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thickness 4 mm, FOV 220 mm, flip angle 77°,
and voxel size 3.4� 3.4� 4 mm). For analyses
of clinical data only, subjects were excluded
because of missing data, leaving a total of 120
subjects for analysis (average age of 38, SD = 12,
106 female). For analyses of MRI data, subjects
were excluded because of poor MRI quality, ex-
cessive motion during resting state (average
framewise displacement .0.4 mm), and miss-
ing clinical data, for a total of 102 subjects (av-
erage age of 38, SD = 12, 91 women); 83 of
these subjects were also randomized to a clinical
trial receiving either MBSR1 (n= 42) or an
active control condition (stress management for
headache; n= 41). These randomized partici-
pants received additional scans 10 and 20weeks
after the baseline scan (Seminowicz et al., 2020).
Two MBSR1 subjects were excluded when ana-
lyzing changes in RSFC canonical variate scores
leaving 40 subjects.

MRI preprocessing. Preprocessing was per-
formed using FMRIPREP version stable
(Esteban et al., 2020), a Nipype (Gorgolewski
et al., 2017) based tool. Each T1w volume
was corrected for intensity nonuniformity
using N4BiasFieldCorrection version 2.1.0
(Tustison et al., 2010) and skull-stripped
using antsBrainExtraction.sh version 2.1.0
(using the OASIS template). Spatial normaliza-
tion to the ICBM 152 Nonlinear Asymmetrical
template version 2009c (Fonov et al., 2009) was
performed through nonlinear registration with
the antsRegistration tool of ANTs version 2.1.0
(Avants et al., 2008), using brain-extracted ver-
sions of both T1w volume and template. Brain
tissue segmentation of CSF, white matter, and
gray matter was performed on the brain-
extracted T1w using fast (FSL version 5.0.9)
(Zhang et al., 2001).

Functional data were slice time-corrected
using 3dTshift from AFNI version 16.2.07
(Cox, 1996) andmotion-corrected using mcflirt
(FSL version 5.0.9) (Jenkinson et al., 2002). This
was followed by coregistration to the corre-
sponding T1w using boundary-based registra-
tion (Greve and Fischl, 2009) with 6 degrees of
freedom, using flirt (FSL). Motion-correcting
transformations, BOLD-to-T1w transformation and T1w-to-template
(MNI) warp, were concatenated and applied in a single step using
antsApplyTransforms (ANTs version 2.1.0) using Lanczos interpolation.

Framewise displacement (Power et al., 2014) was calculated for
each functional run using the implementation of Nipype. ICA-
based Automatic Removal Of Motion Artifacts (AROMA) was used to
generate aggressive noise regressors as well as to create a variant of
data that is nonaggressively denoised (Pruim et al., 2015). Many in-
ternal operations of FMRIPREP use Nilearn (Abraham et al., 2014),
principally within the BOLD-processing workflow. For more details
of the pipeline, see https://fmriprep.readthedocs.io/en/stable/workflows.
html.

RSFC processing. Following nonaggressive implementation of
AROMA (see MRI preprocessing), resting-state data underwent
several additional denoising steps. Resting-state denoising and seed-
based analysis were conducted in the CONN functional connectivity
toolbox version 19f (Whitfield-Gabrieli and Nieto-Castanon, 2012)
(http://www.nitrc.org/projects/conn). Given sustained controversy
concerning global signal, we elected not to remove global signal in our
analyses (Murphy and Fox, 2017). We performed aCompCor (Behzadi
et al., 2007; Muschelli et al., 2014) to remove noise captured in white
matter and CSF. We calculated the first five eigenvectors from four

erosions of subject-specific white matter masks and two erosions of
subject-specific CSF masks, as these levels of erosion no longer contain
global signal (Power et al., 2017). Variance in resting-state data related
to these 10 anatomic timeseries was removed via linear regression at a
voxel-wise level. Given that AROMA has been shown to remove
motion artifact from RSFC well relative to other common methods
(Ciric et al., 2017), no additional steps were taken to directly remove
motion artifact. To avoid noise being reintroduced while removing fre-
quency specific noise, voxel-wise and regressor data were simultane-
ously bandpass filtered (0.008-0.15Hz), and all data underwent linear
detrending.

Following resting-state functional denoising, timeseries were ex-
tracted from 32 ROIs based on an existing independent component anal-
ysis of the Human Connectome Project available from the CONN
functional connectivity toolbox. These ROIs were organized into default
mode, sensorimotor, visual, salience/cingulo-opercular, dorsal attention,
frontoparietal, language, and cerebellar networks. To estimate functional
connectivity, the 32 ROI timeseries from the entire scanning session
were correlated, and the resulting Pearson correlation coefficients were
converted to z scores. We excluded functional connections with vis-
ual and language network seeds, as we did not believe that these
would be associated with the clinical symptoms in our analysis. We
do note that some studies have found a relationship between neural

Figure 1. Study overview. For CCA, 143 migraine subjects were collected from two sites. Seven clinical measures were
acquired along with RSFC estimates from 24 regions spanning six functional networks. After site harmonization of RSFC and
PCA, CCA was used to associate clinical and biological data. CCA is used to study the relationship between variables from two
domains of interest measured in one sample. In CCA, linear combinations of the input variables from both domains are cre-
ated (called canonical variates) so that the correlation between the combined variables (canonical correlation, Rc) is maxi-
mized. RSFC canonical variates were associated with clinical outcomes to mind-body therapy and underwent clustering
analysis to reveal biotypes of migraine. Rc, Canonical correlation; CVRSFC, canonical variates for RSFC; CVclinical, canonical vari-
ates for clinical data.
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abnormalities in migraine and the visual system that are more than
effects of aura (Burke et al., 2020). Language network regions
included parts of the posterior superior temporal gyrus and the infe-
rior frontal gyrus (consistent with Wernicke’s and Broca’s area).
Visual network regions included nodes in the occipital cortex.
While the occipital cortex has been implicated in migraine, it is of-
ten associated with symptoms of aura (Hadjikhani et al., 2001), a
symptom domain that was not measured in our two datasets. This
left a total of 24 ROIs with 276 unique functional connections.

Study site has been shown to influence fMRI data and should be
adjusted for when possible (Van Horn and Toga, 2009; Noble et al.,
2017; Yu et al., 2018). To adjust for effects of site while controlling for
clinical variables, age, and sex, we used Combining Batches of microar-
ray data (ComBat) (Johnson et al., 2007). ComBat was developed to deal
with batch effects in high dimensional data and uses an empirical Bayes
method to remove batch effects. ComBat was applied following removal
of irrelevant ROIs to create site-corrected RSFC, which was used in all
analyses, except for when determining changes in canonical variate
scores with therapy (see Canonical variate association with clinical out-
comes of treatment).

Clinical features. Participants completed multiple self-report ques-
tionnaires to assess clinical characteristics. The two headache measures

acquired were the frequency of headaches and
the average pain associated with headaches. We
also examined the exaggerated mental set applied
to pain or anticipation of pain using the Pain
Catastrophizing Scale (Sullivan et al., 1995). The
Pittsburg Sleep Quality Index was used to mea-
sure sleep quality as well as sleep disturbances
(Buysse et al., 1989). We used the Patient Health
Questionnaire 15 to quantify somatization and
somatic symptom severity (Kroenke et al., 2002).
Finally, we examined affective health using the
Generalized Anxiety Disorder-7 measure of
anxiety (Spitzer et al., 2006) and the Patient
Health Questionnaire 9 measure of depression
(Kroenke et al., 2001). The total score for each
questionnaire (where applicable) was used for
all analyses.

PCA.We used PCA to address multicollinearity
and to reduce the dimensionality of our data. PCA
creates a set of orthogonal components that can be
linearly combined to explain all of the variance in
the original dataset. We used singular value decom-
position and selected the first four clinical compo-
nents (see Fig. 2A), explaining.80% of the clinical
variance, and the first 35 RSFC components,
explaining .80% of the RSFC variance (see Fig.
2B). These components were used as input data for
the CCA (see Regularized CCA).

Regularized CCA. CCA is a method for identi-
fying multivariate relationships between sets of var-
iables (Hotelling, 1935). It is used to study the
relationship between variables from two domains
of interest (e.g., clinical symptoms and biological
data) measured on the same set of individuals. In
CCA, linear combinations of the input variables
from both domains are created (called canonical
variates) so that the correlation between the com-
bined variables (canonical correlation, Rc) is maxi-
mized. Similar to PCA, it is possible to continue to
seek additional pairs of canonical variates that are
orthogonal to the preceding canonical variate(s).
For each additional canonical variate pair, the cor-
responding canonical correlation Rc decreases. The
total number of possible pairs of canonical variates
is given by the smaller of the number of variables
in each domain, which in our analysis equaled 4.
CCA assumes minimal multicollinearity and is
prone to overfitting, especially when the ratio

of subjects to input variables is small. We chose CCA over other multi-
variate approaches, such as multivariate regression, because we had no
response-predictor relationship assumed. Several articles provide an
excellent introduction with more detail for the interested reader
(Tabachnick et al., 2007; Dinga et al., 2019; H. T. Wang et al., 2020).
Previous attempts to associate clinical features with RSFC using CCA
(Drysdale et al., 2017) may have been severely overfit (Dinga et al.,
2019). In our analysis, the starting subject to variable ratio was 0.5, which
is likely to overfit, meaning that our results would be unlikely to general-
ize. Using PCA (described above), we reduced the subject to variable ra-
tio to 3.4. While improved, this ratio was still worse than the generally
recommended ratio of 10:1 (Tabachnick et al., 2007; Pituch and Stevens,
2015). To mitigate overfitting, we used an L2 norm regularized CCA
(Gonzalez et al., 2008), and optimized regularization parameters (l ) for
clinical and RSFC inputs based on held-out testing data from 10-fold
cross-validation stratified for study site. The CCA model was built using
9 folds, and the resultant canonical weights were used to create canonical
variates in the held-out fold. We repeated this process 10 times; and for
each repeat; a new set of 10 folds was created, making in total 100 train-
ing sets with unique canonical weights and 100 corresponding testing
sets to evaluate performance. For our final model, we used the

Figure 2. Using CCA to reveal three dimensions of association between clinical features and RSFC. Cumulative variance
explained from clinical (A) and RSFC (B) principal components. Red lines indicate 80% variance explained. Canonical cor-
relation (Rc) between RSFC and clinical canonical variates for first (C), second (E), and third (G) canonical correlations.
Permutation test for significance of Rc value (shown in red) relative to 5000 permutations for first (D), second (F), and
third (H) canonical correlations. CV, Canonical variate.

Krimmel et al. · Biological Dimensions of Migraine J. Neurosci., August 3, 2022 • 42(31):6156–6166 • 6159



regularization parameters that yielded the best average Rc value in held-
out testing data for the first canonical correlation.

Reconstructing model weights. CCA was performed following PCA
of clinical and RSFC data. However, the interpretation of the rotation
matrix is challenging, and we therefore transformed the CCA weights
back into their original space using the CCAmodel weights and the rota-
tion matrix. Following this transformation, we were able to use the CCA
model weights in the original clinical and RSFC spaces. Applying these
weights to clinical and RSFC data yielded clinical and RSFC canonical
variates, respectively. We did not use these reconstructed weights
directly for interpretation, and instead used canonical loadings for the
purposes of interpretation (see Statistics; Fig. 4). We did, however, use
these weights to extract canonical variates over time.

Canonical variate association with clinical outcomes of treatment.
We examined whether the canonical variates obtained from CCA were
associated with outcomes to MBSR1 in the episodic-UMB dataset. To
do this, we examined subjects randomized to the enhancedMBSR condi-
tion and correlated baseline canonical variates for RSFC with the reduc-
tion in headache frequency after 20weeks, the primary outcome of the
trial (Seminowicz et al., 2020). We also sought to determine whether
changes in canonical variates were associated with reductions in head-
ache frequency. To do this, we calculated the canonical variates using
model weights from the CCA model described above, and calculated dif-
ference scores before and after therapy (20 week gap in between scans).
In this analysis, we did not use ComBat-corrected RSFC data when
determining changes in canonical variate scores, since the data were
from a single site and we felt the comparison would be more appropriate
when done for data processed in an identical manner. We would like to
emphasize though that the CCA model weights used for canonical vari-
ate extraction came from ComBat-corrected RSFC data exclusively. The
relationship between the change in canonical variate scores and reduc-
tions in headache frequency was assessed by means of correlation analy-
sis over the corresponding time period.

Determining support for episodic versus chronic migraine clustering
on migraine symptoms. Chronic versus episodic migraine can be thought
of as a clustering solution to migraine and is defined based on a 15 head-
ache day per month frequency cutoff. We sought to determine how well
this clustering solution was supported by a more holistic catalog of clini-
cal data. We therefore determined the silhouette index for episodic ver-
sus chronic distinction using seven clinical variables in the combined
sample (n= 166). Should the episodic/chronic clustering have a silhou-
ette index no better than chance (i.e., likely coming from a multivariate
normal distribution), then it would argue against the current field norm
of episodic and chronic migraine subtypes (see Statistics).

Data-driven clustering of RSFC canonical variates. We sought to
identify biotypes in migraine based on the significant RSFC canonical
variates from CCA using k-means clustering. We used Euclidean dis-
tance as our distance metric for all clustering. We compared 26 cluster-
ing metrics using the NBclust package (Charrad et al., 2014) with cluster
number (k) ranging from 2 to 10. For each value of k, a score for all
26 clustering metrics was computed, and cluster performance was
ranked per metric (e.g., the value of k with the largest silhouette index
received a rank of 1). Per metric, a value of k “won” if it received the first
rank and therefore had the best performance for that specific clustering
metric. We chose a final value for k using a majority rule, where the clus-
ter number that had the most total victories (came in first for a clustering
metric) was deemed the best overall. We paid special attention to the sil-
houette index, as this metric has been shown to accurately identify clus-
ters of data (Petrovic, 2006). This metric compares the relative similarity
within a data point’s cluster (cohesion) to outside clusters (separation).
Larger positive values (maximum of 1) suggest a better clustering solu-
tion than values approaching zero.

Statistics. To determine statistical significance of our CCA, we per-
formed a permutation test by constructing 5000 bootstraps with replace-
ment (Efron, 2000) using the final model l parameters (see Three
modes of association were found between RSFC and migraine symp-
toms). For each bootstrap, we calculated Rc values for four canonical
correlations and then compared this null distribution against true Rc val-
ues using a one-sided t test for each of the four canonical correlations in

a process previously described (Dinga et al., 2019). To interpret CCA
results, we calculated canonical loading by correlating canonical variates
with their respective model inputs (e.g., RSFC values). We used a false
discovery rate multiple comparisons correction on the resultant p values
(Benjamini et al., 2001). Determining significance for clustering analysis
can be challenging (Liu et al., 2008; Dinga et al., 2019). For our cluster-
ing, we tested the true silhouette index scores for the final clustering so-
lution relative to 5000 multivariate Gaussian distributions based on the
mean and covariance of the input data using a one-sample t test, in a
process similar to ones previously described (Liu et al., 2008; Dinga
et al., 2019). This approach allows us to test against the null model of a
multivariate normal distribution which does not support clustering. We

Figure 3. No association between canonical variates and subject motion. Scatter plot for
first (A), second (B), and third (C) RSFC canonical variate relationship with average framewise
displacement (FD). CV, Canonical variate.
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used logistic regression to predict episodic migraine diagnosis using sig-
nificant RSFC canonical variates. Based on the predicted versus true di-
agnosis, a receiver operating characteristic curve was made using
the pROC package (Robin et al., 2011) with an area under the curve
of 0.86, indicating RSFC canonical variates displayed sensitivity
and specificity in separating chronic and episodic migraine. A
Spearman rank correlation was used for all correlation analyses
unless stated otherwise. For all analyses, significance was deter-
mined using a 0.05 false discovery rate-corrected threshold.

Results
Three modes of association were found between RSFC and
migraine symptoms
We used CCA to identify dimensions of covariance between a
diverse array of clinical symptoms and RSFC from 24 nodes
organized into six networks (Fig. 1). We optimized l values
for regularization using performance in held-out testing data
to maximize canonical correlation (Rc) for the first pair of ca-
nonical variates. The best performance in testing data for the
first canonical correlation was an average Rc = 0.6 with l

values of 0.3 for clinical data and 0.9 for
RSFC, and we used these regularization
parameters for our final model. In the
final model, the first canonical correla-
tion was Rc = 0.71, N = 143, p = 0.0002
(Fig. 2C,D), the second was Rc = 0.49,
N = 143, p = 0.0023 (Fig. 2E,F), the third
was Rc = 0.43, N = 143, p = 0.006 (Fig.
2G,H), and the fourth was Rc = 0.35,
N = 143, p = 0.098. The average Rc values
for held-out testing data are as follows:
first canonical correlation Rc = 0.6, SD =
0.19, second Rc = 0.14, SD = 0.25, third
Rc 0.19, SD = 0.23, and fourth Rc = 0.03,
SD = 0.23. We focused interpretation
and further analysis on the first three sig-
nificant canonical correlations. Each ca-
nonical correlation is between a pair of
normally distributed clinical and RSFC
canonical variates. Therefore, from the
three significant canonical correlations,
each subject has three RSFC and three
clinical canonical variates.

Association of RSFC canonical variates
and scanner motion
Given that motion has profound effects on
estimates of RSFC (Power et al., 2012), we
ensured that the canonical variates for
RSFC were unrelated to motion. We did
not find a significant correlation between
average framewise displacement during
the resting-state scan with the first (rs =
0.12, N=143, p=0.14; Fig. 3A), second (rs =
0.08, N= 143, p = 0.3; Fig. 3B), nor third
(rs = �0.04, N = 143, p = 0.6; Fig. 3C)
RSFC canonical variates. We therefore
concluded that there was no evidence for
a relationship between RSFC canonical
variates and subject movement.

Interpretation of CCAmodel
We correlated canonical variates with their
respective RSFC/clinical symptoms (i.e.,

canonical loadings) to interpret the CCA model. While each of
the three resultant dimensions consisted of clinical and RSFC ca-
nonical variates, we chose to name each dimension with a clini-
cally derived name for ease of discussion. The first canonical
variate for symptoms correlated in the same direction with all
seven clinical features (Fig. 4A). Hence, we interpret the first
clinical canonical correlation as the “global symptom dimen-
sion.” Patients with positive clinical canonical variate values for
the first canonical correlation had globally better symptoms (less
severe symptoms overall). The associated first RSFC canonical
variate primarily reflected frontoparietal network (FPN) and
dorsal attention network (DAN) connectivity (Fig. 4B). Patients
with positive RSFC canonical variate values had less FPN and
DAN connectivity than patients with negative RSFC canonical
variate scores.

The second clinical canonical variate reflected an inverse rela-
tionship between average headache pain and anxiety primarily,
referred to here as the “inverse pain/anxiety dimension” (Fig.
4A). Patients with positive clinical canonical variate values had

Figure 4. Interpretation of canonical variates. Canonical variates were correlated with input data to facilitate interpreta-
tion. A, For clinical data, correlations shown for the three identified dimensions. Correlation between RSFC and global dimen-
sion (B), inverse pain/anxiety dimension (C), and pain catastrophizing dimension (D) scores organized over 24 ROIs in six
networks. The global dimension was most associated with FPN and DAN connectivity with other networks. The inverse pain/
anxiety dimension was most related to DMN and sensorimotor connectivity. The pain catastrophizing dimension was most
related to salience, sensorimotor, and DMN connectivity. The same color coding for networks and correlation color range is
used in B–D. All off-white correlation values are significant for all four panels. Mean Pain, Average headache pain; NHA,
headache frequency; PHQ-15, Patient Healthy Questionnaire 15 item; PSQI, Pittsburgh Sleep Quality Index; PCS, Pain
Catastrophizing Scale; GAD-7, Generalized Anxiety Disorder; PHQ-9, Patient Health Questionnaire 9 item; r, Pearson correlation
coefficient.
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