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Neurobiology of Disease

Three Dimensions of Association Link Migraine Symptoms
and Functional Connectivity

Samuel R. Krimmel,1,2 Danielle D. DeSouza,3 Michael L. Keaser,1 Bharati M. Sanjanwala,3 Robert P. Cowan,3

Martin A. Lindquist,4 Jennifer A. Haythornthwaite,5 and David A. Seminowicz1
1Department of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, University of Maryland, Baltimore,
Maryland 21201, 2Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, 3Department of Neurology
and Neurological Sciences, Headache and Facial Pain Program, Stanford University, California 94305, 4Department Biostatistics, Johns Hopkins
Bloomberg School of Public Health, Baltimore, Maryland 21205, and 5Department of Psychiatry and Behavioral Sciences, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21224

Migraine is a heterogeneous disorder with variable symptoms and responsiveness to therapy. Because of previous analytic
shortcomings, variance in migraine symptoms has been inconsistently related to brain function. In the current analysis, we
used data from two sites (n= 143, male and female humans), and performed canonical correlation analysis, relating resting-
state functional connectivity (RSFC) with a broad range of migraine symptoms, ranging from headache characteristics to
sleep abnormalities. This identified three dimensions of covariance between symptoms and RSFC. The first dimension related
to headache intensity, headache frequency, pain catastrophizing, affect, sleep disturbances, and somatic abnormalities, and
was associated with frontoparietal and dorsal attention network connectivity, both of which are major cognitive networks.
Additionally, RSFC scores from this dimension, both the baseline value and the change from baseline to postintervention,
were associated with responsiveness to mind-body therapy. The second dimension was related to an inverse association
between pain and anxiety, and to default mode network connectivity. The final dimension was related to pain catastrophiz-
ing, and salience, sensorimotor, and default mode network connectivity. In addition to performing canonical correlation anal-
ysis, we evaluated the current clustering of migraine patients into episodic and chronic subtypes, and found no evidence to
support this clustering. However, when using RSFC scores from the three significant dimensions, we identified a novel clus-
tering of migraine patients into four biotypes with unique functional connectivity patterns. These findings provide new
insight into individual variability in migraine, and could serve as the foundation for novel therapies that take advantage of
migraine heterogeneity.

Key words: chronic pain; fMRI; individual variability; mindfulness-based stress reduction; networks; pain catastrophizing

Significance Statement

Using a large multisite dataset of migraine patients, we identified three dimensions of multivariate association between symp-
toms and functional connectivity. This analysis revealed neural networks that relate to all measured symptoms, but also to
specific symptom ensembles, such as patient propensity to catastrophize painful events. Using these three dimensions, we
found four biotypes of migraine informed by clinical and neural variation together. Such findings pave the way for precision
medicine therapy for migraine.

Introduction
Migraine is a common, poorly managed, and disabling disorder,
affecting .10% of the global population (Rasmussen, 1995;
Lipton et al., 2001, 2007; Leonardi and Raggi, 2013). Even with
improved available treatments (Yuan et al., 2019; Seminowicz
et al., 2020), continued research is warranted. Although diagnosis
is based on migraine attacks, migraine is a very complex disor-
der, often featuring sleep, affective, cognitive, and general health
abnormalities (Breslau et al., 1994, 2000; Karthik et al., 2012; Lin
et al., 2016). Importantly, the presentation of these symptoms
is heterogeneous across subjects, which could have important
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implications for treatment. One approach the field has taken
to address clinical variability is to subtype migraine patients.
A common subtyping uses a hard cutoff in the frequency of
headaches, dividing patients into groups based on higher
(chronic migraine) and lower (episodic migraine) frequency
(International Headache Society, 2018). Such categorization
has important consequences, as treatments can be approved
for specific subtypes of migraine and not others (Escher et al.,
2017). The current approach is limited for several reasons.
First, it is unclear how well episodic versus chronic subtyping
captures clinical variability, especially for symptoms other
than headache frequency. Second, grouping of patients is based on
a limited range of symptoms, ignoring the complex presentation
of multiple symptoms in migraine. Third, common migraine sub-
typing is done independently of biology. Improved analysis of
clinical variability, especially when done in conjunction with bio-
logical variability, could pave the way for precision medicine mi-
graine therapy, where patients are treated based on unique clinical
and biological variables.

The brain can be segregated into functional networks (Yeo
et al., 2011), which have been linked to migraine symptoms
(Schwedt et al., 2015). A common method for identifying brain
networks is resting-state functional connectivity (RSFC), a mea-
sure of functional coupling between brain regions (McIntosh,
2000), typically estimated through correlating timeseries from
functional units in fMRI acquired during rest (i.e., in the absence
of a task or stimulus). Heterogeneity in neural networks
could be a useful avenue to explain variability in migraine
symptoms, and links between brain function and clinical
phenotype would provide potential targets for intervention.
Importantly, a better understanding of brain-symptom rela-
tionships is critical for developing biologically defined subtypes
of illnesses. While studies have examined the relationship
between brain function and migraine symptoms, they typically
associate RSFC with individual migraine symptoms but do not
account for interdependence of symptoms or biological varia-
bles (including RSFC).

Canonical correlation analysis (CCA) (Hotelling, 1935) is a
multivariate statistical approach that linearly transforms varia-
bles from two sets of data to maximize the correlation between
them. CCA has become increasingly popular in neuroimaging
(H. T. Wang et al., 2020) and has identified dimensions of associ-
ation between brain connectivity and demographic information
(Smith et al., 2015), psychopathology (Drysdale et al., 2017; Xia
et al., 2018; Mihalik et al., 2019), and mind-wandering (H. T.
Wang et al., 2018). Here we sought to identify dimensions of co-
variance between diverse migraine symptoms and RSFC. In a
large sample from two research centers, we revealed three modes
of association between migraine symptoms and RSFC. Unlike
standard mass univariate analyses, these three dimensions were
each informed by many clinical and RSFC features simultane-
ously. These dimensions related to symptoms globally and also
to more specific combinations of symptoms, and reveal potential
targets for brain stimulation or other interventions. Additionally,
we found that one of these dimensions was associated with
improvements from enhanced mindfulness-based stress reduc-
tion (MBSR1), an emerging nonpharmacologic therapy for
chronic pain. Finally, we were able to show that the current clus-
tering of migraine into episodic or chronic subtypes based on
headache frequency alone is not supported, and propose a new
data-driven biotyping of migraine patients into four clusters
that is based on RSFC and symptoms together. Our findings
offer a new path forward for migraine research where biological

and clinical variability is leveraged to provide patient-tailored
therapy.

Materials and Methods
Overview.We took clinical measures and RSFC from two study cen-

ters; 143 subjects had complete RSFC and clinical data, and were used as
input data for the CCA; 166 subjects had complete clinical data and were
used to assess the empirical support of episodic versus chronic subtypes
of migraine. Multisite harmonization was used to correct for effects
of site for RSFC, while still maintaining clinical information. We
first applied principal components analysis (PCA) to both clinical
and RSFC data to address multicollinearity while reducing dimen-
sionality. Regularized CCA was then performed on components
explaining 80% of variance and permutation tests were used to
assess statistical significance. Canonical correlation is simply a cor-
relation between canonical variates, where canonical variates are
created from two domains of data (clinical and RSFC) so that the ca-
nonical correlation is maximized. Stated differently, CCA allows for
dimensions of association to be found between clinical scores and
RSFC, where these associations are formed through unique combi-
nations of clinical and RSFC variables. Each canonical correlation
consists of a clinical and RSFC canonical variate that are created to
be associated with one another. For significant canonical correla-
tions, RSFC canonical variates were then tested for association with
motion (a major confound for RSFC studies) and clinical improve-
ment from mind-body therapy. Finally, these scores underwent
k-means clustering to identify biotypes in our sample (for study
overview, see Fig. 1).

Participants. Data from two migraine neuroimaging studies were an-
alyzed, referred to here as the chronic-Stanford and episodic-UMB data-
sets. In the chronic-Stanford dataset, participants were recruited to
participate in research investigating biomarkers of chronic daily head-
ache using clinical, behavioral, and MRI data at Stanford University.
All subjects were over 18 years of age and met the International
Classification of Headache Disorders ICHD-3 diagnostic criteria for
chronic migraine as determined by a physician for a minimum of
3 months (International Headache Society, 2018). Patients were
excluded if they had any MRI contraindications or a history of severe
neurologic/psychiatric disorders. Subjects provided written informed
consent in accordance with Stanford University guidelines. MRI data
were collected using a General Electric 3T using an 8-channel phased
array head coil. MRI scans used in this analysis were a structural T1-
weighted (T1w) scan (TR 5.9ms, TE minimum, flip angle 15°, voxel size
0.9� 0.9� 1 mm), and an eyes closed resting-state functional scan
(8min, gradient echo spiral-pulse, TR 2000ms, TE 30ms, slice thickness
4 mm, FOV 220 mm, flip angle 80°, voxel size 3.4� 3.4� 4.5 mm). For
analyses of clinical data only, subjects were excluded because of missing
data, leaving a total of 46 subjects for analysis (average age of 39, SD =
13, 38 female). For MRI analyses, subjects were excluded because of
poor MRI quality, excessive motion during resting state (average
framewise displacement .0.4 mm), and missing clinical data, leaving a
total of 41 subjects for analysis (average age of 38, SD = 13, 34 women).

The second dataset, episodic-UMB, consisted of data from a previ-
ously described clinical trial assessing enhanced MBSR1 treatment of
migraine (Seminowicz et al., 2020). Briefly, participants were between
the ages of 18-65 and met the ICHD-3 criteria for episodic migraine
with or without aura for more than 1 year (International Headache
Society, 2018). Participants were excluded if they had a history of mind-
fulness training, reported severe or unstable psychiatric symptoms, and/
or used opioids. All patients provided written informed consent in ac-
cordance with University of Maryland Baltimore standards. All baseline
(pretreatment) MRI scans used a Siemens Tim-Trio 3T MRI scanner
with a 32-channel head coil. A scanner upgrade to a Siemens 3T Prisma
Fit MRI with a 64-channel head coil occurred in the final year of the
clinical trial which affected 1 cohort of 8. MRI scans used in this analysis
were a structural T1w scan (TR 2300ms, TE 2.98ms, slice thickness
1 mm, FOV 256 mm, flip angle 9°, and voxel size 1� 1 � 1 mm) and an
eyes open resting-state scan (10min, EPI, TR 2000ms, TE 28ms, slice
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thickness 4 mm, FOV 220 mm, flip angle 77°,
and voxel size 3.4� 3.4� 4 mm). For analyses
of clinical data only, subjects were excluded
because of missing data, leaving a total of 120
subjects for analysis (average age of 38, SD = 12,
106 female). For analyses of MRI data, subjects
were excluded because of poor MRI quality, ex-
cessive motion during resting state (average
framewise displacement .0.4 mm), and miss-
ing clinical data, for a total of 102 subjects (av-
erage age of 38, SD = 12, 91 women); 83 of
these subjects were also randomized to a clinical
trial receiving either MBSR1 (n= 42) or an
active control condition (stress management for
headache; n= 41). These randomized partici-
pants received additional scans 10 and 20weeks
after the baseline scan (Seminowicz et al., 2020).
Two MBSR1 subjects were excluded when ana-
lyzing changes in RSFC canonical variate scores
leaving 40 subjects.

MRI preprocessing. Preprocessing was per-
formed using FMRIPREP version stable
(Esteban et al., 2020), a Nipype (Gorgolewski
et al., 2017) based tool. Each T1w volume
was corrected for intensity nonuniformity
using N4BiasFieldCorrection version 2.1.0
(Tustison et al., 2010) and skull-stripped
using antsBrainExtraction.sh version 2.1.0
(using the OASIS template). Spatial normaliza-
tion to the ICBM 152 Nonlinear Asymmetrical
template version 2009c (Fonov et al., 2009) was
performed through nonlinear registration with
the antsRegistration tool of ANTs version 2.1.0
(Avants et al., 2008), using brain-extracted ver-
sions of both T1w volume and template. Brain
tissue segmentation of CSF, white matter, and
gray matter was performed on the brain-
extracted T1w using fast (FSL version 5.0.9)
(Zhang et al., 2001).

Functional data were slice time-corrected
using 3dTshift from AFNI version 16.2.07
(Cox, 1996) andmotion-corrected using mcflirt
(FSL version 5.0.9) (Jenkinson et al., 2002). This
was followed by coregistration to the corre-
sponding T1w using boundary-based registra-
tion (Greve and Fischl, 2009) with 6 degrees of
freedom, using flirt (FSL). Motion-correcting
transformations, BOLD-to-T1w transformation and T1w-to-template
(MNI) warp, were concatenated and applied in a single step using
antsApplyTransforms (ANTs version 2.1.0) using Lanczos interpolation.

Framewise displacement (Power et al., 2014) was calculated for
each functional run using the implementation of Nipype. ICA-
based Automatic Removal Of Motion Artifacts (AROMA) was used to
generate aggressive noise regressors as well as to create a variant of
data that is nonaggressively denoised (Pruim et al., 2015). Many in-
ternal operations of FMRIPREP use Nilearn (Abraham et al., 2014),
principally within the BOLD-processing workflow. For more details
of the pipeline, see https://fmriprep.readthedocs.io/en/stable/workflows.
html.

RSFC processing. Following nonaggressive implementation of
AROMA (see MRI preprocessing), resting-state data underwent
several additional denoising steps. Resting-state denoising and seed-
based analysis were conducted in the CONN functional connectivity
toolbox version 19f (Whitfield-Gabrieli and Nieto-Castanon, 2012)
(http://www.nitrc.org/projects/conn). Given sustained controversy
concerning global signal, we elected not to remove global signal in our
analyses (Murphy and Fox, 2017). We performed aCompCor (Behzadi
et al., 2007; Muschelli et al., 2014) to remove noise captured in white
matter and CSF. We calculated the first five eigenvectors from four

erosions of subject-specific white matter masks and two erosions of
subject-specific CSF masks, as these levels of erosion no longer contain
global signal (Power et al., 2017). Variance in resting-state data related
to these 10 anatomic timeseries was removed via linear regression at a
voxel-wise level. Given that AROMA has been shown to remove
motion artifact from RSFC well relative to other common methods
(Ciric et al., 2017), no additional steps were taken to directly remove
motion artifact. To avoid noise being reintroduced while removing fre-
quency specific noise, voxel-wise and regressor data were simultane-
ously bandpass filtered (0.008-0.15Hz), and all data underwent linear
detrending.

Following resting-state functional denoising, timeseries were ex-
tracted from 32 ROIs based on an existing independent component anal-
ysis of the Human Connectome Project available from the CONN
functional connectivity toolbox. These ROIs were organized into default
mode, sensorimotor, visual, salience/cingulo-opercular, dorsal attention,
frontoparietal, language, and cerebellar networks. To estimate functional
connectivity, the 32 ROI timeseries from the entire scanning session
were correlated, and the resulting Pearson correlation coefficients were
converted to z scores. We excluded functional connections with vis-
ual and language network seeds, as we did not believe that these
would be associated with the clinical symptoms in our analysis. We
do note that some studies have found a relationship between neural

Figure 1. Study overview. For CCA, 143 migraine subjects were collected from two sites. Seven clinical measures were
acquired along with RSFC estimates from 24 regions spanning six functional networks. After site harmonization of RSFC and
PCA, CCA was used to associate clinical and biological data. CCA is used to study the relationship between variables from two
domains of interest measured in one sample. In CCA, linear combinations of the input variables from both domains are cre-
ated (called canonical variates) so that the correlation between the combined variables (canonical correlation, Rc) is maxi-
mized. RSFC canonical variates were associated with clinical outcomes to mind-body therapy and underwent clustering
analysis to reveal biotypes of migraine. Rc, Canonical correlation; CVRSFC, canonical variates for RSFC; CVclinical, canonical vari-
ates for clinical data.
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abnormalities in migraine and the visual system that are more than
effects of aura (Burke et al., 2020). Language network regions
included parts of the posterior superior temporal gyrus and the infe-
rior frontal gyrus (consistent with Wernicke’s and Broca’s area).
Visual network regions included nodes in the occipital cortex.
While the occipital cortex has been implicated in migraine, it is of-
ten associated with symptoms of aura (Hadjikhani et al., 2001), a
symptom domain that was not measured in our two datasets. This
left a total of 24 ROIs with 276 unique functional connections.

Study site has been shown to influence fMRI data and should be
adjusted for when possible (Van Horn and Toga, 2009; Noble et al.,
2017; Yu et al., 2018). To adjust for effects of site while controlling for
clinical variables, age, and sex, we used Combining Batches of microar-
ray data (ComBat) (Johnson et al., 2007). ComBat was developed to deal
with batch effects in high dimensional data and uses an empirical Bayes
method to remove batch effects. ComBat was applied following removal
of irrelevant ROIs to create site-corrected RSFC, which was used in all
analyses, except for when determining changes in canonical variate
scores with therapy (see Canonical variate association with clinical out-
comes of treatment).

Clinical features. Participants completed multiple self-report ques-
tionnaires to assess clinical characteristics. The two headache measures

acquired were the frequency of headaches and
the average pain associated with headaches. We
also examined the exaggerated mental set applied
to pain or anticipation of pain using the Pain
Catastrophizing Scale (Sullivan et al., 1995). The
Pittsburg Sleep Quality Index was used to mea-
sure sleep quality as well as sleep disturbances
(Buysse et al., 1989). We used the Patient Health
Questionnaire 15 to quantify somatization and
somatic symptom severity (Kroenke et al., 2002).
Finally, we examined affective health using the
Generalized Anxiety Disorder-7 measure of
anxiety (Spitzer et al., 2006) and the Patient
Health Questionnaire 9 measure of depression
(Kroenke et al., 2001). The total score for each
questionnaire (where applicable) was used for
all analyses.

PCA.We used PCA to address multicollinearity
and to reduce the dimensionality of our data. PCA
creates a set of orthogonal components that can be
linearly combined to explain all of the variance in
the original dataset. We used singular value decom-
position and selected the first four clinical compo-
nents (see Fig. 2A), explaining.80% of the clinical
variance, and the first 35 RSFC components,
explaining .80% of the RSFC variance (see Fig.
2B). These components were used as input data for
the CCA (see Regularized CCA).

Regularized CCA. CCA is a method for identi-
fying multivariate relationships between sets of var-
iables (Hotelling, 1935). It is used to study the
relationship between variables from two domains
of interest (e.g., clinical symptoms and biological
data) measured on the same set of individuals. In
CCA, linear combinations of the input variables
from both domains are created (called canonical
variates) so that the correlation between the com-
bined variables (canonical correlation, Rc) is maxi-
mized. Similar to PCA, it is possible to continue to
seek additional pairs of canonical variates that are
orthogonal to the preceding canonical variate(s).
For each additional canonical variate pair, the cor-
responding canonical correlation Rc decreases. The
total number of possible pairs of canonical variates
is given by the smaller of the number of variables
in each domain, which in our analysis equaled 4.
CCA assumes minimal multicollinearity and is
prone to overfitting, especially when the ratio

of subjects to input variables is small. We chose CCA over other multi-
variate approaches, such as multivariate regression, because we had no
response-predictor relationship assumed. Several articles provide an
excellent introduction with more detail for the interested reader
(Tabachnick et al., 2007; Dinga et al., 2019; H. T. Wang et al., 2020).
Previous attempts to associate clinical features with RSFC using CCA
(Drysdale et al., 2017) may have been severely overfit (Dinga et al.,
2019). In our analysis, the starting subject to variable ratio was 0.5, which
is likely to overfit, meaning that our results would be unlikely to general-
ize. Using PCA (described above), we reduced the subject to variable ra-
tio to 3.4. While improved, this ratio was still worse than the generally
recommended ratio of 10:1 (Tabachnick et al., 2007; Pituch and Stevens,
2015). To mitigate overfitting, we used an L2 norm regularized CCA
(Gonzalez et al., 2008), and optimized regularization parameters (l ) for
clinical and RSFC inputs based on held-out testing data from 10-fold
cross-validation stratified for study site. The CCA model was built using
9 folds, and the resultant canonical weights were used to create canonical
variates in the held-out fold. We repeated this process 10 times; and for
each repeat; a new set of 10 folds was created, making in total 100 train-
ing sets with unique canonical weights and 100 corresponding testing
sets to evaluate performance. For our final model, we used the

Figure 2. Using CCA to reveal three dimensions of association between clinical features and RSFC. Cumulative variance
explained from clinical (A) and RSFC (B) principal components. Red lines indicate 80% variance explained. Canonical cor-
relation (Rc) between RSFC and clinical canonical variates for first (C), second (E), and third (G) canonical correlations.
Permutation test for significance of Rc value (shown in red) relative to 5000 permutations for first (D), second (F), and
third (H) canonical correlations. CV, Canonical variate.
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regularization parameters that yielded the best average Rc value in held-
out testing data for the first canonical correlation.

Reconstructing model weights. CCA was performed following PCA
of clinical and RSFC data. However, the interpretation of the rotation
matrix is challenging, and we therefore transformed the CCA weights
back into their original space using the CCAmodel weights and the rota-
tion matrix. Following this transformation, we were able to use the CCA
model weights in the original clinical and RSFC spaces. Applying these
weights to clinical and RSFC data yielded clinical and RSFC canonical
variates, respectively. We did not use these reconstructed weights
directly for interpretation, and instead used canonical loadings for the
purposes of interpretation (see Statistics; Fig. 4). We did, however, use
these weights to extract canonical variates over time.

Canonical variate association with clinical outcomes of treatment.
We examined whether the canonical variates obtained from CCA were
associated with outcomes to MBSR1 in the episodic-UMB dataset. To
do this, we examined subjects randomized to the enhancedMBSR condi-
tion and correlated baseline canonical variates for RSFC with the reduc-
tion in headache frequency after 20weeks, the primary outcome of the
trial (Seminowicz et al., 2020). We also sought to determine whether
changes in canonical variates were associated with reductions in head-
ache frequency. To do this, we calculated the canonical variates using
model weights from the CCA model described above, and calculated dif-
ference scores before and after therapy (20 week gap in between scans).
In this analysis, we did not use ComBat-corrected RSFC data when
determining changes in canonical variate scores, since the data were
from a single site and we felt the comparison would be more appropriate
when done for data processed in an identical manner. We would like to
emphasize though that the CCA model weights used for canonical vari-
ate extraction came from ComBat-corrected RSFC data exclusively. The
relationship between the change in canonical variate scores and reduc-
tions in headache frequency was assessed by means of correlation analy-
sis over the corresponding time period.

Determining support for episodic versus chronic migraine clustering
on migraine symptoms. Chronic versus episodic migraine can be thought
of as a clustering solution to migraine and is defined based on a 15 head-
ache day per month frequency cutoff. We sought to determine how well
this clustering solution was supported by a more holistic catalog of clini-
cal data. We therefore determined the silhouette index for episodic ver-
sus chronic distinction using seven clinical variables in the combined
sample (n= 166). Should the episodic/chronic clustering have a silhou-
ette index no better than chance (i.e., likely coming from a multivariate
normal distribution), then it would argue against the current field norm
of episodic and chronic migraine subtypes (see Statistics).

Data-driven clustering of RSFC canonical variates. We sought to
identify biotypes in migraine based on the significant RSFC canonical
variates from CCA using k-means clustering. We used Euclidean dis-
tance as our distance metric for all clustering. We compared 26 cluster-
ing metrics using the NBclust package (Charrad et al., 2014) with cluster
number (k) ranging from 2 to 10. For each value of k, a score for all
26 clustering metrics was computed, and cluster performance was
ranked per metric (e.g., the value of k with the largest silhouette index
received a rank of 1). Per metric, a value of k “won” if it received the first
rank and therefore had the best performance for that specific clustering
metric. We chose a final value for k using a majority rule, where the clus-
ter number that had the most total victories (came in first for a clustering
metric) was deemed the best overall. We paid special attention to the sil-
houette index, as this metric has been shown to accurately identify clus-
ters of data (Petrovic, 2006). This metric compares the relative similarity
within a data point’s cluster (cohesion) to outside clusters (separation).
Larger positive values (maximum of 1) suggest a better clustering solu-
tion than values approaching zero.

Statistics. To determine statistical significance of our CCA, we per-
formed a permutation test by constructing 5000 bootstraps with replace-
ment (Efron, 2000) using the final model l parameters (see Three
modes of association were found between RSFC and migraine symp-
toms). For each bootstrap, we calculated Rc values for four canonical
correlations and then compared this null distribution against true Rc val-
ues using a one-sided t test for each of the four canonical correlations in

a process previously described (Dinga et al., 2019). To interpret CCA
results, we calculated canonical loading by correlating canonical variates
with their respective model inputs (e.g., RSFC values). We used a false
discovery rate multiple comparisons correction on the resultant p values
(Benjamini et al., 2001). Determining significance for clustering analysis
can be challenging (Liu et al., 2008; Dinga et al., 2019). For our cluster-
ing, we tested the true silhouette index scores for the final clustering so-
lution relative to 5000 multivariate Gaussian distributions based on the
mean and covariance of the input data using a one-sample t test, in a
process similar to ones previously described (Liu et al., 2008; Dinga
et al., 2019). This approach allows us to test against the null model of a
multivariate normal distribution which does not support clustering. We

Figure 3. No association between canonical variates and subject motion. Scatter plot for
first (A), second (B), and third (C) RSFC canonical variate relationship with average framewise
displacement (FD). CV, Canonical variate.
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used logistic regression to predict episodic migraine diagnosis using sig-
nificant RSFC canonical variates. Based on the predicted versus true di-
agnosis, a receiver operating characteristic curve was made using
the pROC package (Robin et al., 2011) with an area under the curve
of 0.86, indicating RSFC canonical variates displayed sensitivity
and specificity in separating chronic and episodic migraine. A
Spearman rank correlation was used for all correlation analyses
unless stated otherwise. For all analyses, significance was deter-
mined using a 0.05 false discovery rate-corrected threshold.

Results
Three modes of association were found between RSFC and
migraine symptoms
We used CCA to identify dimensions of covariance between a
diverse array of clinical symptoms and RSFC from 24 nodes
organized into six networks (Fig. 1). We optimized l values
for regularization using performance in held-out testing data
to maximize canonical correlation (Rc) for the first pair of ca-
nonical variates. The best performance in testing data for the
first canonical correlation was an average Rc = 0.6 with l

values of 0.3 for clinical data and 0.9 for
RSFC, and we used these regularization
parameters for our final model. In the
final model, the first canonical correla-
tion was Rc = 0.71, N = 143, p = 0.0002
(Fig. 2C,D), the second was Rc = 0.49,
N = 143, p = 0.0023 (Fig. 2E,F), the third
was Rc = 0.43, N = 143, p = 0.006 (Fig.
2G,H), and the fourth was Rc = 0.35,
N = 143, p = 0.098. The average Rc values
for held-out testing data are as follows:
first canonical correlation Rc = 0.6, SD =
0.19, second Rc = 0.14, SD = 0.25, third
Rc 0.19, SD = 0.23, and fourth Rc = 0.03,
SD = 0.23. We focused interpretation
and further analysis on the first three sig-
nificant canonical correlations. Each ca-
nonical correlation is between a pair of
normally distributed clinical and RSFC
canonical variates. Therefore, from the
three significant canonical correlations,
each subject has three RSFC and three
clinical canonical variates.

Association of RSFC canonical variates
and scanner motion
Given that motion has profound effects on
estimates of RSFC (Power et al., 2012), we
ensured that the canonical variates for
RSFC were unrelated to motion. We did
not find a significant correlation between
average framewise displacement during
the resting-state scan with the first (rs =
0.12, N=143, p=0.14; Fig. 3A), second (rs =
0.08, N= 143, p = 0.3; Fig. 3B), nor third
(rs = �0.04, N = 143, p = 0.6; Fig. 3C)
RSFC canonical variates. We therefore
concluded that there was no evidence for
a relationship between RSFC canonical
variates and subject movement.

Interpretation of CCAmodel
We correlated canonical variates with their
respective RSFC/clinical symptoms (i.e.,

canonical loadings) to interpret the CCA model. While each of
the three resultant dimensions consisted of clinical and RSFC ca-
nonical variates, we chose to name each dimension with a clini-
cally derived name for ease of discussion. The first canonical
variate for symptoms correlated in the same direction with all
seven clinical features (Fig. 4A). Hence, we interpret the first
clinical canonical correlation as the “global symptom dimen-
sion.” Patients with positive clinical canonical variate values for
the first canonical correlation had globally better symptoms (less
severe symptoms overall). The associated first RSFC canonical
variate primarily reflected frontoparietal network (FPN) and
dorsal attention network (DAN) connectivity (Fig. 4B). Patients
with positive RSFC canonical variate values had less FPN and
DAN connectivity than patients with negative RSFC canonical
variate scores.

The second clinical canonical variate reflected an inverse rela-
tionship between average headache pain and anxiety primarily,
referred to here as the “inverse pain/anxiety dimension” (Fig.
4A). Patients with positive clinical canonical variate values had

Figure 4. Interpretation of canonical variates. Canonical variates were correlated with input data to facilitate interpreta-
tion. A, For clinical data, correlations shown for the three identified dimensions. Correlation between RSFC and global dimen-
sion (B), inverse pain/anxiety dimension (C), and pain catastrophizing dimension (D) scores organized over 24 ROIs in six
networks. The global dimension was most associated with FPN and DAN connectivity with other networks. The inverse pain/
anxiety dimension was most related to DMN and sensorimotor connectivity. The pain catastrophizing dimension was most
related to salience, sensorimotor, and DMN connectivity. The same color coding for networks and correlation color range is
used in B–D. All off-white correlation values are significant for all four panels. Mean Pain, Average headache pain; NHA,
headache frequency; PHQ-15, Patient Healthy Questionnaire 15 item; PSQI, Pittsburgh Sleep Quality Index; PCS, Pain
Catastrophizing Scale; GAD-7, Generalized Anxiety Disorder; PHQ-9, Patient Health Questionnaire 9 item; r, Pearson correlation
coefficient.
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above-average headache pain and below-average anxiety. The
pattern of functional connectivity was quite sparse for this but
was primarily related to anticorrelation between the default
mode network (DMN) and other networks (Fig. 4C). Patients
with positive RSFC canonical variate values had increased
DMN connectivity relative to negative scoring patients. The
third symptom canonical variate primarily related to pain cat-
astrophizing (Fig. 4A) and related to salience, sensorimotor,
and default mode connectivity with one another (Fig. 4D).
Patients with positive clinical values had below-average pain
catastrophizing. Patients with positive RSFC canonical variate
scores had above-average sensorimotor connectivity with
DMN and salience network. We refer to this here as a “pain
catastrophizing dimension.”

RSFC canonical variates are associated with headache
reduction in MBSR1

We sought to determine whether RSFC canonical variates were
associated with improvements from mindfulness therapy for mi-
graine. We correlated baseline canonical variates from functional
connectivity with the reduction in frequency of headaches and
found a significant association for the global dimension (rs =
�0.44, N= 42, p= 0.0038) (Fig. 5). RSFC canonical variates from
neither the inverse anxiety/pain nor the pain catastrophizing
dimensions were significantly associated with clinical improve-
ment. Given that baseline global dimension RSFC canonical vari-
ate associated with clinical improvements, we next examined
whether changes in this dimension associated with headache fre-
quency reduction following MBSR1 in the episodic-UMB cohort
and found a significant association (rs=�0.40,N=40, p= 0.014).

Testing the support for current migraine clustering
We tested whether the current clustering of migraine patients
into episodic (,15 headaches/mo) and chronic (�15 headaches/
mo) subtypes differs from a multivariate Gaussian distribution.
Chronic and episodic migraine patients were collected at unique
sites, creating a potential confound (see Discussion). Using the
seven clinical features used for CCA, we determined the silhou-
ette index in 166 patients using the chronic/episodic distinction,
yielding a value of 0.23. We then again compared this with 5000
multivariate Gaussian distribution based on the mean and covar-
iance of the seven clinical measures. This analysis indicated
that the chronic versus episodic clustering was not significantly
different from a multivariate Gaussian distribution (N=166,
p=0.66) (Fig. 6A). Therefore, there is insufficient evidence to
reject the null hypothesis that the episodic versus chronic cluster-
ing solution comes from a multivariate Gaussian distribution.
This means that using a holistic catalog of symptoms, we were
unable to find support for subtyping migraine patients into epi-
sodic and chronic migraine categories.

Identifying biotypes in migraine
In order to identify subtypes of migraine based on biological
data, called biotypes, we performed k-means clustering based on
the canonical variates for RSFC for the three dimensions. The
best performing solution was k=4, which had the best perform-
ance in 27% of metrics, although there were other solutions with
similar performance (k= 2 was best in 23%, no other solutions
were consistently as strong; for silhouette index scores over vari-
ous values of k, see Fig. 6B). To determine significance of a four
cluster solution, we estimated 5000 multivariate Gaussian distri-
butions based on the mean and covariance of the three RSFC ca-
nonical variates. We calculated the silhouette index, a measure of

clustering quality, in each of these 5000 distributions and com-
pared the true four cluster silhouette index of 0.28 against them
(Fig. 6C). The true silhouette index of 0.28 was significant
relative to the multivariate Gaussian distributions (N=143,
p= 0.049) (Fig. 6C). These clusters had unique patterns of RSFC
canonical variate scores (Fig. 6D) and clinical data (Table 1).
Cluster 1 had negative and therefore below-average RSFC canon-
ical variate values for the global symptom dimension, indicating
patients in this group had worse than average symptoms overall.
Cluster 2 had below-average RSFC canonical variate scores
for the pain catastrophizing dimension, indicating patients in
this group had above-average catastrophizing. Cluster 4 had
below-average pain/anxiety inverse dimension scores, indicat-
ing patients in this group had below-average mean pain and
above-average anxiety. Cluster 3 had above-average scores in
all three dimensions, indicating patients in this group had the
opposite pattern of symptoms as all other biotypes.

Discussion
Migraine is a heterogeneous disorder with variable response to
therapy and expression of symptoms. This variability has been
ignored in many studies that treat migraineurs as a single group
in between-subjects analyses contrasting patients and healthy
controls. When variability has been factored in, subjects are often
subtyped into categories not derived from biological data that
have also not been rigorously tested. When studies do perform
within-subjects analyses to associate symptoms with biological
data, they often examine only one variable of interest, ignoring
the complex relationship between migraine symptoms. In the
current study, we addressed these existing limitations by using a
large sample size, including a wealth of clinical data from well-
phenotyped subjects, and by relating these clinical profiles to
RSFC in a single multivariate statistical step, as opposed to a
standard mass univariate analysis. This approach identified three
dimensions of covariation between clinical and RSFC data. The
first was a global-symptom dimension that was associated with
all symptoms and was primarily related to FPN and DAN

Figure 5. Association between baseline (pre-intervention) global symptom RSFC canonical
variate and change in headache frequency after therapy (positive numbers indicate a reduc-
tion in headache days). Subjects with lower scores and more severe symptoms overall had
better responses to MBSR1 than subjects with less severe symptoms. CV, Canonical variate.
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functional connectivity with other networks. The FPN includes
the posterior parietal cortex and the lateral prefrontal cortex and
is consistently associated with cognitive control (Bush and Shin,
2006; Scolari et al., 2015) as well as acute and chronic pain
(Seminowicz et al., 2011; Seminowicz and Moayedi, 2017; Y.
Wang et al., 2017). The DAN contains the intraparietal sulcus
and the frontal eye fields and is consistently involved in attention
(Vossel et al., 2014). Our findings suggest that cognitive net-
works relate to symptoms generally, and that they may
function as targets to simultaneously treat all symptoms at
once. Consistent with this, the normalization of FPN functional
connectivity has been associated with clinical improvement in
migraine (Li et al., 2015). The second dimension reflected inverse
pain and anxiety scores and was related to default mode (DMN)
and sensorimotor network connectivity. The DMN contains the
angular gyrus, posterior cingulate cortex, and the mPFC; and the
sensorimotor network contains the precentral and postcentral
gyri. Increasing or decreasing DMN-sensorimotor connectivity

might therefore be a fruitful avenue
to modify anxiety and pain, although
the inverse relationship between these
two clinical variables in the second ca-
nonical correlation suggests that such
targeting would be side effect prone.
Finally, the third dimension was a pain
catastrophizing dimension and was pri-
marily associated with functional con-
nectivity of salience network (anterior
insula and midcingulate cortex) to DMN
and sensorimotor networks, and to
DMN connectivity with other networks.
Previous literature has shown a relation-
ship between the salience network and
pain catastrophizing (Hubbard et al.,
2014), and our results suggest that tar-
geting this network might prove to be an
especially useful tool for targeting pain
catastrophizing.

We were able to show that the RSFC
scores for the global symptom dimension
were associated with improvements from
the nonpharmacologic MBSR1 treatment of
migraine, which has recently been estab-
lished efficacy for migraine (Seminowicz
et al., 2020). Subjects with lower scores and
thus more severe symptoms showed a larger
reduction in headache frequency following
MBSR1 than subjects who had compara-
tively less severe symptoms. In other words,
patients with more severe symptoms overall
experienced more pronounced improve-

ments fromMBSR1. Additionally, we observed that changes in
global dimension RSFC scores toward the positive pole (less
symptom severe) were associated with improvements from
MBSR1 as well. This might indicate that reducing FPN con-
nectivity to salience, sensorimotor, and DANs could enhance
the effects of MBSR1, given that the first dimension was neg-
atively associated with this FPN functional connectivity.

The migraine RSFC literature uses small sample sizes
and inconsistent analyses, making it difficult to synthesize
(Skorobogatykh et al., 2019). However, there do appear to
be important points of convergence between our findings
and previous work, which further supports the validity of
our findings. Abnormal connectivity in migraine is often
observed in the FPN, salience, sensorimotor, DMN, and
DAN (Russo et al., 2012; Xue et al., 2012; Jin et al., 2013;
Hubbard et al., 2014; Ke et al., 2020). We therefore antici-
pated that these networks would be associated with illness
characteristics. Two clinical variables included in our analysis
that have been the subject of multiple studies in migraine are
headache frequency and pain catastrophizing. Frequency was
most related to our first identified global dimension, and asso-
ciations between headache frequency and functional connec-
tivity of salience and FPN nodes (Mainero et al., 2011; Maleki
et al., 2012; Hubbard et al., 2014). Pain catastrophizing is often
linked to attentional processes (Quartana et al., 2009), and
Pain Catastrophizing Scale scores are related to anterior insula
(key node of the salience network) and sensorimotor connec-
tivity in migraine patients (Hubbard et al., 2014).

Our study has major implications to migraine research and
clinical trial design. Migraine is currently split into episodic and

Table 1. Clinical profiles for migraine biotypesa

Clinical measure Biotype 1 Biotype 2 Biotype 3 Biotype 4

Mean pain 6.8 (1.3) 4.7 (1.7) 5.2 (1.5) 4.2 (1.4)
NHA 25.3 (6.8) 9.0 (3.8) 10.2 (6.3) 13.7 (6.9)
PHQ-15 12.0 (5.0) 6.4 (4.0) 6.0 (3.6) 9.3 (4.1)
PSQI 9.2 (3.8) 4.9 (3.5) 3.5 (2.3) 5.9 (2.8)
PCS 21.0 (10.6) 17.2 (11.5) 6.2 (5.7) 13.4 (9.0)
GAD-7 3.8 (3.0) 1.7 (2.1) 1.4 (1.9) 5.0 (4.9)
PHQ-9 9.7 (5.7) 3.0 (4.1) 1.9 (2.3) 5.8 (3.7)
aData are mean (SD). Mean pain, Average headache pain; NHA, headache frequency; PHQ-15, Patient
Healthy Questionnaire 15 item; PSQI, Pittsburgh Sleep Quality Index; PCS, Pain Catastrophizing Scale; GAD-
7, Generalized Anxiety Disorder; PHQ-9, Patient Health Questionnaire 9 item.

Figure 6. Lack of support for episodic/chronic migraine clustering and identification of a 4 biotype clustering of migraine.
A, Lack of significance for clustering migraine into chronic and episodic subtypes based on silhouette index over 5000 multi-
variate Gaussian distributions of clinical data. B, Silhouette index for various cluster numbers (k) from three RSFC canonical
variates indicating that k= 4 had the best performance. C, Significance of clustering into four biotypes based on silhouette
index over 5000 multivariate Gaussian distributions of RSFC canonical variate scores. D, Patterns of RSFC canonical variates
for three dimensions over the four identified biotypes. Color coding represents the dimension. Canonical variates are distrib-
uted with a mean of zero; therefore, negative values indicate below-average scores and positive values indicate above-aver-
age scores. CV, Canonical variate; k, number of clusters.

Krimmel et al. · Biological Dimensions of Migraine J. Neurosci., August 3, 2022 • 42(31):6156–6166 • 6163



chronic classifications based on a 15 headache per month cutoff
(International Headache Society, 2018). There have been
criticisms of the concept of chronic migraine in the literature
(Medrea and Christi, 2018), and in particular over the exact cut-
off point between episodic and chronic patients (Torres-Ferrús
et al., 2017). We tested the quality of the current two cluster solu-
tion for migraine patients in our data based on seven clinical fea-
tures, finding no evidence against the null hypothesis of a
multivariate normal distribution (which does not have clusters).
This is especially interesting because the episodic and chronic
migraine patient cohorts in our study were collected at two sepa-
rate sites, which if anything should bias the results toward a
chronic versus episodic clustering solution. Additionally, we
identified four biotypes of migraine that could be used for pre-
dicting therapeutic outcomes in future studies. Patients falling
into a given cluster had unique brain-symptom relationships
arguing for targeted therapy (Fig. 6D). For instance, patients in
Cluster 1 had the most extreme global symptom dimension
score, which was associated with FPN and DAN connectivity,
and perhaps these patients would benefit the most from inter-
ventions targeting these networks. On the other hand, Cluster 2
patients who had more extreme pain catastrophizing might ben-
efit the most from interventions that reduce catastrophizing and
also target sensorimotor and salience networks. Together, these
clustering results argue against the current episodic/chronic clus-
tering that dominates migraine research and clinical trial design,
and suggest an alternative based on clinical and biological associ-
ation. Future work could build on this biotyping by using mul-
timodal data while also examining the potential benefits of
different clustering approaches.

This study is not without limitations. A major danger when
conducting CCA is overfitting, and previously exciting results in
depression may have fallen victim to this issue (Dinga et al.,
2019). In the current study, we took several steps to mitigate
overfitting. First, we reduced the number of features in the model
through parcellations (instead of voxels) for RSFC, feature selec-
tion, and PCA. Together, this allowed us to greatly increase the
ratio of subjects to model features, attenuating overfitting. We
took the additional step of performing regularized CCA and
tuned l parameters based on the held-out strength of the first
canonical correlation. This resulted in very minimal overfitting
for the first canonical correlation. However, overfitting was
larger for the second and third canonical correlations, indicating
that some caution is warranted when interpreting and using
them. Future work could expand on our results by testing this
model in new data and benefit from data sharing to create larger
sample sizes that are less prone to overfitting. Additionally, sta-
tistical inference for clustering is challenging (Liu et al., 2008;
Dinga et al., 2019). In the current study, we tested against a null
distribution of a multivariate Gaussian distribution, which when
true, would not merit clustering. However, even with rejection of
this null hypothesis, it is possible that clustering is still unwar-
ranted because not all multivariate non-Gaussian data are neces-
sarily organized into clusters. Future work could examine the
utility of this clustering solution by using the four biotypes to
predict therapeutic outcomes from migraine treatment, and by
examining whether these biotypes exist in additional chronic
pain disorders. An additional limitation comes from potential
site effects because of unique populations, MR systems, and scan-
ning protocol decisions (open or closed eyes during resting
state). While we reduced effects of study site by excluding certain
ROIs and performing multisite harmonization, site effects are
potentially still present in RSFC data.

In conclusion, we identify an association between mi-
graine symptoms (including headache severity, quality of
life, affective measures, and coping) and whole-brain RSFC,
yielding three dimensions of association between these two
domains. These results may facilitate the development of
personalized medicine, which is limited by treating illnesses
as homogeneous groupings. Moreover, the biological associ-
ation with our clinical data identifies potential targets for
therapy and research. Finally, our data argue against the current
clustering of migraine patients into chronic and episodic classifi-
cations and instead offer an alternative that is grounded in clini-
cal presentation and biology simultaneously.
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