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Abstract

Unmanned Aerial Vehicles (UAVs) have been widely deployed in various fields with many

benefits such as cost reduction, safety improvement and service coverage enhancement. Un-

like the other mobile ad hoc networks, the UAV swarm, which is a flying ad hoc network, may

operate in a hostile environment or experience rapid network topology change which brings

high vulnerability by using cloud-based centralized security provisioning techniques. Hence,

securing the UAV networks with the on-site authentication resources becomes a vital aspect

to accomplish the mission. The on-site authentication resources, such as the cross-layer at-

tributes, can be utilized to form a unique characteristic of each UAV. Alternatively, decentral-

ized authentication techniques have also been considered where multiple collaborative nodes

are utilized to fuse a final authentication decision. Although the decentralized authentication

techniques usually have a better security performance, they may increase the computational

overhead and decrease the efficiency. Hence, limiting the computational overhead becomes a

critical challenge when designing more sophisticated authentication schemes for UAV swarms.

In this thesis, a linear discriminant analysis-based centralized authentication mechanism

is first proposed to enhance the security performance with limited computational overhead by

eliminating the non-informative attributes. Then, to compensate for the single-point failure of

the centralized authentication schemes, a collaborative authentication mechanism is proposed

to enhance the performance by utilizing the soft edge authentication decisions. Ultimately, we

define a novel concept of Security-of-Service (SoS) which is further utilized to minimize the

complexity of the collaborative authentication. Instead of utilizing all authentication resources

to reach a maximized security performance which creates a higher overhead, the SoS aims to

only promise the exact authentication requirement by utilizing a minimum amount of authenti-

cation resources. The simulation results demonstrate that our proposed scheme is robust across

the changing environment and can fulfill the SoS with limited authentication resources.

Keywords: Cross-layer Security, Decentralized Authentication, Intelligent Authentication,
Physical-layer Security, Unmanned Aerial Vehicles (UAVs)
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Summary of Lay Audience

With reduced cost and growing capability, UAVs have become very popular for support-

ing many different applications. Rather than the single UAV enabled applications, emerging

applications utilizing multiple UAVs, also known as a UAV swarm, have attracted increasing

interest due to the better efficiency and reliability in different fields such as logistics as well

as search and rescue. However, the potential security risks and attacks by malicious parties in

such sensitive networks could lead to catastrophic consequences or cause avalanche-like dam-

ages in a critical mission. Therefore, securing the UAV network and protecting the sensitive

data from various attacks become a vital aspect of the UAV network design.

Physical-layer and cross-layer authentication utilizing the situation-related characteristics

of the wireless link, hardware and environment between the devices can provide a promising se-

curity enhancement in the UAV swarm. By adopting these unique characteristics, the difficulty

for the attackers to impersonate a legitimate device can be significantly increased. However,

the traditional centralized authentication schemes make the final authentication decision based

on only the central node which may cause a single-point failure due to the imperfect attributes

estimations. To solve this challenge, the decentralized authentication techniques which collect

authentication decisions from multiple devices can be considered to enhance the overall au-

thentication reliability and robustness. Nevertheless, the extra computational cost caused by

using more devices may significantly downgrade the network efficiency.

In this thesis, we propose an intelligent collaborative authentication mechanism in which a

minimum number of authentication devices are chosen to fuse the final authentication decision.

A fluid authentication model is built to switch between the centralized authentication model and

the decentralized authentication model based on the application scenario and the corresponding

performance requirement. The simulation results prove the superiority of the proposed scheme

in terms of reducing the authentication devices, decreasing the training period and guaranteed

performance requirements as compared to the existing solutions.
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Chapter 1

Introduction

1.1 Overview

With the proliferation of the Unmanned Aerial Vehicles (UAVs), the range of applications

has been widely increased due to the cost reduction of the wireless technologies such as Wi-

Fi modules, micro-computer and sensors [1]. The operational flexibility and risk reduction

in personal injury enables many cutting edge applications in commercial, military and civil

fields which generates billions of revenue in the recent years [2, 3]. To be more specific, the

UAV technology has been used for more than 25 years in the military for border surveillance,

reconnaissance and strike. On the other hand, the public also use the UAV technology to

perform goods delivery, disaster warning and law enforcement and some of the examples are

demonstrated in Fig. 1.1 [4, 5, 6].

The UAV comes in different sizes and costs which means some of the UAVs can carry out

more severe tasks than the others. Even though the more powerful UAVs can be used singly

to accomplish the applications, the collaborative UAV system consisting of multiple UAVs,

which is also known as the UAV swarm, has been considered as the enabler of many emerging

applications. To allocate resources and route the intra-swarm communication to the ground

station, a cluster head (CH) is selected as the central node of the UAV swarm. All the other

1



2 Chapter 1. Introduction

Figure 1.1: Applications of the UAVs

UAVs within the swarm are considered as member UAVs and are connected to the CH which

forms an ad hoc network. Other than the advantages of the single UAV applications, the UAV

swarm extends the advantages to the following:

• Time efficiency: The efficiency for the tasks such as search and rescue can be signifi-

cantly improved with the use of the UAV swarm. By using multiple UAVs, the efficiency

of searching a designated area can be significantly improved. On the other hand, the

searching radius and coverage can also be extended with respect to the amount of UAVs

in the swarm [7].

• Complementarity: Instead of using an advanced UAV loaded with all equipment to-

gether, the UAV swarm can use cheaper and smaller UAVs that carry a specific type of

equipment individually and become a complement to each other. A good example is

that in a fire detection and extinguishing mission, some of the UAVs can carry the fire

detectors while the others can carry the infrared cameras [8].

• Fault tolerance: In the single UAV application, the mission has to be terminated if the

UAV malfunctions. However, the loss of a UAV can be mitigated by the algorithm or the

backup UAVs which vastly increases the reliability of the system.

In conclusion, the UAV swarms have many advantages over the single UAV applications
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in both civil and military fields. However, there are still many challenges that need to be

conquered in the future.

1.2 Thesis Motivations

The UAV swarm, which is a flying ad hoc network can be considered as a subsidiary of the

mobile ad hoc networks (MANETs). However, unlike the other types of MANETs such as

the vehicular ad hoc networks (VANETs), the UAV swarm suffers from high mobility where

the maximum speed of a UAV can reach 460km/h with rapid physical topology change due

to the 3-dimensional movement [9]. The typical MANETs or VANETS, on the other hand,

are usually moving human users or cars which travel in the same direction with relatively

slow physical topology change in 1-dimension [10]. The network topology of the MANET,

VANET and the UAV swarm is shown in Fig. 1.2. To compensate for the high mobility,

the unavoidable CH switching must become more frequent in order to supply the best service

coverage to the member UAVs. The attackers can then target the CH switching process as a

chance to impersonate the new CH and further compromise and control the entire UAV swarm.

Hence, to protect the integrity of the UAV swarm, it is critical to ensure the security of the CH

first.

Figure 1.2: Network topology of MANET, VANET and UAV network
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Additionally, the fast physical topology change may rise another critical challenge which

is the intermittent connection between the member UAVs and the CH. The frequency of the re-

connection is a lot higher compared to the other more stable MANETs which further increases

the chance for the attackers to impersonate as a legitimate member UAV and initiate spoofing

attacks. Although some more sophisticated authentication techniques such as the decentralized

authentication using blockchain techniques have been developed in the recent years, the extra

computational cost can create a severe overhead to the network and decrease the performance

of the UAV swarm.

Moreover, the UAV swarm may also encounter more challenging operational conditions

especially for the applications under the hostile environment with intermittent communication

with the ground station. The UAV swarm has to utilize the limited on-site resources to enhance

the security rather than relying on the cloud-based security enhancement. Hence, it is critical

to develop an on-site security enhancement to protect the wireless communication of the UAV

swarm under the resource constraint environment with minimal computational complexity.

In order to address these challenges, an intelligent collaborative authentication mechanism

that guarantees the authentication performance by utilizing the limited on-site resources with

minimal security overhead becomes a critical dilemma.

1.3 Thesis Objectives

To solve the challenges of the UAV swarm as listed above, this thesis explores a fluid au-

thentication model that can switch between the decentralized authentication model and the

centralized authentication model seamlessly with situational awareness. Besides, the security

performance is also guaranteed by utilizing minimal computational cost. The sub-objectives

are listed as follows:

Securing the role of CH in the UAV swarm: The CH of the UAV swarm serves a critical

role in controlling the swarm and relaying the data packets. Hence, it usually contains more
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sensitive data and has more interest of being attacked or impersonated by the attacker for illegal

purposes [11]. On the other hand, the UAV swarm usually operates under a hostile environment

with limited spectrum resources where the connection with the ground station is intermittent

which means it is extremely hard to implement a cloud-based security enhancement. Hence,

instead of using the cloud-based security enhancement, it is extra important to utilize the lim-

ited on-site resources to verify the identity of the new CH and protect the UAV swarm being

compromised and controlled by the attackers.

Improve the authenticating performance of the member UAVs: The traditional cryptographic-

based systems are built around unproven assumptions about the hardness of certain functions;

hence, some of these schemes, such as the asymmetric key encryption, may be vulnerable to

quantum attacks [12]. On the other hand, it is extremely hard for the system to verify the iden-

tity of the device once the security key is compromised [13]. Therefore, it is critical to utilize

the unique characteristics of each UAV such as the physical layer attributes and upper layer

attributes to prevent the attackers from impersonating the legitimate devices.

Minimize the computational overhead utilizing situational-aware collaborative au-

thentication: The extra authentication security enhancement such as the decentralized authen-

tication techniques usually increases the computational cost by comparing to the conventional

centralized cryptography-based authentication [14]. By utilizing more authentication nodes,

a better authentication performance can be achieved under severe conditions. However, it is

unnecessary to utilize the sophisticated authentication techniques across the different environ-

ments and it is extremely important to maintain a low latency communication for both the

intra-swarm communication and inter-swarm communication in some critical tasks such as the

search and rescue mission. Hence, it is critical to reach an equilibrium between the authentica-

tion performance and the extra computational cost when designing the authentication schemes

under the UAV applications.
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1.4 Contributions of the Thesis

In this thesis, a novel collaborative authentication mechanism is proposed to protect both the

role of CH and the member UAVs from being impersonated by the attackers. Only the nec-

essary authentication resources are utilized to continuously guarantee the authentication per-

formance throughout the different environments. In particular, only the on-site resources are

utilized for the authentication decision without any help from the cloud server to compensate

for the limited spectrum resources. The proposed mechanism can switch between the cen-

tralized authentication model and the decentralized authentication model based on situational

awareness to compensate for the single-point failure when the CH cannot generate a confident

decision while not utilizing excessive computational cost. The soft authentication decisions are

generated at each authentication node to further improve the robustness and reliability of the

UAV swarm. The main technical contributions of this thesis are summarized as follows:

• A linear discriminant analysis-aided (LDA) centralized authentication scheme is pro-

posed to analyze and select the most reliable combination of cross-layer attributes under

the time-varying environment. An information threshold is designed to select the least

amount of attributes that can achieve the authentication performance requirement based

on the situational awareness.

• Instead of a binary authentication decision, a soft authentication decision algorithm is

proposed to generate a continuous authentication decision between 0 and 1 in the decen-

tralized network. The soft authentication decision evaluates the legitimacy of a device

by calculating the probability for a UAV to be legitimate. This improves the robustness

of the authentication scheme by accepting the uncertainty of the edge decision.

• We propose a novel concept of Service-of-Security (SoS) to specifically achieve the de-

fined level of authentication performance continuously to guarantee the security require-

ment. The computational complexity can be ultimately minimized by eliminating both
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the redundant or excessive collaborators and authentication attributes across different

environments based on the situational-awareness.

• An edge intelligence-enabled collaborative authentication mechanism is proposed to cus-

tomize create different authentication models across the differnet environments based on

situation awareness. A Gini-impurity-based attributes evaluation algorithm is paired with

the authentication node evaluation algorithm as a two-factor process to evaluate and then

select the most suitable combination of authentication nodes as well as the attributes

being used at each node.

1.5 Thesis Outline

The rest of the thesis is organized as below:

In Chapter 2, a literature survey starts from the introduction to the physical layer au-

thentication by discussing the advantages and disadvantages comparing to the conventional

cryptographic-based authentication scheme. Then, the cross-layer authentication scheme is

introduced to compensate the disadvantages of the physical layer authentication such as the

imperfect estimations. After that, to further improve the reliability of the authentication in

UAV swarm under a hostile environment, the decentralized authentication scheme is discussed

to avoid the potential single-point failure which is a critical challenge for the centralized au-

thentication schemes.

In Chapter 3, we propose a LDA-aided cross-layer centralized authentication scheme to

eliminate the unnecessary attributes so that the authentication performance can be improved

while the computational cost can be decreased. The eigenvalue of each cross-layer attribute

is calculated to evaluate the usability of each cross-layer attributes and an adaptive cross-layer

attributes selection algorithm is introduced to select the most informative combination of cross-

layer attributes based on the situational awareness.

Considering the centralized authentication techniques may cause the single-point failure
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under the more severe authentication environment, the decentralized authentication techniques

have been considered to improve the overall authentication reliability and robustness. How-

ever, the increased amount of edge authentication decisions may create more ambiguity when

the authentication nodes cannot provide confident authentication decisions. In Chapter 4, a

probability-based soft authentication scheme is proposed at each authentication node to im-

prove the reliability of the edge authentication decision by including the uncertainty. This can

also further relax the imperfect estimations collected at each authentication node and lowers

the impact of the less confident authentication node when forming the final authentication de-

cision.

In Chapter 5, we propose a novel concept of Security-of-Service (SoS) and a collabora-

tive authentication mechanism where only the necessary authentication resources are utilized

to continuously promise the authentication performance requirement across the different envi-

ronments. The objective of the fluid authentication model is to reach an equilibrium between

the SoS and the computational cost. The Gini-impurity of the attributes at each authentication

node, the relative distance and the past authentication record between the authentication node

and the authentication requester are utilized and designed into a two-step process to achieve

the design objective. The simulation is conducted in MATLAB and Python to evaluate the pro-

posed intelligent decentralized authentication mechanism and demonstrate that the proposed

mechanism can achieve the authentication requirement with minimum computational overhead

based on the situation awareness.

Finally, Chapter 6 concludes the work of this thesis and reviews the future possible research

direction.



Chapter 2

Security Challenges and Existing

Solutions in UAV Networks

The UAV network serves as the backbone of the UAV swarm which supports diverse applica-

tions by connecting all the UAVs together. The network security enhancement techniques have

been researched for a long time; however, different challenges and risks arise due to the fast

development of technologies. In this chapter, an overview of the UAV network is introduced

firstly. Then some details about the risks and threats in the UAV network are presented to

understand the challenges. Moreover, some state-of-the-art solutions have been discussed to

demonstrate both the advantages and the disadvantages. Based on these reviews, an intelligent

authentication scheme for the UAV swarm will be further studied to achieve the objectives of

this thesis in the following chapters.

2.1 UAV Network Overview

UAVs have been found in many new applications in recent years. In supporting surveillance

and disaster relief, a collaborative group of UAVs can for a swarm to provide a self-managed

FANET and rapidly be deployed for the missions [15, 16, 17]. Security provisioning in moving

UAV swarm can be extremely challenging given their low cost, flexible maneuvering capability

9
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and harsh operating environment, it brings many unique challenges by comparing to the other

IoT networks such as fast network topology change, intermittent connection with the ground

station and risk of being discovered by the adversaries [18, 19, 20, 21]. Although the CH of the

FANET can access the ground station and use it as a centralized authentication server as shown

in Fig. 2.1, the high-power long-distance wireless transmission and the increased latency make

the cloud-based authentication schemes less feasible under the FANET. Hence, the on-site

resources, which are the resources within the UAV swarm (i.e., using the CH as the central

authentication server), should be utilized to achieve a fast and reliable security provisioning.

Figure 2.1: Topology, challenge and application of the flying UAV networks.

To further elaborate the uniqueness of the FANET, we conclude the characteristics in point

form as shown below:

• Topology: Unlike the MANET whose topology is random with no centralized topology

required, the topology of the UAV network is usually a star topology with a central

node called a cluster head (CH) [22]. The CH aims not only to relay the intra-swarm

communication between the member UAVs but also the inter-swarm communication to

the ground station. Therefore, instead of a mesh topology, the CH has to provide reliable

communication links to all member UAVs which is challenging throughout the entire

application.
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• Mobility: Since the UAV travels in the air, the freedom of travelling is much higher

than the other types of MANETs. The nodes within the MANETs usually travel in the

same direction which can be summarized as a 1-dimensional movement; nevertheless,

the UAVs can travel in any direction and can be considered as a 2-dimensional or 3-

dimensional movement. Moreover, the nodes within the MANETs are usually moving

human users while the maximum speed of the UAV can reach 460 km/h [19].

• Dynamic topology: Due to the high mobility and the different types of applications, the

topology change may be much more frequent in the UAV networks than the MANETs.

For example, during a military application, new targets can show up unexpectedly; hence,

the UAV swarm may get frequently partitioned to accommodate the application require-

ment. In this case, when a new UAV swarm is partitioned from the existing UAV swarm,

it is extremely important to make sure that the sensitive information is transferred to the

legitimate UAVs.

• Energy constraints: In the MANETs, the nodes are usually battery powered and wire-

less communication is the major battery consumption. Similarly, some of the UAV

swarms may be constructed by the mini UAVs which are also energy-constrained. How-

ever, some of the applications require larger UAVs whose major battery consumption

is the motor and the UAV management system (i.e., the autopilots system and naviga-

tion system). In this case, the power consumption of the motor may take up to 200

watts/kg while the communication module only takes 0.8 to 5 watts which is negligible

[23, 24, 25]

Hence, with these unique characteristics, more security challenges arise with respect to the

UAV networks.
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2.2 Risks and Threats in the UAV Networks

To support the different types of UAVs, the UAV swarm has to adopt different wireless trans-

mission protocols and form a heterogeneous network. Similar to the other mobile devices, the

open nature of the wireless communication brings many typical security challenges to the UAV

networks as shown in Figure 2.2 and listed below:

Figure 2.2: Typical risks and threats in UAV swarms.

• Spoofing attacks: Due to the openness of the wireless communications, an attacker can

forge a legitimate identity and send signals to control or cheat a legitimate UAV which

poses a serious threat to the UAV network [26]. A good example is that an attacker may

impersonate a legitimate member UAV during a military task and send the forged data to

the CH and create a false target. This may lead the whole UAV swarm into a dangerous

situation and lead to a failed mission.

• Eavesdropping attacks: There are mainly two types of eavesdropping attacks which

are the passive eavesdropping attack and the active eavesdropping attack. In the pas-

sive eavesdropping attack, the attackers aim to intercept the confidential communication

silently without degrading the received signal quality. Hence, it brings security vulner-

ability since it is very hard for the other devices to detect the presence of the attacker.

On the other hand, the active eavesdropping attacks aim to jam the main communication
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channel and degrade the limited channel capacity which is more harmful by comparing

to the passive eavesdropping attacks [27, 28].

• Denial-of-service (DoS) attacks: Similar to the active eavesdropping attacks, the DoS

attacks aim to exhaust the UAV network resource by sending superfluous requests. The

goal is to prevent the legitimate UAVs from accessing the CH for services or resources

[29]. This is extremely harmful to the UAV network due to its simple implementation

and will significantly degrade the efficiency.

• Black hole attacks: Similar to the eavesdropping attacks, instead of listening silently,

the attacker actively lures the data packet by claiming that it can relay the data packet or

it is the designated destination. After it receives the sensitive information, it drops all the

data packets or certain packets for illegal purposes [30].

• Man in the middle attack: In this type of attack, the attacker monitors and then modi-

fies the data packet between the member UAV and the CH. In this case, the attacker can

not only modify the data being collected from the member UAVs but also changes the

commands from the CH. Hence, it is extremely important to verify the true identity of

the sender to avoid falsified information [31].

Other than these typical security risks during the mission, the UAV swarm also encounters

some additional security risks. For example, due to the high mobility and the dynamic topol-

ogy, a CH switching process is unavoidable to provide better coverage to all member UAVs.

However, during the CH switching process, it gives the attackers chances to impersonate a

legitimate UAV and becomes the new CH. Then, it can not only inherit the existing highly

sensitive information but also forge and delete new data packets to control the entire UAV

swarm.

Other than the security risks, the harsh operating environment is also a key challenge.

Since the UAV swarm may operate under a hostile environment, the radio spectrum resource

is extremely limited under this scenario [11]. Moreover, the wireless communication should
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remain silent when unnecessary to prevent the enemy force from detecting the UAV swarm.

Therefore, it is almost impossible to implement the cloud-based security enhancement and the

UAV network can only rely on the limited on-site resources for security enhancements.

2.3 Existing Solutions for UAV Network Security and Their

Challenges

In this section, we discuss both the centralized authentication techniques and the decentral-

ized authentication techniques for solving the challenges above. We have also concluded their

challenges within the UAV swarm respectively.

2.3.1 Centralized Authentication

Conventional wireless security provisioning is achieved by using a centralized server, such

as an authentication server, or any trusted third party to provide the required credentials [32].

These centralized servers bring many benefits such as predictable overhead, high interoperabil-

ity and compatibility with different platforms [33]. When using the centralized authentication

in the FANET, the CH has to authenticate and authorize each member UAV when needed based

on its own decision. To enhance the overall security of the UAV swarm, some state-of-the-art

authentication techniques have been implemented at the CH as listed below:

2.3.1.1 Cryptographic-based Authentication

The digital-key cryptographic-based authentication techniques implemented in the network

layer have an extensive history in the wireless communication authentication field. In the

conventional approaches, the member UAV transmits the encrypted digital key to the CH where

the key will be verified to gain access to the services. However, to further increase the security,

the mutual authentication techniques with public and private keys have also been developed.
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Although there exists many benefits for cryptographic-based authentication schemes, these

techniques also suffer from the rapid development of computational power. To be more spe-

cific, in the UAV network, once the security key is compromised by the attacker via brute force

attacks, it is extremely hard for the CH to verify the true identity of the device. To solve this

problem, some cryptographic-based authentication schemes refresh the digital key periodically.

However, to manage, generate, revoke and distribute these keys on a regular basis, the network

latency will be increased and become intolerable especially under large-scale networks. Be-

sides, the key distribution process may also increase the chance of being eavesdropped on by

the attacker within the UAV swarm.

To further elaborate some of the state-of-the-art cryptographic-based authentication schemes,

the author of [34] developed a secure mutual authentication scheme between robots and cloud

servers using Elliptic Curve Cryptography with the key agreement for robots. Besides, the au-

thor of [35] developed a symmetric key-based mutual authentication scheme with a session key

distribution system. In this scheme, instead of receiving a key from the key distribution cen-

ter, each node agrees with the algorithm to generate session keys so that the session keys can

be calculated in advance. Moreover, a lightweight privacy-preserving key establishment has

been introduced in [36]. The proposed scheme aims to overcome the existing problems with

trusted authority dependency and secure communication channel reliance during the registra-

tion. However, there still exist many drawbacks to these state-of-the-art authentication tech-

niques such as forgery attacks, offline password guessing attacks and user traceability issues.

Some of these schemes also suffer from higher latency due to the necessary key generation,

distribution and refreshment.

2.3.1.2 Physical-layer Authentication

In contrast to the cryptographic-based authentication techniques relying on the upper layers

in the network, the physical-layer authentication utilizes the randomness of signals, wireless

channels and hardware impairments to provide information-theoretic security enhancement
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[37]. The reciprocal channel properties and the analog front-end imperfections are directly

related to the specific environment and the device hardware which improves the difficulty for

the attackers to impersonate the legitimate devices. Other than the security enhancement, the

physical-layer authentication techniques also bring many other advantages such as a lower

computational complexity and latency since it does not need to consider how security protocols

are implemented [38, 39].

There are mainly two types of physical-layer authentication schemes which can be clas-

sified as composite security key-based scheme or keyless scheme, according to whether a

physical-layer attributes-based secret key is exploited and shared between the transmitter and

receiver [40]. For the key-based physical layer authentication, the authors of [41] proposed a

physical-layer challenge-response authentication mechanism that adopts orthogonal frequency-

division multiplexing technique and separately modulates the higher layer information and

shared keys on subcarriers’ phases and amplitudes respectively. On the other hand, the au-

thors of [42] proposed an adaptive physical-layer key generation scheme based on Received

Signal Strength. By utilizing the group quantization, the randomness of the generated key

was improved since the 0 and 1 in generated keys were more evenly distributed. The adaptive

quantization has also been considered to design adaptive quantization intervals. Moreover, a

pre-shared key generation algorithm under vehicular network has been proposed by the authors

of [43], in which the key length is optimized to improve the performance in terms of time and

energy.

The keyless physical-layer authentication is also widely studied by the researchers due to

the low computational overhead compared to the key-based schemes. It focuses on exploiting

the physical layer attributes of the communication links and device hardware such as the chan-

nel impulse response (CIR), carrier frequency offset (CFO), received signal strength indication

(RSSI) and in-phase/quadrature (I/Q) imbalance [13, 44, 45, 46]. The authors of [47] explored

fuzzy theory for modelling multiple physical-layer attributes together. The fuzzy theory-based

model helped to compensate for the imperfectness and uncertainties of the physical layer esti-
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mations to improve the overall performance. On the other hand, the authors of [48] utilized a

deep learning-based physical layer authentication framework with three gradient descent algo-

rithms which enables smaller computational overheads and lower energy consumptions. More-

over, the authors of [49] proposed a blind authentication scheme that combines the techniques

of blind known interference cancellation and differential processing which suppresses the dete-

riorating effect of fading channels without additional preprocessing. Although there exist many

advantages for the physical layer authentication schemes, there still exist many challenges as

listed below for the UAV network:

• Imperfect estimations: The physical layer estimations can be severely affected by the

decorrelated attributes caused by the mobility and dynamic interference. The unstable

fluctuation increases the dynamic range of the physical-layer attributes which further

leads to the insufficient range to separate each UAV from the other. Therefore, the overlap

increases the tolerance for the attacker to impersonate the legitimate UAV to cheat the

physical-layer-based authentication schemes [11].

• Time-varying environment: Due to the high mobility of the UAVs, some physical

layer attributes may encounter a sudden change. Hence, the authentication scheme may

accidentally reject a legitimate member UAV as an attacker. On the other hand, to com-

pensate for the sudden change, some authentication models may increase the tolerance

for the attributes which may give the attacker more chance to impersonate the legitimate

UAVs.

• Difficulty in authentication model generation: The physical layer attributes are highly

correlated to the specific operating environment; therefore, it is extra difficult for the

system to generate an authentication model in advance. This requires the UAVs to keep

collecting and updating the physical layer attributes of each other during the mission

and generate a real-time authentication model. However, this may increase the overall

network latency as well as the power-consuming which is undesirable in many types of
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missions.

It can be concluded that the physical layer authentication techniques are more suitable to

be implemented in a static environment where the attributes are stable throughout the mission.

However, in practical UAV swarms, the member UAVs may move in and out of the swarm

frequently due to the high mobility which requests the CH to constantly update the physical

layer estimations to ensure the authentication performance. However, the frequent estimations

require fast and massive computational overhead when the size of the UAV swarm grows which

will lead to a bottleneck situation and degrade the advantages of the physical layer authentica-

tion.

2.3.1.3 Cross-layer Authentication

To improve the stability and robustness of the physical layer authentication in the dynamic

environment, it is critical to combine extra upper layer attributes with the physical layer at-

tributes. Other than the physical layer attributes as mentioned above, the upper layer attributes

such as the Packet Error Rate (PER), position information (i.e., GPS coordinates) and pre-

existing upper layer authentication schemes [50, 51, 52]. To utilize these attributes together,

the researchers have come up with different methods to fuse and cascade the attributes together

to fulfill the requirements of different implementations.

One of the popular techniques to combine the different layers is to use the upper layer

attributes as a backup plan when the physical layer fails. For example, in [52], the authors pro-

posed a fast cross-layer authentication scheme that utilizes pre-existing upper layer authentica-

tion scheme at reasonable time instants to compensate the physical layer authentication. The

upper layer authentication scheme will verify the identity of the device again if the physical

layer authentication scheme recognizes the device as an attacker. This technique can certainly

decrease the probability of false alarming; however, it gives the attackers a second chance to

impersonate the legitimate device for illegal purposes.

On the other side, instead of a two-step process, the authors of [50] fuse the PER and the
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RSSI as a one-step process. The authentication system verifies both attributes at the same time

since it is nearly impossible to impersonate a legitimate device at the same time. However,

the performance of this method may degrade with respect to the increase of the UAV swarm

size. Moreover, the authors of [53] proposed a cross-layer authentication framework based on

hash access and quantum encryption in industry IoT 4.0. The framework included a device

authentication system to defend against the preamble-aware attack and a privacy-preserving

protocol to avert small data eavesdropping attacks.

In conclusion, although cross-layer authentication can improve both the robustness and re-

liability of the physical layer authentication, the extra computational overhead associated with

the increased amount of upper layer attributes is still a major challenge. Therefore, it is criti-

cal to improve cross-layer authentication by balancing the performance and the computational

complexity in the UAV network.

2.3.1.4 Analysis

Although centralized authentication has been widely inherited in many network security ap-

plications, the single-point failure is unavoidable when the security technique fails at the CH.

In the cryptographic-based authentication techniques, if the digital key is leaked, the system

security implemented at the CH will not be able to verify the identity. In the physical-layer

and cross-layer authentication techniques, the CH may encounter imperfect physical layer es-

timations or miss some of the cross-layer attributes under the hostile environment which may

further lead to authentication failure. Therefore, it is extremely important to increase the ro-

bustness and reliability of the network security by introducing more authentication nodes at the

same time.

2.3.2 Decentralized Authentication

With the growing size of the UAV swarm, observing and analyzing multiple attributes and de-

vices at the same instance may create a bottleneck and reduce application traffic [54]. On the
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other hand, it is challenging for the existing centralized authentication scheme to manage iden-

tity security by presenting a single point failure. A peer-to-peer decentralized authentication

scheme is a feasible solution where a symmetric relationship between the member UAV and

the CH is provided. Instead of solely relying on the authentication decision of the CH, the

member UAVs can be considered as authentication nodes that can contribute to the authentica-

tion decision as shown in Figure 2.3. Therefore, the challenges of some existing authentication

schemes, such as the imperfect physical layer estimations, can be compensated by using mul-

tiple estimations by utilizing different UAVs.

Figure 2.3: Basic structure of decentralized authentication in UAV network.

2.3.2.1 Blockchain-based Authentication

The blockchain-based authentication scheme has attracted extensive interest over the past few

years in which duplicated transactional databases, or ledgers, are distributed over multiple

nodes within a peer-to-peer network [14]. These nodes form a chain of ordered blocks and each

block contains the cryptographic hash of the previous block as shown in Figure 2.4, in which
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the longer the blockchain is the safer the system will become [55]. Therefore, it is extremely

hard for the attacker to forge or delete the information since the attacker has to overwrite or

remove the history from all nodes before the next block record arrives [56].

Figure 2.4: Basic structure of blockchain.

The authors in [57] constructed a private blockchain in each Internet-of-Things (IoT) net-

work by utilizing the coin-based blockchain system. A hardware authenticator, which is not

connected to the internet, is used to generate blocks and transfer a certain amount of coins to

the authenticated device. Hence, a ledger is developed to store the authentication information

across the network and is used to verify the identity of each device in the future. On the other

hand, the authors in [58] proposed an out-of-band two-factor blockchain-based authentication

scheme in the home IoT network. The out-of-band channel, such as light and acoustic are used

to verify whether the access requestor is located within the home. Moreover, the authors of

[59] proposed a hybrid blockchain-based authentication scheme for the sensor networks. The

devices form a hierarchical network by being divided into base stations, cluster head nodes and

ordinary nodes with respect to their capability differences. A hybrid model is then formed in

which the cluster head node identity authentication is accomplished by the public blockchain

while the ordinary node identity authentication is realized in the local blockchain.

Although the blockchain-based authentication brings many advantages to the network safety,

the number of UAVs in a simple application may be small which is not sufficient to leverage

the security enhancement amplified by using a private chain. Moreover, if the public chain is

adopted in the UAV network, the process may become less efficient due to the transaction stor-

age and delays. Therefore, it is critical to develop other types of decentralized authentication
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schemes within the UAV network to enhance the authentication performance and maximize the

efficiency of the network simultaneously.

2.3.2.2 Analysis

Although the decentralized authentication techniques were proposed to compensate for the

challenges such as the single point failure, there are still a few drawbacks to this technique.

Firstly, authentication by using more peers will consume more resources and time which in-

creases the network latency when the size of the UAV swarm grows. The tasks such as the key

distribution can become more complex to cover all the UAVs within the swarm [60].

On the other hand, some of the authentication nodes can be less reliable in one scenario

than the others. A good example is when the authentication nodes are making decisions based

on the keyless physical layer authentication schemes, some of the UAVs may receive the physi-

cal layer estimations with more interference than the others. This may lead to further confusion

during the final authentication process which lowers the robustness of the authentication per-

formance. Moreover, the increased amount of authentication nodes brings higher risk due to

the larger attack surface. Instead of becoming the CH of the UAV swarm, the attacker can im-

personate some of the member UAVs and initiate sybil attacks to influence the authentication

decision by sending forged decisions. Therefore, it is critical to verify and select the authentica-

tion nodes within the UAV swarm to compensate for these challenges within the decentralized

authentication scheme.

2.4 Chapter Summary

This chapter firstly went through the overview of the UAV network followed by the threats and

risks. The existing solutions have been reviewed including the cryptographic-based authenti-

cation, physical-layer authentication, cross-layer authentication, and the blockchain-based au-

thentication. The advantages and disadvantages of these techniques were presented to demon-
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strate the criteria to design the new intelligent authentication scheme.

Although these state-of-the-art authentication techniques could achieve great performance,

an open challenge is that these techniques are best-effort based which cannot provide a stable

and guaranteed security performance across different application scenarios and environments.

Some of these authentication schemes may cost an excessive amount of computational cost

in simple applications. Hence, it is critical to find an equilibrium between the authentication

performance and the computational cost. Based on the preliminaries provided in this chapter,

new centralized and decentralized intelligent authentication schemes will be developed in the

next following chapters.



Chapter 3

Situational-aware Linear Discriminant

Analysis-based Authentication Scheme

To verify the true identity of all devices within the UAV swarm, the centralized cross-layer

authentication technique can be utilized by verifying the unique attributes of each device, i.e.,

physical channel characteristics, hardware imperfection, location, data link layer characteristics

and so on. By utilizing the different layers of the Open Systems Interconnection (OSI) Model,

it significantly increases the difficulty for the attackers to impersonate the legitimate device.

However, the cross-layer authentication techniques also have their own challenges in the UAV

swarm such as the high computational complexity to collect and analyze the excessive amount

of attributes in the resource constraint devices. Besides, some of the cross-layer attributes are

not useful in specific scenarios which may reduce the performance by bringing ambiguity into

the decision-making. To circumvent these unique challenges, a Linear Discriminant Analysis-

based (LDA-based) authentication scheme is proposed as a smart process in this chapter to

analyze and select the cross-layer attributes. Then, the selected attributes will be fused to

compute a binary authentication decision which improves the reliability and robustness of the

authentication performance while effectively reducing the unnecessary attributes.

24
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3.1 Introduction

The UAV techniques enable many cutting-edge technologies in both military and civilian fields;

hence, the UAV networks may contain highly sensitive and personal information where the

open broadcast nature of wireless channels allows attackers to initiate various types of attacks

via the wiretap channels. Traditionally, conventional cryptographic-based authentication tech-

niques have been adopted to enhance the network security by mainly generating, exchanging

and employing secret keys. However, once the security keys are compromised, it is extremely

difficult for the CH to realize in terms of key distribution and management. Moreover, with

the rapid development of the computational power, the attacker’s ability to decode the eaves-

dropped signals from the open-air has also been increased significantly. Therefore, an efficient

authentication technique that can relate the unique characteristic of each UAV to its identity

becomes a dilemma to prevent the attackers from impersonating the legitimate UAVs under the

harsh resource constraint environment.

To extract the unique hardware-based and channel-based characteristics for each device,

the physical-layer-based authentication technique has been developed. However, the imperfect

estimations and the variation of the physical-layer attributes in a dynamic network can sig-

nificantly degrade the performance of the physical-layer authentication schemes [61, 62, 63].

When the channel is unstable, especially under a hostile environment, the physical-layer au-

thentication may be severely affected by the sudden change of the physical-layer estimations

due to the decorrelated attributes collected from a different time and operating environment.

For example, the CIR in the open-air environment may be significantly different from the non-

line-of-sight condition. Hence, rather than simply increasing the number of physical-layer at-

tributes, it is critical to consider the more stable upper layer attributes. However, the increased

amount of attributes may bring challenges for the operating. To be more specific, instead of

observing the physical-layer attributes seamlessly in the background, a protocol has to be de-

signed to transmit the required higher layer attributes [38, 39]. Also, it is challenging to decide

which attributes should be observed in advance; hence, the CH may need to estimate the num-
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ber of attributes and eliminate the unnecessary ones before fusing the authentication decision.

Hence, the concept of situational-aware cross-layer authentication is extremely important to

select and customize the adaptive authentication scheme which maximizes the authentication

performance while minimizing the computational cost.

To overcome these difficulties, the LDA algorithm is introduced in which the dimensional-

ity of the cross-layer attributes is reduced by applying a linear transformation that only keeps

the most relevant attributes in the specific scenario. A projection of the original data is then

formed such that the between-class variance is maximized and the within-class variance is min-

imized thereby maximizing the class separability [64, 65, 66]. Hence, the LDA algorithm can

help to extract useful information from the high dimensional estimations with the maximized

efficiency due to the calculation simplicity. However, the LDA algorithm needs input from the

operator to specify the number of attributes being kept after the attributes selection process.

Hence, a situational-aware attributes selection algorithm has to be developed simultaneously

to compute the number of cross-layer attributes being selected for the LDA algorithm so that

an adaptive cross-layer authentication scheme can be achieved. On the other hand, unlike the

other 2-step cross-layer authentication schemes where the upper-layer authentication scheme

is only utilized to verify the decision of the physical-layer authentication, our proposed scheme

uses all selected attributes at the same time to fuse the authentication decision.

Hence, the contribution of the situational-aware LDA-based authentication scheme can be

summarized as follows:

• A novel edge intelligence enabled cross-layer authentication scheme is proposed to pro-

vide an on-site multi-dimensional assessment that verifies the true identity of each device

within the UAV swarm. By utilizing the cross-layer attributes, it is significantly more dif-

ficult for the attackers to predict the authentication model and impersonate the legitimate

UAVs.

• A novel LDA-based authentication scheme is proposed to fuse multiple cross-layer at-

tributes and minimize the complexity of the authentication system by reducing the di-
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mensionality. A novel situational-aware cross-layer attributes selection algorithm is also

proposed to select a minimum amount of attributes to be used in the LDA-based authen-

tication scheme while maintaining the authentication performance.

• Various simulations are performed to demonstrate the stability and robustness under a

travelling UAV swarm. The results also demonstrate that the computational overhead of

our proposed scheme is lower than the other 2-step cross-layer authentication schemes.

The main symbols used in this chapter are summarized in Table 3.1

Table 3.1: Main Symbol Table of Chapter 3
Symbol Definition
Iini
m Digital identity of the m-th UAV

M Number of member UAVs in the swarm
N Number of cross-layer attributes
t Time instance that the authentication is required
HI

m Cross-layer estimations of the m-th UAV in phase I
HII

m Cross-layer estimations of the m-th UAV in phase II
δ Distance threshold
ψ0 UAV is legitimate
ψ1 UAV is a spoofing device
E Error rate of the authentication process
w1 Weight of false alarm rate
w2 Weight of miss detection rate
h A single cross-layer estimation
S m Scatter matrix of the m-th class
h̄m Mean of the cross-layer estimations for the m-th class
km Number of cross-layer estimations for the m-th class
W Intra-class scatter matrix
B Inter-class scatter matrix
Φ Linear transformation matrix of the original dataset
λ Eigenvalue of the transformation matrix
ν The number of cross-layer estimation selected
τ Information threshold
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3.2 System Model

As shown in Fig. 3.1, we consider a UAV swarm that consists of M member UAVs and an

on-duty CH. There exists a spoofing device that aims to intercept and impersonate a legitimate

UAV for illegal purposes. The CH aims to verify the true identity of each device within the

UAV swarm accurately to prevent the sensitive data from leaking by utilizing the cross-layer

attributes. A situational-aware authentication process is also designed to increase the difficulty

for the attackers to predict the authentication model and impersonate the legitimate UAVs.

Figure 3.1: System model. M legitimate member UAVs exist within the UAV swarm with
one on-duty CH. The on-duty CH focuses on continuously verifies the identity of each device
within the network to prevent the sensitive data from being leaked.

The process of authentication relying on multiple cross-layer features contains two phases:

Phase I: The on-duty CH collects the trusted cross-layer estimations from all M UAVs, when

they first join the network, as HI
1
,HI

2, ...,H
I
M. These estimations are paired with their digital

identities (Iini
1 , I

ini
2 , ..., I

ini
M ) during the collection. The trusted cross-layer estimation of the m-th

UAV, whose digital identity is Iini
m , can be denoted as:

HI
m = (HI

m1,H
I
m2, . . . ,H

I
mN)T, (3.1)

where N is the number of cross-layer attributes and ()T is the transposition of the vector. To ob-
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tain the trusted cross-layer estimations, each UAV broadcasts data packets that include its GPS

location at a certain time slot. The other UAVs receive the GPS coordinates as the application

layer attribute and calculates the PER of the received packets as the data link layer attributes.

The physical-layer attributes can be estimated by using the embedded hardware to calculate

the RSSI, I/Q imbalance, CIR, CFO and so on. The imperfect physical-layer estimation is

acceptable as fluctuations.

Phase II: At time t, the on-duty CH collects a set of observations from the UAV that requires

an authentication, where the cross-layer estimation of the the device m can be written as

HII
m = (HII

m1,H
II
m2, . . . ,H

II
mN)T. (3.2)

To achieve the situation-awareness of authentication in the time-varying environment using

cross-layer attributes, the cross-layer estimations should be collected periodically. Since the

cross-layer attributes estimations represent the characteristic of the device, a measurement of

the similarity between the estimation collected in Phase II and Phase I is critical and can be

formulated as:

d(HII
m ,H

I
m) =

√
(HII

m1 − HI
m1)2 + ... + (HII

mN − HI
mN)2, (3.3)

where d(HII
m ,HI

m) is the Euclidean distance between the cross-layer estimation of the m-th

UAV collected in Phase II and the trusted estimation collected in Phase I. Since the scale

and distribution of each attribute may be different from the other attributes, it may increase

the generalization error under the flat space. To be more specific, the authentication model

may favour the attributes with larger weight and decrease the sensitivity of the smaller weight

attributes. Therefore, it is critical to implement a scaling process such as normalization and

standardization. After collecting and scaling the data, the authentication decision will be forged

by judging the similarity between these collected estimations. A distance threshold δ can be

introduced as the similarity judgement to separate the spoofing device from the legitimate
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UAVs. The authentication decision can then be written as a binary hypothesis test:


Ψ0, d(HII

m ,HI
m) ≤ δ;

Ψ1, d(HII
m ,HI

m) > δ,
(3.4)

in which Ψ0 represents the UAV is legitimate and Ψ1 indicates the UAV is a spoofing device.

3.3 Problem Formulation

To evaluate the performance of the decentralized authentication, two potential errors are con-

sidered:

1) False Alarm (FA) rate: The probability that the legitimate UAV is rejected as a spoofing

device. The function can be given as:

PFA = Pr(d(HII
m ,H

I
m) ≤ δ|Ψm1). (3.5)

2) Miss Detection (MD) rate: The probability that the spoofing device is approved as a

legitimate UAV. It can be defined as:

PMD = Pr(d(HII
m ,H

I
m) > δ|Ψm0). (3.6)

To evaluate the accuracy and robustness of the decentralized authentication, the false alarm

rate and the miss detection rate can be combined as the error rate (E) as

E = w1PFA + w2PMD, (3.7)

where w1 and w2 are the costs of the false alarm and the miss detection. The false alarm and the

miss detection can be treated equally; however, under certain applications, the miss detection
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may cause more damage to the system than the false alarm and may have a higher cost. Hence,

the operator can choose to set different weights for both scenarios under specific applications.

To achieve the best authentication performance, both the false alarm rate and the miss detection

rate should be minimized. The problem formulation of this chapter can then be formulated as:

min
δ
E, (3.8)

where δ is the distance threshold as introduced above.

3.4 Situation-aware LDA-based Cross-layer Authentication

To solve the problem of (3.8) in a small group of UAVs, it is critical to authenticate each

legitimate device correctly by distinguishing the spoofing device from the legitimate UAVs

under a limited computational capability. To further improve the authentication performance,

the uniqueness of each UAV should be improved by enhancing the separability of the original

estimations. Hence, the LDA-based authentication scheme is proposed to project the original

observations into a low dimensional space with maximum separability while reducing the com-

putational overhead and time latency. Then, a situational-aware cross-layer attribute selection

algorithm is proposed to select a minimum amount of cross-layer attributes that maintain the

overall performance under the dynamic environment.

3.4.1 Authentication Based on LDA Algorithm

To extract the information from the multiple cross-layer attributes, we explore the LDA tech-

nique which transforms the initial verified cross-layer estimation into a low-dimensional space

for better separability. After collecting the set of trusted cross-layer attributes (HI) in phase I

and the cross-layer attributes (HII) for authentication at time t in phase II, all the observations

are merged together to form the new set (H) that are being used for the authentication. Each
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estimation in H is denoted as h and the estimations of the m-th UAV is Iini
m . The cross-layer

estimations of each UAV can be considered as a class to be further used in the LDA algorithm.

To analyze the estimations, the scatter matrix of each class which estimates the covariance

matrix is formulated as:

S m =
∑
h∈Iini

m

(h − h̄m)(h − h̄m)T, (3.9)

where

h̄m =
1
km

∑
h∈Iini

m

h, (3.10)

represents the mean for each class and km is the number of samples in Iini
m . The scatter matrix

is fundamental to LDA since it measures the distribution of the given data. Hence, the total

intra-class matrix, which describes how far each class is away from each other, is calculated

as:

W =

M∑
m=1

∑
h∈Iini

m

(h − h̄m)(h − h̄m)T, (3.11)

The inter-class scatter matrix, which describes how close the data points within a class, can be

given by:

B =

M∑
m=1

km(h − h̄m)(h − h̄m)T, (3.12)

where h̄ is the total mean vector given by h̄ = 1
k

∑M
m=1 km h̄m. To find the best solution for (3.8),

Fisher’s criterion is adopted in which the means between each class after the projection should

be as far as possible and the variance should be as small as possible. This criterion can be

written as (3.13) by using the inter-class scatter matrix and the intra-class scatter matrix.

max
δ

ΦTBΦ

ΦTWΦ
, (3.13)

where Φ is the linear transformation matrix of the original dataset. To find the perfect linear

transformation to minimize PMD of (3.6), (3.13) can be reformulated with the help of General-
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ized Rayleigh quotient [67] as:

BΦ = λWΦ, (3.14)

where λ = [λ1, λ2, . . . , λN]T are the eigenvalues of the transformation matrix Φ. If W is non-

singular,Φ can be solved by calculating the eigenvalues and the eigenvectors of all attributes of

the dataset. Each eigenvector describes one axis of the transformed space and the correspond-

ing eigenvalue represents the ability to discriminate between different classes. The eigenvector

with the highest eigenvalue carries the majority of information about the distribution of the

data. Hence, the highest eigenvalues and the corresponding attributes are chosen to formulate

the new space.

As described in (3.3), the Euclidean distance between the new estimation and the trusted

estimation is calculated to verify if the characteristics of the m-th UAV has changed suddenly.

In the authentication instance at time t, the cross-layer estimation can be written as ht . The

Euclidean distance after the linear transformation between the new estimation and the trusted

estimation can then be written as d(htΦ, h̄mΦ).

Therefore, the binary authentication decision described in (3.4) after the linear transforma-

tion can be transformed to:

C(ht) =


Ψ0, d(htΦ, h̄mΦ) ≤ δ;

Ψ1, d(htΦ, h̄mΦ) > δ.
(3.15)

Hence, if the cross-layer attributes between the new estimation and the record is similar

(d(htΦ, h̄mΦ) ≤ δ), the device will be authenticated as a legitimate device (Ψ0). Similarly,

if the cross-layer attributes are significantly different from the record (d(xtΦ, h̄mΦ) > δ), the

device will be authenticated as a spoofing device (Ψ1). However, a small δ value can increase

the overall error rate of (3.7) since the fluctuation in the cross-layer attributes can lead to a

false rejection. Similarly, a high δ value also increases the error rate since the difference of

the cross-layer attributes between the legitimate devices and the attacker can be deemed as a
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regular fluctuation. Hence, the choice of δ should be neither too sensitive nor too tolerant to

the fluctuations and should be chosen accordingly across different scenarios. The proposed

LDA-based authentication scheme is shown in Algorithm 3.1.

Remark To minimize PFA and PMD of (3.5) and (3.6), the cross-layer attributes between dif-

ferent UAVs should be separated far enough so that a correct authentication decision can be

forged by using (3.15) with a appropriate δ value. Hence, the projection of the original space

has to maximize the separation of the classes and minimize difference within the class which

fulfills (3.13).

Algorithm 3.1 LDA-based Authentication
Given the total number of cross-layer attributes included for the authentication for each
observation by N. The estimations observed of the m-th UAV are given as Hm =

(Hm1,Hm2, . . . ,HmN)T, and the total number of UAVs in the network is M. The authentication
happens at instance t.

1: The on-duty CH initializes the cross-layer attributes collection by broadcasting the “Ini-
tialization packet” to all UAVs in the system.

2: All UAVs constantly reply to the on-duty CH.
3: The on-duty CH collects all the “reply packets” as the initial dataset with trusted labels.
4: At instance t, an authentication process is triggered and the CH observes the cross-layer

attributes.
5: The on-duty CH adds the observed data into the trusted dataset.
6: The on-duty CH calculates the in-class variance and between-class variance to obtain the

linear transformation of the updated dataset according to (3.11) and (3.12).
7: The on-duty CH performs the linear transformation to get the projection of the original

space then calculates the Euclidean distance between the observation.
8: if d(tΦ, h̄mΦ) < δ then
9: authenticates the m-th UAV as a legitimate device.

10: else
11: authenticates the m-th UAV as an attacker.
12: end if
13: Update the trusted dataset by adding the new estimations at instance t if they are from

legitimate UAVs.
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3.4.2 Adaptive Cross-layer Attribute Selection Algorithm

Although the LDA technique can reduce the dimensionality of the cross-layer estimations, it

requires the operator to set the number of attributes being left after the linear transformation.

However, the significance level of each attribute is different across the dynamic environment

and the number of useful attributes can also vary from one time to another. Hence, a fixed

amount of cross-layer attributes being used for the linear transformation is not suitable to

achieve the best performance and minimize the overall latency. In this section, a situation-

aware cross-layer attribute selection algorithm (see Algorithm 3.2) is developed to select the

minimum amount of cross-layer attributes while maintaining the overall performance across

different scenarios. The unique combination across different scenarios also increases the over-

all security of the entire system.

As shown in (3.14), the eigenvalue, which evaluates the level of significance of the cross-

layer attributes, is required to compute the linear transformation matrix. The different choices

of cross-layer attributes will result in an individual linear transformation matrix. Ideally, a

minimum amount of cross-layer attributes should be selected to reduce the complexity while

maintaining the maximum amount of information after the linear transformation. Hence, only

the cross-layer attributes with high eigenvalues should be kept after the projection. To achieve

this goal, a threshold can be set to only choose the necessary amount of eigenvalues under

the dynamic environment. However, there is no upper limit for the eigenvalues (λ), which

indicates that it is impossible to set a fixed eigenvalue threshold. Therefore, we convert λ into

a percentage scale as:

Pλ = [Pλ1 , Pλ2 , ...PλN ]T, (3.16)

such that Pλ1 +Pλ2 + ...+PλN = 100%. In this case, Pλ1 has the highest eigenvalue in percentage

scale and PλN has the lowest eigenvalue in percentage scale. The information threshold (τ) can

then be chosen by the users according to the specific application scenario and then be used to
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choose the minimum number of top cross-layer attributes as follows:

τ ≤ Pλ1 + Pλ2 + ... + Pλυ , (3.17)

where υ = 1, 2, ...,N − 1 and the goal of attribute selection can be rewritten as:

min
υ

(Pλ1 + Pλ2 + ... + Pλυ − τ). (3.18)

A higher τ value generally indicates that more attributes will be kept after the LDA process.

However, a τ value that is close to 100% does not guarantee to use of all attributes since some

of the attributes do not contribute or even have a negative impact on the authentication. For

example, in a certain environment where the transmission switches between line-of-sight and

non-line-of-sight frequently, the CIR can vary significantly even if the device is the same.

Moreover, sometimes the authentication system does not require a highest τ value to reach

the best performance; hence, the τ value should be selected based on the environment and the

performance requirements accordingly. The characteristic of the τ value will be tested and

shown in the performance evaluation. The detailed process is shown in Algorithm 3.2.

Algorithm 3.2 Adaptive Cross-layer Attribute Selection Algorithm
Given the combined cross-layer attributes (H) which consists of the initial verified cross-layer
estimation (HI) collected in Phase I and the cross-layer attributes (HII) freshly collected in
Phase II at time t.

1: Obtain the eigenvalue of each cross-layer attribute.
2: Covert the eigenvalues into a percentage scale Pλ.
3: Rank the component of Pλ from high to low where Pλ1 has the highest percentage score.
4: Sum up Pλ1 to Pλυ such that the summation is greater or equal than τ with the minimum

value of υ.
5: Use the top υ cross-layer attributes for LDA dimensional reduction.
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Figure 3.2: Flow chart of the adaptive LDA-based cross-layer authentication scheme

To summarize both algorithms together, a flow chart of the authentication at instance t is

shown below in Fig. 3.2. In this case, the cross-layer observations (HII) collected at instance

t before the CH selection and CH switching is combined with the trusted cross-layer attributes

(HI) and forms the combined cross-layer attributes set (H). The adaptive cross-layer attribute

selection algorithm is used to find the minimum amount (υ) of the cross-layer attributes accord-

ing to τ. The top υ attributes being selected are then passed to the LDA-based authentication

scheme where the authentication output is generated by using the input H and δ.
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3.5 Simulation Results

In this section, the performance analysis of the proposed scheme is given. A dynamic UAV

swarm is constructed by using the MATLAB 2020a to simulate the cross-layer attributes data.

Each UAV has a random motion path with 300 observations and the analysis represents the last

of the 5 simulations that have been initialized differently. All simulations have similar results.

We consider a 3D movement where the flight height varies between 150 to 300m in the urban

area and 10m to 40m in the rural area [68]. The maximum diameter of the UAV swarm is 10m

in the urban area and 30m in the rural area. The Friis equation is utilized to model the path-loss

and the Doppler shift is considered due to the high relative velocity under the rural area [69].

The height-dependent Rician factor is considered in the line-of-sight condition under the rural

area and the Rayleigh fading distribution is considered in the non-line-of-sight condition under

the urban area. To construct the transition period, the flight height and the velocity of each

UAV varies gradually; hence, the changes in relative locations lead to new channel conditions.

The channel model is gradually switched from the non-line-of-sight condition to the line-of-

sight condition. The cross-layer attributes contain RSSI, CFO, CIR and I/Q imbalance from

the physical-layer, PER from the data link layer, latitude and longitude from the application

layer. The cross-layer attributes are stored into .CSV files to be analyzed in Python 3.8.

To study the performance of our proposed scheme, we consider 3 cases that include 4, 8 and

12 UAVs to represent the potential size of the UAV swarm. To evaluate the error rate of (3.7),

we assume the cost of false alarm and the miss detection is the same which means w1 and w2

are both 0.5. We then compare our proposed scheme to the other state-of-the-art light-weight

cross-layer centralized authentication techniques for both the accuracy performance and the

computational complexity.
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3.5.1 Performance Analysis of Proposed LDA-aided Authentication Scheme

To optimize the performance of LDA, an assumption is that the input attributes follow the

normal distribution. Since some of the attributes do not follow this distribution, the box-cox

transformation has been utilized to transform the original data into as close to a normal distri-

bution as possible. Then, to equalize the weight of each attribute, the data standardization has

been performed to rescale the attributes so that the mean equals 0 and the standard deviation

equals 1.

3.5.1.1 Information Threshold (τ)

To understand the relationship between the proposed adaptive cross-layer attribute selection

mechanism and τ, we conduct the simulation in Python by using the data harvests from MAT-

LAB and the τ values we choose are between τ=1% and τ=99%. The reason that τ cannot

reach 100% is that the converted percentage eigenvalue may not add up to 100% after being

rounded. Hence, we summarize the τ ranges with the corresponding amount of cross-layer at-

tributes being kept after the dimension reduction for 4 UAVs in Table 3.2, 8 UAVs in Table 3.3

and 12 UAVs in Table 3.4. The chosen sample is from a random instance in the early transition

period since the channel condition is more complicated than the rural area or the urban area.

Table 3.2: Information Threshold Range (τ) and the Corresponding Number of Attribute(s) (4
UAVs)

τ range attribute(s) selected Total Number

τ < 91% CFO 1
91% ≤ τ ≤ 98% CFO, RSSI 2
98% < τ ≤ 99% CFO, RSSI, Longitude 3

Among the 7 cross-layer attributes contained in the dataset, only 3 attributes are selected

by using our algorithm when 99% of the information is kept for analysis in all 3 scenarios. The

eigenvalues range from 0.0001 which is PER in the case of 8 UAVs to 34.9226 which is CFO

in the case of 4 UAVs. This demonstrates that the eigenvalue can have a significant weight
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Table 3.3: Information Threshold Range (τ) and the Corresponding Number of Attribute(s) (8
UAVs)

τ range attribute(s) selected Total Number

τ < 82% RSSI 1
82% ≤ τ ≤ 98% RSSI, CFO 2
98% < τ ≤ 99% RSSI, CFO, Latitude 3

Table 3.4: Information Threshold Range (τ) and the Corresponding Number of Attribute(s) (12
UAVs)

τ range attribute(s) selected Total Number

τ < 73% CFO 1
73% ≤ τ ≤ 96% CFO, RSSI 2
96% < τ ≤ 99% CFO, RSSI, Latitude 3

difference; therefore, it is not feasible to utilize an eigenvalue threshold without transforming it

into the percentaged scale. By using the LDA for dimensionality reduction, the amount of data

is shrunk into half of the original data size which ultimately lowers the computational overhead

when the estimations are getting bigger.

To further study the relationship between τ and the error rate, we plot all 9 cases as listed

in Table 3.2, Table 3.3 and Table 3.4. To make it comparison more clear, we plot two separate

figures as shown below.

As shown in Fig. 3.3, it can be observed that when τ is small, the performance is less

accurate and less stable compared to the higher τ value. However, as shown in Fig. 3.4, it can

be shown that when the τ value is at the higher range, there is not much performance increase.

Therefore, it can be concluded that the computational overhead can be further decreased by

adopting the proper τ range in each application. However, to select the τ value safely, τ = 99%

can always be used as a starting point. The cross-layer attributes can then be collected after

each mission to compute a lower τ value to minimize the computational overhead in future

applications.
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Figure 3.3: The error rate vs. the distance threshold at the lower τ ranges.

Figure 3.4: The error rate vs. the distance threshold at the higher τ ranges.
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3.5.1.2 Euclidean Distance Threshold (δ)

As the security constraint of separating the eavesdropping device from legitimate UAVs, the

choice of δ is critical. To study the impact of δ in different scenarios, we use the same Fig. 3.3

and Fig. 3.4 as shown in the previous section. The range of the distance threshold is [0.02,

7.02] with a step of 0.05. The threshold cannot start from 0 since it will reject all estimations

with any difference.

It is demonstrated that δ has a different impact on the error rate of (3.7) across different

scenarios. From the 2 figures above, we can conclude that when δ grows, the common trend

of the error rate will decrease first, then become stable and increase at the end. The reason

behind this is that when δ is too small, a small change of a legitimate device will be flagged as

a spoofing device which increases PFA. Similarly, when δ is too big, the difference between a

spoofing device and a legitimate device will only be considered as a normal fluctuation which

increases the PMD. The best result for all 3 sizes of UAV swarms are shown in Table 3.5

Table 3.5: The relationship between δ and other parameters
Swarm size τ range Best E value δ value

4 UAVs
τ < 91% 0.046 0.07

91% ≤ τ ≤ 98% 0 [1.27,3.62]
98% < τ ≤ 99% 0 [1.42,3.67]

8 UAVs
τ < 82% 0.118 [0.32,0.67]

82% ≤ τ ≤ 98% 0 [0.67,3.17]
98% < τ ≤ 99% 0 [1.52,3.97]

12 UAVs
τ < 73% 0.132 0.27

73% ≤ τ ≤ 96% 0.002 [0.87,1.12]
96% < τ ≤ 99% 0 [1.57,2.12]

From Table 3.5, it can be concluded that the optimized δ value is subjective to the environ-

ment and the size of the UAV swarm. The reason is that the cross-layer attributes are rescaled

after the LDA transformation. To fulfill (3.8), δ should be selected within the range where the

calculated error rate is minimized by using the previously collected cross-layer attributes.
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3.5.1.3 LDA-based Attributes Reduction

In Fig. 3.5, we compare the performance of the proposed LDA-based authentication scheme

with the non-LDA-based authentication across the 3 cases that include 4, 8 and 12 UAVs. The

non-LDA-based scheme goes through the same process for the Euclidean-distance-based au-

thentication as the proposed scheme. It can be observed from Fig. 3.5 that the performance

of the non-LDA-based authentication becomes less accurate when the number of UAVs grows.

This demonstrates that the unnecessary attributes, such as the change of CIR under the envi-

ronment where the multipath condition varies quickly, can negatively impact the authentication

decision. Hence, it can be concluded that the accuracy performance can become more reliable

and more stable across different scenarios by eliminating the unnecessary attributes with the

help of the LDA.

Figure 3.5: Error rate comparison results of our LDA-based scheme and the non-LDA-based
scheme

3.5.1.4 Cross-layer Attributes

To test the significance of the cross-layer attributes, we extract separate physical-layer attributes

based datasets from the original cross-layer dataset in all 3 scenarios. The LDA process is



44Chapter 3. Situational-aware LinearDiscriminantAnalysis-basedAuthentication Scheme

applied to the physical-layer attributes only dataset for consistency. The best result of the LDA

aided physical-layer attributes only dataset versus the best result of the LDA aided cross-layer

attributes dataset are shown in Fig. 3.6 for all 3 scenarios.

Figure 3.6: Error rate comparison results between the cross-layer observation and physical-
layer observation

It can be observed from Fig. 3.6 that the LDA aided physical-layer attributes based dataset

carries the same trend as the cross-layer attributes dataset. The performance of the cross-

layer attributes dataset is significantly better than the physical-layer attributes only dataset

when the number of UAVs grows to 12. More importantly, the error rate of the cross-layer

attributes dataset is significantly more stable than the physical-layer attributes only dataset

across different scenarios. This proves that the cross-layer attributes are more stable under a

dynamic environment and are more robust when the number of UAVs increases compares to

the physical-layer attributes.

3.5.2 Performance Comparison with Other Authentication Techniques

In this section, we compare our proposed scheme to the fast authentication scheme for the

dynamic sensor networks proposed by Zhang et al. [70] and the enhanced cross-layer authen-
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tication scheme proposed by Hao et al. [71] We first compare the best accuracy performance

and then the computational complexity by using the same data collected in the MATLAB.

Fig. 3.7 characterizes the error rate comparison between our LDA-based authentication

scheme and the other state-of-the-art cross-layer light-weight authentication techniques. It can

be observed that our proposed scheme achieves an error rate of 0 in all 3 cases which are the

highest among all. This demonstrates that the other 2 techniques are not suitable under the UAV

network. The high mobility makes the physical-layer estimation less reliable and the final deci-

sion of the fast authentication for dynamic sensor networks is still based on the physical-layer

estimation. Similarly, the RSSI collected in the enhanced cross-layer authentication scheme is

not reliable. Since only 2 attributes are being selected, the overall stability and reliability are

low in our UAV network.

Figure 3.7: Accuracy performance comparison between different state-of-the-art cross-layer
authentication techniques

Theoretically, the time complexity for all three schemes is O(N) which means all three

schemes should have a similar time complexity in the worst-case scenario. However, the actual

overhead of our proposed scheme and the scheme proposed by Zhang et al. can vary a lot

based on the environment. The scheme proposed by Hao et al. goes through all the attributes
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Figure 3.8: Computational overhead comparison between different state-of-the-art cross-layer
authentication techniques

without dropping any attributes while the scheme proposed by Zhang et al. can switch between

using physical-layer authentication only or using both the physical-layer and the upper-layer

authentication to limit the overhead. The overhead of our proposed scheme is more subjective

to the environment since it can select a different combination of attributes based on situational-

awareness. To examine the computational overhead, we selected the worst scenario case in the

transition period where both the physical-layer attributes and the upper-layer attributes need to

be selected. The Central Processing Unit (CPU) processing time is measured to quantify the

overhead in nanosecond level as shown in Fig. 3.8. It can be observed that our proposed scheme

can have a relatively low computational overhead by eliminating the unnecessary attributes.

3.6 Chapter Summary

In this chapter, an edge intelligence-enabled centralized authentication mechanism has been

proposed to enhance the security in the UAV swarm. This multi-dimensional authentication

scheme was planted in the on-duty CH to verify whether the candidate UAVs are legitimate
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across different environments. The cross-layer attributes have been utilized to enhance security

by providing more reliable and unique characteristics of each UAV. Our novel LDA-aided

authentication scheme increases the trust value while decreasing the computational overhead by

eliminating the unnecessary attributes. Since the LDA technique could not decide the number

of attributes being left after the dimensionality reduction, a situation-aware attributes selection

algorithm has been proposed to select the minimum amount of attributes without jeopardizing

the performance. A series of simulations were conducted to demonstrate the impact of different

parameters on the authentication performance of our proposed scheme. A comparison with the

other state-of-the-art light-weight cross-layer authentication techniques is also included. The

results showed that our proposed scheme can remove the unnecessary cross-layer attributes and

vastly improve the authentication accuracy in the UAV network.

In the next chapter, the soft authentication scheme will be comprehensively designed that

can be further compatible with the decentralized authentication scheme. To be more specific,

the centralized authentication techniques may not be sufficient to support the authentication

performance requirement under a harsh environment. The decentralized authentication scheme

may be further considered so that a more accurate authentication decision can be fused from

utilizing multiple edge authentication nodes. To carry forward the uncertainty of each au-

thentication node, a probability-based soft authentication decision scheme is designed to be

implemented at the authentication node to quantify the probability of legitimacy for the au-

thentication requester. By introducing the soft authentication decisions, the less confident au-

thentication nodes will have less impact on the final authentication decision which increases

the reliability and robustness of the authentication mechanism.



Chapter 4

Soft Edge Authentication Scheme in

Decentralized UAV Network

In the LDA-based centralized authentication designed in the last chapter, the cross-layer at-

tributes have been utilized to compensate for the imperfect estimations of the physical-layer

observations. However, the single-point failure is still an unsolved challenge for the central-

ized topology. In this chapter, the decentralized authentication topology has been considered

to fuse multiple physical-layer-based edge authentication decisions into a final authentication

judgement. Since each node has a different level of authentication accuracy, it is unwise to give

each node an equal weight when fusing the final authentication decision. Therefore, we propose

a probability-based soft authentication scheme that can be implemented at each collaborative

node to combine the weight into the edge authentication decision. This soft authentication

decision is then utilized to fuse the edge authentication where the more confident nodes have

more impact on the final authentication decision and vice versa. A performance evaluation is

also included in the simulation section.

48
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4.1 Introduction

The conventional authentication techniques usually generate a binary decision to judge whether

the authentication requester is legitimate or not. This is suitable in the digital security schemes,

such as the cryptographic-based authentication scheme, since the security key either matches

or not matches the record. However, it is almost impossible for the central collaborative node

to verify the true identity of the authentication requester once the security key is compromised

by the brute force attack [72]. Hence, the analog-based physical-layer authentication schemes

are developed to utilize the unique channel-based and hardware-based attributes to differen-

tiate the legitimate devices from the attackers. Nevertheless, the attackers may initiate active

eavesdropping attacks to jam the main communication channel and degrade the physical-layer

estimation accuracy and may result in a single-point failure under the centralized authentication

topology [27].

To compensate for the single-point failure, various types of decentralized authentication

techniques have been developed in which multiple collaborative nodes are utilized to form a

final authentication decision. Rather than using the digital-based authentication scheme, the

physical-layer authentication scheme can be implemented at each node to seamlessly generate

edge authentication decisions. However, the varying channel and potential attacks increase the

difficulty for the analog-based authentication schemes to formulate equally reliable authenti-

cation decisions at each collaborative node. Hence, the uncertainty at each collaborative node

should be considered as a factor when fusing the final authentication decision such that the

more confident collaborative nodes can have more impact on the final authentication decision

and vice versa.

In this chapter, we propose an algorithm to generate a soft authentication decision that re-

flects the level of confidence as a factor to fuse the final authentication decision by considering

the authentication uncertainty. The probability of legitimacy is generated as the soft authen-

tication decision and is evaluated between [0,1]. To be more specific, 0 indicates that the au-

thentication requester is absolutely illegitimate and 1 indicates that the authentication requester
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is absolutely legitimate. It is unlikely to achieve the extreme boundaries due to the imperfect

estimations and environmental changes. By submitting a soft authentication decision, the less

reliable collaborative nodes will have less impact on the final authentication decision which

then improves both the reliability and robustness in the decentralized authentication applica-

tions.

4.2 System Model

As shown in Fig. 4.1, we consider a UAV swarm that consists of M UAVs including a CH

and coexisted spoofing devices that try to impersonate a legitimate UAV for illegal purposes.

At an instance t, the CH aims to authenticate the claimed UAV m by fusing the edge authenti-

cation decisions from the available collaborative nodes. The soft authentication decisions are

generated to include the uncertainty from each collaborative node and reflect the level of con-

fidence as a factor to fuse the final authentication decision. The process of the decentralized

authentication contains three phases:

Figure 4.1: System model. Decentralized UAV swarm network topology. The final authentica-

tion decision utilizes the physical-layer-based edge authentication decisions from the available

collaborative nodes.
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Phase I: At the time t1, either a legitimate UAV or an attacker transmits one or more messages

to the CH. All the UAVs observe a noisy physical-layer estimation and the estimation at UAV

m is given as:

Hm
I = (HI

m1,H
I
m2, . . . ,H

I
mN)T, (4.1)

where N is the number of physical-layer attributes and ()T is the transposition of the vector.

The attributes may include the RSSI, CFO, I/Q imbalance and so on.

Phase II: At the time t2, the selected collaborative node, for example UAV m, a soft edge

authentication ϕm is generated and passed to the CH where ϕm = [0, 1].

Phase III: At time t3, since some of the member UAVs may be busy at the moment, the CH

generates the final authentication decision based on the K received edge authentication decision

as: 
Φ0,

1
K

∑K
k=1 ϕk > ν;

Φ1,
1
K

∑K
k=1 ϕk ≤ ν,

(4.2)

where v is the authentication decision threshold in the range of [0, 1].

4.3 Problem Formulation

To evaluate the performance of the decentralized authentication, the False Alarm rate and the

Miss Detection rate are considered and can be expressed as:

1) False Alarm (FA) rate: The probability that the legitimate UAV is rejected as a spoofing

device. The function can be given as:

PFA = Pr(
1
K

K∑
k=1

ϕk ≤ ν|Φ0). (4.3)

2) Miss Detection (MD) rate: The probability that the spoofing device is approved as a
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legitimate UAV. It can be defined as:

PMD = Pr(
1
K

K∑
k=1

ϕk > ν|Φ1). (4.4)

To evaluate the accuracy and robustness of the decentralized authentication, the false alarm

rate and the miss detection rate can be combined as the error rate (E) as

E = w1PFA + w2PMD, (4.5)

where w1 and w2 are the costs of the false alarm and the miss detection. The false alarm

and the miss detection can be treated equally; however, under certain applications, the miss

detection may cause more damage to the system than the false alarm and may have a higher

cost. Hence, to achieve the best authentication performance, both the false alarm rate and the

miss detection rate should be minimized. Hence, the problem formulation of this chapter can

then be formulated as:

min
v
E, (4.6)

where v is the authentication threshold in the final binary hypothesis test..

4.4 Soft Authentication Decision Algorithm

The classical authentication only outputs two decisions, true or false, while the soft authen-

tication produces gradual decisions. This further reflects the uncertainty of each node which

ultimately enhances the robustness of the final authentication decision if the authentication de-

cisions from multiple collaborative nodes are fused together. To generate a continuous soft

authentication decision, the probability of legitimacy is considered to be evaluated at the col-

laborative node with respect to the authentication requester. To be more specific, this soft

authentication decision evaluates how likely the authentication requester is legitimate where a
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value of 0 indicates that the authentication requester is absolutely an attacker and a value of 1

indicates that the authentication requester is absolutely a legitimate device. The soft authenti-

cation decision can be anywhere between 0 and 1 to reflect the probability of legitimacy under

different authentication techniques. In our case, we would like to design a soft authentication

scheme that evaluates the probability of legitimacy by utilizing the physical-layer estimations.

The uncertainty caused by the inaccurate estimations in the time and spatial domain can be

carried forward to fuse the final authentication decision which enhances the overall system

robustness.

Ideally, to generate the soft authentication decision, there exists an optimized regression

model that maps the physical-layer attributes to the probability of legitimacy. However, it

is extremely difficult to fit such a model to calculate the probability between [0,1] since the

boundary of the regression model is usually (−∞,∞) [73]. Hence, to simplify the regression

model, we utilize the natural logarithmic of the odd, also known as the logit, so that the domain

is relaxed to (−∞,∞) [74]. The logit (L) is the natural log of the ratio between the probability

of being legitimate and the probability of being illegitimate. Since the identity of the UAV

obeys Bernoulli distribution, the logit can be derived as:

L = ln(
P(Φ0)
P(Φ1)

) = ln(
P(Φ0)

1 − P(Φ0)
), (4.7)

where Φ0 means the device is legitimate and Φ1 means the device is illegitimate. To find the

probability (P(Φ0)), we assume that there exists an optimized regression model that maps the

physical-layer attributes to the logit. This regression model can be calculated by different re-

gression techniques such as linear regression, multivariate regression and non-linear regression

such that the authentication system can be further customized. Therefore, (4.7) can be rewritten

as:

ln(
P(Φ0)

1 − P(Φ0)
) = BTX, (4.8)
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where B is the vector of the optimized regression coefficient that can be estimated by the oper-

ator selected regression technique. X is the vector of the physical-layer attributes. Therefore,

by combining (4.7) and (4.8), the probability P(Φ0) can be calculated as:

P(Φ0) = e(BT X)(1 − P(Φ0))

= e(BT X) − e(BT X)P(Φ0)

=
e(BT X)

1 + e(BT X)
,

(4.9)

where P(Φ0) can then be deemed as the soft authentication output (ϕm) at the member UAV m.

This soft authentication decision algorithm is given in Algorithm 4.1.

Algorithm 4.1 Soft Authentication Decision Algorithm
1: compute the optimized regression coefficient (B) via the operator defined regression tech-

nique;
2: compute the soft edge authentication decision (ϕm) via (4.9);
3: if the UAV is a member UAV then
4: transmit ϕm to CH;
5: end if

4.5 Performance Evaluation

In this section, the performance analysis of the proposed scheme is given. The UAV network

is constructed using MATLAB 2020a. A dynamic environment with 600 observations is con-

structed in which both the urban area and rural area are considered with a transition period.

Each UAV has a random motion path and the analysis represents the last of the 5 simulations

that have been initialized differently. All simulations have similar results. We consider a 3D

movement where the flight height varies between 150 to 300m in the urban area and 10m

to 40m in the rural area [68]. The Friis equation is utilized to model the path-loss and the

Doppler shift is considered due to the high relative velocity under the rural area [69]. The

height-dependent Rician factor is considered in the line-of-sight condition under the rural area
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and the Rayleigh fading distribution is considered in the non-line-of-sight condition under the

urban area. To construct the transition period, the flight height and the velocity of each UAV

varies gradually; hence, the changes in relative locations lead to new channel conditions. The

channel model is gradually switched from the non-line-of-sight condition to the line-of-sight

condition. A sudden environment change is also included by tuning the multipath condition

(i.e., from a rich multipath environment to a low multipath environment) within the transition

period to test the robustness of our proposed scheme.

To examine the performance of our proposed scheme, we compare our scheme to the tra-

ditional binary hypothesis test utilizing the K-nearest-neighbour (KNN) technique from [75].

The w1 and w2 in (4.5) are considered to have a equal weight of 0.5 in this case. We consider

3 different cases where 2, 4, and 6 collaborative nodes are involved in generating the soft and

binary authentication decisions. The physical-layer attributes used to generate both authentica-

tion decisions are exactly the same. The linear regression, logistic regression and multivariate

regression have been considered at each node to compute the soft authentication decision. To

make sure the comparisons between different UAV swarm sizes are clear, we plot two separate

figures as shown below. The same UAV swarm with 4 UAVs is included in both figures as a

benchmark.

As shown in Fig. 4.2 and Fig. 4.3, we compare the KNN-based binary authentication de-

cision with our proposed scheme under the 2 UAVs 4 UAVs and 6 UAVs scenario. It can be

observed that both schemes can reach an optimized performance with sufficient observations.

However, our proposed scheme can reach the optimized performance with fewer observations

which shortens the training stage. On the other hand, it can be observed that when the number

of collaborative nodes increases, the error rate at the beginning is usually higher. The reason

is that the collaborative nodes need to adjust their confidence level gradually at the beginning

to reach maximum performance. However, even though our proposed scheme requires a train-

ing period, the performance is still better than the binary authentication decision at the same

time instant. Moreover, to further test the robustness and reliability of our proposed scheme,
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Figure 4.2: Performance comparison between the binary authentication scheme and our pro-
posed scheme (2 and 4 UAVs)

Figure 4.3: Performance comparison between the binary authentication scheme and our pro-
posed scheme (4 and 6 UAVs)
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a sudden environment change is added within the transition stage by changing the multipath

characteristics as highlighted in the figure. This proves that the imperfect physical-layer esti-

mations and the sudden environment change can be compensated by keeping the uncertainty at

each collaborative node.

4.6 Chapter Summary

In this chapter, a soft authentication scheme is proposed to enhance the system robustness

by including the uncertainty caused by the imperfect estimations of the analog attributes. To

be more specific, by evaluating the probability of legitimacy of the authentication requester at

each collaborative node, the less confident collaborative nodes will have less impact on the final

authentication decision which ultimately improves the authentication reliability and robustness.

From the simulation result, it can be observed that the proposed algorithm can significantly

improve the authentication performance under a more complex operating environment.

In the next chapter, a cost minimizing collaborative security provisioning mechanism will

be comprehensively designed to guarantee the authentication requirement. Since the central-

ized authentication techniques may suffer from single point failure while the decentralized

authentication techniques increase the overall computational complexity, it is critical to design

a fluid authentication topology to balance the performance and the computational cost. To be

more specific, when the CH is confident about the authentication decision, a centralized au-

thentication scheme can be adopted. On the other hand, a soft authentication decision-based

decentralized authentication scheme will be customized to guarantee performance.
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Guaranteed SoS Provisioning with

Minimized Complexity in UAV Swarm

In the previous chapters, a centralized cross-layer-based authentication scheme and a physical-

layer-based decentralized authentication scheme have been proposed to enhance the authen-

tication security within the UAV swarm. However, the nature of best-effort-based authenti-

cation may not provide a stable and guaranteed security performance across different envi-

ronments with minimum computational cost. In this chapter, we propose a novel concept of

Service-of-Security (SoS) in a decentralized UAV network to guarantee the authentication per-

formance with minimal computational cost based on situational-awareness. The simulation

results demonstrate that our scheme can constantly achieve the operator defined authentica-

tion performance with a minimum amount of collaborative nodes and better robustness against

sudden environmental change.

5.1 Introduction

Due to the open broadcasting nature of the wireless devices, different authentication techniques

have been developed to make the UAV networks more secure. To protect the networks from

malicious attacks, one of the conventional on-site authentication techniques that can be imple-

58
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mented between the CH and member UAVs is the cryptographic-based centralized authenti-

cation scheme. However, these security provisioning techniques can be insufficient once the

digital key is compromised by the brute force attack, it is almost impossible for the central node

to verify the true identity of the authentication requester and degrade the security performance

[76, 77].

To mitigate the security risks caused by the compromised security key, the physical-layer

authentication techniques have been developed to extract the unique hardware and channel

characteristics of each device for the authentication purpose [78, 79, 44, 45, 46, 80, 81, 82].

However, the performance of the physical-layer authentication schemes cannot be guaranteed

due to the imperfect estimation of the specific attribute being used for authentication. The

limited dynamic range of the specific attribute is also not sufficient to provide a guaranteed

authentication result when the number of devices increases [13]. Ultimately, observing and

analyzing multiple attributes and devices at the same instance can create a bottleneck and

reduce application traffic [54].

To compensate for the single-point failure and increase the overall reliability, the decentral-

ized authentication technique is developed where a group of collaborative nodes are utilized to

fuse a final authentication decision. The physical-layer security provisioning techniques can

also be integrated into the decentralized topology [83, 84, 85]. The estimations from multiple

devices can compensate for the uncertainty caused by the time-varying environment and imper-

fect estimations. To optimize the performance of each collaborative node, a different number of

physical-layer attributes can be selected at each node based on the hardware computational ca-

pability. The difficulty for the attacker to impersonate the legitimate devices is increased since

it is extremely hard to predict and impersonate different physical-layer attributes at the same

time. Moreover, the distributed authentication techniques do not require a static topology for

the authentication process. This can significantly improve the reliability and the robustness of

the authentication scheme, especially under a hostile environment, where the connection link

between the member UAVs and the CH is intermittent. However, by involving more devices in
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the authentication process, the computational complexity and overall network latency will be

increased dramatically which raises many challenges in the resource constraint devices.

In a nutshell, one of the major challenges is that the conventional authentication schemes

are best-effort based and cannot provide a stable and guaranteed security performance across

different application scenarios and environments. On the other hand, some state-of-the-art

authentication schemes are capable of achieving robust security performance, but it increases

the computational cost and the overall network latency. More importantly, it is extremely

challenging to utilize a static authentication scheme across different environments to fulfill the

complex distributed collaboration involved, time-varying environment and dynamic nature of

the UAV network.

To solve the above challenges, we propose a novel concept of Service-of-Security (SoS),

where a defined level of authentication performance is achieved by involving a necessary

and minimal amount of authentication resources, i.e., authentication collaborative nodes and

physical-layer attributes at each node. The performance might not be maximized when us-

ing less collaborative nodes and physical-layer attributes; however, the security requirement

can still be guaranteed while the computational cost can be minimized. A fluid authentication

topology can be customized at different time-varying environments so that the most reliable,

robust and efficient model can be selected to perform the security provisioning.

The contributions of this chapter are summarized as follows:

• We propose a novel concept of Service-of-Security (SoS) to specifically achieve the de-

fined level of authentication performance continuously to guarantee the security require-

ment. The computational complexity can be ultimately minimized by eliminating both

the redundant or excessive collaborators and authentication attributes across different

environments based on the situational-awareness.

• To select the collaborative nodes and the corresponding authentication attributes, a Gini-

impurity-based attributes evaluation algorithm is proposed to evaluate the reliability of

each time-varying physical-layer authentication attribute at each collaborative node. A
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collaborative node evaluation algorithm is also developed to evaluate the usability of the

collaborative nodes based on their relative locations and past contribution to the authen-

tication.

• An intelligent authentication customization algorithm is proposed to integrate the above

two factors for achieving SoS. By running this algorithm at each authentication instance,

a customized authentication model will be generated to select the best combination of

collaborative nodes. Authentication decisions can then be generated at these selected

collaborative nodes and fused into the final authentication decision.

The rest of this chapter is organized as follows: Section 5.2 and 5.3 introduce the system

model and problem formulation. Section 5.4 overviews the proposed Gini-impurity-based at-

tributes evaluation algorithm, the collaborative node evaluation algorithm, and the two-factor

intelligent authentication customization algorithm. The simulation and performance analysis

are presented in Section 5.5. Ultimately, Section 5.6 concludes this chapter.

5.2 System Model

To elaborate on the proposed authentication technique, the decentralized authentication within

a flying UAV network is considered in this chapter. As shown in Fig. 5.1, a flying UAV

swarm is consists of M legitimate UAVs including the CH. Spoofing devices coexist in the

same network which aims to impersonate the legitimate UAV for malicious purposes. Due to

the potential connectivity outage or long separation distance from the ground server, on-site

authentication within the UAV swarm is always preferred to avoid the related delay. As dis-

cussed earlier, an authentication process coordinated by the CH of the UAV swarm becomes

most appropriate due to the limited security related information and computational resources

at every single UAV. In a nutshell, the major objective is to authenticate the devices with a

guaranteed performance by utilizing a minimum amount of authentication resources within the
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flying UAV swarm. The CH selects multiple collaborative nodes to generate edge authentica-

tion decisions and fuses these decisions into a final authentication judgement. The process of

the intelligent authentication contains three phases:

Figure 5.1: System model of the decentralized flying UAV network. The physical-layer-based
soft authentication decisions from the selected collaborative nodes are utilized to generate a
final authentication decision.

Phase I: At the time t1, one or more messages have been transmitted to the CH and the CH

aims to customize select the available collaborative nodes for authentication based on the ob-

servations of the message. Due to the interference or noise from the environment and the

availability, some collaborative nodes including the CH could observe a noisy physical-layer

estimation HI. The estimation at UAV m is given as:

Hm
I = (HI

m1,H
I
m2, . . . ,H

I
mN)T, (5.1)

where N is the number of observed physical-layer attributes and ()T is the transposition of

the vector. The attributes may include the carrier frequency offset (CFO), in-phase/quadrature

(I/Q) imbalance, received signal strength indication (RSSI) and so on. Since some of the

authentication attributes are less accurate, an attributes reliability evaluation becomes critical

at each available collaborative node such that only J reliable attributes are kept to improve
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the performance with minimal computational complexity. By evaluating the reliability of the

attributes at each node, the unavailable nodes or the nodes with no reliable estimation will be

temporarily removed from the authentication process. Then, the CH selects K collaborative

nodes among the reliable and available collaborators based on the relative location and past

contribution.

Phase II: At time t2, each selected collaborative node generates an edge authentication decision

and report back to the CH. For example at the selected UAV m, a soft edge authentication ϕm

is generated where ϕm = [0, 1]. The collaborative node evaluates how likely the authentication

requester is legitimate based on the physical-layer observations. For example, ϕm = 0.5 means

that the UAV m indicates there is a 50% probability for the authentication requester to be

legitimate.

Phase III: At time t3, the CH generates the final authentication decision based on the K received

edge authentication decision as:


Φ0,

1
K

∑K
k=1 ϕk > ν;

Φ1,
1
K

∑K
k=1 ϕk ≤ ν,

(5.2)

where K is between 1 and M − 1. Φ0 represents the transmitter is legitimate and Φ1 indicates

the data transmission is sent by a spoofing device. ϕk represents the soft authentication decision

from the k-th received node. Moreover, ν is the authentication decision threshold in the range

of [0, 1] and can be altered dynamically between different cases.

5.2.1 Problem Formulation

To evaluate the performance of the collaborative decentralized authentication, the False Alarm

rate and the Miss Detection rate are considered and can be expressed as:

1) False Alarm (FA) rate: The probability that the legitimate UAV is rejected as a spoofing



64 Chapter 5. Guaranteed SoS Provisioning withMinimized Complexity in UAV Swarm

device, which is formulated as:

PFA = Pr(
1
K

K∑
k=1

ϕk ≤ ν|Φ0). (5.3)

2) Miss Detection (MD) rate: The probability that the spoofing device is approved as a

legitimate UAV. It can be defined as:

PMD = Pr(
1
K

K∑
k=1

ϕk > ν|Φ1). (5.4)

To define and security requirement and evaluate the accuracy and robustness of the actual

authentication decision, the false alarm rate and the miss detection rate can be combined as the

authentication error rate (E) as:

E = w1PFA + w2PMD, (5.5)

where w1 and w2 are the costs of the false alarm and the miss detection. The false alarm and the

miss detection can be treated equally; however, under certain applications, the miss detection

may cause more damage to the system than the false alarm and may have a higher cost. Hence,

to guarantee the SoS, both the false alarm rate and the miss detection rate should be limited.

On the other hand, to make sure that the SoS is fulfilled without utilizing an excessive amount

of authentication resources, the number of selected collaborative nodes (K) and the number of

attributes selected at each node (J) should be as few as possible. Simultaneously, the operator-

designed target error rate (ED) and the actual error rate (EA), which are both defined by (5.5),

should be as close as possible. Hence, the SoS, which is also the problem formulation of this

chapter can then be formulated as:

min
J,K,ν
ED − EA, (5.6)

where v is the authentication threshold in the final binary hypothesis test at the CH and ED >

EA. Therefore, it is critical to select the more reliable collaborative node to compute the soft

edge authentication decision so that the SoS can be guaranteed with minimum effort.
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5.3 Cost Minimizing SOS Guaranteed Collaborative Authen-

tication

To solve the problem of (5.6) by forming a customized authentication model, it is critical

to eliminate the unavailable collaborative nodes and utilize the trustworthy attributes at the

selected nodes only. Therefore, quantifying and evaluating the reliability of each collaborative

node and its corresponding physical-layer estimations becomes a dilemma. A usability index

(U) can be formulated across the authentication process so that the most suitable authentication

model can be structured. To summarize the proposed mechanism, we first aim to evaluate the

reliability of the attributes at each available collaborative node. This helps to eliminate the

nodes that could not collect reliable physical-layer estimations for various reasons. Besides,

it can also help to eliminate the unnecessary attributes if the collaborative node is selected

to make a soft authentication decision. After eliminating some of the collaborative nodes, a

collaborative node evaluation algorithm is further developed to evaluate and rank the available

and reliable nodes by considering the relative locations and past authentication contributions.

These two attributes are continuously updated so that the hidden spoofing device which injects

the false authentication decision will be discovered and eliminated. Finally, to achieve the

SoS with minimum effort, the two-factor intelligent authentication customization algorithm is

proposed to select the minimum amount of collaborative nodes and the attributes at each node

by considering both algorithms.

5.3.1 Gini-impurity-based Attributes Evaluation Algorithm

To guarantee the SoS with minimum effort, we first need to verify whether the physical-layer

attributes are reliable at each available collaborative node that observed the physical-layer at-

tributes. An attribute evaluation algorithm that can quantify the contribution of the attributes

to the security performance becomes a dilemma to eliminate the redundant and excessive au-

thentication resources. To achieve this goal, the past obtained observations have to be stored
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and utilized to continuously monitor the behaviour of each attribute at the collaborative nodes.

If no estimation is observed or none of the observed attributes are reliable, the collaborative

node should not be considered to contribute to the authentication process based on the perfor-

mance requirement. This can not only help to eliminate the ambiguity caused by the uncertain

decision but also decrease the overall computational cost.

Some popular machine-learning-based attributes evaluation techniques include the tree-

based feature importance techniques [86, 87, 88]. However, instead of computing an indepen-

dent value for each attribute, these methods measure the performance gain at each node and

compute an importance value for each attribute that sums up to 1. This means that it can only

compute a relative importance value that distinguishes the more reliable attribute from the less

reliable one rather than an absolute evaluation that can be generalized. Hence, if the attributes

are equally reliable or unreliable, they will all have similar values according to the tree-based

feature importance techniques.

The attributes selection algorithm proposed in chapter 3 also suffers from a similar issue.

Since the algorithm is developed for a centralized authentication scheme where the CH is al-

ways optimized to provide the best service, it is reasonable to assume that there will be at least

one reliable attribute. However, in decentralized authentication techniques, it might be chal-

lenging for certain collaborative nodes to collect a reliable physical-layer attribute for a specific

authentication requester. Hence, instead of measuring the relative importance level, it is critical

to quantify the reliability of each attribute with an absolute standard at each collaborative node

which can also be further used to evaluate the importance level of the collaborative node.

To generate an attribute reliability evaluation criteria that can be generalized, we utilize the

Gini impurity, which represents the probability for an attribute to mislead the authentication

decision [89]. To be more specific, a high Gini impurity means the attribute has a high prob-

ability to mislead the authentication decision; hence, the attribute is less reliable. The Gini
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impurity of the n-th attribute can be calculated as:

Gn =

C∑
c=1

fc(1 − fc) =
C∑

c=1

( fc − f 2
c )

=

C∑
c=1

fc −

C∑
c=1

f 2
c = 1 −

C∑
c=1

f 2
c ,

(5.7)

where C is 2 in our case since the authentication decision can only be legitimate or illegitimate.

fc is the frequency of being legitimate and illegitimate. Hence, to evaluate whether an attribute

is reliable to be selected, a Gini impurity threshold (τ) can be introduced in which the attributes

with a lower Gini impurity (Gn < τ) is deemed as reliable. If no observation is made or

none of the attributes is reliable at a collaborative node, the node will not be considered by

the CH temporarily and get a usability index of 0. Meanwhile, it will keep collecting the

physical-layer estimation and rejoin the authentication process until it meets the minimum

performance requirement. Hence, to find the optimized amount of selected attributes (J) in

(5.6), an optimized τ value need to be set based on the security requirement by the operator.

The proposed Gini-impurity-based attributes evaluation algorithm is shown in Algorithm 5.1.

5.3.2 Collaborative Node Evaluation Algorithm

After selecting the attributes at each collaborative node, the next step is to optimize the number

of collaborative nodes (K) for making the final authentication decision. Since the objective

of (5.6) is to guarantee the SoS rather than maximize the security performance, some of the

collaborative nodes can be eliminated to lower the computational cost. Hence, it is critical to

evaluate the usability of the remaining collaborative nodes by introducing a usability index at

the authentication instance so that some less important collaborative nodes can be sacrificed to

optimize the computational cost.

To evaluate the usability of the remaining collaborators, the factors that cause the accu-

racy fluctuation of the physical-layer observations have to be studied. The analog physical



68 Chapter 5. Guaranteed SoS Provisioning withMinimized Complexity in UAV Swarm

Algorithm 5.1 Gini-impurity-based attributes evaluation algorithm
Given each collaborative node has previous observations of the other devices and the authen-
tication decision feedback of those devices from the CH. The total amount of attributes at a
selected collaborative node is denoted by N.

1: Gini impurity (Gn) is calculated using (5.7) for each physical-layer attribute;
2: if Gn < τ, n = 1, 2, ...,N then
3: n-th attribute will be deemed as non-informative and dropped from the edge authentica-

tion scheme;
4: else
5: n-th attribute will be utilized in the proposed scheme;
6: end if
7: the collaborative node calculates the number of attributes being selected (J);
8: if J , 0 then
9: self-report to the CH as an available and reliable collaborative node;

10: update the local authentication scheme to utilize J selected attributes for the next
authentication instance;

11: else
12: temporarily eliminated from the authentication process.
13: end if

attributes estimations are more environment-dependent by comparing to the upper layer at-

tributes. For example, some of the physical-layer attributes may become less accurate with

respect to the location. For example, a longer distance between the authentication requester

and the collaborative node results in lower received signal strength while the noise level is al-

most constant. Therefore, the noise may significantly increase the measurement deviation and

increase the uncertainty. On the other hand, different locations also result in various channel

fading. The measured physical-layer estimations may become significantly different from the

previous contributions and can result in a wrong edge decision. Hence, from the challenges

listed above, the relative location between the collaborative node (p) and the authentication

requester (q) is chosen as one of the evaluation attributes to measure the usability of the collab-

orative node. The longitude (X), latitude (Y) and altitude (Z) are utilized to define the location

of each node. By analyzing the relative location as an attribute to evaluate the usability index,

the collaborator that cannot observe reliable physical-layer estimations will be eliminated from

the authentication temporarily as an outlier.

To detect an outlier that leads to an unreliable physical-layer estimation based on the rela-
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tive location, the Local Outlier Factor (LOF) can be utilized to define the local neighbourhood

of the data point [90]. It can reveal how isolated a data point is with respect to the surround-

ing neighbourhood based on a single parameter K , which is the number of nearest neighbours

used in defining the local neighbourhood. The distance between the data point (α) and the

K-th neighbour can be given as kdist(α). The judgement of the outlier is based on the density

between each data point and its neighbour points [91]. If the density of reliable estimation is

lower than normal, it is more likely to be identified as the outlier since it has a lower probability

to make a correct edge authentication decision [92]. Then, the reachability distance, which is

an intermediate parameter, can be expressed as:

rdist(α, β) = max{dist(α, β), kdist(β)}, (5.8)

where α is the current data point and β is the target point. The reachability distance is a

conversion for Euclidean distance dist(α, β) since a bias ratio of distance can be given when

the Euclidean distance of two data points is very small. Since there are 3 attributes, namely

longitude, latitude and altitude, in each data point, the dist(α, β) can be given as:

dist(α, β) =
√

(Xα − Xβ)2 + (Yα − Yβ)2 + (Zα − Zβ)2. (5.9)

Then, local reachability density (lrd(α)) of the data point α, which calculates the average

reachability distance of K neighbours can be given as:

lrd(α) =
|R(α)|∑

β∈R(α) rdist(α, β)
, (5.10)

where |R(α)| denotes the size of R(α) which can be written as:

R(α) = {β|dist(α, β) < kdist(α)}. (5.11)



70 Chapter 5. Guaranteed SoS Provisioning withMinimized Complexity in UAV Swarm

Lastly, the LOF can be calculated as:

lo f (α) =

∑
β∈R(α)

lrd(β)
lrd(α)

|R(α)|
. (5.12)

If the LOF is near or smaller than 1, it is more likely to be a normal data point. If the LOF

is higher than 1, it is more likely to be an outlier. To be more specific, the relative location will

be converted to a factor of either 1 or 0 where 1 means the collaborative node can generate a

reliable edge authentication decision at this location as a normal data point and 0 means the

collaborative node cannot generate a reliable edge authentication as an outlier. The binary

decision can be formulated as:

Dpq =


0, lo f (αp) > L;

1, lo f (αp) ≤ L,
(5.13)

where Dpq is the binary index that judges whether the collaborative node (p) can make a reliable

physical-layer estimation at the relative location with respect to the authentication requester (q).

L is the LOF threshold selected by the operator and the data points used to calculate LOF are

previous authentication contributions collected at the CH.

On the other hand, there exists a scenario in which some of the soft authentication decisions

are transmitted from the attackers. It is critical to monitor the behaviour of each collaborative

node and eliminate the suspicious collaborative nodes. To achieve this goal, the authentication

contribution of each collaborative node has to be considered. If a collaborative node has a high

probability of giving a wrong authentication decision, the usability index should be adjusted

to reflect the unreliable behaviour. Therefore, the authentication reliability rate (Rpq) of a

collaborative node (p) with respect to the authentication requester (q) can be calculated by

using the U last authentication decisions as:

Rpq = 1 − w1Pr(ϕpq ≤ ν|Φ0) − w2Pr(ϕpq > ν|Φ1), (5.14)
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where v is the authentication threshold at the CH to better evaluate whether the contribution

of the collaborative node is positive or negative. w1 and w2 are the weight used in (5.5) to

reflect the different importance level of the miss detection case and false alarm case. Then, to

formulate the usability index of collaborative node (p) to the authentication requester (q), the

distance judgement and the reliability rate can be fused as:

Upq = RpqDpq, (5.15)

where Upq = [0, 1]. Therefore, if the collaborative node is deemed unreliable due to the

relative location, the usability index will be 0 since Dpq = 0. The collaborative nodes that are

eliminated in Algorithm 5.1 will automatically get a usability index of 0. Then, the calculated

usability index will be passed to the next step to ultimately select the collaborative node and

the combination of the attributes. The proposed algorithm is shown in Algorithm 5.2.

Algorithm 5.2 Collaborative Node Evaluation Algorithm
Given the collaborative node is denoted by p and the authentication requester is denoted by q.
There exist at least U previous observations contributions where U can be adjusted dynamically
based on different requirements.

1: acquire the relative location of the collaborative node (p) with respect to the authentication
requester (q).

2: use the LOF technique from (5.13) to compute the binary distance index (Dpq);
3: calculate the reliability index (Rpq) by using (5.14);
4: fuse the calculated Dpq and Rpq as the usability index (Upq) by using (5.15);

5.3.3 Two-factor Intelligent Authentication Customization Algorithm

After calculating the usability index of each collaborative node by using Algorithm 5.2, the set

of usability can be formulated as U = (U1q,U2q, ...,UMq)T in descending order where U1q

has the highest usability index and UMq has the lowest usability index. If multiple collabora-

tive nodes have the same usability index, the node with more correct authentication decisions

beyond the last U authentication decisions will have a higher rank. For example, if two collab-

orative nodes have a usability index of 1, the node with more correct authentication decisions
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will be ranked asU1q and the other one will be ranked asU2q. The usability index of all M de-

vices are included in this set where the unreliable collaborative nodes flagged in Algorithm 5.1

and Algorithm 5.2 has a usability index of 0. To customize select the collaborative node based

on situational-awareness, it is critical to understand the authentication performance require-

ment needed by the application. To be more specific, a military application usually has a lower

tolerance for wrong authentication decisions than a civilian application due to the more severe

outcomes caused by the fault. Therefore, the optimization goal of (5.6) can be concluded to

find the minimum amount of collaborative node K.

To promise the SoS as given in the problem formulation (5.6), the usability index from

Algorithm 5.2 can be utilized since the usability index can be converted to express the miss

detection rate and false alarm rate which are the two attributes that construct the error rate.

Therefore, the goal of the attributes selection can then be rewritten as:

min
K

(ED − (1 −U1q)(1 −U2q)...(1 −UKq)), (5.16)

where K = 1, 2, ...,M and (ED − (1 − U1q)(1 − U2q)...(1 − UKq)) ≥ 0. A stricter security

requirement generally indicates that more collaborative nodes need to be utilized to fuse the

final authentication decision. To elaborate on the authentication models, if multiple UAVs have

a usability index of 1, including the CH, only the CH will be utilized to perform a centralized

authentication process. On the other hand, if multiple UAVs have the same usability index and

the algorithm decides it does not need all of them, the collaborative node with a higher rank

will be selected. The proposed two-factor intelligent authentication customization algorithm is

given in Algorithm 5.3.

After the authentication model is customized, each selected collaborative node computes

a soft authentication decision (ϕk) based on Algorithm 4.1 proposed in Chapter 4. By trans-

mitting these soft edge authentication decisions, the CH can then perform the final binary

hypothesis test given in 5.2. The optimization of this algorithm is to find the best ν value that
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fulfills (5.6). Ultimately, after the final authentication decision is made, the CH will transmit

the judgement back to each collaborative node for future analysis and update the authentication

record used in Algorithm 5.2.

Algorithm 5.3 Intelligent Authentication Customization Algorithm
The authentication fault tolerance (τ) is set by the operator.

1: rank the usability index into a set of usability in descending order as U =

(U1q,U2q, ...,UMq)T where U1q has the highest usability index and UMq has the lowest
usability index;

2: if there exists multiple collaborative nodes that have the same usability index then
3: the collaborative node with more correct authentication decisions in the past will have

a higher rank;
4: end if
5: select the top K collaborative nodes from the set of usability index that meet the require-

ment of minK(τ − (1 −U1q)(1 −U2q)...(1 −UKq));

Algorithm 5.4 Final Decision Fusion Algorithm
1: obtain the direct soft edge authentication decision from the selected collaborative nodes;
2: if 1

K

∑K
k=1 ϕk > ν then

3: authenticate the UAV as legitimate;
4: else
5: authenticate the UAV as a spoofing attacker;
6: end if
7: update the authentication record for Algorithm 5.2
8: transmit the final authentication decision as a feedback to all member UAVs for future use.

5.4 Performance Evaluation

In this section, the performance analysis of the proposed scheme is studied. Same as the previ-

ous chapter, the UAV network is constructed using MATLAB 2020a. A dynamic environment

with 600 observations is constructed in which both the urban area and rural area are considered

with a transition period. Each UAV has a random motion path and the analysis represents the

last of the 5 simulations that have been initialized different relative location. All simulations

have similar results. We consider a 3D movement where the flight height varies between 150
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to 300m in the urban area and 10m to 40m in the rural area [68]. The Friis equation is utilized

to model the path-loss and the Doppler shift is considered due to the high relative velocity

under the rural area [69]. The height-dependent Rician factor is considered in the line-of-

sight condition under the rural area and the Rayleigh fading distribution is considered in the

non-line-of-sight condition under the urban area. To construct the transition period, the flight

height and the velocity of each UAV varies gradually; hence, the changes in relative locations

lead to new channel conditions. The channel model is gradually switched from the non-line-

of-sight condition to the line-of-sight condition. A sudden environment change is also included

by tuning the multipath condition (i.e., from a rich multipath environment to a low multipath

environment) within the transition period to test the robustness of our proposed scheme. To

evaluate the error rate in (5.5), the w1 and w2 are considered to have a equal weight of 0.5 in

this case.

In order to select the collaborative node with reliable attributes for promising the SoS,

the Gini-impurity-based attributes evaluation algorithm is first proposed to evaluate the reli-

ability of each physical-layer attribute at each collaborative node. To examine whether the

Gini-impurity measurement can reflect the different characteristics of each attribute, we select

a random member UAV within the network and plotted the relationship between the Gini-

impurity and the time-varying environment as shown in Fig. 5.2. The physical-layer attributes

included in the figure include RSSI, CFO and IQI. It can be observed that the Gini impurity of

each physical-layer attribute fluctuates with respect to the environmental change. This supports

that each attribute may contribute differently with respect to the time-varying environment.

Moreover, to examine the relationship between the Gini-impurity-based attributes evalu-

ation algorithm and the authentication performance, we select a random member UAV and

studied the error rate of its edge authentication decision. The error rate of (5.5) is computed

with respect to the authentication decision threshold as shown in Fig. 5.3. It can be concluded

that our proposed scheme can increase the optimized authentication decision threshold interval

at the selected collaborative node. Hence, it is easier to find a common optimized authentica-
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Figure 5.2: Gini impurity measurements across different environments

tion threshold (v) among different collaborative nodes at the concave of the plot.

From Fig. 5.4, it can be observed that although all techniques can achieve an optimized

authentication performance when the observations increase, the Gini-impurity-based attributes

evaluation algorithm can accelerate the training period in the beginning. The lower training

overhead is extremely beneficial to the resource constraint applications where it is harder to

spare the collaborative nodes for training purposes.

Since the computational complexity is proportional to the number of selected collaborative

nodes, one of the objectives in (5.6) is to minimize the number of selected collaborative nodes

(K). To examine the ability to select the minimum amount of collaborative node, we considered

3 different security requirement evaluated by the operator defined error rate as ED = 0.001,

ED = 0.00001 and ED = 0.0000001. This reflects the unique security requirements across

different scenarios such as from civilian applications to military applications.

As shown in Fig. 5.5, when ED = 0.001, only 1 collaborative node is selected across

different environments to guarantee the SoS. This demonstrates that only a few authentication

resources are required to achieve a low authentication requirement. As shown in Fig. 5.6,



76 Chapter 5. Guaranteed SoS Provisioning withMinimized Complexity in UAV Swarm

Figure 5.3: Error rate comparison results with and without using Algorithm 5.1 at a collabora-
tive node

Figure 5.4: Error rate comparison results with and without using Algorithm 5.1 in the UAV
swarm
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Figure 5.5: Security requirement (ED = 0.01) and the number of selected collaborative node(s)

Figure 5.6: Security requirement (ED = 0.00001) and the number of selected collaborative
node(s)
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Figure 5.7: Security requirement (ED = 0.000001) and the number of selected collaborative
node(s)

when ED = 0.00001, it can be observed that more collaborative nodes are selected at the

beginning by comparing to Fig. 5.5. This demonstrates that a training stage is required at

each node to achieve optimized performance. Then, to study the computational cost under the

extreme harsh authentication performance requirement, Fig. 5.7 is plotted to demonstrate the

collaborative node selection at ED = 0.0000001. It can be observed that more collaborative

nodes are selected at the early stage and the authentication performance can be achieved by

not utilizing all possible authentication resources. Also, when the collaborative nodes are well

trained, our proposed scheme can still decrease the number of selected nodes to 1.

Ultimately, to demonstrate that our proposed scheme can satisfy the authentication perfor-

mance requirement, Fig. 5.8 is plotted by considering the same security requirement where

ED = 0.001, ED = 0.00001 and ED = 0.0000001 as used in the previous step. It can be

observed from the zoom-in plot that the actual security performance (EA) can promise the de-

fined requirement which successfully demonstrates that the SoS can be guaranteed with fewer

authentication resources after the training stage. A nearest-neighbor-based centralized authen-
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Figure 5.8: Performance comparison between our proposed scheme and the centralized au-
thentication scheme

tication scheme proposed in [75] is selected as the benchmark testing. It can be observed that

the training stage can be decreased significantly when the collaborative nodes are utilized in the

training stage. Besides, by comparing to Fig. 5.4, the training stage of our proposed scheme

is also shorter since the excessive unreliable collaborative nodes are eliminated. Moreover, to

demonstrate the robustness of our proposed scheme, a sudden environment change is added

within the transition stage as labelled on the plot. It can be observed that with the increasing

number of observations, although all techniques can achieve an optimized performance when

the number of observations increases, the performance of our proposed scheme is significantly

more robust and reliable against the sudden environmental change happens. It can also be

demonstrated that the performance requirement can be guaranteed throughout the different en-

vironments with minimal computational cost after the training stage based on the SoS. Lastly,

there still remains a limitation of our proposed scheme when the operator-defined authentica-

tion performance is extremely strict while there is only a few collaborative nodes available.

When the performance requirement exceeds the possible maximum performance, the authenti-

cation scheme will become best-effort-based. Hence, the proposed scheme is more suitable to
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be implemented under the situation where the maximum authentication performance exceeds

the security requirement so that an equilibrium can be achieved between the actual authentica-

tion performance and the computational cost.

5.5 Chapter Summary

In this chapter, a collaborative security provisioning mechanism was proposed to customize

create authentication models at different environments so that the defined security performance

can be guaranteed with minimal computational complexity. By utilizing our proposed mech-

anism, an equilibrium between the SoS and the computational cost can be found to construct

a fluid authentication model. To achieve this goal, the usability index of each collaborative

node has to be evaluated so that only the minimum number of reliable collaborative nodes are

utilized at each authentication instance. To quantify the usability index, a Gini-impurity-based

attributes evaluation algorithm was first developed to evaluate the physical-layer attributes.

If none of the attributes are deemed as reliable, the collaborative node will be temporarily

removed from the authentication process. a collaborative node evaluation algorithm further

evaluates the usability index of each collaborative node by considering the relative distance

and the authentication history with respect to the specific authentication requester. Then, the

intelligent authentication customization algorithm utilizes the calculated usability index and

selects the most suitable combination of collaborative nodes and attributes at each node to

guarantee the SoS with minimal computational cost. Finally, the proposed scheme was verified

and compared with the other state-of-the-art centralized authentication schemes to demonstrate

its superior authentication performance and computational cost.
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Conclusion and Future Work

This chapter presents the conclusion of this thesis. Some future works are also presented in

this chapter.

6.1 Conclusion

In this thesis, a centralized cross-layer authentication scheme was first proposed based on the

LDA technique as an intelligent process to eliminate the less informative cross-layer attributes

so that the authentication performance can be improved while the computational overhead

can be limited. The cross-layer attributes have been utilized to enhance security by providing

more reliable and unique characteristics of each UAV. Our novel LDA-aided authentication

scheme increases the trust value while decreasing the computational overhead by eliminating

the unnecessary attributes. This process significantly increases the difficulty for the attackers

to impersonate the legitimate UAVs within the swarm due to the different attributes selection

based on the situational-awareness. Since the LDA technique could not decide the number of

attributes being left after the dimensionality reduction, a situation-aware attributes selection

algorithm has been proposed to select the minimum amount of attributes without jeopardizing

the performance.

Then, the decentralized authentication techniques have been considered to improve the

81
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authentication performance under a harsh environment. However, the reliability of the edge

authentication decision at each node may not be equivalent to each other. Hence, an edge soft

authentication decision scheme was proposed to evaluate the probability for the authentication

requester to be legitimate at each authentication node. This scheme can effectively relax the un-

certainty at each authentication node which ultimately improves the reliability and robustness

when fusing the edge authentication decision into a final authentication decision.

Finally, to meet the stringent security requirements while maintaining a low computational

cost within the resource constraint UAV swarm, the novel concept of SoS was first proposed.

A collaborative security provisioning scheme was also proposed to customize create authenti-

cation models across different environments based on the SoS. These estimations are then used

to compute the usability index through the two-factor process where the first process is to ver-

ify whether the collected attributes are reliable enough to generate an authentication decision

and eliminate the less informative attributes. The second process is to further calibrate the us-

ability index by considering the relative distance between the authentication requester and the

authentication node as well as the past authentication contributions. By utilizing the proposed

scheme, the authentication model can be fluid so that the decentralized authentication model

and centralized authentication model can be switched seamlessly.

6.2 Future Work

With the rapid development of 5G-and-beyond networks, the number of smart devices is be-

coming more and more common. Human lives can be significantly improved when all these

devices can work jointly. More machine-to-machine communications will be involved where

the communication security needs to be guaranteed with minimal cost to improve the quality of

the service. In this thesis, we only considered the authentication under the UAV network; how-

ever, there are many more types of networks in real world applications. For future work, some

aspects of the proposed schemes are still worthwhile to be further developed to be generalized
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into more authentication applications. A range of future research ideas can be summarized as

follows.

Edge authentication scheme optimization: Although the upper-layer attributes, such

as the application layer attributes, might be forged and injected by the attackers. It is still

worthy to further utilize more upper-layer attributes when the physical-layer estimations are

imperfect. Although we proposed a smart authentication mechanism in Chapter 5 that can

switch between decentralized authentication schemes and centralized authentication schemes

by utilizing the physical-layer attributes, we can further work on more edge authentication

schemes at each authentication node to increase the diversity. For example, the authentication

nodes can switch between encryption-based authentication techniques and the physical-layer or

cross-layer authentication techniques based on the performance requirement and computational

capability.

Large-scale IoT network authentication: The size of the UAV swarm in civilian or mil-

itary missions may be limited; therefore, it is feasible to collect the physical-layer attributes

between each UAV along with the mission. However, in large-scale networks with hundreds

of devices, such as the industry IoT networks, the computational capability cannot support

each device to observe the physical-layer attributes at all times. Hence, the smart authenti-

cation mechanism proposed in Chapter 5 can be further developed to limit the physical-layer

estimations to smaller blocks and becomes compatible with large-scale networks.

Attributes inheritance: In the real world ad hoc network applications, existing devices

may leave the network and new devices may join the network during the mission. The new

devices may not have enough observations when it freshly joins the network. Therefore, if a

similar device can share some of the observations with the new devices, it can contribute to the

authentication process instantaneously. An attribute inheritance algorithm can be developed

to study how to select the observations that can be inherited to the new devices or the rejoin

devices.
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[15] S. Rosati, K. Krużelecki, G. Heitz, D. Floreano, and B. Rimoldi, “Dynamic routing for

flying ad hoc networks,” IEEE Transactions on Vehicular Technology, vol. 65, no. 3,

pp. 1690–1700, 2016.

[16] T. Alam and B. Rababah, “Convergence of manet in communication among smart devices

in iot,” Authorea Preprints, 2020.

[17] W. Alnumay, U. Ghosh, and P. Chatterjee, “A trust-based predictive model for mobile ad

hoc network in internet of things,” Sensors, vol. 19, no. 6, p. 1467, 2019.



86 BIBLIOGRAPHY

[18] S. Bhandari, X. Wang, and R. Lee, “Mobility and location-aware stable clustering scheme

for uav networks,” IEEE Access, vol. 8, pp. 106364–106372, 2020.

[19] U. S. D. of Defense, Unmanned Systems Roadmap: 2007-2032. AD-a475 002, Depart-

ment of Defense, 2007.

[20] I. U. Khan, I. M. Qureshi, M. A. Aziz, T. A. Cheema, and S. B. H. Shah, “Smart iot

control-based nature inspired energy efficient routing protocol for flying ad hoc network

(fanet),” IEEE Access, vol. 8, pp. 56371–56378, 2020.

[21] K. A. Hafeez, L. Zhao, Z. Liao, and B. N. Ma, “A fuzzy-logic-based cluster head selection

algorithm in vanets,” in 2012 IEEE International Conference on Communications (ICC),

pp. 203–207, 2012.

[22] P. K. Deb, A. Mukherjee, and S. Misra, “Xia: Send-it-anyway q-routing for 6g-enabled

uav-leo communications,” IEEE Transactions on Network Science and Engineering,

2021.
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