Western University Scholarship@Western

Biology Publications

Biology Department

10-1-2013

Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects.

Brent J Sinclair Western University, bsincla7@uwo.ca

Laura V Ferguson

Golnaz Salehipour-shirazi

Heath A MacMillan

Follow this and additional works at: https://ir.lib.uwo.ca/biologypub Part of the <u>Biology Commons</u>

Citation of this paper:

Sinclair, Brent J; Ferguson, Laura V; Salehipour-shirazi, Golnaz; and MacMillan, Heath A, "Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects." (2013). *Biology Publications*. 76. https://ir.lib.uwo.ca/biologypub/76

Manuscripts submitted to Integrative and Comparative Biology

Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and immune stress in insects

Journal:	Integrative and Comparative Biology
Manuscript ID:	ICB-2013-0007.R1
Manuscript Type:	Symposium Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	Sinclair, Brent; University of Western Ontario, Biology Ferguson, Laura; University of Western Ontario, Biology Salehipourshirazi, Golnaz; University of Western Ontario, Biology MacMillan, Heath; University of Western Ontario, Biology
Keywords:	Overwintering, Cold tolerance, Immune response, Desiccation

2		
3	1	Cross-tolerance and cross-talk in the cold: relating low temperatures to desiccation and
4 5		
6	2	immune stress in insects
7		
8 9	n	
10	3	
11		
12 13	4	Brent J. Sinclair*, Laura V. Ferguson, Golnaz Salehipourshirazi and Heath A. MacMillan
14		
15		
16 17	5	
17 18		
19	6	Department of Biology, University of Western Ontario, London, ON, Canada
20	0	Department of Diology, Oniversity of Hestern Oniario, Donaon, Ott, Canada
21 22		
23	7	
24		
25 26	0	*Commente Department of Dislose University of Western Outsrie, London, ON M(A
20	8	*Correspondence: Department of Biology, University of Western Ontario, London, ON, N6A
28	9	5B7, Canada email <u>bsincla7@uwo.ca</u>
29	5	3D7, Canada cinan <u>osmeta (todwo.ca</u>
30 31		
32	10	
33		
34 35		Denning titles between the second and other states
36	11	Running title: Interactions between cold and other stresses
37		
38 39	12	
40		
41		
42 43	13	Total words (excl. refs, tables, fig. captions): 5442
44		
45	14	
46 47	±.	
48		
49		
50		
51 52		
53		
54		
55 56		
57		
58		
59 60		
59		
00		

Multiple stressors, both abiotic and biotic, often are experienced simultaneously by organisms in nature. Responses to these stressors may share signaling pathways ("cross-talk") or protective mechanisms ("cross-tolerance"). Temperate and polar insects that must survive the winter experience low temperatures accompanied by additional abiotic stressors, such as low availability of water. Cold and desiccation have many similar effects at a cellular level, and we present evidence that the cellular mechanisms that protect against cold stress also protect against desiccation, and that the responses to cold and dehydration likely evolved as cross-tolerance. By contrast, there are several lines of evidence suggesting that low temperature stress elicits an upregulation of immune responses in insects (and vice versa). Because there is little mechanistic overlap between cold stress and immune stress at the cellular level, we suggest that this is cross-talk. Both cross-talk and cross-tolerance may be adaptive and likely evolved in response to synchronous stressors; however, we suggest that cross-talk and cross-tolerance may lead to different responses to changes in the timing and severity of multiple stress interactions in a changing world. We present a framework describing the potentially different responses of cross-tolerance and cross-talk to a changing environment, and describe the nature of these impacts using interaction of cold-desiccation and cold-immunity in overwintering insects as an example.

Introduction Insects are the most successful group of terrestrial animals, having overcome the challenges of water loss and thermal variability (Chown and Nicolson 2004; Harrison et al. 2012). Overlain on these abiotic stresses are biotic stresses, such as competition and parasitism, which are thought to regulate the performance of insects in more benign climates (Gaston 2003). Overwintering temperate insects are useful models for understanding the interactive nature of multiple abiotic and biotic stressors, because cold stress during overwintering frequently is accompanied by desiccation (Danks 2000) and trades off with energy consumption (Irwin and Lee 2000; Williams et al. 2012); because the warm growing season allows the persistence of a rich fauna and flora of parasitoids and pathogens, biotic stresses may persist across seasons. Few studies have explored any (let alone all) of these interacting stresses simultaneously, so we will focus on the bilateral interactions between low temperature and desiccation, and low temperature and immunity.

Stress-response signaling pathways have been well-explored in plants, and are highly interactive (Knight and Knight 2001). These interactions among regulatory pathways are known as 'cross talk', which we define as *shared regulatory or signaling pathways that activate separate mechanisms of protection against different stresses* (Figure 1A). However, it is also clear that some mechanisms of cellular protection are effective against different forms of stress; for example, organic molecules can protect cells against thermal, osmotic, and several other stresses (Yancey 2005). We define this as 'cross-tolerance', where *the mechanisms that protect against*

one stress also provide protection against another (Figure 1B). Overlap in responses to stress at either the regulatory or mechanistic level could be adaptive, and would be driven by co-occurrence of the stresses, so the primary difference in the evolution of cross-tolerance and cross-talk lies in whether or not the co-occurring stresses can be countered by the same mechanisms. For example, a diverse group of heat shock proteins (HSPs) are produced in the face of many different abiotic stresses, as protein denaturation is a common consequence of cellular stress. On the other hand, it is also possible for both cross-tolerance and cross-talk to be non-adaptive if the stressors are not encountered simultaneously. For example, the heat shock response protects *Drosophila melanogaster* larvae from cold (Rajamohan and Sinclair 2008), but high and low temperatures cannot be encountered simultaneously in nature. The phenotypes of cross tolerance and cross-talk are effectively the same; increased tolerance to one stressor is associated with increased tolerance to another. However, we suggest that the underlying differences between cross-talk and cross-tolerance create potential for changing interactions between stressors to impact fitness in different ways, depending on the relationship between the responses to these stressors.

Abiotic stress during overwintering by insects

Overwintering can encompass a significant portion of the life cycle of many temperate insects, and performance and fitness during the growing season often can vary as a function of the energy reserves saved, and damage accrued, during the winter (e.g. Boggs and Inouye 2012). In northern temperate environments, many insects overwinter in diapause, which is accompanied by reduced activity, depressed metabolic rate, and suppressed reproduction and development

Manuscripts submitted to Integrative and Comparative Biology

 (Tauber et al. 1986), as well as by a general upregulation of protective mechanisms, including
antioxidants (e.g. Sim and Denlinger 2011), a reduced rate of water loss (e.g. Benoit and
Denlinger 2007), and heat-shock proteins (e.g., Rinehart et al. 2007).

Being small ectotherms, most insects have body temperatures that approximate the temperature of the environment, and in temperate climates have adapted to winter conditions and the associated risk of forming internal ice (Sinclair et al. 2003). Freeze-tolerant insects can withstand internal formation of ice, while freeze-avoidant insects maintain their body fluids in a (supercooled) liquid state, even at temperatures below their melting point (Lee 2010). These two strategies can lead to tolerance of extremely low temperatures (e.g. Moon et al. 1996; Sformo et al. 2010) and, in some insects, dehydration is actively utilized to lower the freezing point of their body fluids (e.g. Holmstrup et al. 2002a; Ring and Danks 1994). The biochemical and physiological correlates of cold tolerance are well-understood, including the accumulation of low-molecular-weight cryoprotectants, such as glycerol or proline, and the production of proteins that interact with ice crystals (Lee 2010). However, the majority of insects, including a number of temperate species, are chill-susceptible, being killed by low temperatures before they freeze (Bale 1993). Chill-susceptible insects can still show great plasticity in cold tolerance, both over short and long timescales (e.g. Rajamohan and Sinclair 2009), but the biochemical underpinnings of those changes are less well understood.

98 Climate change is seasonally asymmetric in terrestrial temperate habitats, with changes in mean
99 temperature and thermal variability expected to be more pronounced during winter in most

http://mc.manuscriptcentral.com/icbiol

regions (IPCC 2007). Interactions between precipitation and changes in temperature mean that changes in winter climates may be variable, and regionally-specific. For example, while both an increase in temperature and an increase in precipitation can both lead to increased temperatures experienced by insects overwintering beneath snow pack, a decrease in precipitation could lead to more extreme temperatures experienced by an insect that is no longer buffered from air temperatures by snow cover (e.g. Marshall and Sinclair 2012). Increased mean temperature or an increase in variability might make liquid water available more often during the winter (Danks 2000), but fluctuations extending below zero also can lead to encasement by ice and an ensuing anoxia (e.g. Conradi-Larsen and Sømme 1973; Coulson et al. 2000). Changes in the timing of seasonal events, such as snow melt or the onset of winter, may also modify interactions among stressors. For example, a later onset of cold conditions in winter might lead insects to enter winter in a dehydrated state (or prevent dehydration necessary for cold tolerance), while a deeper snow pack could extend the winter dormancy period, leading to phenological mismatches in biotic interactions – for example, asynchrony between parasitoids and their hosts (Walther 2010). Little work exists on interactions among stressors in insects in the context of climate change. The purpose of this paper is to review interactions between low temperature stress and an abiotic (desiccation) and a biotic (immune challenge) stressor in the context of overwintering insects. We will pay particular attention to the mechanisms underlying these interactions (and whether they represent cross-tolerance or cross-talk), and discuss the likelihood that these interactions will shift, and the consequences of such shifts, in a changing climate.

122 The relationship between cold stress and desiccation stress in insects

Insects that overwinter in temperate and polar environments encounter both low temperature and low availability of water (Danks 2000). Many insects are dormant over winter, and therefore do not drink, and frozen water is not biologically available to ectotherms. While exposed microhabitats are both cold and dry, sheltered microhabitats (for example, in the soil) can be warmer and more humid. However, ice crystals in moist habitats at sub-zero temperatures may initiate ice formation in insects (Costanzo et al. 1997). Because these stresses are regularly encountered together, it is not surprising those insects that are cold-hardy also tend to be tolerant of desiccation (Kellermann et al. 2012; Ring and Danks 1994). Insects that are frozen have lower rates of water loss than do those that are supercooled at the same temperature (Irwin and Lee 2002), suggesting that desiccation stress could also influence cold tolerance strategy.

Insects often use similar mechanisms to respond to low temperature and desiccation. Several freeze-tolerant insect larvae improve their cold tolerance in response to a mild desiccation stress (e.g. Hayward et al. 2007; Lee et al. 2006; Levis et al. 2012; Sinclair and Chown 2003), and a prior bout of desiccation also improves cold tolerance in freeze-avoidant Collembola (Bayley et al. 2001; Sjursen et al. 2001). By contrast, cold tolerance of a freeze-tolerant, desiccation-resistant, alpine cockroach was not enhanced by prior desiccation (Sinclair 2000). Although artificial selection for desiccation tolerance in *Drosophila melanogaster* decreased the time taken to recover from chill coma (Sinclair et al. 2007b), it did not alter tolerance to either brief or long exposure to cold (Bubliy and Loeschcke 2005; Sinclair et al. 2007b), and actually it decreased tolerance to acute cold in one of two selected lines (Telonis-Scott et al. 2006). Conversely,

selection for tolerance to exposure at -5 °C did not alter tolerance to desiccation in a different set of *D. melanogaster* lines (MacMillan et al. 2009). Insects can improve their tolerance to water loss by improving tolerance to cellular dehydration (see below), but *Drosophila* largely improve their desiccation tolerance by decreasing the rate of water loss or by increasing water content of the body (Gibbs et al. 2003; Gibbs and Matzkin 2001). Reduced water loss or increased water content specifically avoid cellular dehydration stress, so we restrict our discussion of cross-tolerance to cellular stresses associated with cold and desiccation. Both cold and desiccation can lead to dehydration and osmotic stress at the cellular level.

Desiccation, extracellular freezing, chilling, and cryoprotective dehydration all decrease the volume of hemolymph and usually increase hemolymph osmolarity, and desiccated insects preferentially lose water from the hemocoel (e.g. Zachariassen and Einarson 1993). In the cold, ice formation in the hemocoel effectively reduces the volume of liquid (Zachariassen 1991), cryoprotective dehydration leads to an overall loss of body water (Holmstrup et al. 2002a), and chilling injury appears to be associated with movement of water from the hemocoel to the gut (MacMillan and Sinclair 2011). By preferentially losing water from the hemocoel, stress-tolerant insects are able to maintain cellular volume and osmotic gradients, allowing survival and function – indeed, the ability to tolerate desiccation at the organismal level is thought to be a key factor in insects' unrivalled success on land (Hadley 1994). Thus, insects may be pre-adapted to the osmotic stresses associated with cold, and it might be expected that there would be significant overlap in the mechanisms protecting them against – and responding to – low temperatures (Ring and Danks 1994). However, at their extreme, these osmotic stresses can lead to cellular dehydration, which can be countered in similar ways at the cellular level (Figure 2).

http://mc.manuscriptcentral.com/icbiol

Maintaining cellular ion gradients appears to be a key challenge for insects in the cold. In chill-susceptible species, loss of trans-membrane ion gradients is associated both with chilling injury and with chill coma (Kostal et al. 2004; MacMillan and Sinclair 2011; MacMillan et al. 2012a). By contrast, freeze-avoidant species appear able to maintain ion gradients at temperatures well below 0 °C (Dissanayake and Zachariassen 1980). Freeze-tolerant insects maintain osmotic balance despite changes in ion concentrations in the hemolymph and tissues when liquid water is incorporated into ice during freezing and ions migrate into the hemolymph from other tissues (Kristiansen and Zachariassen 2001). In the freeze-tolerant woolly bear caterpillar (*Pyrrharctica isabella* Lepidoptera: Arctiidae), a failure to restore ion gradients following thawing also has been implicated in post-freezing mortality (Boardman et al. 2011). Thus, injury from low temperatures and recovery following exposure to cold both in chill-susceptible and chill-tolerant insects appears to be tied to ion and water homeostasis in the hemolymph, which have clear ties to desiccation tolerance (Bradley 2009).

Many physiological mechanisms of seasonally acquired tolerance to cold and desiccation overlap, e.g., upregulation or production of molecular chaperone proteins (Rinehart et al. 2007) and cryoprotectants (e.g. Kostal et al. 2007; Rinehart et al. 2007), as well as modification of the structure of cellular membranes (e.g. Holmstrup et al. 2002b), all of which occur in advance of a predictable cold and/or dehydration stress in nature. Low molecular-weight cryoprotectants, such as glycerol, increase hemolymph osmolarity and may act to retain hemolymph water during chilling by decoupling osmotic and ionic homeostasis (Teets et al. in press; Yancey 2005).

Indeed, accumulation of polyols facilitates both maintenance of hemolymph volume and absorption of water vapor by the soil-dwelling collembolan Folsomia candida (Bayley and Holmstrup 1999). Osmoprotectants may also protect cells from thermal or dehydration stress. For example, when goldenrod gall fly prepupae are subjected to dehydration or freezing, levels of glycerol and sorbitol in the hemolymph are reduced, although whole-body content of cryoprotectant is largely unchanged (Williams and Lee 2011). Low-molecular-weight cryoprotectants also can protect macromolecules. For example, accumulation of trehalose improves tolerance to cold, desiccation, and hypoxia (Benoit et al. 2009; Chen and Haddad 2004), and facilitates cryoprotective dehydration in insects by replacing water and preserving structure of proteins and membranes during stress (Andersen et al. 2011; Elnitsky et al. 2008). Thus, at the physiological level, protection against both cold and desiccation requires osmoprotection and stabilization of the structure of proteins and membranes. At a molecular level, there is surprisingly little overlap in the identity or patterns of expression of candidate genes associated with tolerance to cold and desiccation. For example, in Drosophila melanogaster, the candidate gene Frost was upregulated during desiccation, but only during recovery from cold exposure, and differential regulation of *desat2* occurred only with desiccation whereas hsp70 was upregulated only in response to cold (Sinclair et al. 2007a). Expression patterns of metabolic genes responsible for mobilization of energy and synthesis of osmoprotectants in the Antarctic midge Belgica antarctica overlapped following exposure to cold and desiccation only after rapid transfer to the stressful conditions (Teets et al. 2012). By contrast, in *Megaphorura arctica* (a springtail capable of cyroprotective dehydration), few patterns of gene expression overlap between the responses to cold and desiccation (Sørensen et

al. 2010), or even between desiccation induced at high and low temperatures (Clark et al. 2009).
Thus, although the physiological mechanisms that protect against cold and desiccation are
similar, the responses to each stress may nevertheless operate independently. A similar
observation has been made for cold and heat: cold-hardening and heat-hardening both improve
cold tolerance of *D. melanogaster* larvae, but they appear to operate additively, suggesting that
different mechanisms underlie each form of protection (Rajamohan and Sinclair 2008).

There is room for progress in understanding the mechanisms underlying protection against both cold and desiccation in insects, particularly at the cellular and molecular level for both stresses. There are probably distinct regulatory responses to cold and desiccation (evidenced by different gene expression patterns), yet the cellular nature of those stresses suggests that the mechanisms that protect against dehydration also protect against cold. We thus tentatively conclude that the cold-desiccation interaction is likely one of cross-tolerance. However, further elucidation of the (hitherto unknown) pathways associated with cold and desiccation in insects could yet identify underlying shared signaling and cross-talk, as has been observed in plants (Knight and Knight 2001).

229 The relationship between cold stress and the immune response in insects

The primary immune responses of insects are innate – including both humoral and cellular
defenses against parasites and pathogens, although there is evidence of priming of the insect
immune system by prior exposure to pathogens (e.g. Sadd et al. 2005; Tidbury et al. 2010).

Hemocytes circulating in the hemolymph phagocytose small invaders such as bacteria and form nodules around, or encapsulate, larger organisms (Beckage 2008). The phenoloxidase pathway results in the deposition of melanin surrounding a wound, large invader, or the site of fungal infection in the cuticle (Kaneko and Silverman 2005). In addition, infection by bacteria or fungi stimulates the production of antimicrobial peptides via highly specific pathways (for example, Spaetzle-Toll, Imd and JAK/STAT) (Gillespie et al. 1997). Other specific responses include production of lysozymes and sloughing of gut epithelial cells in response to viral infection (Schmid-Hempel 2005).

Ecological immunology has revealed an increasing web of relationships between immune responses, behavior, and stress in a wide range of organisms (Baucom and de Roode 2011; Rolff and Siva-Jothy 2003; Schmid-Hempel 2005). Because insects' immune responses are energetically costly, they can compromise fitness (Moret and Schmid-Hempel 2000) or be compromised by environmental stressors or pollutants (e.g. Nota et al. 2009; Xu and James 2012). However, the interactions between the immune response and environmental stress are complex, and not necessarily negative. The phagocytosis and encapsulation components of the insect immune system still operate (albeit slowly) at low temperatures (Nakamura et al. 2011). and laboratory experiments indicate that insects exposed to cold have increased tolerance to fungal infection and upregulated expression of immune-related genes, including those coding for antimicrobial peptides (summarized in Table 1). This cold-associated upregulation may have ecological relevance; for example, an enhanced encapsulation response is associated with higher winter survival in water striders (Krams et al. 2011).

256	Conversely, bacterial infection increases the time taken to recover from chill coma (i.e. reduces
257	cold tolerance) in Drosophila melanogaster (Linderman et al. 2012). Thus, there appear to be
258	links between the responses to cold and to infection, although the nature of those responses – and
259	their adaptive significance – has not been thoroughly explored. We identify at least four non-
260	exclusive hypotheses that could account for the evolution of cold-immune links in insects. Two
261	are non-adaptive (a non-specific general response to stress and a by-product of selection for
262	behavioral fever) and two are adaptive (protection against non-pathogenic gut flora and
263	pathogen-host mismatches in performance at low temperature). We suggest that exploring these
264	hypotheses will lead to advances in the general understanding of the role of pathogens and
265	parasites in the overwintering of insects, as well as unraveling the evolutionary history of cold-
266	immune interactions.

268 1) Immune activation is non-adaptive, but a consequence of a general response to stress

Although there is considerable variation in the molecular and physiological responses by insects to different abiotic stresses (Harrison et al. 2012), there are clearly some general responses to stress, and upregulation of the immune system in response to cold and overwintering may simply be associated with those shared pathways. For example, acute, physical stress (being shaken) activates the immune system in Galleria melonella larvae (Mowlds et al. 2008), exposure to low concentrations of the polyaromatic hydrocarbon phenanthrene activates immune responses in Folsomia candida (Nota et al. 2009), and the stress hormone octopamine is also released during infection in crickets (Adamo 2010), suggesting a link between the immune system and response

to stress. However, unnecessary activation of immunity is costly (Moret and Schmid-Hempel

2000), and should be selectively disadvantageous. In addition, increased overwinter survival of water striders with strong immune responses (Krams et al. 2011) suggests that, in at least some species, there may be a fitness advantage to activation of the immune system over winter. 2) Selection for behavioral fever links immune responses and thermal biology Behavioral fever is a thermoregulatory response to infection by insects that improves their survival of infection (Thomas and Blanford 2003). There is some evidence that this thermoregulatory behavior is mediated by eicosanoids (Bundey et al. 2003), which also may play a role in the general thermal biology of insects and in their responses to infection (Stanley 2006). It is possible that there has been selection for cross-talk in eicosanoid signaling pathways associated with behavioral fever, and that this cross-talk persists also in a non-adaptive fashion at low temperatures. A better understanding of the signaling pathways associated with responses to low temperature in insects will allow exploration of this hypothesis. 3) Tissue damage during cold exposure leads to immune challenge Injury from both chilling and freezing in insects is accompanied by physical damage, particularly to the gut and Malpighian tubules (MacMillan and Sinclair 2011; Marshall and Sinclair 2011; Yi and Lee 2003). By itself, wounding initiates immune activity (Gillespie et al. 1997), and damage to the gut could allow the gut flora to enter the hemocoel (MacMillan and Sinclair 2011), directly activating antimicrobial responses. Thus, there may have been selection for (adaptive) pre-

emptive activation of immunity, because cold is frequently associated with wounding and/or

299 invasion of the hemocoel by microbiota from the gut.

1		15
2 3 4	300	
5 6 7	301	4) Mismatch between thermal performance of pathogens and hosts
8 9 10	302	Many insects overwinter while in chill coma and/or diapause, with consequent suppression of
11 12	303	metabolic rate, disruption of water and ion homeostasis, and an inability to behaviorally avoid
13 14 15	304	parasites and pathogens (MacMillan and Sinclair 2011; Rider et al. 2011). If the natural flora,
16 17	305	pathogens, or parasites are less inhibited by low temperatures than is the host, then there exists
18 19	306	an opportunity for these organisms to outpace the host's immune system, much as is
20 21 22	307	hypothesized for immune suppression during mammalian hibernation (Bouma et al. 2010).
23 24	308	Thus, there may have been selection for a baseline level of immune activation throughout the
25 26	309	winter, thereby providing protection against cold-active pathogens, or for activation of immune
27 28 29	310	responses immediately upon re-warming.
30 31 32 33	311	
34 35 36	312	Regardless of whether or not activation of the immune system by cold has an adaptive
37 38	313	evolutionary origin, with the exception of some cellular immune responses, there are few
39 40	314	mechanisms of immune protection that overlap with the postulated cellular mechanisms of
41 42 43	315	damage from cold. We therefore suggest that the links between exposure to cold (and
43 44 45	316	overwintering in general) and the upregulation of immunity are likely the result of cross-talk
46 47	317	among the pathways, as has been postulated for immune interactions with many other stress
48 49 50	318	signals in Drosophila (e.g. Davies et al. 2012) and Tribolium castanteum (Altincicek et al. 2008).
51 52 53 54	319	
55 56 57 58 59 60	320	Changing interactions in a changing world?

2		
3 4	321	Ongoing anthropogenic climate change will not affect all environmental stressors equally.
5 6 7	322	Cross-tolerance and cross-talk are likely to have evolved and to be maintained because the two
8 9	323	stresses occur simultaneously (e.g. low temperature and water stress in winter) or because there
10 11	324	is a predictable temporal link between the stressors (e.g. a decline in food availability [starvation]
12 13	325	can trigger diapause initiation; Tauber et al. 1986). There are many ways in which two (or more)
14 15 16	326	interacting stressors could change with climate change, and here we consider three generic
17 18	327	changes in relationships (Figure 3): 1) an increase in severity of both of the stressors (e.g.
19 20 21	328	increased temperatures coupled to ocean acidification; Doney et al. 2012); 2) a mismatched
21 22 23	329	change in severity, whereby one of the stressors becomes much more significant (e.g.,
24 25	330	ameliorated temperatures coupled with higher pathogen survival; Harvell et al. 2002); and 3) a
26 27 28	331	temporal decoupling of stresses, such that the (formerly) paired stresses are no longer
29 30	332	experienced in concert (e.g., phenological shifts in which reproduction and parasitoid challenge
31 32 33	333	are desynchronised; Thomson et al. 2010).
34		
35 36 37	334	
38 39	335	We expect that the short-term impact of these scenarios will be determined largely by the nature
40 41 42	336	of the interactions between responses. Interactions among stressors can have additive,
42 43 44	337	synergistic, or antagonistic effects (Crain et al. 2008), but predicting a priori the nature of
45 46	338	interactions for any combination of stressors is difficult. We suggest that understanding whether
47 48 49	339	responses result from cross-talk or cross-tolerance may provide a framework to assist in
50 51	340	predicting the outcomes of higher-order interactions among stressors. A key difference between
52 53	341	cross-talk and cross-tolerance is that the mechanisms of cellular resistance and of tolerance are
54 55 56	342	not shared between the stressors under cross-talk. Thus, shifts in the relative severity of two
57 58 59 60	343	stressors could have negative consequences if there are energetic trade-offs between the

upregulated mechanisms that compromise the response to a single stressor. Such costs would be lower with cross-tolerance, unless survival of the two stressors relies on all of the mechanisms being activated (Table 2). However, there is a lack of understanding of the evolution of the cross-tolerance and cross-talk that we observe, and the nature of interactions among stressors at a local scale that is relevant to organisms is currently the guesswork. Nevertheless, it is possible that existing cross-tolerance and cross-talk may effectively act as pre-adaptations to changing (and novel) interactions, although we also envisage scenarios in which selection may lead to a reduction of cross-tolerance or cross-talk (Table 2). *Changes in the interaction between water balance and temperature under changing winters* The biological impacts of winter climate change on the thermal biology of insects will be driven to a large extent by interactions between precipitation and temperature (e.g. Marshall and Sinclair 2012). For example, decreased snow cover might expose insects in the litter layer to lower temperatures even if mean air temperatures are higher, while a change in the timing of snow cover can modify the phenology of exposure to cold. Higher temperatures also can increase the availability of liquid water over winter, due to thaws, but higher temperatures also lead to increased rates of water loss, particularly during the autumn, when the bulk of energy use and water loss occur in dormant insects (e.g. Williams et al. 2012). Thus, concomitant changes in temperature and precipitation are likely, but because precipitation-temperature shifts are highly regional, it is difficult to make general predictions about how interactions between water balance and low temperatures (and the biological responses to those changes) will play out in a general sense.

Because the interactions between responses to cold and desiccation in insects appear to result largely from cross-tolerance, the impacts of changing water-temperature interactions overwinter may be mitigated by the independence of the responses (Table 2). However, this assumes that 1) the cross tolerance is redundant, and that survival overwinter does not depend on mechanisms of both cold-tolerance and desiccation-tolerance being independently (but coincidentally) activated and 2) that the energetic costs of responding to each stress does not lead to trade-offs in the ability to respond to more extreme conditions. Surprisingly little is known about the cellular responses to either cold or desiccation (although parallels will likely be found in the yeast osmotic shock literature, e.g. Saito and Posas 2012). In particular, the costs of those responses in insects are poorly understood, although recovery from chill coma is energetically expensive (Macmillan et al. 2012b). Similarly, the importance of the cross-tolerance of cold and desiccation in winter survival has not been well-explored, although dehydration is an essential component of increased concentration of cryoprotectants and survival of extremely low temperatures in beetles from the Alaskan interior (Sformo et al. 2010).

We suggest that a useful agenda for research on cold-desiccation cross tolerance that will allow prediction of the responses under climate change could begin by asking three fundamental questions: 1) Is the observed relationship between tolerances to cold and desiccation a result of cross-tolerance or cross-talk? (This is a larger question than it appears, since the cellular mechanisms regulating tolerance to both stresses are poorly understood); 2) To what extent is the simultaneous protection against cold and desiccation essential for winter survival in the field?;

and 3) What are the energetic costs of protection against cold and desiccation (separately) and does this lead to trade-offs between the stresses? This general agenda can apply to any set of interacting stressors, but we note that none of the answers are readily available for the relationship between cold and desiccation. We suggest that a program developing one or a few species that can be studied in a field situation will be necessary. The physiological research would need to be coupled with environmental observations that determine the nature of the timing and severity of desiccation and cold, and that can incorporate regional and sub-regional models for predicting how the hygric and thermal environments during winter will shift with climatic change.

398 Interactions between cold and immunity in changing winters

Because the extent and evolutionary significance of the activation of immunity overwinter remain to be determined, it is difficult to predict either the nature of changing interactions, or the importance of those changes. Clearly, the first line of enquiry will need to be to determine the ecological importance and evolutionary significance of cold-immune cross-talk during overwintering. However, if we assume that cold-immune cross-talk is (or has historically been) beneficial, and that both immune responses and cold responses have energetic costs, then several scenarios of changing interactions initially will lead to negative fitness effects and perhaps selection against the cross-talk over evolutionary time (Table 2).

Changing winter conditions, including decreased snow cover and increased temperature may reduce the exposure of particular insects to unfavorably low temperatures, thereby decreasing the cold stress experienced by these insects. If cold stress decreases and the putative cross-talk signaling pathway is dose-dependent (i.e. increased cold stress results in increased upregulation of the immune system), then this would result in both a decreased level of physiological response to cold as well as to decreased activation of immunity. If activation of immunity is non-adaptive or results from injury from chilling or freezing (i.e. linked to increased cold stress) then this may simply result in energetic savings that improve fitness in the growing season. Alternately, if winters become more energetically challenging (e.g. Marshall and Sinclair 2012; Williams et al. 2012), this may compromise energy-dependent immune responses (Siva-Jothy and Thompson 2002) and reduce the response to immune challenges during winter. However, if cold stress also decreases for pathogens and improves their overwintering ability (Harvell et al. 2002) this would result in increased stress from pathogens for the insect (Figure 3B – mismatched change in severity) and an insufficient response to this elevated challenge (see Table 2). This may result in larger overwinter mortality or decreases in fitness during the growing season due to increased prevalence of parasites (e.g. Webberley and Hurst 2002). Similarly, a temporal decoupling of stresses could lead to significant changes in the dynamics of surviving infections if the cross-talk has evolved as a pre-emptive response to the immune challenges of overwintering, as implied by Krams et al. (2011).

Cold-immune interactions have the potential to change substantially with climatic change. However, the exploration of the role of immune responses in overwintering is in its infancy. We suggest that the first steps will be to determine the nature and significance of the (currently scant) evidence of a relationship between overwintering and cold. We have proposed some testable hypotheses to this effect. If there is support for an adaptive role for the immune system during overwintering, we suggest that a better understanding of the energetics and timing of the interaction, as well as of the ecology of pathogens and parasites during winter, is in order. Conclusions The interactions between cold and immunity, and between cold and desiccation during overwintering by insects appear to be examples of cross-talk and cross-tolerance, respectively. In the case of the cold-immune interaction, there remain both proximate questions (about the precise nature of the co-regulation) and ultimate questions (we propose hypotheses about the evolutionary origin and advantage of the cross- talk, which can be readily tested). For interactions between cold and desiccation, we outline a set of research questions that begins with the confirmation of the cold-desiccation relationship in insects as cross-tolerance, and includes analysis of the costs and benefits of cold-desiccation cross-tolerance in the laboratory and the field. More generally, the responses to interacting stressors will depend on the evolutionary capacity for the mechanisms of signaling and tolerance. There is only poor understanding of these

capacities for single stressors (perhaps best explored in *Drosophila*; Hoffmann 2010), so understanding multiple interacting stressors is likely to be a long road, even if a predictive framework can be developed and utilized. In overwintering insects, impacts will play out over multiple seasons, and there is a general need to better link growing season and winter biology (see Boggs and Inouye (2012) for an example). We suggest that the cross-tolerance/cross-talk framework may be one way to explore the implications of changing multiple stressors to yield broad-scale predictions, and we hope that the framework can be explored both theoretically and empirically.

459 Acknowledgements

This work was supported by a Discovery Grant from the Natural Sciences and Engineering
Research Council of Canada, an Ontario Early Researcher Award, and a University of Otago
William Evans Visiting Fellowship from the University of Otago (New Zealand) to BJS; an
NSERC Canada Graduate Scholarship to HAM and an Ontario Graduate Scholarship to LVF.
Thanks to Dan Hahn and Caroline Williams for valuable discussion, and Harold Heatwole and
two anonymous referees for comments that substantially improved the manuscript.

References

Adamo, S.A. 2010. Why should an immune response activate the stress response? Insights from
the insects (the cricket *Gryllus texensis*). Brain Behav Immun 24:194-200.

1		25
2 3 4	470	Altincicek, B., E. Knorr and A. Vilcinskas. 2008. Beetle immunity: Identification of immune-
5	471	inducible genes from the model insect Tribolium castaneum. Dev Comp Immunol 32:585-
6 7	472	595.
8 9	473	Andersen, H.D., C.H. Wang, L. Arleth, G.H. Peters and P. Westh. 2011. Reconciliation of
10 11	474	opposing views on membrane-sugar interactions. Proc Natl Acad Sci U S A 108:1874-
12 13	475	1878.
14	476	Bale, J.S. 1993. Classes of Insect Cold-Hardiness. Funct Ecol 7:751-753.
15 16	477	Baucom, R.S., and J.C. de Roode. 2011. Ecological immunology and tolerance in plants and
17 18	478	animals. 25:18-28.
19 20	479	Bayley, M., and M. Holmstrup. 1999. Water vapor absorption in arthropods by accumulation of
21 22	480	myoinositol and glucose. Science 285:1909-1911.
23	481	Bayley, M., S.O. Petersen, T. Knigge, H.R. Kohler and M. Holmstrup. 2001. Drought
24 25	482	acclimation confers cold tolerance in the soil collembolan Folsomia candida. J Insect
26 27	483	Physiol 47:1197-1204.
28 29	484	Beckage, N.E. 2008. Insect Immunology. Academic Press, Boston.
30	485	Benoit, J.B., and D.L. Denlinger. 2007. Suppression of water loss during adult diapause in the
31 32 33	486	northern house mosquito, <i>Culex pipiens</i> . J Exp Biol 210:217-226.
33 34	487	Benoit, J.B., G. Lopez-Martinez, M.A. Elnitsky, R.E. Lee and D.L. Denlinger. 2009.
35 36	488	Dehydration-induced cross tolerance of <i>Belgica antarctica</i> larvae to cold and heat is
37 38 39 40 41	489	facilitated by trehalose accumulation. Comp Biochem Physiol A 152:518-523.
	490	Boardman, L., J.S. Terblanche and B.J. Sinclair. 2011. Transmembrane ion distribution during
	491	recovery from freezing in the woolly bear caterpillar Pyrrharctia isabella (Lepidoptera:
42 43	492	Arctiidae). J Insect Physiol 57:1154-1162.
44 45 46 47 48 49 50 51 52 53 54	493	Boggs, C.L., and D.W. Inouye. 2012. A single climate driver has direct and indirect effects on
	494	insect population dynamics. Ecol Lett 15:502-508.
	495	Bouma, H.R., H.V. Carey and F.G.M. Kroese. 2010. Hibernation: the immune system at rest? J
	496	Leukoc Biol 88:619-624.
	497	Bradley, T.J. 2009. Animal Osmoregulation. Oxford University Press, New York.
	498	Bubliy, O.A., and V. Loeschcke. 2005. Correlated responses to selection for stress resistance and
55 56 57 58 59 60	499	longevity in a laboratory population of <i>Drosophila melanogaster</i> . J Evol Biol 18:789-803.

2		
3 4 5 6	500	Bundey, S., S. Raymond, P. Dean, S.K. Roberts, R.J. Dillon and A.K. Charnley. 2003.
	501	Eicosanoid involvement in the regulation of behavioral fever in the desert locust,
7	502	Schistocerca gregaria. Arch Insect Biochem Physiol 52:183-192.
8 9	503	Chen, Q.F., and G.G. Haddad. 2004. Role of trehalose phosphate synthase and trehalose during
10 11	504	hypoxia: from flies to mammals. J Exp Biol 207:3125-3129.
12 13	505	Chown, S.L., and S.W. Nicolson. 2004. Insect Physiological Ecology. Mechanisms and Patterns.
14	506	Oxford University Press, Oxford.
15 16	507	Clark, M.S., M.A.S. Thorne, J. Purac, G. Burns, G. Hillyard, Z.D. Popovic, G. Grubor-Lajsic and
17 18	508	M.R. Worland. 2009. Surviving the cold: molecular analyses of insect cryoprotective
19 20	509	dehydration in the Arctic springtail Megaphorura arctica (Tullberg). BMC Genomics 10.
21	510	Conradi-Larsen, EM., and L. Sømme. 1973. Anaerobiosis in the Overwintering Beetle
22 23	511	Pelophila borealis. Nature 245:388-390.
24 25	512	Costanzo, J.P., J.B. Moore, R.E. Lee, Jr., P.E. Kaufman and J.A. Wyman. 1997. Influence of soil
26 27	513	hydric parameters on the winter cold hardiness of a burrowing beetle, Leptinotarsa
28 29	514	decemlineata (Say). J Comp Physiol B 167:169-176.
30	515	Coulson, S.J., H.P. Leinaas, R.A. Ims and G. Søvik. 2000. Experimental manipulation of the
31 32	516	winter surface ice layer: the effects on a High Arctic soil microarthropod community.
33 34	517	Ecography 23:299-306.
35 36	518	Crain, C.M., K. Kroeker and B.S. Halpern. 2008. Interactive and cumulative effects of multiple
37	519	human stressors in marine systems. Ecol Lett 11:1304-1315.
38 39	520	Danks, H.V. 2000. Dehydration in dormant insects. J Insect Physiol 46:837-852.
40 41	521	Davies, S.A., G. Overend, S. Sebastian, M. Cundall, P. Cabrero, J.A.T. Dow and S. Terhzaz.
42 43	522	2012. Immune and stress response 'cross-talk' in the Drosophila Malpighian tubule. J
43 44 45	523	Insect Physiol 58:488-497.
46	524	Dissanayake, P., and K.E. Zachariassen. 1980. Effect of Warm Acclimation on the Cationic
47 48 49 50 51 52	525	Concentrations in the Extracellular and Intracellular Body Fluid of Hibernating Rhagium
	526	inquisitor Beetles. Comp Biochem Physiol A 65:347-350.
	527	Doney, S.C., M. Ruckelshaus, J.E. Duffy, J.P. Barry, F. Chan, C.A. English, H.M. Galindo, J.M.
53	528	Grebmeier, A.B. Hollowed, N. Knowlton, J. Polovina, N.N. Rabalais, W.J. Sydeman and
54 55	529	L.D. Talley. 2012. Climate Change Impacts on Marine Ecosystems. pp. 11-37 in C.A.
56 57		
58 59		
60		

2		
3 4	530	Carlson and S.J. Giovannoni, eds. Annual Review of Marine Science, Vol 4. Annual
5 6 7	531	Reviews, Palo Alto.
	532	Elnitsky, M.A., S.A.L. Hayward, J.P. Rinehart, D.L. Denlinger and R.E. Lee. 2008.
8 9	533	Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic
10 11	534	midge, Belgica antarctica. J Exp Biol 211:524-530.
12 13	535	Gaston, K.J. 2003. The Structure and Dynamics of Geographic Ranges. Oxford University Press,
14	536	Oxford.
15 16	537	Gibbs, A.G., F. Fukuzato and L.M. Matzkin. 2003. Evolution of water conservation mechanisms
17 18	538	in Drosophila. J Exp Biol 206:1183-1192.
19 20	539	Gibbs, A.G., and L.M. Matzkin. 2001. Evolution of water balance in the genus Drosophila. J
21	540	Exp Biol 204:2331-2338.
22 23	541	Gillespie, J.P., M.R. Kanost and T. Trenczek. 1997. Biological mediators of insect immunity.
24 25	542	Annu Rev Entomol 42:611-643.
26 27	543	Hadley, N.F. 1994. Water Relations of Terrestrial Arthropods. Academic Press, San Diego.
28 29	544	Harrison, J.F., H.A. Woods and S.P. Roberts. 2012. Ecological and Environmental Physiology of
30	545	Insects. Oxford, New York.
31 32	546	Harvell, C.D., C.E. Mitchell, J.R. Ward, S. Altizer, A.P. Dobson, R.S. Ostfeld and M.D. Samuel.
33 34	547	2002. Climate warming and disease risks for terrestrial and marine biota. Science
35 36	548	296:2158-2162.
37	549	Hayward, S.A.L., J.P. Rinehart, L.H. Sandro, R.E. Lee and D.L. Denlinger. 2007. Slow
38 39	550	dehydration promotes desiccation and freeze tolerance in the Antarctic midge Belgica
40 41	551	antarctica. 210:836-844.
42 43	552	Hoffmann, A.A. 2010. Physiological climatic limits in Drosophila: patterns and implications. J
44 45	553	Exp Biol 213:870-880.
46	554	Holmstrup, M., M. Bayley and H. Ramløv. 2002a. Supercool or dehydrate? An experimental
47 48	555	analysis of overwintering strategies in small permeable Arctic invertebrates. Proc Natl
49 50	556	Acad Sci USA 99:5716-5720.
51 52	557	Holmstrup, M., K. Hedlund and H. Boriss. 2002b. Drought acclimation and lipid composition in
53 54	558	Folsomia candida: implications for cold shock, heat shock and acute desiccation stress. J
55	559	Insect Physiol 48:961-970.
56 57		
58 59		
60		

2 3	500	IBCC 2007 Climate Change 2007: Synthesis report Intergovernmental Danel on Climate
4 5 6	560	IPCC. 2007. Climate Change 2007: Synthesis report. Intergovernmental Panel on Climate
	561	Change, Geneva.
7 8	562	Irwin, J.T., and R.E. Lee. 2002. Energy and water conservation in frozen vs. supercooled larvae
9 10	563	of the goldenrod gall fly, Eurosta solidaginis (Fitch) (Diptera : Tephritidae). J Exp Zool
11	564	292:345-350.
12 13	565	Irwin, J.T., and R.E. Lee, Jr. 2000. Mild winter temperatures reduce survival and potential
14 15	566	fecundity of the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae). J Insect
16	567	Physiol 46:655-661.
17 18	568	Kaneko, T., and N. Silverman. 2005. Bacterial recognition and signalling by the Drosophila
19 20	569	IMD pathway. Cell Microbiol 7:461-469.
21	570	Kellermann, V., V. Loeschcke, A.A. Hoffmann, T.N. Kristensen, C. Flojgaard, J.R. David, J.C.
22 23	571	Svenning and J. Overgaard. 2012. Phylogenetic constraints in key functional traits behind
24 25	572	species' climatic niches: Patterns of desiccation and cold resistance across 95 Drosophila
26 27	573	species. 66:3377-3389.
28 29 30 31 32	574	Knight, H., and M.R. Knight. 2001. Abiotic stress signalling pathways: specificity and cross-talk.
	575	Trends Plant Sci 6:262-267.
	576	Kostal, V., J. Vambera and J. Bastl. 2004. On the nature of pre-freeze mortality in insects: water
33 34	577	balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. J Exp
35 36	578	Biol 207:1509-1521.
37	579	Kostal, V., H. Zahradnikova, P. Simek and J. Zeleny. 2007. Multiple component system of
38 39	580	sugars and polyols in the overwintering spruce bark beetle, Ips typographus. J Insect
40 41	581	Physiol 53:580-586.
42 43	582	Krams, I., J. Daukste, I. Kivleniece, T. Krama and M.J. Rantala. 2011. Overwinter survival
44 45 46 47 48 49 50 51 52 53 54 55	583	depends on immune defence and body length in male Aquarius najas water striders.
	584	Entomol Exp Appl 140:45-51.
	585	Kristiansen, E., and K.E. Zachariassen. 2001. Effect of freezing on the transmembrane
	586	distribution of ions in freeze-tolerant larvae of the wood fly Xylophagus cinctus (Diptera,
	587	Xylophagidae). J Insect Physiol 47:585-592.
	588	Le Bourg, E., I. Massou and V. Gobert. 2009. Cold stress increases resistance to fungal infection
	589	throughout life in Drosophila melanogaster. Biogerontology 10:613-625.
56 57 58 59 60		

Page 27 of 37

1		27
2 3 4	590	Lee, R.E. 2010. A primer on insect cold tolerance. pp. 3-34 in D.L. Denlinger and R.E. Lee, eds.
5	591	Low Temperature Biology of Insects. Cambridge University Press, Cambridge.
6 7	592	Lee, R.E., M.A. Elnitsky, J.P. Rinehart, S.A.L. Hayward, L.H. Sandro and D.L. Denlinger. 2006.
8 9	593	Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica
10 11	594	antarctica. J Exp Biol 209:399-406.
12 13	595	Levis, N.A., SX. Yi and R.E. Lee. 2012. Mild desiccation rapidly increases freeze tolerance of
14	596	the goldenrod gall fly, Eurosta solidaginis: evidence for drought-induced rapid cold-
15 16	597	hardening. J Exp Biol 215:3768-3773.
17 18	598	Linderman, J.A., M.C. Chambers, A.S. Gupta and D.S. Schneider. 2012. Infection-Related
19 20	599	Declines in Chill Coma Recovery and Negative Geotaxis in Drosophila melanogaster.
21 22	600	PLoS One 7.
23	601	MacMillan, H.A., and B.J. Sinclair. 2011. The role of the gut in insect chilling injury: cold-
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	602	induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. J
	603	Exp Biol 214:726-734.
	604	MacMillan, H.A., J.P. Walsh and B.J. Sinclair. 2009. The effects of selection for cold tolerance
	605	on cross-tolerance to other environmental stressors in Drosophila melanogaster. Insect Sci
	606	16:263-276.
	607	MacMillan, H.A., C.M. Williams, J.F. Staples and B.J. Sinclair. 2012a. Metabolism and energy
	608	supply below the critical thermal minimum of a chill-susceptible insect. J Exp Biol
	609	215:1366-1372.
39 40	610	Macmillan, H.A., C.M. Williams, J.F. Staples and B.J. Sinclair. 2012b. Reestablishment of ion
41	611	homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. Proc Natl
42 43	612	Acad Sci USA 109:20750-20755.
44 45	613	Marshall, K.E., and B.J. Sinclair. 2011. The sub-lethal effects of repeated freezing in the woolly
46 47	614	bear caterpillar Pyrrharctia isabella. J Exp Biol 214:1205-1212.
48	615	Marshall, K.E., and B.J. Sinclair. 2012. Threshold temperatures mediate the impact of reduced
49 50	616	snow cover on overwintering freeze-tolerant caterpillars. Naturwissenschaften 99:33-41.
51 52	617	Moon, I., S. Fujikawa and K. Shimada. 1996. Cryopreservation of <i>Chymomyza</i> larvae (Diptera:
53 54	618	Drosophilidae) at -196 degrees C with extracellular freezing. Cryo-Lett 17:105-110.
54 55 56	619	Moret, Y., and P. Schmid-Hempel. 2000. Survival for immunity: The price of immune system
57	620	activation for bumblebee workers. Science 290:1166-1168.
58 59 60		

2		
3 4	621	Mowlds, P., A. Barron and K. Kavanagh. 2008. Physical stress primes the immune response of
5 6	622	Galleria mellonella larvae to infection by Candida albicans. Microbes Infect 10:628-634.
7	623	Nakamura, A., K. Miyado, Y. Takezawa, N. Ohnami, M. Sato, C. Ono, Y. Harada, K. Yoshida,
8 9	624	N. Kawano, S. Kanai, M. Miyado and A. Umezawa. 2011. Innate immune system still
10 11	625	works at diapause, a physiological state of dormancy in insects. Biochem Biophys Res
12 13	626	Commun 410:351-357.
14	627	Nota, B., M. Bosse, B. Ylstra, N.M. van Straalen and D. Roelofs. 2009. Transcriptomics reveals
15 16	628	extensive inducible biotransformation in the soil-dwelling invertebrate Folsomia candida
17 18	629	exposed to phenanthrene. BMC Genomics 10.
19 20	630	Rajamohan, A., and B.J. Sinclair. 2008. Short-term hardening effects on survival of acute and
21	631	chronic cold exposure by Drosophila melanogaster larvae. J Insect Physiol 54:708-718.
22 23	632	Rajamohan, A., and B.J. Sinclair. 2009. Hardening trumps acclimation in improving cold
24 25	633	tolerance of Drosophila melanogaster larvae. Physiol Entomol 34:217-223.
26 27	634	Rider, M.H., N. Hussain, S.M. Dilworth, J.M. Storey and K.B. Storey. 2011. AMP-activated
28 29	635	protein kinase and metabolic regulation in cold-hardy insects. J Insect Physiol 57:1453-
30	636	1462.
31 32	637	Rinehart, J.P., A. Li, G.D. Yocum, R.M. Robich, S.A.L. Hayward and D.L. Denlinger. 2007. Up-
33 34	638	regulation of heat shock proteins is essential for cold survival during insect diapause. Proc
35 36	639	Nat Acad Sci USA 104:11130-11137.
37 38	640	Ring, R.A., and H.V. Danks. 1994. Desiccation and cryoprotection: Overlapping adaptations.
39	641	Cryo-Lett 15:181-190.
40 41	642	Rolff, J., and M.T. Siva-Jothy. 2003. Invertebrate ecological immunology. 301:472-475.
42 43	643	Sadd, B.M., Y. Kleinlogel, R. Schmid-Hempel and P. Schmid-Hempel. 2005. Trans-generational
44 45	644	immune priming in a social insect. Biol Lett 1:386-388.
46	645	Saito, H., and F. Posas. 2012. Response to Hyperosmotic Stress. Genetics 192:289-318.
47 48	646	Schmid-Hempel, P. 2005. Evolutionary ecology of insect immune defenses. Ann Rev Entomol
49 50	647	50:529-551.
51 52	648	Sformo, T., K. Walters, K. Jeannet, B. Wowk, G.M. Fahy, B.M. Barnes and J.G. Duman. 2010.
53 54	649	Deep supercooling, vitrification and limited survival to-100 degrees C in the Alaskan
55	650	beetle Cucujus clavipes puniceus (Coleoptera: Cucujidae) larvae. J Exp Biol 213:502-509.
56 57		
58 59		
60		

Page 29 of 37

2		
3 4	651	Sim, C., and D.L. Denlinger. 2011. Catalase and superoxide dismutase-2 enhance survival and
5 6	652	protect ovaries during overwintering diapause in the mosquito Culex pipiens. J Insect
7	653	Physiol 57:628-634.
8 9	654	Sinclair, B.J. 2000. Water relations of the freeze-tolerant New Zealand alpine cockroach
10 11	655	Celatoblatta quinquemaculata (Dictyoptera: Blattidae). J Insect Physiol 46:869-876.
12 13	656	Sinclair, B.J., and S.L. Chown. 2003. Rapid responses to high temperature and desiccation but
14	657	not to low temperature in the freeze tolerant sub-Antarctic caterpillar Pringleophaga
15 16	658	marioni (Lepidoptera, Tineidae). J Insect Physiol 49:45-52.
17 18	659	Sinclair, B.J., A.G. Gibbs and S.P. Roberts. 2007a. Gene transcription during exposure to, and
19 20	660	recovery from, cold and desiccation stress in Drosophila melanogaster. Insect Mol Biol
21	661	16:435-443.
22 23	662	Sinclair, B.J., S. Nelson, T.L. Nilson, S.P. Roberts and A.G. Gibbs. 2007b. The effect of
24 25	663	selection for dessication resistance on cold tolerance of Drosophila melanogaster. Physiol
26 27	664	Entomol 32:322-327.
28 29	665	Sinclair, B.J., P. Vernon, C.J. Klok and S.L. Chown. 2003. Insects at low temperatures: an
30	666	ecological perspective. Trends Ecol Evol 18:257-262.
31 32	667	Siva-Jothy, M.T., and J.J.W. Thompson. 2002. Short-term nutrient deprivation affects immune
33 34	668	function. Physiol Entomol 27:206-212.
35 36	669	Sjursen, H., M. Bayley and M. Holmstrup. 2001. Enhanced drought tolerance of a soil-dwelling
37	670	springtail by pre-acclimation to a mild drought stress. J Insect Physiol 47:1021-1027.
38 39	671	Sørensen, J.G., L.H. Heckmann and M. Holmstrup. 2010. Temporal gene expression profiles in a
40 41	672	palaearctic springtail as induced by desiccation, cold exposure and during recovery. Funct
42 43	673	Ecol 24:838-846.
44 45	674	Stanley, D. 2006. Prostaglandins and other eicosanoids in insects: Biological significance. Annu
46	675	Rev Entomol 51:25-44.
47 48	676	Tauber, M.J., C.A. Tauber and S. Masaki. 1986. Seasonal Adaptations of Insects. Oxford
49 50	677	University Press, New York.
51 52	678	Teets, N.M., Y. Kawarasaki, R.E. Lee and D.L. Denlinger. 2012. Energetic consequences of
53	679	repeated and prolonged dehydration in the Antarctic midge, Belgica antarctica. J Insect
54 55	680	Physiol 58:498-505.
56 57		
58 59		
60		

3 4	681	Teets, N.M., Y. Kawarasaki, R.E. Lee and D.L. Denlinger. in press. Expression of genes			
5 6 7 8 9 10 11 12 13	682	involved in energy mobilization and osmoprotectant synthesis during thermal and			
	683	dehydration stress in the Antarctic midge, Belgica antarctica.			
	684	Telonis-Scott, M., K.M. Guthridge and A.A. Hoffmann. 2006. A new set of laboratory-selected			
	685	Drosophila melanogaster lines for the analysis of desiccation resistance: response to			
	686	selection, physiology and correlated responses. J Exp Biol 209:1837-1847.			
14	687	Thomas, M.B., and S. Blanford. 2003. Thermal biology in insect-parasite interactions. 18:344-			
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 32 33 34 35 36 37 20	688	350.			
	689	Thomson, L.J., S. Macfadyen and A.A. Hoffmann. 2010. Predicting the effects of climate change			
	690	on natural enemies of agricultural pests. Biol Control 52:296-306.			
	691	Tidbury, H.J., A.B. Pedersen and M. Boots. 2010. Within and transgenerational immune priming			
	692	in an insect to a DNA virus.			
	693	Walther, G.R. 2010. Community and ecosystem responses to recent climate change. Phil Trans R			
	694	Soc B 365:2019-2024.			
	695	Webberley, K.M., and G.D.D. Hurst. 2002. The effect of aggregative overwintering on an insect			
	696	sexually transmitted parasite system. J Parasitol 88:707-712.			
	697	Williams, C.M., K.E. Marshall, H.A. Macmillan, J.D.K. Dzurisin, J.J. Hellmann and B.J.			
	698	Sinclair. 2012. Thermal variability increases the impact of autumnal warming and drives			
	699	metabolic suppression in an overwintering butterfly. PloS ONE 7:e34470.			
	700	Williams, J.B., and R.E. Lee. 2011. Effect of freezing and dehydration on ion and cryoprotectant			
38 39	701	distribution and hemolymph volume in the goldenrod gall fly, Eurosta solidaginis. J Insect			
40 41	702	Physiol 57:1163-1169.			
42 43	703	Xu, J., and R.R. James. 2012. Temperature stress affects the expression of immune response			
44 45	704	genes in the alfalfa leafcutting bee, Megachile rotundata. Insect Mol Biol 21:269-280.			
46	705	Yancey, P.H. 2005. Organic osmolytes as compatible, metabolic and counteracting			
47 48	706	cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819-2830.			
49 50	707	Yi, S.X., and R.E. Lee. 2003. Detecting freeze injury and seasonal cold-hardening of cells and			
51 52	708	tissues in the gall fly larvae, Eurosta solidaginis (Diptera : Tephritidae) using fluorescent			
52 53 54 55 56 57 58 59	709	vital dyes. J Insect Physiol 49:999-1004.			
	710	Zachariassen, K.E. 1991. The water relations of overwintering insects. pp. 47-63 in R.E. Lee, Jr			
	711	and D.L. Denlinger, eds. Chapman and Hall, New York.			
60					

Page 31 of 37

1 2		
3 4	712	Zachariassen, K.E., and S. Einarson. 1993. Regulation of body fluid compartments during
5	713	dehydration of the tenebrionid beetle Rhytinota praelonga. J Exp Biol 182:283-289.
6 7	714	Zhang, J., K.E. Marshall, J.T. Westwood, M.S. Clark and B.J. Sinclair. 2011. Divergent
8 9	715	transcriptomic responses to repeated and single cold exposures in Drosophila
10 11	716	melanogaster. J Exp Biol 214:4021-4029.
12 13	717	
14 15	718	
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 435 36 37 38 39 40 41	719	
42 43		
43 44 45		
46		
47 48		
49 50		
51 52 53 54 55 56		
57 58 59 60		

1	
2	
2	
1	
4 F	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 10 2 1 2 2 3 2 4 2 5 2 6	
19	
20	
20	
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 4 35 36	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
53 54 55 56	
55	
20	
57	
58	
59	
60	

737

738

739

740

in spring for overwintering insects).

720	Figure Captions
721	Figure 1: Two different mechanisms underlying coordinated physiological responses to
722	environmental stress. (A) Cross-talk, whereby a stress activates signaling pathways that lead to
723	responses that protect against several different stressors using different mechanisms at the
724	cellular level. (B) Cross-tolerance, whereby independent activation of pathways leads to
725	physiological responses that offer overlapping protection at the cellular level.
726	
727	Figure 2: Cold and desiccation have similar impacts at the cellular level. Susceptible insects
728	lose water from the hemocoel either to the gut (cold, A) or to the environment (desiccation, B).
729	(C, D) Addition of osmoprotectants can reduce the rate of water loss, thereby increasing
730	resistance to the stress while (E) freeze-tolerant organisms allow osmotic dehydration to occur,
731	which, at a cellular level, is very similar to dehydration tolerance (F).
732	
733	Figure 3: Three exemplar scenarios of changes in interacting stressors. (A) The current timing
734	and magnitude of the two stressors. (B) No change in timing, but an increase in the severity of
735	both stressors (e.g. acidification and warming in marine systems). (C) No change in timing, but

an increase in the severity of one stressor and a decrease in the other (e.g. reduced extreme cold

stress is coupled with increased energetic demands in overwintering insects). (D) Severity of

stresses remains the same, but there is a shift in the timing of one of the stressors (e.g. changing

precipitation patterns could lead to increased cold stress in autumn, but increased energetic stress

Table 1: Evidence of the relationship between low temperature and the immune response in insects.

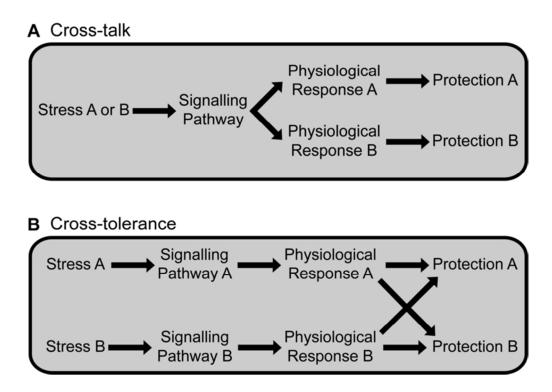
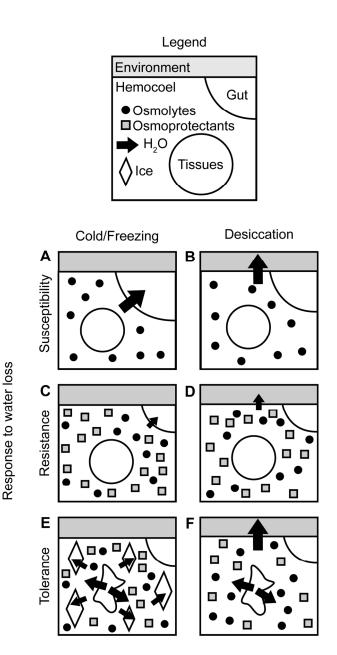
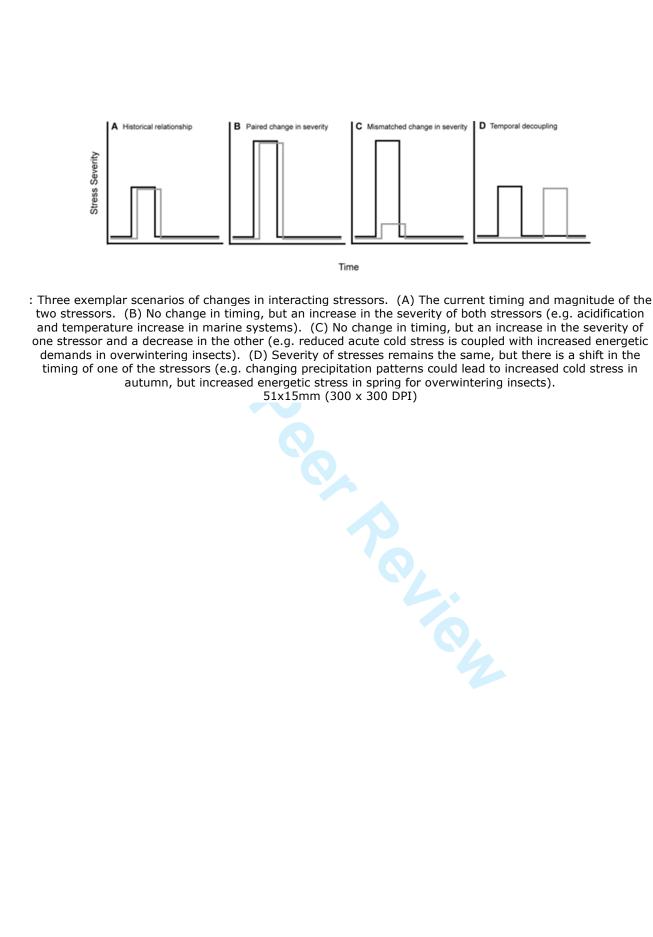

Species	Order	Evidence	Reference
Drosophila	Diptera	Cold stress increases adults' resistance to fungal	(Le Bourg et al. 2009)
melanogaster		infection	
		Upregulated immune-related gene expression	(Zhang et al. 2011)
		after a single short exposure to cold in adults	
		Bacterial infection increases time to recovery	(Linderman et al. 2012)
		from chill coma recovery in adults	
Pyrrharctia isabella	Lepidoptera	Repeated freezing increases larval survival of	(Marshall and Sinclair 2011
		challenges from fungi	
Megachile rotundata	Hymenoptera	Upregulation of immune response genes after	(Xu and James 2012)
		exposure to chronic low temperature	
Aquarius najas	Heteroptera	Males with a greater capacity for encapsulation	(Krams et al. 2011)
		(positively correlated with body size) have	
		increased survival over winter	
		http://mc.manuscriptcentral.com/icbiol	

Table 2: Possible responses to changes in the relationship among multiple stressors depicted in Figure 3, depending on whether cross talk or cross-tolerance underlie the responses. The nature of the changes will also depend on the costs associated with the activation
 of pathways and with the physiological responses.

Cross-talk	Paired change in severity	Mismatched change in severity	Temporal decoupling
Mechanistic consequence	Necessary activation of both pathways	Unnecessary or excessive activation of one pathway *	Activation of grey pathway does not coincide with grey stress
Overall cost or benefit	No cost (unless stresses exceed capacity for response)	Unnecessary diversion of energy to wrong pathway	Loss of appropriate preparation for, or response to, grey stress ^{\dagger}
Evolutionary response	Selection for cross-talk	Selection against cross-talk	Selection against cross-talk [†]
Cross-tolerance			ç
Mechanistic consequence	Necessary activation of both pathways	Necessary activation of both pathways	Disjointed activation of pathways
Overall cost or benefit	No cost (unless stresses exceed capacity for response)	No cost	Depends on whether survival relies on co-activation of physiological responses
Evolutionary response	Selection for cross-tolerance	No selection against cross- tolerance	Depends on costs and benefits of the cross-tolerance


*Assuming dose-dependency, i.e., that the magnitude of response is dependent upon the magnitude of stress.

[†]Unless the duration of the response still provides adequate protection.



Two different mechanisms underlying coordinated physiological responses to environmental stress. (A) Cross-talk, whereby a stress activates signaling pathways that lead to responses that protect against several different stressors using different mechanisms at the cellular level. (B) Cross-tolerance, whereby independent activation of pathways leads to physiological responses that offer overlapping protection at the cellular level.

62x44mm (300 x 300 DPI)

Cold and desiccation have similar impacts at the cellular level. Susceptible insects lose water from the hemocoel either to the gut (cold, A) or to the environment (desiccation, B). (C, D) Addition of osmoprotectants can reduce the rate of water loss, increasing resistance to the stress while (E) freeze tolerant organisms allow osmotic dehydration to occur, which, at a cellular level, is very similar to dehydration tolerance (F). 126x239mm (300 x 300 DPI)

