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ABSTRACT   
Context: The constant changes in today‟s business requirements demand continuous database revisions. 

Hence, database structures, not unlike software applications, deteriorate during their lifespan and thus 

require refactoring in order to achieve a longer life span. Although unit tests support changes to 

application programs and refactoring, there is currently a lack of testing strategies for database schema 

evolution. 

Objective: This work examines the challenges for database schema evolution and explores the possibility 

of using various testing strategies to assist with schema evolution. Specifically, the work proposes a novel 

unit test approach for the application code that accesses databases with the objective of proactively 

evaluating the code against the altered database. 

Method: The approach was validated through the implementation of a testing framework in conjunction 

with a sample application and a relatively simple database schema. Although the database schema in this 

study was simple, it was nevertheless able to demonstrate the advantages of the proposed approach.  

Results: After changes in the database schema, the proposed approach found all SELECT statements as 

well as the majority of other statements requiring modifications in the application code. Due to its 

efficiency with SELECT statements, the proposed approach is expected to be more successful with 

database warehouse applications where SELECT statements are dominant.  

Conclusion: The unit test approach that accesses databases has proven to be successful in evaluating the 

application code against the evolved database. In particular, the approach is simple and straightforward to 

implement, which makes it easily adoptable in practice. 
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1. INTRODUCTION 

An organization‟s business system is usually supported by an information system comprised of several 

programs and one or more databases. Today‟s rapid business requirement changes necessitate the 

evolution of databases in order to accommodate new requirements [17]. Additionally, technological 

changes, new operating systems, and new programming languages may require database modifications. 

Thus, a database evolves in a similar fashion to any other software application. Nevertheless, there are 

also significant differences between databases and software applications. As opposed to software 

applications, database queries, procedures and views are not designed to manage changes [3], hence 

making database evolution difficult. Because there are usually multiple applications running on a single 

database, database changes may require subsequent modifications to these applications [1]. 

This work concentrates on schema evolution, which involves a change to the database structure, rather 

than data evolution, which entails a modification of the data over time. Changes to the database schema 

can be classified into two main categories: requirement modifications and database refactoring.  

The most common schema changes caused by requirement modifications, involve enabling the storage of 

supplementary data, including addition of attributes (columns) in an existing tables and addition of new 

tables or constraints [4]. Database refactoring refers to changes in the database schema that are intended 



 

to improve its maintenance and evolution [1]. Although each refactoring step can be clearly defined, 

database refactoring is considered risky due to its potential for adversely affecting all applications relying 

on the database [3]. As a result, many companies avoid database refactoring [6] at the expense of further 

degrading their database schema quality. For example, even if a column requires a name change, it is 

often left unchanged. Similarly, if a column needs to be deleted from the table, it is often left in the table 

to avoid possible data loss or application problems. While this approach is not acceptable for application 

development [19, 20], it is often practiced with databases because of the potential dangers inherent in 

altering a database schema. Moreover, application development tools support refactoring [21, 22, 23] and 

unit tests provide a safety net for application refactoring. In contrast, databases have no tools, such as unit 

test frameworks, which would provide a safety net for database application developers [1]. However, the 

continual avoidance of database refactoring will eventually lead to poorly structured databases that will be 

increasingly difficult to maintain, thus challenging the development of new applications that rely on the 

existing database. Therefore, the proposed approach applies to both categories: requirement modifications 

and database refactoring. 

Database schema needs to evolve in order to adapt to requirement changes and to facilitate the 

maintenance of databases. Consequently, applications relying on the database also need to evolve to 

accommodate the changed database schema. The first component of the schema evolution challenge, the 

change of the actual database schema, has been documented in detail [1] and supported through a variety 

of commercial tools [25, 26, 27, 28]. However, the second component, the process of effectively locating 

and changing the application code to reflect the database changes, has attracted attention in the research 

community [3, 4, 5], but it lacks tools or methods that are widely accepted. 

This paper explores the use of existing software evolution strategies that facilitate the adaptation of the 

application code related to changes in its respective database schema. In particular, a unit-testing 

architecture that accesses databases is devised in order to identify the application code requiring 

modification. 

The paper is organized as follows: Section 2 reviews related work identifying the main gaps in the 

database schema evolution and the associated application code testing. Subsequently, Section 3 describes 

the proposed approach for database schema evolution supported by unit tests, while the implementation of 

the approach is illustrated in Section 4. Finally, Section 5 illustrates the validation results, and the 

conclusions are presented in Section 6.  

2. RELATED WORK 
 

Ambler and Sadalage present details of how to change and refactor the database schema [1]. The aspects 

of the application code that require modification after a database schema change depend on the patterns of 

data access, which can be encapsulated using two main approaches [1]:  

1) Encapsulation through the use of views and database stored procedures. In this case, data is only 

accessed through views and stored procedures, so that any change in the database schema will only 

affect these two components. This approach is not commonly used due to the limitations of updating 

views and stored procedures [1]. Moreover, this process requires different skill sets, as the stored 

procedures and views, rather than the application code, require modification. 

2) Encapsulation through the application code. With this commonly used approach, data in the 

application is accessed through the Data Access Objects (DAO), so that changes to the database 

queries also affect the application code [4]. Since this is the dominant approach in modern business 

applications [1], as well as with legacy systems, this is the architecture on which the proposed 

approach will be developed. 

Once the database schema is changed, applications accessing the database may need to be adapted 

accordingly. In particular, impact analysis seeks to identify all the code that will behave differently or that 

are required to behave differently as a result of the database schema changes [3, 4]. Similar to impact 



 

analysis, our work attempts to determine the application code that requires change due to a database 

schema change. However, while impact analysis tools use string searches and/or flow analysis to evaluate 

existing code, we exploit unit tests as a tool for locating code that requires change. Several of the impact 

analysis methods are based merely on string searching and pattern matching; more effective methods use 

data flow analysis in combination with string analysis. For example, Maule et al. [4] analyze the data 

flow, starting from the location where the query is executed and proceeding through the calling objects.  

The challenge is to determine to which point in the hierarchy the flow analysis is necessary. Nevertheless, 

the process of analyzing many layers would be computationally expensive, while analysing fewer layers 

would possibly introduce a higher error rate. 

Karahasanovic and Sjoberg [5] introduce visualization tools into impact analysis. These tools help to 

identify the impact of changes in the database schema of object-oriented applications. Specifically, these 

authors use a Schema Evolution Management Tool (SEMT), which receives a Java code and database 

files as input and subsequently identifies relationships between the packages, classes and interfaces. Once 

the database schema is modified, SEMT identifies the potential objects in the application that require 

change, and consequently, it alters the shape of those objects in the graph. However, in the case of large 

systems, the graph display may become cumbersome. 

Another way of approaching the problem of application adaptation to the evolved database is the 

integration of schema evolution and data migration into development. An example of such approach is 

proposed by Draheim et al. [2], where the evolution process starts with the modification of the application 

object model, which is followed by a change in the database schema, and subsequently, the data 

migration. Specifically, the object model change is detected by the upgrade generator, which compares 

the old and the new model structures and generates the code for the database schema changes and data 

migration. Although tools that integrate schema evolution into development and data migration [2] have 

been gaining popularity in recent years, especially in the case of small to medium size systems, existing 

applications cannot benefit from them due to the need to integrate the approach in the initial development 

stage.  

Furthermore, the process of adapting the application to the evolved database is an integral part of the 

PRISM workbench [6, 7]), which is proposed by Curino et al. The PRISM workbench is a tool for 

evaluating schema changes, executing changes to the database schema, rewriting the queries, adapting the 

applications, and migrating the data. Thus, PRISM is an ambitious tool, with the goal of automating the 

complete transition process from the initial assessments to the running of new applications on the 

transformed database. Nevertheless, it is difficult to envision how online query rewriting would work on 

complex data warehouse queries and how it could be implemented without significantly compromising 

system performance. 

Nevertheless, schema evolution is risky due to the paucity of tests that target it [3, 6]. Unit testing is 

commonly used for non-database code, and it is proven to result in high quality code [29, 30, 31]. 

However, for application code accessing database, unit testing is generally criticized for two reasons: 

firstly, the goal of the unit tests is to test only one feature at a time, and secondly, the tests need to run 

quickly [8]. Although there are some unit test approaches that do access databases, these tests often 

sacrifice performance for quality [10].  

DbUnit [9] is an extension of JUnit, which is a commonly used application testing framework. DbUnit 

offers functionalities that configure the database for testing purposes as well as that return the database to 

its original state after the tests have been completed. The test developer creates data sets, using XML or 

other methods, which will be used to produce the database state required for tests. Since different tests 

require different database states, the process of creating numerous data sets may become labour intensive. 

Although DbUnit configures the database appropriately for different tests, it does not relate to changes in 

the application code that result from schema modifications.  

A promising approach is proposed by Christensen et al., who suggest a unit-test framework for database 



 

applications [10, 11]. This framework breaks the rule of tests‟ independency with the objective of 

simplifying the writing and maintenance of unit tests so that they are less labour intensive and their 

execution performance is improved. Similar to JUnit, this framework uses setUp and tearDown methods. 

In addition, it uses a dependency hierarchy that is defined by the test developer. When a single test is 

initiated, the setUp method is executed for all classes on which the test is dependent. However, this 

approach suffers from the fact that each test is dependent on other tests, not only for the order of 

execution, but also for the data used by the tests. Thus, when one test fails, all of the other tests fail as 

well. This approach could possibly succeed in discovering application code that requires change due to 

database schema modifications. However, the process of configuring the database to a specific state for 

each unit test involves extensive effort in the coding of the setUp and tearDown methods. Moreover, this 

method fully executes queries, which may be a time consuming process. 

Additionally, the testing of database applications also involves the problem of how to populate databases 

with meaningful data. For instance, DBMonster [12] and DataFactory [13] can assist in populating a 

database with large amounts of information. However, the data created with those tools is often not 

meaningful for functional applications testing; rather, it is mostly used for application scaling tests. Chays 

et al. propose the use of a test GENerator for Database Applications (AGENDA) [14, 15, 16], which 

generates database states based on the SQL statements used in the application and on the tester‟s 

suggestions as captured in the input files. Specifically, the tester specifies sample values for the attributes 

that can be partitioned into groups, each of which are expected to cause the application to behave 

differently.  

For each test repetition, the database needs to be returned to the same state. Although DBUnit [9] will 

enable this functionality, the process of specifying states for each test is a burden on testers. Accordingly, 

Willmor and Embury propose methods that combine the AGENDA and DBUnit approaches [18]. In 

particular, they suggest the use of an extended SQL language to specify test cases and permitted 

transitions. Once the test specifications are written, this system automatically transfers the database into 

the required state. 

We have also looked at add-ons for commercially available unit testing frameworks to evaluate their 

functionality in relation to database schema evolution. In particular, JUnit add-ons have been reviewed, as 

JUnit is the most commonly used unit testing framework [23]. JUnit add-ons are a collection of helper 

classes for JUnit [24] that simplify unit test writing. However, there were no JUnit add-ons that were 

related to database schema evolution.  

There are numerous commercial tools that deal with database management. Some of these tools, including 

DB2 Change Management Expert [25], Oracle Change Management Pack [26] and MySQL Workbench 

for Schema Change [27], are offered by database vendors, while others are generic, such as Embarcadero 

Change Manager [28]. The main functionalities of these tools include implementing database schema 

changes, comparing different databases or schema versions, visualizing change prior to implementation 

and analyzing the impact of database schema changes on database objects, such as views and stored 

procedures. These commercial tools are effective for applications that encapsulate data access through the 

use of database views and stored procedures, since, in those applications, all data is accessed using views 

and stored procedures, and the application does not directly access other database objects,  primarily 

tables. Unfortunately, the majority of applications use encapsulation through DAO objects [1]. In such 

cases, the impact analysis of schema changes on the application code is required and is not provided by 

these commercial database management tools. 

For any testing method to be fully accepted in the business world, it needs to be both simple and effective. 

Unit testing for software applications is popular and efficient because it detects numerous problems early 

in the development process and it is relatively simple to implement. However, traditional unit tests have 

not been used to access databases [8], and consequently, they have not been used during the testing of 

database schema evolution.  



 

3. SCHEMA EVOLUTION SUPPORTED BY UNIT TESTS 

Currently, there is a lack of methods and tools that support schema evolution testing [6, 7]. Nevertheless, 

test suites facilitate the writing of unit tests for software applications, hence enabling testing during the 

coding phase [23]. In order to be effective, unit tests have to be used frequently and efficiently [8]. For 

instance, full unit tests for large systems should be performed rapidly. In order to achieve the required 

speed, traditional unit tests do not access the database; rather, they access mock objects [8]. As a result, 

these unit tests are not beneficial for database schema changes, especially since the database is not usually 

accessed until the application code is executed, which occurs very late in the development process.  

Extensive studies have been conducted on the efficiency of unit testing and test driven development [29, 

30, 31]. These studies have demonstrated that the use of such approaches and related technologies leads to 

an improved quality code. However, the majority of these unit tests mock access to the database. The 

proposed approach aims to modify commonly used unit-testing strategies to include database access while 

maintaining a short execution time. Consequently, the proven power of unit testing [29, 30, 31] can be 

harnessed for query validation on the evolved database.  

3.1. SYSTEM ARCHITECTURE 

 

The proposed architecture, depicted in Figure 1, includes unit testing that accesses the database. For every 

query in the application code, traditional unit tests use mocks to mimic the results that are retrieved from 

the database. In fact, there are two possible ways to deal with queries in the proposed architecture: 

1) No change in the database schema. In this case, there is no need to access the database, and therefore, 

a traditional unit test is sufficient. Hence, in this situation, the proposed approach uses traditional 

mocks. As demonstrated in Figure 1, the traditional mocked result set is returned to a mock. 

2) Change in the database schema. In this instance, a query validation for the modified database is 

required. However, the data manipulation language (DML) statements cannot be sent to the database 

in their existing form, as the process would be slow and impractical. Unit tests need to run quickly so 

that developers can execute them on a frequent basis. Since data warehouse queries commonly run for 

several minutes, or even hours, they cannot be executed within unit tests. Therefore, the query should 

be modified in a way that maintains validation while also decreasing the time required for execution. 

The Query Modifier, which is the module that deals with this modification, sends a modified query to 

the Executor/Validator, which executes the query and retrieves the results. If the query is modified in 

such a way that it does not retrieve any data, the result set is empty and the Executor/Validator 

determines whether or not the validation was successful. Subsequently, the result is sent back to the 

mock and the unit testing proceeds. Furthermore, the Executor/Validator has the additional 

functionality of logging detailed information into the log file in the case that the query validation 

failed. This functionality assists in identifying statements that require modification due to a change in 

the database schema.  

The core of the system is the Query Modifier, which changes the query so that it is still validated when it 

is sent to the database while the execution time is minimized. It works in conjunction with the 

Executor/Validator, which is responsible for retrieving the validation results and transferring them to the 

mocks. 



 

 
Figure 1: Proposed architecture for the unit test accessing a database 

 

Our approach focuses on SELECT statements, which are typical DML statements for data warehouse 

applications, but it also manages INSERT, UPDATE and DELETE statements. 

3.2. QUERY MODIFIER  

When a query is sent to the database, it is processed in several steps. First, in the query parsing phase, the 

query elements are evaluated in comparison to the database, and the most effective execution plan is 

determined. Unless the query includes a significant number of tables, this step is very fast, executing in 

less than one second. The second step involves accessing data, and its duration depends on how much 

data the query accesses. This step may take long, even several hours, if the query needs to access a large 

amount of data. The last step involves sorting, if requested, and returning the result set, which can be slow 

depending on the size of the set returned to the application. If there is a problem with the query, the first 

step of query parsing will fail, and an error will be returned to the calling method.  

Therefore, in order to evaluate a query in a database, it is not necessary to fully execute the query. Rather, 

only the first step, query parsing, is necessary, and the remaining steps can be avoided, since those parts 

decrease the execution performance. Accordingly, this work proposes the use of mocks that access the 

database and validate the query without fully executing it. Specifically, these mocks alter the query in 

order to avoid a full query execution. The modification of mocks can be performed using two approaches: 

1) A query can be sent to the database solely for the verification of referenced objects, and, in this case, 

no result set is returned. This verification can be easily performed by appending the WHERE clause 

criteria that can always be evaluated as false („WHERE …and 2=1‟). 

2) A query can be parsed, and a few rows of the result set returned if further data processing in the unit 

test is required. Depending on the database management system, this can be performed by limiting the 

number of rows in the result set by using a feature such as rownum < 3 for Oracle or limit < 3 for 

MySQL and PostgreSQL. Although the data retrieved in this manner will be incomplete, it can still be 

useful depending on how the unit test will use it. 
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In most cases, the first approach can be used. However, in certain cases, such as during the process of 

retrieving data from the database when receiving values of sequence numbers, the second approach would 

be used.  

The Query Modifier processing is demonstrated in Figure 2. If the statement is categorized as SELECT, 

DELETE or UPDATE, the Query Modifier proceeds to append criteria that evaluates as false. In case of 

UNION, MINUS or INTERSECT queries, each separate query is appended with the same additional 

criteria. However, an INSERT statement proceeds differently, depending on whether it is a direct 

INSERT statement, like the command INSERT INTO table VALUES(…), or an indirect INSERT 

statement, such as selecting from another table, where the command stipulates INSERT INTO table_a 

(SELECT … FROM table_b). Indirect INSERT statements are treated in the same way as a SELECT 

statement, and the SELECT part of the INSERT statement is appended with additional criteria. 

Conversely, direct INSERT statements do not contain a SELECT part, but they specify the values that 

need to be inserted. Thus, direct INSERT statements do not need to be appended; rather, they can be sent 

to the Executor/Validator without changes. 

Furthermore, some database systems provide the option of having the database itself append the query. 

For instance, some databases, such as Oracle, have policies that may be set up to append queries with 

additional criteria [12]. In this situation, a separate database account can be used for running unit tests, 

and for that account, a policy could be specified to append the query with the appropriate criteria. Since 

this approach is less generic, as it is specific to the database vendor, our implementation appends the 

query from the unit test code. 

 

Figure 2: Query Modifier  

 

Although the process of accessing the database during unit tests will reduce the performance of the tests, 

the database does not necessarily need to be accessed every time the unit test is executed. Rather, the 

database should only be accessed when there is a schema change and a query re-evaluation is needed. As 

shown in Figure 1, there is a switching component that changes traditional mocks to mocks that access a 

database. This latter group of mocks is not separate from the original set; the main difference between this 

group and traditional mocks is that this group appends a query, sends it to the database for parsing, and 

then transfers the result back to the original mock object. 
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The ability of mocks to access the database is an integral part of our proposed unit test framework and not 

separate from the traditional mocks. For this framework, it is not necessary to write a new set of mocks; 

rather, a generic query execution mechanism is integrated with mocks that access the database. 

3.3. EXECUTOR/VALIDATOR  
 

The Executor/Validator is responsible for interacting with the database. Specifically, it receives a 

modified query from the Query Modifier and sends it to the database for execution. Once the database 

execution is complete, the Executor/Validator is responsible for retrieving the results of the execution. 

Since the query is appended with criteria that evaluate as false, the Executor/Validator will only receive 

information regarding the success or failure of the statement. The result of the query, however, is sent 

back to the mock that originated it. Nevertheless, the result of the unit test is the result of the statement 

execution. 

 

After the execution of unit tests, the developer will know which tests have failed and which ones have 

succeeded. However, details of the reasons for the failure are not provided. Changes to the database 

schema will likely cause several unit tests with database access to fail. Therefore, additional logging 

capabilities that assist in determining the cause of the failure and performing the required code changes 

are provided. Each DML statement that fails, along with the database error message, is written into the 

log file with the unit test method that initiated it. 

While this procedure provides information about the statements that failed, it does not give details about 

the origin of the statement. Some statements are dynamic, and their creation may involve several methods 

and classes. In order to assist in tracking the creation of such statements, the call stacks for the error are 

also logged. Currently, this information is inserted into a text file, which is available to assist the 

developer with the code changes. However, we are considering the creation of a user interface that would 

present this information in a more user-friendly manner.  

Our approach targets changes to the software application that are directly related to modifications in the 

database schema; therefore, it does not consider changes to stored procedures within the database. In rare 

cases, however, these stored procedures are tested through the use of unit test suites, such as TSQLUnit 

[32] or utPLSQL [33], rather than application unit test suites.  In such cases, the proposed approach can 

be adapted to test the stored procedures. 

4. IMPLEMENTATION 
 

To validate our proposed approach, we have utilized Java 1.5 for the software application, JUnit 4 as the 

unit testing framework, and the database Oracle 10g. Although the implementation with other 

development languages, testing frameworks and databases would require an adaptation to those systems, 

the overall approach should remain the same. 

The validation entails making various changes to the database schema and observing the success of 

finding statements that require modification in the software application. After testing the system 

performance of each schema evolution scenario, the database schema and the data are restored to their 

original state, thus ensuring the same initial condition for all of the tests and facilitating the comparison of 

the test results. In order to quickly and efficiently restore the database schema and the data, we have 

selected a simple database schema for the first step of the validation; the initial schema is depicted in 

Figure 3. 



 

  

Figure 3: Database schema 

 

4.1. IMPLEMENTATION ARCHITECTURE 
 

In order to follow common development practices, we have utilized encapsulation through the application 

code, where the data is only accessed from the Data Access Objects (DAO). Therefore, all queries in the 

software application are sent to the database through the SQLExecuter class. SQLExecuter contains 

methods such as execute() and executeUpdate(), which send statements to the database, and 

getResultSet(), which retrieves the result set and returns it to the calling method. 

Our implementation will be performed in two steps. The first step involves unit testing using traditional 

mocks without database access, and in the second step, the proposed mocks with database access are 

introduced. The implementation of traditional mocks at the outset will allow us the observation of the 

feasibility of introducing the proposed approach into a previously existing test framework.  

4.1.1. TRADITIONAL MOCKS 

The core implementation of our traditional mocks includes MockResultSet and MockSQLExecuter 

classes. Most database systems implement the ResultSet interface, and accordingly, our MockResultSet 

implements the ResultSet interface to mimic the result set returned from the database. In the 

MockResultSet, the methods that are utilized in the data access code, such as getInt(String 

columnName), getString (String columnName) and next(), are implemented to mimic the behaviour 

of the database implementation of ResutSet; however, these methods do not have database access. An 

example of this implementation is shown in Figure 4. 

 



 

 

Figure 4: MockResultSet next method mimicking database ResultSet next method 

Because there is no database interaction, the framework requires a way to add records into 

MockResultSet. Therefore, the method entitled addRecord, which is depicted in Figure 5, is called from 

the traditional unit test in order to set the data and mimic database interaction. 

 

 

Figure 5: Adding records to MockResultSet 

Additionally, the MockSQLExecuter class mocks the SQLExecuter class, and accordingly, it overrides 

methods from the SQLExecuter. Figure 6 illustrates the execAndGetResultSet method from 

MockSQLExecuter. As demonstrated, this method only returns the mockResultSet, which was previously 

set using the addRecord method of the MockResultSet class.  

 

 

Figure 6: Example of the MockSQLExecuter class method 

An example of the unit test with traditional mocks is depicted in Figure 7. Specifically, the mocked result 

set is created with the desired values using addRecord. When the class Book is created, the 

MockSQLExecuter is passed in, so that the Book class will use the mock instead of the real SQLExecuter. 

 

 

Figure 7: Traditional mock 



 

Although there are some alternative approaches to mock database access that may be simpler, they are not 

as generic as the presented approach. 

4.1.2. MOCKS WITH DATABASE ACCESS 

 

Depending on how traditional database mocks are implemented, the proposed approach may require 

different methods for implementing mocks with database access. Using a generic approach with 

MockSQLExecuter and MockResultSet, all of the changes required for implementing the proposed 

approach are within the MockSQLExecuter class. MockSQLExecuter class contains the switch that 

determines whether traditional mocks or mocks with database access will be used. One of the methods 

that have been modified to include database access for mocks is depicted in Figure 8. When using 

traditional mocks, the useDBAccess switch is set to false, and this code returns MockResultSet, which 

has been previously set in the test code. This process is the same as the one for mocks without database 

access. However, if the useDBAccess switch is on, the MockSQLExecuter method transfers the query to 

the SQLExecuter, which then sends the query to the database. If the query is successfully executed, the 

MockResultSet is returned to the caller test. Since we are appending criteria that always evaluate as 

false, the returned result set will be empty if the query is successfully executed. On the other hand, if there 

are validation errors on the query, the MockSQLExecuter will log additional information using the 

logInfo(sql, String message) method, and the unit test will fail. The logInfo method implements 

the logging of the executed statements, the database error and the call stack at the error point. The process 

of sending the query to the database and retrieving the result sets, along with the logging capability, 

represents the Executor/Validator functionality.  

 

 

Figure 8: Core of mocks with database access (from MockSQLExecuter class) 

When useDBAccess is set to true, the method execAndGetResultSet, from the MockSQLExecuter class, 

calls the execAndGetResultSet, shown in Figure 8, from the parent SQLExecuter class (super. 

execAndGetResultSet(…)).  

The method execAndGetResultSet, from the SQLExecuter class, calls the execute method. The 

MockSQLExecuter class overrides the execute (String query) method, from the SQLExecuter class, 

for the purpose of accessing the database in mocks. The process of overriding the execute method from 

the MockSQLExecuter class is depicted in Figure 9.  

 

Figure 9: Modifying the query before execution (MockSQLExecuter class) 



 

The execute method of the MockSQLExecuter class calls the appendCriteria(query), which appends 

the criteria evaluating as false: WHERE … and 2=1. Subsequently, the returned, modified query is 

transferred to the SQLExecuter for execution. 

The UPDATE and DELETE statements require an implementation that is similar to that for the SELECT 

statements. Typical UPDATE and DELETE statements have the WHERE clause to which the criteria 

evaluating as false can be appended. If these statements do not have the WHERE clause, we add one 

containing a criteria evaluating as false, such as “2=1”.  

On the other hand, INSERT statements require a different procedure. Typical INSERT statements, which 

directly specify the values to be inserted, are not appended with additional criteria. Rather, these 

statements are sent to the database without modifications, and the changes are rolled back. In the case of 

an indirect INSERT statement that uses a SELECT statement to obtain the values (INSERT INTO tableA 

(SELECT column1, column2 FROM tableB)), the SELECT part is treated as a regular SELECT 

statement and is appended with the additional criteria.  

5. VALIDATION RESULTS  

The main objective of this work is not to provide a comprehensive solution that can manage all possible 

application issues arising from schema evolution, but to provide a generic solution that can be quickly and 

easily implemented and can detect most schema change problems early in the process. Complicated 

solutions often remain unimplemented due to the time and effort they require. Conversely, the proposed 

approach is easy to implement and does not require significant unit test changes in comparison with the 

traditional unit tests. 

The validation of the proposed approach that has been carried out includes: the renaming of tables and 

columns, the addition and deletion of columns, the merging and splitting of tables, and changes to the 

column data types. Overall, while the validation was successful with SELECT statements, the success rate 

of the other statements depended on the specific change to the database schema. In particular, the process 

of changing column data types contained the most unreliable results. The results depended on the former 

and current data types as well as on the data used in the unit tests. 

Section 5.1 reviews the proposed system behaviour with regards to different types of SQL statements. 

Since the total number of possible changes to the database schema is enormous, the validation analysis 

concentrates exclusively on the most common schema changes. 

Larger schema changes are commonly made up of several simple ones. For instance, adding lookup table 

is composed of change(s) to original table (adding or renaming columns), creation of new table and 

addition of foreign key. Some complex schema changes, and their decomposition into simple ones, can be 

found in [1]. 

5.1. SELECT STATEMENTS 

Data warehouse applications contain mostly SELECT statements, while online transaction processing 

(OLTP) applications contain a high number of all statement types, including SELECT, DELETE, 

INSERT and UPDATE. In hybrid applications, which are the most common types of applications, 

SELECT statements are dominant. Due to the dominance of SELECT statements, we evaluate the way in 

which various changes to the database schema influence SELECT statements as well as the success of the 

proposed approach in working with these statements.  

In this work, all SELECT statements that required modifications as a result of database schema changes 

were successfully recognized. Depending on the schema change, the application logic may need to be 

revised, thus requiring the SELECT statements to be modified. However, application logic changes are 

outside of the scope of this research.  

5.1.1. RENAMING TABLES, COLUMNS, VIEWS AND PROCEDURES 

One of the most common and simple changes to the database schema involves renaming tables, columns, 



 

views or stored procedures. Although the process of renaming is relatively easy, it is usually avoided due 

to the potential impact that it can have on the applications. For instance, consider the following SELECT 

statement: 

SELECT c.lastname, info.get_orderdetails(o.orderID)  

FROM customer c, v_shippedorders o 

WHERE c.customerID = o.customerID and c.customerID = ?; 

 

Where: 

v_shippedorders is the view of all shipped orders that have not yet been received. 

info.get_orderdetails(o.orderID) is the stored procedure returning the details of order o.orderID.  

If the name of any referenced elements in the SELECT statement changes, the statement itself will need 

to be modified. This modification includes all referenced objects, including the customerID and 

lastname columns of the customer table, the customerID and orderID columns of the 

v_shippedorders view and the procedure info.get_orderdetails.  

Consider a situation where the lastname column of the customer table is renamed to name. During the 

execution of the proposed unit tests with database access, the Query Modifier appends the SELECT 

statements before sending them to database for execution. Thus, the above SELECT statement is modified 

to: 

 
SELECT c.lastname, info.get_orderdetails(o.orderID)  

FROM customer c, v_shippedorders o  

WHERE c.customerID = o.customerID and c.customerID = ? and 2=1‟ 

 

In this case, the database engine tries to execute the modified statement and fails. Subsequently, it sends 

the error message back to the calling object. With Oracle as the database engine, the „ORA-00904: 

LASTNAME: invalid identifier‟ error is triggered. The Executor/Validator recognizes the error and 

sends it to the log file along with additional information about the failure, as shown in Figure 10. The log 

file identifies the statements that require modification as a result of the database schema change; it 

contains a paragraph dedicated to each identified statement. Specifically, the first line of each paragraph 

indicates the error that was transferred to the Executor/Validator by the database engine. The subsequent 

lines identify the DML statements that caused the error, and the final part of the paragraph contains the 

Call Stack referring to the code, in this case a Java class, from which the statement originated. For 

example, the portion of the log file shown in Figure 10 identifies two SELECT statements that require 

changes due to renaming of the lastname column from the customer table. From the Call Stack, we 

conclude that both statements were executed from the Customer class: the first statement was executed 

from the 26
th
 line of the getCustomerName method and the second one was executed from the 37

th
 line of 

getShippedOrders. After the statements are identified through the log file, they need to be changed to 

reflect the evolved database schema.  

 



 

 

Figure 10:  Log file identifying invalid SELECT statements 

The proposed approach successfully identified the SELECT statements that required modification due to 

renaming of a column. However, the renaming of the constraints or the non-referenced objects does not 

affect the SELECT statement. 

5.1.2 DIVIDING A TABLE INTO TWO TABLES 

In addition to renaming, another common change to the database schema entails the division of a single 

table into two tables. As is the case with renaming, the proposed approach is also successful in this 

situation. With this change, not all queries referencing the divided table require modification. For 

example, consider the following change to the database schema: 

CREATE TABLE phone  

(phoneid NUMBER, 

customerID NUMBER REFERENCES customer(customerid), 

phone VARCHAR(30)); 

INSERT INTO phone  

(SELECT ?, customerid, phone FROM customer); 

ALTER TABLE customer DROP COLUMN phone; 

 

Although the original customer table contained the phone column, a customer may have more than one 

phone number, and therefore, a new table, named phone, should be created. The only queries that require 

modification are those referencing the phone column in the customer table. Consider the following two 

SELECT statements: 

SELECT firstname FROM customer WHERE customerID = ?; 

SELECT phone FROM customer WHERE customerID = ?; 

The first statement does not require a change, because it does not reference the phone column in the 

customer table, while the second statement needs to be modified to use a new phone table for obtaining 

the phone number. Accordingly, the proposed method correctly identifies only the second statement as 

requiring change. The elements referenced in the first statement did not change, and, as a result, the 

statement was executed successfully after the schema change. Therefore, based on the proposed method, 

this statement does not require modification. Figure 11 depicts the log file after the customer table has 

been divided.  

 

SQL ERROR: ORA-00904: LASTNAME: invalid identifier 

Statement Executed: select lastname from customer where customerID 

= ? 

Call Stack: 

BookStore.Customer.getCustomerName:26 

BookStore.CustomerTest.testGetCustomerNameByID:35 

... 

 

SQL ERROR: ORA-00904: C.LASTNAME: invalid identifier 

Statement Executed: SELECT c.lastname, 

info.get_orderdetails(o.orderID) FROM customer c, v_shippedorder o 

WHERE c.customerID = o.customerID and c.customerID = ? 

Call Stack: 

BookStore.Customer.getShippedOrders:37 

BookStore.CustomerTest.testGetShippedOrderByCustomerID:47 

... 

Database error 

SQL 

Statement 

Class and method 

where the SQL 

originated 



 

 

Figure 11:  Log file after dividing the customer table into customer and phone tables 

 

5.1.3. MERGING TABLES 

Table merging, which is opposite to the previous change, is a less common modification. In this case, the 

success of the proposed approach depends on the way in which the merging is performed.  

In a situation where the names of clients are in the customer table and the phone numbers are in the 

phone table, these two tables have to be merged into a single table because the system needs to keep only 

one phone number for each customer.  

CREATE TABLE customerinfo ( 

customerID NUMBER, 

lastname VARCHAR(400), 

firstname VARCHAR(400), 

address VARCHAR(400), 

phone VARCHAR2(100) );  

INSERT INTO customerinfo  

(SELECT c.customerID, c.lastname, c.firstname, c.address, p.phone  

FROM customer c 

JOIN phone p on p.customerID = c.CustomerID); 

DROP TABLE customer; 

DROP TABLE phone; 

In the previous example, the name for the new table, customerinfo, is different from the names of the 

tables that were merged, as those were named customer and phone. Consequently, the proposed approach 

successfully found all queries referencing both the customer and phone  tables. 

However, the situation is different if the name of the new table is the same as that of the merged table, 

that is, if the new table is named customer. The proposed approach will only find queries referencing the 

phone table, while queries referencing the customer table may require additional changes, depending on 

the application logic.  

If there are constraints for additions or removals, including foreign keys, NOT NULL or check 

constraints, then there are no changes required for the SELECT statements. 

Overall, when the database schema is changed, the proposed approach finds SELECT statements that 

become invalidated and hence require change.  

5.2. DELETE STATEMENTS 

Like the case with SELECT statements, when the changed object is referenced by a DELETE statement, 

the DELETE statement is successfully identified as requiring change. 

A typical example of a DELETE statement is: 

DELETE FROM custorder WHERE customerID = ? and orderdate = ?; 

In this case, the records from the custorder table are deleted for the specified customerID and 

java.sql.SQLException: ORA-00904: PHONE: invalid 

identifier 

 

Statement Executed: select phone from customer where 

customerID = ? 

Call Stack: 

BookStore.Customer.getCustomerPhone:38 

… 

Statement 

requiring change 

Database error: 

phone column not 

in customer table 



 

orderdate. If the name of the table, which is custorder, or the names of the referenced columns, which 

are customerID and orderdate, change, the statement is properly identified as requiring modification. If 

the column names for other columns of the custorder table change, the statement does not require 

modification, and the proposed method correctly identifies the statement as not needing change. 

After custorder is renamed to customerorder on the sample database, several statements appeared in 

the log file, a portion of which is depicted in Figure 12. In addition to correctly identifying that „DELETE 

from custorder‟ requires change, it also recognized that the stored procedure v_shippedorder contains 

errors. When the v_shippedorder procedure was reviewed, it revealed that the stored procedure also 

referred to custorder table, which needed to be changed to customerorder. 

 

Figure 12:  Log file after renaming custorder table to customerorder 

Nevertheless, while this approach will verify the validity of a DELETE statement, it will not check 

whether or not the deletion will break any constraints. For instance, if a foreign key is added, the 

proposed approach will not find the DELETE or UPDATE statements that could possibly be affected by 

these keys. For example, if a foreign key referencing the orderID from the order table is added, the 

previous DELETE statement may be affected by it, depending on the data contained in the child and the 

parent table. In this case, the proposed approach does not identify the statement as needing change.  

5.3. INSERT STATEMENTS 

Typical INSERT statements do not include a WHERE element, and therefore, additional criteria cannot 

be appended to it. Rather, an INSERT statement is executed in its existing form and after all data changes 

are rolled back. 

The INSERT statements are checked for the existence of referenced objects. If any of the referenced 

objects, including tables, columns or views, do not exist, the INSERT statements will be identified. Also, 

the proposed method ensures that the number of columns matches the number of supplied values for the 

statement. 

Since the proposed approach actually inserts the data, it performs validation in regard to the constraints. 

For example, consider the following statement: 

INSERT INTO customer (customerID, lastname, firstname, phone)  

VALUES (?, ?, ?, ?); 

In this INSERT statement, the customer table contains the address column. This column allows the 

existence of NULLs (can remain empty), therefore, this INSERT statement is deemed successful in spite 

java.sql.SQLException: ORA-04063: view APP.V_SHIPPEDORDER has 

errors 

 

Statement Executed: SELECT c.lastname, 

info.get_orderdetails(o.orderID) FROM customer c, v_shippedorder o 

WHERE c.customerID = o.customerID and c.customerID = ? 

Call Stack: 

BookStore.Customer.getShippedOrders:37 

BookStore.CustomerTest.testGetShippedOrderByCustomerID:47 

sun.reflect.NativeMethodAccessorImpl.invoke0:-2 

... 

java.sql.SQLException: ORA-00942: table or view does not exist 

 

Statement Executed: DELETE FROM custorder WHERE customerID = ? and 

orderdate = ? 

Call Stack: 

BookStore.Customer.deleteCustOrdersForDate:48 

BookStore.CustomerTest.testDeleteCustOrderForDate:57 

... 

DELETE 

statement 

needing change 

Stored 

procedure 

needing change 



 

of the fact that it does not contain the address column. Figure 13 displays the log file after the address 

column has been changed to NOT NULL. The database error refers to the NOT NULL constraint on the 

address column of the customer table in the APP schema, thus indicating the need to include the 

address column in the INSERT statement. 

 

Figure 13:  Log file after changing the address column to not allow nulls 

All data referenced by foreign keys must already exist in order for this approach to work. If they do not, 

the statements may be identified as requiring change due to the absence of parent data.  

In another type of INSERT statement, the inserted values are not directly specified but are selected from 

another table(s). An example of this INSERT statement is shown below: 

INSERT INTO customer (customerID, lastname, firstname, phone)  

(SELECT ?, lastname, firstname, phone  

FROM individual  

WHERE individualID = ?); 

The table named individual contains records of all individuals with names and phone numbers. When 

an individual becomes a customer, a record is inserted into the customer table by specifying a new 

customerID and obtaining the firstname, lastname and phone of the customer from the individual 

table. 

When INSERT statements involve the process of selecting from another table, the SELECT element is 

treated as if it was a regular SELECT statement, and hence, we append additional criteria to the SELECT 

part of the INSERT statement. 

As a result, our approach recognized when any of the referenced objects, either in a main INSERT 

statement or in a sub SELECT statement, were changed. 

5.4. UPDATE STATEMENTS 

As in the case of SELECT and DELETE statements, we append the WHERE clause of the UPDATE 

statements. Similar to SELECT, DELETE and INSERT statements, UPDATE statements are checked for 

the validity of referenced objects. For instance, consider a typical UPDATE statement: 

UPDATE orderdetails  

SET quantity = ?  

WHERE orderID = ?; 

If any of the referenced elements, including the table orderdetails or the columns quantity and 

orderID, experience a change in name, the statement is correctly identified as needing modification. 

Figure 14 contains a portion of the log file referring to the UPDATE statement after the quantity column 

was renamed. 

 

java.sql.SQLException: ORA-01400: cannot insert NULL into 

(APP.CUSTOMER.ADDRESS) 

 

Statement Executed: INSERT INTO CUSTOMER (CUSTOMERID, 

LASTNAME, FIRSTNAME, PHONE) VALUES (?,?,?,?) 

Call Stack: 

BookStore.Customer.insertNewCustomer:61 

BookStore.CustomerTest.testInsertNewCustomer:63 

… 

Statement 

requiring 

change 

Database 

error 



 

 

Figure 14: Log file after renaming the quantity column 

Statements requiring change due to modifications such as renaming, removing tables, columns, views, 

and merging or splitting tables, were successfully found. However, the addition of columns, tables or 

views does not affect the existing UPDATE statements. 

While SELECT statements are not affected by the addition or change of constraints, INSERT and 

UPDATE statements are affected by constraint changes. In this case, the proposed approach does not find 

statements requiring modification due to such changes. As opposed to INSERT statements, which are 

affected by the addition of new columns, UPDATE statements are not affected by this modification. 

Because we append the WHERE clause with the criteria that evaluate as false, no data is updated, and 

therefore, there is no validation relating to constraints. 

5.5. EXECUTION TIME FINDINGS 

In order to assess the execution time of this approach, we created a test sample set of 144 unit tests. With 

the proposed approach, the database was accessed 120 times, including 96 statements that were appended 

with the additional criteria and 24 statements that were executed without modifications, such as direct 

INSERT statements or statements retrieving sequence numbers. In total, the execution of 144 tests took 

13 seconds on a workstation with a 2GHz processor and 3G RAM. 

In the second step, the switch is turned off so that the database is not accessed. As a result, the unit tests in 

the first step were transformed into traditional unit tests where database access is mocked. In this step, the 

execution time took 1.6 seconds.  

The process of transforming traditional unit tests into unit tests with database access increased the test 

execution time. Nevertheless, the execution still averaged approximately 0.09s per test. Although these 

tests are still relatively fast, their reduced speed in comparison to the traditional unit tests may not be 

acceptable for daily or hourly executions of large test suites. However, the proposed approach is solely 

intended for use with database schema changes; therefore, traditional unit tests can be used for daily 

operation whereas unit tests with database access should be utilized only when there is a database schema 

change.  

5.6. GENERALIZED VALIDATION FINDINGS  

The implementation demonstrated that the process of integrating the database access into a traditional unit 

test is relatively simple. In the case of our implementation, which used a traditional unit test with a mock 

ResultSet and SQLExecuter classes, all changes were contained within the SQLExecuter class. 

However, different database access mocking may add complications to this step. Although it is possible to 

integrate the proposed approach into an existing unit test suite, this integration is strongly dependent on 

the way in which the mocking is performed in the existing tests.  

The main limitation of the proposed approach lies in its lack of success with added, changed or removed 

constraints. However, this limitation does not affect SELECT statements, because they do not require any 

changes as a result of constraint modifications. 

Some of the approach‟s limitations can be overcome by using temporary schema changes. For instance, if 

the table name is temporarily changed, the system will find all queries referencing the modified table. All 

statements can be identified and reviewed from the log file to determine whether or not they require any 

 

java.sql.SQLException: ORA-00904: QUANTITY: invalid identifier 

 

Statement Executed: UPDATE ORDERDETAILS SET QUANTITY = ? WHERE 

ORDERID = ? and rownum = 0  

Call Stack: 

BookStore.Order.changeQuantity:27 

… 

Error referring to 

renamed column 
quantity 



 

changes. After the statement changes are performed, the table is reverted to its original name.  

Although the proposed approach is primarily focused on database evolution changes, it is also successful 

in evaluating statements during the unit testing phase. Since, in unit testing, the statement is evaluated 

against the database, there is no need to run the full application for validating the statement. The ability to 

evaluate statements enabled the early detection of common writing mistakes, such as spelling and syntax 

errors, which would otherwise be detected only during run time. 

This work aims to identify changes that are required in the application code as a result of modifications in 

the database schema, which is similar to impact analysis [3, 4, 5]. Impact analysis approaches analyse 

existing application code with regards to database schema changes and create an impact report. The 

impact report requires tools to conduct application code analysis and, therefore, it is highly dependent on 

the application implementation language; for instance, Maule et al. [4] concentrate on impact analysis for 

the C# code. This work also produces an impact report in the form of a log file, but it does not require a 

separate tool for impact analysis, as it is integrated in the unit testing.  

 

6. CONCLUSIONS  

Since modern business requirements change rapidly, databases should evolve in order to continue meeting 

organizational needs. Changes to the database schema have generally been avoided because of the impact 

they may have on the applications [3, 6].  

Application changes are supported by unit tests, which represent a form of safety net for application 

changes and refactoring. Currently, there is no tool that provides such a safety net for database application 

changes in regards to schema evolution [1]. Furthermore, we could not find a study that specifically 

targets application testing in regards to database schema evolution. 

In this work, we propose schema evolution that is supported by unit tests accessing the database. 

Although the queries are not fully executed and are only parsed, the process of parsing still enables the 

evaluation of referenced objects. This approach allows unit tests to be conducted quickly, since the 

queries are not fully executed but are still evaluated against the changed database. 

The approach was validated by implementing a testing framework and using a simple database schema. It 

found most of the statements requiring modification due to schema evolution. The implementation was 

relatively simple and only required minor changes to traditional unit tests. 

The next step would entail evaluating the approach with a set of real life applications containing a range 

of different applications from transaction processing systems to data warehouses. However, it would be a 

significant challenge to evaluate and compare the success rate, due to the varying frequencies of schema 

changes with different applications and due to the dependency of the success rate on the type of database 

application and the type of schema change.  

Additionally, we plan to improve the usability of the produced results. For instance, the textual log file 

will be replaced with a user interface that will facilitate the message navigation and will direct the user 

precisely to the code location where the problem originated. Moreover, database error messages will be 

supplemented with more descriptive, user friendly messages. 
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