
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

2011

A Unit Test Approach for Database Schema
Evolution
Katarina Grolinger
Western University, kgroling@uwo.ca

Miriam A M Capretz
Western University, mcapretz@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Databases and Information Systems Commons, and the Software Engineering
Commons

Citation of this paper:
Grolinger, Katarina and Capretz, Miriam A M, "A Unit Test Approach for Database Schema Evolution" (2011). Electrical and Computer
Engineering Publications. 35.
https://ir.lib.uwo.ca/electricalpub/35

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub/35?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F35&utm_medium=PDF&utm_campaign=PDFCoverPages

NOTICE: this is the author‟s version of a work that was accepted for publication in Information and Software Technology. Changes resulting

from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be

reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was
subsequently published in Information and Software Technology, [VOL 53, ISSUE 2, February 2011] DOI

http://dx.doi.org/10.1016/j.infsof.2010.10.002

A Unit Test Approach for Database Schema Evolution
Katarina Grolinger, Miriam A. M. Capretz

Department of Electrical and Computer Engineering

Faculty of Engineering
The University of Western Ontario
London, ON, N6A 5B9, Canada

Telephone: (519) 661- 2111 ext. 85478
Fax: (519) 850-2436

{kgrolinger, mcapretz}@uwo.ca

ABSTRACT
Context: The constant changes in today‟s business requirements demand continuous database revisions.

Hence, database structures, not unlike software applications, deteriorate during their lifespan and thus

require refactoring in order to achieve a longer life span. Although unit tests support changes to

application programs and refactoring, there is currently a lack of testing strategies for database schema

evolution.

Objective: This work examines the challenges for database schema evolution and explores the possibility

of using various testing strategies to assist with schema evolution. Specifically, the work proposes a novel

unit test approach for the application code that accesses databases with the objective of proactively

evaluating the code against the altered database.

Method: The approach was validated through the implementation of a testing framework in conjunction

with a sample application and a relatively simple database schema. Although the database schema in this

study was simple, it was nevertheless able to demonstrate the advantages of the proposed approach.

Results: After changes in the database schema, the proposed approach found all SELECT statements as

well as the majority of other statements requiring modifications in the application code. Due to its

efficiency with SELECT statements, the proposed approach is expected to be more successful with

database warehouse applications where SELECT statements are dominant.

Conclusion: The unit test approach that accesses databases has proven to be successful in evaluating the

application code against the evolved database. In particular, the approach is simple and straightforward to

implement, which makes it easily adoptable in practice.

Keywords

Database Schema Evolution, Database Testing, Unit Testing, Mock Objects.

1. INTRODUCTION

An organization‟s business system is usually supported by an information system comprised of several

programs and one or more databases. Today‟s rapid business requirement changes necessitate the

evolution of databases in order to accommodate new requirements [17]. Additionally, technological

changes, new operating systems, and new programming languages may require database modifications.

Thus, a database evolves in a similar fashion to any other software application. Nevertheless, there are

also significant differences between databases and software applications. As opposed to software

applications, database queries, procedures and views are not designed to manage changes [3], hence

making database evolution difficult. Because there are usually multiple applications running on a single

database, database changes may require subsequent modifications to these applications [1].

This work concentrates on schema evolution, which involves a change to the database structure, rather

than data evolution, which entails a modification of the data over time. Changes to the database schema

can be classified into two main categories: requirement modifications and database refactoring.

The most common schema changes caused by requirement modifications, involve enabling the storage of

supplementary data, including addition of attributes (columns) in an existing tables and addition of new

tables or constraints [4]. Database refactoring refers to changes in the database schema that are intended

to improve its maintenance and evolution [1]. Although each refactoring step can be clearly defined,

database refactoring is considered risky due to its potential for adversely affecting all applications relying

on the database [3]. As a result, many companies avoid database refactoring [6] at the expense of further

degrading their database schema quality. For example, even if a column requires a name change, it is

often left unchanged. Similarly, if a column needs to be deleted from the table, it is often left in the table

to avoid possible data loss or application problems. While this approach is not acceptable for application

development [19, 20], it is often practiced with databases because of the potential dangers inherent in

altering a database schema. Moreover, application development tools support refactoring [21, 22, 23] and

unit tests provide a safety net for application refactoring. In contrast, databases have no tools, such as unit

test frameworks, which would provide a safety net for database application developers [1]. However, the

continual avoidance of database refactoring will eventually lead to poorly structured databases that will be

increasingly difficult to maintain, thus challenging the development of new applications that rely on the

existing database. Therefore, the proposed approach applies to both categories: requirement modifications

and database refactoring.

Database schema needs to evolve in order to adapt to requirement changes and to facilitate the

maintenance of databases. Consequently, applications relying on the database also need to evolve to

accommodate the changed database schema. The first component of the schema evolution challenge, the

change of the actual database schema, has been documented in detail [1] and supported through a variety

of commercial tools [25, 26, 27, 28]. However, the second component, the process of effectively locating

and changing the application code to reflect the database changes, has attracted attention in the research

community [3, 4, 5], but it lacks tools or methods that are widely accepted.

This paper explores the use of existing software evolution strategies that facilitate the adaptation of the

application code related to changes in its respective database schema. In particular, a unit-testing

architecture that accesses databases is devised in order to identify the application code requiring

modification.

The paper is organized as follows: Section 2 reviews related work identifying the main gaps in the

database schema evolution and the associated application code testing. Subsequently, Section 3 describes

the proposed approach for database schema evolution supported by unit tests, while the implementation of

the approach is illustrated in Section 4. Finally, Section 5 illustrates the validation results, and the

conclusions are presented in Section 6.

2. RELATED WORK

Ambler and Sadalage present details of how to change and refactor the database schema [1]. The aspects

of the application code that require modification after a database schema change depend on the patterns of

data access, which can be encapsulated using two main approaches [1]:

1) Encapsulation through the use of views and database stored procedures. In this case, data is only

accessed through views and stored procedures, so that any change in the database schema will only

affect these two components. This approach is not commonly used due to the limitations of updating

views and stored procedures [1]. Moreover, this process requires different skill sets, as the stored

procedures and views, rather than the application code, require modification.

2) Encapsulation through the application code. With this commonly used approach, data in the

application is accessed through the Data Access Objects (DAO), so that changes to the database

queries also affect the application code [4]. Since this is the dominant approach in modern business

applications [1], as well as with legacy systems, this is the architecture on which the proposed

approach will be developed.

Once the database schema is changed, applications accessing the database may need to be adapted

accordingly. In particular, impact analysis seeks to identify all the code that will behave differently or that

are required to behave differently as a result of the database schema changes [3, 4]. Similar to impact

analysis, our work attempts to determine the application code that requires change due to a database

schema change. However, while impact analysis tools use string searches and/or flow analysis to evaluate

existing code, we exploit unit tests as a tool for locating code that requires change. Several of the impact

analysis methods are based merely on string searching and pattern matching; more effective methods use

data flow analysis in combination with string analysis. For example, Maule et al. [4] analyze the data

flow, starting from the location where the query is executed and proceeding through the calling objects.

The challenge is to determine to which point in the hierarchy the flow analysis is necessary. Nevertheless,

the process of analyzing many layers would be computationally expensive, while analysing fewer layers

would possibly introduce a higher error rate.

Karahasanovic and Sjoberg [5] introduce visualization tools into impact analysis. These tools help to

identify the impact of changes in the database schema of object-oriented applications. Specifically, these

authors use a Schema Evolution Management Tool (SEMT), which receives a Java code and database

files as input and subsequently identifies relationships between the packages, classes and interfaces. Once

the database schema is modified, SEMT identifies the potential objects in the application that require

change, and consequently, it alters the shape of those objects in the graph. However, in the case of large

systems, the graph display may become cumbersome.

Another way of approaching the problem of application adaptation to the evolved database is the

integration of schema evolution and data migration into development. An example of such approach is

proposed by Draheim et al. [2], where the evolution process starts with the modification of the application

object model, which is followed by a change in the database schema, and subsequently, the data

migration. Specifically, the object model change is detected by the upgrade generator, which compares

the old and the new model structures and generates the code for the database schema changes and data

migration. Although tools that integrate schema evolution into development and data migration [2] have

been gaining popularity in recent years, especially in the case of small to medium size systems, existing

applications cannot benefit from them due to the need to integrate the approach in the initial development

stage.

Furthermore, the process of adapting the application to the evolved database is an integral part of the

PRISM workbench [6, 7]), which is proposed by Curino et al. The PRISM workbench is a tool for

evaluating schema changes, executing changes to the database schema, rewriting the queries, adapting the

applications, and migrating the data. Thus, PRISM is an ambitious tool, with the goal of automating the

complete transition process from the initial assessments to the running of new applications on the

transformed database. Nevertheless, it is difficult to envision how online query rewriting would work on

complex data warehouse queries and how it could be implemented without significantly compromising

system performance.

Nevertheless, schema evolution is risky due to the paucity of tests that target it [3, 6]. Unit testing is

commonly used for non-database code, and it is proven to result in high quality code [29, 30, 31].

However, for application code accessing database, unit testing is generally criticized for two reasons:

firstly, the goal of the unit tests is to test only one feature at a time, and secondly, the tests need to run

quickly [8]. Although there are some unit test approaches that do access databases, these tests often

sacrifice performance for quality [10].

DbUnit [9] is an extension of JUnit, which is a commonly used application testing framework. DbUnit

offers functionalities that configure the database for testing purposes as well as that return the database to

its original state after the tests have been completed. The test developer creates data sets, using XML or

other methods, which will be used to produce the database state required for tests. Since different tests

require different database states, the process of creating numerous data sets may become labour intensive.

Although DbUnit configures the database appropriately for different tests, it does not relate to changes in

the application code that result from schema modifications.

A promising approach is proposed by Christensen et al., who suggest a unit-test framework for database

applications [10, 11]. This framework breaks the rule of tests‟ independency with the objective of

simplifying the writing and maintenance of unit tests so that they are less labour intensive and their

execution performance is improved. Similar to JUnit, this framework uses setUp and tearDown methods.

In addition, it uses a dependency hierarchy that is defined by the test developer. When a single test is

initiated, the setUp method is executed for all classes on which the test is dependent. However, this

approach suffers from the fact that each test is dependent on other tests, not only for the order of

execution, but also for the data used by the tests. Thus, when one test fails, all of the other tests fail as

well. This approach could possibly succeed in discovering application code that requires change due to

database schema modifications. However, the process of configuring the database to a specific state for

each unit test involves extensive effort in the coding of the setUp and tearDown methods. Moreover, this

method fully executes queries, which may be a time consuming process.

Additionally, the testing of database applications also involves the problem of how to populate databases

with meaningful data. For instance, DBMonster [12] and DataFactory [13] can assist in populating a

database with large amounts of information. However, the data created with those tools is often not

meaningful for functional applications testing; rather, it is mostly used for application scaling tests. Chays

et al. propose the use of a test GENerator for Database Applications (AGENDA) [14, 15, 16], which

generates database states based on the SQL statements used in the application and on the tester‟s

suggestions as captured in the input files. Specifically, the tester specifies sample values for the attributes

that can be partitioned into groups, each of which are expected to cause the application to behave

differently.

For each test repetition, the database needs to be returned to the same state. Although DBUnit [9] will

enable this functionality, the process of specifying states for each test is a burden on testers. Accordingly,

Willmor and Embury propose methods that combine the AGENDA and DBUnit approaches [18]. In

particular, they suggest the use of an extended SQL language to specify test cases and permitted

transitions. Once the test specifications are written, this system automatically transfers the database into

the required state.

We have also looked at add-ons for commercially available unit testing frameworks to evaluate their

functionality in relation to database schema evolution. In particular, JUnit add-ons have been reviewed, as

JUnit is the most commonly used unit testing framework [23]. JUnit add-ons are a collection of helper

classes for JUnit [24] that simplify unit test writing. However, there were no JUnit add-ons that were

related to database schema evolution.

There are numerous commercial tools that deal with database management. Some of these tools, including

DB2 Change Management Expert [25], Oracle Change Management Pack [26] and MySQL Workbench

for Schema Change [27], are offered by database vendors, while others are generic, such as Embarcadero

Change Manager [28]. The main functionalities of these tools include implementing database schema

changes, comparing different databases or schema versions, visualizing change prior to implementation

and analyzing the impact of database schema changes on database objects, such as views and stored

procedures. These commercial tools are effective for applications that encapsulate data access through the

use of database views and stored procedures, since, in those applications, all data is accessed using views

and stored procedures, and the application does not directly access other database objects, primarily

tables. Unfortunately, the majority of applications use encapsulation through DAO objects [1]. In such

cases, the impact analysis of schema changes on the application code is required and is not provided by

these commercial database management tools.

For any testing method to be fully accepted in the business world, it needs to be both simple and effective.

Unit testing for software applications is popular and efficient because it detects numerous problems early

in the development process and it is relatively simple to implement. However, traditional unit tests have

not been used to access databases [8], and consequently, they have not been used during the testing of

database schema evolution.

3. SCHEMA EVOLUTION SUPPORTED BY UNIT TESTS

Currently, there is a lack of methods and tools that support schema evolution testing [6, 7]. Nevertheless,

test suites facilitate the writing of unit tests for software applications, hence enabling testing during the

coding phase [23]. In order to be effective, unit tests have to be used frequently and efficiently [8]. For

instance, full unit tests for large systems should be performed rapidly. In order to achieve the required

speed, traditional unit tests do not access the database; rather, they access mock objects [8]. As a result,

these unit tests are not beneficial for database schema changes, especially since the database is not usually

accessed until the application code is executed, which occurs very late in the development process.

Extensive studies have been conducted on the efficiency of unit testing and test driven development [29,

30, 31]. These studies have demonstrated that the use of such approaches and related technologies leads to

an improved quality code. However, the majority of these unit tests mock access to the database. The

proposed approach aims to modify commonly used unit-testing strategies to include database access while

maintaining a short execution time. Consequently, the proven power of unit testing [29, 30, 31] can be

harnessed for query validation on the evolved database.

3.1. SYSTEM ARCHITECTURE

The proposed architecture, depicted in Figure 1, includes unit testing that accesses the database. For every

query in the application code, traditional unit tests use mocks to mimic the results that are retrieved from

the database. In fact, there are two possible ways to deal with queries in the proposed architecture:

1) No change in the database schema. In this case, there is no need to access the database, and therefore,

a traditional unit test is sufficient. Hence, in this situation, the proposed approach uses traditional

mocks. As demonstrated in Figure 1, the traditional mocked result set is returned to a mock.

2) Change in the database schema. In this instance, a query validation for the modified database is

required. However, the data manipulation language (DML) statements cannot be sent to the database

in their existing form, as the process would be slow and impractical. Unit tests need to run quickly so

that developers can execute them on a frequent basis. Since data warehouse queries commonly run for

several minutes, or even hours, they cannot be executed within unit tests. Therefore, the query should

be modified in a way that maintains validation while also decreasing the time required for execution.

The Query Modifier, which is the module that deals with this modification, sends a modified query to

the Executor/Validator, which executes the query and retrieves the results. If the query is modified in

such a way that it does not retrieve any data, the result set is empty and the Executor/Validator

determines whether or not the validation was successful. Subsequently, the result is sent back to the

mock and the unit testing proceeds. Furthermore, the Executor/Validator has the additional

functionality of logging detailed information into the log file in the case that the query validation

failed. This functionality assists in identifying statements that require modification due to a change in

the database schema.

The core of the system is the Query Modifier, which changes the query so that it is still validated when it

is sent to the database while the execution time is minimized. It works in conjunction with the

Executor/Validator, which is responsible for retrieving the validation results and transferring them to the

mocks.

Figure 1: Proposed architecture for the unit test accessing a database

Our approach focuses on SELECT statements, which are typical DML statements for data warehouse

applications, but it also manages INSERT, UPDATE and DELETE statements.

3.2. QUERY MODIFIER

When a query is sent to the database, it is processed in several steps. First, in the query parsing phase, the

query elements are evaluated in comparison to the database, and the most effective execution plan is

determined. Unless the query includes a significant number of tables, this step is very fast, executing in

less than one second. The second step involves accessing data, and its duration depends on how much

data the query accesses. This step may take long, even several hours, if the query needs to access a large

amount of data. The last step involves sorting, if requested, and returning the result set, which can be slow

depending on the size of the set returned to the application. If there is a problem with the query, the first

step of query parsing will fail, and an error will be returned to the calling method.

Therefore, in order to evaluate a query in a database, it is not necessary to fully execute the query. Rather,

only the first step, query parsing, is necessary, and the remaining steps can be avoided, since those parts

decrease the execution performance. Accordingly, this work proposes the use of mocks that access the

database and validate the query without fully executing it. Specifically, these mocks alter the query in

order to avoid a full query execution. The modification of mocks can be performed using two approaches:

1) A query can be sent to the database solely for the verification of referenced objects, and, in this case,

no result set is returned. This verification can be easily performed by appending the WHERE clause

criteria that can always be evaluated as false („WHERE …and 2=1‟).

2) A query can be parsed, and a few rows of the result set returned if further data processing in the unit

test is required. Depending on the database management system, this can be performed by limiting the

number of rows in the result set by using a feature such as rownum < 3 for Oracle or limit < 3 for

MySQL and PostgreSQL. Although the data retrieved in this manner will be incomplete, it can still be

useful depending on how the unit test will use it.

DB

Database

access?

Mocked

result set

Mocks

Query Modifier

Unit

Tests

Executor/Validator

Application

Code

Yes

No

Success/failure

flag or result set Modified SQL

Logs

In most cases, the first approach can be used. However, in certain cases, such as during the process of

retrieving data from the database when receiving values of sequence numbers, the second approach would

be used.

The Query Modifier processing is demonstrated in Figure 2. If the statement is categorized as SELECT,

DELETE or UPDATE, the Query Modifier proceeds to append criteria that evaluates as false. In case of

UNION, MINUS or INTERSECT queries, each separate query is appended with the same additional

criteria. However, an INSERT statement proceeds differently, depending on whether it is a direct

INSERT statement, like the command INSERT INTO table VALUES(…), or an indirect INSERT

statement, such as selecting from another table, where the command stipulates INSERT INTO table_a

(SELECT … FROM table_b). Indirect INSERT statements are treated in the same way as a SELECT

statement, and the SELECT part of the INSERT statement is appended with additional criteria.

Conversely, direct INSERT statements do not contain a SELECT part, but they specify the values that

need to be inserted. Thus, direct INSERT statements do not need to be appended; rather, they can be sent

to the Executor/Validator without changes.

Furthermore, some database systems provide the option of having the database itself append the query.

For instance, some databases, such as Oracle, have policies that may be set up to append queries with

additional criteria [12]. In this situation, a separate database account can be used for running unit tests,

and for that account, a policy could be specified to append the query with the appropriate criteria. Since

this approach is less generic, as it is specific to the database vendor, our implementation appends the

query from the unit test code.

Figure 2: Query Modifier

Although the process of accessing the database during unit tests will reduce the performance of the tests,

the database does not necessarily need to be accessed every time the unit test is executed. Rather, the

database should only be accessed when there is a schema change and a query re-evaluation is needed. As

shown in Figure 1, there is a switching component that changes traditional mocks to mocks that access a

database. This latter group of mocks is not separate from the original set; the main difference between this

group and traditional mocks is that this group appends a query, sends it to the database for parsing, and

then transfers the result back to the original mock object.

Incoming

statement

SELECT DELETE INSERT

Append WHERE

clause

Modified

SQL

Indirect (using

SELECT FROM)

Direct

INSERT

To Executor/

Validator

UPDATE

The ability of mocks to access the database is an integral part of our proposed unit test framework and not

separate from the traditional mocks. For this framework, it is not necessary to write a new set of mocks;

rather, a generic query execution mechanism is integrated with mocks that access the database.

3.3. EXECUTOR/VALIDATOR

The Executor/Validator is responsible for interacting with the database. Specifically, it receives a

modified query from the Query Modifier and sends it to the database for execution. Once the database

execution is complete, the Executor/Validator is responsible for retrieving the results of the execution.

Since the query is appended with criteria that evaluate as false, the Executor/Validator will only receive

information regarding the success or failure of the statement. The result of the query, however, is sent

back to the mock that originated it. Nevertheless, the result of the unit test is the result of the statement

execution.

After the execution of unit tests, the developer will know which tests have failed and which ones have

succeeded. However, details of the reasons for the failure are not provided. Changes to the database

schema will likely cause several unit tests with database access to fail. Therefore, additional logging

capabilities that assist in determining the cause of the failure and performing the required code changes

are provided. Each DML statement that fails, along with the database error message, is written into the

log file with the unit test method that initiated it.

While this procedure provides information about the statements that failed, it does not give details about

the origin of the statement. Some statements are dynamic, and their creation may involve several methods

and classes. In order to assist in tracking the creation of such statements, the call stacks for the error are

also logged. Currently, this information is inserted into a text file, which is available to assist the

developer with the code changes. However, we are considering the creation of a user interface that would

present this information in a more user-friendly manner.

Our approach targets changes to the software application that are directly related to modifications in the

database schema; therefore, it does not consider changes to stored procedures within the database. In rare

cases, however, these stored procedures are tested through the use of unit test suites, such as TSQLUnit

[32] or utPLSQL [33], rather than application unit test suites. In such cases, the proposed approach can

be adapted to test the stored procedures.

4. IMPLEMENTATION

To validate our proposed approach, we have utilized Java 1.5 for the software application, JUnit 4 as the

unit testing framework, and the database Oracle 10g. Although the implementation with other

development languages, testing frameworks and databases would require an adaptation to those systems,

the overall approach should remain the same.

The validation entails making various changes to the database schema and observing the success of

finding statements that require modification in the software application. After testing the system

performance of each schema evolution scenario, the database schema and the data are restored to their

original state, thus ensuring the same initial condition for all of the tests and facilitating the comparison of

the test results. In order to quickly and efficiently restore the database schema and the data, we have

selected a simple database schema for the first step of the validation; the initial schema is depicted in

Figure 3.

Figure 3: Database schema

4.1. IMPLEMENTATION ARCHITECTURE

In order to follow common development practices, we have utilized encapsulation through the application

code, where the data is only accessed from the Data Access Objects (DAO). Therefore, all queries in the

software application are sent to the database through the SQLExecuter class. SQLExecuter contains

methods such as execute() and executeUpdate(), which send statements to the database, and

getResultSet(), which retrieves the result set and returns it to the calling method.

Our implementation will be performed in two steps. The first step involves unit testing using traditional

mocks without database access, and in the second step, the proposed mocks with database access are

introduced. The implementation of traditional mocks at the outset will allow us the observation of the

feasibility of introducing the proposed approach into a previously existing test framework.

4.1.1. TRADITIONAL MOCKS

The core implementation of our traditional mocks includes MockResultSet and MockSQLExecuter

classes. Most database systems implement the ResultSet interface, and accordingly, our MockResultSet

implements the ResultSet interface to mimic the result set returned from the database. In the

MockResultSet, the methods that are utilized in the data access code, such as getInt(String

columnName), getString (String columnName) and next(), are implemented to mimic the behaviour

of the database implementation of ResutSet; however, these methods do not have database access. An

example of this implementation is shown in Figure 4.

Figure 4: MockResultSet next method mimicking database ResultSet next method

Because there is no database interaction, the framework requires a way to add records into

MockResultSet. Therefore, the method entitled addRecord, which is depicted in Figure 5, is called from

the traditional unit test in order to set the data and mimic database interaction.

Figure 5: Adding records to MockResultSet

Additionally, the MockSQLExecuter class mocks the SQLExecuter class, and accordingly, it overrides

methods from the SQLExecuter. Figure 6 illustrates the execAndGetResultSet method from

MockSQLExecuter. As demonstrated, this method only returns the mockResultSet, which was previously

set using the addRecord method of the MockResultSet class.

Figure 6: Example of the MockSQLExecuter class method

An example of the unit test with traditional mocks is depicted in Figure 7. Specifically, the mocked result

set is created with the desired values using addRecord. When the class Book is created, the

MockSQLExecuter is passed in, so that the Book class will use the mock instead of the real SQLExecuter.

Figure 7: Traditional mock

Although there are some alternative approaches to mock database access that may be simpler, they are not

as generic as the presented approach.

4.1.2. MOCKS WITH DATABASE ACCESS

Depending on how traditional database mocks are implemented, the proposed approach may require

different methods for implementing mocks with database access. Using a generic approach with

MockSQLExecuter and MockResultSet, all of the changes required for implementing the proposed

approach are within the MockSQLExecuter class. MockSQLExecuter class contains the switch that

determines whether traditional mocks or mocks with database access will be used. One of the methods

that have been modified to include database access for mocks is depicted in Figure 8. When using

traditional mocks, the useDBAccess switch is set to false, and this code returns MockResultSet, which

has been previously set in the test code. This process is the same as the one for mocks without database

access. However, if the useDBAccess switch is on, the MockSQLExecuter method transfers the query to

the SQLExecuter, which then sends the query to the database. If the query is successfully executed, the

MockResultSet is returned to the caller test. Since we are appending criteria that always evaluate as

false, the returned result set will be empty if the query is successfully executed. On the other hand, if there

are validation errors on the query, the MockSQLExecuter will log additional information using the

logInfo(sql, String message) method, and the unit test will fail. The logInfo method implements

the logging of the executed statements, the database error and the call stack at the error point. The process

of sending the query to the database and retrieving the result sets, along with the logging capability,

represents the Executor/Validator functionality.

Figure 8: Core of mocks with database access (from MockSQLExecuter class)

When useDBAccess is set to true, the method execAndGetResultSet, from the MockSQLExecuter class,

calls the execAndGetResultSet, shown in Figure 8, from the parent SQLExecuter class (super.

execAndGetResultSet(…)).

The method execAndGetResultSet, from the SQLExecuter class, calls the execute method. The

MockSQLExecuter class overrides the execute (String query) method, from the SQLExecuter class,

for the purpose of accessing the database in mocks. The process of overriding the execute method from

the MockSQLExecuter class is depicted in Figure 9.

Figure 9: Modifying the query before execution (MockSQLExecuter class)

The execute method of the MockSQLExecuter class calls the appendCriteria(query), which appends

the criteria evaluating as false: WHERE … and 2=1. Subsequently, the returned, modified query is

transferred to the SQLExecuter for execution.

The UPDATE and DELETE statements require an implementation that is similar to that for the SELECT

statements. Typical UPDATE and DELETE statements have the WHERE clause to which the criteria

evaluating as false can be appended. If these statements do not have the WHERE clause, we add one

containing a criteria evaluating as false, such as “2=1”.

On the other hand, INSERT statements require a different procedure. Typical INSERT statements, which

directly specify the values to be inserted, are not appended with additional criteria. Rather, these

statements are sent to the database without modifications, and the changes are rolled back. In the case of

an indirect INSERT statement that uses a SELECT statement to obtain the values (INSERT INTO tableA

(SELECT column1, column2 FROM tableB)), the SELECT part is treated as a regular SELECT

statement and is appended with the additional criteria.

5. VALIDATION RESULTS

The main objective of this work is not to provide a comprehensive solution that can manage all possible

application issues arising from schema evolution, but to provide a generic solution that can be quickly and

easily implemented and can detect most schema change problems early in the process. Complicated

solutions often remain unimplemented due to the time and effort they require. Conversely, the proposed

approach is easy to implement and does not require significant unit test changes in comparison with the

traditional unit tests.

The validation of the proposed approach that has been carried out includes: the renaming of tables and

columns, the addition and deletion of columns, the merging and splitting of tables, and changes to the

column data types. Overall, while the validation was successful with SELECT statements, the success rate

of the other statements depended on the specific change to the database schema. In particular, the process

of changing column data types contained the most unreliable results. The results depended on the former

and current data types as well as on the data used in the unit tests.

Section 5.1 reviews the proposed system behaviour with regards to different types of SQL statements.

Since the total number of possible changes to the database schema is enormous, the validation analysis

concentrates exclusively on the most common schema changes.

Larger schema changes are commonly made up of several simple ones. For instance, adding lookup table

is composed of change(s) to original table (adding or renaming columns), creation of new table and

addition of foreign key. Some complex schema changes, and their decomposition into simple ones, can be

found in [1].

5.1. SELECT STATEMENTS

Data warehouse applications contain mostly SELECT statements, while online transaction processing

(OLTP) applications contain a high number of all statement types, including SELECT, DELETE,

INSERT and UPDATE. In hybrid applications, which are the most common types of applications,

SELECT statements are dominant. Due to the dominance of SELECT statements, we evaluate the way in

which various changes to the database schema influence SELECT statements as well as the success of the

proposed approach in working with these statements.

In this work, all SELECT statements that required modifications as a result of database schema changes

were successfully recognized. Depending on the schema change, the application logic may need to be

revised, thus requiring the SELECT statements to be modified. However, application logic changes are

outside of the scope of this research.

5.1.1. RENAMING TABLES, COLUMNS, VIEWS AND PROCEDURES

One of the most common and simple changes to the database schema involves renaming tables, columns,

views or stored procedures. Although the process of renaming is relatively easy, it is usually avoided due

to the potential impact that it can have on the applications. For instance, consider the following SELECT

statement:

SELECT c.lastname, info.get_orderdetails(o.orderID)

FROM customer c, v_shippedorders o

WHERE c.customerID = o.customerID and c.customerID = ?;

Where:

v_shippedorders is the view of all shipped orders that have not yet been received.

info.get_orderdetails(o.orderID) is the stored procedure returning the details of order o.orderID.

If the name of any referenced elements in the SELECT statement changes, the statement itself will need

to be modified. This modification includes all referenced objects, including the customerID and

lastname columns of the customer table, the customerID and orderID columns of the

v_shippedorders view and the procedure info.get_orderdetails.

Consider a situation where the lastname column of the customer table is renamed to name. During the

execution of the proposed unit tests with database access, the Query Modifier appends the SELECT

statements before sending them to database for execution. Thus, the above SELECT statement is modified

to:

SELECT c.lastname, info.get_orderdetails(o.orderID)

FROM customer c, v_shippedorders o

WHERE c.customerID = o.customerID and c.customerID = ? and 2=1‟

In this case, the database engine tries to execute the modified statement and fails. Subsequently, it sends

the error message back to the calling object. With Oracle as the database engine, the „ORA-00904:

LASTNAME: invalid identifier‟ error is triggered. The Executor/Validator recognizes the error and

sends it to the log file along with additional information about the failure, as shown in Figure 10. The log

file identifies the statements that require modification as a result of the database schema change; it

contains a paragraph dedicated to each identified statement. Specifically, the first line of each paragraph

indicates the error that was transferred to the Executor/Validator by the database engine. The subsequent

lines identify the DML statements that caused the error, and the final part of the paragraph contains the

Call Stack referring to the code, in this case a Java class, from which the statement originated. For

example, the portion of the log file shown in Figure 10 identifies two SELECT statements that require

changes due to renaming of the lastname column from the customer table. From the Call Stack, we

conclude that both statements were executed from the Customer class: the first statement was executed

from the 26
th
 line of the getCustomerName method and the second one was executed from the 37

th
 line of

getShippedOrders. After the statements are identified through the log file, they need to be changed to

reflect the evolved database schema.

Figure 10: Log file identifying invalid SELECT statements

The proposed approach successfully identified the SELECT statements that required modification due to

renaming of a column. However, the renaming of the constraints or the non-referenced objects does not

affect the SELECT statement.

5.1.2 DIVIDING A TABLE INTO TWO TABLES

In addition to renaming, another common change to the database schema entails the division of a single

table into two tables. As is the case with renaming, the proposed approach is also successful in this

situation. With this change, not all queries referencing the divided table require modification. For

example, consider the following change to the database schema:

CREATE TABLE phone

(phoneid NUMBER,

customerID NUMBER REFERENCES customer(customerid),

phone VARCHAR(30));

INSERT INTO phone

(SELECT ?, customerid, phone FROM customer);

ALTER TABLE customer DROP COLUMN phone;

Although the original customer table contained the phone column, a customer may have more than one

phone number, and therefore, a new table, named phone, should be created. The only queries that require

modification are those referencing the phone column in the customer table. Consider the following two

SELECT statements:

SELECT firstname FROM customer WHERE customerID = ?;

SELECT phone FROM customer WHERE customerID = ?;

The first statement does not require a change, because it does not reference the phone column in the

customer table, while the second statement needs to be modified to use a new phone table for obtaining

the phone number. Accordingly, the proposed method correctly identifies only the second statement as

requiring change. The elements referenced in the first statement did not change, and, as a result, the

statement was executed successfully after the schema change. Therefore, based on the proposed method,

this statement does not require modification. Figure 11 depicts the log file after the customer table has

been divided.

SQL ERROR: ORA-00904: LASTNAME: invalid identifier

Statement Executed: select lastname from customer where customerID

= ?

Call Stack:

BookStore.Customer.getCustomerName:26

BookStore.CustomerTest.testGetCustomerNameByID:35

...

SQL ERROR: ORA-00904: C.LASTNAME: invalid identifier

Statement Executed: SELECT c.lastname,

info.get_orderdetails(o.orderID) FROM customer c, v_shippedorder o

WHERE c.customerID = o.customerID and c.customerID = ?

Call Stack:

BookStore.Customer.getShippedOrders:37

BookStore.CustomerTest.testGetShippedOrderByCustomerID:47

...

Database error

SQL

Statement

Class and method

where the SQL

originated

Figure 11: Log file after dividing the customer table into customer and phone tables

5.1.3. MERGING TABLES

Table merging, which is opposite to the previous change, is a less common modification. In this case, the

success of the proposed approach depends on the way in which the merging is performed.

In a situation where the names of clients are in the customer table and the phone numbers are in the

phone table, these two tables have to be merged into a single table because the system needs to keep only

one phone number for each customer.

CREATE TABLE customerinfo (

customerID NUMBER,

lastname VARCHAR(400),

firstname VARCHAR(400),

address VARCHAR(400),

phone VARCHAR2(100));

INSERT INTO customerinfo

(SELECT c.customerID, c.lastname, c.firstname, c.address, p.phone

FROM customer c

JOIN phone p on p.customerID = c.CustomerID);

DROP TABLE customer;

DROP TABLE phone;

In the previous example, the name for the new table, customerinfo, is different from the names of the

tables that were merged, as those were named customer and phone. Consequently, the proposed approach

successfully found all queries referencing both the customer and phone tables.

However, the situation is different if the name of the new table is the same as that of the merged table,

that is, if the new table is named customer. The proposed approach will only find queries referencing the

phone table, while queries referencing the customer table may require additional changes, depending on

the application logic.

If there are constraints for additions or removals, including foreign keys, NOT NULL or check

constraints, then there are no changes required for the SELECT statements.

Overall, when the database schema is changed, the proposed approach finds SELECT statements that

become invalidated and hence require change.

5.2. DELETE STATEMENTS

Like the case with SELECT statements, when the changed object is referenced by a DELETE statement,

the DELETE statement is successfully identified as requiring change.

A typical example of a DELETE statement is:

DELETE FROM custorder WHERE customerID = ? and orderdate = ?;

In this case, the records from the custorder table are deleted for the specified customerID and

java.sql.SQLException: ORA-00904: PHONE: invalid

identifier

Statement Executed: select phone from customer where

customerID = ?

Call Stack:

BookStore.Customer.getCustomerPhone:38

…

Statement

requiring change

Database error:

phone column not

in customer table

orderdate. If the name of the table, which is custorder, or the names of the referenced columns, which

are customerID and orderdate, change, the statement is properly identified as requiring modification. If

the column names for other columns of the custorder table change, the statement does not require

modification, and the proposed method correctly identifies the statement as not needing change.

After custorder is renamed to customerorder on the sample database, several statements appeared in

the log file, a portion of which is depicted in Figure 12. In addition to correctly identifying that „DELETE

from custorder‟ requires change, it also recognized that the stored procedure v_shippedorder contains

errors. When the v_shippedorder procedure was reviewed, it revealed that the stored procedure also

referred to custorder table, which needed to be changed to customerorder.

Figure 12: Log file after renaming custorder table to customerorder

Nevertheless, while this approach will verify the validity of a DELETE statement, it will not check

whether or not the deletion will break any constraints. For instance, if a foreign key is added, the

proposed approach will not find the DELETE or UPDATE statements that could possibly be affected by

these keys. For example, if a foreign key referencing the orderID from the order table is added, the

previous DELETE statement may be affected by it, depending on the data contained in the child and the

parent table. In this case, the proposed approach does not identify the statement as needing change.

5.3. INSERT STATEMENTS

Typical INSERT statements do not include a WHERE element, and therefore, additional criteria cannot

be appended to it. Rather, an INSERT statement is executed in its existing form and after all data changes

are rolled back.

The INSERT statements are checked for the existence of referenced objects. If any of the referenced

objects, including tables, columns or views, do not exist, the INSERT statements will be identified. Also,

the proposed method ensures that the number of columns matches the number of supplied values for the

statement.

Since the proposed approach actually inserts the data, it performs validation in regard to the constraints.

For example, consider the following statement:

INSERT INTO customer (customerID, lastname, firstname, phone)

VALUES (?, ?, ?, ?);

In this INSERT statement, the customer table contains the address column. This column allows the

existence of NULLs (can remain empty), therefore, this INSERT statement is deemed successful in spite

java.sql.SQLException: ORA-04063: view APP.V_SHIPPEDORDER has

errors

Statement Executed: SELECT c.lastname,

info.get_orderdetails(o.orderID) FROM customer c, v_shippedorder o

WHERE c.customerID = o.customerID and c.customerID = ?

Call Stack:

BookStore.Customer.getShippedOrders:37

BookStore.CustomerTest.testGetShippedOrderByCustomerID:47

sun.reflect.NativeMethodAccessorImpl.invoke0:-2

...

java.sql.SQLException: ORA-00942: table or view does not exist

Statement Executed: DELETE FROM custorder WHERE customerID = ? and

orderdate = ?

Call Stack:

BookStore.Customer.deleteCustOrdersForDate:48

BookStore.CustomerTest.testDeleteCustOrderForDate:57

...

DELETE

statement

needing change

Stored

procedure

needing change

of the fact that it does not contain the address column. Figure 13 displays the log file after the address

column has been changed to NOT NULL. The database error refers to the NOT NULL constraint on the

address column of the customer table in the APP schema, thus indicating the need to include the

address column in the INSERT statement.

Figure 13: Log file after changing the address column to not allow nulls

All data referenced by foreign keys must already exist in order for this approach to work. If they do not,

the statements may be identified as requiring change due to the absence of parent data.

In another type of INSERT statement, the inserted values are not directly specified but are selected from

another table(s). An example of this INSERT statement is shown below:

INSERT INTO customer (customerID, lastname, firstname, phone)

(SELECT ?, lastname, firstname, phone

FROM individual

WHERE individualID = ?);

The table named individual contains records of all individuals with names and phone numbers. When

an individual becomes a customer, a record is inserted into the customer table by specifying a new

customerID and obtaining the firstname, lastname and phone of the customer from the individual

table.

When INSERT statements involve the process of selecting from another table, the SELECT element is

treated as if it was a regular SELECT statement, and hence, we append additional criteria to the SELECT

part of the INSERT statement.

As a result, our approach recognized when any of the referenced objects, either in a main INSERT

statement or in a sub SELECT statement, were changed.

5.4. UPDATE STATEMENTS

As in the case of SELECT and DELETE statements, we append the WHERE clause of the UPDATE

statements. Similar to SELECT, DELETE and INSERT statements, UPDATE statements are checked for

the validity of referenced objects. For instance, consider a typical UPDATE statement:

UPDATE orderdetails

SET quantity = ?

WHERE orderID = ?;

If any of the referenced elements, including the table orderdetails or the columns quantity and

orderID, experience a change in name, the statement is correctly identified as needing modification.

Figure 14 contains a portion of the log file referring to the UPDATE statement after the quantity column

was renamed.

java.sql.SQLException: ORA-01400: cannot insert NULL into

(APP.CUSTOMER.ADDRESS)

Statement Executed: INSERT INTO CUSTOMER (CUSTOMERID,

LASTNAME, FIRSTNAME, PHONE) VALUES (?,?,?,?)

Call Stack:

BookStore.Customer.insertNewCustomer:61

BookStore.CustomerTest.testInsertNewCustomer:63

…

Statement

requiring

change

Database

error

Figure 14: Log file after renaming the quantity column

Statements requiring change due to modifications such as renaming, removing tables, columns, views,

and merging or splitting tables, were successfully found. However, the addition of columns, tables or

views does not affect the existing UPDATE statements.

While SELECT statements are not affected by the addition or change of constraints, INSERT and

UPDATE statements are affected by constraint changes. In this case, the proposed approach does not find

statements requiring modification due to such changes. As opposed to INSERT statements, which are

affected by the addition of new columns, UPDATE statements are not affected by this modification.

Because we append the WHERE clause with the criteria that evaluate as false, no data is updated, and

therefore, there is no validation relating to constraints.

5.5. EXECUTION TIME FINDINGS

In order to assess the execution time of this approach, we created a test sample set of 144 unit tests. With

the proposed approach, the database was accessed 120 times, including 96 statements that were appended

with the additional criteria and 24 statements that were executed without modifications, such as direct

INSERT statements or statements retrieving sequence numbers. In total, the execution of 144 tests took

13 seconds on a workstation with a 2GHz processor and 3G RAM.

In the second step, the switch is turned off so that the database is not accessed. As a result, the unit tests in

the first step were transformed into traditional unit tests where database access is mocked. In this step, the

execution time took 1.6 seconds.

The process of transforming traditional unit tests into unit tests with database access increased the test

execution time. Nevertheless, the execution still averaged approximately 0.09s per test. Although these

tests are still relatively fast, their reduced speed in comparison to the traditional unit tests may not be

acceptable for daily or hourly executions of large test suites. However, the proposed approach is solely

intended for use with database schema changes; therefore, traditional unit tests can be used for daily

operation whereas unit tests with database access should be utilized only when there is a database schema

change.

5.6. GENERALIZED VALIDATION FINDINGS

The implementation demonstrated that the process of integrating the database access into a traditional unit

test is relatively simple. In the case of our implementation, which used a traditional unit test with a mock

ResultSet and SQLExecuter classes, all changes were contained within the SQLExecuter class.

However, different database access mocking may add complications to this step. Although it is possible to

integrate the proposed approach into an existing unit test suite, this integration is strongly dependent on

the way in which the mocking is performed in the existing tests.

The main limitation of the proposed approach lies in its lack of success with added, changed or removed

constraints. However, this limitation does not affect SELECT statements, because they do not require any

changes as a result of constraint modifications.

Some of the approach‟s limitations can be overcome by using temporary schema changes. For instance, if

the table name is temporarily changed, the system will find all queries referencing the modified table. All

statements can be identified and reviewed from the log file to determine whether or not they require any

java.sql.SQLException: ORA-00904: QUANTITY: invalid identifier

Statement Executed: UPDATE ORDERDETAILS SET QUANTITY = ? WHERE

ORDERID = ? and rownum = 0

Call Stack:

BookStore.Order.changeQuantity:27

…

Error referring to

renamed column
quantity

changes. After the statement changes are performed, the table is reverted to its original name.

Although the proposed approach is primarily focused on database evolution changes, it is also successful

in evaluating statements during the unit testing phase. Since, in unit testing, the statement is evaluated

against the database, there is no need to run the full application for validating the statement. The ability to

evaluate statements enabled the early detection of common writing mistakes, such as spelling and syntax

errors, which would otherwise be detected only during run time.

This work aims to identify changes that are required in the application code as a result of modifications in

the database schema, which is similar to impact analysis [3, 4, 5]. Impact analysis approaches analyse

existing application code with regards to database schema changes and create an impact report. The

impact report requires tools to conduct application code analysis and, therefore, it is highly dependent on

the application implementation language; for instance, Maule et al. [4] concentrate on impact analysis for

the C# code. This work also produces an impact report in the form of a log file, but it does not require a

separate tool for impact analysis, as it is integrated in the unit testing.

6. CONCLUSIONS

Since modern business requirements change rapidly, databases should evolve in order to continue meeting

organizational needs. Changes to the database schema have generally been avoided because of the impact

they may have on the applications [3, 6].

Application changes are supported by unit tests, which represent a form of safety net for application

changes and refactoring. Currently, there is no tool that provides such a safety net for database application

changes in regards to schema evolution [1]. Furthermore, we could not find a study that specifically

targets application testing in regards to database schema evolution.

In this work, we propose schema evolution that is supported by unit tests accessing the database.

Although the queries are not fully executed and are only parsed, the process of parsing still enables the

evaluation of referenced objects. This approach allows unit tests to be conducted quickly, since the

queries are not fully executed but are still evaluated against the changed database.

The approach was validated by implementing a testing framework and using a simple database schema. It

found most of the statements requiring modification due to schema evolution. The implementation was

relatively simple and only required minor changes to traditional unit tests.

The next step would entail evaluating the approach with a set of real life applications containing a range

of different applications from transaction processing systems to data warehouses. However, it would be a

significant challenge to evaluate and compare the success rate, due to the varying frequencies of schema

changes with different applications and due to the dependency of the success rate on the type of database

application and the type of schema change.

Additionally, we plan to improve the usability of the produced results. For instance, the textual log file

will be replaced with a user interface that will facilitate the message navigation and will direct the user

precisely to the code location where the problem originated. Moreover, database error messages will be

supplemented with more descriptive, user friendly messages.

7. REFERENCES
[1] S.W. Ambler and P.J. Sadalage, Refactoring Databases: Evolutionary Database Design, Addison-Wesley, 2006.

[2] D. Draheim, M. Horn and I. Schulz, “The Schema Evolution and Data Migration Framework of the Environmental Mass

Database IMIS”, in Proceedings of the 16th International Conference on Scientific and Statistical Database Management, June

2004, pp. 341-344.

[3] G. Papastefanatos, F. Anagnostou, Y. Vassiliou and P. Vassiliadis, “Hecataeus: A What-If Analysis Tool for Database

Schema Evolution”, in Proceedings of the 12th European Conference on Software Maintenance and Reengineering, Apr 2008,

pp. 326 – 328.

[4] A. Maule, W. Emmerich and D. S. Rosenblum, “Impact Analysis of Database Schema Changes”, in Proceedings of the 30th

International Conference on Software Engineering, May. 2008, pp. 451-460.

[5] A. Karahasanovic and D. Sjoberg, “Visualizing Impacts of Database Schema Changed – A Controlled Experiment”, in

Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments, Sep. 2001, pp. 358-365.

[6] C. A. Curino, H. J. Moon and C. Zaniolo, “Graceful Database Schema Evolution: the PRISM Workbench”, in Proceedings of

the VLDB Endowment, Vol. 1 , Issue 1., Aug. 2008, pp. 761-772.

[7] C. A. Curino, H. J. Moon, M. Ham and C. Zaniolo, “The PRISM Workbench: Database Schema Evolution Without Tears”, in

Proceedings of the 2009 IEEE International Conference on Data Engineering, 2009, pp. 1523-1526.

[8] T. Mackinnon, S. Freeman and P. Craig, Endo-Testing: Unit Testing with Mock Objects, Extreme Programming Examined,

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 2001, pp. 287 – 301.

[9] DbUnit, http://www.dbunit.org/

[10] C. A. Christensen, S. Gundersborg, K. de Linde, “A Unit-Test Framework for Database Applications”, in Proceedings of the

10th International Database Engineering and Applications Symposium, Dec. 2006, pp. 11-20.

[11] C. A. Christensen, S. Gundersborg, K. de Linde and K. Torp, “A Unit-Test Framework for Database Applications”,

http://dbtr.cs.aau.dk/DBPublications/ DBTR-15.pdf, May. 2006,

[12] DBMonster, http://dbmonster.kernelpanic.pl/

[13] DataFactory, http://www.quest.com/Quest_Site_Assets/ PDF/DSD_DataFactory_F.pdf

[14] D. Chays, F. I. Vokolos and E. J. Weyuker, “A Framework for Testing Database Applications”, in Proceedings of the 2000

ACM SIGSOFT International Symposium on Software Testing and Analysis, 2000, pp. 147-157.

[15] D. Chays, J. Shahid and P. G. Frankl , “Query-based Test Generation for Database Applications”, in Proceedings of the 1st

International Workshop on Testing Database Systems, Article No. 6, June 2008.

[16] Y. Deng, P. Frankl, D. Chays, “Testing Database Transactions with AGENDA”, in Proceedings of the 27th International

Conference on Software Engineering, May. 2005, pp. 78-87.

[17] D. de Vries and J. F. Roddick, “The case for mesodata: An empirical investigation of an evolving database system”,

Information and Software Technology, vol. 49, no. 9-10, 2007, pp. 1061-1072.

[18] D. Willmor and S. M. Embury, “An Intentional Approach to the Specification of Test Cases for Database Applications”, in

Proceedings of the 28th International Conference on Software Engineering, May. 2006, pp. 102-111.

[19] M. Fowler, Refactoring : Improving the Design of Existing Code, Addison-Wesley, 1999.

[20] M. Lippert and S. Roock, Refactoring in Large Software Projects: Performing Complex Restructurings Successfully, John

Wiley & Sons, 2006.

[21] JUnit, http://www.junit.org

[22] csUnit, http://www.csunit.org

[23] P. Hamill, Unit Test Frameworks, O'Reilly Media, 2004.

[24] JUnit addons, http://junit-addons.sourceforge.net

[25] DB2 Change Management Expert,

http://publib.boulder.ibm.com/infocenter/mptoolic/v1r0/index.jsp?topic=/com.ibm.db2tools.chx.doc.ug/chxucoview01.htm

[26] Oracle Change Management Pack, http://www.oracle.com/technology/products/oem/pdf/ds_change_pack.pdf

[27] MySQL Workbench for Schema Change, http://www.mysql.com/products/workbench

[28] Embarcadero Change Manager, http://www.embarcadero.com/products/change-manager

[29] L. Williams, G. Kudrjavets and N. Nagappan, “On the Effectiveness of Unit Test Automation at Microsoft”, in Proceedings

of the 20th International Symposium on Software Reliability Engineering, Dec. 1009, pp. 81-89.

[30] T. Bhat and N. Nagappan, “Evaluating the Efficacy of Test-driven Development: Industrial Case Studies”, in Proceedings of

the 2006 ACM/IEEE International Symposium on Empirical Software Engineering, 2006, pp. 356 – 363.

[31] E.M. Maximilien and L. Williams, “Assessing test-driven development at IBM”, in Proceedings of the 25th International

Conference on Software Engineering, May 2003, pp. 564 – 569.

[32] TSQLUnit, http://sourceforge.net/apps/trac/tsqlunit

[33] utPLSQL, http://utplsql.sourceforge.net

http://dbtr.cs.aau.dk/DBPublications/
http://www.quest.com/Quest_Site_Assets/
http://www.junit.org/
http://www.csunit.org/
http://junit-addons.sourceforge.net/
http://publib.boulder.ibm.com/infocenter/mptoolic/v1r0/index.jsp?topic=/com.ibm.db2tools.chx.doc.ug/chxucoview01.htm
http://www.oracle.com/technology/products/oem/pdf/ds_change_pack.pdf
http://www.mysql.com/products/workbench
http://www.embarcadero.com/products/change-manager

	Western University
	Scholarship@Western
	2011

	A Unit Test Approach for Database Schema Evolution
	Katarina Grolinger
	Miriam A M Capretz
	Citation of this paper:

	Preparation of Papers in a Two-Column Format

