubel, 2010). For convenience, I depict the attentional landscape as overlaid 

on the workspace and the objects therein.  Of course, these hills of activity are meant to 

represent the theoretical neural activity associated with the objects and workspace, and 

thus are unlikely to be mapped to space in the way implied by the figure.  This format, 

however, allows for a convenient and easily interpretable correspondence between the 

objects and my proposed evolution of the response to each object.  For the purposes of 

the present example, the amount of initial positive activity at each location is somewhat 

irrelevant, so I have made the two activations equal.  However, an argument could be 

made that the larger, more salient, more proximal grey object would have a stronger 

initial response (though this would be strongly affected by pre-trial biases, which I 

discuss below).  Before proceeding with a description of the evolution of the inhibitory 

response, I first focus on the idea of relative salience; an idea that I feel must be 

introduced to solve what I refer to as the obstacle paradox, which is explained below. 
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Figure 5.3. Proposed initial activations following visual presentation in a typical obstacle 

avoidance study. Where theoretical activity is shown, a 3D view of the workspace is 

presented above a side-on view of the workspace. (A) Layout prior to visual onset. 

Participants are asked to make reaches from the start button to the target without 

contacting the obstacle. (B) At visual onset both the target and obstacle objects are 

represented with positive activation (theoretical activation overlaid on workspace). For 

graphical convenience, the lower limit of activation (absolute baseline) is at the plane of 

the table. An arbitrary relative baseline is shown; objects with activations above this limit 

at movement onset result in deviations toward their location, while objects with 

activations below this limit result in deviations away from their location. C) To be 

consistent with other figures in the section (Figures 5.4 and 5.5), the plane of the table is 

shown as the relative baseline.  
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The obstacle paradox is simply the fact that visual objects (including obstacles) always 

give rise to positive activity, yet obstacles (and sometimes distractors) result in 

movements away (i.e. negative or repulsive effects) from their location.  According to the 

implications from a model like the affordance competition hypothesis (Cisek, 2007; 

Cisek & Kalaska, 2010), objects resulting in positive responses should act as attractors to 

movement.  This is clearly not the case for obstacles which have positive activity but 

repulsive effects.  In order to account for the obstacle paradox, I introduce the notion of a 

relative baseline (depicted in Figure 5.3).  In Figures 5.3b and 5.3c I show equal initial-

activation hills centered on the target and obstacle locations.  For graphical convenience, 

in Figure 5.3b these hills reach their minimum (which I refer to as absolute baseline) at 

the plane of the table. I believe that for every visual scene, in addition to the initial crude 

specification of potential actions, there is also a baseline of activity established between 

the competitive encoding of objects.  Activations of objects higher than this relative 

threshold result in movements that deviate toward those locations, while those objects 

with activations lower than this relative threshold result in movements that deviate away 

from those locations.  Critically, however, objects whose activations are inhibited below 

the relative baseline can still remain above some absolute baseline – thus allowing for a 

positively activated object to result in deviations away from its location. In the bottom 

panel of Figure 5.3b I select an arbitrary relative baseline.  In Figure 5.3c I show that, for 

graphical convenience, you can let the plane of the table represent the relative rather than 

absolute baseline (as I do for Figures 5.4 and 5.5).  You can imagine that the relative 

baseline for any given workspace might be related to the number of competing objects, or 

the range of initial activations (i.e. some sort of mean activation).  I admit that this idea is 

somewhat arbitrary, and perhaps is not much better of a solution than introducing a 

second type of inhibition as Houghton and Tipper did in their H&T-reach model (see 

section 5.3.2).  It does, however, have the benefits of proposing a single mechanism and 

of matching with experimental evidence for positive activations resulting in negative 

(deviate-away) consequences.  As an extremely speculative neural correlate of the notion 

of a relative baseline, it has been shown that a subset of neurons in the superior colliculus 

(a structure critical to controlling eye-movements) show reduced ‗build-up‘ activity as 
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the number of potential eye-movement targets increases (Basso & Wurtz, 1997, 1998).  

The authors conclude that this activity is representative of a motor set, and here I (very 

tentatively) suggest that this motor set might in part establish a relative baseline across 

the set of potential targets (as the number of targets increases, by virtue of a limited 

capacity system, the activity to each individual target decreases – thus the relative 

baseline would also decrease). 

Having established the specification of initial activations and the idea of a relative 

baseline, I now describe how the inhibitory processes might unfold (see Figure 5.4).  I 

agree with the fundamental premise forwarded by Welsh and Elliot in the RAM (2004) 

that these inhibitory processes take time to develop.  I also agree, therefore, that should 

one be forced to act at different stages of inhibition, then different reach behaviours will 

be observed (a possible reach for each stage of inhibition is therefore indicated with a 

green line in the bottom panels of Figure 5.4).  Consider the stage immediately after the 

initial encoding of the salient objects (Figure 5.4a).  Here I represent that both the target 

LED and obstacle have positive initial activations.  Should an action be required before 

any selective process has been engaged, then both positively activated locations compete 

as potential targets, and this model predicts a trajectory that is initially aimed toward the 

midpoint of the two targets.  Of course, participants take at least 200ms to initiate an 

action, so at least 200ms of selective processing will be brought to bear on the activity 

associated with the target and obstacle, which means that the noted hand path at this stage 

is unlikely to be produced.  Experimentally, however, we can force participants to treat 

all objects in a visual scene as potential targets until they initiate a movement.  Under 

these conditions, participants are essentially prevented from progressing further down the 

selection pathway (though some enhancement at all potential target locations is likely).  

In this case, we have shown that participants do indeed initiate trajectories toward the 

midpoint of the two targets (Chapman, Gallivan et al., 2010a). 
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Figure 5.4. Proposed evolution of activity related to target selection and obstacle 

inhibition. 3D plots of the workspace and activity appear in the top row, overhead view in 

the second row and along the bottom a theoretical timeline is shown.  The relative 

baseline is at the plane of the table – positive activations relative to this baseline attract 

movements while negative activations relative to this baseline repel movements.  In the 

overhead view, green traces correspond to hypothetical trajectories if reaches were 

initiated with the depicted activity. (A) Initially, both the target and obstacle are 

positively represented, and a reach would aim for a midpoint between them. (B) Due to 

the target matching the desired stimulus and obstacle not matching the desired stimulus 

there is a yoked enhancement of the target and inhibition of the non-target.  Reaches 

executed during this phase would shift from slight deviations-toward to deviations-away 

from distractors. (C) Because the obstacle interferes with the desired reach, it receives 

additional active inhibition, resulting in strong deviations away from its location.  
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Immediately following the initial specification of potential action targets, a ―slower 

selection process should begin to sculpt the neural activity patterns by introducing a 

variety of task-relevant biasing factors‖ (Cisek & Kalaska, 2010, p. 285).  For my 

example, I consider two biasing factors, target selection and the detection of object 

interference.  I stress the ‗and‘ since the second major modification I propose to make to 

previous models of inhibition is that the inhibition of distracting stimuli (including, and 

potentially most importantly, obstacles) is tied not only to their status as not matching the 

target but also to their role as physical stimuli interfering with a movement.  Admittedly, 

this again introduces a further complication to inhibition that may prove difficult to 

implement, but presuming systems exist to identify the degree to which competing visual 

stimuli match an internal representation of the goal target (the MATCH/MISMATCH 

detector from the H&T model, see section 5.3.1) then it does not seem too much of a 

stretch to suggest that a similar system exists to compare the internal representation of a 

desired movement trajectory to an objects physical dimensions to detect where there may 

be interference.  The experimental evidence discussed in Chapter 4 suggests that this type 

of selective process must be occurring.  That is, given that the target-selection demands in 

that experiment stayed identical across trials (always grasp the square rectangle) then the 

interference activity we find in the PPC is indicative exclusively of planning a grasp 

where the non-target object functions as an obstacle.  Moreover, since we find this effect 

across both obstacle positions, but only when the wrist posture yields an interfered reach, 

the reported activity is not merely the result of selecting a target in the presence of a 

specific object, but must be tied to the detection (and visual cortical suppression) 

specifically of interfering stimuli. 

With these two stages of selection / inhibition (target selection and interference detection) 

in mind, I return to my model example.  I first show how the target selection process 

might affect the activity at both the target and obstacle locations.  Here I borrow from the 

idea put forward by the Houghton-Tipper model of inhibition (H&T model, Houghton & 

Tipper, 1994) of target selection as a process of matching object properties perceived 

from the environment with an internal representation of the target (see Figure 5.1).  

Objects in the environment sharing critical features with the target (MATCH) are 
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selectively enhanced, and objects whose features do not overlap with the target 

(MISMATCH) are selectively inhibited.  Moreover, given that all objects encoded in 

parallel compete for selection and that we assume a limited capacity system (that is, one 

can encode only a finite number of objects with a finite positive activity) the 

enhancement (or inhibition) of an object‘s activity is necessarily yoked to the inhibition 

(or enhancement) of all others.  That is, in order to keep a system-wide equilibrium 

(determined by capacity) as the activity associated with one object goes up, activity 

associated with another must go down.  I represent this type of yoked-target enhancement 

/ non-target inhibition in Figure 5.4b.  Since the red LED clearly matches the internal 

representation of the target, activity at its location is enhanced.  Concurrently, the 

mismatch between the internal target representation and the tall grey obstacle drive the 

activity at the obstacle location down.  For simplicity, to represent that these two 

processes are necessarily linked, I show the activations changing by equivalent amounts, 

though this might not necessarily be the case since the system could independently 

weight the enhancement or the inhibition as being more important (or more than one 

object location may need inhibiting, resulting in differing amounts of enhancement and 

inhibition to each object).  Examining the resulting theoretical reach trajectories (green 

lines in overhead plots), we see that during this process of MATCH/MISMATCH 

enhancement/inhibition we would predict a graded response of deviations that gradually 

shift away from non-target locations – precisely as observed by Tipper‘s and Welsh‘s 

group (Tipper et al., 1998, 2000; Welsh & Elliott, 2004; Welsh, Elliott, & Weeks, 1999).  

In situations where the non-target is not a physical object but a distracting LED, the 

inhibition at its location is likely to develop relatively slowly – both because the urgency 

to avoid (see next paragraph) is low and because it shares many characteristics with the 

target (same shape, size etc.).  Given that experimenters using these types of distractors 

usually demand rapid responses, in some experiments partial deviations toward 

distractors (closer to behaviour depicted in Figure 5.4a) and in some partial deviations 

away from distractors (closer to Figure 5.4b, right panel) will be observed, dependent on 

the exact timing and configuration of the target and distractor.  As Welsh and Elliot 
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(2004) showed, giving more time to allow the inhibitory process to develop fully resulted 

in deviations away from distractors (see section 5.4.2 and Figure 5.6). 

What is lacking in the experimental evidence of reaches deviating away from inhibited 

distractors are the large scale deviations induced by obstacles.  It is likely for this reason 

that both Welsh et al. and Tipper et al. elected to leave this behaviour as separate from 

the behaviours explained by their models.  However, I find this unsatisfying.  The plain 

fact is that we do avoid obstacles, that they must be encoded in the brain, and that 

somehow this encoding must result in large deviations away from their position.  

Importantly, as I have argued above, obstacles are likely the most commonly encountered 

non-target objects.  Therefore, I introduce in my model the idea that the degree to which 

an object interferes with a desired trajectory is a separate (but parallel) process whereby 

an internal template of the desired reach is compared with an object‘s physical position.  

Objects whose physical shape interferes with the desired movement are subject to an 

additional inhibitory response, which I label active inhibition (see Figure 5.4c). For 

simplicity, I show the target selective process as occurring prior to the interference 

detection and active inhibition process.  As mentioned, however, these processes likely 

occur in parallel and thus no specific order should be presumed from my ordering of 

them (but see section 5.4.2 for speculation on the timing of these events).  Of course, this 

active inhibition requires that participants have an internal template of a desired reach (in 

the same way that the target selection phase requires an internal template of the target).  I 

do not propose to specify how this desired reach might be computed, but I believe the 

overwhelming consistency of target directed reaches speaks to the existence of such a 

template.  That is, given that the degrees of freedom of the reaching arm allow for an 

infinite number of solutions for how the hand could arrive at a target, the remarkable 

consistency both within and across participants (generally straight (relative to the 

workspace) trajectories with some biomechanical curvature) suggests that an internal 

template would be accessible.  This idea of a trajectory template is supported by the 

evidence from obstacle avoidance in reaching tasks with monkeys (see section 1.5.1) 

where the spatial path of a reach around an obstacle remained incredibly stable from the 

first reach trial across thousands of repetitions (Torres & Andersen, 2006).  In my 
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example (Figure 5.4c), the activity at the obstacle location receives additional active 

inhibition due to its proximity along the desired reach trajectory (e.g. straight from start 

position to target).  The result is a reach that strongly deviates away from the obstacle 

position.  It is worth mentioning that in the preceding discussion of active inhibition, I 

specified only that the physical shape of an object would influence how much it would 

interfere with a desired reach.  One could imagine that other features (like harmful 

properties such as extreme heat or sharp edges) could also factor into this avoidance; this 

remains a testable question.  

The evolution of the target selection and non-target (obstacle) inhibition described above 

and depicted in Figure 5.4 starts from the inaccurate assumption of null activity prior to 

visual onset.  Not only will this never occur in the real world (as described above) but it 

also fails to account for the fact that across an experiment, participants will develop 

biases to act at particular locations, or expect obstacles to appear in specific parts of the 

workspace.  This was indeed the motivation for Welsh and Elliot to demonstrate how 

these biases can emerge prior to action specification using pre cues (2005).  These biases 

are likely maintained without a visual signal and thus have profound influences on 

selection, inhibition and behaviour.  Two recent experiments prove how important 

previous trial history is on reaching movements.  In one study, Jax and Rosenbaum 

(2007) had participants perform many fast reaches outward from a central target to one of 

12 eccentric targets (like positions on a clock) then inward back to the middle.  On some 

trials, a virtual obstacle was placed between the target and goal position and avoidance 

was noted.  Importantly, on the trial after the participant had avoided an obstacle residual 

curvature was still present in the reach, even though no obstacle was present.  This 

indicates that previously executed paths will create biases in the attentional landscape that 

carry over to subsequent trials (though with time, these biases fade, see Jax & 

Rosenbaum, 2009).  In a similar vein, we recently used our rapid reach paradigm where 

there are multiple potential targets present prior to movement onset to test for the biasing 

effects of acting at one location repeatedly across up to five trials (Chapman, Gallivan et 

al., 2010b).  Here, two targets were always present on the screen prior to movement 

onset, one to the left and another to the right of midline and one was selected as the target 
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for action when the reach was initiated.  Embedded within the pseudo-randomized 

sequence of trials were sets of trials where one target (e.g. the left side) was 

consecutively selected as the target for action for up to 5 trials.  We observed the clear 

build-up (and eventual saturation) of an initial trajectory bias toward the previously cued 

target.  In my example, modeling the attentional landscape that develops during an 

obstacle avoidance trial, I would predict there would therefore be several sources of bias 

that participants would carry across trials.  I give an example of some of these biases as 

applied to the example that has been used throughout this section (see Figure 5.5).  Given 

that the position of the target (Figure 5.5a) and depth of obstacles (Figure 5.5b) remains 

constant across the experiment, one would expect biases of these locations to be 

maintained.  I have depicted the relative bias toward the target location to be positive, 

thus aiding in enhancement, while the relative bias toward obstacles is negative, thus 

aiding in inhibition.  Because the biases are relative, however, these particular locations 

are likely still preferentially attended (i.e. result in positive activations).  It is also worth 

noting that I have intentionally caused the bias at the right-hand obstacle locations to be 

slightly larger than the bias on the left hand side.  This is to account for the fact that right-

hand reaches (as was performed in this task) are more interfered with by right-hand 

obstacles – thus these positions may require, and retain, additional inhibition.  Finally 

both the start position of the hand (Figure 5.5c) and the possible path of the hand through 

space (Figure 5.5d) are potential sources of bias.  It has been shown that perceptual 

processing is better near the location of the hand (Brown, Kroliczak, Demonet, & 

Goodale, 2008; Kao & Goodale, 2009), and, as has been discussed, interference effects  

of distractors (Meegan & Tipper, 1998), or detection of perceptual targets (Deubel & 

Schneider, 2004) is increased near the hand and close to the upcoming trajectory.  Even 

considering only this small selection of biasing factors, it is clear that the pre-trial 

attentional landscape is complex (see Figure 5.5e where a simple sum of the bias 

templates is presented).  Moreover, this account does not deal with the fact that the biases 

are likely to have interactive relationships (i.e. a sum is unlikely to be the method by 

which biases are integrated) nor does it reflect the fact that the environment and agent are 

rarely static, meaning that the workspace itself is constantly shifting.  
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Figure 5.5. Possible sources of between-trial bias and the potential distribution of activity 

that may result.  Overhead views shown below 3D plots.  The plane of the table is the 

relative baseline. (A) Positive bias at the target location. (B) Negative bias at the obstacle 

locations, with an even larger bias on the right when participants reach with their right 

hand. (C) and (D) Positive biases at the hand start position and along the reach path 

respective. (E) A simple sum of the biases depicted in A-D, demonstrating what is an 

overwhelmingly complicated workspace bias even prior to task demands being 

incorporated. 
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Despite the obvious shortcomings, this model provides some tentative first steps toward 

understanding how non-target objects – which can often become obstacles – might 

influence our movements. It also suggests that the inhibition of a non-target is as 

automatic as, and is intrinsically linked to, the selection of a target.  Moreover, the 

inhibition of non-targets and the resulting movement trajectories away from their location 

implies that the visuomotor system is predisposed to treat non-targets as potential 

obstacles and veer away from their location.  

5.4.2. Temporal evolution of obstacle inhibition 

Critical to the inhibition model of obstacle avoidance I described above (and to the RAM 

from which it is derived, Welsh & Elliott, 2004) is the idea that target selection and non-

target inhibition evolve across time.  However, while I provided some insight into what 

events might occur in this process (see Figure 5.4), the specific timing remains largely an 

open question.  In this section, I provide a brief survey from experiments which provide 

some insight into the temporal aspect of selection and inhibition (a tentative time course 

of these events appears in the bottom panel of Figure 5.4).  Many of the conclusions I 

make regarding the timing of inhibition can actually be derived from Figure 1.2 from the 

Introduction.  In that section (1.2 and specifically in that figure), I present data from each 

of three attentional frameworks that describe competitive processes between relevant 

visuomotor stimuli.  Figure 1.2a, shows average spiking data from 88 neurons in IT 

cortex when the target (thick black line) versus non-target (thin black line) is in the 

receptive field of the neuron (Desimone, 1998).  Figure 1.2b shows data from a 

population of cells in dorsal premotor cortex when a monkey was required to remember 

two possible targets before selecting one based on a cued colour (Cisek & Kalaska, 

2005).  Finally Figure 1.2c shows data from a population of parietal cortex cells when 

one of two to-be-reached targets was inside (red and blue traces) or outside (black trace) 

the cells receptive field prior to movement execution (Baldauf, Cui, & Andersen, 2008).  

Across all three we can extract at least two properties of target selection.  First, as 

suggested in the description of the model presented earlier (see Figures 5.3 and 5.4), all 

visual stimuli are initially represented with a positive activation.  This initial sweep of 
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activation can be seen in Figure 1.2 as the sharp rise of traces that occurs within 50 ms of 

the onset of the visual array and is equivalent for targets and non-targets.  From 50 to 100 

ms after visual onset, target selection processes are likely being carried out (i.e. the 

matching of target features to object features etc.), such that targets are selectively 

enhanced and non-targets are selectively inhibited.  I referred to this as yoked 

selection/inhibition in the model description (see Figure 5.4b).  This appears as the abrupt 

separation of target from non-target activity that occurs somewhere between 100-200 ms 

after visual onset (see Figure 1.2).  After ~200 ms (approximately the same time that the 

earliest behavioural reports of a decision could be seen) it is unclear exactly what 

happens.  From the data presented in Figure 1.2, it appears that activity for both the target 

and non-target remains above their initial (i.e. prior to visual onset) state, with the target 

activity steadily increasing and the non-target activity steadily decreasing.  Many other 

studies have confirmed that the timeline of target selection follows the above description 

(e.g. McPeek, 2006; Schall, 2001; Song & McPeek, 2010).  Only a few experiments, 

however, have revealed clues about how long the inhibitory response, potentially 

responsible for deviations away from distractors and obstacles, takes to develop.  It is 

possible that as soon as the target and non-target activity begins to diverge (e.g. at ~150 

ms) then behaviour executed with competitive encoding in this state would move away 

from non-targets.  This interpretation is not supported, however, by studies showing that 

non-targets with residual positive activations (but less than target activation) still result in 

deviations toward the distractor location (McPeek, 2006; Welsh & Elliott, 2004).  Thus, it 

appears as if it does take some time for the non-target suppression and target 

enhancement to evolve, and that deviations away from non-target locations will only 

occur if enough time has passed such that the non-target activity is suppressed below a 

relative baseline.  I present data from four studies which suggest that what I refer to as 

active inhibition emerges at least 200 ms and up to 500 ms after the presentation of the 

visual array (see Figure 5.6). 
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Figure 5.6. Data from previous experiments providing insight into the timeline of 

inhibition. (A) From Cisek and Kalaska (2005).  Dorsal premotor neural activity in 

macaque monkeys for selected targets in a cells preferred direction (thick blue line) 

selected targets in the opposite direction (red line) and selected targets in an orthogonal 

direction (green line).  Immediately after the cue selects the target for action (‗C‘ in 

figure) both target and non-target activity is high.  After ~100 ms the target activity is 

enhanced and non-target activity is reduced. Eventually (~200 ms) the non-target activity 

falls below the visual baseline activity. (B) From Duebel and Schneider (2004). 

Perceptual identification performance at the obstacle location (see Figure 1.3) on trials 

where cross-workspace reaches were planned. When the stimulus was presented 

concurrently with (0-ms SOA) or just after (100-ms SOA) the signal to move 

identification was superior on trials with an obstacle was present (black symbols) than on 

trials with no obstacle (white symbols).  After 200 ms, the identification performance 

with an obstacle present was comparable to performance without an obstacle, but was 

still above chance. (C) From Welsh and Elliot (2004). Endpoint difference from target (in 

reach direction, Y) for reaches made in the presence of a distractor.  Distractors presented 

from 250 ms before (-250-ms SOA) to 500 ms after (500-ms SOA, occurring during the 

movement) the cue to act led to deviations toward their location (landing further in depth 

for far targets, dashed line, and nearer in depth for near targets, solid line).  Distractors 

presented 750 ms before (-750-ms SOA) the cue to act received sufficient inhibition to 

result in deviations away from their location. (D) From Trommershauser et al. (2006).  

Lateral (X) deviations from midline at different points along the reach distance for rapid 

reaches made in the presence of a penalty region.  Penalty regions presented concurrently 

with the cue to go (open square symbols) result in deviations away from their location as 

early as 200 mm into the reach.  Penalty regions presented 200 ms after the cue to go 

(open triangle symbols) still led to significant deviations away from their location by the 

end of the reach. Penalty regions presented 400 ms after the cue to go (filled square 

symbols) did not affect the reach.    
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First I focus on additional data from the Cisek and Kalaska (2005) experiment in which a 

monkey was required to retain two possible target locations across a memory delay 

before making a reach toward the one that matched a colour cue.  The new data I present 

in Figure 5.6a show the PMd population activity for targets in a cells preferred direction 

(blue trace), for targets opposite to the cells preferred direction (red trace), and for space 

located orthogonal (90°) to a cell‘s preferred direction.  Critically, activity here is aligned 

such that 0 ms (denoted with a ‗C‘) corresponds to the onset of the colour cue.  It is worth 

noting that the population response to both potential targets (red and blue traces) is higher 

than the response to a location where no target was present (green trace) confirming 

parallel encoding.  In agreement with the estimate of 100-200 ms required to select a 

target, the red vertical bar in Figure 5.6a is placed where a significant difference between 

the target (blue) and non-target (red) emerges, in this case, 110 ms after cue onset.  

Interestingly, the inhibited red trace does not fall below the relative baseline offered by 

the green trace (a visual response to no target) for at least another 100 ms.  This is the 

first evidence suggesting that a possible lower limit for noting negative inhibitory 

behaviour (i.e. deviations away) would be 200ms following cue onset.  This 200-ms limit 

resonates with the perceptual identification during obstacle avoidance data that was 

discussed in section 1.2.2 of the Introduction (Deubel & Schneider, 2004).  Recall that in 

this task, participants made reaches where an obstacle either interfered (reaches across 

the workspace) or did not interfere (straight reaches, see Figure 1.3).  A stimulus was 

briefly presented at the obstacle location and required identification.  Critically, 

identification of this stimulus was improved only when the obstacle interfered with the 

reach.  In that study, Duebel and Schneider (2004) also manipulated when the to-be-

identified stimuli was presented.  The resulting data are shown in Figure 5.6b.  When the 

perceptual stimulus was flashed concurrently with the visual presentation of the scene (0-

ms stimulus onset asynchrony (SOA)) or immediately after (100-ms SOA) the reported 

enhancement at the obstacle position was observed.  With an SOA of 200 ms, however, 

the enhancement effect was gone.  Importantly, perceptual identification performance had 

returned to a level that was comparable to presenting an item at the obstacle location even 

when the obstacle was not there.  So, from Cisek and Kalaska‘s (2005) data we see that 
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~200 ms after target specification, non-target information matches then moves below a 

visual-stimulation-only baseline and from Duebel and Schneider‘s (2004) data we see 

that ~200 ms after target specification perceptual enhancement at an obstacle also returns 

to a relative baseline  (though not absolute, which would be 50% performance).  The 

critical test, of course, would be to use the Duebel and Schneider perceptual identification 

task and extend the time window beyond 200 ms.  I would make the prediction that past 

this range, the identification at the obstacle location should actually go below the relative 

baseline performance, consistent with active inhibition (for further discussion of this and 

other potential future experiments, see section 5.5). 

These experiments indicate that the effects of active inhibition take at least 200 ms and 

probably more to develop.  Welsh and Elliot (2004) provide some of the only evidence I 

could find for what happens to information that has been inhibited for longer than this 

amount of time prior to movement onset.  In this study, non-targets (green LEDs) were 

presented either before, concurrently with, or after targets (red LEDs).  Consistent with 

their previous work (Welsh et al., 1999), Welsh and Elliot found that non-targets 

presented concurrently with a target resulted in deviations toward them, a result they 

attribute to residual competition due to incomplete inhibition (Welsh & Elliott, 2004).  

This is seen in Figure 5.6c where the dashed line represents data from trials with 

distractors further in depth and the solid line data from trials with distractors closer in 

depth.  In both cases, at the 0-ms SOA time point the reach ends closer to the distractor 

(dashed line, further in depth, solid line, closer in depth).  The critical finding from their 

new study was that this deviation-toward extended to non-targets presented even 250 ms 

prior to the target.  They argued therefore, that even 250 ms was not enough time for 

suppression of the non-target response (and 250 ms is a very low estimate, given that they 

present endpoint data from a movement with a ~250-ms reaction time and ~350-ms 

movement time).  If the non-target preceded the target by 750 ms, however, the observed 

behaviour was reversed, such that now reaches deviated away from the distractor 

location.  From this evidence, the timeline for active inhibition to be observable in reach 

behaviour is somewhere from 250 to 750 ms (plus reaction and possibly movement time).  

Welsh and Elliot (2004) also included trials where the distractor did not come on until 
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approximately the same time as the target (SOA of 250 ms which is roughly equal to 

reaction time) as well as trials where the distractor did not come on until near the end of 

the reach (SOA of 550 ms).  In both cases, there was some evidence for deviations 

toward, suggesting that in this study, the abrupt onset of a visual item during the reach 

functioned to attract the movement. 

How well does the above timeline for active inhibition apply to the obstacle avoidance 

effects I have reported before (Chapman & Goodale, 2008), and in the current thesis 

(Chapman & Goodale, 2010a, 2010b)?  For the experiment described in Chapter 2, 

reaction times were, on average greater than 350 ms (comparable to the ~300-ms reaction 

times I reported in 2008).  Therefore, the avoidance we observe (which is evident from 

the very earliest part of the trajectory) could definitely be the result of inhibitory 

processes engaged from 200 to 300 ms after stimulus onset.  Not only does this put a 

potential cap on the time required for active inhibition to result in deviations-away (~300 

ms), it also suggests that under natural reaching conditions (participants were encouraged 

to reach quickly, accurately and comfortably) reaction times might exactly correspond to 

how long it takes for visuomotor competition to resolve – including target selection and 

the active inhibition of non-targets.  The finding that active inhibition takes ~300 ms to 

evolve also allows for some speculation of what might be occurring in Chapter 3 where 

we observed obstacle avoidance during online corrections. In that experiment, the earliest 

corrections to a jumped target position occurred ~275 ms into the reach.  Recall that these 

initial corrections were independent of the obstacle location, a point key to our argument 

that avoidance we observed was restricted to the corrected portion of the reach.  A careful 

examination of Figure 3.4 from this study reveals that the first deviations due to obstacles 

after a correction occur as quickly as within 100 ms.  Given the preceding argument that 

inhibition resulting in avoidance should take at least 300 ms to develop this presents at 

least two options (which are not mutually exclusive) for what might be happening.  First, 

as I argued in Chapter 3, we believe the potential obstacle was represented at least 

partially prior to movement onset.  Thus, the moment a correction was initiated toward a 

new target position, this representation was already in place (or needed little further 

suppression) to cause the observed avoidance.  With respect to the proposed model of 
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inhibition, this suggests that all relevant objects within the current and potential 

workspace are at least partially encoded.  This seems to conflict with our previous work 

(Chapman & Goodale, 2008) where obstacles placed past the reach target no longer 

influenced movements.  In that study, however, the target never changed depth and the 

reach distance was close to most participants‘ comfortable reach extent.  That is, because 

the obstacles in the experiment described in Chapter 3 were both within reach, and 

because targets sometimes jumped to depths further than the initial target position, I 

believe all obstacles were coded as being potentially relevant, and hence received at least 

some inhibitory signal prior to movement onset (unlike the objects placed past the reach 

target in the 2008 study which were not action relevant at any point during the 

experiment).  This argument also gives credence to and extends the notion of an 

automatically specified desired reach trajectory (discussed in section 5.4.1) by suggesting 

that this trajectory template is flexible and could specify more than one potential reach 

(as would be expected if two separate movements were to be coded in parallel, each 

being affected by an obstacle). 

An alternative and perhaps complementary explanation for the rapidity of the deviations 

around obstacles after the initiation of an online correction comes from the idea that 

biases established prior to the movement might influence how information from different 

objects is used.  Welsh and Elliot argue a similar point when discussing some observed 

evidence for eye-movements that deviated away from distractors, ―Specifically, because 

participants were never required to complete a saccade to the cued location, an inhibitory 

code may have been placed on that location, thus biasing a movement in the direction 

opposite to the cue before response programming processes began‖ (Welsh & Elliott, 

2004, p. 1053).  This is a point they extend in their later study using pre-cues (Welsh & 

Elliot, 2005).  Exactly this type of bias was not at play in the results described in Chapter 

3, since corrected trajectories when obstacles were not present, or were present on the 

side opposite the correction did not result in avoidance (see Figure 3.3).  That is, if a 

strong bias had been established at all potential obstacle locations across the entire 

experiment, it should have resulted in deviations even when the obstacle was not there.  

An alternative use of this bias, however, may be to expedite the inhibition of an obstacle 



225 

 

 

if it occurs at a location where only an obstacle is expected.  Under this framework, an 

inhibitory bias may serve more as a filter, labelling locations where targets will not occur, 

thus allowing active inhibition to proceed as soon as an object in that location becomes 

task relevant.  This interpretation is supported by evidence from a recent experiment by 

Julia Trommershauser and colleagues (Trommershauser et al., 2006).  Recall that in 

studies by this group, a goal region is presented with a penalty region and participants‘ 

reach endpoints avoid the penalty based on its value and position (discussed in section 

1.4.2, Trommershauser, Maloney, & Landy, 2003a, 2003b).   In the more recent study, 

these researchers also manipulated when the penalty region appeared on the screen 

(Trommershauser et al., 2006).  In the data shown in Figure 5.6d, the penalty region (at a 

location and negative value shown to induce avoidance) was presented either 

concurrently with the target (open squares), 200 ms after the target (open triangles, 

approximately coincident with reach onset) or 400 ms after the target (closed circles).  

What is plotted is the lateral reach deviation at several positions along the reach distance.  

What can be noted from this single subjects data (which extended to all subjects in the 

experiment) is that penalty regions presented even at reach onset were able to be 

incorporated into these rapid reaches (total movement durations of ~300 ms) and that this 

deviation occurred as early as 50% through the movement (or ~150 ms).  By comparison, 

penalty regions presented 400 ms after the trial start were not successfully avoided – 

suggesting that the last 100 to 200 ms of a reach is not enough time to use penalty 

information.  This leaves an estimate of ~150 to 200 ms for active inhibition resulting in 

deviations away, less than that suggested earlier.  However, if the penalty information is 

subject to a bias that improves the speed with which inhibition can evolve, then the 

estimate is flexible.  

Thus, as with the model of inhibition, there are at least two contributing components to 

the time line of its evolution – inhibition with and without the effects of expectancy and 

bias.  When considering active inhibition in the absence of expectancy and bias (e.g. 

when the location of the non-target object changes from trial to trial), inhibition sufficient 

to cause deviations away from non-target objects likely takes ~300 ms from visual 

stimulus onset to develop.  However, in cases where a bias develops prior to movement 
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onset (as in Chapter 3 when participants knew a target jump occurred on 1/3 of trials, or 

in Trommershauser et al., 2006 where participants knew a penalty region would always 

appear at one of two locations) active inhibitory processes can proceed in parallel with 

target selection and affect movement as quickly as 100 ms after an initiated correction 

(see Chapter 3) or 150 ms after reach onset (Trommershauser et al., 2006).  It is worth 

noting that we directly tested a form of expectancy in the experiment described in 

Chapter 2 of this thesis where we manipulated (with blocked, random or alternating trial 

orders) whether participants could predict the availability of visual feedback.  The results 

from that experiment indicated that it was the availability of vision, not its predictability 

that influenced behaviour – that is, participants behaved similarly any time vision was 

available, regardless of whether or not it was expected.  This suggests that the visuomotor 

system, while having the ability to flexibly adapt expectancies of environmental features 

which are likely to change (such as target and obstacle positions), is hardwired to use 

basic information (such as online visual information) regardless of the context. 

5.5. Future directions 

In the course of writing a thesis, one typically generates a large number of ideas for 

further experiments.  Here I focus on three potential future directions that directly follow 

from my thesis and the mechanisms predicted in my model. 

5.5.1. Attention scales with interference 

One critical postulate of my model (see section 5.4) is that the amount of attention and 

inhibition an object receives is contingent not only on its visual salience, but also on its 

action relevance.  Support from this idea has come from researchers demonstrating that 

potential targets gain an attentional enhancement, as indicated by a perceptual 

identification at upcoming target locations (see section 1.2.2 and Baldauf & Deubel, 

2010).  Moreover, research from this group has indicated that objects that interfere with a 

movement also receive an attentional boost (Deubel & Schneider, 2004).  Given the 

findings reported in the current thesis – specifically those from Chapter 2 – where 

obstacles in different positions exert differential effects (i.e. obstacles close to midline on 
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the right cause the most reach deviation), I would predict that perceptual identification 

should scale with obstacle interference.  That is, it should be possible to correlate the 

deviation observed during the movement to the identification of stimuli presented at the 

location of the obstacle prior to the movement.  This type of experiment could include 

both single-obstacle and two-obstacle trials (as described in Chapter 2) – the two obstacle 

trials being particularly interesting since their asymmetry about midline (i.e. one close to 

midline on the left and one further from midline on the right) should result in differential 

identification performance at the two different locations within the same visual display.  

The nature of the results would allow for a direct test of whether the additional avoidance 

induced by some obstacles is due to a between-trial bias or an inhibitory bias that is 

applied in real time every trial.  If it were a between-trial bias, then perceptual 

identification at those locations (relative to other obstacle locations) should be impaired 

from the moment the visual scene is presented.  If the bias develops strictly within a trial, 

however, the objects that cause increased interference may initially have more attention 

diverted toward them, followed by a more sudden reduction.  It is therefore a distinct 

possibility that the differences in identification induced by interference would not emerge 

initially, but would be characterized by the timeline of the inhibitory response.  I discuss 

this type of experiment in the next section. 

Assuming identification performance does correlate with interference (be it a positive or 

negative correlation), this task could then be used to test for the effects of obstacle 

properties other than location.  That is, properties such as the perceived potential for harm 

(i.e. a sharp or fragile object) could affect reaching, which in turn, could be reflected in 

the perceptual identification performance.  All other factors being equal, an object that is 

perceived as harmful likely attracts more attention but requires more inhibition, and thus 

a characteristic perceptual identification response curve could be predicted.  Another 

interesting use of this technique would be to systematically vary the degree to which an 

object was to be treated as a target or a non-target and measure the identification response 

at its location.  For example, in a reaching task with a red and blue cube always present, 

one could vary the number of times the red cube was the target, or was to be ignored (and 

thus avoided).  In blocks where the red cube was never the target, identification responses 
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at its location should match what would be observed for an obstacle. However, in blocks 

where the red cube is sometimes the target, or likely the target, then identification 

responses at its location should improve.  In general, I would argue attentional 

enhancement should scale with the number of features that overlap between the expected 

target template and the objects in the environment.  Moreover, as was mentioned above, 

it should be possible to correlate the identification performance with the actual reach 

deviations – as an object increasingly competed as a potential target, not only would you 

predict an increase in identification at its location, but also that this identification boost 

would persist up until movement onset and result in deviations toward its position (as in 

the predicted trajectory in Figure 5.4a). 

5.5.2. Timeline of inhibition 

As mentioned in the previous section, it should be possible to use perceptual 

identification in conjunction with a reaching task to identify if and where attentional 

enhancement occurs across the workspace.  Equally important is to consider when this 

enhancement occurs.  To date, experiments using the dual-task identification technique 

have examined only perceptual events occurring during the period from visual onset to 

movement onset (~200 ms at the minimum, Deubel & Schneider, 2004; Schiegg, Deubel, 

& Schneider, 2003).  As explained in section 5.4.2, however, if active inhibition engages 

only after 200 ms, then it is critical to present the perceptual identification stimuli after 

this time point. I would make the strong prediction that identification performance at an 

obstacle location would initially be facilitated (up to ~200 ms, as shown by Deubel & 

Schneider, 2004) but that after 200 ms, this performance should be reduced below a 

relative baseline (but remain above the absolute baseline of chance performance).  In 

addition to presenting the identification stimulus prior to movement onset, it would be 

interesting to measure the identification performance at different locations during the 

reach itself.  While Chapter 3 of the current thesis indicates that obstacle representations 

can be accessed or updated in flight, it is unknown if (though I speculate that) this is 

accompanied by an alteration in the distribution of attention. By presenting to-be-
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identified stimuli during the reach itself, it would be possible to more conclusively 

determine the dynamics of the attentional landscape during the movement. 

Ultimately, the most powerful use of combining reaching with an identification task 

would be to examine how both the spatial (previous section) and temporal (current 

section) effects unfold.  It should be possible to test if there are initial biases at the hand, 

target and obstacle locations as well as on a desired reach path (as hypothesized in my 

model, see section 5.4 and Figure 5.5). It would be interesting to see how the layout and 

magnitude of these attentional biases shift as the identification of targets and obstacles 

reshape the desired movement.  As mentioned in the previous section, manipulating the 

degree to which an object is to be treated as a target or as an obstacle should also alter not 

only its initial representation but also how this representation changes across time – 

objects sharing characteristics with the target may show attentional enhancement for 

much longer (extending even into the reach movement) than those that are clearly 

identified as non-targets. 

5.5.3. fMRI of reaching (vs. grasping)   

In order to alleviate constraints imposed by the fMRI environmental and potential motion 

artifacts, the fMRI study of obstacle avoidance described in Chapter 4 employed a 

grasping task.  Of course, the other work described in this thesis (Chapter 2 and Chapter 

3) examined obstacle effects on the reach (or transport) component in tasks where 

grasping was not required.  It therefore remains an open question if the same area of the 

PPC identified for the grasping task in Chapter 4 would be responsible for coding 

obstacles that interfered with the transport phase of a movement.  A strong argument 

from studies examining differences in reach and grasp networks (e.g. Culham et al., 

2006; Culham & Valyear, 2006) suggest that there may be functional subdivisions within 

the PPC for these two tasks – fitting with the notion of effector specificity mentioned in 

section 5.2.  While an fMRI experiment testing reach transport avoidance would require a 

redesign of the apparatus described in Chapter 4, other recent experiments have 

successfully employed outward reaching in the scanner (for example by using targets and 

obstacles that hang from above, rather than platforms that straddle the hips).  Even if a 
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design was restricted to lateral movements (as for the study in Chapter 4), it would be 

possible to introduce obstacles that needed avoiding vertically.  Technical issues aside, to 

test for obstacle encoding, I would adapt the slow event related paradigm we used in the 

study described in Chapter 4 to one resembling the partial instruction methodology used 

by Beruze and colleagues (2007; 2009).  In those experiments, researchers presented two 

pieces of information (target location and effector, in a random order) separated by a 

short delay.  By jittering the delay timing (unlike in our study, where the delays between 

visual presentation, planning instruction and execute instruction were longer and 

constant), they were able to increase their experimental power by increasing the number 

of trials.  In an obstacle task using this technique, the two pieces of information that 

would be presented randomly and separated by a delay would be the target location and 

the obstacle location.  As Beurze et al. (2007; 2009) did with effector and target, this 

would give a measure of areas that preferentially responded to the target or obstacle in 

isolation, and critically, would identify areas that integrated these two pieces of 

information.  More importantly, I would predict that on trials where the integration of this 

information indicated that an obstacle would interfere with the target-directed movement, 

there would be an even greater signal in these integration areas.   

5.6. Conclusions and Implications  

As basic scientists, we invariably face the question of what purpose our research serves.  

The answer, by the nature of our work, has to be ‗not very much‘.  Precise questions 

afford precise answers, and therefore, any one experiment, or any single thesis will have 

little that is directly applicable to everyday life.  Of course, the quest of basic science is 

knowledge and the accumulation of knowledge is something that can have real-world 

impact.  Where might the knowledge of obstacle avoidance mechanisms take us should a 

sufficient understanding of its implementation allow for its application to other tasks?  If 

a Google search is any indication, then the answer is likely that understanding obstacle 

avoidance will help us design more intelligent machines.  The top 28 hits (followed by a 

hit to one of our own papers, Striemer, Chapman, & Goodale, 2009) when searching 

‗obstacle avoidance‘ pertain to the control of robots (or algorithms to control artificial 
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agents).  As an example of how important obstacle avoidance is in the domain of 

robotics, consider space exploration.  As we extend our scientific reach beyond Earth‘s 

gravitational pull, and onto other planets, ‗intelligent‘ robots are becoming an incredibly 

important part of exploration science.  Consider a robotic probe exploring an unfamiliar 

planet with a mandate to collect soil samples.  Under these conditions if the robot 

successfully identifies and collects 70% of the intended samples, the mission is likely to 

be considered a success.  However, if the robot fails to correctly identify and avoid a 

single obstacle, resulting in a serious collision, or a restriction of movement, then the 

mission is an utter failure. 

Of course, space exploration is not the only domain where robots or algorithms are 

designed to deal with obstructing objects.  Most advanced automobiles now come 

equipped with collision detection systems, engaged most often when backing the car up.  

Advances in surgery are allowing telerobotic operations, and some of the most 

sophisticated systems automatically engage avoidance strategies.  In these cases, 

however, the system (e.g. a car) can treat every object in the environment as an obstacle, 

and the strategy is relatively simple – do not allow for contact with any object.  By 

comparison, in the current thesis, like the planetary exploration robot, the participant 

must be able to encode both targets and obstacles.  Moreover, targets should attract 

movement and obstacles should repel them.  Thus, the problem of obstacle avoidance 

becomes very complicated only when there is a requirement to perform flexibly 

determined goal-directed behaviours.  As I have reiterated throughout this thesis, this is 

an extraordinarily difficult problem.  As a final example, consider your current 

environment.   If your desk (or table, or couch, depending on where you are) has even 

one-tenth the clutter of mine, there will be multiple objects, and they almost certainly got 

there by you putting them there.  And when you next need to pick up one of those 

objects, your brain will automatically represent all objects on the surface, select only the 

one you want to act upon, and plan and execute an action toward it that avoids all other 

objects.  That we perform these actions without effort makes clear what should be 

apparent – these things seem easy because humans come with a brain designed by 

evolution to solve precisely this problem.  The consequences of failing to perform actions 
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that get to the target while avoiding obstacles are obvious.  In fact, I would argue that 

missing the target is less catastrophic than colliding with an obstacle.  You can perform a 

second movement to the target if required, but you may not be able to recover from a 

particularly brutal collision. 

I feel the preceding discussion makes two key points regarding why the study of 

obstacles is important.  First, in environments with more than two objects, the number of 

obstacles we deal with far outweighs the number of targets.  Second, the consequences of 

failed avoidance are more dire than the consequences of failed target directed action.  I 

have argued throughout this thesis that to solve the problem of visuomotor selection, and 

therefore to study goal direction actions, it is imperative to consider how the brain 

represents all objects within the workspace.  Three theoretical frameworks for visuomotor 

attention served as providing guiding principles to this work (see section 1.2).  In each, an 

emphasis was put on how objects encoded in the brain competed for selection.  In the 

current thesis, I have demonstrated why it is equally important within these competitive 

frameworks to consider how encoded objects compete for inhibition.  In considering how 

exactly these inhibitory mechanism might be engaged, I introduced my own version of a 

model of inhibition (see section 5.4) which outlined how, after an initial phase where all 

potential objects give rise to a positive response, those not matching a target template are 

automatically inhibited.  Moreover, this inhibitory response is truly competitive in that 

the activity associated with those objects whose properties (in the case of the current 

thesis, location and size) interfere more with the desired reach require additional 

inhibition.  I have provided evidence that this inhibitory response is automatically 

engaged, but takes time - approximately 300 ms - to complete.  This evolution can 

account for the apparently disparate results showing deviations toward and away from 

non-target distractors – as non-targets are inhibited they move from competing targets 

(thus acting as attractors) to suppressed non-targets (thus repelling movement) to 

inhibited obstacles (thus resulting in large deviations away from their location).  

Additionally, I discussed how expectancy and between-trial bias might influence the 

distribution of attention across the workspace and interact with these processes to 

produce the behaviour I report.  Finally, I argued that the PPC, as a crucial part of a 
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frontoparietal network responsible for goal directed action specification and selection, 

plays the critical role of biasing the attentional landscape with action relevant weights. 

Moving forward, as we basic scientists make our small contributions to the edifice of 

knowledge, those of us who study visuomotor control must ultimately recognize the role 

of non-target objects: they are everywhere, and their successful avoidance is vital to 

adaptive behavior. 
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