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Abstract
Compound risk models are widely used in insurance companies to mathematically describe

their aggregate amount of losses during a certain time period. However, the evaluation of the
distribution of compound random variables and the computation of the relevant risk measures
are non-trivial. Therefore, the main purpose of this thesis is to study the bounds and simulation
methods for both univariate and multivariate compound distributions. The premium setting
principles related to dependent multivariate compound distributions are studied. .

In the first part of this thesis, we consider the upper and lower bounds of the tail of bi-
variate compound distributions. Our results extend those in the literature (e.g. Willmot and
Lin (1994) and Willmot et al. (2001)) for univariate compound distributions. First, we derive
the exponential upper bounds when the claim size distribution is light-tailed with a finite mo-
ment generating function. Second, we present generalized upper and lower bounds when the
claim size distribution is heavy-tailed without a finite moment generating function. Numerical
examples are provided to illustrate the tightness of these bounds.

In the second part of the thesis, we develop several novel variance reduction techniques for
simulating tail probability and mean excess loss of the univariate and bivariate compound mod-
els. These techniques stem from possible combinations of existing commonly used variance
reduction techniques. Their performances are evaluated in detail.

In the third part of the thesis, we investigate the premium setting principles when the claim
frequencies and claim severities in multiple collective risk models are correlated via a back-
ground risk. We develop a novel methodology of premium setting and numerically illustrate
how model parameters influence the premium level. Two empirical methods and a parametric
fitting method are provided for pricing and corresponding performance assessments are pre-
sented.

Keywords: compound risk model, tail probability, upper bound, simulation, variance
reduction method, mean excess loss, moment transform, background risk.
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Summary for Lay Audience
Compound risk models are widely used in insurance companies to mathematically describe

their aggregate amount of losses during a certain time period. The tail probability and tail mo-
ments of the aggregate losses are important risk measures of the insurer’s operation. Therefore,
their accurate evaluation is essential in premium setting and risk management of insurance
companies. However, the calculation of the tail probabilities and the tail moments of the com-
pound random variables are non-trivial because compound variables usually do not have an
explicit probability distribution function - even for the one-dimensional case.

Literature on evaluation of the tail probability and tail moments for univariate compound
risk models is extensive. However, results for multivariate compound risk models with depen-
dence are much less. Therefore, the main purpose of this thesis is to develop a methodology to
study the tail probability and tail moments of multivariate compound risk models.

In particular, in the first part of the thesis, we derive theoretical upper bounds for the tail
probability of bivariate compound distributions. The results provide an analytical way to char-
acterize tail behavior of the insurance companies’ aggregate losses in two lines of businesses.
Our result generalizes those for univariate models in the literature.

In the second part of the thesis, we develop several novel techniques to e�ciently simu-
late tail probability and mean excess loss of the univariate and bivariate compound models.
The methodologies are developed particularly for compound variables. We show that the our
proposed simulation method is much more e�cient than the simple crude simulation methods;
they are essentially based on combining existing variance-reduction methods.

In the third part of the thesis, we study a multivariate compound risk model where claim
frequencies and claim severities are correlated via a background risk. We introduce a new
premium setting methodology and provide both non-parametric and parametric methods for
parameter estimation and apply them in premium setting.
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Chapter 1

Introduction

In the collective risk model, the aggregate loss of an insurance company during a given time
period, is modeled by a compound random variable

S =
M

X

i=1

Xi (1.1)

where M denotes the claim number in the given time period, and X1, . . . , XM denote the claim
severities. The Xi’s are usually assumed to be independent and identically distributed (i.i.d.)
and they are independent of M. The classical collective risk model and some of its variants are
introduced in popular actuarial textbooks such as Klugman et al. (2012) in great details.

An evaluation of the tail probability and the tail moments is not easy, even when the distri-
bution of M and Xi are known. One usually has to resort to recursive formulas, such as these
proposed in Panjer (1981) for the case when the distribution of M belongs to the (a, b, 0) class.
There is extensive literature on further developments related to the Panjer’s recursive formula.
For details, one is referred to the comprehensive book by Sundt and Vernic (2009).

Transform based techniques, such as fast Fourier transform (FFT), are also widely used in
calculating the distribution of aggregated claims. For an introduction, one can refer to Robert-
son (1992) or Wang (1998). Embrechts and Frei (2009) provided an excellent comparison of
the recursive and FFT methods.

Simulation methods are flexible and can be handy in estimation of the tail probability/moments
of compound distributions. However, they are subject to sampling errors.

Instead of deriving the exact expressions for the distribution of compound losses, there is
extensive research about upper and lower bounds for the distributions. In the most general
case, exponential Chebyshev’s inequality provides a rough upper bound P[S > x]  e�txE[etS ],
as long as E

⇥

etS ⇤ < 1 for some t > 0. Willmot and Lin (1994) showed that the tail probability
of S has an exponential upper bound when the Xi’s are light-tailed and the failure rate of M
is always less than 1. Later, Willmot et al. (2001) extended their previous results to S with
heavy-tailed severities and obtained general upper and lower bound by applying a class of
distributions, which we will introduce in detail in the body of the thesis.

Recently, research began to pay more attention to multivariate risk models because insurers
typically face multiple sources of claims. Sundt (1999) studied the joint distribution of the

1



2 Chapter 1. Introduction

aggregate losses:

(S 1, S 2) =
M

X

i=1

(X1,i, X2,i), (1.2)

where each claim generates a two-dimensional random vector representing two types of de-
pendent losses.

Another type of model for two lines of insurance businesses is

(S 1, S 2) =
✓

M
X

i=1

Xi,
N

X

j=1

Yj

◆

. (1.3)

In order to model the interdependence between risks S 1 and S 2 from di↵erent sources, some
assume that counting variables (M,N) are dependent but all the claim sizes Xi’s and Yj’s are
mutually independent non-negative variables and are independent of (M,N). For example, this
kind of model is commonly-used in modeling auto insurance, where M and N could represent
the numbers of claims from bodily injury and property damages, respectively. Concerning
about such kind of bivariate aggregate claims random variables, Hesselager (1996) introduced
and derived recursive formulas for the joint distributions of (S 1, S 2) when the Xi’s and Yj’s are
integer-valued variables.

For a general introduction to the aggregation of dependent risk portfolios, one is referred
to Wang (1998), which discussed several commonly used correlated models such as multi-
variate Poisson mixture model and common shock model. Specifically, the bivariate Poisson
mixture model assumes frequencies M ⇠ Pois(�1⇥) and N ⇠ Pois(�2⇥) with common mixing
parameter ⇥, whereas the common shock model constructs frequencies as M = M0 + Z and
N = N0 + Z with independent M0, N0. The latter model was explored in detail in Meyers
(2007). Instead of using recursions, Jin and Ren (2010) extended the tilting method associated
with FFT method (Grübel and Hermesmeier (1999)) to three specific aggregate claim models
introduced in Hesselager (1996).

There are many variants of models for dependent losses. We summarize some in the follow-
ing. Boudreault et al. (2006) considered a dependence structure among the interclaim time and
subsequent claim size, which is an extension to the classic compound Poisson risk model. In
addition, Cossette et al. (2008) constructed a dependence structure between the claim amounts
and interclaim time via a generalized Farlie-Gumbel-Morgenstern copula. Kousky and Cooke
(2009) assume dependence among claim severities from natural disasters, where normal copula
and Gumbel copula are used. Martel-Escobar et al. (2012) modeled the dependence between
parameters of primary distribution and secondary distribution by a Farlie-Gumbel-Morgenstern
family. Czado et al. (2012) considered a Gaussian copula to allow the dependence between the
average claim size and the number of claims. Such copula-based regression models were ex-
tended to more general copula families such as Clayton, Gumbel and Frank by Krämer et al.
(2013). Shi et al. (2015) explored methods that allow for the correlation among frequency and
severity components under a hurdle modeling framework. Sarabia et al. (2016) worked on ag-
gregated risks with claim amounts following multivariate dependent Pareto distributions in the
individual risk model. They also explored several relevant collective risk models with Poisson,
negative binomial and logarithmic distribution as primary distribution. Cossette et al. (2018)



3

constructed a dependence structure among claim severities by Archimedean copula in the indi-
vidual risk model and investigated such a model with regard to aggregation, capital allocation
and ruin problems.

In Chapter 2, we study the upper and lower bounds for the tail probability of the bivariate
compound distributions defined in (1.3). Our results generalize those in Willmot and Lin (1994)
and Willmot et al. (2001). In particular, exponential upper bounds are derived when the claim
size distribution is light-tailed with a finite moment generating function. Generalized upper
and lower bounds are presented when the claim size distribution is heavy-tailed without a finite
moment generating function.

In Chapter 3, we develop several novel variance reduction techniques for simulating tail
probability and mean excess loss of the classical univariate collective risk model S . These
techniques are then extended to simulating tail probability and mean excess loss of the bivariate
compound model (S 1, S 2). We compare their performance with existing variance reduction
techniques which are commonly used. The results show that our new simulation methods are
highly e↵ective.

In Chapter 4, we study premium pricing for multiple business lines when claim frequencies
and claim severities are dependent through a background risk. We illustrate how di↵erent pa-
rameters influence the premiums. Based on whether the background risk levels can be directly
observed, two non-parametric methods are given to estimate the premiums empirically. We
also study a parametric model and provide a parameter fitting methodology.



Chapter 2

Bounds for the tail of bivariate compound
distributions

2.1 Introduction and literature review
In classical risk theory, the aggregate claims of an insurance company during a time period

are modeled by the compound random variable

S =
M

X

i=1

Xi, (2.1)

where M is the claim number variable with probability function pm = P[M = m]. X1, X2, . . .
are non-negative independent identically distributed claim size random variables independent
of M with a common distribution function (d.f.) F(x) = P[Xi  x], x � 0. Let

P(z) =
1
X

m=0

pmzm, |z| < z0, (2.2)

be the probability generating function (p.g.f) of M, where z0 represents the radius of conver-
gence of P(z). Further, we define the survival function of M by

am =

1
X

i=m+1

pi, m = 0, 1, 2, . . . , (2.3)

which is central to our discussions and the corresponding generating function (e.g. Feller
(1968))

A(z) =
1
X

m=0

amzm =
1 � P(z)

1 � z
, |z| < z0. (2.4)

An important question in actuarial science concerns the tail probability of S , defined by

 (x) = P[S > x] =
1
X

m=1

pmF
⇤m

(x), x � 0, (2.5)

4



2.1. Introduction and literature review 5

where F
⇤m

(x) = 1 � F⇤m(x) with F⇤m(x) being the d.f. of X1 + X2 + · · · + Xm.
Several methods have been developed to determine the tail probability  (x). From Feller

(1971), p. 447, one has for t > 0

 ̃(t) =
Z 1

0
e�tx (x)dx =

1 � E
⇥

e�tS ⇤

t
=

1 � P
⇥

f̃ (t)
⇤

t
, (2.6)

where
f̃ (t) = E

⇥

e�tXi
⇤

=

Z 1

0
e�txdF(x), (2.7)

is the Laplace transform of the claim size distribution. Bryan (1999) provided an analytical
inversion formula for the Laplace transform, but the paper also mentioned that such a means is
not very practical to implement. Wang (1998) mentioned an e�cient method to approximate
 (x) numerically by fast Fourier transform. On the other hand, the tail probability can be
calculated using the Panjer’s recursive method (e.g. Dhaene et al. (1999)). For a book-long
analysis of the Panjer’s recursive method, one is referred to Sundt and Vernic (2009).

However, the methods mentioned above may not provide simple analytic forms for  (x)
. Consequently, simple bounds and approximations are useful. In the most general case, a
related inequality sometimes known as the exponential Chebyshev’s inequality states that

P[S > x] = P[etS > etx]  e�txE[etS ], t > 0, (2.8)

as long as E
⇥

etS ⇤ < 1, which is a simple extension to classical Chebyshev’s inequality. In
the special case when pm = (1 � q)qm,  (x) may be interpreted as a ruin probability in a ruin
process setting, thus the classical Lundberg inequality states that

 (x)  e�x, x � 0, (2.9)

where  > 0 satisfies f̃ (�) = q�1, seeing Gerber (1979) for detail. To apply this inequality,
one has to assume that the claim size distribution has a finite moment generating function.

Other Lundberg type bound for the tail of compound distribution had also been studied in
the literature. Willmot and Lin (1994) showed that

Proposition 2.1.1. If there exists a � 2 (0, 1), such that

am+1  �am, m = 0, 1, 2, . . . , (2.10)

then
 (x)  a0

�
e�x, x � 0, (2.11)

where  > 0 satisfies

��1 =

Z 1

0
etdF(t). (2.12)

Later, this classical Lundberg inequality was proved by Gerber (1994) using martingale
theory. In addition, Willmot and Lin (1994) also discussed di↵erent choices of � depending on
the failure rate characterizations and classes of counting distributions. Specifically, let

hm =
pm

am
(2.13)
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be the discrete failure rate, then one has

am+1

am
=

1
1 + hm+1

. (2.14)

A further generalization of (2.11) was proved in Willmot (1994) by applying the reliability
classification of distributions, introduced in Barlow and Proschan (1975). To introduce the
idea, we need the following definition:

Definition Assuming that B(x) is the d.f. of a non-negative random variable and letting B(x) =
1 � B(x), then B(x) is new worse than used (NWU) if

B(x)B(y)  B(x + y) (2.15)

for x � 0 and y � 0. On the contrary, B(x) belongs to new better than used (NBU) distributions
if

B(x)B(y) � B(x + y). (2.16)

Among the NWU class, the subclass consisting of absolutely continuous distributions with
decreasing failure rate (DFR) are widely known and used. In contrast, continuous distribu-
tions with increasing failure rate (IFR) are important cases of NBU class. For example, an
exponential distribution is both DFR and IFR, and a Gamma(↵, �) distribution is DFR (IFR) if
↵  (�)1.

Lin (1996) derived upper and lower bounds for various compound distributions in terms
of (NWU) and (NBU) distributions, respectively. By using properties of the claim size dis-
tribution, Willmot and Lin (1997) derived simpler bounds than those of Lin (1996) and gave
applications in various situations. After referencing Cai and Wu (1997) which proved Lin’s
result inductively, Willmot et al. (2001) reconstructed their previous results and obtained a
computable upper bound for aggregate claims with heavy tail severities:

Proposition 2.1.2. If � 2 (0, 1) satisfies (2.10), and B(x) is a NWU d.f. satisfying
Z 1

0
{B(x)}�1dF(x) =

1
�
, (2.17)

then
 (x)  a0

�
B(x), x � 0. (2.18)

The results above was applied to compound geometric distributions, which play an impor-
tant role in insurance risk theory. See Willmot et al. (2001) for detail.

In this chapter, we extend the above results and derive bounds for bivariate aggregate claim
random variables

(S 1, S 2) =
�

M
X

i=1

Xi,
N

X

j=1

Yj
�

, (2.19)

where claim sizes Xi’s, Yj’s are mutually independent and are independent of claim frequencies
(M,N). The tail probability of the bivariate compound distributions is defined by

H(x, y) , P[S 1 > x, S 2 > y] =
1
X

m=1

1
X

n=1

pm,nF
⇤m

(x)G
⇤n

(y), x, y � 0, (2.20)
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where pm,n = P[M = m,N = n] for m, n = 0, 1, 2, . . . , with F and G being d.f. of Xi’s and Yj’s
respectively. Similar to the quantities am in the univariate case, we define

am,n =

1
X

i=m+1

1
X

j=n+1

pi, j, m, n = 0, 1, 2, . . . . (2.21)

The remainder of this chapter is organized as follows. In Section 2.2, two lemmas are given
on bivariate tail probability H(x, y), which are important in the derivation of the subsequent
theorems. In Section 2.3, we derive the exponential upper bounds for bivariate compound
distributions when the claim size distribution is light-tailed with a finite moment generating
function. We evaluate the tightness of our exponential bounds analytically by comparing them
to the Lundberg bounds in Willmot and Lin (1994) for univariate case. A bivariate geometric
aggregated example is given to verify our analytic results numerically. Furthermore, we relax
the constraints to make the upper bound eligible for more commonly used bivariate claim fre-
quency distributions. Section 2.4 presents upper and lower bounds which further generalize
those in Section 2.3 for a wider range of claim size distributions even without a finite moment
generating function. Several corollaries are given for the purpose of computation and applica-
tion. We also provide an example to illustrate how our general upper bounds can be used when
claim size moments are known. Section 2.5 concludes this chapter.

2.2 Two lemmas
Before we derive our main results, we introduce two Lemmas.

Define

Hk,l(x, y) =
k

X

m=0

l
X

n=0

am,n
�

F
⇤(m+1)

(x)G
⇤(n+1)

(y) + F
⇤m

(x)G
⇤n

(y)

� F
⇤m

(x)G
⇤(n+1)

(y) � F
⇤(m+1)

(x)G
⇤n

(y)
 

. (2.22)

Then we have the following lemma:

Lemma 2.2.1.
lim

k,l!1
Hk,l(x, y) = H(x, y).

Proof. Since

am,n = am+1,n+1 +

1
X

i=m+2

pi,n+1 +

1
X

j=n+2

pm+1, j + pm+1,n+1, (2.23)

1
X

i=m+2

pi,n+1 = am+1,n � am+1,n+1 (2.24)

and
1
X

j=n+2

pm+1, j = am,n+1 � am+1,n+1, (2.25)
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we can directly obtain that

am,n = am+1,n + am,n+1 + pm+1,n+1 � am+1,n+1. (2.26)

Then we rearrange Hk,l(x.y) as

Hk,l(x, y) =
k

X

m=0

l
X

n=0

pm+1,n+1F
⇤(m+1)

(x)G
⇤(n+1)

(y)

+

k
X

m=0

l
X

n=0

am,nF
⇤m

(x)G
⇤n

(y) �
k

X

m=0

l
X

n=0

am+1,n+1F
⇤(m+1)

(x)G
⇤(n+1)

(y)

+

k
X

m=0

l
X

n=0

am+1,nF
⇤(m+1)

(x)G
⇤(n+1)

(y) �
k

X

m=0

l
X

n=0

am,nF
⇤m

(x)G
⇤(n+1)

(y)

+

k
X

m=0

l
X

n=0

am,n+1F
⇤(m+1)

(x)G
⇤(n+1)

(y) �
k

X

m=0

l
X

n=0

am,nF
⇤(m+1)

(x)G
⇤n

(y)

=

k
X

m=0

l
X

n=0

pm+1,n+1F
⇤(m+1)

(x)G
⇤(n+1)

(y)

+

k
X

m=1

l
X

n=1

am,nF
⇤m

(x)G
⇤n

(y) �
k+1
X

m=1

l+1
X

n=1

am,nF
⇤m

(x)G
⇤n

(y)

+

k+1
X

m=1

l
X

n=0

am,nF
⇤m

(x)G
⇤(n+1)

(y) �
k

X

m=1

l
X

n=0

am,nF
⇤m

(x)G
⇤(n+1)

(y)

+

k
X

m=0

l+1
X

n=1

am,nF
⇤(m+1)

(x)G
⇤n

(y) �
k

X

m=0

l
X

n=1

am,nF
⇤(m+1)

(x)G
⇤n

(y)

=

k
X

m=0

l
X

n=0

pm+1,n+1F
⇤(m+1)

(x)G
⇤(n+1)

(y) + ak+1,l+1F
⇤(k+1)

(x)G
⇤(l+1)

(y)

�
k+1
X

m=1

am,l+1F
⇤m

(x)G
⇤(l+1)

(y) �
l+1
X

n=1

ak+1,nF
⇤(k+1)

(x)G
⇤n

(y)

+

k
X

m=0

am,l+1F
⇤(m+1)

(x)G
⇤(l+1)

(y) +
l

X

n=0

ak+1,nF
⇤(k+1)

(x)G
⇤(n+1)

(y)

=

k
X

m=0

l
X

n=0

pm+1,n+1F
⇤(m+1)

(x)G
⇤(n+1)

(y) + ak+1,l+1F
⇤(k+1)

(x)G
⇤(l+1)

(y)

+

k
X

m=0

1
X

j=l+2

pm+1, jF
⇤(m+1)

(x)G
⇤(l+1)

(y) +
l

X

n=0

1
X

i=k+2

pi,n+1F
⇤(k+1)

(x)G
⇤(n+1)

(y). (2.27)

The last three terms tend to 0 when k, l! 1. This ends our proof.

Remark 2.2.1. The four terms in equation (2.27) represent, respectively:
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• the probability of
�PM

i=1 Xi > x,
PN

j=1 Yj > y
�

, 1  N  k + 1 and 1  M  l + 1;

• the probability of
�Pk+1

i=1 Xi > x,
Pl+1

j=1 Yj > y
�

, N > k + 1 and M > l + 1;

• the probability of
�PM

i=1 Xi > x,
Pl+1

j=1 Yj > y
�

, 1  N  k + 1 and M > l + 1;

• the probability of
�Pk+1

i=1 Xi > x,
PN

j=1 Yj > y
�

, N > k + 1 and 1  M  l + 1.

Hence, we could interpret Hk,l(x, y) as

Hk,l(x, y) = P


min{M,k+1}
X

i=1

Xi > x,
min{N,l+1}

X

j=1

Yj > y
�

. (2.28)

Letting k, l! 1 leads to Lemma 2.2.1.

Lemma 2.2.2. If there exists �1 2 (0, 1) such that

am+1,n  �1am,n; m, n = 0, 1, 2, . . . , (2.29)

then for any k, l � 0,

Hk+1,l(x, y)  H0,l(x, y) + �1

Z x

0
Hk,l(x � t, y)dF(t). (2.30)

Proof. From the law of total probability

F
⇤(m+1)

(x) = F(x) +
Z x

0
F
⇤m

(x � t)dF(t), (2.31)

we can obtain that
Z x

0
Hk,l(x � t, y)dF(t)

=

k
X

m=0

l
X

n=0

am,n{
�

F
⇤(m+2)

(x) � F(x)
�

G
⇤(n+1)

(y) +
�

F
⇤(m+1)

(x) � F(x)
�

G
⇤n

(y)

� �

F
⇤(m+1)

(x) � F(x)
�

G
⇤(n+1)

(y) � �

F
⇤(m+2)

(x) � F(x)
�

G
⇤n

(y)}

=

k
X

m=0

l
X

n=0

am,n{ F
⇤(m+2)

(x)G
⇤(n+1)

(y) + F
⇤(m+1)

(x)G
⇤n

(y)

� F
⇤(m+1)

(x)G
⇤(n+1)

(y) � F
⇤(m+2)

(x)G
⇤n

(y)}. (2.32)
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Then we have

Hk+1,l(x, y) =
k+1
X

m=0

l
X

n=0

am,n{ F
⇤(m+1)

(x)G
⇤(n+1)

(y) + F
⇤m

(x)G
⇤n

(y)

� F
⇤m

(x)G
⇤(n+1)

(y) � F
⇤(m+1)

(x)G
⇤n

(y)}

=

l
X

n=0

a0,nF(x)
�

G
⇤(n+1)

(y) �G
⇤n

(y)
�

+

k+1
X

m=1

l
X

n=0

am,n{ F
⇤(m+1)

(x)G
⇤(n+1)

(y) + F
⇤m

(x)G
⇤n

(y)

� F
⇤m

(x)G
⇤(n+1)

(y) � F
⇤(m+1)

(x)G
⇤n

(y)}

=

l
X

n=0

a0,nF(x)
�

G
⇤(n+1)

(y) �G
⇤n

(y)
�

+

k+1
X

m=1

l
X

n=0

am,n{ F
⇤(m+1)

(x)G
⇤(n+1)

(y) + F
⇤m

(x)G
⇤n

(y)

� F
⇤m

(x)G
⇤(n+1)

(y) � F
⇤(m+1)

(x)G
⇤n

(y)}

=

l
X

n=0

a0,nF(x)
�

G
⇤(n+1)

(y) �G
⇤n

(y)
�

+

k
X

m=0

l
X

n=0

�1am,n{F
⇤(m+2)

(x)G
⇤(n+1)

(y) + F
⇤(m+1)

(x)G
⇤n

(y)

� F
⇤(m+1)

(x)G
⇤(n+1)

(y) � F
⇤(m+2)

(x)G
⇤n

(y)}

=

l
X

n=0

a0,nF(x)
�

G
⇤(n+1)

(y) �G
⇤n

(y)
�

+ �1

Z x

0
Hk,l(x � t, y)dF(t). (2.33)

By noting that

H0,l(x, y) =
l

X

j=0

a0, jF(x)
�

G
⇤( j+1)

(y) �G
⇤ j

(y)
�

, (2.34)

we have the desired result.

Symmetrically, we can directly write the following corollary:

Corollary 2.2.3. If there exists �2 2 (0, 1) such that

am,n+1  �2am,n; m, n = 0, 1, 2, . . . , (2.35)

then

Hk,l+1(x, y)  Hk,0(x, y) + �2

Z y

0
H(x, y � s)dG(s). (2.36)
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2.3 Exponential upper bounds for the tail of bivariate com-
pound distributions

2.3.1 Exponential upper bound I

Theorem 2.3.1. Suppose there exists �1 2 (0, 1) such that

am+1,n  �1am,n; m, n = 0, 1, 2, . . . , (2.37)

then
H(x, y)  a0,0

�1
e�1 x, x, y � 0 (2.38)

where 1 > 0 satisfies

��1
1 =

Z 1

0
e1 xdF(x) = f̃ (�1). (2.39)

Proof. We prove by induction that

Hk,l(x, y)  a0,0

�1
e�1 x, x, y � 0. (2.40)

Note that for k = 0,

H0,l(x, y) =
l

X

j=0

a0, jF(x)
�

G
⇤( j+1)

(y) �G
⇤ j

(y)
�

= F(x)
�

l
X

j=1

(a0, j�1 � a0, j)G
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

= F(x)
�

1
X

i=1

l
X

j=1

pi, jG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

 a0,0F(x)G
⇤(l+1)

(y)

 a0,0F(x)

= a0,0

Z 1

x
dF(t)

 a0,0

Z 1

x
e�1(x�t)dF(t)

 a0,0e�1 x
Z 1

0
e1tdF(t)

=
a0,0

�1
e�1 x, (2.41)

which shows that the result holds for k = 0; now if we suppose that inequality (2.40) holds for
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k = n, then using Lemma 2.2.2

Hn+1,l(x, y)  a0,0F(x) + �1

Z x

0
Hn,l(x � t, y)dF(t)

 a0,0

Z 1

x
e�1(x�t)dF(t) + �1

Z x

0
��1

1 a0,0e�1(x�t)dF(t)

= a0,0e�1 x
Z 1

0
e1tdF(t)

=
a0,0

�1
e�1 x. (2.42)

Thus, Hk,l(x, y)  ��1
1 a0,0e�1 x holds for all x, y � 0 and k, l = 0, 1, 2, . . . . It follows directly that

H(x, y) = lim
k,l!1

Hk,l(x, y)  ��1
1 a0,0e�1 x.

The upper bound in (2.38) still holds under weaker constraints, which is a corollary of
Proposition 2.1.1:

Corollary 2.3.2. Suppose there exists �1 2 (0, 1) such that

am+1,0  �1am,0; m = 0, 1, 2, . . . , (2.43)

then
H(x, y)  a0,0

�1
e�1 x, x, y � 0 (2.44)

where 1 > 0 satisfies

��1
1 =

Z 1

0
e1 xdF(x) (2.45)

Proof.

H(x, y) =
1
X

m=1

1
X

n=1

pm,nF
⇤m

(x)G
⇤n

(y)


1
X

m=1

1
X

n=1

pm,nF
⇤m

(x)

=

1
X

m=1

p⇤mF
⇤m

(x), (2.46)

where

p⇤m = pm � pm,0 =

1
X

n=1

pm,n m = 1, 2, . . . . (2.47)

Then we consider a new distribution with probability mass function p⇤m for m = 1, 2, . . .
and p⇤0 = 1 �P1

m=1 p⇤m. We further define a⇤m by

a⇤m =
1
X

i=m+1

p⇤m =
1
X

i=m+1

1
X

j=1

pi, j = am,0, m = 0, 1, 2, . . . . (2.48)
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The constraint am+1,0  �1am,0 is equivalent to a⇤m+1  �1a⇤m for m = 0, 1, 2, . . . , therefore by
Proposition 2.1.1 we have

H(x, y) 
1
X

m=1

p⇤mF
⇤m

(x)  a0,0

�1
e�1 x, x, y � 0. (2.49)

2.3.2 Exponential upper bound II
Under the same assumptions as in Theorem 2.3.1, we can further refine (2.38) and obtain that:

Theorem 2.3.3. Under assumptions (2.37) and (2.39), an upper bound for H(x, y) is given by

H(x, y)  a0,0

�1
e�1 xG(y) +

a0,1

�1
e�1 xG(y), x, y � 0. (2.50)

Proof. Firstly, we prove by induction that

Hk,l(x, y)  a0,0

�1
e�1 xG(y) +

a0,1

�1
e�1 x

Z y

0
G
⇤l

(y � s)dG(s). (2.51)

When k = 0,

H0,l(x, y) =
l

X

j=0

a0, jF(x)
�

G
⇤( j+1)

(y) �G
⇤ j

(y)
�

= a0,0F(x)G(y) � a0,1F(x)G(y) + F(x){
1
X

i=1

l
X

j=2

pi, jG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)}

 a0,0F(x)G(y) + a0,1F(x){G⇤(l+1)
(y) �G(y)}

= a0,0F(x)G(y) + a0,1F(x)
Z y

0
G
⇤l

(y � s)dG(s)

 a0,0

�1
e�1 xG(y) +

a0,1

�1
e�1 x

Z y

0
G
⇤l

(y � s)dG(s). (2.52)

Then we suppose that (2.51) holds for k. For k + 1, we have

Hk+1,l(x, y) 
l

X

j=0

a0, jF(x)
�

G
⇤( j+1)

(y) �G
⇤ j

(y)
�

+ �1

Z x

0
Hk,l(x � t, y)dF(t)

 a0,0F(x)G(y) + a0,1F(x)
Z y

0
G
⇤l

(y � s)dG(s) + �1

Z x

0
Hk,l(x � t, y)dF(t)

 a0,0G(y)
Z 1

x
e�1(x�t)dF(t) + a0,1

Z y

0
G
⇤l

(y � s)dG(s)
Z 1

x
e�1(x�t)dF(t)

+ a0,0G(y)
Z x

0
e�1(x�t)dF(t) + a0,1

Z y

0
G
⇤l

(y � s)dG(s)
Z x

0
e�1(x�t)dF(t)

= a0,0e�1 xG(y)
Z 1

0
e1tdF(t) + a0,1

Z y

0
e�1 xG

⇤l
(y � s)dG(s)

Z 1

0
e1tdF(t)

=
a0,0

�1
e�1 xG(y) +

a0,1

�1
e�1 x

Z y

0
G
⇤l

(y � s)dG(s). (2.53)
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Thus by induction, we obtain that

Hk,l(x, y)  a0,0

�1
e�1 xG(y) +

a0,1

�1
e�1 x

Z y

0
G
⇤l

(y � s)dG(s). (2.54)

It then follows directly that

H(x, y) = lim
k,l!1

Hk,l(x, y)  a0,0

�1
e�1 xG(y) +

a0,1

�1
e�1 xG(y). (2.55)

2.3.3 Exponential upper bound III

Our next result shows that when a reasonable condition is assumed for the distribution of N,
the upper bound derived above can be tightened. We further assume that

bn =

1
X

j=n+1

qj, n = 0, 1, 2, . . . , (2.56)

with qj = Pr{N = j}, whereas pm, am keep the same assumptions as those in Section 2.1. If we
further assume that bn+1  �2bn in addition to the assumptions in Theorem 2.3.1, we can obtain
the following result:

Theorem 2.3.4. Suppose there exists �1, �2 2 (0, 1) such that

am+1,n  �1am,n, m, n = 0, 1, 2, . . . , (2.57)

and
bn+1  �2bn, n = 0, 1, 2, . . . , (2.58)

then

H(x, y)  b0

�1�2
e�1 x�2y, x, y � 0 (2.59)

where 1, 2 > 0 satisfy

��1
1 =

Z 1

0
e1 xdF(x) (2.60)

and

��1
2 =

Z 1

0
e2ydG(y). (2.61)

Proof. Firstly, we prove by induction that

Hk,l(x, y)  ��1
1 e�1 x�

l
X

j=1

qjG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

. (2.62)
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Note that for k = 0,

H0,l(x, y) = F(x)
�

1
X

i=1

l
X

j=1

pi, jG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

 F(x)
�

1
X

i=0

l
X

j=1

pi, jG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

= F(x)
�

l
X

j=1

qjG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

 ��1
1 e�1 x�

l
X

j=1

qjG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

(2.63)

Now suppose that (2.62) holds for k, then for k + 1,

Hk+1,l(x, y)  H0,l(x, y) + �1

Z x

0
Hk,l(x � t, y)dF(t)


✓

Z 1

x
e�1(x�t)dF(t) + �1

Z x

0
��1

1 e�1(x�t)dF(t)
◆

�

l
X

j=1

qjG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

= ��1
1 e�1 x�

l
X

j=1

qjG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

. (2.64)

Therefore,

H(x, y) = lim
k,l!1

Hk,l(x, y)  ��1
1 e�1 x

1
X

j=1

qjG
⇤ j

(y). (2.65)

Since we further assume that bn+1  �2bn, the upper bounds (2.11) in univariate case can
be applied to (2.65) directly, which finally results in

H(x, y)  b0

�1�2
e�1 x�2y. (2.66)

2.3.4 Evaluating exponential bounds I-III analytically
In the bivariate model (S 1, S 2), if am+1,n  �1am,n,m, n = 0, 1, . . . , we can obtain the exponential
bound I for the tail probability P[S 1 > x, S 2 > y], that is,

H(x, y)  a0,0

�1
e�1 x, x, y � 0. (2.67)

Now we assume that  (x) = P[S 1 > x], the tail probability for marginal variable S 1, and that

am =

1
X

i=m+1

pi =

1
X

i=m+1

1
X

j=0

pi, j, m = 0, 1, 2, . . . , (2.68)
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which represents marginal P[M > m] for bivariate frequencies (M,N).
In this case, if am+1  �1am, m = 0, 1, 2, . . . is also satisfied, from Proposition 2.1.1 a

marginal exponential bound can be obtained:

 (x)  a0

�1
e�1 x, x � 0. (2.69)

It is of interest to consider the di↵erences and connections between (2.67) and (2.69).
Therefore, we give several clarifications:

• Obviously, H(x, y)  H(x, 0)   (x) from the aspect of definition;

• am+1,n  �1am,n,m, n = 0, 1, . . . is neither the su�cient condition nor the necessary con-
dition for am+1  �1am,m = 0, 1, . . . ;

• am+1,n  �1am,n,m, n = 0, 1, . . . is a su�cient condition for am+1  �1am,m = 0, 1, . . .
when N is zero-truncated;

• am+1,n  �1am,n and am+1  �1am can hold at the same time;

• a0,0  a0, hence a0,0
�1

e�1 x  a0
�1

e�1 x.

Note 2.3.1. Especially, in the case of independent frequencies (M,N), we have

am,n =

1
X

i=m+1

1
X

j=n+1

pi, j =

1
X

i=m+1

1
X

j=n+1

piq j = ambn. (2.70)

The assumption am+1  �1am is obviously equivalent to am+1,n  �1am,n because we can multiply
on both sides by bn: am+1bn  �1ambn. Then we could connect the two upper bounds listed
above through

H(x, y) = P[S 1 > x, S 2 > y]
 P[S 1 > x, S 2 > 0]
 P[S 1 > x] · P[S 2 > 0]

=  (x) ·
1
X

j=1

qjG
⇤ j

(0)

 a0

�1
e�1 x · b0

=
a0,0

�1
e�1 x. (2.71)

However, this is restricted by the independence assumption between claim frequencies M and
N because without this assumption P[S 1 > x, S 2 > 0] might be greater than P[S 1 > x] ·P[S 2 >
0]. So our results provide an upper bound for more general conditions when M and N are
dependent.
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Generally in the case of dependent (M,N), we compare am+1  �1am to am+1,n  �1am,n,
where the constraints actually change from

1
X

i=m+2

1
X

j=0

pi, j  �1

1
X

i=m+1

1
X

j=0

pi, j, m = 0, 1, 2, . . . , (2.72)

to 1
X

i=m+2

1
X

j=n+1

pi, j  �1

1
X

i=m+1

1
X

j=n+1

pi, j, m, n = 0, 1, 2, . . . . (2.73)

The latter constraint is much stronger, but the improvement of (2.67) over (2.69) is limited.
We only decrease the coe�cient a0 =

P1
i=1

P1
j=0 pi, j to a0,0 =

P1
i=1

P1
j=1 pi, j. Obviously, the

exponential bound I works well when P[M , 0,N = 0] is large.
Later, keeping the same assumptions, we refine our upper bound to be

H(x, y)  a0,0

�1
e�1 xG(y) +

a0,1

�1
e�1 xG(y), (2.74)

which does improve the exponential bound I by involving y. We can see easily that as y in-
creases, the exponential bound II approaches a0,1��1

1 e�x away from a0,0��1
1 e�x, narrowing the

upper bounds. However, the improvement is still limited. This is due to
a0,1

�1
e�1 x  a0,0

�1
e�1 xG(y) +

a0,1

�1
e�1 xG(y)  a0,0

�1
e�1 x. (2.75)

Even though y approaches positive infinity, the exponential bound II at best reaches H(x, y) 
a0,1��1

1 e�x.
After adding another constraints bn+1  �2bn, n = 0, 1, 2, . . . , the exponential III states that

H(x, y)  b0

�1�2
e�1 x�2y. (2.76)

This is a better result as it decreases rapidly with respect to both x and y, which guarantees
the tightness of the upper bound when x or y is large. A numerical example is given in the
following section.

2.3.5 Numerical experiments
Here, we introduce the bivariate discrete Gumbel distribution, which is a discretized version of
Gumbel’s bivariate exponential distribution. Now suppose (M0,N0) follows a bivariate expo-
nential distribution with survival function S M0,N0(x, y) = P[M0 > x,N0 > y] defined as

S M0,N0(x, y) = e�(�1 x+�2y+✓xy), x, y, �1, �2 > 0, 0  ✓  �1�2. (2.77)

The marginal distributions of M and N follow exponential distributions with rate �1 and �2,
respectively.

In actuarial sciences, we deal with discrete claim frequencies. Thus we define (M,N), a
group of discrete claim frequencies with similar survival function as the Gumbel’s bivariate
exponential distributions previously mentioned, that is,

S M,N(m, n) = P[M > m,N > n] = S M0,N0(m + 1, n + 1), m, n = 0, 1, 2, . . . . (2.78)
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In another word, the joint probability mass function of (M,N) is defined as

pi, j = P[M = i,N = j] = P
⇥

M0 2 [i, i + 1),N0 2 [ j, j + 1)
⇤

, i, j = 0, 1, 2, . . . . (2.79)

The probability mass functions of marginal distributions M and N are

pi = P[M = i] = P
⇥

M0 2 [i, i + 1)
⇤

= e��1i � e��1(i+1), i = 0, 1, 2, . . . , (2.80)

and
qj = P[N = i] = P

⇥

N0 2 [ j, j + 1)
⇤

= e��2 j � e��2( j+1), j = 0, 1, 2, . . . . (2.81)

This discretized bivariate exponential distribution is a perfect example for our theory since
we have

am,n = e�(�1(m+1)+�2(n+1)+✓(m+1)(n+1)), m, n = 0, 1, 2, . . . , (2.82)

and
am = e��1(m+1) m = 0, 1, 2, . . . , (2.83)

bn = e��2(n+1) n = 0, 1, 2, . . . . (2.84)

Then we can obtain
am+1

am
= e��1 ,

bn+1

bn
= e��2 , m, n = 0, 1, 2, . . . (2.85)

and am+1,n

am,n
= e��1�✓(n+1),

am,n+1

am,n
= e��2�✓(m+1), m, n = 0, 1, 2, . . . . (2.86)

Hence we are able to define �1 = e��1 and �2 = e��2 such that

am+1  �1am; bn+1  �2bn; am+1,n  �1am,n; am,n+1  �2am,n, m, n = 0, 1, 2, . . . . (2.87)

We assume that claim severities follow independent Gamma distributions Xi ⇠ Ga(↵1, �1), i =
1, 2, . . . , and Yj ⇠ Ga(↵2, �2), j = 1, 2, . . . . Then 1 can be obtained from

E[e1Xi] =
✓

1 � 1

�1

◆�↵1

=
1
�1
, (2.88)

1 = �1
�

1 � �
1
↵1
1

�

. (2.89)

Similarly,

2 = �2
�

1 � �
1
↵2
2

�

. (2.90)

In our numerical example, we set �1 = 0.05, �2 = 0.08, ✓ = 0.002, ↵1 = 20, �1 = 0.5,
↵2 = 30, �2 = 0.6. The simulated survival probabilities and upper bounds are showed in Table
2.1.

At the beginning, assuming that we only know about one side am+1  �1am and am+1,n 
�1am,n, we obtain the first four rows in the the following table. Then, adding bn+1  �2bn, we
can further obtain the fifth and sixth rows. Finally, we add bm,n+1  �2bm,n and obtain the last
row. The formulae in the second and fifth rows are the upper bounds for P[S 1 > x], P[S 2 >
y] obtained from Proposition 2.1.1, respectively. The third row corresponds to exponential
upper bound I. The fourth row corresponds to exponential upper bound II and the last two
rows corresponds to exponential upper bound III. Obviously, our exponential upper bounds III
outperform the Fréchet upper bound min{P[S 1 > x],P[S 2 > y]} for P[S 1 > x, S 2 > y].
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Probability H(500, 100) H(1000, 100) H(2000, 100) H(500, 500) H(1000, 1000)
Simulation(10000 times) 0.4053000 0.2086000 0.05240000 0.1773000 0.02320000

a0
�1

e�1 x 0.5356794 0.2869524 0.08234170 0.5356794 0.28695244
a0,0
�1

e�1 x 0.4935064 0.2643612 0.07585910 0.4935064 0.26436123
a0,0G(y)
�1

e�1 x +
a0,1G(y)
�1

e�1 x 0.4546539 0.2435487 0.06988690 0.4546536 0.24354859
b0
�2

e�2y 0.8523254 0.8523254 0.85232544 0.4498081 0.20232731
b0
�1�2

e�1 x�2y 0.4799822 0.2571166 0.07378023 0.2533068 0.06103503
a0
�1�2

e�1 x�2y 0.4945998 0.2649470 0.07602717 0.2610212 0.06289382

Table 2.1: Comparison of exponential upper bounds

2.3.6 Exponential upper bound IV: a generalization of the result

Theorem 2.3.5. Suppose there exists numbers � 2 (0, 1) such that

am+1,n+1  �am,n, m, n = 0, 1, 2, . . . . (2.91)

If there exists (�1, �2) 2 (0, 1)2 such that

am+1  �1am, m = 0, 1, . . . , (2.92)

bn+1  �2bn, n = 0, 1, . . . , (2.93)

and

�1 ⇤ �2 = �, (2.94)

we have

H(x, y)  max
n a0

�1�
,

b0

�2�

o

e�1 x�2y, x, y � 0, (2.95)

where 1, 2 > 0 satisfy

��1
1 =

Z 1

0
e1 xdF(x), (2.96)

and

��1
2 =

Z 1

0
e2ydG(y). (2.97)

Proof. We prove by the result induction.
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Firstly, from (2.63), we have

H0,l(x, y)  ��1
1 e�1 x

n

l
X

j=1

qjG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
o

 ��1
1 e�1 x

n

l
X

j=1

qjG
⇤ j

(y) + blG
⇤(l+1)

(y)
o

 ��1
1 e�1 x

1
X

j=1

qjG
⇤ j

(y)

 b0

�1�2
e�1 x�2y

 b0

�2�
e�1 x�2y, (2.98)

since �  �1. Similarly, we also have

Hk,0(x, y)  a0

�1�
e�1 x�2y. (2.99)

Now suppose that inequality holds for k, l, we have

Hk+1,l+1(x, y) =
k+1
X

m=0

l+1
X

n=0

am,n{F
⇤(m+1)

(x)G
⇤(n+1)

(y) + F
⇤m

(x)G
⇤n

(y)

� F
⇤m

(x)G
⇤(n+1)

(y) � F
⇤(m+1)

(x)G
⇤n

(y)}

= a0,0F(x)G(y) + �
Z x

0

Z y

0
Hk,l(x � z, y � w)dF(z)dG(w)

+

l+1
X

n=1

a0,nF(x){G⇤(n+1)
(y) �G

⇤(n)
(y)} +

k+1
X

m=1

am,0G(y){F⇤(m+1)
(x) � F

⇤(m)
(x)}

= a0,0F(x)G(y) + �
Z x

0

Z y

0
Hk,l(x � z, y � w)dF(z)dG(w)

+ F(x){
l

X

n=1

(a0,n � a0,n+1)G
⇤(n+1)

(y) + a0,l+1G
⇤(l+2)

(y) � a0,1G(y)}

+G(y){
k

X

m=1

(am,0 � am+1,0)F
⇤(m+1)

(x) + ak+1,0F
⇤(k+2)

(x) � a1,0F(x)}

= a0,0F(x)G(y) + �
Z x

0

Z y

0
Hk,l(x � z, y � w)dF(z)dG(w)

+ F(x){
l

X

n=1

1
X

i=1

pi,n+1G
⇤(n+1)

(y) + a0,l+1G
⇤(l+2)

(y) � a0,1G(y)}

+G(y){
k

X

m=1

1
X

j=1

pm+1, jF
⇤(m+1)

(x) + ak+1,0F
⇤(k+2)

(x) � a1,0F(x)}
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= a0,0F(x)G(y) + �
Z x

0

Z y

0
Hk,l(x � z, y � w)dF(z)dG(w)

+ F(x)
Z y

0
{

l
X

n=1

1
X

i=1

pi,n+1G
⇤n

(y � w) + a0,l+1G
⇤(l+1)

(y � w)}dG(w)

+G(y)
Z x

0
{

k
X

m=1

1
X

j=1

pm+1, jF
⇤m

(x � z) + ak+1,0F
⇤(k+1)

(x � z)}dF(z)

 a0,0F(x)G(y) + �
Z x

0

Z y

0
Hk,l(x � z, y � w)dF(z)dG(w)

+ F(x)
Z y

0
{

l
X

n=1

1
X

i=1

pi,n+1G
⇤(n+1)

(y � w) + a0,l+1G
⇤(l+2)

(y � w)}dG(w)

+G(y)
Z x

0
{

k
X

m=1

1
X

j=1

pm+1, jF
⇤(m+1)

(x � z) + ak+1,0F
⇤(k+2)

(x � z)}dF(z)

 a0,0F(x)G(y) + �
Z x

0

Z y

0
Hk,l(x � z, y � w)dF(z)dG(w)

+ F(x)
Z y

0
{

l
X

n=1

qn+1G
⇤(n+1)

(y � w) + bl+1G
⇤(l+2)

(y � w)}dG(w)

+G(y)
Z x

0
{

k
X

m=1

pm+1F
⇤(m+1)

(x � z) + ak+1F
⇤(k+2)

(x � z)}dF(z)

 a0,0F(x)G(y) + �
Z x

0

Z y

0
Hk,l(x � z, y � w)dF(z)dG(w)

+ F(x)
Z y

0
{
1
X

n=1

qnG
⇤n

(y � w)}dG(w) +G(y)
Z x

0
{
1
X

m=1

pmF
⇤m

(x � z)}dF(z)

 a0,0

Z 1

x
e�1(x�z)dF(z)

Z 1

y
e�2(y�w)dG(w)

+max
na0

�1
,

b0

�2

o

Z x

0
e�1(x�z)dF(z)

Z y

0
e�2(y�w)dG(w)

+
b0

�2

Z 1

x
e�1(x�z)dF(z)

Z y

0
e�2(y�w)dG(w)

+
a0

�1

Z x

0
e�1(x�z)dF(z)

Z 1

y
e�2(y�w)dG(w)

 max
n a0

�1�
,

b0

�2�

o

e�1 x�2y, (2.100)

since a0,0  min{a0, b0}, where we prove by induction that

Hk,l(x, y)  max
n a0

�1�
,

b0

�2�

o

e�1 x�2y. (2.101)

Letting k, l! 1 finished our proof.
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Note 2.3.2. If �⇤, �⇤1 and �⇤2 are the smallest values in (0, 1) such that

am+1,n+1  �⇤am,n, m, n = 0, 1, 2, . . . , (2.102)

am+1  �⇤1am, m = 0, 1, . . . , (2.103)

bn+1  �⇤2an, n = 0, 1, . . . , (2.104)

are satisfied, we should choose � 2 (�⇤, 1), �1 2 (�⇤1, 1) and �2 2 (�⇤2, 1). The following cases
ensure:

• If �⇤  �⇤1 ⇤ �⇤2, we may choose � = �⇤1 ⇤ �⇤2, �1 = �⇤1, �2 = �⇤2;

• If �⇤1 ⇤ �⇤2  �⇤ < max{�⇤1, �⇤2}, we may choose � = �⇤, �1 = �⇤1; �2 = �⇤/�⇤1 � �⇤2.

• If �⇤ � max{�⇤1, �⇤2}, it is impossible to find valid (�, �1, �2) for Theorem 2.3.5 .

Note 2.3.3. We have checked numerically that two commonly used bivariate negative binomial
distributions satisfy the constraints in Theorem 2.3.5 :

• The bivariate Poisson distribution with mixing gamma parameter. That is, M ⇠ Poisson(�1⇤),
N ⇠ Poisson(�2⇤) with ⇤ ⇠ Ga(↵, �);

• The bivariate negative binomial distribution with common shock. That is, M = N0 + N1,
N = N0 + N2, where Nj ⇠ NB(r j, p), j = 0, 1, 2, and are independent of each other.

It has been proved that am+1/am of a negative binomial distribution is decreasing with
respect to m. Numerically, for both bivariate distributions mentioned above, am+1,n+1/am,n is
also decreasing with respect to either m or n. In detail, this is caused by

• am+1,n/am,n decreasing with respect to m,

• am,n+1/am,n decreasing with respect to n.
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2.4 General upper and lower bounds
In this section, we provide general upper and lower bounds for the tail of the bivariate com-
pound distributions. These results generalize those given in Willmot et al. (2001) for the uni-
variate case. We also introduce several classes of distributions mentioned in this chapter. The
new worse (better) than used in expectation or NWUE (NBUE) is a superclass of NWU (NBU)
class defined as follows:

Definition The d.f. F(x) is NWUE (NBUE) if the mean residual lifetime r(t) satisfies

r(x) � ()r(0), (2.105)

where

r(x) =
Z 1

0

F(x + t)
F(x)

dt. (2.106)

That is, the mean residual lifetime is never larger than the expected lifetime.

By integration by part, we have
Z 1

x
tdF(x) = F(x){x + r(x)}, (2.107)

which directly results in the following proposition.

Proposition 2.4.1. If the d.f. F(x) of variable X is NWUE, then for x � 0,

F(x) =

R 1
x tdF(t)
x + r(x)

 E[X]
x + r(x)

 E[X]
x + E[X]

. (2.108)

Another subclass of NWUE (NBUE) is the new worse (better) than used in convex ordering
or NWUC (NBUC) class defined by

Definition The d.f. F(x) is NWUC (NBUC) if

Fe(t + x) � ()Fe(x)F(t) (2.109)

for all x � 0, t � 0, where

Fe(x) = 1 � Fe(x) =

R x
0 F(t)dt

R 1
0 F(t)dt

, (2.110)

the equilibrium d.f. of F(x).

2.4.1 General upper bound I
Theorem 2.4.2. Suppose that �1 2 (0, 1) satisfies the dominance condition that

am+1,n  �1am,n; m, n = 0, 1, 2, . . . (2.111)
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and B1(t) is a d.f. satisfying the generalized adjustment equation
Z 1

0
{B1(t)}�1dF(t) =

1
�1
. (2.112)

If V1(x) is a d.f. satisfying

V1(x)B1(t)  V1(x + t), x � 0, t � 0, (2.113)

then
H(x, y)  a0,0

�1V1(0)
c1(x), x, y � 0, (2.114)

where c1(x) is defined by
1

c1(x)
= inf

0zx,F(z)>0
c1(x, z), x � 0, (2.115)

with c1(x, z) given by

c1(x, z) =

R 1
z {B1(t)}�1dF(t)

V1(x � z)F(z)
, 0  z  x, F(z) > 0. (2.116)

Proof. We prove by induction on k that for 0  z  x,

Hk,l(z, y)  a0,0

�1V1(x � z)
c1(x), x, y � 0. (2.117)

Intuitively, c1(x) is a non-decreasing function which satisfies

F(z)  c1(x)
V1(x � z)

Z 1

z
{B1(t)}�1dF(t), 0  z  x. (2.118)

For any l,

H0,l(z, y)  a0,0F(z)

 a0,0c1(x)
V1(x � z)

Z 1

z
{B1(t)}�1dF(t)

 a0,0c1(x)
V1(x � z)

Z 1

0
{B1(t)}�1dF(t)

=
a0,0

�1V1(x � z)
c1(x), (2.119)

which shows that the result holds for k = 0; now, we suppose the result holds for k, then

Hk+1,l(z, y)  a0,0F(z) + �1

Z z

0
Hk,l(z � t, y)dF(t)

 a0,0c1(x)
V1(x � z)

Z 1

z
{B1(t)}�1dF(t) + a0,0c1(x)

Z z

0
{V1(x + t � z)}�1dF(t)

 a0,0c1(x)
V1(x � z)

Z 1

0
{B1(t)}�1dF(t)

=
a0,0

�1V1(x � z)
c1(x). (2.120)
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Now we can obtain that

H(z, y) = lim
k,l!1

Hk,l(z, y)  a0,0

�1V1(x � z)
c1(x). (2.121)

Letting z = x, we further obtain that

H(x, y)  a0,0

�1V1(0)
c1(x). (2.122)

Note that Theorem 2.4.2 still holds under weaker constraints:

Corollary 2.4.3. Suppose �1 2 (0, 1) satisfies a weaker condition that

am+1,0  �1am,0; m = 0, 1, 2, . . . (2.123)

and B1(t) is a d.f. satisfying the generalized adjustment equation (2.112). If V1(x) is a d.f.
satisfying (2.113), then there still holds that

H(x, y)  a0,0

�1V1(0)
c1(x), x, y � 0, (2.124)

where c1(x) is defined by (2.115).

Proof. The proof is similar to that of Corollary 2.3.2, so for simplicity we continue from (2.46)
and succeed the definitions for p⇤m, a⇤m,m = 0, 1, 2, . . . .

In Willmot et al. (2001), it is stated in Theorem 4.2.1 that if

a⇤m+1  �1a⇤m; m = 0, 1, 2, . . . , (2.125)

we have 1
X

m=1

p⇤mF
⇤m

(z)  a⇤0
�1

c1(x)
V1(x � z)

; 0  z  x. (2.126)

Since am+1,0  �1am,0 is equivalent to a⇤m+1  �1a⇤m for m = 0, 1, 2, . . . , it follows

H(z, y) 
1
X

m=1

p⇤mF
⇤m

(z)  a0,0

�1V1(x � z)
c1(x); 0  z  x. (2.127)

Letting z = x leads to (2.124).

2.4.2 Corollaries to Theorem 2.4.2
Corollary 2.4.4. If �1 2 (0, 1) satisfies (2.111), and 1 > 0 satisfies

Z 1

0
e1 xdF(x) =

1
�1
, (2.128)

then
H(x, y)  a0,0

�1
↵1(x)e�1 x, x, y � 0, (2.129)

where
1

↵1(x)
= inf

0zx,F(z)>0

Z 1

z
e1tdF(t)

�

{e1zF(z)}, x � 0. (2.130)
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Proof. Let B1(x) = 1�e�1 x, then (2.113) holds with V1(x) = B1(y), and Theorem 2.4.2 applies.
Then

c1(x, z) = e1 x

R 1
z e1tdF(t)

e1zF(z)
, (2.131)

and
1

c1(x)
=

e1 x

↵1(x)
, (2.132)

i.e. c1(x) = ↵1(x)e�1 x.

It is worth noting that
Z 1

z
e1 xdF(x) �

Z 1

z
e1zdF(x) = e1zF(z), (2.133)

and therefore 1/↵1(x) � 1, i.e. ↵1(x)  1. Thus, (2.114) yields

H(x, y)  a0,0

�1
e�1 x, x, y � 0, (2.134)

the exponential bounds we derived in the previous sections.

Corollary 2.4.5. If �1 2 (0, 1) satisfies (2.111), and B1(x) is a NWU d.f. satisfying (2.112),
then

H(x, y)  a0,0

�1
c1(x), x, y � 0, (2.135)

where c1(x) satisfies (2.115) with

c1(x, z) =

R 1
0 {B1(t)}�1dF(t)

B1(x � z)F(z)
, x � 0, 0  z  x. (2.136)

Proof. Since B1(x) is NWU, (2.113) holds with V1(x) = B1(x), and Theorem 2.4.2 applies.
This proof assumes B1(0) = 1.

The next result is important since it gives an upper bound that can be computed easily, and
generalizes the exponential upper bounds.

Corollary 2.4.6. Suppose that �1 2 (0, 1) satisfies (2.111) and B1(x) is a d.f. satisfying (2.112).
If V1(x) is a d.f. satisfying (2.113), then

H(x, y)  a0,0

�1V1(0)
V1(x), x, y � 0. (2.137)

In particular, if �1 2 (0, 1) satisfies (2.111) and B1(x) is a NWU d.f. satisfying (2.112), then

H(x, y)  a0,0

�1
B1(x), x, y � 0. (2.138)
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Proof. Since V1(x) is non-increasing, it follows from (2.113) that for z � t that

V1(x � z)B1(t)  V1(x + t � z)  V1(x), (2.139)

and so from (2.116),

c1(x, z) �
R 1

z {V1(x)}�1dF(t)

F(z)
= {V1(x)}�1. (2.140)

Thus, from (2.115), 1/c1(x) � 1/V1(x), i.e. c1(x)  V1(x). Then (2.137) follows from Theorem
2.4.2. Clearly, (2.138) is the special case where V1(x) = B1(x) and follows from Corollary
2.4.5.

Corollary 2.4.7. If �1 2 (0, 1) satisfies (2.111), and B1(x) is a NWUC d.f. satisfying (2.112),
then

H(x, y)  a0,0

�1
Be(x), x, y � 0, (2.141)

with Be(x) = 1 � Be(x) =
R x

0 B1(t)dt/
R 1

0 B1(t)dt the equilibrium d.f. of B1(x).

Proof. Since B1(x) is NWUC, (2.113) holds with V1(x) = Be(x). The result follows from
Corollary 2.4.6 and the fact that Be(0) = 1.

For the larger NWUE class we have the following.

Corollary 2.4.8. If �1 2 (0, 1) satisfies (2.111), and B1(x) is a NWUE d.f. satisfying (2.112),
then

H(x, y)  a0,0

�1

R 1
0 tdB1(t)

x +
R 1

0 tdB1(t)
, x, y � 0. (2.142)

Proof. It follows from Proposition 2.4.1 that B1(x)  V1(x) where

V1(x) =

R 1
0 tdB1(t)

x +
R 1

0 tdB1(t)
. (2.143)

It is not di�cult to see that V1(x) is a Pareto d.f. which is DFR and hence NWU. Thus, B1(x) 
V1(x)  V1(x + t)/V1(t) and (2.113) is satisfied with V1(0) = 0. The result follows from
Corollary 2.4.6.

Remark 2.4.1. The corollaries above can be applied to the following general upper bounds
II-IV, since they actually specify choices of c1(x)/V1(0), c2(y)/V2(0) under di↵erent situations.

2.4.3 General upper bound II
If we keep the same assumptions as in Theorem 2.4.2, we can further refine (2.114) similarly
to what we have done for exponential upper bounds:

Theorem 2.4.9. An upper bound for H(x, y) is given by

H(x, y)  a0,0

�1V1(0)
c1(x)G(y) +

a0,1

�1V1(0)
c1(x)G(y), x, y � 0. (2.144)
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Proof. Firstly, we prove by induction on k for 0  z  x that

Hk,l(z, y)  a0,0c1(x)
�1V1(x � z)

G(y) +
a0,1c1(x)

�1V1(x � z)

Z y

0
G
⇤l

(y � s)dG(s); 0  z  x. (2.145)

When k = 0,

H0,l(z, y) =
l

X

j=0

a0, jF(z)
�

G
⇤( j+1)

(y) �G
⇤ j

(y)
�

 a0,0F(z)G(y) + a0,1F(z)
Z y

0
G
⇤l

(y � s)dG(s)

 a0,0c1(x)
�1V1(x � z)

G(y) +
a0,1c1(x)

�1V1(x � z)

Z y

0
G
⇤l

(y � s)dG(s). (2.146)

Then we suppose that (2.145) holds for k = n. For k = n + 1, we have

Hn+1,l(z, y)  a0,0F(z)G(y) + a0,1F(z)
Z y

0
G
⇤l

(y � s)dG(s) + �
Z z

0
Hn,l(z � t, y)dF(t)


⇢ a0,0c1(x)

V1(x � z)
G(y) +

a0,1c1(x)
V1(x � z)

Z y

0
G
⇤l

(y � s)dG(s)
�

Z 1

z
{B1(t)}�1dF(t)

+
⇢

a0,0c1(x)G(y) + a0,1c1(x)
Z y

0
G
⇤l

(y � s)dG(s)
�

Z z

0
{V1(x + t � z)}�1dF(t)


⇢ a0,0c1(x)

V1(x � z)
G(y) +

a0,1c1(x)
V1(x � z)

Z y

0
G
⇤l

(y � s)dG(s)
�

Z 1

z
{B1(t)}�1dF(t)

+
⇢ a0,0c1(x)

V1(x � z)
G(y) +

a0,1c1(x)
V1(x � z)

Z y

0
G
⇤l

(y � s)dG(s)
�

Z z

0
{B1(t)}�1dF(t)

=
a0,0c1(x)

�1V1(x � z)
G(y) +

a0,1c(x)
�1V1(x � z)

Z y

0
G
⇤l

(y � s)dG(s). (2.147)

From (2.145), we will have

H(z, y) = lim
k,l!1

Hk,l(z, y)  a0,0

�1V1(x � z)
c1(x)G(y) +

a0,1

�1V1(x � z)
c1(x)G(y), 0  z  x,

(2.148)
and (2.144) follows directly with z = x.

2.4.4 General upper bound III
If we further assume that bn+1  �2bn in addition to the assumptions in Theorem 2.3.1, we can
obtain the following result:

Theorem 2.4.10. Suppose there exists numbers �1, �2 2 (0, 1) such that

am+1,n  �1am,n, m, n = 0, 1, 2, . . . , (2.149)

and
bn+1  �2bn, n = 0, 1, 2, . . . , (2.150)
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where Bi(t), i = 1, 2 are d.f. satisfying the generalized adjustment equations
Z 1

0
{B1(t)}�1dF(t) =

1
�1

(2.151)

and
Z 1

0
{B2(t)}�1dG(t) =

1
�2
. (2.152)

If Vi(x), i = 1, 2 are d.f. satisfying

Vi(x)Bi(t)  Vi(x + t), x, t � 0, (2.153)

then
H(x, y)  b0c1(x)c2(y)

�1�2V1(0)V2(0)
, x, y � 0, (2.154)

where c1(x), c2(y) satisfy
1

c1(x)
= inf

0zx,F(z)>0
c1(x, z), x � 0, (2.155)

1
c2(y)

= inf
0wy,G(w)>0

c2(y,w), y � 0, (2.156)

with c1(x, z), c2(y,w) given by

c1(x, z) =

R 1
z {B1(t)}�1dF(t)

V1(x � z)F(z)
, 0  z  x, F(z) > 0 (2.157)

and

c2(y,w) =

R 1
w {B2(s)}�1dG(s)

V2(y � w)G(w)
, 0  w  y, G(w) > 0. (2.158)

Proof. Firstly, we prove by induction on k that for 0  z  x

Hk,l(z, y)  c1(x)
�1V1(x � z)

�

l
X

j=1

qjG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

. (2.159)

Note that for k = 0,

H0,l(z, y) = F(z)
�

1
X

i=1

l
X

j=1

pi, jG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

 F(z)
�

1
X

i=0

l
X

j=1

pi, jG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

= F(z)
�

l
X

j=1

qjG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

 c1(x)
�1V1(x � z)

�

l
X

j=1

qjG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

. (2.160)
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Now suppose that (2.159) holds for k = n, then for k = n + 1, it follows that

Hn+1,l(z, y)  H0,l(z, y) + �1

Z z

0
Hn,l(z � t, y)dF(t)


⇢ c1(x)

V1(x � z)

Z 1

z
{B(t)}�1dF(t) + c1(x)

Z z

0
{V1(x + t � z)}�1dF(t)

�

⇥ �

l
X

j=1

qjG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 


⇢ c1(x)

V1(x � z)

Z 1

z
{B(t)}�1dF(t) +

c1(x)
V1(x � z)

Z z

0
{B(t)}�1dF(t)

�

⇥ �

l
X

j=1

qjG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

=
c1(x)

�1V1(x � z)
�

l
X

j=1

qjG
⇤ j

(y) + a0,lG
⇤(l+1)

(y)
 

. (2.161)

Therefore,

H(z, y) = lim
k,l!1

Hk,l(z, y)  c1(x)
�1V1(x � z)

1
X

j=1

qjG
⇤ j

(y); 0  z  x, (2.162)

and it follows directly that

H(x, y)  c1(x)
�1V1(0)

1
X

j=1

qjG
⇤ j

(y) (2.163)

with z = x.
Since we further assume that bn+1  �2bn, the upper bounds (2.11) in univariate case can

be applied to (2.163) directly, which finally results in

H(x, y)  b0c1(x)c2(y)
�1�2V1(0)V2(0)

. (2.164)

2.4.5 Parametric bounds: Pareto type and numerical experiments

In Section 2.3, we already gave several results and numerical example for exponential type
upper bounds, which rely on the existence of the moment generating function of the d.f. F(x)
and G(y). For heavy-tailed severity distributions whose moment generating functions do not
exist, Willmot (1994) provided an alternative to consider a moment based bound when claim
size moments are known, which we can use directly.

We assume that the moments of X exist up to the order m, i.e.

E[X j] =
Z 1

0
x jdF(x) < 1, j  m. (2.165)
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Since the Pareto distributions is DFR and hence NWU, it is convenient to choose the Pareto
tail B1(x) = V1(x) = (1 + 1x)�m, where 1 satisfies

Z 1

0
(1 + 1x)mdF(x) =

1
�1
. (2.166)

It is convenient if m is a positive integer, in which case (2.166) becomes, after a binomial
expansion,

1
X

j=1

 

m
j

!

E[X j] j
1 =

1
�1
� 1, (2.167)

a polynomial in 1 of degree m. If m = 1 then one obtains 1 = (1 � �1)/{�1E[X]} whereas if
m = 2 one obtains

1 =

q

E[X2]
�1
� Var[X] � E[X]

E[X2]
. (2.168)

We obtain the following general bound.

Corollary 2.4.11. If �1 2 (0, 1) satisfies (2.111), and 1 > 0 and m > 0 satisfy (2.166), then

H(x, y)  a0,0

�1
(1 + 1x)�m, x, y � 0. (2.169)

Proof. Corollary 2.4.6 applies with B1(x) = (1 + 1x)�m.

Example 2.4.1. We continue using the assumptions in the former numerical experiment, but
replace Xi, i = 1, 2, . . . with Xi ⇠ Pareto(80/3, 3) instead, which results in the same mean. In
this case, the claim size distribution has a heavy tail thus the moment generating function does
not exist. For m = 2 and j  m, E[X j] < 1. Therefore, choosing 1 as given in (2.168), the
upper bounds become

H(x, y)  min{a0, b0}
�1�2

(1 + 1x)�me�2y (2.170)

with all other parameters remaining the same as those in the former example.

Probability H(500, 100) H(1000, 100) H(2000, 100) H(500, 500) H(1000, 1000)
Simulation(10000 times) 0.4062000 0.2079000 0.0533000 0.1793000 0.02330000

a0
�1

(1 + 1x)�m 0.5781641 0.3762424 0.1956846 0.5781641 0.37624238
a0,0
�1

(1 + 1x)�m 0.5326464 0.3466216 0.1802787 0.5326464 0.34662156
a0,0G(y)+a0,1G(y)

�1
(1 + 1x)�m 0.4907125 0.3193329 0.1660858 0.4907122 0.31933272

b0
�2

e�2y 0.8523254 0.8523254 0.8523254 0.4498081 0.20232731
b0
�1�2

(1 + 1x)�me�2y 0.5180496 0.3371226 0.1753383 0.2733966 0.08002707
a0
�1�2

(1 + 1x)�me�2y 0.5338265 0.3473895 0.1806781 0.2817228 0.08246426

Table 2.2: Comparison of general upper bounds
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2.4.6 General upper bound IV
Theorem 2.4.12. Suppose there exists numbers � 2 (0, 1) such that

am+1,n+1  �am,n, m, n = 0, 1, 2, . . . , (2.171)

and there exists (�1, �2) 2 (0, 1)2 such that

am+1  �1am, m = 0, 1, . . . , (2.172)

bn+1  �2an, n = 0, 1, . . . , (2.173)

�1 ⇤ �2 = �. (2.174)

Bi(t), i = 1, 2 are d.f. satisfying the generalized adjustment equations
Z 1

0
{B1(t)}�1dF(t) =

1
�1

(2.175)

and
Z 1

0
{B2(t)}�1dG(t) =

1
�2
. (2.176)

If Vi(x), i = 1, 2 are d.f. satisfying

Vi(x)Bi(t)  Vi(x + t), x, t � 0, (2.177)

then
H(x, y)  max

n a0

�1�
,

b0

�2�

o c1(x)c2(y)
V1(0)V2(0)

, x, y � 0, (2.178)

where c1(x), c2(y) satisfy

1
c1(x)

= inf
0zx,F(z)>0

c1(x, z), x � 0, (2.179)

1
c2(y)

= inf
0wy,G(w)>0

c2(y,w), y � 0, (2.180)

with c1(x, z), c2(y,w) given by

c1(x, z) =

R 1
z {B1(t)}�1dF(t)

V1(x � z)F(z)
, 0  z  x, F(z) > 0 (2.181)

and

c2(y,w) =

R 1
w {B2(s)}�1dG(s)

V2(y � w)G(w)
, 0  w  y, G(w) > 0. (2.182)

Proof. We prove by induction that for 0  z  x and 0  w  y,

Hk,l(z,w)  max
n a0

�1�
,

b0

�2�

o c1(x)c2(y)
V1(x � z)V2(y � w)

. (2.183)
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Intuitively, c1(x) is a non-decreasing function which satisfies

F(z)  c1(x)
V1(x � z)

Z 1

z
{B1(t)}�1dF(t), 0  z  x. (2.184)

For any l, from (2.63), we have

H0,l(z,w)  F(z)
�

l
X

j=1

qjG
⇤ j

(w) + a0,lG
⇤(l+1)

(w)
 

 F(z)
�

l
X

j=1

qjG
⇤ j

(w) + blG
⇤(l+1)

(w)
 

 F(z)
1
X

j=1

qjG
⇤ j

(w)

 c1(x)
V1(x � z)

Z 1

z
{B1(t)}�1dF(t)

1
X

j=1

qjG
⇤ j

(w),

 c1(x)
�1V1(x � z)

1
X

j=1

qjG
⇤ j

(w),

 c1(x)
�1V1(x � z)

· b0c2(y)
�2V2(y � w)

; 0  z  x, 0  w  y, (2.185)

where the last inequality uses the proof of Theorem 4.2.1 in Willmot and Lin (1994). Hence,
for 0  z  x and 0  w  y,

H0,l(z,w)  b0c1(x)c2(y)
�V1(x � z)V2(y � w)

 b0

�2�

c1(x)c2(y)
V1(x � z)V2(y � w)

, (2.186)

and similarly, we can obtain for any k,

Hk,0(z,w)  a0

�1�

c1(x)c2(y)
V1(x � z)V2(y � w)

. (2.187)

Now, suppose that inequality holds for k, l. Referring to (2.100), we have

Hk+1,l+1(z,w)  a0,0F(z)G(w) + �
Z z

0

Z w

0
Hk,l(z � t,w � s)dF(t)dG(s)

+ F(z)
Z w

0
{
1
X

n=1

qnG
⇤n

(w � s)}dG(s) +G(w)
Z z

0
{
1
X

m=1

pmF
⇤m

(z � t)}dF(t)

 a0,0 ·
c1(x)

V1(x � z)

Z 1

z
{B1(t)}�1dF(t) · c2(y)

V2(y � w)

Z 1

w
{B2(s)}�1dG(s)

+max
na0

�1
,

b0

�2

o

Z z

0

Z w

0

c1(x)c2(y)
V1(x � z + t)V2(y � w + s)

dF(t)dG(s)

+
c1(x)

V1(x � z)

Z 1

z
{B1(t)}�1dF(t) · b0

�2

Z w

0

c2(y)
V2(y � w + s)

dG(s)
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+
c2(y)

V2(y � w)

Z 1

w
{B2(s)}�1dG(s) · a0

�1

Z z

0

c1(x)
V1(x � z + t)

dF(t)

 max
na0

�1
,

b0

�2

o c1(x)c2(y)
V1(x � z)V2(y � w)

Z 1

0
{B1(t)}�1dF(t)

Z 1

0
{B2(s)}�1dG(s)

= max
n a0

�1�
,

b0

�2�

o c1(x)c2(y)
V1(x � z)V2(y � w)

, (2.188)

since a0,0  min{a0, b0}, where 0  z  x, 0  w  y. Letting z = x and w = y completes our
proof.

2.4.7 General lower bound
Theorem 2.4.13. Suppose that ✓1 2 (0, 1) satisfies the dominance condition that am+1,n �
✓1am,n; m, n = 0, 1, 2, . . . , where B(t) is a d.f. satisfying the generalized adjustment equation
R 1

0 {B1(t)}�1dF(t) = 1/✓1. If W(x) is a d.f. satisfying W(x)B(t) � W(x + t), x � 0, t � 0, then

H(x, y) � a0,0

✓1W1(0)
d1(x)G(y), x, y � 0, (2.189)

where d1(x) satisfies
1

d1(x)
= sup

0zx,F(z)>0
d1(x, z), x � 0, (2.190)

with d(x, z) given by

d1(x, z) =

R 1
z {B1(t)}�1dF(t)

W1(x � z)F(z)
, 0  z  x, F(z) > 0. (2.191)

Proof. We define that

A1(z) = 1 � A1(z) = ✓1

Z z

0
{B1(t)}�1dF(t) (2.192)

the sum of k independent random variables with density function A1(z), has density function
Ak(z) = 1 � Ak(z), then by the law of total probability

Ak+1(z) = A(z) +
Z z

0
Ak(z � y)dA1(y). (2.193)

If
am,n � ✓1am�1,n, (2.194)

we can prove that

H(z, y) = lim
k,l!1

Hk,l(z, y) � a0,0G(y)
✓1W1(x � z)

d1(x) 0  z  x. (2.195)

We also prove the above conclusion by showing that for k = 0, 1, 2, . . . ,

Hk,l(z, y) � a0,0G(y)d1(x)
✓1W1(x � z)

Ak+1(z) 0  z  x. (2.196)
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Intuitively, c1(x) is a non-decreasing function which satisfies

F(z) � d1(x)
W1(x � z)

Z 1

z
{B1(t)}�1dF(t), 0  z  x. (2.197)

For k = 0,

H0,l(z, y) =
l

X

n=0

a0,nF(z)
�

G
⇤(n+1)

(y) �G
⇤n

(y)
�

= F(z)
�

l
X

n=1

(a0,n�1 � a0,n)G
⇤n

(y) + a0,lG
⇤(l+1)

(y)
 

= F(z)
�

l
X

n=1

1
X

i=1

pi,nG
⇤n

(y) + a0,lG
⇤(l+1)

(y)
 

� a0,0F(z)G(y)

� a0,0G(y)d1(x)
W1(x � z)

Z 1

z
{B1(t)}�1dF(t)

=
a0,0G(y)d1(x)
✓1W1(x � z)

A1(z). (2.198)

Suppose the conclusion holds for k, then for k + 1, we have

Hk+1,l(z, y) � a0,0F(z)G(y) + ✓1

Z z

0
Hk,l(z � t, y)dF(t)

� a0,0G(y)d1(x)
✓1W1(x � z)

A1(z) + a0,0d1(x)G(y)
Z z

0
{W1(x + t � z)}�1Ak+1(z � t)dF(t)

� a0,0G(y)d1(x)
✓1W1(x � z)

⇢

A1(z) + ✓1

Z z

0
{B1(t)}�1Ak+1(z � t)dF(t)

�

=
a0,0G(y)d1(x)
✓1W1(x � z)

Ak+2(z), (2.199)

which ends the proof.
It follows from Ross et al. (1996) that

m(x) =
1
X

k=1

Ak(x)  1, (2.200)

implying that lim
k!1

Ak(x) = 0. Thus,

lim
k!1

Ak(x) = 1. (2.201)

For 0  z  x,

H(z, y) = lim
k,l!1

Hk,l(z, y) � a0,0G(y)
✓1W1(x � z)

d1(x) lim
k!1

Ak+1(x) =
a0,0G(y)

✓1W1(x � z)
d1(x). (2.202)
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Letting z = x, we finally obtain that

H(x, y) � a0,0G(y)
✓1W1(0)

d1(x). (2.203)

2.5 Conclusion
In this chapter, we extended the results in Willmot and Lin (1994) and Willmot et al. (2001)
to a bivariate aggregate claim model. We derived four di↵erent upper bounds of bivariate tail
probability for both light-tailed claim severities with finite moment generating functions and
heavy-tailed claim severities without finite moment generating functions. The proposed upper
bounds outperform the univariate one given in Willmot and Lin (1994) and Willmot et al.
(2001) when they are used to bound bivariate tail probability. Several corollaries are given for
the purpose of computation and application by introducing specific classes of distributions such
as NWU and NWUC. A general lower bound for bivariate tail probability which is usually of
less concern in practice is also presented.



Chapter 3

Simulation methods for compound
distributions

3.1 Introduction and literature review
In collective risk theory, the total amount of losses that an insurance company incurs during

a time period is modeled by a compound random variable

S =
M

X

i=1

Xi, (3.1)

where M is a discrete number variable representing the number of claims; X1, X2, . . . are non-
negative independent identically distributed claim size random variables independent of M.
The tail probability of S , P[S > c] for some specified value c, and the tail mean, defined by
E[(S�c)+], are important quantities because they are closely related to important risk measures,
such as the value at risk (VaR) and the tail value at risk (TVaR).

Evaluations of the tail probability and the tail mean are not easy, even when the distributions
of M and Xi are known. One usually has to resort to recursive formulas, such as those proposed
in Panjer (1981) for the case when the distribution of M belongs to the (a, b, 0) class. There
is an extensive literature on further developments related to Panjer’s recursive formula. For
details, one is referred to the comprehensive book by Sundt and Vernic (2009).

Transform based techniques, such as fast Fourier transform (FFT), are also widely used in
calculating the distribution of aggregated claims. For an introduction, one can refer to Robert-
son (1992) or Wang (1998). Embrechts and Frei (2009) provided an excellent comparison of
the recursive and FFT methods.

Simulation methods are flexible and can be handy in estimation of the tail probability/moments
of compound distributions. However, they are subject to sampling errors. For example, the
crude Monte Carlo method (CMC) for estimating ✓ = P[S > c] is

✓̂0 = I(S > c), (3.2)

where I(·) is an indicator function, which takes value one if the argument is true and zero
otherwise. Then ✓̂0 is an unbiased estimator of ✓ because

E[✓̂] = ✓.

37
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The variance of ✓̂0 is
Var[✓̂0] = ✓(1 � ✓). (3.3)

The coe�cient of variation of ✓̂0 is

CV(✓̂0) =
p
✓(1 � ✓)
✓

=

r

(1 � ✓)
✓
. (3.4)

When we are interested in tail probability so that ✓ is close to zero, the coe�cient of variation
will be huge, which makes the simulation method ine�cient. Notice that when we conduct the
simulation n times, the estimator for ✓ is

✓̂0,n =
1
n

n
X

j=1

I(S ( j) > c), (3.5)

which has variance 1
n✓(1 � ✓) and

CV(✓̂0,n) =
p
✓(1 � ✓)/n

✓
=

1p
n
·
r

(1 � ✓)
✓

' 1
p

n✓̂
=

✓

n
X

j=1

I(S ( j) > c)
◆�1/2
. (3.6)

When ✓ is close to zero,
Pn

j=1 I(S ( j) > c) will be small, resulting in a large coe�cient of
variation.

When n is large, the distribution of ✓̂0,n is approximately normal by the Central Limit The-
orem. Then the 1 � ↵ confidence interval of ✓ is given by

(✓̂0,n �
z1�↵/2p

n

q

Var[✓̂0], ✓̂0,n +
z1�↵/2p

n

q

Var[✓̂0]).

Therefore, the ratio of the length of the CI and the magnitude of the parameter of interest is
about 2 ⇥ z1�↵/2p

n ⇥ CV(✓̂0). Consequently, for any estimator ✓̂, CV(✓̂) is a good measure for its
quality of as an estimator of ✓. In fact, it can be considered as the relative error of the simulation
estimator ✓̂. For our case, the relative error of ✓̂0 is given in (3.4), which shows that ✓̂0 is not
very e�cient when ✓ is small.

Various variance reduction methods exist for improving the e�ciency of CMC. Commonly
used techniques include importance sampling, conditioning, stratification, and the use of con-
trol variable. For detailed introductions to variance reduction methods, one is referred for
example, to Ross (2013) or Asmussen and Glynn (2007).

Clearly, simulation methods for evaluating the tail probability and tail mean of compound
variables are very important for actuaries. However, quite surprisingly, the literature in this area
is quite sparse. Relevant references include Peköz and Ross (2004), in which the “condition-
ing” approach was introduced specifically for compound variables. Glasserman et al. (2000)
proposed a method for simulating tail probability (Value at Risk) of investment portfolios by
combining the importance sampling and stratification method.

In this chapter, we study in detail variance reduction methods for simulating tail probability
and tail mean of both univariate and bivariate compound variables. Then we propose several
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novel combinations of variance reduction methods specifically for compound distributions.
These include the combination of importance sampling and conditioning and the combination
of importance sampling and stratified sampling.

We also extend our methods to estimating the tail probability of bivariate compound vari-
ables. Particularly, we consider losses from two lines of business:

(S 1, S 2) =
✓

M
X

i=1

Xi,
N

X

j=1

Yj

◆

, (3.7)

where (M,N) is a vector of random variables representing the number of the claims or the
two lines of business. M and N which can be dependent, have joint distribution pm,n. The
claim size random variables Xi, i = 1, 2, . . . and Yj, j = 1, 2, . . . are mutually independent
and are independent of the claim number M and N. We will provide several techniques for
e�ciently simulating the bivariate tail probability P[S 1 > c, S 2 > d] and bivariate tail moment
E[(S 1 � c)+ ⇥ (S 2 � d)+].

The remainder of this chapter is organized as follows. Section 3.2 reviews commonly
used variance reduction methods; Section 3.3 applies them to the estimation of tail probability
P[S > c]. Section 3.4 studies the simulation methods for the tail moment (S �c)+. Sections 3.5
and 3.6 extend the results to bivariate compound variables. Section 3.7 concludes this chapter.

3.2 Review of variance reduction techniques
In this section, we briefly review several variance reduction techniques that will be used in this
chapter. For a more comprehensive introduction to the topic, one is referred to Ross (2013)
and Asmussen and Glynn (2007).

3.2.1 Importance sampling
Let Z = (Z1, . . . ,Zn) denote a vector of random variables having a joint density function f (z) =
f (z1, . . . , zn) and suppose that we want to estimate

✓ = E[g(Z)] =
Z

g(z) f (z)dz, (3.8)

where the integral is n-dimensional and over the support of z.
In importance sampling, one find a probability density function f ⇤(z) such that f (z) = 0

whenever f ⇤(z) = 0. Since

✓ =

Z

g(z) f (z)
f ⇤(z)

f ⇤(z)dz = E
g(Z⇤) f (Z⇤)

f ⇤(Z⇤)

�

, (3.9)

where Z⇤ has density f ⇤(z),

✓̂I =
g(Z⇤) f (Z⇤)

f ⇤(Z⇤)
is an estimator for ✓.
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The importance sampling approach aims to choose an appropriate f ⇤(z) which results in a
smaller variance compared to the crude simulation in (3.8).

Since

Var
g(Z⇤) f (Z⇤)

f ⇤(Z⇤)

�

= E
✓g(Z⇤) f (Z⇤)

f ⇤(Z⇤)
� ✓

◆2�

=

Z

(g(z) f (z) � ✓ f ⇤(z))2

f ⇤(z)
dz, (3.10)

in order to achieve a smaller variance, f ⇤(z) should be chosen such that g(z) f (z) � ✓ f ⇤(z) is
close to zero. That is, f ⇤(z) is proportional to g(z) f (z).

If Z has a finite moment generating function (m.g.f.)

MZ(t) = E[eZ·t],

then it is usually handy to choose Z⇤ to be the Esscher (exponential tilting) transform of Z.
That is, we let Z⇤ have p.d.f.

f ⇤(z) =
et·z

MZ(h)
f (z), (3.11)

for some tilting parameter h 2 (0, b). In addition, the m.g.f. of Z⇤ is given by

MZ⇤(t) = E[et·Z⇤] =
E[e(t+h)·Z]

E[eh·Z]
=

MZ(t + h)
MZ(h)

. (3.12)

Notice that if Z is a discrete random variable, we interpret f and f ⇤ as probability mass
function.

3.2.2 Variance reduction by conditioning
Suppose that Z and W are dependent random variables and we are interested in estimating

✓ = E[Z]. (3.13)

Suppose that E[Z | W] can be determined after W is simulated (e�ciently), then it is a more
e�cient estimator of ✓ than the crude estimator Z because it is unbiased, i.e.,

E
⇥

E[Z | W]
⇤

= E[Z] (3.14)

and it has smaller variance than Z, because

Var[Z] = Var
⇥

E[Z | W]
⇤

+ E
⇥

Var[Z | W]
⇤ � Var

⇥

E[Z | W]
⇤

. (3.15)

3.2.3 Stratified sampling
Stratified sampling resembles the conditioning method in the sense that a random variable W
can help the simulation of the mean of a random variable Z. Suppose that W takes values in k
strataW1, . . . ,Wk with probability pi = P[W 2Wi], then

E[Z] =
k

X

i=1

E[Z | W 2Wi]pi. (3.16)
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Suppose that we are planning to estimate E[Z] by n runs of simulation, with ni samples
from stratum i, then the stratified estimate of E[Z] is

✓̂S ,n =

k
X

i=1

Z̄i pi, (3.17)

where Z̄i is the sample average of Zi’s conditional on W = wi.
Let �i = Var

⇥

Z | W 2Wi], then the variance of ✓̂S ,n is

Var(✓̂S ,n) =
k

X

i=1

p2
i
�2

i

ni
. (3.18)

If we choose ni = npi , ✓̂S ,n has a smaller variance than the crude simulation estimator
✓̂0,n =

P

Xi/n because

Var[✓̂S ,n] =
1
n

k
X

i=1

pi�
2
i =

1
n

E
⇥

Var[Z | W]
⇤  1

n
⇥

Var[Z]
⇤

= Var[✓̂0,n]. (3.19)

It is worthwhile noting that ni = npi is not necessarily the optimal number of simulations in
stratum i. Particularly, if ni is chosen to be proportional to pi�i (Fishman 1996), then Var[✓̂S ,n]
is minimized.

3.2.4 The use of control variables

When using a control variable to reduce the variance of the estimator ✓ = E[Z], we select a
control variate W that is strongly positively or negatively correlated with Z. Then an unbiased
estimator for ✓ is

✓̂CV = Z + �(W � E[W])

for some constant �. The variance of ✓̂CV is

Var[Z] + �2Var[W] + 2�Cov(Z,W), (3.20)

which is minimized when � = �Cov(Z,W)/Var[W]. The minimum value is

Var[Z](1 � ⇢2), (3.21)

where
⇢ = Corr(Z,W) =

Cov(Z,W)p
Var[Z]Var[W]

. (3.22)

Remark 3.2.1. There are many other simulation variance reduction methods. We only intro-
duced a few that will be used in the later sections of this chapter. Note that these methods can be
combined to reduce the simulation variance even further. We will explore a few combinations
in the next section.
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3.3 Simulation of the tail probability of compound distribu-
tions

In this section, we applied the variance reduction methods introduced in the previous section
to the estimation of the tail probability ✓ = P[S > c] of the compound random variable defined
in (3.1).

The crude estimator is simply ✓̂0 = I(S > c). If the simulation is run n times, then the
estimator is given by ✓̂0,n as defined in (3.5). The problem with the crude method is that when
c is large, the sample size needs to be very large in order for S > c to occur. In other words, as
shown in equation (3.6), the crude estimator is not e�cient.

3.3.1 Importance sampling
Let fS (x) be the probability density function (p.d.f.) of S 1. We assume that S has a finite
moment generating function (m.g.f.) MS (t) = E[etS ] on the interval t 2 [0, b), where b > 0.

In importance sampling, instead of sampling I(S > c), one samples I(S ⇤ > c)L(S ⇤), where
S ⇤ has p.d.f. f ⇤ and L(S ⇤) = f (S ⇤)

f ⇤(S ⇤) is the likelihood ratio. Since we assume that S has a finite
m.g.f., we may choose S ⇤ to be the exponential tilting version (Esscher transform) of S . That
is, we let S ⇤ have p.d.f.

fS ⇤(x) =
ehx

MS (h)
fS (x), (3.23)

for some tilting parameter h. In addition, the m.g.f. of S ⇤ is given by

MS ⇤(t) = E[etS ⇤] =
E[e(t+h)S ]

E[ehS ]
=

MS (t + h)
MS (h)

. (3.24)

Then, we have

E[I(S > c)] = E


I(S ⇤ > c)
MS (h)
ehS ⇤

�

, (3.25)

where S ⇤ has p.d.f. fS ⇤(x).
Hence, the importance sampling estimator of ✓ is given by

✓̂I = I(S ⇤ > c)MS (h) exp(�hS ⇤). (3.26)

If the sample size is n, then we have

✓̂I,n =
1
n

n
X

j=1

I(S ⇤( j) > c)MS (h) exp(�hS ⇤( j)),

where S ⇤( j) is the jth simulated value of S ⇤.
Note that choosing the appropriate value of h is critical in applying the importance sampling

method. For our case, we would like to choose h such that I(S ⇤ > c) is more likely to occur
than I(S > c). Thus, a natural way is to select h such that E[S ⇤] = c.

1Notice that S has a point mass at zero, where the p.d.f. is not defined. In the following, f (0) and f ⇤(0) are
taken to be probability mass at zero.
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Note 3.3.1. As pointed out in Ross (2013),

✓̂I = I(S ⇤ > c)MS (h)e�hS ⇤  MS (h)e�hc. (3.27)

Thus, one can select h to minimize the upper bound MS (h)e�hc. Setting its derivative to 0, we
have

M0S (h) � cMS (h) = 0. (3.28)

Thus, the optimal h should satisfy

c =
M0S (h)
MS (h)

= E


S
ehS

MS (h)

�

= E[S ⇤]. (3.29)

This verifies the intuitive selection of h.

We now study the distribution of S ⇤. Firstly, the m.g.f of S ⇤ is

MS ⇤(t) =
MS (t + h)

MS (h)
=

PM(MX(t + h))
PM(MX(h))

=
PM(MX(h)MX⇤(t))

PM(MX(h))
, (3.30)

where PM(z) = E[zM] represents the probability generating function (p.g.f.) of M and X⇤ is
Esscher transform of X with parameter h.

Denote c(h) = log(MX(h)) and assume that M⇤ is the Esscher transform of M with parame-
ter c(h). Then, the p.g.f. of M⇤ is

PM⇤(z) =
E[ec(h)M · zM]

E[ec(h)M]
=

PM(ec(h) · z)
PM(ec(h))

=
PM(MX(h)z)
PM(MX(h))

. (3.31)

Therefore by (3.30),
MS ⇤(t) = PM⇤(MX⇤(t)), (3.32)

which shows that S ⇤ is again a compound sum variable with claim number random variable
M⇤ and claim size random variable X⇤.

We next state the result.

Proposition 3.3.1. The Esscher transform of S =
PM

i=1 Xi with parameter h is

S ⇤ =
M⇤
X

i=1

X⇤i , (3.33)

where X⇤ is the Esscher transform of X with parameter h and M⇤ is the Esscher transform of
M with parameter c(h) = log(MX(h)).

The Esscher transforms of some commonly used distributions with parameter h are listed
below:

• if M ⇠ B(n, p) with the probability mass function (p.m.f.)

pM(k) =
 

n
k

!

pk(1 � p)n�k, k = 0, 1, 2, . . . , n, (3.34)

then M⇤ ⇠ B(n, peh

1�p+peh );
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• if M ⇠ NB(r, p) with the p.m.f.

pM(k) =
 

k + r � 1
k

!

(1 � p)r pk, k = 0, 1, 2, . . . , (3.35)

then M⇤ ⇠ NB(r, peh), h < � ln p;

• if M ⇠ Poisson(�) with the p.m.f.

pM(k) =
�k

k!
e��, k = 0, 1, 2, . . . , (3.36)

then M⇤ ⇠ Poisson(�eh);

• if X ⇠ Ga(↵, �), with the p.d.f.

fX(x) = �↵x↵�1e��x/�(↵), x > 0, (3.37)

then X⇤ ⇠ Ga(↵, � � h), h < �.

Proposition 3.3.1 suggests that S ⇤ is easy to simulate and the importance sampling method
is easily implemented.

Example 3.3.1. Assuming that M ⇠ Possion(�) and Xi, i = 1, 2, . . . have the common distri-
bution X ⇠ Ga(↵, �). Then

S ⇤ =
M⇤
X

i=1

X⇤i , (3.38)

where M⇤ ⇠ Possion
⇣

�( �
��h )↵

⌘

and X⇤i ⇠ Ga(↵, � � h).

3.3.2 Importance and stratified sampling
A method for applying stratified sampling in simulating quantities related to compound dis-
tribution was introduced in Section 9.5.3 of Ross (2013). This is done by treating the claim
number M as the stratifying variable. Specifically, to simulate ✓ = gN(X1, . . . , XN), one can
choose m such that P(N > m) is small and then make use of the fact that

✓ =
m

X

n=1

gn(X1, . . . , Xn)pn + E[gN(X1, . . . , XN)|N > m](1 �
m

X

n=0

pm).

This method can be applied to estimate the tail probability of S if we let gN(X1, . . . , XN) =
I((X1 + · · · + XN) > c). However, directly applying the method is not e�cient because when
c is large and the probability is small, one has to select m to be very large, resulting in a large
number of strata. In addition, on strata with small N, the function to be evaluated I((X1 + · · · +
XN) > c) is likely to be zero.

Therefore, we propose a method that combines importance sampling and stratified sam-
pling to simulate the tail probability of S . For this purpose, suppose that S ⇤ is the Esscher
transform of S with parameter h and that E[S ⇤] = c.
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Letting

g⇤m(x1, . . . , xm) = MS (h)I(
m

X

i=1

xi > c)exp(�h
m

X

i=1

xi) (3.39)

and
p⇤m = P[M⇤ = m], m = 1, 2, . . . ,

then for a given value of ml we have

✓ = E[I(S > c)]

= E


I(S ⇤ > c)
MS (h)
ehS ⇤

�

= E[g⇤M⇤(X
⇤
1, . . . , X

⇤
M⇤)]

=

ml
X

m=0

E[g⇤M⇤(X
⇤
1, . . . , X

⇤
M⇤) | M⇤ = m]p⇤m + E[g⇤M⇤(X

⇤
1, . . . , X

⇤
M⇤) | M⇤ > ml]P[M⇤ > ml]

=

ml
X

m=0

E[g⇤m(X⇤1, . . . , X
⇤
m)]p⇤m + E[g⇤M⇤(X

⇤
1, . . . , X

⇤
M⇤) | M⇤ > ml](1 �

ml
X

m=0

p⇤m). (3.40)

With this, we can follow the procedure outlined in Ross (2013) to simulate ✓ = P[S > c].
Concretely, we first fix a value of ml such that P[M⇤ > ml] is small and generate the value
of M⇤ conditional on it exceeding ml. Suppose that the generated value in a run is m0. Then
generate m0 independent random variables X⇤1, . . . , X

⇤
m0 , the estimator from that run being

E =
ml
X

m=1

g⇤m(X⇤1, . . . , X
⇤
m)p⇤m + g⇤m0(X

⇤
1, . . . , X

⇤
m0)(1 �

ml
X

m=0

p⇤m). (3.41)

As pointed out in Ross (2013), since it is relatively easy to compute the functions g⇤m, we
can use the data X⇤1, . . . , X

⇤
m0 in reverse order to obtain a second estimator, and then average the

two estimators. That is, we let

E0 =
ml
X

m=1

g⇤m(X⇤m0 , . . . , X
⇤
m0�m+1)p⇤m + g⇤m0(X

⇤
m0 , . . . , X

⇤
1)(1 �

ml
X

m=0

p⇤m)

and the estimator from one run of simulation now becomes

✓̂I+S =
1
2

(E + E0). (3.42)

Remark 3.3.1. By (3.39), the second term in (3.40) is bounded by MS (h)P[M⇤ > ml], that is,

E[g⇤M⇤(X
⇤
1, . . . , X

⇤
M⇤) | M⇤ > ml]P[M⇤ > ml]  MS (h)P[M⇤ > ml].

Thus, if we select ml su�ciently large, so that MS (h)P[M⇤ > ml] is negligible, then the second
term in (3.41) can be omitted.
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3.3.3 Conditioning
Peköz and Ross (2004) introduced a very e↵ective way of simulating the tail probability of a
compound distribution based on the conditioning method. Let

T (c) = min
✓

m :
m

X

i=1

Xi > c
◆

. (3.43)

Then, one has that
S > c, M � T (c). (3.44)

Therefore,

E[I(S > c)] = E[E[I(S > c) | T (c)]]
= E[E[I(M > T (c)) | T (c)]]
= ET (c)

⇥

P[M � T (c) | T (c)]
⇤

.

To implement the method, we start by generating the values of Xi in sequence, and stops
when the sum of generated values exceeds c. If the generated value of T (c) is tc, then we use
P[M � tc] as the estimate of P[S > c] from this run.

Overall, when applying conditioning method, the estimator for ✓ is

✓̂CD = P[M � T (c)]. (3.45)

where am = P[M > m],m = 0, 1, 2, . . . .
We point out that (3.44) agrees with Proposition 1.1 of Lin (1996).

3.3.4 Combining conditioning method with control variates
As shown in Peköz and Ross (2004), the preceding conditional expectation estimator can be
further improved by using a control variate. The idea is to select a control variate W that is
strongly positively or negatively correlated with E[I(M � T (c)) | T (c)]. As suggested in Peköz
and Ross (2004), one choice for W is

W =
T (c)
X

i=1

(Xi � E[X]), (3.46)

which has zero mean. W is positively corrected with E[I(M � T (c)) | T (c)] because when T (c)
is large, (1) E[I(M � T (c)) | T (c)] will be small; and (2) Xi’s are likely to be small so that W
will be small.

With the above, when combining the conditioning method with the control variates, the
estimator for ✓ is

✓̂CD+CV = ✓̂CD � �W, (3.47)

where � can be chosen to be � = cov(✓̂CD,W)/Var(W), which may be estimated using the
simulated values of ✓̂CD and W.
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3.3.5 Combining importance sampling with conditioning
We show in this section that importance sampling can be combined with the conditioning
method to e�ciently simulate the tail probability of compound sums.

As in Section 3.3.1, let S ⇤ and X⇤ be the Esscher transform of S and X with tilting parameter
h, respectively. Let M⇤ be the Esscher transform of M with parameter log(MX(h)).

Define

T ⇤(c) = min
✓

m :
m

X

i=1

X⇤i > c
◆

, (3.48)

and

S ⇤M =
M

X

i=1

X⇤i . (3.49)

We then have

E[I{S > c}]

= E


I{S ⇤ > c}E[ehS ]
ehS ⇤

�

= E


I{S ⇤M � c}E[ehS ]
ehS ⇤M

(MX(h))M

E[(MX(h))M]

�

= E


I{S ⇤M � c}MX(h)M

ehS ⇤M

�

= E


I{M � T ⇤(c)}MX(h)M

eh
PM

i=1 X⇤i

�

= E


E


I{M � T ⇤(c)}MX(h)M

eh
PM

i=1 X⇤i
| T ⇤(c), X⇤1, . . . , X

⇤
T ⇤(c)

��

= E


E


I{M � T ⇤(c)} MX(h)M�T ⇤(c)

eh(
PM

i=1 X⇤i �
PT⇤(c)

i=1 X⇤i )
| T ⇤(c), X⇤1, . . . , X

⇤
T ⇤(c)

�MX(h)T ⇤(c)

eh
PT⇤(c)

i=1 X⇤i

�

= E


P[M � T ⇤(c)]E
 MX(h)M�T ⇤(c)

eh(
PM

i=1 X⇤i �
PT⇤(c)

i=1 X⇤i )
| T ⇤(c),M � T ⇤(c)

�MX(h)T ⇤(c)

eh
PT⇤(c)

i=1 X⇤i

�

= E


P[M � T ⇤(c)]
MX(h)T ⇤(c)

eh
PT⇤(c)

i=1 X⇤i

�

. (3.50)

In the last line, we use the fact that

E
 MX(h)M�T ⇤(c)

eh(
PM

i=1 X⇤i �
PT⇤(c)

i=1 X⇤i )
| T ⇤(c),M � T ⇤(c)

�

= 1,

which holds since for any value of M � T ⇤(c),

E
 MX(h)M�T ⇤(c)

eh(
PM

i=1 X⇤i �
PT⇤(c)

i=1 X⇤i )
| T ⇤(c)

�

= 1.

To utilize this result in simulation, we start with generating the values of X⇤i in sequence,
and stop when the sum of generated values exceeds c. We record the values of T ⇤(c) and
X⇤1, . . . , X

⇤
T ⇤(c). Then the estimate of P[S > c] is
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✓̂I+CD = P[M � T ⇤(c)]
MX(h)T ⇤(c)

eh
PT⇤(c)

i=1 X⇤i
. (3.51)

Remark 3.3.2. The parameter h needs to be selected when combining the importance sampling
and the conditioning methods. We suggest that a good value of h could be such that E[S ⇤] = c,
as in the importance sampling case. The reason is that the value of h that minimizes the
variance of P[M � T ⇤(c)] MX(h)T⇤(c)

eh
PT⇤(c)

i=1 X⇤i
is roughly the same as that minimizing the variance of

I{S ⇤ > c}E[ehS ]
ehS ⇤ . For a proof of the statement, one can refer to Appendix A.1.

Remark 3.3.3. A zero-mean control variate

W =
T ⇤(c)
X

i=1

(X⇤i � E[X⇤]) (3.52)

can be chosen to improve the estimator ✓̂I+CD. This results in

✓̂I+CD+CV = ✓̂I+CD � �W. (3.53)

The numerical example in the next section will illustrate the e↵ectiveness of this combina-
tion.

3.3.6 Numerical experiments

This section presents a numerical example to illustrate the e�ciency of the di↵erent methods
of simulating tail probability. We assume that M ⇠ Poisson(20), Xi ⇠ Ga(20, 0.5).

For each method, the tail probability was estimated using 1000 simulated samples (one
round). The standard deviations were based on 100 rounds of simulations. We will follow this
convention in all the numerical examples in the rest parts of the chapter.

In the technique “I+S" where stratified sampling is applied, we set ml = 50. Our results are
shown in Table 3.1 .

We observe that the combinations “I+S”, “I+CD” and “I+CD+CV” methods performed
well. The methods involving importance sampling tend to have small variance when c is large.
Therefore, for simulating small tail probabilities, “I+S” and “I+CD” are recommended. The
method “I+CD+CV” did not provide enough improvement over the method “I+CD”, thus is
not worth the extra steps.

3.4 Simulation of mean excess losses

This section introduces variance reduction methods for simulating the mean excess losses

⌧ = E[(S � c)+].
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c 1000 1200 1400
Analytical mean 1.3908e-01 1.9822e-02 1.4701e-03

Technique 1 mean 1.3867e-01 1.9300e-02 1.4700e-03
(C) sd 1.0866e-02 4.1280e-03 1.2906e-03

sd/mean 7.8356e-02 2.1389e-01 8.7799e-01
Technique 2 mean 1.3919e-01 2.0001e-02 1.4599e-03

(I) sd 5.5503e-03 1.0284e-03 9.2773e-05
sd/mean 3.9877e-02 5.1420e-02 6.3549e-02

Technique 3 mean 1.3901e-01 1.9803e-02 1.4703e-03
(I+S) sd 5.0935e-04 7.8608e-05 7.6717e-06

sd/mean 3.6642e-03 3.9695e-03 5.2179e-03
Technique 4 mean 1.3878e-01 1.9892e-02 1.4752e-03

(CD) sd 1.8385e-03 4.3484e-04 4.5747e-05
sd/mean 1.3248e-02 2.1860e-02 3.1012e-02

Technique 5 mean 1.3906e-01 1.9811e-02 1.4677e-03
(CD+CV) sd 5.1966e-04 1.7081e-04 2.0931e-05

sd/mean 3.7371e-03 8.6218e-03 1.4261e-02
Technique 6 mean 1.3910e-01 1.9829e-02 1.4688e-03

(I+CD) sd 6.4308e-04 1.1943e-04 9.0533e-06
sd/mean 4.6232e-03 6.0230e-03 6.1636e-03

Technique 7 mean 1.3905e-01 1.9820e-02 1.4697e-03
(I+CD+CV) sd 4.7882e-04 9.5443e-05 8.2514e-06

sd/mean 3.4436e-03 4.8155e-03 5.6142e-03

Table 3.1: Comparison of the simulation methods for P[S > c]

3.4.1 Importance sampling & importance and stratified sampling
Importance sampling method for simulating E[(S � c)+] is similar to that for P[S > c]. One
simply replace I{S ⇤ > c} by (S ⇤ � c)+ in equation (3.26), yielding

⌧̂I = (S ⇤ � c)+MS (h)exp(�hS ⇤). (3.54)

To combine importance and stratified sampling, one simply replace the function g⇤m in (3.39)
by

g⇤m(x1, . . . , xm) =
0

B

B

B

B

B

@

m
X

i=1

xi � c

1

C

C

C

C

C

A

+

MS (h)e�h
Pm

i=1 xi .

3.4.2 Conditioning
A method for simulating the mean excess losses using the conditioning method was discussed
in Peköz and Ross (2004). The main idea is to define the quantity

A =
T (c)
X

i=1

Xi � c. (3.55)
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Then the conditional expectation estimator is constructed as

⌧̂CD = E[(S � c)+ | T (c), A]

=
X

i�T (c)

(A + (i � T (c))E[X])P[M = i]

= (A � T (c)E[X])P[M � T (c)] + E[X]
✓

E[M] �
X

i<T (c)

iP[M = i]
◆

. (3.56)

3.4.3 Combining conditioning method with control variates

The following two control variables can be used as control variates to enhance the performance
of the conditioning method without increasing computational e↵orts:

W1 =

T (c)
X

i=1

(Xi � E[X]), (3.57)

and

W2 = A � E[A], (3.58)

both of which have zero mean.
Both W1 and W2 can easily be obtained with the sample generated for the conditioning

method. E[A] is the numerical mean of generated A’s, whereas E[X] can be calculated theoret-
ically. Thus, we can construct an estimator

⌧̂CD+CV = ⌧̂CD � �1W1 � �2W2, (3.59)

where �1, �2 are chosen to minimize the variance of ⌧̂C+CV . This could be achieved by letting
�1 and �2 take values that results from the linear regression

⌧̂CD = �0 + �1W1 + �2W2 + ✏, (3.60)

where the values of the parameters ⌧̂CD, W1 and W2 are generated in simulation using the
conditioning method.

For general discussions on least squares or regression based methods to be used in conjunc-
tion with control variates, one is referred to Lavenberg and Welch (1981) and Davidson and
MacKinnon (1992).
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3.4.4 Combining importance sampling with conditioning
Similar to the simulation of a tail probability, we have

E[(S � c)+] = E


(S ⇤ � c)+
E[ehS ]

ehS ⇤

�

= E


(S ⇤ � c)+
E[MX(h)M]

MX(h)M⇤
MX(h)M⇤

ehS ⇤

�

= E


(S ⇤M � c)+
MX(h)M

ehS ⇤M

�

= E


(S ⇤M � c)+
MX(h)M

eh
PM

i=1 X⇤i

�

= E


E


1{M � T ⇤(c)}(A⇤ +
M

X

i=T ⇤(c)+1

X⇤i )
MX(h)M�T ⇤(c)

eh
PM

i=T⇤(c)+1 X⇤i
| T ⇤(c), A⇤

�MX(h)T ⇤(c)

eh
PT⇤(c)

i=1 X⇤i

�

= E


(A⇤ + (E[M � T ⇤(c) | M � T ⇤(c)])E[X]) P[M � T ⇤(c)]
MX(h)T ⇤(c)

eh
PT⇤(c)

i=1 X⇤i

�

, (3.61)

where A⇤ is defined by

A⇤ =
T ⇤(c)
X

i=1

X⇤i � c. (3.62)

Therefore, we can construct an estimator

⌧̂I+CD = (A⇤ + (E[M � T ⇤(c) | M � T ⇤(c)])E[X]) P[M � T ⇤(c)]
MX(h)T ⇤(c)

eh
PT⇤(c)

i=1 X⇤i
. (3.63)

The quantity E[M � T ⇤(c) | M � T ⇤(c)] is related to a size-biased transform (see Denuit
(2020)). We have

E[M | M � T ⇤(c)] =
E[M1{M � T ⇤(c)}]

P[M � T ⇤(c)]
= E[M]

P[M̃ � T ⇤(c)]
P[M � T ⇤(c)]

, (3.64)

where M̃ is the size-biased version of M with distribution function

P[M̃ = k] =
kP[M = k]

E[M]
k = 0, 1, . . . . (3.65)

Remark 3.4.1. Equation (3.64) can be calculated e�ciently because the distribution of M̃ and
M are often related. For example, as shown in Ren (2021), if M belongs to the (a, b, 0) class
with parameter (a, b), then M̃�1 is in the (a, b, 0) class with parameter (a, a+b). Particularly,
if M follows a Poisson distribution with mean �, then M̃ � 1 also follows a Poisson distribution
with mean �.

Remark 3.4.2. Control variates can be utilized to improve the results further. For example, let

W1 =

T ⇤(c)
X

i=1

(X⇤i � E[X⇤]), (3.66)



52 Chapter 3. Simulation methods for compound distributions

and
W2 = A⇤ � E[A⇤]. (3.67)

Then the estimator
⌧̂I+CD+CV = ⌧̂I+CD � �1W1 � �2W2. (3.68)

can be used to improve ⌧̂I+CD. The numerical example in the next section illustrate the results.

3.4.5 Numerical experiments
This section compares the di↵erent methods for simulating the mean excess losses by using the
example described in Section 3.3.6. The results in Table 3.2 show that the combinations “I+S"
and “I+CD+CV" are the most e�cient for simulating mean excess losses.

c 1000 1200 1400
Technique 1 mean 14.4631 1.5426 9.4252e-02

(C) sd 1.5972 4.8686e-01 9.5210e-02
sd/mean 1.1044e-01 3.1561e-01 1.0102

Technique 2 mean 14.6203 1.5694 9.5366e-02
(I) sd 4.6658e-01 4.9749e-02 4.1447e-03

sd/mean 3.1913e-02 3.1698e-02 4.3461e-02
Technique 3 mean 14.4795 1.5728 9.5332e-02

(I+S) sd 6.7333e-02 5.8922e-03 2.8451e-04
sd/mean 4.6503e-03 3.7463e-03 2.9844e-03

Technique 4 mean 14.4677 1.5813 9.5695e-02
(CD) sd 2.3288e-01 3.8123e-02 3.1565e-03

sd/mean 1.6096e-02 2.4109e-02 3.2985e-02
Technique 5 mean 14.4938 1.5749 9.5259e-02
(CD+CV) sd 5.1961e-02 1.3857e-02 1.4700e-03

sd/mean 3.5851e-03 8.7989e-03 1.5431e-02
Technique 6 mean 14.4950 1.5738 9.5352e-02

(I+CD) sd 8.2956e-02 8.2084e-03 3.7392e-04
sd/mean 5.7230e-03 5.2158e-03 3.9215e-03

Technique 7 mean 14.4985 1.5746 9.5390e-02
(I+CD+CV) sd 4.3460e-03 9.4551e-04 7.4557e-05

sd/mean 2.9976e-04 6.0048e-04 7.8160e-04

Table 3.2: Comparison of the simulation methods for E[(S � c)+]

Remark 3.4.3. When carrying out importance sampling related methods, we have set the the
value of the tilting parameter to be the same as that for estimating the tail probability. That is,
h is such that E[S ⇤] = c. However, this may not be the optimal choice.

For example, when c = 1200, we have used h = 0.009561118 in the above. To explore the
optimal value of h, we experimented and plotted in the following the standard deviation of the
estimator (based on repeating the each method 100 times) against the value of h. Figure 3.1
shows that comparing with the tail probability case, one may want to set h to greater value
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when estimating mean excess losses. Determining theoretical results for the optimal value of
the tilting parameter would be a suitable topic for future research.

(a) I (b) I+S (c) I+CD

Figure 3.1: Standard deviation of the simulation results with di↵erent values of h

3.5 Simulation of tail probabilities-the two dimensional case
This section studies methods for simulating the tail probability

✓ = P[S 1 > c, S 2 > d]

for the two-dimensional compound variable defined in (3.7). The estimator for ✓ in the raw
simulation approach is just

✓̂0 = I
0

B

B

B

B

B

B

@

M
X

i=1

Xi > c,
N

X

j=1

Yj > d

1

C

C

C

C

C

C

A

,

To perform the raw simulation, one first generates the value of M and N, say M = m and
N = n, then generates the values of (X1, . . . , Xm) and (Y1, . . . ,Yn) and use them to determine the
value of ✓̂0. The average value of ✓̂0 over many such runs would then give an estimate for ✓.

In this section, we introduce several variance reduction methods for simulating the tail
probability P[S 1 > c, S 2 > d] and discuss their e�ciency.

3.5.1 Importance sampling
Let S = (S 1, S 2) and c = (c, d). When using importance sampling to simulate P(S > c), instead
of sampling I(S > c), one samples

✓̂I = I(S⇤ > c)L(S⇤),

where S⇤ has p.d.f. fS⇤ and L(S⇤) = fS(S⇤)
fS⇤ (S⇤)

is the likelihood ratio evaluated at S⇤.
A commonly used choice for S⇤ is the Esscher transform (exponential tilting) of S. That is,
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fS(x) =
M(h)
eh·x fS⇤(x),

where M(h) = E[eh·S] and h · S = h1S 1 + h2S 2 is the dot product of h and S.
Thus,

L(x) =
M(h)
eh·x ,

Note that S⇤ has the m.g.f.

MS⇤(t) = E[et1S ⇤1+t2S ⇤2] =
E[e(t1+h1)S 1+(t2+h2)S 2]

E[eh1S 1+h2S 2]
=

MS(t + h)
MS(h)

. (3.69)

Let P(M,N)(z1, z2) = E[zM
1 zN

2 ] be the p.g.f. of (M,N). Then (3.69) can be further written as

MS ⇤1,S
⇤
2
(t1, t2) =

MS 1,S 2(t1 + h1, t2 + h2)
MS 1,S 2(h1, h2)

=
PM,N(MX(t1 + h1),MY(t2 + h2))

PM,N(MX(h1),MY(h2))

=
PM,N(MX(t1)MX⇤(t1),MY(t2)MY⇤(t2))

PM,N(MX(t1),MY(t2))
. (3.70)

Let a(h1) = log(MX(h1)) and b(h2) = log(MY(h2)) and (M⇤,N⇤) be the 2d Esscher transform
of (M,N) with parameter a(h1) and b(h2), respectively. Then, the p.g.f. of (M⇤,N⇤) is

PM⇤,N⇤(z1, z2) =
E[(ea(h1)z1)M(eb(h2)z2)N]

E[ea(h1)M+b(h2)N]
=

PM,N(MX(t1)z1,MY(t2)z2)
PM,N(MX(t1),MY(t2))

. (3.71)

Therefore, (3.70) can be written as

MS ⇤1,S
⇤
2
(t1, t2) = PM⇤,N⇤

⇣

MX⇤(t1),MY⇤(t2)
⌘

. (3.72)

which shows that (S ⇤1, S
⇤
2) is again a bivariate compound sum variable with bivariate claim

number random variable (M⇤,N⇤) and claim size random variables X⇤ and Y⇤.
We state the result in the following Proposition.

Proposition 3.5.1. The 2d Esscher transform of (S 1, S 2) = (
PM

i=1 Xi,
PN

j=1 Yj) with parameter
(h1, h2) is

(S ⇤1, S
⇤
2) =

✓

M⇤
X

i=1

X⇤i ,
N⇤
X

j=1

Y⇤j
◆

, (3.73)

where X⇤,Y⇤ are the Esscher transforms of X,Y with parameter h1, h2, respectively, and (M⇤,N⇤)
is the 2d Esscher transform of (M,N) with parameter (log(MX(h1), log(MY(h2))).

Example 3.5.1. Consider the model in (3.7). Assume that ⇤ ⇠ Ga(↵, �). Conditional on ⇤,
claim frequencies M ⇠ Po(�1⇤) and N ⇠ Po(�2⇤). Claim sizes Xi, i = 1, 2, . . . are i.i.d. and
follow a Gamma distribution with parameters (↵1, �1). Claim sizes Yi, i = 1, 2, . . . are i.i.d. and
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follow a Gamma distribution with parameters (↵2, �2). Xi’s and Yi’s are mutually independent.
They are independent of (M,N). With this setup, we have

MS 1,S 2(t1, t2) = E[et1S 1+t2S 2]
= E⇤

⇥

E[et1S 1+t2S 2 | ⇤]
⇤

= E⇤
⇥

PM|⇤
�

MX(t1)
� · PN |⇤

�

MY(t2)
�⇤

= E⇤
⇥

e�1⇤(MX(t1)�1)+�2⇤(MY (t2)�1)⇤

= M⇤
�

�1(MX(t1) � 1) + �2(MY(t2) � 1)
�

=
✓

1 � �1MX(t1) + �2MY(t2) � �1 � �2

�

◆�↵
. (3.74)

Therefore,

MS ⇤1,S
⇤
2
(t1, t2) =

MS 1,S 2(t1 + h1, t2 + h2)
MS 1,S 2(h1, h2)

=
✓

1 � �1MX(t1 + h1) + �2MY(t2 + h2) � �1MX(h1) � �2MY(h2)
� + �1 + �2 � �1MX(h1) � �2MY(h2)

◆�↵

=
✓

1 �
�1MX(h1)( MX(t1+h1)

MX(h1) � 1) + �2MY(h2)( MY (t2+h2)
MY (h2) � 1)

� + �1 + �2 � �1MX(h1) � �2MY(h2)

◆�↵
. (3.75)

This implies that (S ⇤1, S
⇤
2) has the representation

(S ⇤1, S
⇤
2) = (

M⇤
X

i=1

X⇤i ,
N⇤
X

i=1

Y⇤i ),

where conditional on ⇤⇤, M⇤ ⇠ Po(�1MX(h1)⇤⇤) and N⇤ ⇠ Po(�2MY(h2)⇤⇤), and ⇤⇤ ⇠
Ga(↵, � + �1 + �2 � �1MX(h1) � �2MY(h2)).

For the claim sizes, X⇤i ⇠ Ga(↵1, �1 � h1) and Y⇤j ⇠ Ga(↵2, �2 � h2). This result means that
(S ⇤1, S

⇤
2) can be easily simulated.

Example 3.5.2. Consider the case when the claim frequencies (M,N) have a common shock,
that is M = M1 +M0 and N ⇠ M2 +M0, where M0, M1, M2 are independent. Let a = ln MX(t1)
and b = ln MY(t2), we have

MS ⇤1,S
⇤
2
(t1, t2) =

PM,N(eaMX⇤(t1), ebMY⇤(t2))
PM,N(ea, eb)

=
PM1(eaMX⇤(t1))

PM1(ea)
PM2(ebMY⇤(t2))

PM2(eb)
PM0(ea+bMX⇤(t1)MY⇤(t2))

PM0(ea+b)
. (3.76)

Now, we consider M⇤ = M⇤1+M⇤0, N⇤ = M⇤2+M⇤0, where M⇤0, M⇤1, M⇤2 are Esscher transforms
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of M0, M1 and M2 with parameter a + b, a, and b, respectively. We have

PM⇤,N⇤(z1, z2) = E[zM⇤
1 zN⇤

2 ]

= E[zM⇤1
1 ]E[zM⇤2

2 ]E[(z1z2)M⇤0 ]

=
E[eaM1zM1

1 ]
E[eaM1]

E[ebM2zM2
2 ]

E[ebM2]
E[e(a+b)M0(z1z2)M0]

E[e(a+b)M0]

=
PM1(eaz1)
PM1(ea)

PM2(ebz2)
PM2(eb)

PM0(ea+bz1z2)
PM0(ea+b)

. (3.77)

Therefore,
MS ⇤1,S

⇤
2
(t1, t2) = PM⇤,N⇤(MX⇤(t1),MY⇤(t2)). (3.78)

Consequently, (S ⇤1, S
⇤
2) has the same distribution as (

PM⇤
i=1 X⇤i ,

PN⇤
j=1 Y⇤j ). For example,

• if M0 ⇠ Poisson(�0), M1 ⇠ Poisson(�1), M2 ⇠ Poisson(�2), then M⇤0 ⇠ Poisson(�0MX(h1)
MY(h2)), M⇤1 ⇠ Poisson(�1MX(h1)), M⇤2 ⇠ Poisson(�2MY(h2)). Thus (M⇤,N⇤) are still
bivariate Poisson distribution with common shock;

• if M0 ⇠ NB(r0, p), M1 ⇠ NB(r1, p), M2 ⇠ NB(r2, p), then M⇤0 ⇠ NB(r0, pMX(h1)MY(h2)),
M⇤1 ⇠ NB(r1, pMX(h1)), M⇤2 ⇠ NB(r2, pMY(h2)). Thus, (M⇤,N⇤) may no longer follow a
bivariate negative binomial distribution .

The parameter h needs to be selected to use the importance sampling method. Similarly to
the univariate case,

I(S ⇤1 > c, S ⇤2 > d)MS 1,S 2(h1, h2)e�h1S ⇤1�h2S ⇤2  MS 1,S 2(h1, h2)e�h1c�h2d. (3.79)

A suitable choice of h ought to maximize the upper bound. To this end, taking derivative of
the upper bound on the right hand side with respect to h1 and h2 and setting the result to 0, we
have

c =
@
@h1

MS 1,S 2(h1, h2)

MS 1,S 2(h1, h2)
=

E[S 1eh1S 1+h2S 2]
E[eh1S 1+h2S 2]

= E[S ⇤1], (3.80)

and
d = E[S ⇤2]. (3.81)

The values of h1, h2 can be determined from (3.80) and (3.81).

3.5.2 Importance and stratified sampling
Similarly to those in Section 3.3.2, we define

g⇤m,n(x1, . . . , xm, y1, . . . , yn) =

8

>

>

<

>

>

:

MS 1 ,S 2 (h1,h2)

e
h1

Pm
i=1 xi+h2

Pn
j=1 y j
, if

Pm
i=1 xi > c and

Pn
j=1 y j > d

0, if otherwise
(3.82)

and
p⇤m,n = P[M⇤ = m,N⇤ = n], m, n = 0, 1, 2, . . . . (3.83)
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For given ml, nl such that 1 � P[M⇤  ml,N⇤  nl] is small and (m0, n0) generated from
(M⇤,N⇤) conditional on at least one of m0, n0 exceeding ml, nl, respectively, the estimator for
P[S 1 > c, S 2 > d] from a run ought to be

E =
ml
X

m=1

nl
X

n=1

g⇤m,n(X⇤1, . . . , X
⇤
m,Y

⇤
1 , . . . ,Y

⇤
m)p⇤m,n

+ g⇤m0,n0(X
⇤
1, . . . , X

⇤
m0 ,Y

⇤
1 , . . . ,Y

⇤
m0)(1 �

ml
X

m=0

nl
X

n=0

p⇤m,n). (3.84)

Note that in each run we need to generate X⇤1, . . . , X
⇤
max(ml,m0) and Y⇤1 , . . . ,Y

⇤
max(nl,n0) for use.

Denote m0l = max(ml,m0) and n0l = max(nl, n0). A second estimator is

E0 =
ml
X

m=1

nl
X

n=1

g⇤m,n(X⇤m0l , . . . , X
⇤
m0l�m+1,Y

⇤
n0l
, . . . ,Y⇤n0l�n+1)p⇤m,n

+ g⇤m0,n0(X
⇤
m0l
, . . . , X⇤m0l�m0+1,Y

⇤
n0l
, . . . ,Y⇤n0l�n0+1)(1 �

ml
X

m=0

nl
X

n=0

p⇤m,n). (3.85)

Then we have

✓̂I+S =
1
2

(E + E0)

=
1
2

✓

E +
ml
X

m=1

nl
X

n=1

g⇤m,n(X⇤m0l , . . . , X
⇤
m0l�m+1,Y

⇤
n0l
, . . . ,Y⇤n0l�n+1)p⇤m,n

+ g⇤m0,n0(X
⇤
m0l
, . . . , X⇤m0l�m0+1,Y

⇤
n0l
, . . . ,Y⇤n0l�n0+1)(1 �

ml
X

m=0

nl
X

n=0

p⇤m,n)
◆

. (3.86)

3.5.3 Conditioning
The conditioning method introduced in Section 3.3.3 can be extended to the bivariate case as
follows.

Let S 1,m = X1 + X2 + · · ·+ Xm and S 2,n = Y1 + Y2 + · · ·+ Yn. Then S 1 = S 1,M and S 2 = S 2,N .
Define

T1(c) = min
�

m; S 1,m > c
�

, (3.87)

and
T2(d) = min

�

n; S 2,n > d
�

. (3.88)

Then we have
I(S 1 > c, S 2 > d), I(M � T1(c),N � T2(d)) (3.89)

Hence,

E[I(S 1 > c, S 2 > d) | T1(c),T2(d)] = P[M � T1(c),N � T2(d) | T1(c),T2(d)]. (3.90)

Therefore, because (T1(c), T2(d)) and (M,N) are independent,

E[I(S 1 > c, S 2 > d)] = E [P[M � T1(c),N � T2(d) | T1(c),T2(d)]] . (3.91)
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For a theoretical verification of the conditioning method, one can refer to Appendix A.2.
Consequently, an estimator for ✓ using conditioning method is

✓̂CD = P[M � T1(c),N � T2(d)].

To use the estimator to simulate P[S 1 > c, S 2 > d], we firstly generate T1(c), T2(d). If the
generated value is t1,c and t2,d respectively, then we use P[M � t1,c,N � t2,d] as the estimate for
this run.

3.5.4 Combining the conditioning method with control variates
The conditioning method can be improved by a control variable. For example, as in the discus-
sions in Section 3.4.3, we can introduce the control variates

W1 =

T1(c)
X

i=1

(Xi � E[X]) (3.92)

and

W2 =

T2(d)
X

j=1

(Yj � E[Y]) (3.93)

which are strongly positively related to P[M � T1(c),N � T2(d) | T1(c),T2(d)] and construct
the estimator

✓̂CD+CV = ✓̂C � �1W1 � �2W2,

where the parameter �1 and �2 can be estimated by running the regression:

✓̂CD = �0 + �1W1 + �2W2 + ✏.

3.5.5 Combining importance sampling with conditioning
Define

T ⇤1(c) = min
✓

m :
m

X

i=1

X⇤i > c
◆

, (3.94)

T ⇤2(d) = min
✓

m :
m

X

j=1

Y⇤j > d
◆

, (3.95)

and

S ⇤1,M =
M

X

i=1

X⇤i , (3.96)

S ⇤2,N =
N

X

j=1

Y⇤j , (3.97)

where X⇤i and Y⇤j are Esscher transforms of Xi and Yj with parameters h1 and h2, respectively.



3.5. Simulation of tail probabilities-the two dimensional case 59

We have

E[1{S 1 > c, S 2 > d}] = E


1{S ⇤1 > c, S ⇤2 > d}E[eh1S 1+h2S 2]
eh1S ⇤1+h2S ⇤2

�

= E


1{S ⇤1,M > c, S ⇤2,N > d}E[eh1S 1+h2S 2]
eh1S ⇤1,M+h2S ⇤2,N

MX(h1)M MY(h2)N

E[MX(h1)M MY(h2)N]

�

= E


1{S ⇤1,M > c, S ⇤2,N > d}MX(h1)M MY(h2)N

eh1S ⇤1,M+h2S ⇤2,N

�

= E


1{M � T ⇤1(c),N � T ⇤2(d)}MX(h1)M MY(h2)N

eh1S ⇤1,M+h2S ⇤2,N

�

= E


E


1{M � T ⇤1(c),N � T ⇤2(d)}MX(h1)M�T ⇤1 (c)MY(h2)N�T ⇤2 (d)

e
h1

PM
i=T⇤1 (c)+1 X⇤i +h2

PN
j=T⇤2 (d)+1 Y⇤j

| 4
�

⇤ MX(h1)T ⇤1 (c)MY(h2)T ⇤2 (d)

eh1
P

T⇤1 (c)
i=1 X⇤i +h2

P

T⇤2 (d)
j=1 Y⇤j

�

= E


E
MX(h1)M�T ⇤1 (c)MY(h2)N�T ⇤2 (d)

e
h1

PM
i=T⇤1 (c) X⇤i +h2

PM
j=T⇤2 (d) Y⇤j

| T ⇤1(c),T ⇤2(d),M � T ⇤(c),N � T ⇤2(d)
�

⇤ P[M � T ⇤1(c),N � T ⇤2(d)]
MX(h1)T ⇤1 (c)MY(h2)T ⇤2 (d)

eh1
P

T⇤1 (c)
i=1 X⇤i +h2

P

T⇤2 (d)
j=1 Y⇤j

�

= E


P[M � T ⇤1(c),N � T ⇤2(d)]
MX(h1)T ⇤1 (c)MY(h2)T ⇤2 (d)

eh1
P

T⇤1 (c)
i=1 X⇤i +h2

P

T⇤2 (d)
j=1 Y⇤j

�

, (3.98)

where 4 = {T ⇤1(c),T ⇤2(d), X1, . . . , XT ⇤1 (c),Y1, . . . ,YT ⇤2 (d)}.
In the last line, we have used the fact that

E
MX(h1)M�T ⇤1 (c)MY(h2)N�T ⇤2 (d)

e
h1

PM
i=T⇤1 (c)+1 X⇤i +h2

PN
j=T⇤2 (d)+1 Y⇤j

| T ⇤1(c),T ⇤2(d),M � T ⇤(c),N � T ⇤2(d)
�

= 1,

which is true because for any value of M � T ⇤1(c) and N � T ⇤2(d),

E
MX(h1)M�T ⇤1 (c)MY(h2)N�T ⇤2 (d)

e
h1

PM
i=T⇤1 (c)+1 X⇤i +h2

PN
j=T⇤2 (d)+1 Y⇤j

| T ⇤1(c),T ⇤2(d)
�

= 1.

Overall, when combining importance sampling and conditioning method, the simulation
estimator is given by

✓̂I+CD = P[M � T ⇤1(c),N � T ⇤2(d)]
MX(h1)T ⇤1 (c)MY(h2)T ⇤2 (d)

eh1
P

T⇤1 (c)
i=1 X⇤i +h2

P

T⇤2 (d)
j=1 Y⇤j

. (3.99)

Therefore, compared to classical importance sampling as described in Section 3.5.1 and im-
portance and stratified sampling described in Section 3.5.2, the combination of importance
sampling with conditioning has the advantage that, we do not require the distribution or simu-
lation of (M⇤,N⇤) in our procedure. Instead, we are still working on original (M,N). For some
bivariate variables (M,N) whose distribution or survival function is already known, this is more
convenient and we do not need to worry about the distribution or simulation of (M⇤,N⇤) any
more.



60 Chapter 3. Simulation methods for compound distributions

Remark 3.5.1. Additionally, control variates can be used to improve this method further. For
example, we may use

W1 =

T ⇤1 (c)
X

i=1

(X⇤i � E[X⇤]), (3.100)

and

W2 =

T ⇤2 (d)
X

j=1

(Y⇤j � E[Y⇤]). (3.101)

This results in
✓̂I+CD+CV = ✓̂I+CD � �1W1 � �2W2. (3.102)

The numerical example in the next section will illustrate the refinement.

3.5.6 Numerical experiments

Let ⇤ ⇠ Ga(10, 0.5) and assume that conditional on ⇤, claim frequencies M and N follow
Poisson distributions with mean ⇤ and 0.75⇤, respectively. Claim severities Xi and Yj fol-
low Gamma distributions with parameters (20, 0.5) and (30, 0.6), respectively. For stratified
sampling, ml = nl = 150. The values of ✓ simulated using the methods described above are
reported in Table 3.3.

As opposed to the univariate case, the combinations “CD+CV”, “I+CD" and “I+CD+CV"
perform well. The “I+CD+CV" method does not provide enough improvement over the “I+CD"
method to warrant the additional steps.

3.6 Simulation of mean excess losses-the two dimensional case

This section introduces variance reduction methods for simulating the bivariate mean excess
losses

⌧ = E[(S 1 � c)+ ⇥ (S 2 � d)+]. (3.103)

3.6.1 Importance sampling & importance and stratified sampling

We can simply replace I(S > c) by (S ⇤1�c)+⇥(S ⇤2�d)+ in Section 3.5.1 to obtain the simulation
method via importance sampling.

To combine importance and stratified sampling, one simply replace the function g⇤m,n in
(3.82) by

g⇤m,n(x1, . . . , xm, y1, . . . , yn) =
0

B

B

B

B
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i=1 xi�h2
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(c,d) (1000,1000) (1400,1400) (1600,1600)
Technique 1 mean 1.1728e-01 1.2560e-02 3.3000e-03

(C) sd 1.1097e-02 3.6218e-03 2.1296e-03
sd/mean 9.4616e-02 2.8836e-01 6.4534e-01

Technique 2 mean 1.1686e-01 1.1996e-02 3.2343e-03
(I) sd 4.9200e-03 8.0878e-04 2.4345e-04

sd/mean 4.2103e-02 6.7421e-02 7.5272e-02
Technique 3 mean 1.1645e-01 1.2029e-02 3.2298e-03

(I+S) sd 2.6964e-04 4.1684e-05 2.5491e-05
sd/mean 2.3155e-03 3.4652 e-03 7.8923e-03

Technique 4 mean 1.1647e-01 1.2036e-02 3.2302e-03
(CD) sd 5.4867e-04 7.8795e-05 2.4247e-05

sd/mean 4.7108e-03 6.5468e-03 7.5063e-03
Technique 5 mean 1.1645e-01 1.2035e-02 3.2270e-03
(CD+CV) sd 1.9324e-04 3.2022e-05 8.0387e-06

sd/mean 1.6595e-03 2.6608e-03 2.4911e-03
Technique 6 mean 1.1651e-01 1.2035e-02 3.2271e-03

(I+CD) sd 3.5603e-04 3.3553e-05 8.1848e-06
sd/mean 3.0559e-03 2.7881e-03 2.5363e-03

Technique 7 mean 1.1644e-01 1.2030e-02 3.2282e-03
(I+CD+CV) sd 2.1043e-04 2.9138e-05 7.5760e-06

sd/mean 1.8071e-03 2.4222e-03 2.3469e-03

Table 3.3: Comparison of the simulation methods for P[S 1 > c, S 2 > d]

3.6.2 Conditioning
We use the notation in Section 3.5.3. In addition, define

A = S 1,T1(c) � c, (3.104)

and
B = S 2,T2(d) � d. (3.105)

Since
⌧ = E



X

i

X

j

(S 1,i � c)+(S 2, j � d)+P[M = i,N = j]
�

, (3.106)

an estimator for ⌧ using conditioning method is

⌧̂CD = E


X

i

X

j

(S 1,i � c)+(S 2, j � d)+P[M = i,N = j] | T1(c),T2(d), A, B
�

. (3.107)

After simulating the values of T1(c),T2(d), A and B, ⌧̂CD can be evaluated as follows

⌧̂CD = E


X

i

X

j

(S 1,i � c)+(S 2, j � d)+P[M = i,N = j] | T1(c),T2(d), A, B
�
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=
X

i�T1(c)

X

j�T2(d)

(A + (i � T1(c))E[X])(B + ( j � T2(d))E[Y])P[M = i,N = j]

= (A � T1(c)E[X])(B � T2(d)E[Y])P[M � T1(c),N � T2(d)]

+ (B � T2(d)E[Y])E[X]
X

i�T1(c)

X

j�T2(d)

iP[M = i,N = j]

+ (A � T1(c)E[X])E[Y]
X

i�T1(c)

X

j�T2(d)

jP[M = i,N = j]

+ E[X]E[Y]
X

i�T1(c)

X

j�T2(d)

i jP[M = i,N = j]. (3.108)

Remark 3.6.1. Equation (3.108) shows that when using the conditioning method, the prob-
lem of estimating the tail moments of the aggregate loss (S 1, S 2) is replaced by a problem of
computing the tail moments of the claim frequencies (M,N).

3.6.3 Combining conditioning method with control variates
The estimator ⌧̂CD can be improved by introducing some control variables. For example, using

W1 =

T1(c)
X

i=1

(Xi � E[X]),

W2 =

T2(d)
X

j=1

(Yj � E[Y]),

W3 = A � E[A],

and
W4 = B � E[B],

results in the estimator

⌧̂CD+CV = ⌧̂CD � �1W1 � �2W2 � �3W3 � �4W4,

where the parameters �1, �2, �3 and �4 can be determined by fitting the linear regression model

⌧̂CD ⇠ �0 + �1W1 + �2W2 + �3W3 + �4W4. (3.109)

3.6.4 Combining importance sampling with conditioning
Similarly to A and B, we define A⇤ and B⇤ by

A⇤ = S ⇤1,T ⇤1 (c) � c (3.110)

and
B⇤ = S ⇤2,T ⇤2 (d) � d. (3.111)
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Then, we have

E[(S 1 � c)+ ⇥ (S 2 � d)+}]

= E


(S 1 � c)+ ⇥ (S 2 � d)+
E[eh1S 1+h2S 2]

eh1S ⇤1+h2S ⇤2

�

= E


(S 1 � c)+ ⇥ (S 2 � d)+
MX(h1)M⇤MY(h2)N⇤

eh1S ⇤1+h2S ⇤2

MS 1,S 2(h1, h2)
MX(h1)M⇤MY(h2)N⇤

�

= E


(S ⇤1,M � c)+ ⇥ (S ⇤2,N � d)+
MX(h1)M MY(h2)N

eh1S ⇤1,M+h2S ⇤2,N

�

= E


I{M � T ⇤1(c),N � T ⇤2(d)}(A⇤ +
M

X

i=T ⇤1 (c)+1

X⇤i )(B⇤ +
N

X

j=T ⇤2 (d)+1

Y⇤j )
MX(h1)M MY(h2)N

eh1S ⇤1,M+h2S ⇤2,N

�

= E


E


I{M � T ⇤1(c),N � T ⇤2(d)}(A⇤ +
M

X

i=T ⇤1 (c)+1

X⇤i )(B⇤ +
N

X

j=T ⇤2 (d)+1

Y⇤j )

⇤ MX(h1)M�T ⇤1 (c)MY(h2)N�T ⇤2 (d)

e
h1

PM
i=T⇤1 (c)+1 X⇤i +h2

PN
j=T⇤2 (d)+1 Y⇤j

| T ⇤1(c),T ⇤2(d), A⇤, B⇤
�MX(h1)T ⇤1 (c)MY(h2)T ⇤2 (d)

eh1
P

T⇤1 (c)
i=1 X⇤i +h2

P

T⇤2 (d)
j=1 Y⇤j

�

= E


E


I{M � T ⇤1(c),N � T ⇤2(d)}�A⇤ + (M � T ⇤1(c))E[X]
�

⇤ �B⇤ + (N � T ⇤2(d))E[Y]
� | T ⇤1(c),T ⇤2(d), A⇤, B⇤

�MX(h1)T ⇤1 (c)MY(h2)T ⇤2 (d)

eh1
P

T⇤1 (c)
i=1 X⇤i +h2

P

T⇤2 (d)
j=1 Y⇤j

�

= E
✓

�

A⇤ � T ⇤1(c)E[X]
��

B⇤ � T ⇤2(d)E[Y]
�

P[M � T ⇤1(c),N � T ⇤2(d)]
�

+ E[X]
�

B⇤ � T ⇤2(d)E[Y]
�

E
⇥

MI{M � T ⇤1(c),N � T ⇤2(d)}⇤

+ E[Y]
�

A⇤ � T ⇤1(c)E[X]
�

E[NI{M � T ⇤1(c),N � T ⇤2(d)}]

+ E[X]E[Y]E
⇥

MNI{M � T ⇤1(c),N � T ⇤2(d)}⇤
◆MX(h1)T ⇤1 (c)MY(h2)T ⇤2 (d)

eh1
P

T⇤1 (c)
i=1 X⇤i +h2

P

T⇤2 (d)
j=1 Y⇤j

�

, (3.112)

To implement the simulation, we need to calculate the following quantities: E[MI{M �
m,N � n}], E[NI{M � m,N � n}] and E[MNI{M � m,N � n}] for any positive integers m, n.
Although we can use crude simulation to calculate them, here we provide a more e�cient way
to deal with these quantities.

Example 3.6.1. Taking the case of our numerical experiments in Section 3.5.6 for example,
suppose that M⇤ ⇠ Po(�1⇤) and N⇤ ⇠ Po(�2⇤) are conditional Poisson variables with common
mixing parameter ⇤. Then, (M,N) ⇠ (M⇤,N⇤) when ⇤ ⇠ Ga(↵0, �0). Denote M̃⇤, Ñ⇤ the
size-biased transform of M⇤,N⇤ conditional on ⇤, respectively. Specifically, we have M̃⇤ ⇠
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Po(�1⇤) + 1 and Ñ⇤ ⇠ Po(�2⇤) + 1. Hence,

E[MI{M � m,N � n}] = E⇤
⇥

E[MI{M � m} | ⇤]P[N � n | ⇤]
⇤

= E⇤
⇥

E[M⇤]P[M̃⇤ � m]P[N⇤ � n]
⇤

= �1E⇤
⇥

⇤P[M̃⇤ � m]P[N⇤ � n]
⇤

= �1E[⇤]E⇤


P[M̃⇤ � m]P[N⇤ � n]
⇤

E[⇤]

�

= �1E[⇤]E⇤̃
⇥

P[M̃⇤̃ � m]P[N⇤̃ � n]
⇤

= �1E[⇤]E⇤̃
⇥

P[M⇤̃ � m � 1]P[N⇤̃ � n]
⇤

, (3.113)

where ⇤̃ ⇠ Ga(↵0 + 1, �0). In this case, (M⇤̃,N⇤̃) is still bivariate Poisson conditional on ⇤̃,
and we only change the mixing variable ⇤ compared to the original (M,N). We are able to
calculate the p.m.f. by applying the inverse FFT method to the joint characteristic function
(c.f.). Similarly, we have

E[MNI{M � m,N � n}] = E⇤
⇥

E[M⇤]E[N⇤]P[M̃⇤ � m]P[Ñ⇤ � n]
⇤

= �1�2E⇤
⇥

⇤2P[M̃⇤ � m]P[Ñ⇤ � n]
⇤

= �1�2E[⇤2]E⇤


P[M̃⇤ � m]P[Ñ⇤ � n]
⇤2

E[⇤2]

�

= �1�2E[⇤2]E⇤̃(2)
⇥

P[M̃⇤̃(2) � m]P[Ñ⇤̃(2) � n]
⇤

= �1�2E[⇤2]E⇤̃(2)
⇥

P[M⇤̃(2) � m � 1]P[N⇤̃(2) � n � 1]
⇤

, (3.114)

where ⇤̃(2) ⇠ Ga(↵0 + 2, �0), the second moment transform of ⇤. In this case, (M⇤̃(2) ,N⇤̃(2) ) is
still bivariate Poisson conditional on ⇤̃(2).

Example 3.6.2. In addition, for the setting where M ⇠ M0 + M1 and N ⇠ M0 + M2 with M0

being a common shock, the required quantities are as follows:

E[MI{M � m,N � n}]
= E[(M0 + M1)I{M � m,N � n}]
= E[M0I{M1 + M0 � m,M2 + M0 � n}] + E[M1I{M1 + M0 � m,N � n}]
= E[M0]P[M1 + M̃0 � m,M2 + M̃0 � n] + E[M1]P[M̃1 + M0 � m,N � n], (3.115)

and

E[MNI{M � m,N � n}]
= E[(M0 + M1)(M0 + M2)I{M � m,N � n}]
= E[M2

0I{M0 + M1 � m,M0 + M2 � n}] + E[M1M2I{M1 + M0 � m,M2 + M0 � n}]
+ E[M0M1I{M1 + M0 � m,M2 + M0 � n}] + E[M0M2I{M1 + M0 � m,M2 + M0 � n}]
= E[M2

0]P[M̃(2)
0 + M1 � m, M̃(2)

0 + M2 � n] + E[M1]E[M2]P[M̃1 + M0 � m, M̃2 + M0 � n]
+ E[M0]E[M1]P[M̃1 + M̃0 � m,M2 + M̃0 � n] + E[M0]E[M2]P[M1 + M̃0 � m, M̃2 + M̃0 � n].

(3.116)

The probabilities in the above equations can be calculated by applying FFT method. This is the
case because the underlying bivariate distributions are of common-shock type, whose Fourier
transform can be computed easily.
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Remark 3.6.2. The method in this section can be further improved by applying the control
variates

W1 =

T ⇤1 (c)
X

i=1

(X⇤i � E[X⇤]), (3.117)

W2 =

T ⇤2 (d)
X

j=1

(Y⇤j � E[Y⇤]), (3.118)

W3 = A⇤ � E[A⇤], (3.119)

W4 = B⇤ � E[B⇤]. (3.120)

The numerical example in the next section will illustrate the refinement.

3.6.5 Numerical experiments
We keep the same assumptions as those stated in Section 3.5.6, the numerical experiments for
P[S 1 > c, S 2 > d]. The simulation results are reported in Table 3.4.

(c,d) (1000,1000) (1400,1400) (1600,1600)
Technique 1 mean 11314.27 904.195 215.4179

(C) sd 2153.544 544.6096 254.0361
sd/mean 1.9034e-01 6.0231e-01 1.1793

Technique 2 mean 11059.18 862.5813 211.7861
(I) sd 650.7682 48.4465 11.5515

sd/mean 5.8844e-02 5.6165e-02 5.4543e-02
Technique 3 mean 11125.75 865.9839 210.7237

(I+S) sd 33.6866 6.2868 2.6573
sd/mean 3.0278e-03 7.2597e-03 1.2610e-02

Technique 4 mean 11116.76 864.5113 210.5138
(CD) sd 61.1288 5.8745 1.6730

sd/mean 5.4988e-03 6.7951e-03 7.9473e-03
Technique 5 mean 11119.97 864.2649 210.37
(CD+CV) sd 8.0976 1.2639 3.7518e-01

sd/mean 7.2821e-04 1.4624e-03 1.7834e-03
Technique 6 mean 11121.99 864.7473 210.765

(I+CD) sd 43.6417 2.2537 4.7707e-01
sd/mean 3.9239e-03 2.6063e-03 2.2635e-03

Technique 7 mean 11120.94 864.7559 210.7915
(I+CD+CV) sd 3.1256 3.0802e-01 7.3821e-02

sd/mean 2.8106e-04 3.5619e-04 3.5021e-04

Table 3.4: Comparison of the simulation methods for E[(S 1 � c)+ ⇥ (S 2 � d)+]

Similarly to Section 3.5.6, we observe that the combinations “CD+CV”,“I+CD" and “I+CD+CV"
perform well. The “I+CD+CV" method does provide significant improvement over the “I+CD"
method.
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3.7 Conclusion
In this chapter, we gave a brief review on commonly used variance reduction techniques. By
combining some of them with the importance sampling method, we came up with several
novel variance reduction techniques (“I+S", “I+CD",“I+CD+CV"). In our four numerical ex-
periments which simulate P[S > c], E[(S � c)+], P[S 1 > c, S 2 > d], E[(S 1 � c)+ ⇥ (S 2 � d)+],
respectively, “I+CD" and “I+CD+CV" are always among the best three methods with the low-
est simulation variance. For the remaining one of the best three methods,“I+S" performs better
in univariate aggregate claim model but “CD+CV" performs better in the bivariate aggregate
claim model. Compared to “CD" and “CD+CV" which are based on conditioning, the tech-
niques combining them with importance sampling do reduce time consumption when simu-
lating rare events. Interestingly, moment transform of claim severity distributions provides us
with an alternative way to simulate mean excess accurately.



Chapter 4

Pricing principle for multivariate
compound loss models

4.1 Introduction and literature review

Before issuing insurance policies, one of the main challenges facing the insurer is setting the
right premium per exposure.

In this chapter, we explore a model for determining premiums when the insurer faces sev-
eral uncertainties, most notably those associated with the severity of losses as well as with the
number of policies issued during a given time period. Several business lines are assumed, and
all of them are a↵ected by a systemic risk. Namely, we suppose that a company runs d business
lines, and for each line k 2 {1, . . . , d}, let Nk denote the number of policies to be issued, and let
Xk,i denote the loss to be incurred by the ith policy holder. Hence, the company’s total loss is

S =
d

X

k=1

S k,

where

S k =

Nk
X

i=1

Xk,i

is the total loss to be incurred by the kth business line.
The losses Xk,i are dependent within and between the business lines, and we assume that

the dependence is due to a systemic risk, which we denote by Z. It could, for example, be a
combination of various exogenous risk factors such as the company’s overall status, general
economic situation, and so on. The systemic risk may a↵ect the frequencies Nk and the sever-
ities Xk,i in a number of di↵erent ways, but in this chapter we assume that, for each business
line k and conditionally on Z, the frequencies and the severities are independent, and the sever-
ities are also identically distributed. Note that in a special case when the systemic risk Z takes
on a constant value, say z0, with probability one, then the aforementioned model reduces to
that based on compound sums with independent frequencies and severities, which has been a
classical model in many actuarial texts (e.g., Klugman et al. (2012)).

67
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To determine the capital needed to support the potential loss S , a premium calculation
principle (pcp) is chosen. Generally speaking, the pcp is a functional ⇡ from the set of all loss
random variables X to the set of all non-negative extended real-numbers ⇡[X] (theoretically,
the premium can be infinite for some losses).

Premium calculation principles belonging to the first category are mainly studied by Goovaerts
et al. (1984), which relate them to expected utility theory. Heilmann (1989) reconsidered this
type of premium calculation principles and view some of them as the premiums that minimize
the expected loss with a loss function L : R2 ! R. In Heilmann (1989), another derivation of
the exponential principle was provided by minimizing the expected loss E[L(X, ⇡[X])] with a
specified loss function L(x, a) = (e↵x � e↵a)2 for some ↵ > 0.

The second category of premium calculation principles are related to Yaari (1987) dual
theory for choice under risk. Yaari’s dual theory proposes the idea that attitudes toward risks
can be characterized by a distortion applied to distribution functions FX(x), instead of charac-
terizing attitude towards risk by a utility function of wealth in the expected utility theory. In a
specific way, Wang (1996) applied a distortion function g(t) on decumulative distribution func-
tions F̄X(x) := 1 � FX(x) and defined a class of premium principles Hg[X] =

R +1
0 g

�

F̄X(x)
�

dx
for some non-decreasing distortion function g such that g(0) = 0 and g(1) = 1.

Apart from those stated above, there are still some premium principles that cannot be de-
scribed by the expected utility theory or distorted expectation theory. For example, Denuit
et al. (2006) showed that expected shortfall, which is also called conditional value at risk
(CVaR) or average value at risk (AVaR), does not belong to the two previously discussed cat-
egories. Goovaerts et al. (2003) derived many existing premium principles by minimizing a
Markov bound for the tail probability and proposed a unified approach to generating premium
principles. Furman and Zitikis (2008) suggested and investigated another class of premium
principles called weighted premium principles, which are based on weighted loss distributions
and discussed later in this chapter.

Given the total loss S , let ⇡[S k | S ] denote the capital allocated to the kth line of business.
As defined in advance, the total loss S =

Pd
k=1 S k, and denote by Y = (S 1, S 2, . . . , S d)0 the

set of all portfolios of the firm. For a chosen pcp ⇡, ⇡[S ] is called the risk capital of the firm
and an allocation principle is crucial to allocating the amount of risk capital ⇡[S ] among the
d portfolios of the company. An allocation principle is a function ⇢ that maps Y into a unique
allocation:

⇢ : Y !
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(4.1)

such that
Pd

k=1 Ki = ⇡[S ].
Early in Bühlmann (1980) and Bühlmann (1984) , the widely used Esscher premium cal-

culation principle nowadays was verified as a risk allocation principle and the allocation rule
is stated as follows:

⇢E[S k, S ] =
E[S ke⌧S ]
E[e⌧S ]

. (4.2)
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Later, Wang (2002) decomposed Esscher allocation principle in (4.2) as

⇢E[S k, S ] = E[S k] +
Cov[S k, e⌧S ]

E[e⌧S ]
(4.3)

and suggested allocating the cost of capital based on Cov[S k ,e⌧S ]
E[e⌧S ] , which is illustrated by an ex-

ample assuming the multivariate normal distribution among S 1, S 2, . . . , S d.
Furman and Zitikis (2009) introduced a weighted allocation principle based on the weighted

premium principle described in Furman and Zitikis (2008), which is a general class of alloca-
tion principles. Let X denote the set of positive risk random variables with cumulative distri-
bution function, the weighted allocation principle is defined as follows.

Definition Let X,Y 2 X,and let w : [0,1) ! [0,1) be a deterministic Borel function. Then
the functional ⇢w : X ⇥ X! [0,1], defined by the equation

⇢w[X,Y] =
E[Xw(Y)]
E[w(Y)]

, (4.4)

is called the weighted allocation.

A number of allocation principles coincide with the weighted allocation principle. For ex-
ample, we are able to obtain Esscher’s allocation principle, the TCE allocation principle,
the Tail covariance allocation principle the and distorted allocation by letting w(y) = e⌧y,
w(y) = 1{y � yq}, w(y) = y1{y � yq}, w(y) = g0

�

F̄Y(Y)
�

, respectively.
The remainder of this chapter is organized as follows. In Section 4.2, we clarify our prin-

ciple of pricing the premiums in multiple business lines. In Section 4.3, we begin our pricing
work with a special case where there is only a single business line. We reduce the model to
several simple classic models under di↵erent assumptions. In Section 4.4, we develop a novel
methodology of premium setting and numerically illustrate how model parameters influence
the premium level. In Section 4.5, we discuss two non-parametric methods to estimate the
premiums empirically, which are based on whether we are able to distinguish the data under
di↵erent background risk levels or not. We also compare their performance of estimation. In
Section 4.6, given that our assumptions for the risk model are followed, we provide a method-
ology to fit the parameter value and make assessment. Section 4.7 concludes this chapter.

4.2 Pricing
There are many pcp’s and capital allocation rules. In this chapter we work with the weighted
pcp (Furman and Zitikis (2008)), which is defined by the equation

⇡w[S ] =
E[S w(S )]
E[w(S )]

(4.5)

and encompasses a great variety of pcp’s depending on the choice of the weight function w :
[0,1) ! [0,1), which is usually non-decreasing. In the literature, popular examples of the
weight function are w(s) = s⌧, w(s) = e⌧s, w(s) = 1� e�⌧s and w(s) = 1{s > ⌧}, where ⌧ > 0 is a
parameter. Under these choices, the functional ⇡w reduces to the size-biased, Esscher, Kamps,
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and excess-of-loss pcp’s, respectively (e.g., Furman and Zitikis (2009) and references therein).
Given S , the corresponding capital allocated to the kth line of business is

⇡w[S k | S ] =
E[S kw(S )]
E[w(S )]

(4.6)

Holding capital is costly. Denote the opportunity cost of capital for the kth line of business
by rk, which is the rate of return required by the capital providers (e.g., stock holders). Hence,
the total cost of capital for the kth line is

CCk = rk
�

⇡w[S k | S ] � E[S k]
�

= rk
Cov[S k,w(S )]

E[w(S )]
= �k,wrk

�

⇡w[S ] � E[S ]
�

(4.7)

with the ‘weighted beta’ (Furman and Zitikis (2017))

�k,w =
Cov[S k,w(S )]
Cov[S ,w(S )]

.

(Note that when w(s) = x, the weighted beta reduces to the classical beta between S k and S .)
For computational purposes, the following equations are particularly useful:

�k,w =
⇡w[S k | S ] � E[S k]
⇡w[S ] � E[S ]

=
⇡w[S k | S ] � E[S k]

Pd
k=1

�

⇡w[S k | S ] � E[S k]
�

. (4.8)

The insurer, naturally, wishes to allocate the cost of claims and the cost of holding capital
to individual policy holders, and thus, in the kth line of business, charges a premium Pk per
policy. The premium needs to be large enough, say such that the collected amount of money
Nk⇥Pk would cover the amount E[S k]+CCk with a su�ciently large probability. Actually, this
should happen simultaneously for all business lines, and so, in summary, we wish to specify
those prices Pk, 1  k  d, for which the bound

P
⇥

Nk ⇥ Pk � E[S k] + CCk, 1  k  d
⇤ � 1 � ✓ (4.9)

holds with a pre-specified (small) ✓ 2 (0, 1). Obviously, there are many prices that satisfy
requirement (4.9), but business considerations would suggest that some are more attractive
than others. Denote the set of all d-dimensional vectors (P1, . . . , Pd) by P↵(d) and call it the
set of admissible prices. We wish to describe this set.

Conditionally on Z, the frequencies N1,N2, . . . ,Nd are independent. Hence, the probability
in criterion (4.9) becomes

P
⇥

Nk ⇥ Pk � E[S k] + CCk, 1  k  d
⇤

= E
⇥

P
⇥

Nk ⇥ Pk � E[S k] + CCk, 1  k  d | Z⇤⇤

=

Z d
Y

k=1

P
⇥

Nk ⇥ Pk � E[S k] + CCk | Z = z
⇤

dFZ(z)

=

Z d
Y

k=1

Hk,z

✓E[S k] + CCk

Pk

◆

dFZ(z), (4.10)
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where, for every y � 0,
Hk,z(y) := P

⇥

Nk � y | Z = z
⇤

.

Hence, we wish to determine the set P✓(d) of all (P1, . . . , Pd) that satisfy the bound
Z d

Y

k=1

Hk,z

✓E[S k] + CCk

Pk

◆

dFZ(z) � 1 � ✓ (4.11)

with a pre-specified ✓ 2 (0, 1), such as ✓ = 0.05, or even smaller.

4.3 Pricing a single business line
When d = 1, our model simply reduces to a single collective risk model

S = S 1 =

N1
X

i=1

X1,i, (4.12)

where X1,i, i = 1, 2, . . . ,N1 are identically distributed and have the same distributions. The set
P✓(1) consists of all the premiums per policy P1 that satisfy the bound

P1 �
1

n1,✓

�

E[S 1] + CC1
�

(4.13)

with
n1,✓ = sup{n : P[N1 � n] � 1 � ✓}.

Consider a few special cases that have been particularly discussed in the literature. We start
with the simplest case when the frequencies and the background are fixed.

4.3.1 Fixed N1 and Z
Let N1 = n⇤1 and Z = z⇤ for some n⇤1 and z⇤. In this case, irrespective of the value of ✓ 2 (0, 1),
we have n1,✓ = n⇤1, and we also have E[S 1] = n⇤1E[X1,1] and ⇡w[S 1] = n⇤1⇡w[X1,1 | S 1]. Hence,
the premium P1 satisfies criterion (4.13) if and only if

P1 � E[X1,1] + r1
�

⇡w[X1,1 | S 1] � E[X1,1]
�

. (4.14)

Note that bound (4.14) can be rewritten as

P1 � E[X1,1] + r1
Cov[X1,1,w(S 1)]

E[w(S 1)]
= E[X1,1] + r1�w

�

⇡w[S 1] � E[S 1]
�

(4.15)

with the weighted beta

�w =
⇡w[X1,1 | S 1] � E[X1,1]

⇡w[S 1] � E[S 1]

=
1
n⇤1
. (4.16)
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Example 4.3.1. We apply exponential tilting w(s) = e⌧s. Let the severity X1,1 follow a Gamma
Ga(↵1, �1) distribution with mean µ1 = ↵1/�1 and variance �2

1 = ↵1/�2
1. Hence, E[S 1] =

n⇤↵1/�1. To calculate ⇡w[S 1] , we start with the equation

E[S 1e⌧S 1] =
d
d⌧

E[e⌧S 1] =
d
d⌧

�

MX1,1(⌧)
�n⇤1 =

↵1n⇤1
�1

✓

1 � ⌧

�1

◆�↵1n⇤1�1
(4.17)

for all ⌧ < �. Hence

⇡w[S 1] =
↵1n⇤1
�1

✓

1 � ⌧

�1

◆�1
. (4.18)

In view of the above, bound (4.14) becomes equivalent to

P1 �
↵1

�1



1 + r1

⇢✓

1 � ⌧

�1

◆�1
� 1

��

=
↵1

�1

✓

1 + r1
⌧

�1 � ⌧
◆

= µ1

✓

1 + r1
⌧�2

1

µ1 � ⌧�2
1

◆

(4.19)

for ⌧ < �1. Figure 4.1 depicts how P1 changes with respect to the mean and standard deviations
of the loss severities.

(a) mean of severity (b) sd of severity

Figure 4.1: Fixed N1 and Z in a single business line

4.3.2 Random N1 and fixed Z

In this scenario, we let N1 be any non-negative integer-valued random variable, but we still
assume that the background does not change, that is, Z = z⇤ for some z⇤. Hence, the premium
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P1 satisfies criterion (4.13) if and only if

P1 �
1

n1,✓

⇣

E[S 1] + r1
�

⇡w[S 1] � E[S 1]
�

⌘

=
E[N1]

n1,✓
E[X1,1] +

r1

n1,✓

�

⇡w[S 1] � E[S 1]
�

(4.20)

Obviously, when N1 = n⇤1, we have n1,✓ = n⇤1, and thus inequality (4.20) reduces to (4.15).

Example 4.3.2. We keep the assumptions in Example 4.3.1. However, we now assume that the
frequency N1 is random and follows a Binomial distribution B(n1, p1) with positive integer n1

and parameter p1 > 0, which implies that E[N1] = n1 p1. Hence, E[S 1] = E[N1]E[X1,1] =
n1 p1↵1/�1. To calculate ⇡w[S 1] , we start with the equation

E[S 1e⌧S 1] =
d
d⌧

PN1(MX1,1(⌧)). (4.21)

Under the above specified distributions of X1,1 and N1, the moment generating function is
MX1,1(⌧) = (1 � ⌧/�1)�↵1 for all ⌧ < �1, and the probability generating function is PN1(x) =
[1 � p1 + p1x]n1 . Consequently, equation (4.21) implies

E[S 1e⌧S 1] =
n1 p1↵1

�1

✓

1 � ⌧

�1

◆�↵1�1

1 � p1 + p1

✓

1 � ⌧

�1

◆�↵1�n1�1
(4.22)

for all ⌧ < �1, and hence

⇡w[S 1] =
n1 p1↵1

�1

✓

1 � ⌧

�1

◆�↵1�1

1 � p1 + p1

✓

1 � ⌧

�1

◆�↵1��1
. (4.23)

In view of the above, bound (4.20) becomes equivalent to

P1 �
n1 p1↵1

n1,✓�1

✓

1 + r1

⇢✓

1 � ⌧

�1

◆�↵1�1

1 � p1 + p1

✓

1 � ⌧

�1

◆�↵1��1
� 1

�◆

=
n1 p1µ1

n1,✓

✓

1 + r1

⇢✓

1 � ⌧�
2
1

µ1

◆�µ2
1/�

2
1�1

1 � p1 + p1

✓

1 � ⌧�
2
1

µ1

◆�µ2
1/�

2
1
��1
� 1

�◆

(4.24)

whenever ⌧ < �. Figure 4.2 depicts how P1 changes with respect to parameters.

4.3.3 Random N1 and Z
In this scenario, we assume that both N1 and Z are random. Consequently, instead of using
criterion (4.13), we now have to go back to the original criterion (4.11), which under the spec-
ification d = 1 becomes

Z

H1,z

✓E[S 1] + CC1

P1

◆

dFZ(z) � 1 � ✓. (4.25)

The premium P1 satisfies criterion (4.25) if and only if
Z

H1,z

✓ 1
P1

⇣

E[S 1] + r1
�

⇡w[S 1] � E[S 1]
�

⌘

◆

dFZ(z) � 1 � ✓. (4.26)

Note that bound (4.26) can be rewritten as
Z

H1,z

✓ 1
P1

⇣

E[S 1] + r1
Cov[S 1,w(S 1)]

E[w(S 1)]

⌘

◆

dFZ(z) � 1 � ✓. (4.27)
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(a) mean of severity (b) sd of severity (c) prob parameter in Bino distr

Figure 4.2: Random N1 and fixed Z in a single business line

Example 4.3.3. As in the previous example, we work with the exponential tilting w(s) = e⌧s. We
assume that the conditional severities [Xk,i | Z] follow a Gamma distribution Ga(↵1,Z, �1,Z) with
parameters ↵1,Z > 0 and �1,Z > 0. Furthermore, we assume that the conditional frequencies
follow a Binomial distribution B(n1, p1,Z) with positive integer n1 parameter p1,Z = p1Z > 0.
Note that when Z = z⇤ almost surely for a constant z⇤, the current scenario reduces to that
considered in Section 4.3.2. In the current section, we consider the more general scenario by
assuming that there are constants z⇤ and z⇤⇤ such that Z = z⇤ + (z⇤⇤ � z⇤)B(1, p), where B(1, p)
represents the Bernoulli distribution with parameters p > 0. Consequently,

H1,z(y) , P[N1 � y | Z = z] =
n1
X

m=dye

 

n1

m

!

pm
1,z(1 � p1,z)n1�m,

where dye is the ceiling of y. With the above assumptions, we have

E[S 1] = E
⇥

E[N1 | Z]E[X1,1 | Z]
⇤

=
n1 p1,z⇤↵1,z⇤

�1,z⇤
(1 � p) +

n1 p1,z⇤⇤↵1,z⇤⇤

�1,z⇤⇤
p. (4.28)

The calculation of

⇡w[S 1] =
E[S 1e⌧S 1]

E[e⌧S 1]
is more complex. First, since E[e⌧S 1 | Z] = PN1 |Z(MX1,1 |Z(⌧)), we have

E[e⌧S 1] =
Z

PN1 |Z=z(MX1,1 |Z=z(⌧))dFZ(z), (4.29)

where PN1 |Z(x) = E[xN1 | Z] and MX1,1 |Z(⌧) = E[e⌧X1,1 | Z] are the (conditional) probability and
moment generating functions, respectively. Under the above distributional assumptions, we
have MX1,1 |Z(⌧) = (1 � ⌧/�1,Z)�↵1,Z and PN1 |Z(x) = (1 � p1,Z + p1,Z x)n1 , and thus from equation
(4.29) we have

E[e⌧S 1] =


1 � p1,z⇤ + p1,z⇤

✓

1 � ⌧

�1,z⇤

◆�↵1,z⇤ �n1

(1 � p)

+


1 � p1,z⇤⇤ + p1,z⇤⇤

✓

1 � ⌧

�1,z⇤⇤

◆�↵1,z⇤⇤ �n1

p. (4.30)
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Furthermore, we have

E[S 1e⌧S 1 | Z] =
d
d⌧

PN1 |Z(MX1,1 |Z(⌧)), (4.31)

and so, under the above distributional assumptions, we have

E[S 1e⌧S 1] = E[S 1e⌧S 1 | Z = z⇤](1 � p) + E[S 1e⌧S 1 | Z = z⇤⇤]p (4.32)

with

E[S 1e⌧S 1 | Z = z] =
n1 p1,z↵1,z

�1,z

✓

1 � ⌧

�1,z

◆�↵1,z�1

1 � p1,z + p1,z

✓

1 � ⌧

�1,z

◆�↵1,z�n1�1
. (4.33)

(a) variance of severity (b) prob parameter in the Bino distr

(c) mean of background risk (d) sd of background risk

Figure 4.3: General consideration in a single business line

4.4 Pricing multiple business lines

4.4.1 Parametric setting
In this section we illustrate how the above developed pricing technique can work in practical
calculations. We make the following distributional assumptions:
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• Assume that conditional on the background risk Z, the loss severities [Xk,i | Z] follow
gamma distributions with parameters ↵k,Z > 0 and �k,Z > 0. In addition, assume that the
conditional mean and variance of the average severity are

E[Xk,1 | Z] = ckZ1 and Var[Xk,1 | Z] = �2
kZ2

for some positive constants ck > 0 and �2
k > 0. Under this specification, the gamma

parameters are

↵k,Z =
c2

k

�2
k

Z21�2 and �k,Z =
ck

�2
k

Z1�2

• Assume that the conditional frequencies [Nk | Z] follow Binomial distributions with
parameters nk and pk,Z > 0. In particular, when pk,Z = pkZ with pk > 0, the mean and
variance of the Binomial distribution are E[Nk | Z] = nk pkZ and Var[Nk] = nk pkZ(1 �
pkZ) respectively.

• As to the background risk, we consider two cases:

1) Z = z⇤ almost surely for a constant z⇤

2) For some constants z⇤ and z⇤⇤ such that Z = z⇤ + (z⇤⇤ � z⇤)B(1, p) where B(1, p)
represents the Bernoulli distribution with probability p > 0.

4.4.2 The case of w(x) = x
We have

E[S ] =
Z d

X

k=1

E[S k | Z]dFZ(z), (4.34)

with
E[S k | Z] = E[Nk | Z]E[Xk,1 | Z] for k = 1, . . . , d (4.35)

Equations (4.34)–(4.35) give the following formulas:

• If Z = z⇤ almost surely, then

E[S ] =
d

X

k=1

nk pk,z⇤↵k,z⇤

�k,z⇤
; (4.36)

• If Z = z⇤ + (z⇤⇤ � z⇤)B(1, p), then

E[S ] = (1 � p)E[S | Z = z⇤] + pE[S | Z = z⇤⇤]. (4.37)

In addition, we have

E[S kS | Z] = E[S 2
k | Z] +

X

l,k

E[S k | Z]E[S l | Z]

= Var[S k | Z] +
d

X

l=1

E[S k | Z]E[S l | Z], (4.38)
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with
Var[S k | Z] = E[Nk | Z]Var[Xk,1 | Z] + Var[Nk | Z]E[Xk,1 | Z]2. (4.39)

Under the above specifications of the distributions of [Xk,1 | Z] and [Nk | Z], from equations
(4.38) and (4.39), we have

E[S kS | Z] =
nk pk,Z↵k,Z + nk pk,Z(1 � pk,Z)↵2

k,Z

�2
k,Z

+

d
X

l=1

nl pl,Z↵l,Z

�l,Z
. (4.40)

4.4.3 The case of w(x) = e⌧x

When w(x) = e⌧x, we have

E[e⌧S ] =
Z d

Y

k=1

PNk |Z=z(MXk,1 |Z=z(⌧))dFZ(z), (4.41)

because E[e⌧S | Z] is the product of E[e⌧S k | Z], k = 1, . . . , d, and

E[e⌧S k | Z] = PNk |Z(MXk,1 |Z(⌧)), (4.42)

where PNk |Z(x) = E[xNk | Z] and MXk,1 |Z(⌧) = E[e⌧Xk,1 | Z] are the (conditional) probability and
moment generating functions, respectively. Under the Gamma assumption for the conditional
severities, we have

MXk,1 |Z(⌧) =
✓

1 � ⌧

�k,Z

◆�↵k,Z

for ⌧ < �k,Z. (4.43)

Under the Binomial assumption for the conditional frequencies, we have

PNk |Z(x) = (1 � pk,Z + pk,Z x)nk . (4.44)

Equations (4.41)–(4.44) give the following formulas:

• If Z = z⇤ almost surely, then

E[e⌧S ] =
d

Y

k=1



1 � pk,z⇤ + pk,z⇤

✓

1 � ⌧

�k,z⇤

◆�↵k,z⇤ �nk

(4.45)

for all ⌧ > 0 such that
⌧ < min

k
{�k,z⇤}. (4.46)

• If Z = z⇤ + (z⇤⇤ � z⇤)B(1, p), then

E[e⌧S ] = (1 � p)E[e⌧S | Z = z⇤] + pE[e⌧S | Z = z⇤⇤] (4.47)

for all ⌧ > 0 such that condition (4.46) is satisfied.
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In addition, we have

E[S ke⌧S | Z] = E[S ke⌧S k | Z]
Y

l,k

E[e⌧S l | Z]

= E[S ke⌧S k | Z]
Y

l,k

PNl |Z(MXl,1 |Z(⌧)), (4.48)

with the product on the right-hand side calculated in the previous section. For the expectation,
we have

E[S ke⌧S k | Z] =
d
d⌧

PNk |Z(MXk,1 |Z(⌧)). (4.49)

Under the above specifications of the distributions of Xk,1 and Nk given Z, from equations (4.48)
and (4.49), we have

E[S ke⌧S | Z] =
nk pk,Z↵k,Z

�k,Z

✓

1 � ⌧

�k,Z

◆�↵k,Z�1

1 � pk,Z + pk,Z

✓

1 � ⌧

�k,Z

◆�↵k,Z �nk�1

⇥
Y

l,k



1 � pl,Z + pl,Z

✓

1 � ⌧

�l,Z

◆�↵l,Z �nl

(4.50)

for all ⌧ > 0 that satisfy condition (4.46).

4.4.4 Numerical parametric analysis
Numerical illustrations are given in this example. We assume that the background variable Z
follows the distribution z⇤ + (z⇤⇤ � z⇤)B(1, p). Here, z⇤ is the current value for the background
risk, which might relate to current interest rate and is already known. Then Z is a two-value
random variable which equals z⇤ with probability 1 � p and z⇤⇤ with probability p. Hence, we
can readily obtain that E[Z] = (1� p)z⇤ + pz⇤⇤ and Var[Z] = (z⇤⇤ � z⇤)2 p(1� p), denoted by µZ

and �2
Z, respectively. We can also obtain the distribution of Z from the mean and variance, that

is,
p = 1/

✓ Var[Z]
(E[Z] � z⇤)2 + 1

◆

,

and
z⇤⇤ =

E[Z] � (1 � p)z⇤

p
.

Conditional on Z, Xk,i follows a Gamma distribution with mean and variance

E[Xk,1 | Z] = ckZ and Var[Xk,1 | Z] = �2
kZ2

for some positive constants ck > 0 and �2
k > 0.

Then, we explore how these parameters will influence the admissible prices when d = 2.
Here, we ignore the parameter ck because an increase of ck only indicates larger severity mean,
which will definitely results in higher premium.

When w(x) = x, the variance of the severity has little influence on the premiums. The
frequency distribution which is more skewed to the left has higher premium than others. Higher
variance of background risk will result in higher premiums. Figure 4.4 depicts the results.
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(a) Variance of severity (b) Prob parameter in the Bin dist

(c) Mean of background risk (d) sd of background risk

Figure 4.4: Parametric analysis of the case w(x) = x

When w(x) = e⌧x, the variance of the severity has a more obvious influence on premiums
compared to the former case, and higher variance of severity will cause higher premium. How-
ever for other parameters, they keep the same rules as in the former case. Figure 4.5 depicts
the results.

4.5 Non-parametric pricing methods
Firstly, we consider the situation when the parameters of the model are unknown. Suppose that
we observe each of the d lines of businesses for n years. For year j, the kth line has policy
number nk, j and the claim severities are xk,1, . . . , xk, j, so that sk, j =

Pnk, j
i=1 xk,i, which represents

the total claim amount in kth business line, st, j =
Pd

k=1 sk, j, representing the total claim amount
in all business lines for year j. We need to find P1, P2, . . . , Pd such that

P
⇥

Nk ⇥ Pk � E[S k] + CCk, 1  k  d
⇤ � 1 � ✓. (4.51)

For convenience, we now consider the case of two business lines. The mean losses E[S k], k =
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(a) Variance of severity (b) Prob parameter in the Bin dist

(c) Mean of background risk (d) sd of background risk

Figure 4.5: Parametric analysis of the case w(x) = e⌧x

1, 2, can be estimated empirically by

S k =
1
n

n
X

j=1

sk, j, k = 1, 2. (4.52)

In addition, E[w(S )] can be estimated by

w(S ) =
1
n

n
X

j=1

w(st, j), (4.53)

then CCk = rk
Cov[S k ,w(S )]

E[w(S )] , k = 1, 2 can be estimated by

CCk =
rk

n � 1

n
X

j=1

�

sk, j � S k
��

w(st, j) � w(S )
�

w(S )
, k = 1, 2. (4.54)

We need to find P1, P2 such that

1
n

n
X

j=1

I
⇢

n1, j �
S 1 + CC1

P1
, n2, j �

S 2 + CC2

P2

�

� 1 � ✓, (4.55)
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which can be rewritten as

P1 �
1

n1,⇤

�

S 1 + CC1
�

, (4.56)

P2 �
1

n2,⇤

�

S 2 + CC2
�

, (4.57)

where (n1,⇤, n2,⇤) satisfy
Pn

j=1 I{n1, j � n1, n2, j � n2}
n

� 1 � ✓ (4.58)

and can be obtained empirically.
In summary, the empirical estimations for P1 and P2 are

P̂1 =
1

n1,⇤

✓1
n

n
X

j=1

s1, j + r1 ⇤
n

n � 1

Pn
i=1

�

s1, j �
Pn

j=1 s1, j/n
��

w(st, j) �
Pn

j=1 w(st, j)/n
�

Pn
j=1 w(st, j)

◆

, (4.59)

P̂2 =
1

n2,⇤

✓1
n

n
X

j=1

s2, j + r1 ⇤
n

n � 1

Pn
j=1

�

s2, j �
Pn

j=1 s2, j/n
��

w(st, j) �
Pn

j=1 w(st, j)/n
�

Pn
j=1 w(st, j)

◆

. (4.60)

When considering d business line in total, we have for k = 1, . . . , d,

P̂k =
1

nk,⇤

✓1
n

n
X

j=1

sk, j + r1 ⇤
n

n � 1

Pn
j=1

�

sk, j �
Pn

j=1 sk, j/n
��

w(st, j) �
Pn

j=1 w(st, j)/n
�

Pn
j=1 w(st, j)

◆

. (4.61)

The key is to determine (n1,⇤, . . . , nd,⇤) which are obtained from the boundary points of the
region in which (n1, . . . , nd)’s satisfy

Pn
j=1 I{n1, j � n1, . . . , nd, j � nd}

n
� 1 � ✓. (4.62)

Secondly, we consider the case when the risk level Z can be observed. That is, we are able
to classify the data into di↵erent risk levels z1, z2, . . . . Then, the inequality (4.51) becomes

Z d
Y

k=1

P
⇥

Nk ⇥ Pk � E[S k] + CCk | Z = z
⇤

dFZ(z) � 1 � ✓. (4.63)

The empirical estimates for E[S k], E[w(S )] and Cov[S k,w(S )] are kept the same as in the
former section, referring to (4.52), (4.53) and (4.54) . Suppose that there are nz1 , nz2 , . . . , nzr

data points under risk level Z = z1,Z = z2, . . . ,Z = zr such that nz1 + nz2 + · · · + nzr = n, the
former inequality then becomes

r
X

l=1

�

d
Y

k=1

P
⇥

Nk ⇥ Pk � E[S k] + CCk | Z = zl
⇤�

nzl

n
� 1 � ✓. (4.64)

Taking the case of d = 2 as an example, we need to find P1, P2 such that

r
X

l=1

�

2
Y

k=1

P
⇥

Nk �
E[S k] + CCk

Pk
| Z = zl

⇤�

nzl

n
� 1 � ✓. (4.65)
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This means empirically

r
X

l=1

✓

Pnzl
j=1 I

�

n1,zl, j � E[S 1]+CC1
P1

 

nzl

⇥
Pnzl

j=1 I
�

n2,zl, j � E[S 2]+CC2
P2

 

nzl

◆nzl

n
� 1 � ✓. (4.66)

Simplifying the above inequality and replacing terms with empirical estimates we obtain

1
n

r
X

l=1

1
nzl

✓

nzl
X

j=1

1
⇢

n1, j,zl �
S 1 + CC1

P1

�

⇥
nzl
X

j=1

1
⇢

n2, j,zl �
S 2 + CC2

P2

�◆

� 1 � ✓. (4.67)

where n1, j,zl and n2, j,zl , j = 1, . . . , nzl are the claim frequencies of 1st and 2nd business line from
the jth data whose risk level is Z = zl.

That is to say, di↵erent from the previous section, here we obtain (n1,⇤, n2,⇤) empirically
from the boundary points of the region in which (n1, n2) satisfy

1
n

r
X

l=1

1
nzl

✓

nzl
X

j=1

1
�

n1, j,zl � n1
 ⇥

nzl
X

j=1

1
�

n2, j,zl � n2
 

◆

� 1 � ✓. (4.68)

Theoretically, a straightforward method can be used to compare the performance of two
non-parametric quantile boundaries. Since all the data points (n1, n2) lie in the lower left side
of the quantile boundary satisfy

P(N1 � n1,N2 � n2) � 1 � ✓, (4.69)

we can use the di↵erence between areas constructed by theoretical quantile boundary and non-
parametric quantile boundary for evaluation purposes given that we know the exact distri-
butions for severities and frequencies. We illustrate the idea by Figure 4.6. By default, if not

Figure 4.6: Di↵erence of areas between the theoretical and non-parametric boundaries

specified, the following sample datasets being used are generated with parameter values z⇤ = 1,
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z⇤⇤ = 0.5, p = 0.5 and nk = 2000, pk = 0.5 for k = 1, 2. We use the size of the shaded re-
gion determined by two quantile boundaries to represent the fitting performance compared to
theoretical quantile boundary.

Then, we aim to verify that the second non-parametric estimation constructed when the
background risk is observable, performs better than the first non-parametric estimation. We
simulate 20 times for di↵erent sample sizes, and calculate the mean of di↵erent areas. The
results are reported in Figure 4.7, The time used for non-parametric methods are shown in

(a) Area size of two methods (b) Di↵erence of areas

Figure 4.7: Comparison of areas between non-parametric methods

Table 4.1. In the following table and figures, “z-known" represents the case that we can observe
the risk level Z, while “z-unknown" represents the case that we cannot.

sample size 500 1000 2000 3000 5000
z known 0.186 0.179 0.670 0.295 1.019
z unknown 2.788 4.909 9.808 15.224 25.164

Table 4.1: Comparison of computing time (seconds)

We can see clearly that the second empirical estimation of quantile boundary hugely re-
duces the computation time, but only performs slightly better in the estimating results. Both
non-parametric methods perform better as sample size increases.

The overall performance of the estimated premiums is shown in the remaining part of this
subsection. Here we assume that the background variable Z follows the distribution z⇤ + (z⇤⇤ �
z⇤)B(1, p), where z⇤ = 1, z⇤⇤ = 0.5, p = 0.5. Conditional on Z, Xk,i ⇠ Ga(↵k,Z, �k,Z). We set
average severity and variance as

E[Xk,1 | Z] =
↵k,Z

�k,Z
= ckZ and Var[Xk,1 | Z] =

↵k,Z

�2
k,Z

= �2
kZ2

for some positive constants ck = 200 and �k = 40. Also, we assume that the conditional
distributions of the loss frequencies [Nk | Z] follow the Binomial distribution B(nk, pk,Z), k =
1, 2 with nk = 2000 and pk = 0.5. The results are shown in Figure 4.8, Figure 4.9 and Figure
4.10. Note that the green and red lines are almost overlapping.
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(a) w(x) = x (b) w(x) = e⌧x

Figure 4.8: Comparison of the theoretical model with empirical methods when n = 100

(a) w(x) = x (b) w(x) = e⌧x

Figure 4.9: Comparison of the theoretical model with empirical methods when n = 1000

4.6 Parametric model fitting method

4.6.1 Relationship between the model parameters
According to the law of total variance, we have

Cov[X,Y] = E
⇥

Cov[X,Y | Z]
⇤

+ Cov
⇥

E[X | Z],E[Y | Z]
⇤

. (4.70)

Because of our former assumptions, we can theoretically obtain that, for any i , j, and
i, j 2 {1, . . . , d},

Cov[Ni,Nj] = E
⇥

Cov[Ni,Nj | Z]
⇤

+ Cov
⇥

E[Ni | Z],E[Nj | Z]
⇤

= Cov
⇥

E[Ni | Z],E[Nj | Z]
⇤

. (4.71)
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(a) w(x) = x (b) w(x) = e⌧x

Figure 4.10: Comparison of the theoretical model with empirical methods when n = 10000

Similarly, we can also obtain

Cov[Xi,1, Xj,1] = Cov
⇥

E[Xi,1 | Z],E[Xj,1 | Z]
⇤

(4.72)

and
Cov[Ni, Xj,1] = Cov

⇥

E[Ni | Z],E[Xj,1 | Z]
⇤

. (4.73)

We can use the empirical method to estimate those quantities and assess our parametric
fitting. We illustrate this with an example of two business lines.

Keeping our former assumptions, [Xk,i | Z], k = 1, 2, follow a Gamma distribution with
average severity and variance

E[Xk,1 | Z] = ckZ and Var[Xk,1 | Z] = �2
kZ2. (4.74)

As well, the frequencies [Nk | Z], k = 1, 2, follow a Binomial distribution B(nk, pkZ), and the
conditional average frequency and variance are given by

E[Nk | Z] = nk pkZ and Var[Nk | Z] = nk pkZ(1 � pkZ). (4.75)

Suppose that we only know the exact value of nk, k = 1, 2. Then we will use empirical
estimation to obtain as much information as we can from the data. Theoretically, we have

E[Xk,1] = ckE[Z] k = 1, 2, (4.76)

E[Nk] = nk pkE[Z] k = 1, 2, (4.77)

Cov[Nk, Xk,1] = nk pkckVar[Z] k = 1, 2, (4.78)

Cov[N1,N2] = n1 p1n2 p2Var[Z], (4.79)

Cov[X1,1, X2,1] = c1c2Var[Z], (4.80)

Cov[Xk,1, Xk,2] = c2
kVar[Z] k = 1, 2, (4.81)
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Var[Xk,1] = c2
kVar[Z] + �2

kE[Z2] k = 1, 2, (4.82)

E[S k] = nk pkckE[Z2] k = 1, 2. (4.83)

From the above statements, we have the following relationship between parameters:

c1

c2
=

E[X1,1]
E[X2,1]

, (4.84)

where E[Xk,1], k = 1, 2 can be roughly estimated with the data. Similar approximate relation-
ship among c1, c2, p1, p2 can also be obtained by evaluation of the ratios. For example,

Cov[Nk, Xk,1]
E[Nk]E[Xk,1]

=
Var[Z]
E[Z]2 , (4.85)

and
E[S k]

E[Nk]E[Xk,1]
=

E[Z2]
E[Z]2 , (4.86)

from which we can estimate ratios between mean, variance and second moment of background
risk Z empirically.

Since all the parameters mentioned above relate closely with each other, we are able to
roughly determine them through empirical estimation given any one of the parameters. Now,
suppose we set the mean of background risk to a specific value E[Z] = µZ, then for k = 1, 2
other quantities can be determined as

ck =
E[Xk,1]
µZ
, (4.87)

pk =
E[Nk]
nkµZ

, (4.88)

Var[Z] =
Cov[Nk, Xk,1]
E[Nk]E[Xk,1]

µ2
Z, (4.89)

�k =

s

Var[Xk,1] � Cov[Xk,1, Xk,2]
E[Z2]

(4.90)

with

E[Z2] =
E[S k]

E[Nk]E[Xk,1]
µ2

Z, (4.91)

where all the quantities on the right hand side can be estimated empirically.
We may change the value of µZ and choose the most suitable group of parameters according

to the data, the details for which will be discussed in the subsequent section.
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Figure 4.11: Illustration of our assessment method

4.6.2 Parametric fitting method and assessment
In this section, we introduce an assessment method for a group of estimated parameters for the
proposed model. We illustrate our main idea using Figure 4.11.

Supposing that we have a group of estimated parameters for a predetermined µZ, the region
bounded by the red boundary are those (n1, n2) that satisfy

P(N1 � n1,N2 � n2) � 1 � ✓, (4.92)

for such an estimated parametric model. Given that we have n data points (n1, j, n2, j), j =
1, . . . , n for frequencies (N1,N2) recorded from the true model, all the points (n1, n2) satisfying

Pn
j=1 1{n1, j � n1, n2, j � n2}

n
� 1 � ✓ (4.93)

should exactly be located in this region if the estimated parameters match the true model well.
The equality should approximately hold for those (n1, n2) on the boundary of the red region.
In other words, for any point (n1, n2) on the red quantile boundary, denoted by (n1,l,⇤, n2,l,⇤),
l = 1, . . . , h, the number of data points in the blue region should account for almost 1 � ✓
of the total samples. Ideally, we aim to select the parametric model with quantile boundary
{⇥pl, l = 1, . . . , h}, such that

⇥pl =

Pn
j=1 1{n1, j � n1,l,⇤, n2, j � n2,l,⇤}

n
⇠ 1 � ✓. (4.94)

Hence, we are able to define mean squared error and mean absolute error for a parametric
model with any parameter values as

MS Eq =

h
X

l=1

(⇥pl � 1 + ✓)2, (4.95)
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and

MAEq =

h
X

l=1

|⇥pl � 1 + ✓|. (4.96)

Example 4.6.1. Keeping the same assumptions, we continue with the example given in the
former subsection. We assume that the background risk Z follows the distribution Z ⇠ z⇤ +
(z⇤⇤ � z⇤)B(1, p), with z⇤ = 1 already known.

In addition, suppose that we have for k = 1, 2, ck = 200, �k = 40, nk = 2000, pk = 0.5,
z⇤⇤ = 0.5 and p = 0.5, yielding E[Z] = 0.75 and Var[Z] = 0.0625. We simulate a sample of
size n = 1000 and see how our parametric fitting and assessment perform in Table 4.2.

Predetermined µZ c1 c2 �1 �2 p1 p2 �2
Z MSEq MAEq

Theoretical 0.75 200 200 40 40 0.5 0.5 0.0625 6.238 0.0442
0.7 214.3 216.9 44.495 43.33 0.534 0.533 0.0549 67.949 261.994
0.75 200.02 202.4 41.529 40.442 0.498 0.498 0.063 0.195 10.705
0.8 187.52 189.75 38.93 37.91 0.467 0.467 0.0717 2.175 43.923

Table 4.2: Performance of MSEq and MAEq for some specific µZ

With more predetermined µZ increasing with a smaller step, we obtain Figure 4.12.

(a) MSEq (b) MAEq

Figure 4.12: MSEq and MAEq when µZ varies

The predetermined µZ which minimizes MAEq is 0.745, and that minimizes MSEq is 0.747.
Both of them are around the real µZ = 0.75. Although µZ obtained by minimizing MSEq is
closer to the real µZ than that obtained by minimizing MAEq, MAEq has a more obvious trend
when changing the predetermined µZ, which may be more convincing.

We also explore the performance of MAEq and MSEq for di↵erent sample sizes.
When n = 100, the µZ that minimizes MSEq is 0.73, and the µZ that minimizes MAEq is

0.729 in Figure 4.13. The empirical method performs better than the parametric fitting method.
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(a) MSEq (b) MAEq

(c) Comparison of quantile boundaries (d) Di↵erence of area

Figure 4.13: Parametric fitting of the case n = 100

When n = 200, the µZ that minimizes MSEq is 0.75, and the µZ that minimizes MAEq is
0.75 in Figure 4.14. Although, we obtain perfect estimation for µZ, the empirical method still
works better than the parametric fitting method. This might be caused by poor estimations for
E[Nk] and Cov[N1,N2].

When n = 500, the µZ that minimizes MSEq is 0.733, and the µZ that minimizes MAEq is
0.733 in Figure 4.15. The parametric fitting method starts working better than the empirical
method.

When n = 1000, the µZ that minimizes MSEq is 0.747, and the µZ that minimizes MAEq

is 0.745 in Figure 4.16. The parametric model obtained by minimizing MSEq works very
well to estimate the theoretical quantile boundary. However, the parametric model obtained by
minimizing MAEq does not work well compared to the empirical quantile boundary.

When n = 1500, the µZ that minimizes MSEq is 0.748, and the µZ that minimizes MAEq

is 0.748 in Figure 4.17. Obviously, the parametric fitting method works better than empirical
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(a) MSEq (b) MAEq

(c) Comparisons of quantile boundaries (d) Di↵erence of area

Figure 4.14: Parametric fitting of the case n = 200

method.
From the above figures, we see the necessity of parametric estimating method. Although the

empirical method works better when sample size is small, the parametric estimation supported
by assessment has a better accuracy for large sample sizes.

4.7 Conclusion
In this chapter, we studied premium principles for multiple business lines when the claim
frequencies and claim severities are correlated via a background risk. We developed a novel
methodology of premium setting and numerically illustrated how model parameters influence
the premiums level. As one might expect, higher mean of severity, mean of background risk and
standard deviation of background risk will result in higher premiums in a certain business line.
In addition, a larger number of policies (frequencies) ( larger parameter p1 in the Binomial
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(a) MSEq (b) MAEq

(c) Comparisons of quantile boundaries (d) Di↵erence of area

Figure 4.15: Parametric fitting of the case n = 500

distribution) can lead to a relatively lower premium per policy. Depending on the choice of
weight function, the variance of the severity may have di↵erent influence on premiums.

If the background risk levels can be observed along with the loss data, a less time-consuming
non-parametric method can be used to empirically estimate premiums. However, the improve-
ment on accuracy is not significant. Given that our assumptions for the risk model are correct,
the proposed parameter fitting method works well when the sample size is large. Otherwise,
the empirical methods are recommended.
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(a) MSEq (b) MAEq

(c) Comparison of quantile boundaries (d) Di↵erence of area

Figure 4.16: Parametric fitting of the case n = 1000



4.7. Conclusion 93

(a) MSEq (b) MAEq

(c) Comparison of quantile boundaries (d) Di↵erence of area

Figure 4.17: Parametric fitting of the case n = 1500



Chapter 5

Summary and future research topics

In this thesis we investigated the univariate and bivariate collective risk models and made con-
tributions in the following aspects.

In Chapter 2, we provide theoretical upper bounds for the tail probability of the bivariate
compound distributions. The results generalize those of Willmot and Lin (1994) and Willmot
et al. (2001) for univariate compound distributions. Exponential or generalized bounds are
derived depending on whether the claim size distributions have finite moment generating func-
tions or not. In order for the bound to apply, some quite restrictive conditions for the claim
number distributions have to be satisfied. However, we were able to make the constraints as
relaxed as possible, so that the derived upper bounds are applicable to some commonly used
bivariate discrete distributions, such as a specific category of bivariate compound distributions.
The results are useful in measuring and managing the risk of insurance companies.

In Chapter 3, we developed several novel variance reduction techniques for simulating
tail probability and mean excess loss of the classic univariate collective risk model. We also
extended them to bivariate aggregate claims model whose claim severities are identically in-
dependent distributed and independent of claim frequencies. The numerical experiments show
that our new simulation methods are highly e↵ective. It is worth mentioning that, such vari-
ance reduction techniques can naturally be applied to simulating the tail probability of bivariate
compound distributions discussed in the first part of our thesis.

In Chapter 4, we investigate a novel multiple collective risk model, in which the claim
frequencies and claim severities are correlated via a background risk. Considering a model with
two business lines, we numerically illustrate how model parameters influence the premiums
level. We developed two empirical methods of parameter estimation based on whether the
background risk levels can be observed along with the loss data, Furthermore, we developed a
parametric fitting method, which outperforms empirical methods when the sample size is large
enough, and of course, if the model specification is correct.

For future research, several topics can be considered:

• In Chapter 2, we only numerically verified that several commonly used bivariate counting
distributions satisfy the required constraints for the bound to hold. Some work could be
done to explore such properties in various bivariate distributions analytically.

• In Chapter 3, we make use of a size-biased transform and a second moment transform
to simulate mean excess loss alternatively. We also verify that these can be applied to

94
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the bivariate Poisson distribution with mixing parameter or common shock. Moment
transform on bivariate distributions could be considered in detail.

• In Chapter 4, we mainly discuss premium pricing via numerical methodologies because
of the complexity of our assumptions. We may consider finding some special cases of
our model to determine a potential analytical allocation rule.
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Appendix A

Supplement materials

A.1 Proof of the Remark 3.3.2 in Section 3.3.5
From
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, (A.1)

the h minimizing the variance of P[M � T ⇤(c)] MX(h)T⇤(c)

eh
PT⇤(c)

i=1 X⇤i
is roughly the same as that minimizing

the variance of I{S ⇤ > c}E[ehS ]
ehS ⇤ .

A.2 Theoretical verification of conditioning method for the
tail probability in the two dimensional case

To verify the feasibility of the conditioning method for P[S 1 > c, S 2 > d], we extend the
proposition in Lin (1996) .

Assuming that am,n = P[M > m,N > n], we have

P[T1(c) = m] = F
⇤m

(c) � F
⇤(m�1)

(c)
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and
P[T2(d) = n] = G

⇤n
(d) �G

⇤(n�1)
(d),

for m, n = 1, 2, . . . where F
⇤m

(x) = 1 � F⇤m(x), G
⇤n

(y) = 1 � G⇤n(y), with F⇤m(x), G⇤n(y)
being the distribution functions (d.f.) of S 1,m, S 2,n respectively. Therefore we can obtain the
following proposition.

Proposition A.2.1.
P[S 1 > c, S 2 > d] = E[aT1(c)�1,T2(d)�1] (A.2)

Proof. Directly from Lemma 2.2.1, we have
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since T1(c) and T2(d) are independent.



Appendix B

Algorithms of simulation methods

In each of following algorithms, the estimator of the underlying quantity of interest is the
average of generate n samples.

B.1 Simulation of the tail probability of the univariate com-
pound sum

Algorithm 1 Importance sampling
1: Apply Esscher transform to S with parameter h and calculate the distributions of M⇤, X⇤.
2: Let E[M⇤]E[X⇤] = c and determine the parameter value of h.
3: Generate M⇤.
4: Generate X⇤1, . . . , X

⇤
M⇤ independently from X⇤ and calculate the sum, denoted by S ⇤ =

PM⇤
i=1 X⇤i and calculate ✓̂I = I(S ⇤ > c).

5: Repeat steps 3-4 for n times and take the average of ✓̂I .

Algorithm 2 Importance and stratified sampling
1: Apply Esscher transform to S with parameter h and calculate the distributions of M⇤, X⇤.
2: Let E[M⇤]E[X⇤] = c and determine the parameter value of h.
3: Fix a value of ml such that P[M⇤ > ml] is small.
4: Generate M⇤ conditional on it exceeding ml.
5: Generate X⇤1, . . . , X

⇤
M⇤ independently from X⇤ and calculate the estimator ✓̂I+S in this run.

6: Repeat steps 4-5 for n times and take the average of ✓̂I+S .

Algorithm 3 Conditioning
1: Generate X1, X2, . . . independently from X until their sum exceeds c.
2: Record the stopping time T (c) and calculate ✓̂CD = P[M � T (c)].
3: Repeat steps 1-2 for n times and take the average of ✓̂CD.
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Algorithm 4 Combining conditioning method with control variates
1: Generate X1, X2, . . . independently from X until their sum exceeds c.
2: Record the stopping time T (c) and calculate ✓̂CD = P[M � T (c)].
3: Calculate the control variate W in this run.
4: Repeat steps 1-3 for n times and calculate � = cov(✓̂CD,W)/Var(W) using the simulated

values of ✓̂CD and W.
5: Take the average of ✓̂CD+CV = ✓̂CD � �W.

Algorithm 5 Combining importance sampling with conditioning
1: Apply Esscher transform to S with parameter h and calculate the distributions of M⇤, X⇤.
2: Let E[M⇤]E[X⇤] = c and determine the parameter value of h.
3: Generate X⇤1, X

⇤
2, . . . independently from X⇤ until their sum exceeds c.

4: Record the stopping time T ⇤(c) and calculate ✓̂I+CD in this run.
5: Repeat steps 3-4 for n times and take the average of ✓̂I+CD.

Algorithm 6 Combining importance sampling, conditioning and control variates
1: Apply Esscher transform to S with parameter h and calculate the distributions of M⇤, X⇤.
2: Let E[M⇤]E[X⇤] = c and determine the parameter value of h.
3: Generate X⇤1, X

⇤
2, . . . independently from X⇤ until their sum exceeds c.

4: Record the stopping time T ⇤(c) and calculate ✓̂I+CD in this run.
5: Calculate the control variate W in this run.
6: Repeat steps 3-5 for n times and calculate � = cov(✓̂I+CD,W)/Var(W) using the simulated

values of ✓̂I+CD and W.
7: Take the average of ✓̂I+CD+CV = ✓̂I+CD � �W.

B.2 Simulation of the mean excess loss of the univariate com-
pound distribution

Algorithm 7 Importance sampling
1: Apply Esscher transform to S with parameter h and calculate the distributions of M⇤, X⇤.
2: Let E[M⇤]E[X⇤] = c and determine the parameter value of h.
3: Generate M⇤.
4: Generate X⇤1, . . . , X

⇤
M⇤ independently from X⇤ and calculate the sum, denoted by S ⇤ =

PM⇤
i=1 X⇤i .

5: Repeat steps 3-4 for n times and take the average of ⌧̂I .
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Algorithm 8 Importance and stratified sampling
1: Apply Esscher transform to S with parameter h and calculate the distributions of M⇤, X⇤.
2: Let E[M⇤]E[X⇤] = c and determine the parameter value of h.
3: Fix a value of ml such that P[M⇤ > ml] is small.
4: Generate M⇤ conditional on it exceeding ml.
5: Generate X⇤1, . . . , X

⇤
M⇤ independently from X⇤ and calculate the estimator ⌧̂I+S in this run.

6: Repeat steps 4-5 for n times and take the average of ⌧̂I+S .

Algorithm 9 Conditioning
1: Generate X1, X2, . . . independently from X until their sum exceeds c.
2: Record the stopping time T (c) and the quantity A.
3: Use T (c) and A to calculate ⌧̂CD in this run.
4: Repeat steps 1-3 for n times and take the average of ⌧̂CD.

Algorithm 10 Combining conditioning method with control variates
1: Generate X1, X2, . . . independently from X until their sum exceeds c.
2: Record the stopping time T (c) and the quantity A.
3: Use T (c) and A to calculate ⌧̂CD and W1 in this run.
4: Repeat steps 1-3 for n times and calculate W2 by deducting sample mean E[A] from simu-

lated A’s.
5: Obtain �1, �2 by running the linear regression ⌧̂CD = �0 + �1W1 + �2W2 + ✏.
6: Take the average of ⌧̂CD+CV = ⌧̂CD � �1W1 � �2W2.

Algorithm 11 Combining importance sampling with conditioning
1: Apply Esscher transform to S with parameter h and calculate the distributions of M⇤, X⇤.
2: Let E[M⇤]E[X⇤] = c and determine the parameter value of h.
3: Generate X⇤1, X

⇤
2, . . . independently from X⇤ until their sum exceeds c.

4: Record the stopping time T ⇤(c) and calculate the quantity A⇤.
5: Use T ⇤(c) and A⇤ to calculate ⌧̂I+CD in this run.
6: Repeat steps 3-5 for n times and take the average of ⌧̂I+CD.

Algorithm 12 Combining importance sampling, conditioning and control variates
1: Apply Esscher transform to S with parameter h and calculate the distributions of M⇤, X⇤.
2: Let E[M⇤]E[X⇤] = c and determine the parameter value of h.
3: Generate X⇤1, X

⇤
2, . . . independently from X⇤ until their sum exceeds c.

4: Record the stopping time T ⇤(c) and the quantity A⇤.
5: Use T ⇤(c) and A⇤ to calculate ⌧̂I+CD and W1 in this run.
6: Repeat steps 3-5 for n times and calculate W2 by deducting sample mean E[A⇤] from

simulated A⇤’s.
7: Obtain �1, �2 by running the linear regression ⌧̂I+CD = �0 + �1W1 + �2W2 + ✏.
8: Take the average of ⌧̂I+CD+CV = ⌧̂I+CD � �1W1 � �2W2.
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B.3 Simulation of the tail probability of the bivariate com-
pound sum

Algorithm 13 Importance sampling
1: Apply Esscher transform to (S 1, S 2) with parameter (h1, h2) and calculate the distributions

of X⇤, Y⇤ and (M⇤,N⇤).
2: Let E[S ⇤1] = c, E[S ⇤2] = d and determine the parameter value of h1, h2.
3: Generate (M⇤,N⇤).
4: Generate X⇤1, . . . , X

⇤
M⇤ independently from X⇤ and Y⇤1 , . . . ,Y

⇤
N⇤ independently from Y⇤. Cal-

culate the sum, denoted by S ⇤1 =
PM⇤

i=1 X⇤i and S ⇤2 =
PN⇤

j=1 Y⇤j , respectively.
5: Repeat steps 3-4 for n times and take the average of ✓̂I .

Algorithm 14 Importance and stratified sampling
1: Apply Esscher transform to (S 1, S 2) with parameter (h1, h2) and calculate the distributions

of X⇤, Y⇤ and (M⇤,N⇤).
2: Let E[S ⇤1] = c, E[S ⇤2] = d and determine the parameter value of h1, h2.
3: Fix values of ml, nl such that 1 � P[M⇤  ml,N⇤  nl] is small.
4: Generate (M⇤,N⇤) conditional on M⇤ > ml, N⇤ > nl.
5: Generate X⇤1, . . . , X

⇤
max(ml,M⇤) independently from X⇤ and Y⇤1 , . . . ,Y

⇤
max(nl,N⇤) independently

from Y⇤. Calculate the estimator ✓̂I+S in this run.
6: Repeat steps 4-5 for n times and take the average of ✓̂I+S .

Algorithm 15 Conditioning
1: Generate X1, X2, . . . independently from X until their sum exceeds c and Y1,Y2, . . . inde-

pendently from Y until their sum exceeds d.
2: Record the stopping times T1(c) and T2(d). Calculate ✓̂CD = P[M � T1(c),N � T2(d)].
3: Repeat steps 1-2 for n times and take the average of ✓̂CD.

Algorithm 16 Combining conditioning method with control variates
1: Generate X1, X2, . . . independently from X until their sum exceeds c and Y1,Y2, . . . inde-

pendently from Y until their sum exceeds d.
2: Record the stopping times T1(c) and T2(d). Calculate ✓̂CD = P[M � T1(c),N � T2(d)].
3: Calculate the control variates W1 and W2 in this run.
4: Repeat steps 1-3 for n times and obtain �1, �2 by running the linear regression ✓̂CD =

�0 + �1W1 + �2W2 + ✏.
5: Take the average of ✓̂CD+CV = ⌧̂CD � �1W1 � �2W2.
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Algorithm 17 Combining importance sampling with conditioning
1: Apply Esscher transform to (S 1, S 2) with parameter (h1, h2) and calculate the distributions

of X⇤, Y⇤ and (M⇤,N⇤).
2: Let E[S ⇤1] = c, E[S ⇤2] = d and determine the parameter value of h1, h2.
3: Generate X⇤1, X

⇤
2, . . . independently from X⇤ until their sum exceeds c and Y⇤1 ,Y

⇤
2 , . . . inde-

pendently from Y⇤ until their sum exceeds d.
4: Record the stopping times T ⇤1(c) and T ⇤2(d). Calculate the estimator ✓̂I+CD in this run.
5: Repeat steps 3-4 for n times and take the average of ✓̂I+CD.

Algorithm 18 Combining importance sampling, conditioning and control variates
1: Apply Esscher transform to (S 1, S 2) with parameter (h1, h2) and calculate the distributions

of X⇤, Y⇤ and (M⇤,N⇤).
2: Let E[S ⇤1] = c, E[S ⇤2] = d and determine the parameter value of h1, h2.
3: Generate X⇤1, X

⇤
2, . . . independently from X⇤ until their sum exceeds c and Y⇤1 ,Y

⇤
2 , . . . inde-

pendently from Y⇤ until their sum exceeds d.
4: Record the stopping times T ⇤1(c) and T ⇤2(d). Calculate the estimator ✓̂I+CD in this run.
5: Calculate the control variates W1 and W2 in this run.
6: Repeat steps 3-5 for n times and obtain �1, �2 by running the linear regression ✓̂I+CD =

�0 + �1W1 + �2W2 + ✏.
7: Take the average of ✓̂I+CD+CV = ⌧̂I+CD � �1W1 � �2W2.

B.4 Simulation of the mean excess loss of the bivariate com-
pound distribution

Algorithm 19 Importance sampling
1: Apply Esscher transform to (S 1, S 2) with parameter (h1, h2) and calculate the distributions

of X⇤, Y⇤ and (M⇤,N⇤).
2: Let E[S ⇤1] = c, E[S ⇤2] = d and determine the parameter value of h1, h2.
3: Generate (M⇤,N⇤).
4: Generate X⇤1, . . . , X

⇤
M⇤ independently from X⇤ and Y⇤1 , . . . ,Y

⇤
N⇤ independently from Y⇤. Cal-

culate the sum, denoted by S ⇤1 =
PM⇤

i=1 X⇤i and S ⇤2 =
PN⇤

j=1 Y⇤j , respectively.
5: Repeat steps 3-4 for n times and take the average of ⌧̂I .
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Algorithm 20 Importance and stratified sampling
1: Apply Esscher transform to (S 1, S 2) with parameter (h1, h2) and calculate the distributions

of X⇤, Y⇤ and (M⇤,N⇤).
2: Let E[S ⇤1] = c, E[S ⇤2] = d and determine the parameter value of h1, h2.
3: Fix values of ml, nl such that 1 � P[M⇤  ml,N⇤  nl] is small.
4: Generate (M⇤,N⇤) conditional on M⇤ > ml, N⇤ > nl.
5: Generate X⇤1, . . . , X

⇤
max(ml,M⇤) independently from X⇤ and Y⇤1 , . . . ,Y

⇤
max(nl,N⇤) independently

from Y⇤. Calculate the estimator ⌧̂I+S in this run.
6: Repeat steps 4-5 for n times and take the average of ⌧̂I+S .

Algorithm 21 Conditioning
1: Generate X1, X2, . . . independently from X until their sum exceeds c and Y1,Y2, . . . inde-

pendently from Y until their sum exceeds d.
2: Record the stopping times T1(c), T2(d) and the quantities A, B.
3: Calculate the conditional estimator ⌧̂CD in this run.
4: Repeat steps 1-3 for n times and take the average of ⌧̂CD.

Algorithm 22 Combining conditioning method with control variates
1: Generate X1, X2, . . . independently from X until their sum exceeds c and Y1,Y2, . . . inde-

pendently from Y until their sum exceeds d.
2: Record the stopping times T1(c), T2(d) and the quantities A, B.
3: Calculate the conditional estimator ⌧̂CD and the control variates W1, W2 in this run.
4: Repeat steps 1-3 for n times and calculate W3, W4 by deducting sample means E[A], E[B]

from simulated A’s, B’s, respectively.
5: Obtain �1, �2, �3, �4 by fitting the regression model ⌧̂CD ⇠ �0+�1W1+�2W2+�3W3+�4W4.
6: Take the average of ⌧̂CD+CV = ⌧̂CD � �1W1 � �2W2 � �3W3 � �4W4.

Algorithm 23 Combining importance sampling with conditioning
1: Apply Esscher transform to (S 1, S 2) with parameter (h1, h2) and calculate the distributions

of X⇤, Y⇤ and (M⇤,N⇤).
2: Let E[S ⇤1] = c, E[S ⇤2] = d and determine the parameter value of h1, h2.
3: Generate X⇤1, X

⇤
2, . . . independently from X⇤ until their sum exceeds c and Y⇤1 ,Y

⇤
2 , . . . inde-

pendently from Y⇤ until their sum exceeds d.
4: Record the stopping times T ⇤1(c), T ⇤2(d) and the quantities A⇤, B⇤.
5: Calculate the conditional estimator ⌧̂I+CD in this run.
6: Repeat steps 3-5 for n times and take the average of ⌧̂I+CD.
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Algorithm 24 Combining importance sampling, conditioning and control variates
1: Apply Esscher transform to (S 1, S 2) with parameter (h1, h2) and calculate the distributions

of X⇤, Y⇤ and (M⇤,N⇤).
2: Let E[S ⇤1] = c, E[S ⇤2] = d and determine the parameter value of h1, h2.
3: Generate X⇤1, X

⇤
2, . . . independently from X⇤ until their sum exceeds c and Y⇤1 ,Y

⇤
2 , . . . inde-

pendently from Y⇤ until their sum exceeds d.
4: Record the stopping times T ⇤1(c), T ⇤2(d) and the quantities A⇤, B⇤.
5: Calculate the conditional estimator ⌧̂I+CD and the control variates W1, W2 in this run.
6: Repeat steps 3-5 for n times and calculate W3, W4 by deducting sample means E[A⇤], E[B⇤]

from simulated A⇤’s, B⇤’s, respectively.
7: Obtain �1, �2, �3, �4 by fitting the regression model ⌧̂I+CD ⇠ �0+�1W1+�2W2+�3W3+�4W4.
8: Take the average of ⌧̂I+CD+CV = ⌧̂I+CD � �1W1 � �2W2 � �3W3 � �4W4.
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