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Structurally Diverse Boron-Nitrogen Heterocycles from an N2O2
3−

 

Formazanate Ligand 

Stephanie M. Barbon,[a] Viktor N. Staroverov,[a] and Joe B. Gilroy*[a] 

Abstract: Five new compounds comprised of unprecedented boron-

nitrogen heterocycles have been isolated from a single reaction of a 

potentially tetradentate N2O2
3−

 formazanate ligand with BF3•OEt2 and 

NEt3. Optimized yields for each product were obtained through 

variation of experimental conditions and rationalized in terms of 

relative Gibbs free energies of the products as determined by 

electronic structure calculations. Chemical reduction of two of these 

compounds resulted in the formation of a stable anion, radical anion, 

and diradical dianion. Structural and electronic properties of this new 

family of redox-active heterocycles were characterized using UV-vis 

absorption spectroscopy, cyclic voltammetry and X-ray 

crystallography. 

Boron-nitrogen (BN) heterocycles are of significant interest to a 

wide range of disciplines on account of their unusual structure, 

bonding, and properties.[1-3] The most common compounds 

containing such heterocycles, azaborines, find applications in 

organic electronics and chemical hydrogen storage.[4-6] Other BN 

heterocycles, exemplified by compounds 1−6, are noted for their 

unexpected reactivity and, in many cases, unique redox 

properties.[7-16] 

 

Each of compounds 1−3 contains BN bonds in an unusual 

framework.[17-19] Piers’ B2N2 triphenylene analogue 4 can be 

reduced to form a stable radical anion,[20] and Russell’s 

polycyclic borazine 5 undergoes oxidation to form a stable 

radical cation.[21] The Jäkle group has demonstrated that 

ferrocene-boron compound 6 can be converted to a planar 

borenium cation via abstraction of the chloride.[22]  

Our group is interested in boron complexes of formazanate 

ligands.[23] Boron difluoride adducts of these ligands have many 

fascinating and useful properties, including high molar 

absorptivities and a capacity for reversible stepwise reduction.[24-

25] In this work, we set out to study the properties of similar 

compounds derived from trianionic, potentially tetradentate 

formazanate ligands. 

The parent formazan 7 was synthesized according to a 

published method.[26] Upon reaction of 7 with BF3•OEt2 in the 

presence of NEt3 followed by the addition of H2O (Scheme 1), 

the expected product 8 was not detected; instead, the reaction 

mixture was found to contain formazan 7 and five new 

compounds (9−13), which could be separated by column 

chromatography in typical combined yields of 65−75% (Figure 

S1). Careful analysis of 1H, 11B, 13C and 19F NMR spectra, and 

single-crystal X-ray diffraction analysis enabled us to identify all 

six compounds present (Figures 1, 2, S2−S12). The complex 

reaction mixture obtained was in striking contrast to the clean 

conversion of formazan 14 to boron compound 15 in 92% yield 

under identical conditions (Scheme 1, Figures S13−S17). 

To rationalize these observations, we used density-

functional methods to calculate the changes in standard 

thermodynamic state functions for the reaction pathways leading 

from 7 to 8−13 and from 14 to 15 under the experimental 

reaction conditions (80 °C, 1 atm, toluene solution). The 

calculations were performed with the Gaussian 09 program[27] 

using the hybrid version of the Perdew-Burke-Ernzerhof density 

functional[28] (PBE1PBE), the 6-311+G(d,p) basis set, and 

implicit solvation methods (Table S5). According to this level of 

theory, the formation of tetradentate boron compound 8 from 7 is 

thermodynamically unfavourable (ΔG° = 75.7 kJ mol−1), whereas 

the formation of tetradentate compound 15 from 14 is favourable 

(ΔG° = −19.4 kJ mol−1). It appears that the 5-membered chelates 

of 8 are too strained to form, so less strained compounds are 

produced instead. Compound 13, the most abundant product 

which appears to form via 12, was predicted to be decidedly 

favoured (ΔG° = −68.6 kJ mol−1). 

Through variation of reaction conditions, we optimized the 

yields of each of the five new compounds produced (Table S4). 

When elevated temperatures or longer reaction times were 

employed, the ratio of 13 to 9 and 10 was increased. When 

greater excess amounts of BF3•OEt2 and NEt3 were used, 

products 9 and 10 were obtained in higher yields. 

The six compounds present in the reaction mixture were 

separated by column chromatography (CH2Cl2, silica gel). The 

first two that eluted (Rf = 0.82, 0.76) yielded similar NMR spectra 

without 19F resonances. We identified these compounds using 

X-ray crystallography as dimers 9 and 10 (Figure 1a, b). Both 

structures contain a ten-membered ring (-B-O-C-C-N-B-O-C-C-

N-), where B−O bonds bridge the monomeric units. The 

difference between the two structures is the orientation of the 

ten-membered ring, a pseudo-chair conformation in compound 9 

and a pseudo-boat conformation in compound 10 (see insets, 

Figure 1a, b). We did not observe interconversion between 

these two products in solution, even upon prolonged heating. 
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The pseudo-boat conformation leads to a π-stacking 

interaction between aryl substituents and the formazanate 

backbone in the solid-state phase of 10, which is not observed in 

9. In solution, this interaction causes broadening of the low-

energy absorption of 10 and the appearance of a shoulder at 

597 nm that is not present in the absorption profile of 9 (Figures 

1e, S18, Table S1). 

The cyclic voltammograms (CVs) of compounds 9 and 10 

included three reduction waves (Figure 1f, Table S1). Both 

compounds exhibit two reversible one-electron reduction waves 

(9: Ered1 = −760 mV, Ered2 = −1010 mV; 10: Ered1 = −720 mV, Ered2 

= −1020 mV), and a third irreversible two-electron reduction (9: 

Eonset = −1730 mV; 10: Eonset = −1770 mV). The reversible waves 

correspond to the stepwise reduction of the formazanate 

backbones to mono- and bis-radical anions and the irreversible 

wave to the formation of bis-dianions. The difference between 

the reversible reduction potentials (ΔEred) was 250 mV for 9 and 

290 mV for 10. 

Compound 10 proved easier to isolate than its structural 

isomer 9, so it was chosen for further reactivity studies. 

Reduction with one and two equivalents of cobaltocene yielded 

compounds 10•− and 10••2−, both of which produced broad 

isotropic EPR spectra at g = 2.0038 (Figure S19). Both species 

were characterized by single-crystal X-ray diffraction analysis 

(Figure 1c, d, Table S2). The average N−N bond length in the 

neutral dimer 10 was 1.314(3) Å, which is typical of an N−N 

bond with a bond order of ~1.5. In compound 10•−, the average 

N−N bond length for N1 to N4 is 1.360(3) Å, suggesting the 

presence of a borataverdazyl radical in which the additional 

electron occupies an orbital with antibonding N−N character.[24, 

29-30] The average N−N bond length for N5 to N8 is 1.315(3) Å, 

typical of a formazanate adduct.[24] These metrics confirm that 

chemical reduction occurs in a stepwise fashion and that the 

radical anion is localized on one formazanate ligand. In the 

doubly reduced species 10••2−, the average N−N bond length 

was 1.366(3) Å, which corresponds to N−N single bonds as 

expected for borataverdazyl radicals.[30] These conclusions were 

corroborated by UV-vis absorption spectroscopy in CH3CN 

(Figure 1e, Table S1). Neutral dimer 10 has a λmax at 569 nm 

and a molar absorptivity (ε) of 20 500 M−1 cm−1. Singly reduced 

10•− absorbs strongly at 568 nm, as well as 687 and 477 nm, 

which is typical of verdazyl species[30] and shows that 10•− is 

made up of independent borataverdazyl and formazanate units. 

Doubly reduced species 10••2− absorbs minimally at 568 nm, but 

exhibits two absorption peaks typical of borataverdazyl anions 

with λmax of 687 nm (ε = 8 200 M−1 cm−1) and 477 nm (ε = 39 200 

M−1 cm−1).[31] 

We were unable to grow single crystals of the third 

compound to elute (Rf = 0.61). However, using 1H, 11B, 13C and 
19F NMR spectroscopy and mass spectrometry, we identified it 

as 11. This product is dark blue, can be reversibly reduced twice 

(Figures S20, S21, Table S1), and slowly converts to formazan 7 

in solution. The fourth compound that eluted from the column (Rf 

= 0.39) was formazan 7, present as a result of incomplete 

reactivity or hydrolysis of unstable, unidentified species formed 

during the reaction. 

 

Scheme 1. Products formed from the reaction of formazan 7 with BF3•OEt2 and NEt3. The inset indicates the product formed from the reaction of formazan 

14 with BF3•OEt2 and NEt3. The Gibbs free energies (ΔG°) were computed for the formation of each compound from the corresponding formazan and the 

stoichiometric number of BF3 and H2O molecules under conditions simulating those employed in the actual synthesis, and are expressed in kJ mol
‒1

 of the 

formazan. The dashed arrow indicates interconversion in solution. 
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The final two compounds that eluted from the column (Rf = 

0.31, 0.22) were identified as 12 and 13. Interestingly, 13 

showed two doublets in its 11B NMR spectrum due to the 

coupling of each boron atom with a single fluorine atom (1JBF = 

33, 42 Hz). Single-crystal X-ray diffraction analysis confirmed 

that compound 13 was not a dimer, but contained two boron 

atoms bonded to one formazanate ligand, where the cyano 

group had been hydrolyzed.[32] Compound 12 is similar to 13 

aside from a free OH group and a BF2 unit. In solution, 12 

converts to 13 over the course of a few hours. The λmax of 12 is 

blue-shifted by 17 nm in CH2Cl2 with respect to 13 (Figure S22, 

S23). Compound 13 yielded a single reversible one-electron  

reduction in its CV (Figure S24), prompting us to perform 

chemical reduction using one equivalent of cobaltocene. The 

solution changed from pink-purple to dark blue-purple (Figure 

2a). Attempts to crystallize the resulting compounds were 

unsuccessful, so a salt metathesis reaction was performed with 

[nBu4N][Br] in order to exchange the cobaltocenium cation for 

the solubilizing tetra-n-butyl ammonium cation. The colour of the 

solution was unchanged throughout this process. Single-crystal 

X-ray diffraction revealed the resulting product to be anion 16−. 

Upon reduction, the NH bond in 13 appears to cleave 

homolytically, resulting in the formation of 16− and H2 (Figure 2c). 

The proposed structure was confirmed by 1H and 13C NMR 

spectroscopy, mass spectrometry and IR spectroscopy (see 

Figure S25, S26). Aside from the loss of the N-bonded proton, 

the connectivity in 16− is identical to that of 13 (Figures 2b, c). 

The B1-N5 bond has shortened (13: 1.516(3) Å; 16−: 1.442(5) Å) 

and the C2-N5 bond has lengthened (13: 1.304(3) Å; 16−: 

1.327(4) Å, Table 3). The angles around B1 and N5 change with 

the presence of the lone pair. For example, the N1-B1-N5 angle 

widens by ~3.5°, while the B1-N5-C2 angle contracts by ~3.6°. 

The same angles around B2 change less drastically (N3-B2-O2 

angle contracts by 1.1°, and the B2-O3-C2 angle contracts by 

2.0°). 16− is highly absorbing (ε = 18 000 M−1 cm−1), with a low-

energy λmax of 589 nm that was red-shifted by 12 nm with 

respect to neutral 13 (Figures S23, S27). 

The calculated highest occupied molecular orbitals (HOMO) 

of 13 and 16− are delocalized over the entire molecules (Figure 

2d). The lowest unoccupied molecular orbitals (LUMO) were 

delocalized over the formazanate nitrogen atoms and the N-aryl 

substituents. Time-dependent PBE1PBE/6-311+G(d,p) 

calculations for 13 and 16− in CH2Cl2 solution showed the 

HOMO and LUMO to be the dominant orbital pair involved in the 

lowest-energy electronic excitation in both molecules, and 

approximately reproduced the shift in λmax from 13 to 16− (Δλcalc 

= 8 nm, Δλobs = 12 nm, Table S6). 

 
Figure 1. Solid-state structures of (a) 9, (b) 10, (c) 10

•− and (d) 10
••2−. Thermal displacement ellipsoids are shown at the 50% probability level. Phenyl 

substituents are wireframe and hydrogen atoms are removed for clarity. Arrows indicate conditions for the formation of 10− and 10
••2−. Insets in panels (a) 

and (b) show only the atoms in the respective ten-membered rings. Panel (e) shows UV-vis absorption spectra of compounds 10 (blue), 10
•− (red) and 10

••2− 

(black) in CH3CN. Panel (f) shows CVs of 9 (black) and 10 (blue) recorded at 100 mV s−1
 in 1 mM CH2Cl2 solutions containing 0.1 M [nBu4N][PF6] as 

supporting electrolyte. 
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Figure 2. (a) Chemical reduction of 13 to 16− with cobaltocene. Solid-state 

structures of (b) 13 and (c) 16− with thermal displacement ellipsoids shown at 

the 50% probability level. Hydrogens, aside from the hydrogen on N5 in 13, 

and the nBu4N cation in 16− have been removed for clarity. (d) HOMOs and 

LUMOs for 13 and 16− calculated at the PBE1PBE/6-311+G(d,p) level. 

In conclusion, we have reported the synthesis of five new BN 

heterocycles 9−13 by one straightforward reaction, starting from 

an N2O2
3− formazanate ligand. The observed product distribution 

appears to be strain-driven as evidenced by the fact that similar 

heterocycles were not formed when the reactant 7 was replaced 

by a homologous compound 14. Each of compounds 9−13 

exhibited interesting optical and electrochemical properties. In 

particular, compound 10 was reduced to stable mono- and bis- 

radical anions with electronically-isolated formazanate/verdazyl 

units. Compound 13, which contains an unprecedented BN core, 

could be readily converted into stable anion 16−. This study will 

form a platform for the rational design of novel BN heterocycles 

with potential utility as light-harvesting and charge-transporting 

materials in the future. 
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