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Abstract 14 

Seasonally-acquired cold tolerance can be reversed by exposure to warm temperatures, 15 

leaving temperate ectotherms vulnerable to cold snaps in spring. However, this process of 16 

deacclimation, and its underlying mechanisms, has not been well-explored in insects. 17 

Swallowtail butterflies are widely distributed globally but in some cases their range is limited by 18 

low temperature and their cold tolerance seasonally acquired, implying that they may be 19 

vulnerable to mortality resulting from deacclimation. We investigated cold tolerance and 20 

hemolymph composition of Anise swallowtail (Papilio zelicaon) pupae during overwintering in 21 

the laboratory, and after four days exposure to warm temperatures in spring. Overwintering 22 

pupae had supercooling points around  -20.5 °C and survived brief exposures to -30 °C, 23 

suggesting partial freeze tolerance.  Overwintering pupae had hemolymph osmolality of 24 

approximately 920 mOsm, imparted by high concentrations of glycerol, K+ and Na+. After 25 

exposure to spring warming, supercooling points increased to approximately -17 °C, and survival 26 

of a 1h exposure to -20 °C decreased from 100 % to 0 %. This deacclimation was associated with 27 

decreased hemolymph osmolality and reduced glycerol, trehalose, Na+ and Ca2+ concentrations. 28 

We compared cold tolerance of pupae to weather conditions at and beyond the species’ northern 29 

range boundary. Minimum temperatures at the range boundary were close to the lower lethal 30 

temperature of pupae, and temperatures north of the range were colder, suggesting that cold 31 

hardiness may set northern range limits on the mainland. Minimum temperatures following 32 

warm snaps were likely to cause mortality in at least one of the past three years. Cold snaps in 33 

the spring are increasing in frequency as a result of global climate change, so are likely to be a 34 

significant source of mortality for this species, and other temperate ectotherms.  35 
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Introduction 38 

The body temperatures of small ectotherms generally reflect those of the environment, 39 

particularly in immobile and/or quiescent overwintering stages (Harrison et al., 2012). At sub-40 

freezing temperatures, insects risk ice formation in their body fluids. They mitigate this risk 41 

using cold tolerance strategies that are generally divided into freeze tolerance (those that 42 

withstand internal ice formation) and freeze avoidance (those that maintain the body fluids in a 43 

liquid state at low subzero temperatures) (Lee, 2010). Freeze-avoidance and -tolerance are both 44 

typically associated with a suite of biochemical adaptations, including carbohydrate and polyol 45 

cryoprotectants, and antifreeze proteins (Lee, 2010). The strategies differ in the control of ice 46 

nucleation (Sinclair et al., 2009; Zachariassen, 1985); freeze-tolerant insects generally have high 47 

supercooling points (SCP, the temperature at which ice formation begins), while freeze avoiders 48 

have depressed SCPs. For example, the SCP of freeze-tolerant larvae of Pyrrharctia isabella 49 

(Lepidoptera: Arctiidae) ranges from -3 to -12 °C (Marshall and Sinclair, 2011), while the SCP 50 

of overwintering freeze-avoidant Phyllocnistis populiella adults (Lepidoptera: Gracillariidae) 51 

averages -32 °C (Wagner et al., 2012). Few temperate insects maintain extensive cold tolerance 52 

year-round, but instead increase cold tolerance in preparation for winter (Leather et al., 1995; 53 

Lee, 2010). 54 

The onset of low temperatures in winter can be unpredictable, so many temperate insects rely 55 

on photoperiod cues to reliably initiate pre-winter cold hardening (Bradshaw and Holzapfel, 56 

2010). However, thermal cues may still modulate the degree of cold hardiness acquired (Storey 57 

and Storey, 1988). By contrast, the loss of cold hardiness and resumption of development at the 58 

end of winter are often regulated solely by temperature cues (Koštál 2006), and warm snaps can 59 
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trigger the loss of cold hardiness (deacclimation). For example, Emerald Ash borer (Agrilus 60 

planiplennis; Coleoptera: Buprestidae) prepupae lose cold-hardiness in response to a mid-winter 61 

warm snap (Sobek-Swant et al., 2012). Because the loss of cold tolerance is accompanied by 62 

resumption of development, this deacclimation is irreversible (Sobek-Swant et al., 2012). 63 

Deacclimation can thus leave insects vulnerable to cold snaps in the spring. Global climate 64 

change is leading to earlier snow melt in the spring in many locations, which can expose 65 

subnivean organisms to increased thermal variability in the spring (Brown and DeGaetano, 2011) 66 

and induce deacclimation. This may underlie the increasing frequency of damaging spring frosts 67 

over the past 100 years (Augspurger 2013). Thus, an essential part of predicting an organism’s 68 

response to changing winters is understanding the propensity for and consequences of 69 

deacclimation. 70 

Swallowtail butterflies (Lepidoptera: Papilionidae) have a broad global distribution, and in 71 

North America occupy climates ranging from tropical to sub-arctic (Lederhouse et al., 1995). 72 

There is a steep decline in species diversity with latitude: only 2 of ~500 papilionid species occur 73 

north of 60° latitude (Lederhouse et al., 1995). Cold hardiness limits the northern distribution of 74 

some species (Kukal et al., 1991). Swallowtails are thought to be susceptible to climate change; 75 

moving northward in warm years only to be knocked back in cold ones (Scriber and Gage, 76 

1995). Globally, all swallowtails that occupy environments with a cold winter overwinter as 77 

pupae, and there are examples of both freeze-tolerant (e.g. Papilio machaon) and freeze-avoidant 78 

(e.g. P. xuthus) species (Kukal et al., 1991; Shimada, 1988). The four species examined to date 79 

(P. machaon, P. xuthus, P. canadensis, P. glaucus) use glycerol or trehalose as their primary 80 

cryoprotectants, and cold tolerance increases concurrently with the accumulation of these 81 

cryoprotectants during winter (Kukal et al., 1991; Shimada, 1988). This seasonal acclimation is 82 
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more pronounced in more cold-hardy species (such as P. canadensis), and is modified by the 83 

severity of the cold experienced. For example, cold-hardy P. canadensis pupae decrease their 84 

supercooling points when overwintering in Alaska compared to Michigan, but cold-susceptible 85 

P. glaucus pupae do not, and correspondingly suffer higher mortality in Alaska than do P. 86 

canadensis (Kukal et al., 1991). These interspecific differences in cold tolerance or acclimation 87 

ability may stem from differences in carbohydrate metabolism: P. canadensis synthesizes 88 

cryoprotectants from isotopically labelled glucose, while P. glaucus does not (Kukal et al., 89 

1991). Since their distributions are set by cold, and their cold tolerance is seasonally acquired 90 

through plastic changes to physiology, swallowtail butterflies are an ideal system in which to 91 

study deacclimation and its impacts on survival.  92 

Papilio zelicaon belongs to the Papilio (sensu stricto) lineage, which dispersed to North 93 

America across Beringia before and during the Pleistocene (Zakharov et al., 2004). Beringia 94 

comprised Alaska, the Yukon Territory, and the now-submerged Bering Land Bridge, and as 95 

such was home to a cold and harsh climate (Elias 2000). This biogeographic history makes this 96 

group ideal for investigations of cold hardiness. P. zelicaon inhabits fields, oak savannahs, and 97 

roadsides throughout western North America (extending to North Dakota, 100°W) up to 60°N 98 

and feed on plants in the Apiaceae (Guppy and Shepard, 2012; Sims, 1980). P. zelicaon 99 

overwinter in a pupal diapause, and populations vary from univoltine (one generation per year) 100 

towards the northern range edge, to multivoltine (several generations per year) further south 101 

(Sims, 1980; Thorne et al., 2006). P. zelicaon is the most abundant swallowtail butterfly in 102 

British Columbia (BC); its range extends north into boreal climates on the mainland (Peel et al., 103 

2007; Guppy and Shepard, 2012), but the factors that limit the northern distribution are unknown 104 
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for this species. British Columbia is experiencing warming that is faster than the global average, 105 

and that warming is most pronounced in the north, and in the winter (Wang et al., 2006).  106 

Winter warming is predicted to expand the range limits of animals and plants that are limited 107 

by cold (Williams et al. 2014, in press). However, this effect may be mitigated or reversed if 108 

winter warming causes energy drain, or if spring warming causes loss of winter cold acclimation, 109 

leaving pupae vulnerable to spring cold snaps (Williams et al., in press). Previously observed 110 

metabolic suppression means that P. zelicaon pupae are unlikely to be vulnerable to energy drain 111 

induced by winter warming (Pelini et al., 2009). We therefore investigate here whether they are 112 

at risk of increased mortality from cold snaps during spring, resulting from the loss of winter 113 

acclimation. 114 

Here we report the cold tolerance strategy and hemolymph composition of P. zelicaon, as 115 

well as plasticity in cold tolerance and hemolymph composition in the face of a short warming 116 

period, similar to that which might be experienced during a late winter or early spring warm 117 

spell. We hypothesize that cryoprotectants are essential for cold tolerance, but that there are costs 118 

to maintaining high cryoprotectant concentration such that cryoprotectant concentrations will be 119 

reduced quickly at the end of winter. We predict, therefore, that exposure to warm spring 120 

temperatures will lead to deacclimation (loss of cold tolerance), which will be accompanied by a 121 

decrease in cryoprotectants. We then combine our physiological measurements with recent 122 

weather data to test the hypothesis that spring deacclimation could lead to mortality of this 123 

species in the wild.  124 

Methods 125 
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Study species and rearing 126 

Gravid females were wild-collected from multiple sites on Vancouver Island, B.C. at a 127 

latitudes between 48 and 50°N (see Pelini et al., 2009 for details), between April and June 2009, 128 

then maintained in greenhouses at the University of Western Ontario in individual cages and fed 129 

a 10 % solution of honey water twice daily. The adults had constant access to potted parsley 130 

(Petroselinum crispum) plants which were checked every second day for eggs. After collection, 131 

eggs were shipped to the University of Notre Dame. Larvae were reared in growth chambers 132 

(MTR-30; Conviron, Winnipeg, Manitoba, Canada) on potted parsley under temperatures 133 

approximating Vancouver Island conditions based on long-term climate data (1997-2006) from 134 

Victoria International Airport (The Weather Underground, Inc.) on a 12:12 L:D cycle (Pelini et 135 

al., 2009). Temperatures in the growth chambers cycled between average maximum and 136 

minimum temperatures, and were adjusted every two weeks to reflect seasonal changes (Fig. 1). 137 

In late August 2009, pupae and remaining larvae were returned to the University of Western 138 

Ontario where they were maintained under the same conditions in incubators (MIR-153, Sanyo 139 

Scientific, San Diego, CA) in constant darkness. Pupae were transferred into 6-well tissue culture 140 

plates with a moist paper towel to maintain high humidity. 141 

Cold tolerance experiment 142 

During March and early April 2010, we estimated lower lethal temperatures of winter-143 

acclimated pupae in response to one-hour or 12-hour cold exposures. To do this, pupae (n=5/ 144 

temperature) were held at -15, -20, -25, -30 and -35 °C for 1 h, or -20, -25 and -30 °C for 12 h. 145 

Individual pupae were placed in contact with 36-AWG type-T (copper-constantan) 146 

thermocouples into 12 mL plastic centrifuge tubes, which were inserted into an aluminum block 147 

cooled with methanol circulated from a refrigerated bath (Lauda Proline 3530, Würzberg, 148 
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Germany). The temperature was decreased from 8 °C at 0.1 °C·min-1 to the target temperature, 149 

then maintained at the target temperature for either one or twelve hours. Temperatures from the 150 

thermocouples were logged via a Picotech thermocouple interface using Picolog software for 151 

Windows (v.5.2; Pico Technology, Cambridge, UK). The SCP was recorded as the lowest 152 

temperature before the exotherm (release of heat) representing the release of the latent heat of 153 

crystallization. Supercooling points from temperatures in which any pupae remained unfrozen 154 

were discarded so as not to truncate the SCP distribution, yielding a total of 15 SCP 155 

measurements. After cold exposure, pupae were placed into 200 mL plastic containers at 15 - 25 156 

°C (night - day) on a 16:8 L:D cycle and monitored daily for emergence. Upon emergence from 157 

the pupal case, their condition was recorded as alive (wings fully extended, no crumping or 158 

deformity) or deformed (wings crumpled). Animals that failed to emerge were scored as dead.  159 

Deacclimation experiment 160 

In mid-April 2010, we split the remaining pupae (n=18) equally between winter-161 

acclimated (which remained in the same incubator) and spring-warmed treatments. Spring 162 

warmed pupae (n=9) experienced four days at temperatures fluctuating between 15 - 25 °C 163 

(night – day) on a 16:8 L:D cycle. We chose four days for the spring-warmed treatment, since 164 

changes in the SCP and hemolymph constituents of deacclimating Emerald Ash Borer plateau by 165 

that time, indicating that deacclimation is complete (Sobek-Swant et al., 2012). Sitophilus 166 

granarius and Cryptolestes ferrugineus (Coleoptera) also lose their cold-acclimation within five 167 

days of exposure to warm temperatures (Fields et al., 1998). After four days, we compared the 168 

cold tolerance of pupae in the winter-acclimated and spring-warmed treatments (n=5 each) by 169 

exposing them for one hour to the lowest temperature at which we saw 100% survival in winter-170 

acclimated pupae (-20 °C), and monitoring survival as described above. On the same day as cold 171 
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tolerance was assayed, we collected hemolymph samples from the remaining four pupae from 172 

each treatment (winter-acclimated and spring-warmed) for biochemical analyses.  173 

Hemolymph composition analyses 174 

All biochemical analyses were performed on the same (n=4) individuals from each 175 

treatment (winter-acclimated and spring-warmed). Pupae were punctured at the first abdominal 176 

sternite with an insect pin and, without delay, placed cremaster-down in a 1.5 mL Eppendorf 177 

tube. Pupae were spun briefly (5 s, 8 rpm) in a microcentrifuge to expel hemolymph (50-100 178 

µL), which was pipetted into 0.6 mL Eppendorf tubes, snap-frozen in liquid nitrogen and stored 179 

at -80 °C until biochemical analysis. Aliquots were taken from these tubes for each analysis.  180 

Hemolymph osmolality and thermal hysteresis were measured using the method of 181 

Crosthwaite at al. (2011) on a Clifton Nanolitre Osmometer (Clifton Technical Physics, 182 

Hartford, NY, USA). Thermal hysteresis was defined as the difference between the freezing 183 

point and the melting point, and is an indication of antifreeze activity. The melting point was 184 

used to determine osmolality (1 mole = -1.86 °C). Spicular and angular crystal morphology 185 

during regrowth was noted as an indicator of hemolymph antifreeze activity (Scotter et al. 2006).  186 

Sugars and polyols were measured using gas chromatography with a flame ionization 187 

detector (GC-FID) or a spectrophotometric assay for free glycerol as described in Crosthwaite et 188 

al. (2011), with modifications to allow quantification of trehalose, the primary insect hemolymph 189 

sugar. Briefly, sugars and polyols were extracted from 20 µL hemolymph samples with 1 mL 190 

methanol:chloroform:water mixture (2:1:2) (Nicolai et al., 2011), with xylitol (in methanol) 191 

added as internal standard used to correct for derivatization efficiency (1 mg.mL-1 final 192 

concentration in the extract). A 350 µL aliquot from the upper aqueous phase was dried in a 193 
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vacuum concentrator (Genevac, Suffolk, UK) and re-dissolved in 20 µL deionized water, then 194 

incubated with trehalase (20 µL of 10% [v/v]) from porcine kidney (Sigma Aldrich product 195 

number T8778, in 135 mM Citric Acid buffer, pH 5.7 [Sigma product number C7129]) at 37°C 196 

for 30 min (Flatt et al., 2008), to produce glucose. Carbohydrates and polyols were derivatized 197 

using the alditol acetate method (Blakeney et al., 1983) and analyzed using GC-FID as modified 198 

in Crosthwaite et al. (2011).  199 

Hemolymph glycerol was quantified spectrophotometrically from a further 350 µL 200 

aliquot from the upper aqueous phase (modified from Crosthwaite et al., 2011). The aliquot was 201 

dried in a vacuum concentrator as described above and reconstituted in 0.05 % Tween 20 in 202 

distilled water to achieve original hemolymph concentration and then diluted them to the 203 

appropriate concentration based on pilot studies (deacclimated samples, 1:20; winter-acclimated 204 

samples, 1:500). Standards were generated by diluting 99 % glycerol in 0.05 % Tween 20 to 205 

yield concentrations ranging from 0.005 mg/mL to 0.04 mg/mL. Samples and standards were 206 

added in triplicate to a 96-well microtitre plate (10 μL of sample or standard per well) and 100 207 

μL of free glycerol reagent (Sigma-Aldrich® St. Louis, Missouri, USA) was added to each well. 208 

Plates were incubated at room temperature for 5 min and absorbance was read at 540 nm in a 209 

SpectraMax® M2e (Molecular Devices, Sunnyvale, California, USA) spectrophotometer, and 210 

quantified against glycerol standard curves.  211 

We measured ion concentrations in the hemolymph using atomic absorption spectroscopy 212 

(iCE 3300; Thermo Scientific, Waltham MA, USA) as described by MacMillan and Sinclair 213 

(2011). We digested 10 µL hemolymph with 100 µL nitric acid for 24 h at room temperature. 214 

We determined Na+ and K+ concentrations in a 1% solution and Mg2+ and Ca2+ in a 0.2% 215 
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solution of the digested hemolymph diluted with double-distilled water. Standard curves of ions 216 

(0.2 to 2 ppm) were generated from diluted standards containing the same amount of nitric acid. 217 

Weather data 218 

To test for cold-induced range limitation, we obtained daily weather data from three years 219 

(2011, 2012 and 2013), including daily minima and maxima, from Environment Canada’s Daily 220 

Data reports (climate.weather.gc.ca). We chose stations at 450 - 650 m elevation at three equally-221 

spaced points along the northern range boundary from the western to the eastern edge of their 222 

distribution in British Columbia and Alberta, that were within 50 km of a northernmost P. 223 

zelicaon locality (Guppy and Shepard, 2012, Fig. 2). The range on the mainland, and thus the 224 

weather sites we used, extends 5-10° latitude further north of the Vancouver Island sites where 225 

our animals were collected. Thus, we are making an assumption that cold hardiness is relatively 226 

invariant across the northern portion of the range (see discussion). For each of these three 227 

weather stations, we chose a matched “outside range” station 300-400 km north at approximately 228 

the same longitude, also within the same elevational range where possible (Table 1). This 229 

provided three comparisons of conditions inside versus outside the range, at controlled elevation, 230 

replicated over three years at each longitude.  231 

We next assessed the frequency of lethal cold snaps following deacclimation. To estimate 232 

the timing of the first warm spell that might initiate development and deacclimation, we parsed 233 

the weather data (for each year at each site) for the first occurrence of a four day stretch of daily 234 

maxima above the threshold for development in closely-related swallowtail species (11 °C) 235 

(Scriber and Lederhouse, 1983). Four days was chosen to match the time used in our 236 

deacclimation experiments. We recorded the date at which the warm spell started, the minimum 237 

temperature between January 1 and that date for that year, and the minimum temperature in the 238 
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16 days following that date – this period was chosen because it reflects the average time for adult 239 

emergence in the laboratory under the deacclimation conditions. This yields a conservative 240 

estimate of the minimum temperature, since development is likely slower under spring 241 

conditions in the field, which we expect to be cooler than the 25 °C in the laboratory. 242 

Statistical analyses  243 

We compared concentration of carbohydrates and ions in the hemolymph as well as 244 

hemolymph osmolality and thermal hysteresis between acclimated and deacclimated pupae using 245 

two-tailed t-tests in Microsoft Excel 2010 (Microsoft, Redmond, Washington, USA). We 246 

compared survival of acclimated and deacclimated pupae using a chi square test in R 3.0.2 (R 247 

Core Team 2013). Data are presented as mean ± standard error (SEM). We tested the hypothesis 248 

that minimum low temperatures both before and after a spring warm period were more severe 249 

outside the range using paired t-tests in R v3.0.2.  250 

Results 251 

Cold tolerance strategy 252 

No mortality was observed in winter-acclimated pupae after 1 h at -15 or -20 °C, despite 253 

some individuals freezing at -20 °C. Sixty percent of individuals survived 1 h at -25 and -30 °C, 254 

during which all pupae froze, but no pupae survived a 1h exposure at -35 °C (Fig. 3A). Half the 255 

pupae survived a 12 h exposure at -20 °C, including one individual that froze during the ramping 256 

period and thus likely reached equilibrium ice formation during the 12 h exposure. No healthy 257 

adults emerged after 12 h at either -25 or -30 °C (most died, and one emerged deformed; Fig. 258 

3B). The average time to adult emergence after transfer into warm conditions was 15.9 ± 0.8 259 

days (range 11-26 days) and did not noticeably differ among treatments.  260 
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Deacclimation experiment 261 

After four days of simulated spring warming, no pupae survived 1 h at -20 °C, compared 262 

to 100% for winter-acclimated pupae tested at the same time. Concurrently, the SCP increased 263 

slightly but significantly from -20.5 for winter-acclimated pupae to -17.4 °C for spring-warmed 264 

(henceforth referred to as deacclimated) pupae (Table 2).  265 

Hemolymph osmolality of winter-acclimated pupae ranged from 690 - 1193 mOsm, and 266 

decreased by 45 % in deacclimated pupae (Table 2). Preliminary analyses without the trehalase 267 

digestion did not detect any free glucose in either winter-acclimated or deacclimated pupae. The 268 

predominant sugar/ sugar alcohol in the hemolymph of winter-acclimated pupae was glycerol, 269 

with smaller amounts of trehalose (Table 2). After four days of simulated warming, glycerol – 270 

and to a lesser extent trehalose - concentrations decreased significantly relative to winter-271 

acclimated pupae (93 and 54% decreases for glycerol and trehalose, respectively), resulting in 272 

glycerol and trehalose concentrations being approximately equal in deacclimated pupae (Table 273 

2). Hemolymph of winter-acclimated pupae contained approximately equal concentrations of 274 

Na+ and K+, with lower concentrations of Mg2+ and Ca2+ (Table 2). Hemolymph Na+ and Ca2+ 275 

concentrations decreased significantly following deacclimation, while [K+] and [Mg2+] did not 276 

change. The 58 % decrease in [Na+] decreased the Na+:K+ ratio from 0.96 (winter-acclimated) to 277 

0.38 (deacclimated). Thermal hysteresis in the hemolymph was present, but low even in winter-278 

acclimated pupae, and decreased slightly but significantly upon deacclimation (Table 2).  279 

Weather data 280 

Mean minimum daily temperatures during the winter were significantly colder outside 281 

the range compared to the northern range edge (mean -31.5 ± 1.6 °C compared to -37.3 ± 1.5 °C; 282 

t8=3.09, p=0.007, Table 3). A four-day warm spell (that we presumed would cause 283 
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deacclimation, see methods) occurred earlier at the northern range edge compared to outside the 284 

range on 95 % of occasions (Table 3). The mean daily minimum temperature following a warm 285 

spell was -7.0 ± 1.7 °C (ranging from -0.2 to -18.3 °C), and did not differ between inside and 286 

outside of the range (t8=1.09, p=0.153).  287 

Discussion 288 

 Papilio zelicaon pupae are tolerant of transient low temperature exposure, and appear to 289 

survive at least some internal ice formation. This cold hardiness stems from the accumulation of 290 

glycerol and cations that contribute to the low supercooling point; glycerol likely also stabilizes 291 

biological macromolecules (Zachariassen 1985). A four-day warm spell caused a sharp decrease 292 

in hemolymph sugars, sugar alcohols, cations, and thus total osmolality, and a concordant drop in 293 

cold hardiness. Weather data show that temperatures following a warm spell drop as low as -18.6 294 

°C, close to the temperature at which we saw 0 % survival in the laboratory, suggesting that 295 

deacclimation could lead to cold-induced mortality in the wild, particularly outside the range. 296 

Cold tolerance strategy and physiological mechanisms 297 

Some pupae survived internal ice formation (indicative of freeze tolerance), while others 298 

were killed by, or before, ice formation (indicative of freeze avoidance or chill susceptibility) 299 

(Lee, 2010). In addition, the SCPs were low (around -20 °C in winter-acclimated individuals) 300 

which would normally be associated with freeze avoidance (Lee, 2010). Freeze tolerance by 301 

species with low SCPs has been reported previously (Ring, 1982), and the SCP of -20 places this 302 

species in that category (Sinclair, 1999), along with other species that show only partial tolerance 303 

of internal ice formation (Ring, 1982). The SCP of P. zelicaon is not low enough for a freeze 304 
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avoidant strategy to allow survival in nature (at least after laboratory rearing), so it seems that 305 

this partial freeze tolerance forms a part of their strategy to survive low winter temperatures. 306 

The primary hemolymph cryoprotectant in P. zelicaon is glycerol, in contrast to 307 

overwintering P. glaucus and P. canadensis, which contain trehalose but no measureable 308 

glycerol (Kukal et al., 1991), but consistent with P. machaon and P. xuthus which have 160-220 309 

mM hemolymph glycerol (Shimada 1988). This conforms to the phylogeny, which places P. 310 

zelicaon, P. xuthus and P. machaon in the P. machaon species group in the Papilio (sensu 311 

stricto) lineage, which diverged from the clade containing P. glaucus and P. canadensis over 55 312 

million years ago (Zakharov et al., 2004). Thus, pupal cold hardiness may have evolved 313 

convergently in these clades using different mechanisms. Glycerol has a well-documented role as 314 

a cryoprotectant (Lee, 2010), but the concentrations we describe are relatively low compared to 315 

some insect species. For example, overwintering prepupae of the Emerald Ash Borer accumulate 316 

2-4 M glycerol (Crosthwaite et al., 2011), while freeze-tolerant Pyrrharctia isabella caterpillars 317 

(Arctiidae) accumulate 200-300 mM (Layne and Blakeley, 2002; Marshall and Sinclair, 2012b). 318 

Trehalose is generally the dominant blood sugar in most Lepidoptera, making up 90% of 319 

hemolymph sugars, and our acclimated and deacclimated values are all within the normal range 320 

reported for other pupal Lepidoptera (Wyatt and Kalf, 1957).  321 

Plasticity of cold tolerance 322 

Four days of spring warming significantly reduced the cold tolerance of P. zelicaon 323 

pupae (i.e. caused deacclimation). Loss of cold tolerance in response to short exposures to warm 324 

temperatures (as opposed to longer-term exposures in the context of seasonal transitions) has 325 

been observed in several insect species (e.g. Fields et al., 1998, Sobek-Swant et al. 2012). Here, 326 

we show that this deacclimation was accompanied by an increase in SCP and a decrease in total 327 
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osmolality due in part to declines in the concentrations of glycerol, trehalose, Na+ and Ca2+ in the 328 

hemolymph. Similar mechanisms seem to underpin deacclimation in emerald ash borer, which 329 

also experiences an increase in SCP and decrease in total osmolality and glycerol concentration 330 

(although trehalose and cations were not measured; Sobek-Swant et al., 2012). A decline in 331 

hemolymph cryoprotectants has been documented during transition from winter to the growing 332 

season (e.g. Li et al. 2001, Vanin et al. 2008, Crosthwaite et al. 2011). In emerald ash borer, 333 

deacclimation is irreversible, since it is associated with the resumption of development (Sobek-334 

Swant et al., 2012), which may also be the case in P. zelicaon.  335 

Although cryoprotectants and osmolytes play important roles in depressing the SCP and 336 

stabilizing proteins and macromolecules when there is a risk of cold damage, it is energetically 337 

costly to maintain high levels of these molecules in the hemolymph. We found good support for 338 

our hypothesis that the costs of that high osmolality would lead to a rapid decline upon 339 

rewarming. Declines in sugars and polyols likely represent the recycling of energetically dense 340 

molecules to fuel development, once they are no longer required for cryoprotection (Storey 341 

1997). In the present study, hemolymph glycerol concentration showed the most pronounced 342 

decline with deacclimation, suggesting that it may have a causal relationship with cold hardiness 343 

as is seen with other polyols at similar concentrations in Pyrrhocoris apterus (Hemiptera: 344 

Heteroptera) (Koštál et al., 2001). We also documented a decline in trehalose concentration. In 345 

the fall webworm (Lepidoptera: Arctiidae), a decrease in trehalose is paralleled by an increase in 346 

glycogen, suggesting that free sugars are sequestered into energy reserves after winter (Li et al. 347 

2001). This may also be the case in P. zelicaon. Contrary to our findings, trehalose does not 348 

decrease after 10 days acclimation to 25 °C in P. glaucus and P. canadensis; perhaps indicating 349 
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that the primary function of accumulated trehalose in those species is energetic rather than 350 

cryoprotective (Kukal et al. 1991).  351 

Hemolymph composition of deacclimated pupae is in line with previous reports for 352 

Lepidoptera. The total osmolality of the hemolymph of deacclimated pupae is within the range 353 

reported for other Lepidoptera (258-629 mOsm) (Sutcliffe, 1963). The dominant ions in the 354 

hemolymph are Na+ and K+, with smaller contributions from Ca2+ and Mg2+. The components 355 

that we measured account for ~36% of the measured total osmolality, thus there are other major 356 

contributors to total osmotic pressure that we did not quantify. These likely include amino acids, 357 

organic and inorganic anions (Pastor et al., 1997), which contribute up to half of hemolymph 358 

osmolality in other Lepidoptera (Sutcliffe, 1963). The Na+:K+  ratio in this study was 0.4 for 359 

deacclimated pupae, in line with values for other Lepidoptera (Sutcliffe, 1963), but increased to 360 

nearly 1 for winter-acclimated pupae due to an increase in [Na+]. This is the opposite to the low 361 

hemolymph [Na+] associated with increased cold hardiness among Drosophila species 362 

(MacMillan, 2013), where low [Na+] is hypothesized to counter migration of water from the 363 

hemocoel to the gut during cold exposure (MacMillan and Sinclair, 2011). It is likely that any 364 

role of Na+ in cold tolerance of P. zelicaon differs from that in Drosophila, in keeping with the 365 

atypical hemolymph chemistry of Lepidoptera, particularly with respect to low [Na+] and Na+:K+ 366 

ratios, (Sutcliffe, 1963). However, prior to the present study the role of ion balance during cold 367 

exposure in Lepidoptera has not been well-explored, although hemolymph [Na+] does not change 368 

after freezing in larvae of Pyrrharctia isabella (Arctiidae), and remains low during the winter 369 

(Boardman et al., 2011). This emphasizes the importance of taking a broad phylogenetic 370 

approach when studying the evolution of cold tolerance mechanisms.  371 
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Implications for geographic range limits 372 

Average minimum temperatures dropped below the temperature that caused 100 % 373 

mortality in winter-acclimated individuals (-35 °C) on average once out of the past three years 374 

inside the northern range boundary, but that number increased to two out of three years 300-400 375 

km north of the current P. zelicaon range boundary. This suggests that low winter temperatures 376 

may limit the northern range boundary of this species. The presence of potentially suitable host 377 

plants north of the current range edge (Natural Resources Conservation Service, USDA, 378 

plants.usda.gov), suggests that the range boundary is not set by biotic interactions. This 379 

conclusion of cold-limitation depends on the validity of our estimates of 1) cold exposure, 2) 380 

cold hardiness, 3) range boundary and 4) representativeness of our study organisms to the 381 

species as a whole. We will address each of these points in turn.  382 

First, cold exposure will be determined by overwintering microhabitat, which can be 383 

buffered by snow cover (Williams et al., in press). Thus, pupae overwintering beneath the snow 384 

pack will experience milder temperatures than the air temperatures we used, at least for part of 385 

the winter. Natural pupation sites of P. zelicaon have not been studied, and related species use a 386 

range of pupation sites ranging from beneath the leaf litter to tree trunks high above the 387 

snowpack (West and Hazel, 1979). Thus, the degree to which overwintering individuals 388 

experience microclimate temperatures comparable to our weather data records is unknown, and 389 

we may have overestimated the occurrence of potentially-lethal temperature exposures. 390 

However, the pupae tie themselves to twigs during pupation, suggesting that they may be 391 

exposed to the elements during overwintering (JJH and CMW, personal communication). 392 

Additionally, low temperatures and snow cover do not always coincide (Williams et al., in 393 

press), further suggesting that at least some exposure to low air temperature likely occurs.  394 
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Second, cold hardiness can be enhanced by physiological plasticity in response to 395 

temperatures experienced during the winter (cues not present in the laboratory experiment). For 396 

example, many insect species are capable of rapid cold-hardening, wherein a prior (mild) cold 397 

exposure increases tolerance of subsequent cold snaps (Lee et al., 1987), and repeated exposure 398 

to cold generally improves cold tolerance (Marshall and Sinclair, 2012a). Thus, it is possible that 399 

the persistence of northern populations could be enhanced by physiological plasticity, resulting 400 

in low temperature tolerance not being challenged even outside the range boundary.   401 

Third, the position of the northern range boundary may be overestimated due to sampling 402 

of migrants: these butterflies are strong fliers and can travel up to 20 km (Peterson and Denno, 403 

1998), and range boundary information comes from reported sightings of adults rather than 404 

overwintering stages (Guppy and Shepard, 2012).   405 

Fourth, due to logistical constraints, we sourced individuals from Vancouver Island, 406 

which are genetically-distinct from individuals on the mainland, south of Vancouver Island 407 

(Zakharov and Hellmann, 2008). We do not know whether northern range edge populations on 408 

the mainland are genetically distinct from Vancouver Island, but it remains possible that 409 

populations may be locally adapted in their cold-hardiness. Temperatures on the mainland are 410 

generally more severe than those on Vancouver Island, which may make our estimates of cold 411 

tolerance conservative (i.e. mainland populations would be expected to be more cold-hardy). 412 

However, snow cover is much deeper and more persistent on the mainland compared to 413 

Vancouver Island meaning that exposure to the elements may be higher on Vancouver Island, 414 

resulting in conditions being more similar than would be expected based on weather data. 415 

Deacclimation processes may also differ between populations, but since deacclimation results 416 

from resumption of development, and northern range edge populations are under seasonal time 417 
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constraints, we expect that northern range edge populations would also show a robust 418 

deacclimation response.  419 

Thus, although our estimates suggest that populations could survive at the northern-most 420 

range limit but not beyond, increased certainty would require better estimates of microclimate 421 

conditions (based on knowledge of natural pupation sites), knowledge of the degree of 422 

physiological plasticity in cold hardiness in natural conditions, more nuanced information on the 423 

range boundary of stable overwintering populations, and information on intra-specific variation 424 

in cold hardiness among populations. Nevertheless, despite all these potential limitations of the 425 

available data, given that the match between measured lower lethal temperatures and 426 

temperatures near the best-estimated northern range boundary is close, we believe that there is 427 

good support for the hypothesis of cold limitation for this species. 428 

 Deacclimation has important implications for population persistence in a variable world. 429 

We found that “warm snaps”, defined as four or more days above the threshold for development, 430 

occurred between the end of March and the end of April at the northern range edge, and in some 431 

years were followed by low temperatures approaching the temperature that caused 100 % 432 

mortality after a 1 h exposure in the laboratory for deacclimated pupae. It thus seems likely that 433 

cold snaps following deacclimation could be an important selective pressure on natural 434 

populations near the northern range limit, at least in the recent past. Frost events after the start of 435 

the growing season are increasing in frequency as a consequence of climate change in the eastern 436 

United States (Augspurger, 2013); thus, mortality resulting from deacclimation is likely to 437 

become more important in the future. Cold snaps following deacclimation were no more severe 438 

outside the current putative range limit, although the “warm snaps” occurred later in the year at 439 

higher latitudes. Given the potential importance of deacclimation in determining overwinter 440 
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survival and thus fitness, further research is needed to elucidate the performance consequences 441 

of, and conditions that elicit, deacclimation. 442 
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Figures 590 

Figure 1 - Incubator temperature regimes for Papilio zelicaon pupae, based on historical mean 591 

biweekly highs and low from a weather station near collection locales. Temperatures cycled 592 

daily between daytime highs (solid line) and nighttime lows (dotted line). Experiments were 593 

performed during March and April (indicated with a box).  594 

Figure 2 – Map showing collection locations of Papilio zelicaon (grey circles), the northern 595 

range limit (dotted line, from Guppy and Shepard, 2012), and locations of weather stations 596 

(squares = inside range, triangles = outside range; Table 2) in Northwestern North America.  597 

Figure 3 - Survival to adulthood of Papilio zelicaon exposed to A) one hour or B) 12 hours of 598 

cold as winter-acclimated pupae. Number of pupae that froze is on each bar. 599 
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Tables 600 

Table 1– Details of weather stations used to compare weather parameters inside and outside the 601 

range limit of Papilio zelicaon. Station IDs and location information from Environment Canada 602 

(climate.weather.gc.ca). Station number corresponds to numbers on Fig. 1, and position is 603 

relative to northern range edge (Figure 1). 604 

Station 

number 
Site Station ID Latitude Longitude Position  

Elevation 

(m) 

1 Tawatinaw 3066367 54.30 N 113.52 W inside-east 611 

2 Red Earth 3075488 56.55 N 115.28 W outside-east 546 

3 Chetwynd A 1187335 55.69 N 121.63 W inside-mid 610 

4 Trout Lake 220CQHR 60.44 N 121.24 W outside-mid 498 

5 Smithers A 1077500 55.82 N 127.18 W inside-west 522 

6 Dease Lake 119BLM0 58.43 N 130.03 W outside-west 802 

 605 
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Table 2 – Biochemical and physiological measurements of winter-acclimated and deacclimated 606 

Papilio zelicaon pupae (mean ± SEM). Asterisks indicate variables that are significantly lower in 607 

deacclimated pupae (α<0.05). All biochemical assays (osmolality and hemolymph composition) 608 

were performed on the same four individuals per acclimation treatment, thus, unless noted, n=4.  609 

 Acclimated Deacclimated Stats 

SCP (°C) -20.5 ± 2.0 (n=15) -17.4 ± 3.6 (n=5) t33=2.42, p=0.026 

Survival (1h @ -20 °C) 100 % (n=5) 0 % (n=5)* χ2=6.4, p=0.011 

Osmolality (mOsm) 924 ± 105  411 ± 19* t6=4.8, p=0.003 

Thermal hysteresis (°C) 0.08 ± 0.002  0.05 ± 0.007* t6=3.5, p=0.012 

Glycerol (mM) 119.5 ± 21.7 8.1 ± 3.6* t6=5.0, p=0.002 

Trehalose (mM) 18.9 ± 2.1  8.7 ± 0.7* t6=4.6, p=0.004 

[Na+] (mM) 76 ± 6 32 ± 13* t6=2.97, p=0.025 

[K+ ](mM) 79 ± 4 84 ± 14 t6=0.39, p=0.713 

[Mg2+] (mM) 18 ± 2 12 ± 2 t6=1.67, p=0.145 

[Ca2+] (mM) 29 ± 5 17 ± 0.1* t6=2.5, p=0.046 

 610 

 611 
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Table 3 - Daily minimum temperatures during 2011-2013 at three points longitudinally spanning 612 

the northern range edge of Papilio zelicaon (East, Mid, West, and [Vancouver] Island). Stations 613 

were chosen that were close to the northern range edge (inside range), with a paired station 300-614 

400km to the north at the same longitude (outside range) (Table 2). Date of warm spell is the 615 

first day of a four-day stretch of maximum temperatures above 11 °C. Minimum temperatures 616 

are in °C and are absolute minima between Jan 1st and date of warm spell (before) or in the 16 617 

days following the last day of the warm spell (after).  618 

Position in Minimum temp.  Date of  Minimum temp. 

range before (°C) warm spell after (°C) 

 2011 2012 2013 2011 2012 2013 2011 2012 2013 

East          

inside -30.0 -31.0 -31.7 11-Apr 19-Apr 25-Apr -0.2 -0.7 -10.4 

outside -39.0 -32.4 -37.5 25-Apr 1-Mar 24-Apr -3.6 -15.1 -10.6 

Mid          

inside -37.4 -35.2 -31.6 22-Apr 7-Apr 25-Mar -4.9 -6.8 -14.8 

outside -42.7 -30.2 -35.1 1-May 7-Apr 28-Apr -4.1 -18.3 -8.3 

West          

inside -27.0 -37.1 -22.8 27-Mar 7-Apr 26-Mar -5.7 -4.3 -4.4 

outside -40.7 -43.4 -34.3 5-May 8-Apr 3-May -3.8 -6.2 -3.9 

 619 
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