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Neurobiology of Disease

The Prion Protein Ligand, Stress-Inducible Phosphoprotein
1, Regulates Amyloid-� Oligomer Toxicity
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In Alzheimer’s disease (AD), soluble amyloid-� oligomers (A�Os) trigger neurotoxic signaling, at least partially, via the cellular prion
protein (PrP C). However, it is unknown whether other ligands of PrP C can regulate this potentially toxic interaction. Stress-inducible
phosphoprotein 1 (STI1), an Hsp90 cochaperone secreted by astrocytes, binds to PrP C in the vicinity of the A�O binding site to protect
neurons against toxic stimuli. Here, we investigated a potential role of STI1 in A�O toxicity. We confirmed the specific binding of A�Os
and STI1 to the PrP and showed that STI1 efficiently inhibited A�O binding to PrP in vitro (IC50 of �70 nM) and also decreased A�O
binding to cultured mouse primary hippocampal neurons. Treatment with STI1 prevented A�O-induced synaptic loss and neuronal
death in mouse cultured neurons and long-term potentiation inhibition in mouse hippocampal slices. Interestingly, STI1-
haploinsufficient neurons were more sensitive to A�O-induced cell death and could be rescued by treatment with recombinant STI1.
Noteworthy, both A�O binding to PrP C and PrP C-dependent A�O toxicity were inhibited by TPR2A, the PrP C-interacting domain of
STI1. Additionally, PrP C–STI1 engagement activated �7 nicotinic acetylcholine receptors, which participated in neuroprotection against
A�O-induced toxicity. We found an age-dependent upregulation of cortical STI1 in the APPswe/PS1dE9 mouse model of AD and in the
brains of AD-affected individuals, suggesting a compensatory response. Our findings reveal a previously unrecognized role of the PrP C

ligand STI1 in protecting neurons in AD and suggest a novel pathway that may help to offset A�O-induced toxicity.

Introduction
Neuronal dysfunction in Alzheimer’s disease (AD) is related to
accumulation of soluble oligomers of the amyloid-� peptide
(A�Os; Lambert et al., 1998; Walsh et al., 2002; Ferreira and
Klein, 2011; Mucke and Selkoe, 2012). Interaction of these toxic

particles with several distinct types of receptors in neurons
(Wang et al., 2000; Xie et al., 2002; Laurén et al., 2009; Decker et
al., 2010) triggers glutamate excitotoxicity, synaptic dysfunction,
inhibition of long-term potentiation (LTP), and neuronal death
(Querfurth and LaFerla, 2010; Paula-Lima et al., 2013). The exact
mechanisms underlying each of these effects are not fully under-
stood, but toxic actions of A�Os seem to depend, at least in part,
on the cellular prion protein (PrP C; Laurén et al., 2009; Gimbel et
al., 2010; Bate and Williams, 2011; Kudo et al., 2012).

PrP C is a master regulator of cellular signaling (Martins et al.,
2010), likely by scaffolding distinct ligands and neuronal trans-
membrane receptors (Linden et al., 2008; Beraldo et al., 2010,
2011; Santos et al., 2013). Interaction of A�O with the PrP C

region comprising amino acid residues 95–105 appears critical
for neuronal toxicity (Laurén et al., 2009; Chung et al., 2010;
Barry et al., 2011; Freir et al., 2011). Accordingly, disrupting A�O
binding to PrP C seems to alleviate PrP C-dependent A�O toxic-
ity. For example, antibodies targeting PrP C prevent synaptic plas-
ticity deficits induced by A�Os (Chung et al., 2010; Barry et al.,
2011; Freir et al., 2011). However, PrP C antibodies can lead to
toxicity by triggering neuronal signaling (Solforosi et al., 2004).
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Therefore, endogenous physiological ligands of PrP C may pro-
vide an alternative means of modulating A�O-induced toxicity.

Stress-inducible phosphoprotein 1 (STI1) is a cochaperone
secreted by astrocytes that can interact with and signal via PrP C

(Zanata et al., 2002; Lopes et al., 2005; Lima et al., 2007; Caetano
et al., 2008; Roffé et al., 2010; Hajj et al., 2013). STI1 binds to PrP C

at residues 113–128 (Chiarini et al., 2002; Zanata et al., 2002),
adjacent to the A�O binding site, leading to reciprocal con-
formational changes in both proteins (Romano et al., 2009).
Extracellular STI1 forms a signaling complex with PrPC in hip-
pocampal neurons that promotes calcium influx through �7 nico-
tinic acetylcholine receptors (�7nAChR; Beraldo et al., 2010). This
in turn triggers several signaling pathways that protect neurons from
apoptosis (Lopes et al., 2005; Caetano et al., 2008; Beraldo et al.,
2010; Roffé et al., 2010). Importantly, both PrPC and �7nAChR are
recognized targets of A� peptides (Wang et al., 2000, 2009; Magde-
sian et al., 2005; Laurén et al., 2009; Um et al., 2012). Interestingly,
recent system biology approaches have implicated differential ex-
pression of the STI1 gene (STIP1) in AD (Zhang et al., 2013). More-
over, a loss-of-function STI1 mutation increases Tau toxicity in a fly
model of tauopathy (Ambegaokar and Jackson, 2011).

Here, we provide evidence supporting a role for STI1-
regulated pathways in AD. We find that STI1 inhibited A�O
binding to PrP and to cells expressing PrP C. In addition, toxic
effects mediated by A�O could be prevented by STI1 in a PrP C

and �7nAChR-dependent way. Our results suggest that altered
levels of STI1 in individuals with AD may influence A�O-
induced neuronal toxicity.

Materials and Methods
Mouse lines. Genetically modified STI1�/� mice were generated by stan-
dard homologous recombination techniques (Prado et al., 2006), using
C57BL/6j ES cells, as described previously (Beraldo et al., 2013). In mam-
mals, elimination of STI1 causes early embryonic lethality; hence,
STI1�/� neurons were used here (Beraldo et al., 2013). Prnp�/� mice in
a C57BL/6j background were kindly donated by Dr. Frank Jirik (Univer-
sity of Calgary, Calgary, Alberta, Canada) (Tsutsui et al., 2008). APPswe/
PS1dE9 (Jankowsky et al., 2001) and �7nAChR�/� (Orr-Urtreger et al.,
1997) mice in a C57BL/6j background were obtained from The Jackson
Laboratory. Procedures were conducted in accordance with approved
animal use protocols at the University of Western Ontario (2008/127)
and the A. C. Camargo Hospital (037/09) following Canadian Council of
Animal Care and National Institutes of Health guidelines.

Preparation of proteins and peptides. Recombinant mouse PrP with an
N-terminal His tag was produced in Escherichia coli strain BL21(DE3). For
this, bacteria were transformed with pRSET/PrP plasmid DNA kindly pro-
vided by Prof. Kurt Wüthrich (ETH Zürich, Zürich, Switzerland). PrP was
expressed in inclusion bodies that were solubilized in 8 M urea and 20 mM

Tris-HCl, pH 8.0, and purified using Ni2�-affinity chromatography. After
that, PrP was refolded by dialysis against 10 mM NaOAc, 10 mM

2-mercaptoethanol, and 1 mM EDTA, pH 5.0, and stored for �10 d at 4°C.
Recombinant mouse PrP(112–231) peptide was provided by the PrP5 Prio-
Net facility (University of Alberta, Edmonton, Canada). Recombinant STI1
was produced as a (His)6–SUMO-tag-fused protein by cloning STI1 cDNA
into pE–SUMO vector (Lifesensors) and transforming E. coli strain
BL21(DE3) with the obtained pE–SUMO–STI1 plasmid DNA. After initial
purification using Ni2�-affinity chromatography, the (His)6–SUMO tag
was cleaved off using SUMO Pro enzyme (Lifesensors), and untagged STI1
was obtained by a second Ni2�-affinity purification step. Pure STI1 was
stored for less than a week at 4°C or fast-frozen in liquid nitrogen and stored
at �80°C for 1–2 months. TPR2A and its 230–245 amino acid deletion
variant (TPR2A�230–245) were produced as N-terminal His-tag constructs in
E. coli strain BL21(DE3) transformed with pDEST17 vector (Invitrogen)
containing the correspondent gene. After cleavage with His–TEV protease,
(His)

6
tag and the protease were removed by Ni2�-affinity purification, and

the untagged peptides were stored for �10 d at 4°C. Quality of protein

preparations, including Hsp90 (Cayman Chemical) and lysozyme (Sigma-
Aldrich), was routinely checked using 4–20% SDS-PAGE gels (Lonza)
stained for protein bands with RapidStain reagent (EMD Millipore), which
allows 100 ng resolution. Circular dichroism (CD) spectra measured as de-
scribed previously (Ostapchenko et al., 2008) were used to assess the quality
of recombinant proteins. The presence of lipopolysaccharides in protein
preparations was tested using ToxinSensor Endotoxin Assay Kit (Gen-
Script); no more than 0.2 endotoxin units (EU) of E. coli endotoxin equiva-
lent was present in our preparations. A�Os were prepared from A�1–42

peptide (rPeptide) similarly to a previously described procedure (Caetano et
al., 2011). Briefly, the peptide was monomerized in hexafluoroisopropanol,
dried in a SpeedVac centrifuge, restored in DMSO to 1 mM solution, and
diluted in PBS (CD and LTP experiments) or F-12 medium (all other exper-
iments) to the final concentration of 100 �M (hereafter monomer concen-
tration used as A�O concentration). After incubation for 24 h at 4°C, A�Os
were cleared by centrifugation when needed and either used immediately or
stored at �80°C for no more than a few weeks. Peptide preparation quality
was checked by several methods. Western blot with 6E10 (1:2000; Covance)
antibody was done by a standard technique after peptide separation on
13.5% Tris-tricine SDS-PAGE and electrotransfer to polyvinyl difluoride
membrane. CD spectra were obtained from 25 �M A�O using a J810 spec-
tropolarimeter (Jasco) equipped with a 1 mm cuvette, with five scans aver-
aged for each resulting spectra. Size-exchange chromatography was done
using ÄKTA-FPLC (GE Healthcare) equipped with a Superdex 75 column
(GE Healthcare) following the procedure described previously (Larson et al.,
2012). For atomic force microscopy (AFM), A�O preparations were diluted
to 0.1 �M, deposited on a freshly cleaved piece of mica for 10 min, and dried
under a nitrogen stream. Images were acquired in tapping mode using a
Cypher AFM (Asylum Research) mounted with silicon tips (AC160TS; from
Olympus; nominal spring constant of 40 N/m). Section analyses were per-
formed using the AFM software to determine the height of the species im-
aged. Their corresponding molecular weight was determined via a
calibration curve describing the AFM heights of proteins of known molecu-
lar weight. Scrambled A�1–42 peptide (rPeptide) was prepared following the
same procedure as for the A�O preparation.

Surface plasmon resonance. Surface plasmon resonance (SPR) experi-
ments were performed using the Biacore X system (GE Healthcare)
equipped with either a nitrilotriacetic acid (NTA) or CM5 sensor chip.
The NTA chip was first charged with nickel ions and then uniformly
covered with either PrP or STI1 bearing (His)6 tags with SPR signal of
�10,000 resonance units (RU). The CM5 chip was prepared by a stan-
dard amine-coupling procedure (Fischer, 2010). All ligands were in-
jected in 25 mM HEPES, 150 mM NaCl, and 10 mM imidazole, pH 7.0, at
5 �l/min, and on-kinetics were registered for 6 min. After each injection,
off-kinetics were followed for 2 min. The chip surface was regenerated
between injections by a short injection of 10 mM HCl. SPR curves for
STI1 and A�O binding to PrP were analyzed using a simple bimolecular
binding model with GraphPad Software Prism linear (for initial binding
rates), exponential decay (for off-kinetics), and “one-site binding” (to
determine RUmax and KD from the Langmuir equation for the STI1–PrP
complex) regressions (Balducci et al., 2010).

A�O binding to cells. HEK293T cells were transfected with pH-
sensitive GFP–PrP C vector (pHFP–PrP C) using a modified calcium
phosphate method as described previously (Caetano et al., 2011). pHFP–
PrP C was generated on the basis of pEGFP–PrP C vector (Lee et al., 2001)
with GFP nucleotide sequence exchanged for that of pHFP (pHluorin;
Miesenbock et al., 1998). Fluorescent A�Os were prepared from HiLyte
Fluor 555-tagged A�1– 42 (Anaspec) following the procedure described
above. Three hundred nanomolar HiLyte Fluor 555–A�Os alone or
mixed with 500 nM STI1 or 1000 nM TPR2A were added to cultures for 15
min, after which cells were washed with Krebs–Ringer–HEPES (KRH)
buffer (in mM: 50 HEPES, 115 NaCl, 5.9 KCl, 1 MgCl2, 2 CaCl2, and 10
glucose, pH 7.4) and immediately imaged on a LSM510 confocal micro-
scope (Carl Zeiss) equipped with a 63�/1.4 numerical aperture (NA)
oil-immersion objective. Data were collected from at least eight images
taken for each treatment in three independent experiments. Bound Hi-
Lyte Fluor 555–A�O was quantified for at least 20 cells for each experi-
mental condition as mean fluorescence per cell area and normalized to
nontransfected cells using NIH ImageJ software.
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Primary cultures of hippocampal neurons from E17 mouse embryos
were obtained as described previously (Beraldo et al., 2013). Neuronal
cultures hereafter were derived from embryos of either sex. Cultures were
maintained on poly-lysine-coated coverslips in Neurobasal medium
with 2% B-27 supplement (Invitrogen). On day 4, cytosine arabinoside
(2 �M; Sigma) was added to prevent astrocyte growth. Half of the culture
medium was changed every 2–3 days. On day 15, neurons were treated
for 15 min with 200 nM A�O alone or mixed with 500 nM STI1, washed
with KRH buffer (in mM: 125 NaCl, 5 KCl, 5 HEPES, 2.6 MgSO4, and 10
glucose, pH 7.2). For �-tubulin and A�O immunostaining, cells were
fixed with 4% paraformaldehyde for 20 min, permeabilized with 0.5%
Triton X-100 in PBS for 5 min, and blocked with 5% BSA (Sigma) in PBS
for 1 h. After that, coverslips were incubated with anti-�-tubulin (1:500;
Abcam) and 6E10 (against amyloid-� 1–16 epitope; 1:350; Covance)
antibodies overnight at 4°C, followed by secondary Alexa Fluor-488 (for
�-tubulin) and Alexa Fluor-633 (for A�O) antibodies (Invitrogen) for
1 h at 4°C. For colocalization analysis, the PrP antibody 8H4 (epitope
145–180; Abcam) and 6E10 antibodies were labeled with Alexa Fluor-488
and Alexa Fluor-633, respectively, using Zenon Mouse Labeling Kit (In-
vitrogen). Briefly, 1 �g of each primary antibody was incubated at room
temperature for 5 min with 5 �l of the corresponding Zenon coupling
reagent, after which the reaction was stopped by 5 min incubation with
the blocking reagent. Labeled antibodies were diluted immediately in
KRH buffer (1:350 for both antibodies), added to neurons treated with
A�O, A�O/STI1, or vehicle, as described above, and incubated for 30
min at 37°C. Subsequently, cultures were washed with KRH buffer and
imaged on an LSM510 confocal microscope equipped with a 63�/1.4 NA
oil-immersion objective or a SP5 II confocal microscope (Leica) equipped
with a 63�/1.47 NA oil-immersion objective. A�Os, �-tubulin, and PrPC

were quantified in at least three independent experiments. At least five
Z-stack images were taken randomly from each coverslip representing a
single treatment of neurons derived from a single embryo, and the corre-
sponding fluorescence was integrated using NIH ImageJ software. Neurites
from at least 20 cells were analyzed with cell bodies excluded from the quan-
tification. A�O–PrPC colocalization was determined as percentage of A�O
fluorescence volume colocalized with PrPC fluorescence using the NIH Im-
ageJ colocalization plug-in.

Expression of synaptophysin. For these experiments, primary cultured
hippocampal neurons were obtained as indicated previously (Roffé et al.,
2013). Cytosine �-D-arabinofuranoside at 1 �M was added on day 2, and
cultures were maintained with no media replacement. On day 20, cells
that were preincubated with or without 100 nM STI1 for 30 min and were
treated with 500 nM A�O for 1 or 4 h unless otherwise indicated. For
Western blots, cells were lysed in RIPA buffer (50 mM Tris-Cl, pH 7.4, 150
mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, and 0.1% SDS) and
analyzed by SDS-PAGE, followed by transfer to PVDF membrane and
blotting with anti-synaptophysin (1:10,000; Santa Cruz Biotechnologies)
and anti-GAPDH (1:1000; Sigma) antibodies. For immunofluorescence,
cells were fixed with 4% paraformaldehyde for 20 min, permeabilized
with 0.2% Triton X-100 in PBS for 5 min, and blocked with 5% BSA
(Sigma) in PBS for 1 h. Anti-synaptophysin (1:100; Santa Cruz Biotech-
nologies) diluted in 1% BSA in PBS was added for 1 h, followed by
anti-mouse Alexa Fluor-488 (1:1000; Invitrogen) for 1 h. Twenty images
were analyzed per experiment with the NIH ImageJ histogram tool in at
least three independent experiments for each experimental treatment,
using a Nikon TE2000 microscope in epifluorescence mode. Images
taken from cells labeled with secondary antibody only were used to set
the threshold for the experiment. Cell bodies were excluded from the
analysis.

Electrophysiology in hippocampal tissue slices. Field EPSPs (fEPSPs)
were recorded from hippocampal slices derived from wild-type mice that
were between 21- and 30 d-old as described previously (Martyn et al.,
2012). Slices were pretreated for 15- 30 min with or without 0.5 or 1 �M

STI1, followed by 30 – 60 min treatment with vehicle or 1 �M A�O. No
difference was observed between these two time points and protein con-
centrations used, and, therefore, the results of these experiments were
pooled together.

Cell death and viability assays for A�O. Neuronal cultures (1 � 10 5

cells per 16 mm dish) were prepared as described previously (Beraldo et

al., 2013). On day 11, neurons were treated with different proteins or
peptides for 48 h. Cell death was evaluated using the LIVE/DEAD Via-
bility/Cytotoxicity Kit for mammalian cells (Invitrogen) as per the in-
structions of the manufacturer. Eight images from random fields
containing at least 300 cells were taken for each experimental treatment
of neurons prepared from at least five embryos on an LSM-510 confocal
microscope equipped with 10�/0.45 NA objective and appropriate fil-
ters. Live (calcein-stained, green channel) and dead (ethidium-stained,
red channel) cell counting was done using NIH ImageJ Cell Counter
plug-in and calculated as percentage of dead cells [number dead cells/
(number of dead cells � viable cells) � 100]. For the lactate dehydroge-
nase (LDH) release assay, neuronal cultures were prepared in the same
way but using phenol red-free medium. LDH release in cultured media
was analyzed with LDH Activity Assay kit (Sigma) following the instruc-
tions of the manufacturer. For this, cultured media (400 �l in a 16 mm
dish) were concentrated to 100 �l using Nanosep 10K centrifugal devices
(Pall Life Sciences) and mixed with 200 �l of LDH substrate mix. After 30
min incubation, LDH activity was measured by OD450 on an iMark Mi-
croplate Absorbance Reader (Bio-Rad) and normalized to total protein
concentration in the samples.

Cell death and viability assay for staurosporine. Neuronal cultures
(1 � 10 5 cells per 16 mm dish) from wild-type or �7nAChR�/� mice
were prepared as described above. Primary hippocampal neurons
were treated with staurosporine (50 nM) in the presence or absence of
1 �M STI1 for 16 h as described previously (Beraldo et al., 2010). The
cell death assay was performed using LIVE/DEAD Viability/Cytotox-
icity Kit as described above. The 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) reduction assay (Sigma) was
conducted according to the protocol of the manufacturer. MTT stock
solution (5 mg/ml) was added to hippocampal neurons as 1⁄10 of the
culture medium volume and incubated for 4 h. After that, the me-
dium was removed, and cells were solubilized with isopropanol/0.1 N
HCl, after which absorbance of reduced dye was measured at 570 nm
with background subtraction at 650 nm.

Calcium signaling. Primary hippocampal neurons were obtained as
described for experiments with A�O binding, and calcium imaging was
performed as described previously (Beraldo et al., 2010), by loading neu-
rons with either 10 �M fura-2 AM for 40 min or 5 �M Fluo-4 AM (Invit-
rogen) for 30 min at 37°C in Neurobasal medium supplemented with 1
mM CaCl2. For fura-2 AM experiments, data acquisition was performed
using a DMI6000 B microscope (Leica) equipped with a 40�/0.75 NA
dry objective and 340 nm/380 nm (excitation) and 510 nm (emission)
filters. Fluorescence ratio (340/380) was normalized using Leica AF6000
software. For Fluo-4 AM, data acquisition was performed on an LSM-
510 confocal microscope with excitation at 488 nm and emission at 505–
530 nm. Fluorescence was normalized as F1/F0 (in which F1 is maximal
fluorescence and F0 is basal fluorescence). For each experimental condi-
tion, at least three different neuronal cultures from independent pups
were used, and 30 – 40 cells were analyzed.

Human postmortem brain tissue. Parietal cortical tissues from age- and
sex-matched controls (n � 6, 3 females and 3 males) and AD-affected
individuals (n � 6, 3 females and 3 males) were provided by the Institute
for Brain Aging and Dementia Tissue Repository/University of Califor-
nia, Irvine. AD diagnosis was confirmed by pathological and clinical
criteria (McKhann et al., 1984; Khachaturian, 1985; Michalski and Fah-
nestock, 2003). Cortical samples were homogenized in RIPA buffer sup-
plemented with protease inhibitor cocktail III (Calbiochem). STI1 levels
were analyzed by SDS-PAGE, followed by Western blot analysis with
anti-recombinant mouse STI1 antibody raised in rabbits (Zanata et al.,
2002; Beraldo et al., 2013; purified IgG, 0.2 �g/ml, generated by Bethyl
Laboratories) using �-actin levels as a control.

Mouse brain tissue. Cortical tissues from APPswe/PS1dE9 or wild-type
control male mice were collected and homogenized in RIPA buffer as
described above. STI1 levels were analyzed by SDS-PAGE, followed by
Western blot analysis with rabbit anti-STI1 antibody (Zanata et al., 2002;
Beraldo et al., 2013) using �-actin levels as a control.
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Results
STI1 prevents A�O binding to PrP C

A�Os and STI1 bind to adjacent regions of PrP C, to residues
95–105 (Laurén et al., 2009) and 113–128, respectively (Zanata et
al., 2002). To determine whether binding of these two PrP C li-
gands can occur simultaneously or whether they are mutually
exclusive, we used SPR. We optimized standard procedures to
obtain highly pure recombinant proteins (�95% according to
SDS-PAGE analysis; Fig. 1A) and to produce well defined A�Os
with substantial presence of low-order oligomers (Townsend et

al., 2006; Hung et al., 2008; Larson et al., 2012; Figueiredo et al.,
2013). Western blot analysis of A�O preparations showed 5–10%
low-molecular-weight oligomers (2-, 3-, 4-mers) along with
small amounts of higher-molecular-weight (HMW) components
but no fibrils (Fig. 1B). Importantly, the size-exclusion chroma-
tography profile of these oligomers was similar to that of AD
brain-derived amyloid-� species (Larson et al., 2012) and con-
tained peaks corresponding to monomers, dimers, and trimers,
with small amounts of HMW A�O (Fig. 1C). AFM analysis con-
firmed the abundance of low-order oligomers in our A�O prep-

Figure 1. SPR studies of A�O binding to PrP. A–E, Characterization of protein and peptide preparations performed as described in Materials and Methods. A, SDS-PAGE analysis of recombinant
proteins. B, Western blot of A�O preparation with 6E10 antibody. Lane 1, Freshly prepared A�Os; lane 2, 1 �M A�Os after 48 h incubation in Neurobasal medium/2% B-27 at 37°C. C, Size-exchange
chromatogram of A�Os; peaks for A�1– 42 monomers, dimers, and trimers and HMW aggregates are shown by arrows. D, A representative AFM image of A�O preparations showing monomers
(�0.3 nm high), dimers/trimers/tetramers (0.6 –1.0 nm high), and a few HMW aggregates (�1 nm high). Scale bar, 100 nm. E, CD spectra of recombinant proteins and A�Os. F–M, SPR kinetics.
F, Binding of A�Os (nanomolar) to full-length PrP and to its N-terminal mutant PrP(112–231) on an NTA chip. G, Binding of scrambled A� and A�O (both 2.5 �M) to PrP. H, Binding of A�Os (2.5
�M) to PrP in the presence of increasing concentrations of STI1 (nanomolar). Inset shows an inhibition curve for A�O binding to PrP obtained in multiple experiments (errors are smaller than
symbols). I, Similar to H, but experiments were done in the presence of 0.2 EU E. coli endotoxin (amount detected in recombinant STI1). J, Similar to H, but experiments were done in the presence
of 500 nM lysozyme. K, Binding of STI1 (nanomolar) to PrP immobilized on a CM5 chip. L, Binding of A�Os and Hsp90 to STI1 immobilized on a CM5 chip. M, Effects of TPR2A (1 �M) and
TPR2A�230 –245 (1 �M) on A�O (2.5 �M) binding to PrP. SPR data are representative of at least three independent experiments.
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aration, represented as 0.3–1 nm high round dots and a small
amount of larger dots with their height (�1 nm) corresponding
to HMW A�O (Fig. 1D). In addition, CD measurements demon-
strated �-sheet structure in oligomer preparations and showed
characteristic spectra for recombinant PrP (Ostapchenko et al.,
2008) and STI1 (Romano et al., 2009; Fig. 1E).

Initial experiments demonstrated that A�Os bind specifically
to PrP in a dose-dependent manner (Fig. 1F,G). We used a sim-
ple bimolecular binding model to analyze SPR data and estimate
kinetic constants of A�O–PrP binding. Considering that dimers
and trimers, the main PrP-binding species in this preparation,
represent �9% of the A�Os in our preparation, we estimated
KD � 15 nM, with kon � 3500 M�1 s�1 and koff � 5.4 � 10�5 s�1,
which is consistent with previous studies (Balducci et al., 2010).
Of note, approximating off-kinetics with exponential decay gave
a high error estimate in the koff measurement (�50%), probably
attributable to the fact that SPR signal noise and thermal drift
magnitude were of the same order as the total SPR signal change
during off-kinetics. Consequently, the calculated KD, as koff/kon,
fell in the range of 7–30 nM. PrP lacking the N-terminal region
[PrP(112–231)] was unable to interact with A�Os (Fig. 1F). As a
control, scrambled A� did not bind to full-length PrP (Fig. 1G).

Recombinant STI1 impaired the binding of A�Os to immo-
bilized PrP with an IC50 of �70 nM (Fig. 1H). To ensure absence
of nonspecific effects, we determined the binding of A�Os pre-
mixed with either lipopolysaccharide (amount equivalent to that
present in 500 nM recombinant STI1; Fig. 1I) or an irrelevant
protein (500 nM lysozyme; Fig. 1J) to PrP. Neither of them altered
A�O binding to PrP. STI1 showed dose-dependent binding to

PrP (Fig. 1K) with KD � 550 	 150 nM, kon � 2.0 	 0.6 � 10 5

M�1 s�1, and koff � 11.0 	 0.6 � 10�2 s�1. The measured KD

value is in the same order of magnitude of values determined
using different methodologies (Zanata et al., 2002; Romano et al.,
2009). A�Os did not interact directly with STI1, although STI1
was able to interact with Hsp90 as a positive control under the
same conditions (Fig. 1L). The TPR2A domain of STI1 (contain-
ing PrP C binding motif amino acids 230 –245) decreased binding
of A�O to PrP (IC50 of �300 nM), whereas TPR2A�230 –245,
which lacks the PrP binding site, had no effect (Fig. 1M). To-
gether, these results suggest that STI1 interferes with A�O–PrP
binding by impairing A�O binding to PrP and not because of a
direct interaction between STI1 and A�O.

STI1 prevents A�O binding to cells expressing PrP C

To investigate whether STI1 affects A�O binding to PrP C on
membranes of living cells, we initially used HEK293T cells. A�Os
bound only marginally to nontransfected cells, whereas
HEK293T cells expressing pHFP–PrP C displayed abundant coat-
ing with A�Os (Fig. 2A,B). In the presence of 500 nM STI1, A�O
binding to pHFP–PrP C-transfected HEK293T cells was signifi-
cantly decreased (Fig. 2A,B). TPR2A (1 �M) also decreased A�O
binding to cells (Fig. 2A,B).

In cultured hippocampal neurons, A�O binding showed a
punctate pattern mainly localized to neurites (Fig. 3A,C) as de-
scribed previously (De Felice et al., 2007, 2009). As observed in
HEK293T cells, A�O binding to hippocampal neurons in culture
was significantly decreased by STI1 when compared with cells
treated with vehicle (Fig. 3A–D). Additionally, colocalization

Figure 2. STI1 and TPR2A inhibit A�O binding to HEK293T cells expressing pHFP–PrP C. A, Representative images of HEK293T cells in differential interference contrast (DIC) channel (column 1),
green channel (pHFP fluorescence, column 2), red channel (HiLyte Fluor 555–A�O fluorescence, column 3), and merged (column 4). Row 1 shows nontransfected cells, and rows 2–5 show cells
transfected with pHFP–PrP C in the absence (row 2) or presence (row 3) of A�O, A�O premixed with 500 nM STI1 (row 4) or 1 �M TPR2A (row 5). B, Quantification of data from A. Total A�O bound
to pHFP–PrP C-transfected cells was normalized by cell size and by the amount of A�O bound to nontransfected cells. Data collected from at least 20 cells in three independent experiments were
analyzed with one-way ANOVA with Tukey’s post hoc test. ***p � 0.001.
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analysis indicated that �50% of A�O puncta were colocalized
with PrP C (Fig. 3C,D). In the presence of STI1, colocalization
between A�O puncta and PrP C was significantly decreased in
hippocampal neurons (Fig. 3C,D).

STI1 prevents A�O-induced synaptic loss
A�O treatment of human brain tissue downregulates several
genes involved in synaptic transmission, including synaptophy-
sin (Sebollela et al., 2012). Moreover, A�Os elicit PrP C-
dependent synaptic loss (Um et al., 2012). Treatment of
hippocampal neurons in culture with A�Os for 60 min led to a
decrease in synaptophysin levels (Fig. 4A–C). In contrast, expo-
sure of hippocampal neurons to STI1 (100 nM) increased the
levels of synaptophysin (Fig. 4B,C). In the presence of STI1, the
toxic effect of A�Os on synaptophysin levels was prevented (Fig.
4B,C). Importantly, neither A�O or STI1 altered the levels of
synaptophysin in hippocampal neurons cultured from Prnp�/�

embryos (Fig. 4D), indicating that these effects of A�Os and STI1
depend on the presence of PrP C.

STI1 rescues A�O-induced inhibition of LTP in
hippocampal slices
It has been shown that impairment of LTP in hippocampal slices
by A�Os is mediated by PrP C (Laurén et al., 2009; Barry et al.,
2011; Freir et al., 2011). Our results indicate that A�Os, but not a
preparation of scrambled A�, decreased LTP at Schaffer collater-

al–CA1 synapses (Fig. 5A,B). When slices were previously treated
with STI1 (0.5–1 �M), before being exposed to A�Os (1 �M), no
decrease in LTP was observed, suggesting that treatment with
STI1 prevents A�O-induced LTP inhibition (Fig. 5C,D). Inter-
leaved recordings from control slices treated with A�Os alone
confirmed the neurotoxic potency of A�O in these experiments,
whereas STI1 alone did not modify LTP (data not shown).

STI1 protects neurons against cellular injury induced by A�O
It has been shown that A�Os cause neuronal cell death in a PrP C-
dependent manner (Resenberger et al., 2011; Kudo et al., 2012).
Corroborating this observation, we showed that wild-type but
not Prnp�/� cultured hippocampal neurons displayed decreased
viability, measured using the LIVE/DEAD Viability/Cytotoxicity
assay, when exposed to 1 �M A�O for 48 h (Fig. 6A). Of note,
incubation of A�Os in culture medium did not produce measur-
able amounts of fibrils or prefibrillar aggregates (Fig. 1B), arguing
that the observed toxicity is caused by low-molecular-weight A�
species. Next, we checked whether levels of endogenous STI1
could influence the neurotoxic effect of A�Os. STI1�/� neurons,
shown previously to have 50% of wild-type STI1 protein levels
(Beraldo et al., 2013), presented increased sensitivity to A�O
exposure (Fig. 6B–D). Treatment of cultured neurons with STI1
prevented the toxic effects of A�Os in both STI1 mutant and
wild-type neurons (Fig. 6B,D). Neither STI1 by itself nor scram-
bled A� had any effect on neuronal viability (Fig. 6B,D). More-

Figure 3. STI1 decreases A�O binding to PrP C in hippocampal neuronal cultures. A, Representative images showing �-tubulin (left column) and A�O (right column) staining of 15 d in vitro
neurons treated with A�O (top row) or A�O/STI1 mix (bottom row) as described in Materials and Methods. B, Quantification of A. The amount of bound A�Os was normalized by �-tubulin levels
and presented relative to the treatment with A�O alone. C, Representative images showing PrP C (left column), A�O (middle column), and merged (right column) staining of 15 d in vitro neurons
treated with A�O (top row) or A�O/STI1 mix (bottom row) as described in Materials and Methods. White arrows indicate colocalized staining. D, Quantification of C. Bound A�O was quantified as
percentage of image area. Colocalization with PrP C was quantified as described in Materials and Methods. Scale bars, 10 �m. Data were collected from at least three independent experiments from
neurites of at least 25 cells for each condition and analyzed with Student’s t test. **p � 0.01, ***p � 0.001.
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over, treatment of cultured neurons with
TPR2A, the PrP C binding domain of
STI1, also decreased the toxicity of A�Os
(Fig. 6E). We also used LDH release as an
indicator of cell death. Treatment with re-
combinant STI1 rescued neuronal death
induced by A�Os in both genotypes, con-
firming the results obtained with the
LIVE/DEAD Viability/Cytotoxicity assay
(Fig. 6F). In these experiments A�O-
induced LDH release appeared higher
in STI1�/� neurons, but this difference
failed to reach statistical significance (Fig.
6F). Together, our results indicate that
STI1 decreases the binding of A�Os to
PrP C and prevents several toxic activities
of A�Os in hippocampal neurons.

STI1 induces intracellular Ca 2�

increase and neuronal protection
via �7nAChRs
We demonstrated previously that PrP C

forms a biochemical and functional com-
plex with �7nAChRs and that signaling
and neuronal protection by STI1 was
blocked by �-bungarotoxin, a selective
�7nAChR-specific antagonist (Beraldo et
al., 2010). A�1– 42 has been shown to inter-
act with �7nAChRs (Wang et al., 2000;
Magdesian et al., 2005; Snyder et al.,
2005), which is thought to play an impor-
tant role in AD (Hernandez and Dineley,
2012). To test whether neuroprotection
by STI1 might involve �7nAChRs, we cul-
tured neurons from �7nAChR�/� mice and investigated the ef-
fect of STI1. We used neurons labeled with either fura-2 or Fluo-4
in independent experiments and found that Ca 2� increase in-
duced by STI1 was abolished in �7nAChR�/� neurons (Fig. 7A–
E). Moreover, the TPR2A peptide also increased intracellular
Ca 2� in an �7nAChR-dependent way.

Neuroprotection by STI1 against apoptosis induced by stau-
rosporine (100 nM) was observed in wild-type neurons but not in
�7nAChR�/� neurons, as determined by either the MTT reduc-
tion assay or the LIVE/DEAD Viability/Cytotoxicity assay (Fig.
7F,G). Similarly to wild-type neurons, A�Os induced �15–20%
increase in cell death in �7nAChR�/� neurons; surprisingly,
however, addition of STI1 did not rescue those neurons from
A�O-induced cell death (Fig. 7H). Of note, �7nAChR�/� neu-
ronal cultures showed an increased background level of cell death
[�40 vs �20% for wild-type neurons (Fig. 6B)], suggesting that
expression of �7nAChR is important for cell viability in neuronal
cultures.

STI1 levels are increased in AD
STI1 is part of the cellular stress response, and we showed recently
that STI1 knock-out cells are less resilient to stress (Beraldo et al.,
2013). Moreover, network analysis suggests that STIP1, the STI1
gene, may be a critical biological node for regulation of the un-
folded protein response in AD cerebral cortex (Zhang et al.,
2013). To determine whether STI1 levels change in AD, we fist
performed analysis of the APPswe/PS1dE9 transgenic mouse
model. These experiments revealed a 50% increase in cortical
STI1 levels in 12-month-old APPswe/PS1dE9 but not in

Figure 5. LTP measurements in hippocampal slices. A, LTP in mouse hippocampal slices,
treated with A�O or scrambled A� as described in Materials and Methods. fEPSPs were re-
corded for 60 min after LTP induction. Inset shows typical pre-high-frequency stimulation (pre-
HFS, dotted line) and post-HFS (solid lines) fEPSP traces. B, Bar graph summarizing averaged
fEPSP slope values recorded at the endpoint (i.e., 80 min) of A. C, The same as A but treated with
A�Os alone or with STI1. D, Bar graph summarizing averaged fEPSP slope values recorded at the
endpoint (i.e., 80 min) of C. fEPSP slopes are presented as mean 	 SEM of at least five slices,
relative to preinduction values, and analyzed by one-way ANOVA with Tukey’s post hoc test.
*p � 0.05, **p � 0.01.

Figure 4. Synaptophysin levels in neurons treated with A�Os and STI1. A, Synaptophysin level in cultured hippocampal
wild-type neurons before and after 5, 10, 15, and 30 min treatment with 500 nM A�Os. Cells were lysed, and Western blots against
synaptophysin (Syp) and GAPDH were performed. B, Representative images for wild-type (Prnp �/�) neuronal cultures treated
with A�Os (500 nM, 1 h), STI1 (100 nM, 30 min), or both (100 nM STI1 for 30 min, followed by 500 nM A�Os for 1 h) and
immunolabeled against synaptophysin. Scale bars, 10 �m. C, Quantification of B. D, The same as C but for Prnp�/� neuronal
cultures. At least three independent experiments were done for each condition. Data were collected from 20 images containing
neurites from at least 60 cells for each experiment and analyzed with one-way ANOVA with Tukey’s post hoc test. *p � 0.05.
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9-month-old mice compared with wild-type controls (Fig.
8A,B). Importantly, STI1 levels were also increased in AD brains
when compared with age-matched controls (cohorts described in
Table 1; Michalski and Fahnestock, 2003; Fig. 8C).

Discussion
Here we show that the PrP C ligand STI1 prevents deficits of syn-
aptic plasticity and increased neuronal death induced by toxic
A�O species. Mechanistically, both interference with A�O bind-
ing to neurons and �7nAChR activation play a role in neuropro-
tection induced by STI1. Our data also demonstrate that STI1
levels are increased in AD. Although the biological significance of
this change in STI1 levels is not understood, it is possible that,

without this compensatory response, toxic effects of A�Os could
be more prominent. These results open a novel avenue in AD
research indicating that endogenous PrP C ligands can regulate
toxicity by A�Os.

STI1 interferes with the A�O–PrP C interaction
A�Os have been shown to interact with several synaptic mole-
cules (Ferreira and Klein, 2011), but its interaction with PrP C is
one of the best characterized. Despite initial controversy (Bal-
ducci et al., 2010; Benilova and De Strooper, 2010; Kessels et al.,
2010), a number of observations supported the notion that inter-
action of A�Os with PrP C activates toxic signaling in neurons
(Laurén et al., 2009; Gimbel et al., 2010; Bate and Williams, 2011;

Figure 6. STI1 and TPR2A effect on A�O-induced cell death in hippocampal neurons. A–E, LIVE/DEAD assay. A, Comparison of cell death in Prnp �/� and Prnp�/� neuronal cultures after 48 h
treatment with 1 �M A�O. B, Comparison of cell death in STI1 �/� and STI1�/� neurons after 48 h treatment with 1 �M scrambled A�, 1 �M A�Os, 1 �M STI1, or 1 �M A�Os/1 �M STI1 mix. C,
The same as in B but only for different concentrations of A�Os. D, Representative images for B. Left two columns, Live (green) and dead (red) STI1 �/� neurons, nontreated (top row) or treated with
1 �M A�Os, 1 �M A�Os/1 �M STI1, 1 �M scrambled A�, or 1 �M STI1 (rows 2–5, respectively); right two columns, the same for STI1�/� neurons. E, Comparison of cell death in wild-type neuronal
cultures after 48 h treatment with 1 �M A�Os, 1 �M TPR2A, or their mix. F, LDH release in STI1 �/� and STI1�/� neuronal cultures after 48 h treatment with 1 �M A�Os, 1 �M STI1, or their mix.
At least five independent experiments were done for each genotype and condition. Experiments with different genotypes were analyzed by two-way ANOVA, followed by Bonferroni’s post hoc test,
and within the same genotype by one-way ANOVA, followed by Tukey’s post hoc test. *p � 0.05, **p � 0.01, ***p � 0.001.
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Resenberger et al., 2011; Kudo et al., 2012;
Um et al., 2012). We used well character-
ized synthetic A�Os (Fig. 1) to mimic the
effects of toxic AD-related A� species. In
our conditions, A�O preparations typi-
cally contained �7% trimers and �2%
dimers, in addition to tetramers and small
levels of higher-order oligomers. Dimers
and trimers are thought to be among the
most toxic assemblies of A� (Townsend et
al., 2006; Hung et al., 2008; Figueiredo et
al., 2013) and have been shown to bind
PrP C and to induce PrP C-dependent
toxic effects (Larson et al., 2012).

We confirmed the specificity of A�O
binding to purified PrP using SPR and
also demonstrated that expression of
PrP C in cells increased A�O binding sub-
stantially. These results are consistent
with several other publications showing
interaction between A�Os from different
sources and PrP C both in vitro and in vivo
(Laurén et al., 2009; Balducci et al., 2010;
Chen et al., 2010; Kessels et al., 2010; Lar-
son et al., 2012). The A�O–PrP C complex
is poorly understood at the molecular and
structural levels, and its formation, based
on SPR kinetic curves, is not likely to be a
one-step process. It appears to start with a
relatively slow binding phase with kon of
just 3500 M�1 s�1, but then the two pro-
teins associate tightly (koff of �5 � 10�5

s�1), resulting in a high-affinity complex
with KD of �15 nM. Therefore, it is rea-
sonable to hypothesize that binding oc-
curs in more than one step, and the initial
lower-affinity interaction is followed by a
rearrangement step leading to formation
of a strong complex. Of note, the KD for
on-chip STI1 binding to PrP (550 nM) is
higher than that observed for A�Os, but
its initial binding rate (kon � 2 � 10 5 M�1

s�1) is much faster, suggesting the possibil-
ity that STI1 could prevent the formation of
this hypothetical initial low-affinity A�O–
PrPC complex. The molecular mechanism
of this competition is probably related to the
adjacent binding sites for STI1 and A�O on
the PrPC N-terminal domain. Thus, bind-
ing of STI1 (or the TPR2A domain of STI1,
which contains the motif responsible for
STI1 binding to PrP) to amino acid residues 113–128 on PrP possi-
bly makes adjacent regions sterically unavailable to other ligands.
This could explain why TPR2A alone, a less bulky molecule com-
pared with STI1, shows weaker inhibition of A�O binding to PrP.
Alternatively, conformational changes on PrP induced by STI1 (Ro-
mano et al., 2009) could also affect the interactions between PrP and
A�O.

STI1 prevents toxic effects of A�Os
Interaction of A�Os with neurons leads to multiple neurotoxic
effects, and although the underlying mechanisms have not been
completely delineated, NMDA receptor-mediated excitotoxic-

ity and abnormal activation of Fyn kinase have been implicated
(Larson et al., 2012; Um et al., 2012). Abnormal activation of
NMDAR and Fyn kinase seem to connect toxic actions of A�Os
to altered Tau function (Ittner et al., 2010). PrP C seems to inter-
act directly with NMDA receptors and to regulate their desensi-
tization by providing a source of copper, which can be disrupted
by increased A�1– 42 (You et al., 2012). In agreement with these
toxic effects, A�Os disrupt synaptic plasticity, including LTP,
which has been shown to be an effect dependent on PrP C (Laurén
et al., 2009; Barry et al., 2011; Freir et al., 2011). We found that, in
neuronal cultures, A�Os decreased the levels of the presynaptic
marker synaptophysin, similar to findings in A�O-treated hu-

Figure 7. STI1 neuroprotection and effect on intracellular calcium in wild-type (WT) and �7nAChR�/� (�7KO) neurons. A,
Representative kinetics of intracellular calcium levels in wild-type and �7nAChR�/� hippocampal neurons treated with STI1.
Intracellular Ca 2� was measured by fura-2 AM fluorescence as described in Materials and Methods. B, Calcium levels from A
averaged from at least 30 cells. C, The same as A but measured with Fluo-4 AM fluorescence as described in Materials and Methods.
D, The same as C but neurons were treated with TPR2A. E, Calcium levels from C and D averaged from at least 30 cells. F, MTT assay
of cell viability in wild-type and �7nAChR�/� neuronal cultures, treated for 16 h with 50 nM staurosporine, 1 �M STI1, or their mix,
as described in Materials and Methods. G, The same as in F but measured by LIVE/DEAD Viability/Cytotoxicity assay, as described in
Materials and Methods. Data represent four independent experiments analyzed by two-way ANOVA with Bonferroni’s post hoc
test. *p�0.01, **p�0.001, ***p�0.0001. H, Comparison of cell death in �7nAChR�/� neuronal cultures after 48 h treatment
with 1 �M A�O, 1 �M STI1, or their mix, measured by LIVE/DEAD Viability/Cytotoxicity assay. Neuronal cultures were obtained
from 13 independent embryos, and the data were analyzed by one-way ANOVA with Tukey’s post hoc test. ***p � 0.0001.

16560 • J. Neurosci., October 16, 2013 • 33(42):16552–16564 Ostapchenko et al. • STI1/PrPC in A� Oligomer Toxicity



man cortical slices (Sebollela et al., 2012). Conversely, STI1 in-
creased immunoreactivity for synaptophysin, consistent with
its known effect of increasing neuronal protein synthesis (Roffé
et al., 2010). Additionally, STI1 was able to protect hippocampal
neurons from the toxic effect of A�Os on synaptophysin levels.
Importantly, the effects of both STI1 and A�Os on synaptophysin
levels were lost in cultures from PrP C-null mice, indicating that
PrP C is involved in these signaling pathways. Moreover, STI1
prevented inhibition of LTP induced by A�Os. These results sug-
gest that increased extracellular levels of STI1, a PrP C ligand that
is secreted by astrocytes (Beraldo et al., 2013; Hajj et al., 2013),
can mitigate A�O-mediated synaptic toxicity.

We also showed that neurons haploin-
sufficient for STI1 are more sensitive to
A�O-induced cell death, a result consis-
tent with our recent findings that cells are
less resilient in the absence of STI1 (Be-
raldo et al., 2013). Hence, the differential
expression of STI1 in AD brains may have
physiological significance. Interestingly,
flies harboring an STI1 mutation showed
increased toxicity in a model of tauopathy
(Ambegaokar and Jackson, 2011), sug-
gesting that STI1 may be a critical regula-
tor of distinct pathological signatures in
AD. The increased neuronal death in-
duced by A�Os in STI1-mutant hip-
pocampal neurons could be prevented by
extracellular recombinant STI1. We
showed previously that extracellular re-
combinant STI1 reproduces the effect of
secreted STI1 (Caetano et al., 2008).
Moreover, the TPR2A STI1 domain,
which lacks cochaperone activity because
it is unable to bind both Hsp90 and Hsp70
(Brinker et al., 2002), could also prevent
A�O-mediated neuronal death, suggest-
ing that the neuroprotective effects of
STI1 may not be related to a cochaperone
mechanism.

Mechanism for prevention of A�O-mediated toxicity
Although STI1 decreases the binding of A�Os to PrP C in vitro, it
is also possible that the protein could regulate A�O-mediated
toxicity by activating neuroprotective signaling pathways (Lopes
et al., 2005; Caetano et al., 2008; Beraldo et al., 2010; Roffé et al.,
2010). We found that STI1-mediated Ca 2� influx was abolished
in neurons from �7nAChR-null mice and that STI1-mediated
neuroprotection is impaired in these mutants. Importantly, pre-
vention of A�O-induced neuronal death by STI1 was not ob-
served in �7nAChR-null neurons. This result suggests that, in the
presence of STI1, residual A�O complexes with PrP C or other
targets may still initiate toxic responses. Nonetheless, STI1 acti-
vation of the PrP C/�7nAChR pathway seems to prevent these
effects. Together, these results argue that decrease of A�O inter-
action with PrP C in addition to activation of �7nAChR-mediated
neuroprotection pathways may participate in the effects of STI1.

Our work is consistent with previous studies showing neuro-
protective roles of �7nAChR in AD (Dineley et al., 2001; Hernan-
dez et al., 2010; Shen et al., 2010). Indeed, A� actions via �7
nAChRs may also affect hippocampal LTP (Gu and Yakel, 2011),
and genetic depletion of �7 nAChRs in an early-stage AD mouse
model exacerbated cognitive deficits and septohippocampal pa-
thology (Hernandez et al., 2010). Interestingly, higher concentra-
tions or chronic exposure to A�O appears to corrupt �7nAChR
function, which can be prevented by intervening small molecules
(Wang et al., 2009, 2012) or by genetic depletion of �7nAChR
(Dziewczapolski et al., 2009). It remains to be determined
whether biasing signaling via PrP C/�7nAChR by further increas-
ing STI1 levels could be used to prevent the toxic actions of A�Os
in vivo.

Conclusion
Our studies suggest the possibility that STI1 may influence toxic
responses to A� oligomers in AD. Increased levels of STI1 ob-

Figure 8. STI1 levels in APPswe/PS1dE9 mice and AD brains. A, Comparison of STI1 levels in 9-month-old APPswe/PS1dE9 and
wild-type (WT) mice by Western blot. B, Similar analysis for 12-month-old mice. Data collected from at least six animals were
normalized by actin levels and analyzed by Student’s t test. *p � 0.05. C, Comparison of STI1 levels in AD (Alz) and age-matched
control brains. Data were collected from three male and three female AD brains and age-matched control brains, normalized by
�-actin levels and analyzed by Student’s t test. *p � 0.05.

Table 1. Human parietal cortex samples

Diagnosis Age PMI Sex

Pair 1 F
Control 82 7.25
AD 82 3.00

Pair 2 F
Control 87 6.50
AD 88 4.25

Pair 3 M
Control 64 4.50
AD 66 3.00

Pair 4 M
Control 78 6.00
AD 79 2.75

Pair 5 M
Control 80 7.00
AD 80 2.75

Pair 6 F
Control 93 8.00
AD 79 3.25

Samples were taken from control and AD postmortem brains with indicated postmortem interval (PMI, hours) and
age and sex matched in pairs (except for pair 6) for Western blot analysis of STI1 levels.
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served in AD brain may exert a protective role, although this
obviously cannot prevent toxicity in advanced disease. It is pos-
sible that higher levels of STI1 are part of a compensatory re-
sponse that may mitigate toxicity. Future experiments using
tissue-specific elimination of STI1 may help to clarify this issue.

STI1 is a cochaperone known to interact with Hsp90 and
Hsp70 to facilitate client transfer (Southworth and Agard, 2011).
Our experiments in neurons support the importance of extracel-
lular STI1 in protection against A�O toxicity; however, we
cannot completely exclude that intracellular STI1 may also par-
ticipate in cellular resilience in this condition (Beraldo et al.,
2013). Increased chaperone activity may also play a role in pro-
tection against prolonged A�O exposure (Resenberger et al.,
2012), which induces oxidative stress (De Felice et al., 2007) and
mitochondrial damage in neurons (Paula-Lima et al., 2011),
leading to increased load of misfolded proteins (Li et al., 2009).
Interestingly, we showed recently that, after 9 months of age,
APP/Ps1dE9 mice seem to present increased oxidative stress, re-
vealed by increased PrP C � processing (Ostapchenko et al.,
2013). Our present findings describe a novel neuroprotective role
for the PrP C ligand STI1, which added to recent systems biology
reports (Ambegaokar and Jackson, 2011; Zhang et al., 2013), im-
plicates STI1 in distinct aspects of AD.
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