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ABSTRACT 

It is well recognized that groundwater-surface water interactions influence the quantity and 

quality of various hydrogeological systems (rivers, lakes, streams). Groundwater-stream systems 

are an important investigative area for understanding fate and transport of nutrients and 

chemicals within the stream. While traditional methodologies are established to provide 

measurement and mapping of the spatial distribution of groundwater-stream interactions and 

exchange fluxes across a streambed, many can be invasive, labour intensive and suffer from low 

sampling density. The complexity in such systems is due largely to the heterogeneous nature 

both spatially and temporally. Given the strong control by streambed lithology on groundwater-

surface water interactions, an improved measure of the spatial and temporal variations is desired. 

Geophysical techniques of DC-IP are an intriguing option as they can provide rapid, non-

invasive and continuous information about the subsurface. The overall thesis objective was to 

evaluate the potential of 3D DC-IP for characterizing the structural heterogeneities within a 

streambed to inform assessment of groundwater-stream water interactions. 

High-resolution 3D DC-IP surveys were conducted in a 50 m long headwater stream reach 

located in Kintore, Ontario. The resulting 3D distributions of resistivity and chargeability 

highlighted the heterogeneous nature of the streambed. Traditional characterization techniques 

were employed to evaluate the performance of DC-IP for mapping streambed composition and 

its associated influence on groundwater-stream exchanges. Strong concordance between DC-IP 

imaging and all the other traditional methods were determined, providing increased confidence 

in the ability of DC-IP to provide a valuable, non-invasive site tool to improve characterization 

of streambed heterogeneity and interpretation of groundwater-stream exchange patterns. 
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SUMMARY FOR LAY AUDIENCE 

Groundwater and surface water interact nearly everywhere on earth. These interactions take 

place in rivers, lakes, streams and more. It is understood that through these interactions the 

quality and quantity could be affected in either water body. Groundwater-stream systems are of 

particular interest to understand how nutrients and contaminants may transport across 

streambeds. Investigations of groundwater and stream water systems have been long established 

and traditional techniques are used to determine the interactions involved. However, many of 

these traditional techniques have various limitations, such as: being labour intensive, destructive 

and invasive to the stream or subsurface and do not provide characterization throughout an entire 

investigative site. The difficulty with understanding groundwater-stream water systems is that 

the conditions affecting the interactions change with regards to space and time. The specific 

changes in the sediments of a streambed or aquifer are thought to heavily affect the interactions 

and exchanges between groundwater and stream water. Therefore, an improved way of 

measuring these changes in space and time are desired. This was achieved using geophysical 

techniques, which use electrical current to produce an image of the subsurface. This can be done 

to better seen inside/beneath a streambed, similar to an x-ray, but of the ground.  

This study used geophysical techniques to create 3D images of the subsurface of a stream located 

in Kintore, Ontario. These images were used to help understand the interactions involved in the 

groundwater-stream water system. 
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1 INTRODUCTION 

1.1 RESEARCH BACKGROUND 

Groundwater and stream water can interact across a variety of scales, ranging from heterogeneities 

within centimeters to meters, to entire catchments. Characterization of subsurface geology of 

varying scale sizes is important as properties such as the hydraulic conductivity, porosity, 

permeability, and the hydraulic gradients within a porous medium are used in quantifying 

groundwater-stream water (GW-SW) exchange fluxes (Khan & Khan, 2019; Sophocleous, 2002; 

Woessner, 2000).  

At the stream reach scale, sediment compositions are highly spatially heterogeneous, and these 

heterogeneities can influence the water chemistry and ecological conditions within the streambed 

and the stream itself. Physical properties of streambed sediments, such as sediment surface area, 

grain size distribution and cation exchange capacity, can control the fate of chemicals discharging, 

or cycling, across streambeds. This is due to their influence on the residence time of chemical 

constituents, nutrients, preferential pathways, and the geochemical conditions along discharge or 

hyporheic flow paths (Conant et al., 2004; Irvine et al., 2020; Wang et al., 2021). 

At the local scale, the connectivity between the groundwater and stream water, and therefore the 

quantity and direction of the fluxes, is dependent on: (i)  head difference of the water table and 

stream surface levels, and (ii)  hydraulic properties of the connected aquifer system, including any 

geological material separating the aquifer from the stream, and its ability to transmit water to or 

from the stream (Reid et al., 2009; Schmidt et al., 2006). While attempting to understand and 

quantify GW-SW interactions, there is much more uncertainty involved, which ultimately arises 

from the inherent spatial and temporal heterogeneity of physical and reactive properties present in 

sediments throughout the subsurface, and at the GW-SW interface. 

Spatial variabilities can exist on a scale of centimeters to meters, adding to the complexity of 

properly characterizing and evaluating a system. Large-scale investigations may not include the 

detailed features that exist at a localized scale, while local investigations could omit information 

on larger ‘outside’ properties that influence GW-SW exchanges. Exchanges between groundwater 

and stream water can vary temporally over time scales of hours, days, or months. Seasonal basis, 
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or extreme weather events, can also cause a reverse in flow direction. This adds to the complexity 

and challenge of accurately characterizing water and chemical fluxes across streambeds (Cremeans 

et al., 2020; González-Pinzón et al., 2015). 

Common approaches used to characterize spatial heterogeneity within streambeds still rely on the 

extraction and analysis of soil corings, which can provide information on lithology and hydraulic 

properties such as porosity and intrinsic permeability (Dara et al., 2019). However, these 

techniques are invasive, labor intensive and require sometimes excessive assumptions between the 

sparsely distributed sampling locations. Approaches used to examine GW-SW exchanges typically 

include seepage meters, hydraulic gradient measurements, and thermal profiling, but again they 

suffer from low sampling density. Alternative approaches such as stream discharge and tracer 

techniques can provide greater spatial coverage, they are limited by low resolution and often miss 

the true heterogeneities that represent flow anomalies, such as low and high mobility zones 

(Kurylyk et al., 2019; Rosenberry, 2008). 

Geophysical techniques can provide rapid, cost-effective and continuous information and are 

transforming our ability to image the composition of the subsurface and monitor dynamic 

processes occurring within it (e.g., McLachlan et al., 2017; Binley et al., 2005). DC resistivity and 

induced polarization (IP) are now the most widely used geophysical techniques, with significant 

advancements in the past decade leading to their increased popularity for hydrogeological and 

geoenvironmental investigations (Binley et al., 2015). DC and IP measure the subsurface 

distribution of electrical resistivity and chargeability, respectively, which can then be used to infer 

hydrogeological features and processes of interest (Nyquist et al., 2009). 

DC and IP exhibit strong promise for improving characterization of streambed lithology and 

heterogeneity, which can then be used to improve understanding on water and chemical fluxes 

across streambed (McLachlan et al., 2017). DC resistivity can be used to identify streambed 

variations influenced by pore-water and grain conductivity, while IP complements DC resistivity 

by discriminating between clayey and non-clayey soils. Currently, the application of DC-IP for 

streambed characterization has been limited. Standalone DC resistivity has been applied to map 

streambed lithology but has been limited to two-dimensional (2D) surveys that are unable to 

accurately capture the 3D complexity within streambeds that typically exhibit significant 
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variability in the longitudinal and transverse directions (e.g., Earon et al., 2020). While time-

domain IP has not been employed for streambed characterization, frequency-domain IP was 

recently employed by Wang et al. (2021) to characterize physical properties of streambed 

sediments such as surface area; however, the dataset was limited to raw 1D measurements. 

DC and IP should be combined (referred to as DC-IP) and performed in 3D is to adequately capture 

the high complexity and heterogeneity of streambeds. In addition to mapping lithology, it is highly 

beneficial to assess the relationship between lithology and GW-SW exchange patterns. This can 

further reinforce the value of DC-IP for mapping streambeds as it can not only be used to directly 

infer lithology, but also provide indirect information on GW-SW exchange.  

The objective of this thesis was to evaluate the potential of 3D DC-IP for improving the 

characterization of streambed composition, which can then indirectly improve the understanding 

of GW-SW exchanges. A multi-disciplinary investigation of a stream reach in Kintore, Ontario, 

was performed, with numerous approaches being applied alongside DC-IP, including soil corings, 

hydraulic gradient measurements, thermal mapping and GW-SW flux measurements. This allowed 

a comprehensive investigation of the streambed, while also assessing the performance of DC-IP 

relative to traditional approaches.  

 

1.2 RESEARCH OBJECTIVES 

The overall goal of this thesis is to evaluate the potential of 3D DC-IP for complete characterization 

of streambed structural heterogeneities at a localized scale, and how this technique can be 

integrated with traditional hydrogeological approaches to improve the understanding of GW-SW 

interactions at complex field sites. As part of this goal, the following sub-objectives were 

addressed: 

1) Conduct DC-IP surveys at a stream reach site in Kintore, Ontario, with high-resolution 3D 

surveys being performed within the stream and in the adjacent riparian zone.  

2) Conduct traditional hydrogeological approaches, such as hydraulic gradient mapping, 

temperature difference mapping, sediment corings and temperature flux monitoring, to 

characterize the streambed and assess GW-SW exchanges  
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3) Assess the connection between objectives 1 and 2, to both validate the performance of DC-

IP and assess whether this integrated approach can enhance the understanding of GW-SW 

exchanges in a complex environment  

1.3 THESIS OUTLINE 

This thesis is written in an “Integrated Article” format. A brief description of the subsequent 

chapters presented are as follows: 

- Chapter 2: summarizes the scientific literature relevant to GW-SW interactions on a variety 

of scales and the importance of understanding these processes. Traditional hydrogeological 

techniques used to quantify the GW-SW exchanges and geophysical methodologies used 

to characterize geologic variations that affect such exchanges are discussed.  

- Chapter 3: details how various methodologies were used at the field site in Kintore, 

Ontario, to evaluate the performance of high-resolution DC-IP imaging to improve 

characterization of a stream reach and understanding of GW-SW exchanges. 

- Chapter 4: summarizes the findings of this research and suggests recommendations for 

future work. 

- Appendices: provides supplemental information for the work presented in Chapter 3. This 

information includes summaries and results from conducted field, laboratory and analytical 

methods that could not be included in their entirety within Chapter 3. 
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2 LITERATURE REVIEW 

This chapter summarizes the scientific literature relevant to the characterization of groundwater-

surface water interactions with specific focus in headwater streams. Many stream system 

characterization methodologies exist and are well established in hydrogeology, but the scale of 

groundwater-surface interactions is largely varied, resulting in methodologies that are site specific. 

The importance of accurate characterization of groundwater-stream water (GW-SW) is discussed 

and the linkages that exist to solute transport, such as phosphorus (P). The use of geophysical 

techniques such as DC resistivity (DC) and induced polarization (IP) have been increasing in 

popularity in hydrogeological studies and have been described to provide background information 

for this thesis. This review will examine the current state of knowledge with respect to 

hydrogeological techniques in GW-SW characterization, the applicability and use of geophysical 

methodologies in hydrogeological studies and the combination of techniques used in headwater 

systems. A summary is presented which identifies research gaps and opportunities. 

2.1 GROUNDWATER-SURFACE WATER INTERACTIONS 

2.1.1 INTRODUCTION 

Groundwater and surface water are complex interconnected components of hydrologic systems. 

Interactions between surface waters (streams, rivers, lakes, etc.) and groundwater occur nearly 

everywhere on earth, in a variety of hydrological, geochemical, or biological settings. (Khan & 

Khan, 2019; Sophocleous, 2002; Winter et al., 1998). The connection between groundwater-

surface water is understood to impact the quantity and quality in both entities and emphasizes the 

need for an understanding of interactions in a range of settings (Conant et al., 2019). 

2.1.2 GROUNDWATER-STREAM  

Ground water and streams interact in a variety of landscapes. These interactions occur in three 

situations: (i) loss of surface water to groundwater, (ii) seepage of groundwater to the surface water 

body, and (iii) combination of both. Therefore, groundwater-stream systems can be defined as 

‘gaining’, ‘losing’, or both (Winter et al., 1998). According to Woessner (2000), the interactions 

between groundwater and streams is controlled by: (i) the distribution of hydraulic conductivity in 



 

13 

 

channel sediments, (ii) the position of the stream stage with respect to the adjacent groundwater, 

and (iii) the position and geometry of the stream channel within the fluvial plain.  

Groundwater upwelling to a stream (i.e., gaining stream) occurs when the hydraulic head of the 

groundwater is higher than the stream water, whereas downwelling (i.e., losing stream) occurs 

when hydraulic head of the stream is higher relative to the adjacent groundwater. This is shown in 

Figure 2-1. Other classifications may be given to a stream reach, such as a flow through reach, 

parallel flow reach or a disconnected losing reach (Khan & Khan, 2019). Flow through reaches 

occur when the hydraulic gradient between groundwater levels vary from opposite banks. This 

condition is more common when a stream is perpendicular to regional groundwater flow 

(Woessner, 2000). A parallel flow reach exits when the groundwater and adjacent stream water 

have nearly equivalent hydraulic head levels, resulting in little to no exchange. A disconnected 

losing reach is a special case, where the stream is higher than the groundwater and is separated by 

an unsaturated sediment zone (Kalbus et al., 2006). Seasonal variability in precipitation and severe 

storm events can cause changes to the hydraulic heads and reverse exchange flow directions within 

a GW-SW system (Hamilton, 2005). Within a GW-SW system, the exchanges are typically 

categorized as regional, local (hyporheic), or both, which is discussed further in section 2.1.4. 
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Figure 2-1: Various characterizations of groundwater-stream water interactions (source: Khan & Khan, 

2019) 

2.1.3 HYPORHEIC ZONE 

The interface between groundwater and surface water is characterized as the physical boundary 

between the two water bodies, i.e., the top of subsurface materials where SW is in contact. The 

area within the underlying sediments comprised of mixing between subsurface water and surface 

water is defined as the hyporheic zone (Sophocleous, 2002). The interactions in the hyporheic zone 

are typically independent of larger scale reactions, and therefore areas of a reach or catchment that 

are considered ‘gaining’ or ‘losing’ may still have areas of upwelling or downwelling, due to 

hyporheic exchanges. Interactions are mainly controlled by the localized topography of the stream 

bed and the hydraulic conductivity distribution of the underlying sediments (Woessner, 2000). The 

hyporheic zone is significant with respect to the surface and groundwater quality, and stream 

ecological functions. The interaction of water with minerals and organic bio-films is enhanced as 

the passage of stream water into underlying sediments increases the residence time of water within 
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the ground, leading to modifications in water quality and potential attenuation of pollutants. The 

downwelling and upwelling of stream water also dictates the faunal composition, distribution, and 

abundance within the hyporheic zone as well as surface-water body (Brunke and Gonser, 1997).  

There has been deliberation with regards to characterization of the hyporheic zone, as it can be 

viewed from a hydrological, ecological or hydrogeological perspective (Smith, 2005). 

Hydrological studies are concerned with the exchange fluxes that occur within the hyporheic zone. 

Ecological studies have focused on the function of the hyporheic zone as a site development for 

benthic microorganisms. Hydrogeological studies are concerned with the hyporheic zone as a part 

of the groundwater system and also takes into the account the high presence of organic materials 

and microbial communities.   

It is important to appreciate the variety of processes involved in the hyporheic zone, their driving 

factors and the interconnectivity of studies when determining the impacts of exchanges over time 

and space.  

2.1.4 EXCHANGE FLUX 

An essential parameter used when describing GW-SW interactions is the Darcy flux (specific 

discharge). Interactions between groundwater and surface water can vary in space and time and 

across a wide range of physical scales and accurately quantifying spatial and temporal flux 

variations can assist in various water management practices (quantity and quality).  Fluxes between 

groundwater and streams are referred to as exchange fluxes. The exchange fluxes in a GW-SW 

system contain two components: groundwater-surface water exchange flux and hyporheic 

exchange flux (Hannah et al., 2009). As described in section 2.1.2, GW-SW exchange flux 

typically describes a gain or loss to the stream reach from water entering or leaving the stream, 

whereas hyporheic exchange flux occurs when stream water enter the HZ at an upstream point, 

and then exiting back to the stream at a downstream point. Differentiating between the exchange 

fluxes can be difficult and for the purpose of this study, they are lumped together.  

Three arbitrary sized scales are often considered as boundaries for studies of GW-SW interactions: 

catchment (>1000 m), reach (1-1000 m), and sediment (<1 m),  (Dahl et al., 2007). The 
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interconnected flow paths between GW-SW can vary in length from centimeters to more than a 

kilometer (Poole et al., 2008).  

At the catchment scale, groundwater and surface water patterns are controlled predominately by 

topographic and geologic attributes, while recharge distribution and overland flow is attributed to 

the climatic region. Therefore, downwelling conditions are often found in the upper stream reach, 

as topography causes unsaturated conditions. Conversely, middle reach groundwater often have 

higher contribution to stream flow increases and are considered gaining reaches. In low reaches, 

groundwater and surface water hydraulic gradients are often small and therefore result in parallel 

flows. These tendencies can vary due to local geography.   

At the reach scale flow conditions will depend on several factors including the geometrical 

properties of the stream (width, depth, wetted perimeter, etc.), streambed sediment heterogeneity, 

streambed morphology and local characteristics of connected aquifers (Buss et al., 2009). Flow 

conditions are more effluent when streams have a large meandering path or when the stream width 

to depth ratio is small. Variations in streambed heterogeneity define the hydraulic conductivity 

distribution and the behaviour of local flow paths. Streambed morphology influences exchange 

flows and discharge patterns depending on the pool-riffle-run sequences present. Local climatic 

and land use conditions influence discharge and recharge patterns. 

At the sediment scale flow patterns are predominately defined by sediment physical properties. 

Grain size, shape, distribution and compaction directly influence the permeability, porosity and 

hydraulic conductivity throughout a stream, causing the formation of preferential pathways. Flow 

patterns at sediment and reach scale are also influence by local features such as pool-riffle-runs, 

or due to obstructing obstacles such as wood, rocks, etc. 

2.1.5 MAPPING AND MONITORING GROUNDWATER-STREAM 

WATER PROPERTIES 

Various techniques exist to aide in characterizing GW-SW interactions and understanding the 

hydrological, biological and/or ecological characteristics at various spatial and temporal scales. 

This is challenging as GW-SW systems are dynamic in time and space and measurements and 

certain scales may not be representative across the system. Accurate determination of parameters 

such as hydraulic gradients, hydraulic conductivity, porosity or grain size distribution is needed. 
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Additionally, exchange fluxes can be assessed using both direct and indirect measurements. These 

techniques are listed in Table 2-1, including their desired parameter measurement, the spatial scale 

of application and additional resources. It is noted that a number of assessment methods 

measurements are collected on the sediment scale, indicating that these traditional techniques are 

susceptible to limited sampling density.  

 

Table 2-1: Commonly mapped GW-SW parameters, their respective assessment method, the typical 

associated scale and relevant literature. 

Classification 

Area 
Property 

Assessment 

Method 
Scale Reference 

Determining 

GW-SW 

Exchange 

Darcy Flux 

Seepage meter 

measurements 
Sediment 

Rosenberry and 

LaBaugh (2008) 

Tests with 

environmental traces 
Reach Berryman (2005) 

Incremental 

streamflow 

Reach to 

catchment 

Harvey and Wagner 

(2000) 

Hydrograph 

separation 

Reach to 

catchment 

Hornberger et al. 

(1998) 

Hydraulic 

gradient 

Water level 

measurements in 

piezometers 

Sediment 
Rosenberry and 

LaBaugh (2008) 

Potenio-manometer 

boards 
Sediment Winter et al. (1988) 

Determining 

Reach Property 

Hydraulic 

conductivity  

Grain size analysis Sediment 
Vienken and 

Dietrich (2011) 

Pumping tests 
Sediment to 

reach 
Fetter (2001) 

Permeameter tests Sediment 
Freeze and Cherry 

(1979) 

Porosity 
Laboratory tests on 

sediment samples 
Sediment Fetter (2001) 

Flow 

Velocity 
In-situ tracer tests Reach Berryman (2005) 
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2.1.5.1 HEAT AS A TRACER 

The quantification of exchange fluxes has become an integral part in many investigations as 

magnitudes of exchanges and how they vary spatially and temporally can indicate connectivity 

between GW-SW systems. Heat can be used as a tracer to indirectly quantify exchange fluxes. 

With this method, temperature as a measure of heat is used in combined water flow and heat 

transport models to deduce the flow of water from a measured temperature distribution in the 

streambed. Main advantages of this method are that temperature is an easy, inexpensive and 

accurate property to measure, and that the thermal parameters needed for the coupled model have 

a very limited range. 

Temperature-based analytical solutions are commonly used in various models, to infer the 

direction and estimate the magnitude of groundwater-surface water exchange fluxes (Irvine et al., 

2020; Stonestrom & Constantz, 2003). For the purpose of this study, Flux in Layered Media (Flux-

LM) automated spreadsheet tool was used (Kurylyk et al., 2017). The Flux-LM tool uses 

temperature depth (TD) profiles to solve the one-dimensional (1D) subsurface heat transport 

equation by Bredehoeft and Papadopulos (1965), 

𝜆0
𝜕2𝑇

𝜕𝑧2 − 𝑞𝐶𝑤
𝜕𝑇

𝜕𝑧
= 0,                 (2.1) 

Where λ0 is the bulk thermal conductivity of the saturated sediment (W m-1 ℃-1), T is the 

temperature (℃), z is the sediment depth (m), q is the vertical flux (positive downwards, m s-1), 

and Cw is the volumetric heat capacity of the water (J m-3 ℃-1). 
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Figure 2-2: Diagram of an n-layered medium. (From Kurylyk et al., 2017) 

The boundary conditions at the top and bottom of the domain are as follows:  

𝑇1(𝑧 = 0) = 𝑇0     (2.2) 

𝑇𝑛(𝑧 = 𝑑𝑛) = 𝑇𝐵     (2.3) 

The analytical solution provided by Bredhoeft and Papadopulous has been extended to 

allow for variations in thermal conductivity with layers in depth (Kurylyk et al., 2017). 

Temperature distributions must converge at the layer interfaces and the boundary conditions are 

as follows. 

𝑇𝑖(𝑧 = 𝑑𝑖) = 𝑇𝑖+1(𝑧 = 𝑑𝑖) = 𝑇𝐿𝑖     (𝑖 = 1, 2, … , 𝑛 − 1),  (2.4) 

 The Flux-LM spreadsheet tool solves the homogenous ordinary differential Equation 2.1 

with a standard solution. 

𝑇𝑖(𝑧) = 𝐶𝑖1 exp (
𝑞𝑧

𝛾𝑖
) +  𝐶𝑖2     (𝑖 =  1, 2, … , 𝑛)    (2.5) 
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2.1.6 SPATIAL HETEROGENEITY 

The parameters used in describing flow and transport are most commonly heterogeneous in 

practice. This is often difficult to accurately represent or model and methodologies may be 

simplified through assumptions. The heterogeneity of porous media is directly related to the 

connectivity patterns of a GW-SW system (Renard & Allard, 2013).  

Geologic heterogeneity causes spatial and temporal variability when delineating various 

parameters. This influences understanding and characterizing the GW-SW interactions. Most 

notably, variations in the hydraulic conductivity parameter, a direct relationship of the streambed 

sediments, will cause variability in GW-SW exchange flow paths (Tonina & Buffington, 2007). 

Spatial changes in hydraulic conductivity will result in distinct areas of upwelling or downwelling, 

caused by varying levels of preferential flow paths within a streambed (Wondzell et al., 2019) . 

These spatial variations can exist both vertically and laterally, adding to the complexity. Sediment 

layering caused by fluvial deposition along the streambed can cause vertical anisotropy, creating 

differences in lateral and vertical flow paths (Krause et al., 2011).  

 

2.2 GEOPHYSICAL TECHNIQUES 

2.2.1 DC RESISTIVITY 

DC resistivity is one of the oldest and most well-established geophysical methods. In essence, it 

involves the induction of electrical current into the subsurface through an external source, and 

variations in subsurface resistivity are measured. Interpretation of field measurements are used in 

a vast range of applications, such as: archaeological investigations (Gaffney, 2008; Hemeda, 2013; 

Tsokas et al., 2008), geological investigations (Carrière et al., 2013; Storz et al., 2000), 

hydrogeological exploration and monitoring (Coscia et al., 2011; Robert et al., 2012), contaminant 

investigation (Naudet et al., 2004; Vaudelet et al., 2011) and various engineering applications 

(Chambers et al., 2006; Friedel et al., 2006). ERT is so widely appreciated because the surveys are 

relatively easy to carry out, instrumentation is inexpensive, data processing tools are widely 

available, and the relationships between resistivity and hydrological properties, such as porosity 



 

21 

 

and moisture content, are reasonably well established (Binley & Kemna, 2005). This section 

examines the basic theory of ERT and characterizing measurements in subsurface investigations. 

2.2.1.1 BASIC THEORY 

DC resistivity surveys operate on the basis of Ohm’s Law that governs the flow of current in the 

ground. The equation for Ohm’s Law in vector form for current flow in a continuous medium is 

given by (Tsourlos, 1995): 

J = σE,      (2.6) 

where σ is the conductivity of the medium, J is the current density and E is the electric field 

intensity. In field practice, electric field potential (Φ) is measured. The relationship between the 

electric potential and the field intensity is determined by: 

E = −∇Φ      (2.7) 

Combining Equations 2.1 and 2.2 results in:  

J = −σ∇Φ      (2.8) 

The DC method is used by introducing an electrical current into the subsurface to create an 

artificial field in which the potential difference is measured between injection and monitoring 

electrodes. Figure 2-3 illustrates a single injection point source of current on the surface of a semi-

infinite conducting layer of a homogenous medium.  
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Figure 2-3: Current propagation from point source and resulting equipotential surfaces. 

Located above the injection site is the surrounding atmosphere with infinite resistance. Therefore, 

the injected current source I flows radially in all directions (in a homogenous and isotropic 

medium), creating a hemispherical distribution shell of resistivity ρ. At a radial distance r from the 

current point source, the surface area of the hemisphere is 2πr2, resulting in the electrical potential 

at point P represented by (Tsourlos, 1995): 

Φ𝑃 =
𝐼ρ

2𝜋𝑟
      (2.9) 

Surveys use at least two current electrodes, one positive and one negative. This is illustrated in 

Figure 2-4 as electrode A is positive and sends current into the subsurface and electrode B is 

negative and collects the returning current, acting as the source and sink, respectively.  
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Figure 2-4: Equipotential surfaces and current propagation lines from two point source electrodes 

(Tsourlos, 1995)  

The electrical potential at point P is represented by: 

Φ𝑃 =
𝐼ρ

2𝜋
(

1

𝑟𝐴
−

1

𝑟𝐵
)     (2.10) 

where rA and rB are the radial distances from electrodes A and B, respectively. In practice two pairs 

of electrodes are used. Similar to the above, but now the first pair is used to inject the current into 

the ground and the second to measure potential difference in the vicinity of current flow. This is 

shown in Figure 2-4, where electrodes A and B inject current I, while electrodes M and N act as 

potential electrodes, measuring the potential voltage, over an assumed homogenous and isotropic 

medium.  
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Figure 2-5: Example of simple four-electrode array. A and B are current electrodes, M and N are 

potential electrodes. 

The electrical potential measured by electrodes M and N can be determined using equation. 

Φ𝑀 =
𝐼ρ

2𝜋
(

1

𝐴𝑀
−

1

𝐵𝑀
)      (2.11) 

Φ𝑁 =
𝐼ρ

2𝜋
(

1

𝐴𝑁
−

1

𝐵𝑁
)      (2.12) 

The difference in electrical potential between M and N is therefore determined to be:  

 ΔΦ = Φ𝑀 − Φ𝑁 =
𝐼ρ

2𝜋
(

1

𝐴𝑀
−

1

𝐵𝑀
−

1

𝐴𝑁
+

1

𝐵𝑁
)   (2.13) 

It is understood that in nearly all field surveys the subsurface is a heterogeneous medium, where 

the sediments are changing spatially in three dimensions. The observed resistivity values are 

considered the ‘apparent’ resistivity, which is not the true resistivity of the subsurface but instead 

can be thought of a weighted average of the subsurface. The apparent resistivity is represented by: 

ρ𝑎 = k (
ΔΦ

𝐼
)       (2.14) 

Where k is a geometrical factor that is dependent on the electrode configuration. Examples of 

various configurations are discussed in section 2.2.3.  
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2.2.1.2 TYPICAL MEASUREMENTS 

Measured resistivity values represent the difficulty in which electrical current is passing through 

the subsurface. This parameter is generally most affected by certain characteristics of the 

subsurface such as: the distribution of the water table, chemical composition and concertation of 

salts within the water, the soil grain sizes, porosity, consolidation and temperature. Typical 

resistivity ranges of rocks, soils and mineral are shown in Figure 2-6. 

 

Figure 2-6: Resistivity ranges of rocks, soils, minerals and water (From Loke, 2015) 

2.2.2 INDUCED POLARIZATION 

Induced polarization (IP) is conducted and measured in a similar fashion to DC resistivity but 

measures the chargeability. Chargeability is affected by the induced polarization effect, which 

represents the degree to which the subsurface can receive and store an electric charge. The 

understanding of the combined physical and chemical characteristics causing the phenomenon are 
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quite complex, but it is generally thought to be affected by two main mechanisms: membrane 

polarization, caused largely due to clay and minerals present, and electrode polarization, caused 

by conductive materials (Kiberu, 2002; Loke et al., 2013). Several of the benefits of ERT are also 

advantageous in IP surveys, making them a popular geophysical method in applications of mineral 

exploration (Bigalke & Junge, 1999), contaminant monitoring (Sogade et al., 2006), mining 

investigations (Campbell et al., 1998; Power et al., 2018) and various environmental and 

engineering applications (Gazoty et al., 2012; Slater & Lesmes, 2002). This section examines the 

basic theory of IP and characterizing measurements in subsurface investigations. 

2.2.2.1 BASIC THEORY 

Induced polarization is a dimensionless quantity in theory. However, in practice it is measured as 

a change in voltage with respect to either time or frequency.  

Time-Domain Method 

In the time-domain method, the IP effect measures the residual voltage after the current is removed. 

It is expressed by the term chargeability m and is given by (Seigel, 1959): 

𝑚 =
𝑉𝑠

𝑉𝑃
      (2.15) 

where Vp is the on-time measured voltage and Vs is the off-time measured voltage. In practice, it 

is very difficult to measure Vs at the exact moment the current is switch off due to electromagnetic 

effects. Therefore, it is generally measured at a specific time after removing current (e.g. 1s after), 

and measurements are taken of the decay of Vs over a short time-frame. The integration of the 

voltage over a discrete time interval (t1 - t2) is shown in Figure 2-7 and describes the measured 

chargeability: 

𝑚 =
1

𝑉𝑃
∫ 𝑉𝑠

𝑡2

𝑡1
∗ 𝑑𝑡     (2.16) 
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Figure 2-7: Measurement of a) time-domain induced and b) frequency-domain polarization. (Modified 

from Kiberu, 2002) 

Frequency-Domain Method 

In frequency-domain methods, measurements are made using at least two different frequencies, a 

high and low frequency. Comparative measurements are taken of either the steady stage voltage 

response or of the apparent resistivity values at the assigned high and low frequencies. This can be 

described as the Frequency Effect (Kiberu, 2002): 

𝐹𝐸 =
𝑉𝑙𝑜−𝑉ℎ𝑖

𝑉ℎ𝑖
 , 𝐹𝐸 =

𝜌𝑙𝑜−𝜌ℎ𝑖

𝜌ℎ𝑖
       (2.17) 

Typically, the Frequency Effect is expressed as the Percentage Frequency Effect: 
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𝑃𝐹𝐸 =
𝜌𝑙𝑜−𝜌ℎ𝑖

𝜌ℎ𝑖
∗ 100        (2.18) 

2.2.2.2 TYPICAL MEASUREMENTS 

As previously mentioned, chargeability is a materials ability to secure and hold an electric charge. 

Similar to DC, IP measurements are affected by lithology, pore fluid chemistry and water content, 

but are more affected by the presence of clay and minerals present in the subsurface than DC 

results. Typical chargeability ranges of rocks and minerals are shown in Figure 2-8. 

 

Figure 2-8: IP ranges of rocks, soils, minerals and water (From Loke, 2015) 

2.2.3 ELECTRODE CONFIGURATIONS 

The electrode configuration selected will depend on the aim of a given survey, as differing array 

configurations are more suitable depending on the geometrical shape, size and resolution of the 

desired ‘image’. Each electrode array results in different sensitivities in regard to lateral and 

vertical variations in resistivity, depth of investigation and signal-to-noise ratios. DC surveys are 

generally identified according to the arrangement of the current and potential electrodes. The most 

common arrays include Wenner, Schlumberger, dipole-dipole, pole-dipole, and pole-pole. The 

configurations of these arrays are shown in Figure 2-9. As mentioned in Section 2.2.1.1, the 

geometrical factor is dependent on the array configuration, and is given as: 

𝑘 =
2𝜋

(
1

𝐴𝑀
−

1

𝐵𝑀
−

1

𝐴𝑁
+

1

𝐵𝑁
)
      (2.19) 
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where AM, BM, AN and BN are the radial distances to a point P in the subsurface, based on the 

respective array. 

 

Figure 2-9: Basic resistivity arrays. (Tsourlos, 1995) 

In the field, the IP electrode system is the same as the resistivity system, so electrode arrays such 

as Wenner, Schlumberger, Pole–dipole and double dipole are used.  

2.2.4 MODELLING AND INVERSION 

As previously mentioned, the ultimate goal of geophysical methods is to produce an ‘image’ of 

the target area within the subsurface. The theoretical outcome of measurements can be determined 

(modeled) for given electrical properties. This is referred to as the “forward modelling” problem. 

Conversely, given a set of collected field measurements, the distribution of electrical properties is 

sought to be determined that accurately represent the measurements, within an acceptable error. 
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This is referred to as the “inversion” problem. The following section describes various techniques 

to solve both problems. 

 

Figure 2-10: Linkage between forward and inverse modelling. 

2.2.4.1 FORWARD MODELLING 

To predict a theoretical value that would provide a solution to the below defined equations is 

considered forward modelling. There are several methods to solve the forward modelling problem. 

They are generally separated into two groups: analytical solutions and numerical models. 

Analytical solutions are more accurate but are restricted to relatively simplistic geological 

geometries. It is understood that in practice, site investigations are seldom truly homogenous and 

isotropic, making them complex and more suitable to be solved using numerical modelling.  

DC Resistivity 

In the majority of resistivity surveys, current sources are in the form of point sources. In this case, 

over an elemental volume surrounding the current source I, located at (xs, ys, zs), the relationship 

between the current density and the current is given by (Dey and Morrison, 1979a):  

    ∇J = (
𝐼

∇𝑉
) 𝛿(𝑥 − 𝑥𝑠)𝛿(𝑦 − 𝑦𝑠)𝛿(𝑧 − 𝑧𝑠)     (2.20) 

where δ is the Dirac delta function. Equation 3 can be rewritten as: 
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∇[σ(x, y, z)∇Φ(x, y, z)] = (
𝐼

∇𝑉
) 𝛿(𝑥 − 𝑥𝑠)𝛿(𝑦 − 𝑦𝑠)𝛿(𝑧 − 𝑧𝑠)  (2.21) 

This partial differential equation represents the potential distribution in the ground due to a current 

point source.  

IP 

Forward modelling solutions are also available for IP data, an example is given by Li & Oldenburg 

(2000): 

𝑚 =
𝑓[(1−𝑚)σ]−𝑓[σ]

𝑓[(1−𝑚)σ]
     (2.22) 

where 𝑓 represents the forward modelling operator for the conductivity distributions mentioned 

in section 2.2.1.  

2.2.4.2 INVERSION 

Inversion is required to invert the apparent electrical values obtained during ERT surveys to obtain 

the distribution of true electrical properties.  Inversion is a very rich field of research and inversion 

schemes are being continuously improved and developed, resulting in more accurate and valuable 

results from electrical measurements.  Numerous inversion codes have been developed over the 

years and can be applied to the various survey approaches, including 2D and 3D surveys (e.g., 

Loke and Barker, 1996; Tsourlos and Ogilvy, 1999), in surface, borehole and underwater surveys 

(e.g., LaBrecque et al., 1996), and in static and time-lapse modes (e.g., Karaoulis et al., 2013).    

2.3 GEOPHYSICAL TECHNIQUES USED IN GROUNDWATER-

STREAM WATER INVESTIGATIONS 

Using geophysical techniques in various hydrogeological investigations has been explored and 

developed within the field of ‘hydrogeophysics’. The use of geophysical ‘imaging’ of the structural 

subsurface of a GW-SW system is a non-invasive technique in characterization of exchanges 

(Binley et al., 2015). Table 2-2 shows some typical geophysical techniques and the environmental 

parameters that are to be investigated. Also shown are the typical resolution depths and 

investigation time required. The use of geophysical techniques allows for more understanding of 

the spatial and temporal heterogeneities that exist in GW-SW systems subsurface. The 
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measurement density of these methods are not well achieved by traditional hydrogeological 

methods as mentioned in section 2.1.5, many of which are also indirect. Coring techniques can 

provide the most assured site data but is spatially limited and invasively destructive (Crook et al., 

2008).  

The most effective geophysical survey would be a high resolution, 3-Dimensional time-lapse 

investigation. This would allow for the most information regarding a GW-SW system to be 

collected and interpreted. However, this extent of a survey would be time consuming and not the 

most cost effective approach, and therefore is seldom used. 

 

Table 2-2: Geophysical techniques, their associated measured geophysical property and the hydraulic 

parameters which they relate to. Typical investigation depths and acquisition times are also included. 

(Modified from McLachlan et al., 2017) 

Geophysical 

technique 

Geophysical 

properties 

Examples of derived 

environmental 

parameters 

Typical 

Investigation 

Depths 

Typical 

acquisition 

time for 100 m 

transect 

Electrical 

Resistivity 

Electrical 

Conductivity 

Water content, clay 

content, pore water 

conductivity, porosity, 

stratigraphy 

Metres to tens 

of metres 
Tens of minutes 

Induced 

Polarization 

Electrical 

Conductivity, 

chargeability 

Water content, clay 

content, pore water 

conductivity, porosity, 

stratigraphy 

Metres to tens 

of metres 

Tens of minutes 

to hours 

Ground 

penetrating 

radar 

Dielectric 

permittivity, 

electrical 

conductivity 

Water content, porosity, 

stratigraphy 

Metres to tens 

of metres 

Minutes to tens 

of minutes 

Seismic 

Bulk density, 

elastic 

moduli 

Porosity, stratigraphy 
Metres to tens 

of metres 
Tens of minutes 
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2.4 SUMMARY & DATA GAPS 

This chapter highlighted the importance of understanding GW-SW interactions on a local scale. 

As identified in Section 2.1.5, a major challenge in GW-SW investigations is determining the 

hydraulic properties of the subsurface. Traditional techniques are usually spatially limited and can 

often times be invasive and compromising of local interactions. Given the true spatial and temporal 

heterogeneity of the subsurface, many of these techniques do not provide the sampling density to 

accurately characterize subsurface properties in space or time. The direct observation of spatial 

exchange fluxes between groundwater and streams remains a challenge.  

There is a need to combine the traditional hydrogeological techniques with high-sampling density 

geophysical techniques to assess the areas of connectivity most effectively, to aide in the 

characterization of GW-SW interactions. Chapter 3 of this thesis presents a study focused on a 

headwater stream located in southwestern Ontario in which high activities of GW-SW exchanges 

well recorded. It is also noted that high levels of nutrient contaminants (phosphorous) were 

detected in the stream reach, allowing for the potential linkages to be made with this study and a 

partnered research study. High resolution, 3D DC and IP surveys were conducted in the stream 

reach and the adjacent riparian zone, as well as several traditional hydrogeological techniques. 

Following detailed analysis, concordances were identified in various methodologies to 

characterize the GW-SW relations most effectively. 
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3 IMPROVED CHARACTERIZATION OF 

GROUNDWATER-STREAM WATER INTERACTIONS 

THROUGH GEOPHYSICAL MEASUREMENTS OF 

HETEROGENEOUS STREAMBED-AQUIFER 

ARCHITECTURE 

3.1 INTRODUCTION 

Groundwater (GW) and stream (SW) water are complex interconnected components of various 

hydrologic systems. Understanding the interactions between GW and SW is at the forefront of 

many hydrogeological investigations as these interactions are intertwined in hydrological, 

biogeochemical and biological relationships, which have impacts on maintaining water quantity 

and quality standards (Conant et al., 2019; Sophocleous, 2002). For instance, harmful algae 

blooms from excess phosphorous are a critical issue for Lake Erie of the Great Lakes, and the 

Thames River watershed is known to be contributing to this issue. (Baker et al., 2019; Jarvie et 

al., 2017) 

The complexity of GW-SW systems are due to the fact that a variety of factors can alter the 

outcome of interactions, including i) the distribution of hydraulic conductivity in streambed 

sediments, ii) the position of the stream stage with respect to the adjacent groundwater levels, and 

iii) the position and geometrical influence of the stream channel within the fluvial plain (Woessner, 

2000). It is also understood that GW-SW interactions vary substantially in space and also 

potentially in time (Buss et al., 2009) , due to the variation in control factors. Therefore, to attempt 

to best understand the importance and potential impacts of GW-SW interactions, it is necessary to 

accurately characterize the streambed architecture and the connectivity and hydrogeological 

conditions of a streambed-aquifer system.  

Streambed sediments are highly spatially heterogeneous with the physical properties of these 

sediments regulating GW-SW exchange fluxes and coupled abiotic/biotic reactions. As such, this 

streambed heterogeneity can influence the water chemistry and the ecological conditions within 

the streambed and in the stream itself.  For instance, sediment surface area, porosity and 

permeability can control the fate and transport of chemicals, including nutrients, discharging or 

cycling across streambeds including preferential pathways, as they affect the residence time and 
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the geochemical conditions along discharge or hyporheic flow paths (Conant et al., 2004; Irvine et 

al., 2020). It is well established that at a stream-reach scale, variations in streambed lithology, and 

thus in streambed hydraulic properties, can impact GW-SW exchange patterns on a scale of meters 

to centimeters (Briggs et al., 2014; Stonestrom & Constantz, 2003). As a result, it is highly 

challenging to accurately characterize exchange fluxes across streambeds. While this study will 

focus on the physical characteristics that influence GW-SW interactions, a partner study was 

conducted to monitor the chemical characteristics. 

Various methodologies are available to provide measurement and mapping of the spatial 

distribution of GW-SW exchanges across a streambed. Temperature methods (Rau et al., 2010), 

seepage meters (Rosenberry & LaBaugh, 2008), Darcy-based calculations with hydraulic head 

(Schmidt et al., 2007) and hydraulic property measurements (Tarnawski et al., 2011) are 

commonly used, however these methods can often be invasive, destructive, labour-intensive and 

difficult to properly conduct in various conditions. Furthermore, they can suffer from low sampling 

density and as a result, interpretations often require simplifying assumptions. For instance, 

temperature is often used as a tracer to identify and quantify water flux across streambeds. Several 

analytical solutions based on the 1-D vertical heat transport equation are available for estimating 

exchange fluxes using vertical temperature gradients (Gordon et al., 2012; Irvine & Lautz, 2015; 

Rau et al., 2010). However, the assumption in a number of analytical solutions is that the streambed 

is vertically homogenous (Kurylyk et al., 2017). This assumption is often required due to the lack 

of detailed understanding of the streambed lithology. Finally, it is noted that not all methodologies 

give information about the controlling factors, useful for predicting how GW-SW interactions may 

change with space and time. 

Given the strong control by streambed-near aquifer lithology on the spatial variation in GW-SW 

interactions, it would be highly beneficial to have a better measure of this at small scale across an 

entire site, available under nearly all conditions. Geophysical techniques are an attractive option 

as they can provide rapid, non-invasive, and continuous information about the subsurface. Along 

with direct current (DC) resistivity, induced polarization (IP) in the time-domain, is the most 

widely applied geophysical technique in the field (e.g. Binley et al., 2015). Combined DC 

resistivity and time-domain IP, referred to as DC-IP, measures the variation of electrical and 

capacitive properties in the time-domain to produce both resistivity and chargeability distributions 
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of the subsurface (e.g., Soupios & Kokinou, 2017). Research and development in both DC 

resistivity and IP remain highly active and major advancements have helped to increase their 

popularity for geoenvironmental and hydrogeological investigations, including the mapping of 

lithology (Duvillard et al., 2018), hydraulic characteristics (e.g. Maurya et al., 2018), and 

subsurface contamination (e.g. Power et al., 2018).  

DC-IP exhibits strong promise for improving characterization of streambed lithology and 

heterogeneity (e.g. Coscia et al., 2011; Crook et al., 2008), as needed to better interpret water and 

chemical fluxes across streambed. DC resistivity can be used to identify streambed variations due 

to (i) pore-water conductivity, which is a function of water saturation, ionic strength and porosity, 

and (ii) solid particle surface conductivity due to membrane polarization caused largely due to clay 

materials (Kiberu, 2002). Time-domain IP complements DC resistivity by describing mineralogy 

and discriminating between clayey and non-clayey soils (Slater & Lesmes, 2002; Yatini et al., 

2018). Currently, the application of DC-IP for streambed characterization has been limited. 

Standalone DC resistivity has been applied to map streambed lithology but has been limited to 

two-dimensional (2D) surveys that are unable to accurately capture the 3D complexity within 

streambeds that typically exhibit significant variability in the longitudinal and transverse directions 

(Busato et al., 2019; Earon et al., 2020) While time-domain IP has not been employed for 

streambed characterization, frequency-domain IP was recently employed by Wang et al. (2021) to 

characterize physical properties of streambed sediments such as surface area; however, the dataset 

was limited to raw 1D measurements. 

DC-IP imaging should be performed in 3D to adequately capture the high complexity and 

heterogeneity of streambeds. In addition to mapping lithology, it is highly beneficial to assess the 

relationship between lithology and GW-SW exchange patterns. This can further reinforce the value 

of DC-IP for mapping streambeds as it can not only be used to directly infer lithology, but also 

provide indirect information on GW-SW exchange.  

The main objective of this study was to evaluate the potential of 3D DC-IP for characterizing the 

structural heterogeneities within a streambed to inform assessment of stream GW-SW interactions. 

A high-resolution 3D DC-IP underwater survey was conducted within a 50 m long headwater 

stream reach in Kintore, Ontario. The structural information from this survey was then compared 
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to soil characteristics from extracted soil cores, and to in situ temperature mapping, exchange flux 

measurements and vertical head differences collected within the stream, to assess the performance 

of 3D DC-IP relative to traditional approaches. Furthermore, this study will discuss the benefits of 

this integrated multi-disciplinary approach to improve interpretation of streambed heterogeneity 

and its influence on water exchange patterns across streambeds.  
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3.2 SITE DESCRIPTION 

The study area was located within the Middle Thames River watershed, just north of the town of 

Kintore in Ontario, Canada. Geographically located in southwestern Ontario, Kintore is subjected 

to the Great Lakes and St. Lawrence lowlands climate region and has an average annual 

precipitation of 1011 mm with maximum and minimum monthly average temperatures of 20.8 °C 

and -5.6 °C, respectively, based on 30 years of historical data (Environment and Climate Change 

Canada, 2021). This 13 km2 sub watershed lies within the Thames River watershed, which is one 

of the largest watersheds in the Lake Erie basin. As agriculture is the dominant land use in Kintore 

Creek, it was suspected that this sub watershed may be one source of phosphorous. Figure 3-1 

indicates the location of Kintore Creek and its proximity to Lake Erie.  

 

 

Figure 3-1: Site maps indicating the location of Kintore within southwestern Ontario. 

The stream reach used in this study was identified from several preliminary surveys. First, 222-

radon tracer sampling was conducted along the streams within Kintore Creek to identify areas with 

high GW-SW interaction. Vertical head difference measurements indicated high variability in 

GW-SW exchange patterns along a specific stream reach, and simultaneous streambed pore water 

sampling along this reach identified high concentrations of soluble reactive phosphorous (SRP) 

that were indicative of GW-SW exchange. Furthermore, a single DC survey line was imaged along 
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the center of the stream to provide an initial understanding of streambed heterogeneity and help to 

optimize the design of the high-resolution 3D DC imaging that would subsequently be performed.  

Figure 3-2 presents a plan view of the study stream reach. The reach is 50 m long with a very slight 

meander, transverse widths vary from 1.2 m to 3.8 m. The stream stage varied seasonally with 

maximum and minimum depths of 0.47 m to 0.1 m, respectively, and an average depth of 0.21 m. 

Surficial geology was noted from fine sands to loose gravelly-sand with larger cobbles present 

upstream. Agricultural farmland for crops is maintained on either side of the stream, with riparian 

zones comprising of tall grasses and trees are directly adjacent to the stream on both sides. 

Elevation changes of up to 2 m exist from riparian zone to stream banks. 

 

Figure 3-2: Aerial photographs of the stream reach and the bordering riparian zones. Stream border is 

from September 13th, 2019; it changed slightly through the monitoring period. 
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3.3 METHODOLOGY 

A number of different field techniques were employed to measure the key parameters for this 

study: (i) geophysical surveys, (ii) spatial temperature mapping, (iii) potentio-manometer readings, 

(iv) stream stage measurements (v) soil coring and sieve analysis and (vi) vertical temperature 

profiling. 

3.3.1 GEOPHYSICAL IMAGING 

Stream Reach 

A 3D underwater DC-IP survey was performed to determine the structural heterogeneity of the 

streambed. A surface grid was laid out in the stream reach, consisting of ten parallel lines, as shown 

in Figure 3-3. Each long survey line had an inline spacing of 0.2 m and contained a total of 240 

electrodes with a length of 47.8 m. As a 48-electrode system was being used, each survey line was 

captured through nine smaller lines that progressed downstream using the roll-along method. A 

50% overlap between each successive line was employed to ensure full image integrity (Loke, 

2015). Each long survey line was then traversed across the stream width with an interline spacing 

of 0.2 m, with 10 parallel lines providing a width of 1.8 m. In total, 2400 electrodes were used to 

provide a 2D surface area of 86.04 m2 (47.8 m x 1.8 m), and an approximate depth of investigation 

of 1.5 m. Preliminary modeling of the stream confirmed that a ‘submerged electrode’ survey 

provided improved resolving ability over a ‘floating electrode’ survey as it reduced current leakage 

direct to the stream channel (e.g., Crook et al., 2008). Each small stainless-steel electrode (2.5 cm 

long) was pushed into the streambed sediment and the head of water over each electrode was 

recorded. By assuming the stream stage was flat, the water head measurements over electrodes 

would incorporate topographical information into the survey. 

Riparian Zone 

A 3D DC resistivity survey was also performed to image the larger geological structure 

surrounding the stream. A 2D surface grid of 26 parallel survey lines was implemented to capture 

the edge of the field and riparian zone on both sides of the stream. The outline of the grid is shown 

in Figure 3-2. Each line comprised 48 electrodes with an inline spacing of 1 m and a length of 47 

m that was centered on the stream. The interline spacing between parallel lines was 2 m to provide 
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a survey width of 50 m. A total station was used to obtain the elevation of all 1248 electrodes to 

incorporate topography into the data processing and inversion. 

Twenty-six parallel lines were orientated perpendicular to the stream and designed to capture the 

edge of the field and riparian zone on both sides of the stream. Each 48-electrode line had an inline 

spacing of 1 m and a line length of 47 m, which was centered on the stream, as shown in Figure 3-

3. 

Geophysics Data Acquisition 

A multi-channel Syscal Pro Switch 48 resistivity meter (IRIS Instruments, France) was used to 

record the apparent (DC) resistivity and apparent chargeability (IP) data. Both dipole-dipole and 

multi-gradient electrode arrays were used to acquire two sets of resistivity data to potentially 

improve interpretations. Chargeability data was only acquired with the dipole-dipole array. Dipole-

dipole generally exhibits high lateral and vertical resolution, while multi-gradient has a higher 

signal-to-noise (S/N) ratio (Dahlin and Zhou, 2006), which may have been necessary for potential 

noise in the stream due to monitoring wells and/or tile drains from the adjacent fields. A time 

window of 0.5 s was used for resistivity measurements, while the time window for chargeability 

was 2 s. Strong ground coupling (<1 kΩ) was attained at all electrode locations, particularly in 

advance of IP measurements. Table 3-1 presents a summary of the geophysical surveys. 

Geophysics Data Processing and Inversion 

Pre-processing of all recorded resistivity and chargeability data was performed with BIN2IP 

(Nivorlis, 2017) which extended the DC resistivity data quality evaluation scheme of Kim et al. 

(2016) to handle both DC and time-domain IP data. The key filtering steps in this processing tool 

were as follows: (1) all data were filtered on the basis of their S/N ratio (i.e., measurements with 

low signal (high geometrical factor) and extreme apparent resistivity values were removed); (2) 

the mean of all measurement errors (using standard deviation of resistance) associated with every 

electrode was used to assess if any ‘bad’ electrodes existed (i.e., mispositioned or disconnected); 

(3) the shape of the decay curve associated with all 20 IP time windows was assessed for every 

measurement instead of simply using the intrinsic chargeability value. In addition to ignoring both 

the first two, and last five, time windows, measurements whose curve shape was erratic or did not 

decay monotonically to follow the assumed Cole-Cole model were rejected. 
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Table 3-1: Summary of geophysical survey lines conducted at the Kintore site 

Location 
# 

Lines 

Elec. per 

Line 

Electrode Spacing (m) Area 

(m2) 
Array a 

# Meas 

per Line Inline Interline 

Stream 10 240 0.2 0.2 
47.8 × 

1.8 

D-D 1194 

M-G 1395 

D-D (IP) 931 

Riparian 

Zone 
26 48 1 2 

47 × 

50 

D-D 1194 

M-G 1395 

D-D (IP) 931 

a D-D, M-G and D-D (IP) represent dipole-dipole, multi-gradient and dipole-dipole (for IP survey), respectively 

 

The recorded data were inverted using the DC-IP inversion program DC_2DPro (Kim, 2016), 

which performs iterative least-squares smoothness-constrained inversion on the recorded datasets. 

The elevation at each electrode was applied to include topography in the inverted sections. The 3D 

datasets were inverted with DC_3DPro (Kim, 2016). All inversions were performed for a 

maximum of seven iterations and had low residual RMS errors. Both dipole-dipole and multi-

gradient measurements generally exhibited good data quality and similar inversion model results. 

Only dipole-dipole data are shown in the results section, though multi-gradient data were used to 

assist with interpretation. 

The measured time-domain chargeability is a measure of the magnitude of the IP effect, and is 

sensitive to both the bulk conduction (electrolytic) and surface polarization (structural) properties 

of a material. The chargeability M can be divided by the electrical resistivity ρ to obtain a 

normalized chargeability MN (i.e., MN = M/ρ). Normalized chargeability has been shown to be a 

valuable parameter in the interpretation of field-scale IP surveys as it can help to distinguish 

between IP effects due to lithology and IP effects due to pore-water salinity (e.g. Amaya et al., 

2016; Slater & Lesmes, 2002). Since surface polarization processes at the mineral-fluid interface 

control normalized chargeability, it can be a useful parameter in detecting the presence of clayey 

materials. 
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Figure 3-3: Digitized schematic of the stream reach indicating the outline of the stream and the locations 

of temperature rods (black circles), monitoring wells (blue diamonds), and the long 2D geophysical surveys 

lines of the Stream Reach Array. 

 

3.3.2 SPATIAL STREAMBED TEMPERATURE MAPPING 

Temperature mapping of the shallow streambed was conducted for qualitative evaluation of the 

GW-SW exchange patterns. Spatial temperature mapping was conducted on July 2, 2020 (summer 

event) and March 8, 2021 (winter event), with 339 and 358 measurements, respectively. These 

times were chosen to provide the highest temperature contrast between the streambed (potentially 

influenced by discharging groundwater) and surface water. In the summer, surface water 

temperatures will be higher than groundwater, whereas in the winter, surface water temperatures 

will be lower than groundwater. The temperatures at 0.1 m depths of the streambed were measured 

by temporarily inserting a high-accuracy thermometer (Hanna HI98509 Checktemp® 1 Digital 

Thermometer) into the sediment surface until the temperature stabilized. Measurements were 

recorded every 0.2 m along each line traversing the stream width, with a total of 36 parallel lines 

at 1 m offsets. Streambed measurements were recorded at each location while average surface 

water measurements were recorded for each transect, allowing the temperature difference between 

streambed and surface water to be determined.  
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Each mapping event was completed within a 3-hour period to limit the variation in the diurnal 

surface water temperature to provide an accurate characterization of temperature difference 

between surface and streambed temperatures. A spatial map showing the distribution of these 

temperature difference within the stream reach was then produced using kriging interpolation 

between data points. 

3.3.3 VERTICAL HEAD DIFFERENCE AND HEAD WATER LEVELS  

Vertical head difference within the shallow streambed were measured between the shallow 

groundwater and stream water with a potentiomanometer (e.g., Winter et al., 1988) attached to a 

drive-point piezometer (screen length = 10 cm). Positive gradients are representative of upwelling 

flow, while negative gradients represent downwelling flow. Each measurement was taken at a 

depth of 0.2 m below the streambed, with a total of 26 measurements taken at regular intervals 

along the stream reach. 

Four fully-screened wells were installed along the banks of the stream reach to monitor water table 

elevations, as indicated in Figure 3-3. Temperature and pressure data were measured with Level 

700 Data Loggers placed inside each well, with another logger attached to a vertical rebar and 

placed in the streambed, at the downstream end of the reach. A barometric logger was also 

employed on site to correct the well and stream pressure data for ambient air pressure, to derive 

water pressures and heights. Measurements were conducted every 15 minutes between December 

6, 2019 and April 7, 2021. Temporal plots of GW-SW head elevations were produced for the 

duration of field investigations. 

3.3.4 SOIL CORING AND SIEVE ANALYSIS 

Soil cores were extracted from the stream reach to assess the lithological variation within the 

streambed and provide ground-truthing for the geophysical survey. A 5.7 cm diameter AMS Series 

Auger was used to extract cores to a depth of 0.6 m at each of the 10 locations where temperature 

rods were placed (within 15 cm of temperature rod). The cores were later separated based on 

distinguishable variations in lithology and prepared for sieve analysis (e.g. Smits et al., 2010). 

Each sample was oven-dried for a minimum of 12 hours and then placed in a stack of sieves, from 

#4 (4.75 mm opening) to #200 (0.075 mm opening), and mechanically shaken for 15 minutes. 

Each sieve was then weighed to measure the percent passing and a grain size distribution was 
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generated. From these distributions, the uniformity coefficient (Cu), mean grain size (D50) and the 

percentages of gravel, sand, and fines (silt and clay) were determined.  

3.3.5 VERTICAL TEMPERATURE PROFILING 

3.3.5.1 INSTRUMENTATION AND DATA ACQUISITION 

Vertical temperature profiles through the streambed were measured using a series of temperature 

rods (TR). Ten hollow steel TR with pointed tips were used with iButton temp loggers inside. 

Cardenas (2010), showed that the temperature profiles determined within steel rods are not 

sensitive to damping compared to outside sediment temperature. Each TR was 1.75 m long and 

contained a cross-linked polyethylene tubing of 0.65 m length and 0.02 m diameter that holds five 

iButton temperature loggers (DS1921H/DS1921Z High-Resolution Thermochron) with a 

resolution = 0.125 °C. The top iButton was placed at the streambed-surface water interface to 

measure the upper boundary temperature, while the rest of the iButtons were spaced vertically 

below that at depths of 0.05 m, 0.01 m, 0.2 m, 0.6 m. The higher resolution spacing near the surface 

was used to capture the variability in shallow temperature attenuation. Temperature measurements 

were logged every 30 mins between December 6, 2019 and May 20, 2021 and were manually 

downloaded each month. The 3D geophysical images were used to determine the locations for ten 

hollow steel temperature rods (TR1 – TR10) along the stream (see Figure 3-3), ensuring that the 

TRs were distributed between areas of the streambed with differing composition, likely leading to 

different water fluxes. Long-term vertical temperature profiling was performed within the stream 

reach and incorporated into a temperature-based analytical model to estimate the direction and 

magnitude of GW-SW exchange fluxes.  

 

 

 

 

 

 

 



 

53 

 

3.3.5.2 DATA ANALYSIS 

Data Processing 

The temperature offset between the different iButtons was determined by immersing all sensors in 

a plastic bag in a water bath with near-constant temperature. The sensors were kept in the water 

bath for 12 hours and logged at 5 min intervals. Differences between the individual sensors and 

the lowest standard deviated sensor were determined to generate appropriate calibration offsets 

which were applied to the raw data to provide comparative temperatures. Calibrations were 

completed on three separate occasions (June 17th 2019, May 16th 2020, April 18th 2021), to correct 

for any instrumental drift. 

The temperature analysis software used assumes a steady-state vertical temperature profile. Thus, 

to provide appropriate data, rolling average of calibrated iButtons were analyzed. Low variation 

time periods of two to five days were isolated to create average temperature-depth profiles during 

each sampling period. To ensure consistency, two steady-state time periods were selected for each 

month of data, unless otherwise specified. 

Temperature Flux Modeling 

A number of temperature-based analytical models have been developed to assess GW-SW 

exchange fluxes, including 2DTempPro and VFlux (Irvine et al., 2020; Stonestrom & Constantz, 

2003). In this study, the Flux in Layered Media (Flux-LM) automated spreadsheet tool (Kurylyk 

et al., 2017) was employed. Flux-LM uses temperature depth profiles to solve the following 1D 

subsurface heat transport equation by Bredehoeft and Papadopulos (1965): 

𝜆0
𝜕2𝑇

𝜕𝑧2
− 𝑞𝐶𝑤

𝜕𝑇

𝜕𝑧
= 0,                 (3.1) 

where λ0 is the bulk thermal conductivity of the saturated sediment [W m-1 ℃-1], T is the 

temperature [℃], z is the sediment depth [m], q is the vertical flux (positive downwards) [m/s], 

and Cw is the volumetric heat capacity of the water [J/m3 ℃].  

Equation 3.1 has been extended to allow for variations in thermal conductivity of layers with depth 

(Kurylyk et al., 2017). In addition to the temperatures logged along the depth profiles of each TR, 
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other model inputs to FLUX-LM include the number, thickness, and thermal properties of the 

model layers.  

Three different interpretations of streambed geology and associated thermal properties were 

modeled: (i) geology along the depth of each TR is fully homogenous and the thermal properties 

were based on the surficial streambed layer, (ii) geological variation is based on depth profiles of 

resistivity and chargeability at each TR, and (iii) geology is based on soil core analysis. The input 

parameters for each model were assigned based on their respective geological interpretation and 

associated thermal conductivities. A detailed review of the literature on the thermal properties of 

soils was used to understand and assign thermal conductivity values to different soil types, 

uniformities and levels of compaction (Tarnawski et al., 2011), with a summary presented in Table 

3-2. Thermal conductivity is lower in soils with lower levels of compaction, such as near-surface 

streambed sediments, while it is higher for well-graded soils that typically exhibit higher porosity. 

The three models with differing input parameters were then simulated to determine the optimal 

Darcy flux (m/s) and the root mean square error (RMSE) (℃) for all depth profiles. 

 

Table 3-2: Values of thermal conductivities applied to the different soil types and level of compaction for 

this study. 1 Tarnawski, 2011. 2 Moradifam, 2012 

Compaction/Grading Sediment Type Estimated porosity 

Thermal 

Conductivity (W m-1 

℃-1) 

Packed/Graded 

Fine Sand 0.4 2.751 

Medium Sand 0.34 3.341 

Coarse Sand 0.31 3.721 

Gravely Sand 0.25 4.441 

Loose/Uniform 

Fine Sand 0.43 2.522 

Medium Sand 0.37 3.042 

Coarse Sand 0.33 3.452 

Gravely Sand 0.28 4.052 
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3.4 RESULTS AND DISCUSSION 

3.4.1 GEOPHYSICAL IMAGING 

Two-dimensional cross-sectional slices were extracted from the 3D inverted domains of resistivity 

and chargeability to make the initial interpretation of the geophysical images easier. Figures 3-4a 

and 3-4b presents cross-sectional slices at 0.4 m (Line 3) and 1.2 m (Line 7) of inverted resistivity 

within the stream, respectively. The location and depth of the 10 soil cores (and TRs) that are 

adjacent to each line are indicated by grey boxes, while the black dashed line indicates the surface 

of the streambed. Both images infer three contrasting zones: (i) upstream zone with high resistivity, 

(ii) middle zone with low-to-moderate resistivity, and (iii) downstream zone with moderate 

resistivity on the west side of the stream and high resistivity on the east side.  

The top layer of low resistivity (~20 ohm-m) represents the stream water and correlates to the 

measured stream water resistivity of 17 ohm-m. The upstream zone is located between 0 m and 12 

m and indicates a very high resistivity (>400 ohm-m) layer to a depth of 0.8 m, which is 

representative of highly permeable sands and gravelly sands, that is underlain by a variation of 

very low resistivity (<40 ohm-m) and high resistivity (>400 ohm-m), which is indicative of fine, 

possibly clayey, material interspersed with more gravelly-sand material. The middle zone between 

12 m and 36 m exhibits high variability in resistivity across the full depth of investigation, with 

areas of resistivity as low as 60 ohm-m (e.g., 18 m), and as high as 400 ohm-m (e.g., 23 m). This 

zone is indicative of highly heterogeneous soils with variations in permeability. The downstream 

zone between 36 m and 47.8 m shows a variation in resistivity across the stream width, with the 

west side of the stream exhibiting low-to-moderate resistivity (see Line 3) and the east side 

containing a layer of very high resistivity underlain by a layer of low resistivity (see Line 7).  
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Figure 3-4: Inverted DC resistivity images of (a) Line 3, and (b) Line 7 of the Streambed Reach Array. 

The location of the various temperature rods that are adjacent to each line are also shown (grey boxes). 

The surface of the streambed is shown by the dashed black line; 0 m position is upstream. Note that a 

vertical exaggeration of 3x is used. 

 

The inverted chargeability images (not shown) demonstrate that zones of highest chargeability 

(>20 mV/V) generally correspond to the zones of low resistivity shown in Figure 3-4. As discussed 

in Section 3.3.1, it is difficult to distinguish between the polarization effects due to pore-water 

salinity and lithology, and normalized chargeability is a better parameter for delineating the IP 

response from mineralogy only. Figure 3-5 presents the normalized chargeability images for the 

same cross-sectional slices at Lines 3 and 7. All zones of high normalized chargeability (>0.8 

mS/m) are located at depths below 0.8 m, and generally correspond to those locations of very low 

resistivity in Figure 3-4. For example, the very low resistivity between 36 m and 46 m in Line 7 

strongly correlates to high normalized chargeability. Conversely, the very high resistivity between 

0 m and 12 m in Line 3 corresponds to negligible chargeability.  

The normalized chargeability images strongly complement the resistivity images. Low 

chargeability zones infer non-clayey material, and as a result, zero surface conductivity. This 

means that resistivity is only influenced by pore-water salinity, saturation, and porosity. As the 
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streambed is fully saturated and has uniform low salinity, resistivity in non-chargeable zones is 

mainly influenced by porosity. Therefore, from Figures 3-4 and 3-5, material in low chargeability 

zones, which includes material within the top 0.6 m of the streambed, consists of sands and gravels. 

The uniformity of these sands and gravels is also a factor as it can control the porosity (e.g., higher 

uniformity equals higher porosity).  

 

Figure 3-5: Normalized chargeability images of (a) Line 3, and (b) Line 7. The location of the various 

temperature rods that are adjacent to each line are also shown. The surface of the streambed is shown by 

the dashed black line. Note that a vertical exaggeration of 3x is used. 

 

Figure 3-6a presents the 3D domain for inverted resistivity. A horizontal depth slice is presented 

at approximately 0.2 m below stream water elevations to coincide with the surface of the 

streambed. While this depth indicates high variability in resistivity, three zones of similar 

resistivity can be observed. Between 0 m and 12 m, higher resistivity exists. Lower resistivity 

occurs between 12 m and 36 m, with the lowest zones between 24 m and 32 m. Higher resistivity 

again exists downstream between 36 and 48 m, with notably higher measurements located on the 

east side of the stream. 
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Figure 3-6: 3D inverted images of (a) resistivity, and (b) normalized chargeability. In each image, a slice 

of the streambed surface is shown (approximately to 0.2 m depth from top of water surface). 3D iso-volumes 

of resistivity (≥ 250 ohm-m) and normalized chargeability (≥ 0.6 mS/m) are also shown. Note that a vertical 

exaggeration of 3x is used. 

 

Figure 3-7 presents a depth profile of resistivity and normalized chargeability at each TR, which 

can be used to infer characteristics of the soil at each location. As the normalized chargeability is 

generally negligible along the depth of all TRs, it is assumed that all soils within the top 0.6 m of 

the streambed are sands and gravels (i.e., zero clay). This is representative of a high porosity soil 
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with minimal clay content, which due to its depth, can be inferred as poorly compacted granular 

material. In the near surface of the streambed, the resistivity at all TRs is relatively low (< 80 ohm-

m). Below this near-surface sediment, the resistivity is much higher at TR1 and TR10, which 

corresponds to the larger upstream and downstream zones. In contrast, the resistivity between TR3 

and TR9 are much lower. 

 

Figure 3-7: (a) inverted resistivity, and (b) normalized chargeability profiles along the depth (0 being top 

of the stream water) of each temperature rod location. 

While the geophysical data collected across the riparian zone was fully inverted in 3D, a fence 

display of selected slices is beneficial to assist interpretation. Figure 3-8 presents a fence diagram 

of cross-sectional slices from Lines 20, 35 and 50 from the 3D riparian zone domain, along with 

Line 3 from the 3D streambed domain. It is evident that the resistivity and normalized chargeability 

distributions are coherent between all lines, with good lateral and vertical continuity evident at 

each intersection (e.g., low resistivity and low chargeability body at the intersection between Line 

35 and Line 3). 

The riparian zone, which lies between 20 m and 40 m, is highly heterogeneous with highest 

variability in resistivity and chargeability surrounding the stream. This is expected due to the 

irregular depositions occurring around streams and these geophysical variations have observed at 
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other stream studies (e.g., Busato et al., 2019; Dara et al., 2019). It is noted that at the upstream 

location of the stream, where Line 3 intersects with Line 20, high resistivity and negligible 

chargeability is evident on both sides of the stream, which correlates to the resistivity and 

chargeability shown in the streambed. Similarly, for the middle zone of the stream (Line 3 

intersects with Line 35), the low resistivity zone within the streambed extends to both sides of the 

stream. 

 

Figure 3-8: Fence diagram of (a) resistivity, and (b) normalized chargeability images of Lines 20, 35 and 

50 from the riparian survey (Line 20 is furthest upstream), and Line 3 from the streambed survey. The black 

dashed lines indicate the edge of the riparian zone (boundary with agricultural field) on both sides of the 

stream. 
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While the focus of this study is on the streambed, the survey of the riparian zone provides 

additional information on the general geological structure surrounding the stream, confirming that: 

(i) upstream zone is characterized by high resistivity and high permeability material, which infers 

that this zone will provide the largest exchanges between GW and SW, (ii) the middle zone exhibits 

low resistivity and low permeability material that can limit GW-SW exchanges, and (iii) the 

downstream zone tends to have low resistivity and low permeability on the west side of the stream 

(Line 3 at 0.4 m), with high resistivity and high permeability on the east side (Line 7 at 1.2 m).  

3.4.2 SPATIAL STREAMBED TEMPERATURE MAPPING 

Figures 3-9a and 3-9b presents spatial maps of the temperature difference measured between 

streambed water (10 cm depth) and surface water in the summer and winter, respectively. In the 

summer, the stream water was warmer than groundwater and temperature difference varied 

spatially between 0.8 °C and 7.3 °C. A larger gradient (blue in Fig. 3.10a) indicates a larger 

difference between groundwater and stream water temperatures, and more significant upwelling 

of colder groundwater to the streambed. In the winter, with stream water colder than groundwater, 

temperature difference varied between -5.4 °C to 1.9 °C. In this case, larger negative gradients 

(blue in Fig. 3.10b) indicate more significant upwelling of relatively warmer groundwater to the 

streambed. Additional temperature maps were conducted in July 2019 and March 2020, results of 

which can be found in Appendix A. 
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Figure 3-9: Spatial maps of temperature difference between groundwater and surface water during (a) 

summer baseflow conditions, and (b) winter baseflow conditions (note the different colour scales). The 

location of each temperature measurement is indicated by a black ‘x’.  Stream outline based on summer 

(low-flow) conditions; the stream width extended beyond this in places during the winter assessment. 

 

It is evident from Figure 3-9 that the spatial maps show strong concordance with one another, with 

notable similarities in the patterns of temperature differences. This suggests continuity in the GW-

SW exchange patterns for base flow, regardless of season.  
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Assessment of the stream reach temperature mapping indicates the existence of three zones. A 

distinct area of groundwater upwelling (>4 °C gradient in summer; <-1.5 °C gradient in winter) 

was observed from 5 m to 12 m along the length of the stream and extending its full width. Another 

area of groundwater upwelling (>4 °C in summer; -1 °C < gradient < 0 °C in winter) was observed 

from 36 m to 40 m, seemingly stronger on the east side. These upstream and downstream zones of 

groundwater upwelling were separated by a zone of lower gradients (< 2.5 °C in summer; > 0 °C 

in winter) between 13 m and 35 m. Within this middle zone lies two large areas at 15 m and 30 m 

with gradients of ~ 1 °C in both summer and winter, thereby indicating little exchange or higher 

recharge. Also within this zone were some small areas of groundwater influx between 17 m and 

25 m, but significantly smaller in area and magnitude than the upstream and downstream zones. 

These observed spatial patterns of little to no flux could reflect hyporheic associated upwelling or 

GW discharge.  

Comparisons of Figures 3-4, 3-5 and 3-6 to Figure 3-9 demonstrates the strong relation between 

streambed temperature difference and streambed composition inferred by geophysical imaging. 

For example, the highest temperature difference occur between 0 m and 12 m, which corresponds 

with the consistently high resistivity shown in this area (Figures 3-4 to 3-6). In the middle section 

of the stream, the temperature difference are generally much lower and more variable, which again 

corresponds to the low-to-moderate resistivity. In the downstream section, the geophysical images 

inferred low resistivity on the west side of the stream and high resistivity on the east side of the 

stream, which again supports the GW-SW exchange conditions which produced the temperature 

difference patterns. 

3.4.3 VERTICAL HEAD DIFFERENCE AND HEAD WATER LEVELS  

Figure 3-10 presents the location and magnitude of Vertical Head Differences (VHDs) between 

groundwater and surface water measured within the streambed sediments. Positive magnitudes 

(blue) indicate that the exchange flux moves from groundwater to surface water (GW > SW), while 

negative magnitudes (yellow) indicate that the exchange flux moves from surface water to 

groundwater (GW < SW). Large positive VHDs were measured at 10 m, 11 m and 37 m along the 

stream reach. In the middle zone, large negative VHDs were located at 21 m and 23 m, with all 

other locations alternating between low positive and low negative gradients. This interpretation 
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again provides confirmation of the suspected geologic conditions inferred by the geophysical 

surveys. 

 

Figure 3-10: Vertical head difference measurements between groundwater and surface water. Positive 

values indicate the exchange flux direction is from groundwater to surface water. Magnitude of gradients 

are displayed by the corresponding symbol sizes and colour. 

 

Figure 3-11 presents the temporal evolution of groundwater and surface water elevations in both 

the upstream and middle zones. When groundwater head is higher than the stream water, this 

suggests a drive for flow toward the stream, while when surface water head is higher than nearby 

groundwater suggests stream discharge.  

Several anomalies exist throughout the time period which are associated with heavy rainfall, 

snowmelt and overland flow events; however, distinguishable overall trends are evident. In the 

upstream comparison groundwater levels are consistently higher between January 2020 and June 

2020, producing positive head differences that indicate the potential for ‘gaining’ conditions in the 

stream. Between July 2020 and November 2020, the stream stage is higher than groundwater levels 

to indicate the potential for ‘losing’ conditions in the stream.  
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Figure 3-11: Temporal evolution of the head difference between groundwater and surface water at (a) 5 m 

(upstream zone), and (b) 30 m (middle zone) along the stream reach. 

The downstream comparison of head levels follow similar seasonal trends as the upstream (shown 

from January 2020 to April 2020), with slightly lower groundwater levels. However, it is noted 

that groundwater took significantly longer in this downstream area to recharge following water 
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sample collection (for chemical analysis), as evident on December 23, 2020 and February 24, 

2021. For this reason, groundwater data was removed between June 15, 2020 and November 25, 

2020 as consistent sampling was conducted during this period.  

3.4.4 SOIL CORING AND SIEVE ANALYSIS 

Table 3-3 presents a summary of the soil characteristics at each of the 10 soil cores, indicating the 

uniformity coefficient, mean grain size and soil type. All locations consisted of soils ranging from 

fine sand to sandy gravel, with a maximum of 7% fines. This information will be used to assign 

thermal properties to ‘Model 3’ of the temperature flux modeling. This characterization was related 

well to the DC resistivity and chargeability images. For example, the chargeability images 

indicated very little clayey material within the top 0.6 m of the streambed, which was then 

confirmed by the soil analysis. 

 

Table 3-3: Classification of the soil samples extracted at the 10 TR locations within the stream 

TR 

Depth 

Intervals 

(m) 

Cu D50 Soil Type TR 

Depth 

Intervals 

(m) 

Cu D50 Soil Type 

1 

0-0.15 12.5 3 gravelly sand 

6 

0-0.15 3.2 0.49 fine sand 

0.15-0.3 11.05 3.8 coarse sand 0.15-0.3 4.25 0.57 fine sand 

0.30-0.45 13.19 2.83 coarse sand 
0.3-0.4 7.14 0.81 medium sand 

0.4-0.5 22.5 1.3 medium sand 

2 

0-0.15 12 1.35 medium sand 

7 

0-0.14 11.05 4.75 coarse sand 

0.15-0.3 11.4 1.4 medium sand 0.14-0.32 24.17 1.15 medium sand 

0.3-0.45 12.35 2.65 coarse sand 0.32-0.5 27.37 1.15 medium sand 

3 

0-0.15 24.71 2.3 coarse sand 

8 

0-0.09 18.27 4.4 coarse sand 

0.15-0.3 20.67 1.6 medium sand 0.09-0.19 12.69 0.77 fine sand 

0.3-0.4 12.14 2.25 coarse sand 0.19-0.29 5.08 0.42 fine sand 

0.4-0.48 9.25 1.1 medium sand 0.29-0.47 38.95 0.96 medium sand 

4 

0-0.2 11.54 2.45 coarse sand 

9 

0-0.1 10.74 1.7 medium sand 

0.2-0.35 25.88 2.75 coarse sand 0.1-0.22 11.76 1 medium sand 

0.35-0.15 13.93 0.81 medium sand 
0.22-0.3 12.39 1.8 medium sand 

0.3-0.46 14.17 0.71 fine sand 

5 

0-0.2 10.42 0.68 medium sand 

10 

0-0.1 9.13 0.81 gravelly sand 

0.2-0.3 36.54 4.75 coarse sand 0.1-0.3 5.38 0.75 fine sand 

0.3-0.45 47.5 2.8 coarse sand 0.3-0.45 15.32 2.75 coarse sand 
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3.4.5 VERTICAL TEMPERATURE PROFILING 

Temperature-Depth Profiles 

A wide range of measured temperatures exist due to the spatial variation of the measurement 

locations as well as seasonal effects. Profiles of temperature versus depth were generated for all 

10 locations throughout the stream reach. Temperatures ranged from 1°C to 12°C during winter 

periods and from 10°C to 22°C during summer periods.  

Two TRs, one within a high permeability zone and another within a low permeability zone, were 

selected to highlight qualitative interpretation of the raw temperature profiles. Temperature 

profiles can be used to obtain preliminary information about the stream reach prior to calculating 

the vertical fluxes with the Flux-LM model (Briggs et al., 2014). Figure 3-12 presents the raw 

temperature-depth profiles for a year of sampling data at TR1, which is located along the 10 m 

transect, and TR8, which is located along the 27 m transect. TR1 exhibits strong variations with 

increasing depth, while TR8 show relatively weak variations. The TR1 profile is relatively sharp 

in curvature within the top 0.1 m to 0.2 m of the streambed, with the sharpest curvatures 

occurring during winter time periods, and these curvatures (convex upward) are indicative of 

medium to high groundwater discharge. In contrast, TR8 shows very little curvature across all 

seasons, which indicates low groundwater discharge or recharge conditions. With increasing 

depth, temperatures converge to 10°C at TR1, suggesting allowable exchange of GW and SW.  

In contrast, there is no convergence in temperature by 0.6 m depth at TR8. During winter, 

temperatures were 5°C while in the summer, temperatures were approximately 17°C to 20°C, 

which suggests that TR8 is more affected by seasonal variation, as opposed to the exchange 

between GW and SW. 

It was noted that TR2 exhibited similar variations to TR1 (strong), TR4 to TR9 exhibited similar 

variations to TR8 (weak) and TR3 and TR10 showed low-to-medium variations. Additional 

temperature-depth profiles can be found in Appendix A. 
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Figure 3-12 Temperature versus depth profiles at (a) TR1, and (b) TR8 over a year of collected data. Dates 

omitted are due to instrumental error. 

 

FLUX-LM Modeling 

The temperature-depth profiles for periods of near steady-state were used to calculate the vertical 

exchange fluxes at all TR locations. Fluxes were determined for the three different models of 

sediment compositions and thermal properties: (i) Model 1 was based on sediment surface 

observations only, (ii) Model 2 was based on surface observations plus geophysical imaging, and 

(iii) Model 3 was based on soil core characteristics. Table 3-4 present a summary of lithological 

interpretations and associated thermal properties for each of the three models. As shown, Model 

1 assumes a homogeneous model domain that is represented by a single thermal conductivity, 

while Models 2 and 3 are able to better define the streambed composition and permit 

heterogeneous layered model domains. 
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Table 3-4: Lithological interpretation for all 10 TRs based on surficial observations (Model 1), 

geophysical imaging (Model 2), and soil core characteristics (Model 3) 

 

 

 

TR 

Interpretation 1 Interpretation 2 Interpretation 3 

# 

Layers 

Layer 

Thickness 

(cm) 

Thermal 

Conductivity 

(W m-1 ℃-1) 

# 

Layers 

Layer 

Thickness 

Thermal 

Conductivity 

(W m-1 ℃-1) 

# 

Layers 

Layer 

Thickness 

Thermal 

Conductivity 

(W m-1 ℃-1) 

1 1 0-0.6 4.05 2 

0-0.2 4.05 

2 

0-0.1 4.05 

0.2-0.6 3.72 0.1-0.6 4.44 

2 1 0-0.6 4.05 - - - 3 

0-0.05 4.05 

0.05-0.3 3.04 

0.3-0.6 4.44 

3 1 0-0.6 3.72 2 0-0.6 3.72 4 

0-0.15 3.72 

0.15-0.3 3.34 

0.3-0.4 3.72 

0.4-0.6 3.04 

4 1 0-0.6 4.05 2 

0-0.2 4.05 

3 

0-0.05 4.05 

0.2-0.6 3.34 
0.05-0.35 3.72 

0.35-0.6 3.34 

5 1 0-0.6 3.04 2 

0-0.1 3.04 

2 

0-0.2 3.04 

0.1-0.6 3.34 0.2-0.6 3.72 

6 1 0-0.6 2.52 3 

0-0.2 2.52 

2 

0-0.3 2.52 

0.2-0.4 3.72 
0.3-0.6 3.34 

0.4-0.6 3.34 

7 1 0-0.6 3.45 3 

0-0.1 3.45 

2 

0-0.14 3.45 

0.1-0.2 3.34 
0.14-0.6 3.34 

0.2-0.6 3.72 

8 1 0-0.6 3.45 2 

0-0.2 3.45 

3 

0-0.09 3.45 

0.2-0.6 3.72 
0.09-0.29 2.75 

0.29-0.6 3.34 

9 1 0-0.6 3.04 3 

0-0.1 3.04 

3 

0-0.1 3.04 

0.1-0.5 3.72 0.1-0.3 3.34 

0.5-0.6 3.34 0.3-0.6 2.75 

10 1 0-0.6 4.05 2 

0-0.3 4.05 

3 

0-0.05 4.05 

0.3-0.6 3.72 
0.05-0.3 2.75 

0.3-0.6 3.72 
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Two sampling periods, one during winter and one during summer, were selected to highlight the 

solution effects of the progressing models for differing temperature-depth profiles. Figure 3-13a 

compares the modeled temperatures to the observed temperatures in the field at TR1 during a 

winter period (December 23rd – 27th, 2019). As shown above, TR1 varies between a one-layer 

system (Model 1) and a two-layer system (Model 2 and 3). It is evident from qualitative 

interpretation, and the associated RMSE (°C) values, that each successive model improves the fit 

between modeled and observed temperatures. A similar progression of improved model fit occurs 

at TR8 during a summer period (July 23rd – July 27th, 2020), as shown in Figure 3-13b. It is noted 

that the distinguishable change in slope of the data for TR8 at the 10-cm depth was not captured 

well by any of the models, despite using multiple layers. This suggests that there is a stronger 

change in thermal properties than captured by geophysics or coring. 

 

Figure 3-13: Comparison between observed temperatures and modeled temperatures produced by FLUX-

LM for Models 1 to 3 at TR1 and TR8. The RMSE (°C) for each model is indicated in the boxes for TR1 

and TR8. 
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It is evident that all three models provide a good fit between observed and modeled temperatures. 

This is due to the very small variation in thermal properties assigned here between the different 

soil types within the top 0.6 m of the streambed. As shown in Table 3-4, thermal conductivity only 

varies between 2.52 W m-1 ℃-1 (uniform fine sand) and 4.44 W m-1 ℃-1 (graded sandy gravel), 

resulting in only slight improvements between each successive model. This is further confirmed 

as the average RMSE (℃) for all temperature rods was between 0.04 ℃ and 0.22 ℃. These results 

display confidence in the various interpretations as well as the Flux-LM calculated exchange 

fluxes. It is noted that TR1 and TR2 produced the most uncertainty while TR 4 and 7 were most 

consistent. This was expected as the temperature variations in the area of TR1 and TR2 were much 

higher due to the more permeable conditions. 

The calculated temporal temperature flux over time at each TR location is presented in Figure 3-

14. Positive fluxes indicate flux exchanges from SW to GW (i.e., groundwater recharge), while 

negative fluxes indicate exchanges from GW to SW (i.e., groundwater discharge). TR1 and TR2 

demonstrated the highest flux magnitudes that are mostly negative, which was expected as they 

are located within the most permeable zones inferred by the geophysical images, further 

confirming exchange flux from GW to SW (i.e., groundwater discharge). For example, the fluxes 

at TR1 vary from -100 m/year during summer periods to -512 m/year during winter periods. The 

temperature fluxes at TR4 to TR9 exhibit much lower variability between summer and winter 

periods. For example, the fluxes at TR4 vary from -70 m/year to 42 m/year and at TR6 fluxes vary 

from -25 m/year to 30 m/year, between the summer and winter periods, respectively. The variance 

between positive and negative fluxes suggest some seasonal upwelling/downwelling trends. 

Finally, TR3 and TR10 show similar trends to TR 1 and 2, but with much smaller magnitudes as 

TR3 varied from -20 m/year to -95 m/year during the summer and winter periods. Additional 

exchange flux results and the associated RMSE values can be found in Appendix A. 
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Figure 3-14: Temporal evolution of temperature exchange fluxes, calculated using the Model 3 

interpretation, a) includes TR 1-3 and 10 and b) includes TR 4-9. Note the axis difference between a) and 

b). 

 

It is understood that there is much variation (at least 2 times) in thermal conductivity for different 

materials and lack of data on compaction of the site sediments (not measured during coring), so 

uncertainty in the proper assignment of values may also contribute to the lack of difference in fits.  

Nevertheless, it is essential to always incorporate any additional information on the soil and 

thermal properties into the FLUX-LM model. Many other stream sites can contain a larger 
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variation in streambed composition, ranging from uniform clays to well-graded gravels, which 

would provide a greater range of thermal properties and ensure that stream heterogeneity is 

essential to obtain improved model fits.  

It should also be acknowledged that while soil core characteristics (Model 3) can provide slightly 

improved model fits over geophysical imaging (Model 2) in this study, this is expected as direct 

physical information is obtained when soil cores are extracted at the exact location of the TRs. It 

is well-established that the benefit of geophysical imaging is the rapid, non-invasive continuous 

information it can provide between these sparsely distributed and invasive soil cores. In other 

studies, it may not be possible to collect soil cores at some locations. Furthermore, for 2D/3D 

temperature modeling, continuous spatial information is required, and geophysical imaging can 

easily provide this. 

3.5 CONCLUSIONS 

In this study, the potential of 3D DC-IP for investigating and characterizing streambed 

composition and structural heterogeneities, and consequently, providing additional information 

between groundwater and stream water interactions, was assessed. Traditionally, these 

investigations have relied on techniques such as streambed temperature mapping, seepage meters, 

modeling streambed temperature profiles, head gradient and soil coring, but these techniques can 

be invasive, costly and provide limited sampling density. These limitations are especially 

problematic in streambeds which can be highly heterogeneous and contain unconsolidated material 

that can easily lose integrity through invasive techniques. Geophysical techniques such as DC-IP 

exhibit significant potential for streambed investigations as they are non-invasive and provide 

rapid, continuous information on the subsurface. Despite this potential, DC-IP is yet to become 

commonly used at streams, due, in part, to a lack of information on its performance compared to 

more traditional techniques. 

High-resolution 3D DC-IP surveys were conducted in a 50 m long headwater stream reach located 

in Kintore, Ontario. The resulting 3D distributions of resistivity and chargeability revealed the 

composition within the streambed. Resistivity images inferred three different zones within the 

stream reach: (i) upstream zone with high permeability and potential for high flux exchanges 
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between GW and SW, (ii) middle zone with lower permeability and reduced GW-SW flux 

exchanges, and (iii) downstream zone with high permeability on the eastern side of the stream.  

Traditional characterization techniques were then employed to characterize the stream reach and 

assess GW-SW exchanges. GW-SW temperature differences measured within the top 0.1 m of the 

streambed were used to qualitatively identify areas of high and low GW-SW exchanges. Vertical 

head differences were measured between shallow groundwater and stream water to determine 

spatial upwelling/downwelling patterns. Soil coring and sieve analyses were performed to obtain 

direct empirical evidence of sediment characterization and to assist in improving model 

characterization. And vertical temperature profiles were used to evaluate the vertical exchange 

fluxes qualitatively and quantitatively between GW-SW throughout the stream reach. 

The comparison between DC-IP imaging and all other traditional hydrogeological methods was 

continually assessed throughout the study. Resistivity images indicated variations throughout the 

streambed, stressing the sensitivity to spatial heterogeneity. These variations corresponded well 

with the results of the spatial streambed temperature maps, which indicated high resistivity related 

to high upwelling areas and low resistivity related to lower upwelling/downwelling areas. The 

connections between the inferred streambed composition from DC-IP imaging and spatial 

streambed temperature maps also corresponded well with the vertical head differences and the 

associated GW-SW exchange directions. Chargeability images indicated that all material within 

the top 0.6 m of the streambed contained negligible charge, inferring non-clayey soils such as 

sands and gravels, which was seen in the sieve analysis. And the connection between the 

qualitative and quantitative flux results and the associated sediment compositions, were 

determined as strong.  

Overall, the concordance between DC-IP imaging and all the other traditional methods provides 

increased confidence in the ability of DC-IP to provide a valuable, non-invasive site tool to 

improve characterization of streambed heterogeneity and interpretation of GW-SW exchange 

patterns. 
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4 SUMMARY AND CONCLUSIONS 

4.1 SUMMARY 

Accurate characterization of groundwater-surface water interactions is a crucial aspect in 

investigations pertaining to geology, hydrology, ecology, hydrogeology, geochemistry, and more. 

To determine the potential impacts that may be caused from GW-SW interactions, understanding 

the spatial and temporal variations in streambed heterogeneities and exchange fluxes is paramount. 

It is understood that exchange fluxes can impact the water quantity, quality and overall health of 

ecosystems within a GW-SW system (Dahl et al., 2007; Fleckenstein et al., 2010; Winter, 1999). 

Identifying and understanding the flow processes can aide in understanding the biogeochemical 

processes and biological processes present in various scales (Brunke & Gonser, 1997; Conant et 

al., 2019; Stefan Krause et al., 2017). Traditional hydrogeological techniques are often invasive, 

causing disturbances in the system, as well as potentially creating or affecting preferential flow 

paths. Furthermore, many techniques suffer from low sampling density. This results in the true 

spatial heterogeneity to be inaccurately characterized on a stream reach scale. 

The goal of this thesis was to evaluate the potential of 3D DC resistivity and induced polarization 

(DC-IP) for complete characterization of streambed structural heterogeneities at a localized scale 

with high sampling resolution, and how this methodology can be used in contingence with 

traditional hydrogeological methods to improve the understanding of stream water-groundwater 

interactions at complex field sites. 

As part of the research goal, three specific objectives were addressed. The first objective was to 

conduct a 3D DC-IP survey of the stream. A depth of investigation up to 1.5 m below the streambed 

was achieved, with surface area coverage of 47.8 m x 1.8 m. An additional 3D DC-IP survey was 

also conducted in the adjacent riparian zones, with a span of 48 m, intersecting through the stream. 

All surveys were successfully conducted and interpreted for characterizations of the intense spatial 

heterogeneities that exist in the subsurface. Consistencies between surveys were appropriately 

noted, adding confidence to the collection of raw data, as well as the interpretation of the inverted 

data. It was noted that the different survey types, using both DC and IP, added valuable information 

in regard to the composition sediments and the spatial distribution both laterally and vertically. 
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The second objective was to use traditional hydrogeological approaches to assess GW-SW 

exchanges. This was successfully completed through vertical head difference measurements, 

spatial temperature-mapping, sediment coring and grain size analysis, and the quantification of 

exchange fluxes with temperature-depth profiles. The preceding DC-IP surveys were also used to 

optimize the selection of sampling locations, showcasing the benefit of geophysical imaging as an 

early screening tool too. While the hydrogeological techniques provide limited spatial resolution, 

they still provide valuable information regarding stream reach characteristics and to help validate 

the information gather from the geophysical surveys. The improved characterization of the 

streambed with this integrated hydrogeological-geophysical approach was also used to enhance 

the selection of thermal properties for the temperature flux modeling performed to determine the 

temporal patterns in GW-SW exchanges. Therefore, while DC-IP directly improved spatial 

characterization of streambed composition, it can also indirectly improve analysis of associated 

GW-SW exchanges. 

The third objective was to assess the connection between objectives 1 and 2. This objective was 

done throughout the entirety of the study as objectives 1 and 2 were closely interconnected. Initial 

interpretations of geophysical methods allowed for a preliminary characterization of the field site 

in relation to the expected GW-SW exchanges. As more traditional hydrogeological techniques 

were performed and more information was gathered, connections between traditional and 

geophysical methods were continuously made.  

4.2 RECOMMENDATIONS 

Chapter 3 evaluated how various traditional approaches were used at the field site in Kintore, 

Ontario, to evaluate high-resolution DC-IP imaging of streambed composition, and how it 

influences GW-SW exchange interactions. The following recommendations are suggested for 

improving the accuracy and detail of such characterizations, to improve overall understanding.  

- High resolution DC-IP surveys were conducted during the summer of 2020. While this was 

sufficient to assess streambed heterogeneity, periodic surveys could have been performed 

to provide time-lapse monitoring of temporal variabilities in shallow streambed sediments 

and their connectivity to seasonal GW-SW interactions. 



 

83 

 

- The stream reach evaluated in the investigation was chosen with a partnered objective of 

evaluating phosphorus flux dynamics and periphyton abundance in the stream. Thorough 

analysis of that partner study can be evaluated. 

- The spacing within the instrumentation used for temperature-depth profiling was decided 

upon using literature studies and therefore was not considered based on the model used to 

quantify the fluxes (Flux-LM).  
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APPENDIX A: ADDITIONAL MATERIAL FOR 

MONITORING GW-SW EXCHANGES 

Appendix A presents additional results from spatial streambed temperature mapping, 

temperature-depth profiles and exchange flux calculations and errors. 

 

Figure A-1: Spatial maps of temperature difference between groundwater and surface water during (a) 

summer baseflow conditions, and (b) winter baseflow conditions (note the different colour scales). The 

location of each temperature measurement is indicated by a black ‘x’.  Stream outline based on summer 

(low-flow) conditions; the stream width extended beyond this in places during the winter assessment. 
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Figure A-2: Temperature versus depth profiles at (TR1, and TR2 over a year of collected data. Dates 

omitted are due to instrumental error. 

 

 

Figure A-3: Temperature versus depth profiles at TR3, and TR4 over a year of collected data. Dates 

omitted are due to instrumental error. 
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Figure A-4: Temperature versus depth profiles at TR5, and TR6 over a year of collected data. Dates 

omitted are due to instrumental error. 

 

Figure A-5: Temperature versus depth profiles at TR7, and TR8 over a year of collected data. Dates 

omitted are due to instrumental error. 
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Figure A-6: Temperature versus depth profiles at TR9, and TR10 over a year of collected data. Dates 

omitted are due to instrumental error. 

 



 

89 

 

 

Figure A-7: Exchange flux [m/year] and RMSE [°C] results for Model 1 (Surficial 

interpretation), Model 2 (Geophysical Interpretation) and Model 3 (Soil Core) for TR1 and TR2. 
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Figure A-8: Exchange flux [m/year] and RMSE [°C] results for Model 1 (Surficial 

interpretation), Model 2 (Geophysical Interpretation) and Model 3 (Soil Core) for TR3 and TR4. 
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Figure A-9: Exchange flux [m/year] and RMSE [°C] results for Model 1 (Surficial 

interpretation), Model 2 (Geophysical Interpretation) and Model 3 (Soil Core) for TR5 and TR6. 
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Figure A-10: Exchange flux [m/year] and RMSE [°C] results for Model 1 (Surficial 

interpretation), Model 2 (Geophysical Interpretation) and Model 3 (Soil Core) for TR7 and TR8. 
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Figure A-11: Exchange flux [m/year] and RMSE [°C] results for Model 1 (Surficial 

interpretation), Model 2 (Geophysical Interpretation) and Model 3 (Soil Core) for TR9 and 

TR10. 
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