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Abstract

The RegularChains library in Maple offers a collection of commands for solving
polynomial systems symbolically with taking advantage of the theory of regular chains.
The primary goal of this thesis is algorithmic contributions, in particular, to high-
performance computational schemes for subresultant chains and underlying routines to
extend that of RegularChains in a C/C++ open-source library.

Subresultants are one of the most fundamental tools in computer algebra. They
are at the core of numerous algorithms including, but not limited to, polynomial GCD
computations, polynomial system solving, and symbolic integration. When the subre-
sultant chain of two polynomials is involved in a client procedure, not all polynomials
of the chain, or not all coefficients of a given subresultant, may be needed. Based on
that observation, we design so-called speculative and caching strategies which yield great
performance improvements within our polynomial system solver.

Our implementation of these techniques has been highly optimized. We have imple-
mented optimized core arithmetic routines and multithreaded subresultant algorithms for
univariate, bivariate and multivariate polynomials. We further examine memory access
patterns and data locality for computing subresultants of multivariate polynomials, and
study different optimization techniques for the fraction-free LU decomposition algorithm
to compute subresultants based on determinant of Bézout matrices.

Our code is publicly available at www.bpaslib.org as part of the Basic Polynomial
Algebra Subprograms (BPAS) library that is mainly written in C, with concurrency
support and user interfaces written in C++.

Keywords: Subresultant chain, GCDs, modular arithmetic, Ducos’ subresultant
chain, Bézout matrix, polynomials system solving
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Summary for Lay Audience

One of the most fundamental subjects in scientific computing is polynomial system solv-
ing; accordingly, almost all available computer algebra systems rely on polynomial sys-
tem solvers. The RegularChains library in Maple offers a collection of commands for
solving polynomial systems symbolically with taking advantage of the theory of regu-
lar chains. The primary goal of this thesis is algorithmic contributions, in particular, to
high-performance computational schemes for subresultant chains and underlying routines
to extend that of RegularChains as part of the Basic Polynomial Algebra Subprograms
(BPAS) library that is mainly written in C, with concurrency support and user interfaces
written in C++.

Subresultants are one of the most fundamental tools in computer algebra. They
are at the core of numerous algorithms including, but not limited to, polynomial GCD
computations, polynomial system solving, and symbolic integration. When the subre-
sultant chain of two polynomials is involved in a client procedure, not all polynomials
of the chain, or not all coefficients of a given subresultant, may be needed. Based on
that observation, we design so-called speculative and caching strategies which yield great
performance improvements within our polynomial system solver.

The notion of speculative algorithm is inspired by the definition of speculative exe-
cution on computer hardware. We mean an algorithm that would normally compute a
sequence S of items but assumes that only a prescribed sub-sequence S ′ of those may
be needed. It manages to increase performance by taking this observation into account,
while being able to recover S from the calculations of S ′ if the whole S turns out to be
needed. Thus, the cost of that recovery along with computing S ′ is essentially that of
computing S directly.

Our implementation of these techniques has been highly optimized through developing
asymptotically fast core arithmetic routines and multithreaded subresultant algorithms
for univariate, bivariate and multivariate polynomials. We further examine memory
access patterns and data locality for computing subresultants of multivariate polynomials.
For matrices over multivariate polynomials, we make use of the Bareiss fraction-free
LU decomposition and further optimize this algorithm with a so-called smart-pivoting
technique to reduce the cost of the decomposition and compute subresultants based on
determinant of Bézout and Hybrid Bézout matrices.
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based on Bézout matrix for randomly generated, non-zero, and sparse
polynomials a, b ∈ Z[x1, x2, . . . , x7] with x7 < · · · < x2 < x1, deg(a, x1) =
deg(b, x1) + 1 = d, and deg(a, xi) = deg(b, xi) = 1 for 2 ≤ i ≤ 7. . . . . . 107

5.7 Comparing the execution time (in seconds) of speculative and caching
subresultant algorithms for polynomials in Table 5.6. . . . . . . . . . . . 107

5.8 Comparing the execution time (in seconds) of systems with nvar ≥ 5
from the pool of more than 3000 polynomial systems [10] so that their
running-times (t ∈ R) using OptDucos take 1 ≤ t ≤ 50 seconds. . . . . . . 108

5.9 Comparing the execution time (in seconds) of systems with nvar ≥ 5
from the pool of more than 3000 polynomial systems [10] so that their
running-times using OptDucos take > 50 seconds. . . . . . . . . . . . . . 108

xi



Chapter 1

Introduction

Polynomials system solving is one of the most fundamental and important subjects in
mathematical and computational sciences. Almost all available computer algebra sys-
tems, academic or commercial, rely on polynomial system solvers. We begin with a review
of some of the basic features of polynomial system solving through a series of examples.

Consider a = a2x
2+a1x+a0 a univariate polynomial in x with real number coefficients

a2, a1, a0 with a2 , 0. From high-school mathematics, we know that this polynomial has
two complex solutions and we use the well-known quadratic formula for calculating them:

x =
−a1 ±

√
a2

1 − 4a2a0

2a2
.

This is in fact a symbolic solution for a univariate polynomial of degree 2. For a poly-
nomial of degree 5 or more, Galois theory tells us that there is no general formula which
expresses the roots of that polynomial in radicals. For example, the code below shows
Maple [71] representation for the solutions of a = x5 − x + 1. Notice that Maple is
unable to compute explicit representations of the roots and instead returns 5 instances
of RootOf( Z5- Z+1), where Z is a generic variable.

1 > a := xˆ5-x+1:

2 > solve(a, x); # solve xˆ5-x+1 with respect to x

3 RootOf (_Zˆ5-_Z+1, index =1) , RootOf (_Zˆ5-_Z+1, index =2) , RootOf (_Zˆ5-_Z

+1, index =3) , RootOf (_Zˆ5-_Z+1, index =4) , RootOf (_Zˆ5-_Z+1, index =5)

Now, let a(x1, . . . , xn) be a multivariate polynomial with variables ordered as x1 < · · · <
xn. We can see a as a univariate polynomial in xn with degree d:

a = ad(x1, . . . , xn−1)xdn + · · ·+ a1(x1, . . . , xn−1)xn + a0(x1, . . . , xn−1),

1
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2 Chapter 1. Introduction

where xn is referred to as the main variable and ai(x1, . . . , xn−1) are multivariate polyno-
mials in x1, . . . , xn−1. Hence, by the fundamental theorem of algebra, for any x1, . . . , xn−1

such that ad(x1, . . . , xn−1) , 0, a has exactly d complex solutions in xn, counted with
multiplicities. For instance, consider the set of polynomial equations below: f1 = x2

2 + x1
2 − 2x2 − 2x1 − 2

f2 = x2 x1 − x2 − x1
, (1.1)

each of them has two complex roots in x2 for any real value of x1. Figure 1.1 shows a plot
of the two planar curves f1 = 0 and f2 = 0, they are coloured blue and red respectively.
We shall return later to the question of computing the common solutions of f1 = f2 = 0.
First, we will illustrate how the common solutions of a set of polynomial equations may
look like.

Figure 1.1: A circle and an hyperbola center at the point of coordinates (1,1).

1.1 A Brief History of Solving Systems of Equations

For an arbitrary system of polynomials, it is important to distinguish between the linear
case and the non-linear case. In the former, any polynomial is actually a linear form, that
is, a linear combination of the unknowns, x1, x2, . . . , xn. In this case, the set of common
solutions is a linear space. In particular, a linear system has either a unique solution, no
solution, or infinitely many solutions. In the non-linear case, terms can contain products
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of the unknowns and the set of common solutions is a so-called algebraic set. Examples of
algebraic sets are algebraic curves (e.g. circles, hypoerbola, parabola, etc.) and algebraic
surfaces (spheres, hyperboloids, paraboloids, etc.).

Consider the following system of linear equations:

L =


3x+ y + z − 1 = 0

x+ 3y + z − 1 = 0

x+ y + 3z − 1 = 0

.

Using the well-known method of Gaussian elimination, one can transform L to obtain
the following equivalent system: {x − 1/5 = 0, y − 1/5 = 0, z − 1/5 = 0}. Solving linear
systems has been studied intensively for centuries [74]. There are fast and optimized im-
plementations in nearly every modern computer algebra software, e.g. [35, 47]. Counted
as the number of arithmetic operations on the coefficients, the complexity of such an
algorithm is cubic (and thus polynomial) in the number of unknowns. However, for
non-linear systems, the time and space complexities are not polynomial in general. The
time complexity of solving polynomials systems grows exponentially with the number of
variables [59]. As a result, there are still very active research questions regarding the
theory, algorithms, and implementation techniques for solving (non-linear) polynomial
systems.

Before the age of computers, the theoretical question of solving polynomial systems
was solved by the notion of a primary decomposition of a polynomial ideal, with the
work of Emmanuel Lasker [57], Emmy Nöther [84], David Hilbert, Bartel Leendert van
der Waerden, and Wolfgang Gröbner. While there exists algorithms and software imple-
mentations for primary decomposition today, this is not regarded as a tool of practical
interest. First, because of its very high algebraic complexity, and second, because the
information provided by primary decomposition is not well-suited to the needs of most
applications of polynomial system solving. With the revolution of computers, the quest
for effective algorithms solving polynomial systems began. In 1965, Buchberger [25]
introduced the first such algorithm based on the concept of a Gröbner basis.

In general, algorithms for solving non-linear polynomial systems can be split into three
categories: symbolic, numeric, and hybrid (using both symbolic and numeric techniques).
Among them, symbolic solvers, like the Buchberger algorithm, are powerful tools in sci-
entific computing with many applications, including cryptography, dynamical systems,
and robotics [4, 5, 89]. Before the work of Buchberger [25], there were other algorith-
mic approaches to solve particular types of algebraic and differential polynomial systems
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symbolically. However, those algorithms could be neither implemented nor performed
manually because of their high complexity. The characteristic set method, originally in-
troduced by Ritt in [88] – for systems of ordinary differential equations – is the first
“implementable” symbolic method for polynomial system solving. However, this method
requires a relatively high computational cost due to its intensive use of polynomial fac-
torization. In the early 1980’s, Wu [101], relaxed the dependence of the characteristic set
method on polynomial factorization, thus yielding the first factorization-free algorithm
for decomposing polynomial systems. It should be noted that both Buchberger and Wu
actually implemented their algorithms on computers.

Gröbner bases and characteristic sets are also representations of the solutions of a sys-
tem of polynomials. There are fast implementations of system solvers based on Gröbner
bases that can solve large and difficult polynomial systems [16, 38, 39]. On the other
hand, characteristic set methods reveal more information about the geometry of the input
systems than Gröbner bases and have a variety of applications. Regular chains, to be de-
fined in the next section, extend characteristic sets to improve computational efficiency.
Complexity results in [32] suggest that representing algebraic varieties as regular chains
is nearly optimal in terms of space complexity. Hence, the development of fast algorithms
and optimized software implementations based on characteristic sets and regular chains
are important in the study of symbolic solutions of non-linear polynomial systems.

1.2 Triangular Decompositions of Polynomial Sys-
tems

Consider the following system of non-linear equations:

F =


x2 + y + z = 1

x+ y2 + z = 1

x+ y + z2 = 1

.

We can use the command Basis from the library Groebner in Maple in order to compute
a Gröbner basis of F under the lexicographic order x < y < z (see [100, Chapter 24]) as
follows:

1 > F := [xˆ2+y+z-1, yˆ2+x+z-1, zˆ2+x+y -1]:

2 > Groebner :-Basis(F, plex(z, y, x));

3 [xˆ6-4xˆ4+4xˆ3-xˆ2, xˆ4+2xˆ2y-xˆ2, -xˆ2+yˆ2+x-y, xˆ2+y+z -1]
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To obtain the following list of polynomial equations. The factor command can be used
to further reveal the structure of the set of common solutions:

x2 + y + z − 1 = 0
(x+ y − 1)(y − x) = 0
x2(x2 + 2y − 1) = 0
x2(x2 + 2x− 1)(x− 1)2 = 0

. (1.2)

In the literature, a set of polynomials with pairwise different main variables is called
a triangular set, by analogy to the case of linear systems. The equations defined by such
a triangular set forms a triangular set. So, the above list of equations is not a triangular
set since y appears as the main variable of the second and the third equations.

Performing elementary algebraic manipulations over the Gröbner basis (1.2) that is
derived from F , we can transform F into a set of triangular sets so that every point of
coordinates (x, y, z) is a solution of F if and only if it is a solution of one of the four
systems below:

z − 1 = 0
y = 0
x = 0

,


z = 0
y − 1 = 0
x = 0

,


z = 0
y = 0
x− 1 = 0

,


z − x = 0
y − x = 0
x2 + 2x− 1 = 0

.

Furthermore, each of the above triangular sets is a so-called regular chain and these 4
regular chains together form a triangular decomposition of F . The following listing shows
how to use the triangular decomposition algorithm as the command Triangularize

from the RegularChains library [64] in Maple, to compute a triangular decomposition
directly from the input system.

1 > with( RegularChains ):

2 > F := {zˆ2+x+y-1, yˆ2+x+z-1, xˆ2+z+y -1}:

3 > R := PolynomialRing ([z, y, x]):

4 > Triangularize (F, R);

5 [ regular_chain , regular_chain , regular_chain , regular_chain ]

6 > map(Equations , %, R);

7 [[z-1, y, x], [z, y-1, x], [z, y, x-1], [z-x, y-x, xˆ2+2x -1]]

The notion of a regular chain was introduced independently by Kalkbrener [53], and
by Yang and Zhang [102]. The main purpose of this notion is to provide a mechanism
to decide whether a triangular set is consistent (that is, has at least one solution) or
not, what Wu’s characteristic set method can not do. While this question of consistency
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may seem theoretical, it has important practical implications. For instance, the following
triangular set, with x < y, is not a regular chain, while it is the triangular set produced
by Wu’s characteristic set method: y(x− 1) + 1 = 0

x2 = 1
.

The reason is because for the solution x = 1 of the second equation, the first equation
has no y-solution, while for x = −1, one obtains y = 1

2 . Therefore, back substitution fails
(for half of the x values) on the above system. To define the notion of a regular chain
in an informal way, one can say that this is a triangular set where the back substitution
process always succeeds.

In Kalkbrener’s decomposition algorithm, given an input polynomial system F , the
output regular chains represent generic zeros (in the sense of van der Waerden [99]) of the
irreducible components of algebraic set V (F ). We will not try to define here the concepts
of generic zeros and irreducible components. However, for a system F with finitely many
solutions, the concept of generic zeros coincides with the familiar concept of “common
solution”.

1.3 Incremental Solving and the Intersect Algorithm

In the realm of methods for solving polynomial systems, further algorithmic improve-
ments were made with the principle of incremental solving [58, 60]. With this principle,
one equation is solved against each component (regular chain) produced by the previously
solved equations. This allows one to control the properties and the size of the algebraic
entities (curves, surfaces, etc.) that are produced at each computational step. Lazard
proposed incremental solving for computing triangular decompositions in [58], which was
improved and extended by Moreno Maza [81, 27] and others.

The incremental triangular decompositions algorithms in [81, 27] are based on a pro-
cedure, named Intersect, which computes the intersection of

• a hyper-surface and,

• the quasi-component of a regular chain denoted by W (T ) where T is the regular
chain.

To rephrase that formal statement in loose terms, the procedure Intersect computes the
common solutions of a triangular set and a polynomial equation. See [27] for algorithms.
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Returning to a formal presentation, let k[x1, . . . , xn] be the ring of multivariate poly-
nomials with coefficients in a field k (say Q the field of rational numbers) and with
variables x1 < · · · < xn. For a polynomial f ∈ k[x1, . . . , xn] and a regular chain T , the
function call Intersect(f, T ) returns regular chains T1, . . . , Te ⊂ k[x1, . . . , xn] such that
we have:

V (f) ∩W (T ) ⊆ W (T1) ∪ · · · ∪W (Te) ⊆ V (f) ∩W (T ),

where V (f) denotes the zero set of f , W (T ) denotes the common solutions of the polyno-
mials of T and W (T ) denotes the topological closure of W (T ) for the topology of Zariski.
The reader may be surprised to see that V (f) ∩W (T ) is not given by an equality. In-
stead, Intersect(f, T ) computes an “approximate decomposition” W (T1)∪ · · · ∪W (Te)
which contains V (f)∩W (T ) and is contained in V (f)∩W (T ). Since V (f)∩W (T ) and
V (f)∩W (T ) are topologically very close, this approximation is sharp. Moreover, it turns
out that when solving a system of polynomial equations, say

F =



f1 = 0
f2 = 0
...

...

fm = 0

,

by repeated applications of the procedure Intersect with f1, f2 . . . , fm produces regular
chains {T1, . . . , Tv} ⊂ k[x1, . . . , xn] such that:

V (F ) = W (T1) ∪ · · · ∪W (Tv).

Using the polynomial system in Equation (1.1): f1 = x2
2 + x1

2 − 2x2 − 2x1 − 2
f2 = x2 x1 − x2 − x1

,

with the variable ordering x1 < x2, we shall illustrate how the incremental solving process
of [27] works. This process starts by taking {∅} as the initial triangular decomposition.
The empty set is indeed a regular chain, the solution set of which is simply the entire
ambient space, since ∅ has no constraints. The first call Intersect(f, T ) is then with
f = f1 and T = ∅ which simply returns the single regular chain {f1}. Next, the second call
Intersect(f, T ) is then with f = f2 and T = {f1}. Since f1 and f2 share the variables
x1 and x2, the set {f1, f2} is not a triangular set. A natural question is to determine the
values v of x1 so that when x1 is replaced by v in both f1 and f2 then these two specialized
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polynomials have at least one common solution in x2. On this particular example, one
can determine those values of x1 by a simple series of substitutions. Indeed, from f2 = 0,
we have:

(x1 − 1)(x2 − 1) = 1.

Hence, assuming x1 , 1, we have x2 = 1
x1−1 + 1. Replacing x2 with 1

x1−1 + 1 into f1 = 0
leads to x1

4 − 4x1
3 + 2x1

2 + 4x1 − 2 = 0. This latter equation has four distinct real
solutions:{

1−
√

3
√

2/2 +
√

2/2, 1 +
√

3
√

2/2−
√

2/2, 1−
√

3
√

2/2−
√

2/2, 1 +
√

3
√

2/2 +
√

2/2

}
,

that one could anticipate from Figure 1.1, where the two curves have four distinct common
points. Substituting these 4 values of x1 into f2 = 0 yields the corresponding values of
x2:{

(√3
√

2−
√

2−2)√2/2
√

3−2, (
√

3
√

2−
√

2+2)√2/2
√

3−2, (
√

3
√

2+
√

2−2)√2/2+2
√

3, (
√

3
√

2+
√

2+2)√2/2+2
√

3

}
.

It remains to check whether f1 = f2 = 0 has a solution for x1 = 1. Elementary calcula-
tions show that this is not the case, as suggested by Figure 1.1.

1.4 Subresultant Chains

While for the polynomial system in Equation (1.1), elementary calculations are sufficient,
this is not the case for most polynomial systems that arise in practice or in theory.
We illustrate that fact through a series of examples that also informally introduces the
concept of a subresultant chain, which is at the core of our work.

1.4.1 The First Example

To understand the need for algebraic methods handling more complex polynomial sys-
tems, let us consider the following problem: computing the common roots of two (de-
pressed) generic cubic equations: x3 + ax+ b = 0

x3 + cx+ d = 0
. (1.3)

In the above polynomial system, x is the unknown while a, b, c, d are parameters. Be-
cause a univariate algebraic equation of degree n has n complex solutions (counted with
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multiplicities) the above two equations are expected to have either 0, 1, 2 or 3 common
roots, depending on the values of the parameters. Hence, we would like to obtain a
case-discussion yielding conditions on a, b, c, d for the above two equations to have either
0, 1, 2 or 3 common roots. As counter-intuitive as it may sound, the case of exactly
2 common roots (counted with multiplicities) is impossible. But at this stage, we will
pretend that we are not aware of that fact. And, in fact, we shall rediscover that fact
with the algebraic method that we are going to present.

If a, b, c, d were actual numbers, then one could apply the well-known Euclidean algo-
rithm. Naming r3 and r2 the polynomials x3 +ax+ b and x3 + cx+d, we would compute
the remainder r1 in the Euclidean division of r3 by r2, that is,

r1 = (a− c)x+ b− d. (1.4)

Since r1 has degree 1 in x (and not 2) we deduce that it is impossible for r3 and r2 to have
exactly 2 common roots (counted with multiplicities). Indeed, if that case was possible,
the Greatest Common Divisor (GCD) of r3 and r2 should have degree 2 in that particular
case. Next, we observe that we need to distinguish two cases: a = c and a , c.

In the case a = c, two sub-cases arise: b = d in which case r3 and r2 are identical thus
having 3 common roots or, b , d in which case r3 and r2 have no common root (since
the GCD is a non-zero constant).

In the case a , c, continuing with the Euclidean Algorithm, we compute the remainder
r0 in the Euclidean division of r2 by r1, that is,

r0 = a3d− a2bc− 2 a2cd+ 2 abc2 + ac2d− bc3 − b3 + 3 b2d− 3 bd2 + d3

(a− c)3 . (1.5)

If the values of a, b, c, d are such that r0 is zero then r3 and r2 have exactly one common
root given by r1 = 0, that is, x = d−b

a−c . Otherwise, if r0 is not zero, then r3 and r2 have
no common root (since the GCD is a non-zero constant).

To summarize what we have done with System (1.3), we have observed that we could
solve our problem by regarding a, b, c, d as actual numbers and applying the Euclidean
Algorithm. We could follow the same strategy with more complex problems, say, comput-
ing the common roots of two generic equations of degree 4, 5, etc. Various computational
issues would then arise. First, the size of the coefficients of the successive remainders
(computed by the Euclidean Algorithm) would grow very rapidly. Second, the number
of cases to be considered would also grow rapidly.

It turns out that there exists an algebraic theory, the theory of subresultants, which
deals with these two computational issues. This theory will be presented formally in
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Section 2.2. In the mean time, we shall just introduce it informally in the sequel of this
introductory chapter.

1.4.2 Theory of Subresultants (informally)

Consider two multivariate polynomials f and g, which are univariate in x and with
coefficients that are polynomials in other variables a, b, c, . . .. The Euclidean Algorithm
produces a sequence of polynomials r0, ri1 , ri2 , . . . , ris−1 , ris (univariate in x and with
coefficients that are rational functions in the other variables) where:

i) ris−1 , ris are f and g respectively, assuming deg(f, x) ≤ deg(g, x),

ii) the polynomial rij is the remainder in the Euclidean division of rij+1 by rij+2 , for
0 ≤ j < s− 1,

iii) the polynomial rij has degree ij in x, for 0 ≤ j < s− 1.

The theory of subresultants produces a sequence of polynomials S0, S1, S2, . . . (univari-
ate in x and with coefficients that are polynomials in the other variables) and called
subresultants, such that:

1. the polynomial Sk is either null or has a degree in x less or equal to k,

2. if Sk and Sk+1 are non-zero, then we have deg(Sk, x) ≤ deg(Sk+1, x),

3. each non-zero polynomial rij (in the sequence of the Euclidean algorithm) is pro-
portional to a non-zero polynomial Sk.

The above properties imply that the sequence S0, S1, S2, . . . contains the same information
as the sequence r0, ri1 , ri2 , . . . , ris−1 , ris . On the example of System (1.3), the sequence
computed by the theory of subresultants is:

numer(r0), r1, 0, r2, r3. (1.6)

where numer(r0) denotes the numerator of r0.
To illustrate the fact that subresultants have smaller coefficients than their remainder

counterparts (in the Euclidean sequence), consider the polynomials r5 = x5 + x4 + x3 +
x2 + 1 and r4 = 5x4 + x3 + 1. The remainders r0, r1, r2, r3 of the Euclidean sequence and
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their subresultant counterparts S0, S1, S2, S3 are shown below:

r3 = 21/25 x3 + x2 − 1/5 x+ 21/25,

r2 = 3125/441 x2 − 2725/441 x+ 125/21,

r1 = 236376/390625 x− 48069/78125,

r0 = 886328125/126697536.

S3 = 21x3 + 25x2 − 5x+ 21,
S2 = 125x2 − 109x+ 105,
S1 = 536x− 545,
S0 = 2269.

1.4.3 The Second Example

We use another example to illustrate the ability of subresultants to encode a case discus-
sion. Consider the following polynomials f and g in the variables x and y:

f = x3 + y2 + x+ 1,
g = y3 + x2 + y + 1.

(1.7)

Viewing f and g as polynomials in x, with coefficients that are polynomials in y, their
subresultants S0 and S1 are:

S1 = (y2 + 1) (yx− 1) ,
S0 = (y + 1) (y2 − y + 1) (y2 + 1)3

.

As we shall see in Sections 2.1 and 2.2, the equation S0 = 0 is a necessary condition for
the system f = g = 0 to have solutions. Moreover, if the leading coefficients of f and g

(regarded as polynomials in x) are constant (that is, do not depend on y) then S0 = 0
is a necessary and sufficient condition for the system f = g = 0 to have solutions. This
latter property applies here, which means that f = g = 0 has solutions if and only if one
of the three following conditions hold:

i) y + 1 = 0,
ii) y2 − y + 1 = 0, or

iii) y2 + 1 = 0.

In the case y + 1 = 0, the subresultant S1 becomes −2(x + 1) and the theory of subre-
sultants implies that x + 1 is the GCD of f and g, and thus x = −1 must hold. In the
case y2 − y + 1 = 0, the subresultant S1 becomes yx− 1 and the theory of subresultants
implies that yx− 1 is the GCD of f and g, thus x = 1/y must hold.

In the case y2 + 1 = 0, the subresultant S1 is identically zero, while the polynomials
f and g become respectively x3 + x and x2 + 1; clearly g is the GCD of f and g, thus
x2 + 1 = 0 must hold. To summarize what we have done with this last example, we saw
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that the subresultants S0 and S1, together with the input polynomials f and g contain all
the information to generate all cases when solving f = g = 0. The procedure Intersect

discussed above in Section 1.3 uses that idea intensively.

1.4.4 The Third Example

We use this last example to illustrate an important idea in this thesis: in some examples,
the whole sequence of subresultants may not be needed when solving a bivariate polyno-
mial system f = g = 0. Consider the following polynomials f and g in the variables x
and y:

f = x7 − 36x− 22y + 1,
g = x6 + 47x3 − 60xy2 − 6xy − 83y2 − 10y + 50.

(1.8)

Viewing f and g as polynomials in x with coefficients that are polynomials in y, their
subresultants S4, . . . , S0 from the list of all subresultants {S4, . . . , S0} are:

S4 = 46x4 + 64x2y2 + 27x2y + 13xy2 + 45xy + 25x+ 4y + 56,
S3 = 74x2y4 + 7x3y2 + 56x2y3 + 44xy4 + 48x3y + 44x2y2 + 3xy3 + 14x3 + 18x2y

+41xy2 + 69y3 + 46x2 + 62xy + 98y2 + 86y + 53,
S2 = 25x2y8 + 10x2y7 + 26xy8 + 62x2y6 + 36xy7 + 32x2y5 + 99xy6 + 8y7 + 32x2y4

+82xy5 + 67y6 + 6x2y3 + 53xy4 + 101y5 + 39x2y2 + 10xy3 + 36y4 + 87x2y

+21xy2 + 28y3 + 46x2 + 73xy + 69y2 + 96x+ 72y + 43,
S1 = 81xy12 + 28xy11 + 76y12 + 24xy10 + 5xy9 + 26y10 + 18xy8 + 28y9 + 26xy7

+62y8 + 88xy6 + 87y7 + 102xy5 + 20y6 + 72xy4 + 2y5 + 10xy3 + 67y4 + 66xy2

+75y3 + 87xy + 8y2 + 4x+ 73y + 77,
S0 = 97y15 + 82y14 + 82y13 + 99y12 + 20y11 + 53y10 + 52y9 + 20y8 + 65y7 + 83y6

+23y5 + 89y4 + 31y3 + y2 + 54y + 69.

Meanwhile, the solutions of f = g = 0 are (t0,0 = 0, t0,1 = 0) and (t1,0 = 0, t1,1 = 0)
where,

t0,0 = (y10 + 67y9 + 83y8 + 23y7 + 43y6 + 45y5 + 12y4 + 33y3 + 25y2 + 33y + 100)x
+63y10 + 31y9 + 36y8 + 92y7 + 86y6 + 49y5 + 79y4 + 29y3 + 52y2 + 7y + 3,

t0,1 = y11 + 64y10 + 36y9 + 91y8 + 82y7 + 98y6 + 30y5 + 54y4 + 56y3 + 52y2

+73y + 86,
t1,0 = (y3 + 53y2 + 100y + 68)x+ 53y3 + 12y2 + 6y + 8,
t1,1 = y4 + 94y3 + 80y2 + 92y + 34.



1.5. Objectives and Contributions 13

This set of polynomial equations, which are in the form of triangular sets, describe
solutions of f = g = 0, and can be calculated from only the information in S0 and S1,
and does not require the entire subresultant chain {S4, . . . , S0}.

1.4.5 Subresultants in Theory and Practice

Subresultants were introduced by Sylvester in 1840 as determinants of submatrices of the
Sylvester Matrix and later in [21]. The first algorithm to compute the entire subresultant
chain did so by calling determinant procedures within a cubic cost. The first quadratic
and recursive algorithm was introduced by Habicht [44] by taking advantage of a pseudo-
division algorithm.

Collins in [29] showed the importance of coefficient swell by indicating lower bounds
for the coefficient growth in the Euclidean algorithm. Ducos [36], Lickteig-Roy [68], and
Lombardi-Roy-Safey El Din [70] are some of the most notable and pioneer researches
that led to present techniques to compute subresultant chains with addressing both the
coefficient swelling problem and the algorithmic complexity.

The RegularChains library in Maple is a collection of commands for solving sys-
tems of algebraic equations, inequations and inequalities symbolically follows the theory
of regular chains [64]. The main objective of this thesis is algorithmic contributions, in
particular, to high-performance computational schemes for subresultant chains and un-
derlying routines, which extends that of the RegularChains library. Our contributions
include designing and developing a multithreaded symbolic and incremental polynomial
system solver based on the theory of regular chains.

Our code is publicly available at www.bpaslib.org as part of the Basic Polynomial
Algebra Subprograms (BPAS) library [8] that is mainly written in C, with concurrency
support and user interfaces written in C++. Most notably, This library provides univari-
ate, bivariate, and multivariate polynomial arithmetic including a family of subresultant
schemes that have been integrated, tested, and utilized in the multithreaded BPAS poly-
nomial system solver.

1.5 Objectives and Contributions

In this thesis, we are particularly interested in algorithms for computing subresultants,
in support of polynomial system solving by means on the Triangularize algorithm. We
will proceed by the following three steps:

www.bpaslib.org
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1. Designing speculative strategies that takes into account how subresultant chains
are used, most of the time, by the Intersect core-routine of the Triangularize

algorithm and to compute the so-called Regular GCDs. Indeed, as illustrated by
the example in Section 1.4.4, when solving a bivariate system f(x, y) = g(x, y) = 0
only the subresultants S0 and S1 of the subresultant chain S0, S1, S2, S3, . . . may be
needed. It is known that this pattern is the common case, while not the general
one. Therefore, it is desirable to be able to,

• compute S0 and S1 directly without computing S2, S3, . . ., and

• compute S2, S3, . . ., if they happen to be needed recycling the cached data
generated by the intermediate computations that have led to S0 and S1 in the
first place.

This speculative approach is a new technique, and for univariate and bivariate poly-
nomials, we will rely on an existing technique, the so-called Half-GCD algorithm
to achieve our goal; that is discussed in Section 3.4. We further design a specula-
tive subresultant algorithm in order to compute subresultants via calculating the
determinant of Bézout matrices; that is described in Section 5.3.

The notion of speculative algorithm is inspired by the definition of speculative exe-
cution on computer hardware. We mean an algorithm that would normally compute
a sequence S of items but assumes that only a prescribed sub-sequence S ′ of those
may be needed. It manages to increase performance by taking this observation into
account, while being able to recover S from the calculations of S ′ if the whole S
turns out to be needed. Thus, the cost of that recovery along with computing S ′

is essentially that of computing S directly.

2. Deploying faster algorithms for computing subresultant chains, in particular for
the fundamental cases of univariate and bivariate polynomials. Indeed, even when
solving polynomial systems in more than 2 variables, the recursive nature of the
Intersect core-routine makes the case of univariate and bivariate polynomials
essential.

Faster algorithms refer to core-routines based on asymptotically fast techniques for
polynomials’ basic arithmetic, e.g. multiplication, division, evaluation and inter-
polation; we review these algorithms and their complexities in Section 3.3. These
ideas are not new but they remain to be verified experimentally that such meth-
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ods can have a significant impact on the range of subresultant chain computations
involved in polynomial system solving, in practice.

3. Optimizing implementation techniques for computing subresultant chains can be
listed as,

• In the case of algorithms based on evaluation-interpolation schemes, it is natu-
ral to consider a multithreaded implementation taking advantage of the BPAS
interface for multithreading (Section 2.3). Yet again, it remains to measure
the benefits of those ideas in practice and as part of the system solver; that is
discussed in Section 3.5.

• The use of subresultants by the Intersect algorithm (Section 2.1) relies on
the so-called specialization property of subresultants (Section 2.2). One can
reduce the use of this property taking advantage of normal form algorithms to
reduce the subresultants w.r.t. the regular chains computed so far by the
Triangularize algorithm (Section 7.1). We study optimizations of these
routines for triangular sets as divisors in Section 4.3.

• As for algorithms computing subresultant chains based on schemes that are
not suitable for parallelization, it is desirable to minimize costs attributed to
memory access patterns. This direction has not been explored in the litera-
ture. We introduce a cache-friendly version of the Ducos’ subresultant chain
algorithm in Section 4.4.

• For matrices over multivariate polynomials, we make use of the Bareiss fraction-
free LU decomposition and further optimize this algorithm with a so-called
smart-pivoting technique to reduce the cost of the decomposition, and so the
Bézout subresultant algorithms in Section 5.2 and Section 5.3, respectively.

• For subresultant algorithms that rely on the computation of the matrix de-
terminant via Bareiss FFLU algorithm, one can parallelize the row-reduction
part of this algorithm. Yet again, tuning this algorithm to maximize the
parallel-speed-up and working properly with the rest of the software are among
implementation challenges that we address in Section 5.2.



Chapter 2

Primary Background

This chapter is intended to serve as a review of mathematical concepts and parallel
patterns to be used throughout this thesis. Section 2.1 is a brief review on the triangu-
lar decomposition methods and the Triangularize algorithm. We discuss the theory
of subresultant chains in Section 2.2. In Section 2.3, we review the parallel patterns
supported by the BPAS multithreaded interface and discuss the map pattern and the
implementation of the parallel for loop.

2.1 Triangularize Algorithm

Let F be a finite set of polynomial equations. An informal definition of the Triangularize

algorithm is in fact a polynomial system solver approach to decompose F incrementally,
so that one equation is solved after another against each component produced by the
previous iteration. This algorithm returns a set of components representing solutions of
F in a particular form known as regular chains using a triangular decomposition method
defined in the following.

Let k be a field and its closure be K and k[X] = k[x1, . . . , xv] be the ring of polyno-
mials with variable ordering x1 < · · · < xv for v ∈ N.

Definition 1 A non-empty set T = (T1, . . . , Te) ⊂ k[X] is a triangular set if T is a set
of non-constant polynomials with distinct main variables.

Definition 2 Let T = (T1, . . . , Te) ⊂ k[X] be a triangular set such that:

mvar(T1) < · · · < mvar(Te),

16
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the set T is called a regular chain if,

res(h, T ) := res(· · · res(res(h, Te), Te−1) · · · ) , 0,

where h is the product of init(Ti), that is the leading coefficient of Ti w.r.t. its main
variable, for i = 1, . . . , e and res(h, Te) is the resultant of h and Te w.r.t. the main
variable of Te denoted by mvar(Te). To compute res(h, T ), each resultant is computed
w.r.t. the main variable of Ti for 1 ≤ i ≤ e.

The properties and applications of regular chains have been studied for several decades;
see [15, 66] for more details. In the following, we review the main specifications required
to define the Triangularize algorithm and one of its main subroutines known as Regular
GCD that the Intersect algorithm relies on.

Definition 3 The zero-set or algebraic variety of a non-empty set T ⊂ k[X] is denoted
by V (T ) ⊂ Kv and is defined as:

V (T ) := {t ∈ Kv | ∀a ∈ T a(t) = 0}.

Moreover, a refinement of this definition for T = (T1, . . . , Te) ⊂ k[X] that is so-called
the quasi-component of T is denoted by W (T ) and is defined as:

W (T ) := V (T )\V (h),

where h is the product of init(Ti) for i = 1, . . . , e.

Definition 4 Let T ⊂ k[X] be a non-empty set. The saturated ideal of T is denoted by
sat(T ) and defined as:

〈T 〉 : h∞ := {a ∈ k[X] | ∃s ∈ N s.t. hsa ∈ 〈T 〉}.

From Definitions 3 and 4, we have the following equality that indicates the relation
between the quasi-component of a regular chain and its saturated ideal:

W (T ) = V (sat(T )),

that is also known as the Zariski closure of W (T ) [27].
Let F be a system of polynomials. From [13, 27], there are two well-studied triangular

decomposition methods computable by the Triangularize algorithm:
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i) The Kalkbrener method, that is decomposing the generic points of F to compute,

V (F ) = ∪ei=1W (Ti); and

ii) The Lazard method, that is decomposing all zeros of F to compute,

V (F ) = ∪ei=1W (Ti).

Both methods are developed in the BPAS library [10, 13]; however the comprehensive
results in [10] shows that the Kalkbrener method generally has a better performance.
Thus, we consider this method to experiment computational schemes for subresultants
in the BPAS solver throughout this thesis.

The Triangularize algorithm uses a variety of subroutines; see [27] for the list
of all subroutines. One of the underlying procedures that plays an important role in
the performance of the Triangularize algorithm is Regular GCD. Let 1 ≤ i ≤ v be
an integer, T ⊂ k[X] be a regular chain, a, b ∈ k[X] be non-constant polynomials
with the same main variable xi, g ∈ k[X] be either constant or mvar(g) ≤ xi, and
L = k[x1, . . . , xi−1]/

√
sat(T ).

Definition 5 Assume that xi > xj for all xj in the set of main variables of T denoted
by mvar(T ), and both init(a), init(b) are neither zero, nor a zero-divisor1 (equivalently,
they are regular) modulo sat(T ). The regular GCD of a, b modulo T is g, if the following
conditions hold:

i) lc(g, xi) is a regular element of L;

ii) g ∈ 〈a, b〉 in L[xi]; and

iii) if deg(g, xi) > 0, then prem(a, g, xi) = prem(b, g, xi) = 0, where prem(a, g, xi) and
prem(b, g, xi) are, respectively, pseudo-remainders of a and b by g w.r.t. xi in L[xi].

For 0 ≤ k ≤ mdeg(b), Sk denotes the k-th subresultant of a, b in L[xi] and assume there
exists 1 ≤ d ≤ mdeg(b) so that Sj ∈ sat(T ) for all 0 ≤ j < d. Then, Sd is the last non-
zero and non-defective subresultant in L, and if lc(Sd, xi) is not regular modulo sat(T )
then Sd may be defective in L. In addition, Sd will vanish on all the components of sat(T )
up to sufficient splitting of sat(T ).

1A polynomial a ∈ k[X] is a zero-divisor modulo 〈F 〉 if there exists a polynomial b ∈ k[X] such that
ab ∈ 〈F 〉 and a, b < 〈F 〉.
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Theorem 1 Assume lc(Sd, xi) is regular modulo sat(T ). If sat(T ) is radical or for all
0 ≤ k < d, coeff(Sk, xi, k) is either 0 or regular modulo sat(T ). Then, Sd is a regular
GCD of a, b modulo sat(T ).

Proof. [27, Theorem 6]
Theorem 1 shows the way that Triangularize uses subresultants from a subresultant

chain of input polynomials as well as the importance of subresultants in computing a
regular GCD modulo sat(T ).

In fact, one can compute the regular GCD of a, b modulo sat(T ) by performing a
bottom-up search in the subresultant chain. Besides, there are often only a few subre-
sultants required, starting from S0 and S1, in practice.

2.2 Theory of Subresultant Chain

As seen in the previous section, the Triangularize algorithm to solve (or decompose)
a system makes use implicitly or explicitly of a notion of GCD for univariate polyno-
mials over coefficient rings that are not necessarily fields. For example, a polynomial in
Z[x1, . . . , xv][y] is in fact a univariate polynomial over ring of the multivariate polynomi-
als.

A formal definition of these GCD variant is in fact the Regular GCD in Definition 5
that applies to residue class rings of the form k[X]/sat(T ) for a regular chain T . This
weaker notion of a polynomial GCD is actually sufficient for solving polynomials systems
via Triangularize when retaining the multiplicities of zeros is not required during the
decomposition [27].

The Regular GCD algorithm is a simple procedure due to using a powerful algebraic
theory namely subresultants. Here, we review a formal definition of subresultants over
B, a general commutative ring with identity, and study important specifications of sub-
resultants that the Regular GCD, and so, the entire solver rely on. In this review, we
follow the presentations in [36, 52].

Determinantal Polynomial

Definition 6 Let B be a commutative ring with identity and let m ≤ n be positive
integers. Let M be a m×n matrix with coefficients in B. Let Mi be the square submatrix
of M consisting of the first m−1 columns of M and the i-th column of M , for m ≤ i ≤ n;
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let det(Mi) be the determinant of Mi. The determinantal polynomial of M denoted by
dpol(M) is a polynomial in B[y], given by:

dpol(M) := det(Mm)yn−m + det(Mm+1)yn−m−1 + · · ·+ det(Mn).

Note that, if dpol(M) is not zero, then its degree is at most n−m.

Example 1 Consider n = 4, m = 2. For polynomials a = a3y
3 + a2y

2 + a1y + a0 and
b = b2y

2 + b1y + b0 in B[y]. We have:

mat(a, b) =
 a3 a2 a1 a0

0 b2 b1 b0

 ,
with,

M2 =
 a3 a2

0 b2

 ,M3 =
 a3 a1

0 b1

 , and M4 =
 a3 a0

0 b0

 .
and consequently dpol(a, b) = a3b2y

2 + a3b1y + a3b0.

Let f1, . . . , fm be polynomials of B[y] of degree less than n. We denote by mat(f1, . . . , fm),
the m × n matrix whose i-th row contains the coefficients of fi, sorted in order of de-
creasing degree, and such that fi is treated as a polynomial of degree n− 1. We denote
by dpol(f1, . . . , fm), the determinantal polynomial of mat(f1, . . . , fm).

Definition 7 Let a, b ∈ B[y] be non-constant polynomials of respective degrees m :=
deg(a), n := deg(b) with m ≥ n. Let k be an integer with 0 ≤ k < n. Then, the k-th
subresultant of a and b (also known as the subresultant of index k of a and b), denoted
by Sk(a, b), is:

Sk(a, b) = dpol(yn−k−1a, yn−k−2a, . . . , a, ym−k−1b, . . . , b).

This is a polynomial which belongs to the ideal generated by a and b in B[y]. In particular,
S0(a, b) is the resultant of a and b denoted by res(a, b). Observe that if Sk(a, b) is not
zero then its degree is at most k. If Sk(a, b) has degree k, then Sk(a, b) is said to be
non-defective or regular; if Sk(a, b) , 0 and deg(Sk(a, b)) < k, then Sk(a, b) is said to be
defective.
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We call k-th nominal leading coefficient, denoted by sk, the coefficient of Sk(a, b) in
yk. Observe that if Sk(a, b) is defective, then we have sk = 0. For convenience, we extend
the definition to the n-th subresultant as follows:

Sn(a, b) =
 γ(b)b, if m > n or lc(b) ∈ B is regular

undefined, otherwise
.

where γ(b) = lc(b)m−n−1. In the above, regular means not a zero-divisor. Note that
when m equals n and lc(b) is a regular element in B, then Sn(a, b) = lc(b)−1b is in fact a
polynomial over the total fraction ring of B.

Theorem 2 Assume B be a UFD and a, b are non-constant polynomials in B[y] with
deg(a) = m, deg(b) = n. If for some 0 < k ≤ min(m,n), we have Sk(a, b) , 0 and
Si(a, b) = 0 for all i < k, then exist α, β ∈ B such that:

α gcd(a, b) = β Sk(a, b, y).

Proof. [27, Theorem 5]
According to the above proposition, Sk is a regular subresultant that is so-called the

last nonzero subresultant of a, b.

Example 2 Let two polynomials a = y3− y2 and b = y2− 3y in Z[y] with gcd(a, b) = y.
Then:

S0(a, b) = dpol(y2a, ya, a, yb, b) = dpol(



1 −3 0
1 −3 0

1 −3 1
1 −1 0 0

1 −1 0 0


) = 0,

and,

S1(a, b) = dpol(ya, a, b) = dpol(


1 −3 0

1 −3 0
1 −1 0 0

) = 6y.

We call specialization property of subresultants the following property. Let A be
another commutative ring with identity and Ψ a ring homomorphism from B to A such
that we have Ψ(lc(a)) , 0 and Ψ(lc(b)) , 0. Then, for 0 ≤ k ≤ n, we have:

Sk(Ψ(a),Ψ(b)) = Ψ(Sk(a, b)).
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Divisibility Relations of Subresultants

From now on, we assume that the ring B is an integral domain. The subresultant chain
of a and b, defined as:

subres(a, b) := (Sn(a, b), Sn−1(a, b), Sn−2(a, b), . . . , S0(a, b)),

satisfies relations which induce a Euclidean-like algorithm for computing the entire sub-
resultant chain: subres(a, b). This algorithm runs within O(n2) operations in B, when
m = n, see [36]. For convenience, we simply write Sk instead of Sk(a, b) for each k. We
write a ∼ b, for a, b ∈ B[y], whenever a, b are associate elements in frac(B)[y], the field of
fractions of B. Then for 1 ≤ k < n, we have:

(i) Sn−1 = prem(a,−b),

(ii) If Sn−1 is non-zero, defining e := deg(Sn−1), then we have:

Se−1 = prem(b,−Sn−1)
lc(b)(m−n)(n−e)+1 ,

(iii) If Sk−1 , 0, defining e := deg(Sk−1) and assuming e < k − 1 (thus assuming Sk−1

defective), then we have:

(a) deg(Sk) = k, thus Sk is non-defective,

(b) Sk−1 ∼ Se and lc(Sk−1)k−e−1Sk−1 = sk
k−e−1Se, thus Se is non-defective,

(c) Sk−2 = Sk−3 = · · · = Se+1 = 0, and

(iv) If both Sk and Sk−1 are non-zero, with respective degrees k and e then we have:

Se−1 = prem(Sk,−Sk−1)
lc(Sk)k−e+1 .

Algorithm 1 from [36] is a known version of this procedure that computes all non-zero
subresultants a, b ∈ B[y]. Note that the core of this algorithm is the while-loop in which
the computation of the subresultants Se and Se−1, with the notations of the above points
(ii), (iii), and (iv) are carried out.
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Algorithm 1 Subresultant (a, b, y)
Require: a, b ∈ B[y] with m = deg(a) ≥ n = deg(b) and B is an integral domain
Ensure: the non-zero subresultants from (Sn, Sn−1, Sn−2, . . . , S0)
1: if m > n then
2: S := (lc(b)m−n−1b)
3: else S := ()

4: s := lc(b)m−n

5: A := b; B := prem(a,−b)
6: while true do
7: d := deg(A); e := deg(B)
8: if B = 0 then return S

9: S := (B) ∪ S; δ := d− e
10: if δ > 1 then
11: C := lc(B)δ−1

B/sδ−1

12: S := (C) ∪ S
13: else C := B

14: if e = 0 then return S

15: B := prem(A,−B)/sδlc(A)
16: A := C; s := lc(A)
17: end while

2.3 BPAS Multithreaded Interface

In this section, we review the parallel map pattern and parallel for loop from the
multithreading interface in the BPAS library that is derived from the standard Thread
Support Library of C++11 and implemented by Brandt [10, 13].

The Thread Support Library of C++11 provides basic parallel primitives including
threads, mutual exclusion, condition variables, and futures; see

https://en.cppreference.com/w/cpp/thread

for more information. The BPAS multithreaded interface utilizes this C++11 library
and supplies a generic implementation for the known parallel patterns including:

(i) Map pattern, that maps a function to each item in a collection and simultaneously
executing the function on each independent data item. [73, Chapter 4]

(ii) Workpile pattern, that is a generalized version of the map pattern to handle

https://en.cppreference.com/w/cpp/thread
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irregular tasks and an unknown number of tasks. In this pattern, the collection of
data is in a queue or pile. [73, Section 3.6.4]

(iii) Fork-Join pattern, that refers to the pair of control flow known as forked (or
spawned) and join. A fork corresponds to spawning a thread and giving it some
code segment to execute and a join corresponds to when the spawned thread is
joined with the spawning thread. [73, Chapter 8]

(iv) Producer-Consumer pattern refers to when a producer of data items is synced
to a consumer of data items from a data collection like queue. In this pattern, both
producer and consumer execute concurrently. [73, Section 3.5.2]

(v) Asynchronous Generators that is derived from the producer-consumer pattern,
where a generator also known as an iterator is a function that yields data elements
one at the time rather than many together as a collection. Concurrency helps within
generators when the generation of data items is expensive and can be performed
concurrently to the processing of previously yielded data items. [73, Chapter 9]

(vi) Pipeline pattern, a sequence of function executions, where the data flows from
one to the next. This pattern can also be seen as a sequence of producer-consumer
pairs, with intermediary functions acting as both a producer and a consumer. [73,
Chapter 9]

The use of threads in the thread-level parallelism raises particular overheads. These
so-called parallel overheads can be listed as follows,

(i) Spawning a thread is not necessarily a cheap operation and can become problem-
atic if many threads are spawned throughout a program’s lifetime;

(ii) Over-subscription that refers to the case when the program spawns more threads
than are supported concurrently by the hardware. This yields increasing the cost
of repetitive context switching significantly; and

(iii) Inter-thread communication and synchronization, in particular serializing
access to some shared data, should be minimized and, where absolutely necessary,
implemented efficiently.

The BPAS multithreaded interface uses a so-called thread pool to combat the cost of
spawning and the penalties of over-subscription. In a way that the program spawns a
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small number of threads only once at the beginning and keeping them active throughout
the program’s lifetime to minimizing spawning overheads. Moreover, by limiting the
number of threads spawned by a thread pool to be less than or equal to the number of
threads supported by the current hardware, the interface handles the over-subscription
overheads.

However, to address the issues of inter-thread communication and synchronization,
the programmer must effectively take care of them via re-designing the algorithms or the
underlying data-structures. The goal, here, is to limit inter-thread dependencies and to
balance the amount of work that is known as load-balancing between threads to maximize
parallelism.

In Sections 3.5 and 5.2.3, we utilize the map pattern and tackle the load-balancing
issues in the multithreaded subresultant algorithms. Moreover, we tune these parallel
routines to work efficiently with the thread pool and the rest of the multithreaded BPAS
solver.

Algorithm 2 MapPattern(A, n, F )
Require: an array A of size n, and a function F

Ensure: an array B of size n where B[i] = F (A[i])
1: parallel for i from 0 to n− 1 do
2: B[i] := F (A[i])

3: return B

An important application of the map pattern is the parallel for loop. In a for
loop with independent iterations, each thread simply executes one or more iterations of
the loop concurrently. We denote this pattern as parallel for throughout the thesis.
This abstraction not only makes the use of map pattern implicit, but also hides the
number of threads and the division of work evenly across a certain number of threads in
pseudo-codes. Algorithm 2 shows an example of the parallel for loop.

In procedures like Algorithm 11, when several maps are executed in a row, threads
operate in lockstep. To explain, all operations in a previous map step must finish before
the next map step may begin. The overall performance of a map step is thus limited
by the slowest operation in the group. Hence, the map pattern works well with regular
parallelism where individual data items or tasks are similar in size or execution cost, and
the number of tasks to execute should be known a priori.



Chapter 3

Dense Univariate and Bivariate
Polynomials

3.1 Introduction

In this chapter, we examine how several optimization techniques for subresultant chain
computations and underlying core routines for univariate and bivariate polynomials ben-
efit polynomial system solving in practice. These optimizations rely on ideas which have
appeared in previous works, but without the support of successful experimental studies.

For univariate polynomials over a prime field Zp where Zp[y] := Z/pZ[y] and p ∈ N is
an odd prime of size one machine-word (64-bit), we first develop the cutting-edge quasi-
linear basic arithmetic operations for such polynomials with coefficients represented in
Montgomery representation [80].

For computing the subresultants, the first of these optimizations takes advantage of
the Half-GCD algorithm for computing GCDs of univariate polynomials over a field k =
Zp. For input polynomials of degree (at most) n, this algorithm runs within O(M(n) log n)
operations in k, where M(n) is a polynomial multiplication time, as defined in [100,
Chapter 8]. The Half-GCD algorithm originated in the ideas of Knuth [56], Lehmer [63]
and Schönhage [90], while a robust implementation was a challenge for many years. One
of the earliest correct designs was introduced in [96].

The idea of speeding up subresultant chain computations by means of the Half-GCD
algorithm takes various forms in the literature. In [87], Reischert proposes a fraction-free
adaptation of the Half-GCD algorithm, which can be executed over an effective integral
domain B, within O(M(n) log n) operations in B. We are not aware of any implementation

26
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of Reischert’s algorithm.
In [69], Lickteig and Roy propose a “divide and conquer” algorithm for computing

subresultant chains, the objective of which is to control coefficient growth in defective
cases. Lecerf in [61] introduces extensions and a complexity analysis of the algorithm of
Lickteig and Roy, with a particular focus on bivariate polynomials. When run over an
effective ring endowed with the partially defined division routine, the algorithm yields a
running time estimate similar to that of Reischert’s. Lecerf realized an implementation of
that algorithm, but observed that computations of subresultant chains based on Ducos’
algorithm [37], or on evaluation-interpolation strategies, were faster in practice.

In [100, Chapter 11], von zur Gathen and Gerhard show how the nominal leading
coefficients (see Section 2.2 for this term) of the subresultant chain of two univariate
polynomials a, b over a field can be computed within O(M(n) log n) operations in k, by
means of an adaptation of the Half-GCD algorithm. Here, we introduce an extension of
their approach to compute any pair of consecutive non-zero subresultants of a, b within
the same time bound. The details are presented in Section 3.4.

Our next optimization for subresultant chain computations relies on the observation
that not all non-zero subresultants of a given subresultant chain may be needed. To
illustrate this fact, consider two commutative rings A and B, two non-constant univariate
polynomials a, b in A[y] and a ring homomorphism Ψ from A to B so that Ψ(lc(a)) , 0
and Ψ(lc(b)) , 0 both hold. Then, the specialization property of subresultants tells us that
the subresultant chain of Ψ(a),Ψ(b) is the image of the subresultant chain of a, b via Ψ.
This property has at least two important practical applications. When B is polynomial
ring over a field, say B is Zp[x] and A is Zp, then one can compute a GCD of Ψ(a),Ψ(b)
via evaluation and interpolation techniques. Similarly, say B is Q[x]/〈m(x)〉, where m(x)
is a square-free polynomial, then B is a product of fields then, letting A be Q[x], one can
compute a GCD of Ψ(a),Ψ(b) using the celebrated D5 Principle [33].

More generally, if B is Q[x1, . . . , xn]/〈T 〉, where T = (t1(x1), . . . , tn(x1, . . . , xn)) is a
zero-dimensional regular chain (generating a radical ideal), and A is Q[x1, . . . , xn], then
one can compute a so-called regular GCD of a and b modulo 〈T 〉 [27]. The principle of
that calculation generalizes the D5 Principle as follows:

(i) If the resultant of a, b is invertible modulo 〈T 〉 then 1 is a regular GCD of a and b

modulo 〈T 〉;

(ii) If, for some k, the nominal leading coefficients s0, . . . , sk−1 are all zero modulo 〈T 〉,
and sk is invertible modulo 〈T 〉, then the subresultant Sk of index k of a, b is a
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Regular GCD of a and b modulo 〈T 〉; and

(iii) One can always reduce to one of the above two cases by splitting T , when a zero-
divisor of B is encountered.

In practice, in the above procedure, k is often zero, which can be seen as a consequence
of the celebrated Shape Lemma [18]. This suggests to compute the subresultant chain of
a, b in A[y] speculatively. To be precise, and taking advantage of the Half-GCD algorithm,
it is desirable to compute the subresultants of index 0 and 1, delaying the computation
of subresultants of higher index until proven necessary.

We discuss that idea of computing subresultants speculatively in Section 3.4. Mak-
ing that approach successful, in comparison to non-speculative approaches, requires to
overcome several obstacles:

1. computing efficiently the subresultants S0 and S1, via the Half-GCD; and

2. developing an effective “recovery” strategy in case of “misprediction”, that is, when
subresultants of index higher than 1 turn out to be needed.

To address the first obstacle, our implementation combines various schemes for the Half-
GCD, inspired by the work done in NTL [93]. To address the second obstacle, when we
compute the subresultants of index 0 and 1 via the Half-GCD, we record or cache the
sequence of quotients (associated with the Euclidean remainders) so as to easily obtain
subresultants of index higher than 1, if needed.

Moreover, we study parallel opportunities in order to compute subresultant chains
of bivariate polynomials over the integers using evaluation-interpolation methods and
and the Chinese Remainder Theorem (CRT). To implement these parallel schemes, we
make use of the map pattern mechanism of the BPAS multithreaded interface (Section
2.3) to parallelize evaluation, interpolation, and combination parts of the code. Our
experimentation for a test suite of over 3000 polynomial systems, which are collected
from real-world applications, shows a parallel-speed-up of up to 4× on a 12-core machine
[10].

The extensive experimentation results in Section 3.6 indicate that the performance
of our univariate polynomials over finite fields (based on FFT) are closely comparable
with their counterparts in NTL. In addition, we have aggressively tuned our subresultant
schemes based on evaluation-interpolation techniques. Our modular subresultant chain
algorithms are up to 10× and 400× faster than non-modular counterparts (mainly Ducos’
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subresultant chain algorithm) in Z[y] and Z[x, y], respectively. Further, utilizing the Half-
GCD algorithm to compute subresultants speculatively yields an additional speed-up
factor of 7× and 2× for polynomials in Z[y] and Z[x, y], respectively.

Co-Authorship Statement

The data-structure and basic arithmetic are implemented by Asadi. The Montgomery
operations over Zp and FFT algorithm are borrowed from different research projects in
BPAS [30, 31], while the rest of fast arithmetic operations are implemented by Asadi
with following ideas in NTL [93] and Aldor [40]. The speculative and caching schemes are
implemented by Asadi [14] follows pseudo-codes in [100], and the multithreaded bivariate
subresultant chain schemes are implemented by Asadi and Brandt [10].

3.2 Basic Arithmetic

Let B be a commutative ring containing unity 1 where 0 , 1. An ordered sequence
(a0, . . . , an) ∈ Bn+1 for a non-negative integer n is called a univariate polynomials over
B and denoted as:

a =
n∑
i=0

aiy
i = any

n + . . .+ a0 ∈ B[y],

with an , 0. Then deg(a, y) := n is the degree of a w.r.t. y, lc(a, y) := an is the leading
coefficient of a w.r.t. y, anyn is the leading monomial of a, and coeff(a, i, y) := ai for
0 ≤ i ≤ n.

We denote deg(a) and lc(a) for the degree and leading coefficient of a univariate
polynomial a ∈ B[y] for simplicity. One can show that B[y] is a commutative ring of
polynomials with addition and multiplication operations. In the following, we review the
definitions of zero-divisors and units of B[y] from [100].

Definition 8 Assume a = ∑n
i=0 aiy

i be a non-zero polynomial over the commutative ring
B. Then, a is a zero-divisor if and only if there exists some non-zero polynomial b ∈ B[y]
with ab = 0.

Euclidean Algorithm

One can define the division operation for a polynomial ring with unit leading coefficients
in B[y] that is in fact a general version of Euclidean algorithm over a commutative ring.
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Theorem 3 Let a, b ∈ B[y], b is a non-constant polynomial and lc(b) is a unit. Then,
there exist unique polynomials q := quo(a, b), r := rem(a, b), are so-called quotient and
remainder respectively, in B[y] such that the following property holds,

a = qb+ r and (r = 0 or deg(r) < deg(b)).

Proof. [100, Section 3.1]
In the division algorithm, if lc(b) is not a unit element of B, then there is not any

guarantee for the uniqueness of q, r in B[y].

Example 3 Consider a = y2 + 3y + 2 and b = 3y2 + 4y + 1 in Z6[y] := Z/6Z[y]. Since
the lc(b) is not a unit, the division of a by b using the Euclidean algorithm can produce
several valid couples (q, r). For instance,

(q1, r1) = (4y + 5, 3y + 3) and (q2, r2) = (4y + 3, 5y + 5),

when a = q1b+ r1 = q2b+ r2 holds.

GCD and Resultants

From [96, 100], we review the definitions of GCD, Sylvester matrix and resultant of two
univariate polynomials.

Definition 9 Let B be a Euclidean domain. The greatest common divisor (GCD) of
a, b ∈ B is such g ∈ B if g divides both a, b, and any common divisor of a, b divides g.

The GCD of a, b is denoted gcd(a, b) ∈ B and one can compute it using the Eu-
clidean algorithm repeatedly to generate the sequence of remainders (r0 := a, r1 :=
b, r2 := rem(r0, r1), . . . , r` := rem(r`−2, r`−1)) for ` ∈ N, r`+1 = 0 with deg(r`+1) =
−∞, gcd(a, b) := r`, and the corresponding quotients (q1 := quo(r0, r1), q2, . . . , q` :=
quo(r`−1, r`)) from

ri+1 = rem(ri−1, ri) = ri−1 − qiri,

for 1 ≤ i < `. This computation requires O(n2) operations in B.
In order to analyze the algorithm, we represent ri as linear combinations of a, b as

ri = sia+ tib, and introduce the following 2× 2 matrices where (s0, t0, s1, t1) = (1, 0, 0, 1)
and qi := quo(ri−2, ri−1) in B[x],

R0 =
 s0 t0

s1 t1

 and Qi =
 0 1

1 −qi

 for 1 ≤ i ≤ k`, (3.1)

then, we define Ri = Qi · · ·Q1R0 and the following theorem holds.
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Theorem 4 Assume (r0, r1, . . . , rk) is the sequence of remainders of a, b such that ri =
sia+ tib when si, ti ∈ B[y] and rk+1 = 0. For every 0 ≤ i ≤ k we have:

(i) Ri

 a

b

 =
 ri

ri+1

,

(ii) Ri =
 si ti

si+1 ti+1

,

(iii) gcd(a, b) = gcd(ri, ri+1) = rk,

(iv) gcd(si, ti) = 1.

Proof. [100, Lemma 3.8]
The polynomials si, ti ∈ B[y] are called the Bézout coefficients of gcd(a, b) and the

derived algorithm from Theorem 4 to compute them is a well-known algorithm named
extended Euclidean algorithm (EEA). Generally, computing the GCD of two polynomials
might fail, so Theorem 3 and thus the Euclidean algorithm do not work for an arbitrary
polynomial ring.

Example 4 Consider polynomials a = y2+3y+2 and b = 3y2+4y+1 in Z[y]. Neither the
quotient nor the remainder of this division is in Z[y], although the gcd(a, b) = y+1 ∈ Z[y].

A solution can be to work over the fraction field of the coefficient ring. However, com-
puting over those domains generally lead to the severe coefficient growth. Besides, we
would prefer to have an algorithm whose results remain in the same coefficient ring of B.

Definition 10 Let a = ∑m
i=0 aiy

i, b = ∑n
i=0 biy

i ∈ B[y] be two non-zero and non-constant
polynomials. The Sylvester matrix of a, b is the square matrix of order n + m with
coefficients in B, denoted by sylv(a, b) and defined as follows:

sylv(a, b) =

am am−1 · · · a0
am am−1 · · · a0

. . .
. . .

. . .
am am−1 · · · a0

bn bn−1 · · · b0
bn bn−1 · · · b0

. . .
. . .

. . .
bn bn−1 · · · b0





n

m

, (3.2)
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Algorithm 3 Resultant (a, b, y)
Require: non-zero univariate polynomials a, b ∈ B[y] such that deg(a) + deg(b) > 0
Ensure: resultant of a, b in B
1: m := deg(a); n := deg(b)
2: if m < n then
3: return (−1)nmResultant(b, a, y)

4: if n = 0 then
5: return lc(b)m

6: c := a
b

7: if c = 0 then
8: return c

9: p := deg(c)
10: return (−1)nmlc(b)m−presultant(b, c, y)

In addition, the determinant of sylv(a, b) is so-called the resultant a, b and denoted
by res(a, b). Here, we present a Euclidean-like algorithm to compute the resultant of a, b
based on the determinant of sylv(a, b) in Algorithm 3.

Example 5 Consider two polynomials a = a2y
2 + a1y + a0 and b = 2a2y + a1 in B[y].

Then the Sylvester matrix of a and b is:

S =


a2 2a2 0
a1 a1 2a2

a0 0 a1

 ,

whose determinant is det(S) = a2(4a2c0 − b2
1). Whenever a2 , 0, polynomials a and b

have a common solution (or equivalently, a = 0 has a solution of multiplicity 2) and it
implies that res(a, b) = 0 if and only if deg(gcd(a, a′)) > 0.

Theorem 5 Let B be a unique factorization domain (UFD). gcd(a, b) for polynomials
a, b ∈ B[y] is a non-constant polynomial in B[y] if and only if res(a, b) = 0.

Proof. [100, Corollary 6.17]
The Algorithm 3 can be transformed to compute the GCD of a, b ∈ B[y] in case

res(a, b) = 0 using Theorem 5 and this leads to Algorithm 4.
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Algorithm 4 GCD (a, b, y)
Require: non-zero univariate polynomials a, b ∈ B[y] such that deg(a) + deg(b) > 0
Ensure: gcd(a, b) if res(a, b) = 0, else resultant a, b in B.
1: m := deg(a); n := deg(b)
2: if m < n then
3: r := (−1)nm

4: (a, b) := (b, a); (m,n) := (n,m)
5: else
6: r := 1
7: while true do
8: if n = 0 then
9: return r lc(b)m

10: c := a/b

11: if c = 0 then
12: return b

lc(b)

13: p := deg(c)
14: r := r (−1)nmlc(b)m−p

15: (a, b) := (b, c); (m,n) := (n, p)
16: end while

Subresultants

A refinement of Algorithm 3 would let us compute the subresultant chain of a, b:

subres(a, b) = (Sn, . . . , S0 := res(a, b)),

by keeping track of successive remainders. This algorithm is in fact an adapted version
of the fundamental theorem on subresultants to compute the nominal leading coefficient
of subresultants.

Theorem 6 Assume the remainder sequence (r0, r1, . . . , r`) with deg(ri) = ni for 0 ≤
i ≤ `. For k = 0, . . . , n1, the nominal leading coefficient of the k-th subresultant of (r0, r1)
is either 0 or sk if there exists i ≤ ` such that k = deg(ri),

sk = (−1)τi
∏

1≤j<i
lc(rj)nj−1−nj+1 lc(ri)ni−1−ni ,

where τi = ∑
1≤j<i(nj−1 − ni)(nj − ni).
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Proof. [100, Theorem 11.16].
In the following, we review some important upper-bounds on subresultants. We take ad-
vantage of these bounds to perform subresultant algorithms in Z[x, y] from fast arithmetic
over prime fields. Let k be a field, e.g. Zp.

Theorem 7 Let a, b ∈ k[x, y]. Then

deg(res(a, b, y), x) ≤ tdeg(a) tdeg(b),

where tdeg(a), tdeg(b) are total degrees of a, b, respectively.

Proof. [100, Theorem 6.22]

Theorem 8 Let a, b ∈ k[x, y], n = deg(a, y), m = deg(b, y) and d = max{deg(a, x), deg(b, x)}.
For every 1 ≤ k ≤ min{(n,m)},

deg(Sk(a, b, y), x) ≤ (n+m− 2k)d.

Proof. [100, Theorem 6.51]

3.3 Fast Arithmetic over Prime Fields

Arithmetic over prime fields plays a central role in computer algebra. The performance of
these operations is important as they are core routines of other operations, e.g. resultant,
subresultant, factorization, and evaluation-interpolation.

For instance, if we use a faster multiplication algorithm, then almost every polynomial
arithmetic operation can be performed faster. In this thesis, the implementation of these
prime fields are using a prime of size one machine word (64-bit). Hence, increasing
the arithmetic to greater precision is achieved through the Chinese Remainder Theorem
(CRT) algorithm. In this section, we review the definitions and algorithmic efficiencies
of the following basic operations:

(i) Montgomery representation in Zp;

(ii) Classical, Karatsuba, and FFT-based multiplication operations in Zp[y];

(iii) Division based on Power Series Inversion using Newton Iteration in Zp[y];

(iv) GCD and Fast extended Euclidean algorithm (Half-GCD) operations in Zp[y]; and

(v) Lagrange and FFT-based evaluation-interpolation operations in Zp[x, y].
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3.3.1 Montgomery Representation

Montgomery multiplication was introduced by Montgomery in [80]. In this method,
elements of a prime field convert to a so-called Montgomery Representation, where a
modular multiplication is made faster by avoiding division by the modulus, thus also
improving modular inverse. This representation has no effect on the performance of
addition or subtraction.

Let R > p be a number for a modulus p so that gcd(p,R) = 1. Assume R is some
power of 2; hence multiplication and division by R can be done cheaply by bit shifting
operations. As gcd(p,R) = 1, the extended Euclidean algorithm yields that there exists
a unique pair (R′, p′) so that,

RR′ − pp′ = 1,

with 0 < R′ < p and 0 < p′ < R, and so, p′ ≡ −p−1 mod R.
For an arbitrary integer a where 0 ≤ a < Rp, the Montgomery reduction computes

c := aR−1 mod p by computing

m ≡ ap′ mod R,

c = (a+mp)/R,

c = c− p if c ≥ p.

For two elements of a, b ∈ Zp, the Montgomery representation of a, b are respectively
ā := aR mod p and b̄ := bR mod p. Addition and subtraction of ā, b̄ conclude directly
from ā ± b̄. Moreover, Multiplication derives using Montgomery reduction on ā, b̄ as
follows,

āb̄R−1 ≡ (aRbR)R−1 ≡ (ab)R mod p.

Throughout this thesis, we consider polynomials over prime fields where their coeffi-
cients are in Montgomery representation, and so, we use Montgomery arithmetic imple-
mented in the BPAS library [30, 31].

3.3.2 Univariate Polynomial Multiplication

Polynomial multiplication is widely used within almost all routines in computer algebra.
In the study of algorithms to compute multiplication, there are several procedures that
must work together. This is due to the fact that as the degree of input polynomials
increase, the complexity grows rapidly. Here we briefly review these algorithms and their
complexities.
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A multiplication time is considered as a map M : N→ R, where R is the field of real
numbers, such that:

(i) For any ring B, polynomials of degrees less than n in B[y] can be multiplied in at
most M(n) (addition and multiplication) operations in B, and

(ii) For any n ≤ n′, the inequality M(n)
n
≤ M(n′)

n′
holds.

Let polynomials a = ∑n
i=0 aiy

i, b = ∑m
j=0 bjy

j in Zp[y] with deg(a) = n and deg(b) =
m. The classical polynomial multiplication algorithm is calculated via the following
generic formula,

ab =
n∑
i=0

m∑
j=0

aibjy
i+j.

The implementation of this algorithm requires two for-loops, and so, to multiply two
polynomials with degree less than n, we have the multiplication time of

M(n) = O(n2).

Karatsuba algorithm is a divide-and-conquer multiplication algorithm discovered in
1962 [100]. The main trick with this algorithm is to reduce the number of intermediate
multiplications. Let polynomials a = ∑n−1

i=0 aiy
i, b = ∑n−1

i=0 biy
i in Zp[y] where n = 2k and

k ∈ N. The Karatsuba’s trick computes the product ab as follows:

1. If n = 1 then compute the element a, b of Zp;

2. Define a = A1y
n/2 +A0 and b = B1y

n/2 +B0 where A1, A0, B1, B0 have degree less
than n/2;

3. Compute A0B0, A1B1, and (A0 + A1)(B0 +B1) recursively; and

4. Return A1B1y
n + ((A0 + A1)(B0 +B1)− A0B0 − A1B1)yn/2 + A0B0.

Since multiplication is more expensive than addition and subtraction, this trick re-
duces the total cost. One can shows that the complexity of this algorithm is:

M(n) = O(nlog 3/ log 2) = O(n1.59).

There is further generalization of this algorithm in the literature known as Toom-
Cook algorithm [100], that is faster for large enough n. This algorithm splits the input
polynomials into k ≥ 3 parts.

Let polynomials a = ∑n−1
i=0 aiy

i, b = ∑m−1
j=0 bjy

j with n ≥ m in Zp[y]. The convolution
of a, b is defined as follows.
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Definition 11 The convolution of polynomials a, b ∈ Zp[y] w.r.t. n is denoted as a ∗n b
and is defined:

c =
n−1∑
k=0

∑
i+j≡k mod n

aibj y
k.

From [100], the Discrete Fourier Transform (DFT) evaluates a univariate polynomial
over Zp with degree less than n at the successive powers of a so-called primitive root of
unity denoted as ω ∈ Zp. Note that using the inverse of this procedure over the evaluated
images of a univariate polynomial yields a DFT-based interpolation algorithm.

An efficient implementation of the DFT algorithm known as Fast Fourier Transform
(FFT) within the complexity O(n log n log log n) [31]. The FFT algorithm only works
when appropriate roots of unity exist; hence, Schönhage and Strassen [91] showed how
to create virtual roots that leads to a fast multiplication with a similar cost where there
is not an appropriate ω; see [42] for a C implementation of this algorithm. From [100],
we have FFTω(a ∗n b) = FFTω(a) FFTω(b), hence the convolution of two polynomials
can be computed using Algorithm 5 from [100].

Algorithm 5 FastConvolution(a, b, ω)
Require: a, b ∈ Zp[y] with degree less than n = 2k ∈ N, and a n-th primitive root of unity

ω ∈ Zp
Ensure: a ∗n b ∈ Zp[y]
1: compute the first n powers of ω
2: α := FFTω(a)
3: β := FFTω(b)
4: γ := point-wise product of α and β

5: return FFT−1
ω (γ) := 1

nFFTω−1(γ)

We use a C implementation of FFT algorithm from [31] to achieve FFT-based multi-
plication for 64-bit primes in BPAS along with developing the classical and Karatsuba
algorithms to multiply two univariate polynomials in Zp[y] where FFT is not available.

3.3.3 Division Operation

Division is another important basic operation where the cost of the classical implemen-
tation is O(n2) using the famous Euclidean algorithm. Similar to multiplication, it has a
direct impact on the performance of other algorithms. Therefore, an asymptotically fast
division is required to obtain asymptotically fast polynomial arithmetic.
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Power series inversion using Newton iteration method provides a fast method for com-
puting multiplicative inverses [23]. This algorithm computes the inverse of polynomial
a ∈ Zp[y] with a(0) = 1 and deg(a) < ` modulo y` for a given ` ∈ N. To achieve an
efficient implementation of the inversion, we use a FFT-based approach known as the
Middle Product Technique following the implementation in Aldor [24] to develop a fast
division algorithm in the BPAS library.

3.3.4 Fast EEA (Half-GCD) Operation

The Fast extended Euclidean algorithm or Half-GCD technique originated with the ideas
of Lehmer, Knuth and Schönhage [56, 63, 90]. This algorithm runs within O(M(n) log n)
operations in Zp while the cost of the classical EEA is O(n2) [100]. The Half-GCD can be
interpreted as an asymptotically fast technique to compute the GCD through calculating
the quotient matrices and R = Q` · · ·Q1R0 in Zp[y] so that we have: gcd(a, b)

0

 = R

 a

b

 .
The major difference between the classical EEA and Half-GCD is that while the EEA

computes all the remainders r0, r1, . . . , r` = gcd(r0, r1), the Half-GCD computes only two
consecutive ones with computing their associated Qj = Qj · · ·Q1R0 for 1 ≤ j ≤ ` and
utilizing a sequence of truncated remainders.

Algorithm 6 presents a simplified version of this procedure. This algorithm computes
one of the intermediate quotient matrices, namely Qj, so that a′

b′

 = Qj

 a

b

 ,
where deg(a′) ≥ deg(a)/2 > deg(b′). One can use this algorithm recursively to compute
the last quotient matrix and so the gcd(a, b) within O(M(n) log n) operations in Zp.

Theorem 9 Algorithm 6 is correct and terminates in O(M(n) log n) operations in Zp.

Proof. [103, Lemma 6.10]
Here, the basic principle is the quotients of polynomials of degrees n1 and n2 with

n1 > n2, depend only on the leading 2(n1 +n2) + 1 terms of the dividend and the leading
n1 − n2 + 1 terms of the divisor [100, Lemma 11.1]. And so, this fact of focusing on
the quotient sequence, rather than the remainder sequence (like the classical EEA) yields
better performance in realizing the GCD of two polynomials in Zp[y].
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Algorithm 6 HalfGCD(a, b)
Require: a, b ∈ Zp[y] with degree less than n := deg(a) ≥ deg(b)
Ensure: a 2× 2 quotient matrix that reduces the computation of gcd(a, b) to gcd(a′, b′) where

deg(a′) ≥ deg(a)/2 > deg(b′)
1: m := dn/2e
2: if deg(b) < m or m < 1 then

3: return

1 0
0 1


4: atrunc := quo(a, xm); btrunc := quo(b, xm)
5: R := HalfGCD(atrunc, btrunc)

6:

a′
b′

 := R

a
b


7: if b′ = 0 then
8: return R.
9: r := rem(a′, b′); q := quo(a′, b′)

10: Q :=

0 1
1 −q


11: l := 2m− deg(b′)
12: a′trunc := quo(a′, xl); b′trunc := quo(b′, xl)
13: S := HalfGCD(a′trunc, b′trunc)
14: return SQR

Example Consider a = y2 + 3y + 2, b = 3y2 + 4y + 1 in Q[y]. In Algorithm 6, (n,m) =

(2, 1), R = S =
1 0

0 1

, and matrix Q builds with atrunc = y + 3, btrunc = 3y + 4. Then,

HalfGCD(a, b) =
0 1

1 −1/3

 .
In addition, the multiplication of HalfGCD(a, b) and

(
a b

)T
produces 5

3(y + 1) that
is a non-monic form of gcd(a, b).

3.3.5 Evaluation-Interpolation Operations

Let B be an integral domain and η ∈ B. For a bivariate polynomial,

a(x, y) =
n∑
i=0

m∑
j=0

ai,jx
iyj,
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in B[x, y] with variables x < y. An evaluation algorithm is in fact the homomorphism
function:

Ψx=η : B[x, y]→ B[y],

where,

Ψx=η(a(x, y)) = a(η, y) =
n∑
i=0

m∑
j=0

ai,jη
iyj ∈ B[y].

Throughout this chapter, we denote Ψx=η(a(x, y)) as a(x, y)|x=η or a|x=η where η is called
the evaluation point. Moreover, The inverse of evaluation homomorphism is known as
interpolation and is defined as follows.

Definition 12 Let k be a field. Given distinct evaluation points {η0, η1, . . . , ηn} in k
and the values {ā0, ā1, . . . , ān} in k[y]. The interpolation problem in k[y] is finding a
polynomial a ∈ k[x, y] satisfying

a(ηi, y) = āi, for 0 ≤ i ≤ n.

Theorem 10 shows the existence and uniqueness of such function.

Theorem 10 For the distinct evaluation points η0, η1, . . . , ηn, there exists a unique poly-
nomial a ∈ k[x, y] of degree at most n in the variable x such that a(ηi, y) = āi for
0 ≤ i ≤ n.

Proof. [43, Theorem 5.8]
There are several so-called classical algorithms for interpolation [100, Section 5.3]. The
algorithms known as Newton interpolation and Lagrange interpolation run within O(n2)
operations in k[y] to interpolate a ∈ k[x, y] of degree at most n in the variable x.

For a univariate polynomial b ∈ Zp[y], one can utilize the FFT algorithm for evaluation
and interpolation withinO(M(n) log n) operations using FFT. In this approach, The FFT
evaluates b at powers of an appropriate primitive root of unity ω. Also, the interpolation
performs by executing FFT−1 from the images and evaluation points, i.e. powers of ω.

We extend this asymptotically fast approach to bivariate polynomials borrowing ideas
of the blocking strategy developed in [45] to calculate the subresultant chain of multivariate
polynomials on GPUs via FFT-based evaluation and interpolation algorithms.
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3.4 Speculative Subresultant Algorithms

As discussed in the previous section, when the ring B is a prime field Zp for an odd prime
p, the computation of the subresultant chain of the polynomials a, b ∈ Zp[y] could take ad-
vantage of asymptotically fast algorithms and the fundamental theorem on subresultants
(Theorem 6) to compute the entire chain.

In this section, we introduce a speculative technique using the Half-GCD algorithm in
order to compute two successive subresultants speculatively from subres(a, b). We further
extend our speculative approach to cache the intermediate data computed in the Half-
GCD algorithm to calculate subresultants with higher indices by request without calling
the Half-GCD algorithm again.

Let k be a field, e.g. k = Zp. Let non-zero polynomials a, b ∈ k[y] with n0 := deg(a),
n1 := deg(b) with n0 ≥ n1. The extended Euclidean algorithm (EEA) computes the
successive remainders (r0 := a, r1 := b, r2, . . . , r`) with degree sequence (n0, n1, n2 . . . , n`)
and the corresponding quotients (q1, q2, . . . , q`); see Section 3.2 for more details.

We define mi := deg(qi), so that we have mi = ni−1 − ni for 1 ≤ i ≤ `. The
degree sequence (n0, . . . , nl) is said to be normal if ni+1 = ni − 1 holds, for 1 ≤ i < `,
or, equivalently if deg(qi) = 1 holds, for 1 ≤ i ≤ `. Throughout this section, we take
advantage of the Half-GCD algorithm presented in [100, Chapter 11].

Speculative and Caching Schemes in k[y]

For a non-negative k ≤ n0, the Algorithm 11.6 in [100] computes the quotients q1, . . . , qhk

where hk is defined as:

hk = max
{

0 ≤ j ≤ ` |
j∑
i=1

mi ≤ k
}
, (3.3)

the maximum j ∈ N so that∑1≤i≤j deg(qi) ≤ k. This is done within (22M(k)+O(k)) log k
operations in k. From Equation 3.3, hk ≤ min(k, `), and

hk∑
i=1

mi =
hk∑
i=1

(ni−1 − ni) = n0 − nhk ≤ k <
hk+1∑
i=1

mi = n0 − nhk+1. (3.4)

Thus, nhk+1 < n0 − k ≤ nhk , and so hk can be uniquely determined.
Due to the deep relation between subresultants and the remainders of the EEA, the

Half-GCD technique can support computing subresultants. This approach is studied in
[100]. The Half-GCD algorithm is used to compute the nominal leading coefficient of
subresultants up to sρ for ρ = nhk by computing the quotients q1, . . . , qhk , calculating the
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lc(ri) = lc(ri−1)/lc(qi) from lc(r0) for 1 ≤ i ≤ hk, and applying Theorem 6. The resulting
procedure runs within the same complexity as the Half-GCD algorithm.

However, for the purpose of computing two successive subresultants Snv , Snv+1 given
0 ≤ ρ < n1, for 0 ≤ v < ` so that nv+1 ≤ ρ < nv, we need to compute quotients q1, . . . , qhρ

where hρ is defined as:
hρ = max

{
0 ≤ j < ` | nj > ρ

}
, (3.5)

using Half-GCD. Let k = n0 − ρ, Equations 3.4 and 3.5 deduce,

nhρ+1 ≤ n0 − k < nhρ , and hρ ≤ hk.

Thus, to compute the array of quotients q1, . . . , qhρ , we can utilize an adaptation of the
Half-GCD algorithm of [100]. Algorithm 7 is this adaptation and runs within the same
complexity as Algorithm 11.6.

Algorithm 7 receives as input two polynomials r0 := a, r1 := b in k[y], with n0 ≥ n1,
0 ≤ k ∈ N, ρ ≤ n0 where ρ, by default, is n0 − k, and the array A of the leading
coefficients of the remainders that have been computed so far. This array should be
initialized to size n0 + 1 with A[n0] = lc(r0) and A[i] = 0 for 0 ≤ i < n0. A is updated
in-place as necessary. The algorithm returns the array of quotients Q := (q1, . . . , qhρ)
and matrix M := Qhρ · · ·Q1.

A direct application of Algorithm 7 along with the fundamental theorem on subre-
sultants is the speculative algorithm to compute non-zero subresultants Snv , Snv+1 via
Algorithm 8. This algorithm is a speculative subresultant algorithm based on Half-GCD
to calculate two successive subresultants without computing others in the chain. More-
over, this algorithm returns intermediate data that has been computed by the Half-GCD
algorithm—the array R of the remainders, the array Q of the quotients and the array A
of the leading coefficients of the remainders in the Euclidean sequence—to later calculate
higher subresultants in the chain without calling Half-GCD again. This caching scheme
is shown in Algorithm 9.

The following example explains the caching technique utilizing the speculative ap-
proach.

Example 6 For non-zero polynomials a, b ∈ k[y] with n0 = deg(a), n1 = deg(b), so that
we have n0 ≥ n1. The subresultant call Subresultant(a, b, 0) returns S0(a, b), S1(a, b)
speculatively without computing

(Sn1 , Sn1−1, Sn1−2, . . . , S2),
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Algorithm 7 AdaptedHGCD(r0, r1, k, ρ,A)
Require: r0, r1 ∈ k[y] with n0 = deg(r0) ≥ n1 = deg(r1), 0 ≤ k ≤ n0, 0 ≤ ρ ≤ n0 is an

upper bound for the degree of the last computed remainder that, by default, is n0 − k and
is fixed in recursive calls (See Algorithm 8), the array A of the leading coefficients of the
remainders (in the Euclidean sequence) which have been computed so far

Ensure: hρ ∈ N so that hρ = max{j | nj > ρ}, the array Q := (q1, . . . , qhρ) of the first
hρ quotients associated with remainders in the Euclidean sequence and the matrix M :=
Qhρ · · ·Q1; the array A of leading coefficients is updated in-place

1: if r1 = 0 or ρ ≥ n1 then

2: return
(
0, (),

1 0
0 1

)
3: if k = 0 and n0 = n1 then

4: return
(
1, (lc(r0)/lc(r1)),

0 1
1 −lc(r0)/lc(r1)

)
5: m1 := dk2e; δ1 := max(deg(r0)− 2 (m1 − 1), 0); λ := max(deg(r0)− 2k, 0)
6:
(
h′, (q1, . . . , qh′), R

)
:= AdaptedHGCD(quo(r0, y

δ1), quo(r1, y
δ1),m1 − 1, ρ,A)

7:

c
d

 := R

quo(r0, y
λ)

quo(r1, y
λ)

 where R :=

R00 R01

R10 R11


8: m2 := deg(c) + deg(R11)− k
9: if d = 0 or m2 > deg(d) then

10: return
(
h′, (q1, . . . , qh′), R

)
11: r := rem(c, d); q := quo(c, d); Q :=

0 1
1 −q


12: nh′+1 := nh′ − deg(q)
13: if nh′+1 ≤ ρ then
14: return

(
h′, (q1, . . . , qh′ , q), R

)
15: A[nh′+1] := A[nh′ ]/lc(q)
16: δ2 := max(2m2 − deg(d), 0)
17:

(
h∗, (qh′+2, . . . , qh′+h∗+1), S

)
:=

AdaptedHGCD(quo(d, yδ2), quo(r, yδ2),deg(d)−m2, ρ,A)
18: return

(
hρ := h′ + h∗ + 1,Q := (q1, . . . , qhρ),M := SQR

)

arrays Q = (q1, . . . , q`), R = (r`, r`−1), and A. Therefore, any attempt to compute
subresultants with higher indices can be addressed by utilizing the arrays Q,R,A instead
of calling Half-GCD again
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Algorithm 8 Subresultant(a, b, ρ)
Require: a, b ∈ k[x] \ {0} with n0 = deg(a) ≥ n1 = deg(b), 0 ≤ ρ ≤ n0

Ensure: Snv(a, b), Snv+1(a, b) for such 0 ≤ v < ` so that nv+1 ≤ ρ < nv, the array Q of the
quotients, the array R of the remainders, and the array A of the leading coefficients of the
remainders (in the Euclidean sequence) that have been computed so far

1: A := (0, . . . , 0, lc(a)) where A[n0] = lc(a) and A[i] = 0 for 0 ≤ i < n0

2: if ρ ≥ n1 then
3: A[n1] = lc(b)
4: return

(
(a, lc(b)m−n−1b), (), (),A

)
5: (v,Q,M) := AdaptedHGCD(a, b, n0 − ρ, ρ,A)
6: deduce

(
n0 = deg(a), n1 = deg(b), . . . , nv = deg(rv)

)
from a, b and Q.

7:

 rv

rv+1

 := M

a
b

; R := (rv, rv+1); nv+1 := deg(rv+1)

8: τv := 0; τv+1 := 0; α := 1
9: for j from 1 to v − 1 do

10: τv := τv + (nj−1 − nv)(nj − nv)
11: τv+1 := τv+1 + (nj−1 − nv+1)(nj − nv+1)
12: α := α A[nj ]nj−1−nj+1

13: τv+1 := τv+1 + (nv−1 − nv+1)(nv − nv+1)
14: Snv := (−1)τvα rv
15: Snv+1 := (−1)τv+1α A[nv]nv−1−nv+1 rv+1

16: return
(
(Snv , Snv+1),Q,R,A

)

In the Triangularize algorithm for solving systems of polynomial equations by trian-
gular decomposition, the Regular GCD subroutine relies on this technique for improved
performance; see Section 2.1 for more details.

Speculative and Caching Schemes in Z[y]

For polynomials a, b ∈ Z[y] with integer coefficients, a modular algorithm can be achieved
by utilizing the Chinese remainder theorem (CRT). In this approach, we use Algorithms
7 and 8 for a prime field k. We define Zp[y] as the ring of univariate polynomials with
coefficients in Z/pZ, for some prime p.

Further, we use an iterative and probabilistic approach to CRT from [75]. We it-
eratively calculate subresultants modulo different primes p0, p1, . . ., continuing to add
modular images to the CRT direct product Zp0 ⊗ · · ·⊗Zpi for i ∈ N until the reconstruc-
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Algorithm 9 Subresultant(a, b, ρ,Q,R,A)
Require: a, b ∈ k[x] \ {0} with n0 = deg(a) ≥ n1 = deg(b), 0 ≤ ρ ≤ n0, the list Q of all the

quotients in the Euclidean sequence, the list R of the remainders that have been computed
so far; we assume that R contains at least rµ, . . . r`−1, r` with 0 ≤ µ ≤ `− 1, and the list A
of the leading coefficients of the remainders in the Euclidean sequence

Ensure: Snv(a, b), Snv+1(a, b) for such 0 ≤ v < ` so that nv+1 ≤ ρ < nv; the list R of the
remainders is updated in-place

1: deduce
(
n0 = deg(a), n1 = deg(b), . . . , n` = deg(r`)

)
from a, b and Q

2: if n` ≤ ρ then v := `

3: else find 0 ≤ v < ` such that nv+1 ≤ ρ < nv.

4: if v = 0 then
5: return

(
a, lc(b)m−n−1b

)
6: for i from max(v, µ+ 1) down to v do
7: ri := ri+1qi+1 + ri+2; R := R∪ (ri)

8: compute Snv , Snv+1 using Proposition 6 from rv, rv+1

9: return
(
Snv , Snv+1

)

tion stabilizes. That is to say, the reconstruction does not change from Zp0 ⊗ · · · ⊗ Zpi−1

to Zp0 ⊗ · · · ⊗ Zpi .
Let p0, p1 be two distinct primes. The CRT states that the residue class ring Zp0p1 :=

Z/(p0p1)Z is isomorphic to the direct product of the residue class rings Zp0 := Z/p0Z and
Zp1 := Z/p1Z, denoted as Zp0⊗Zp1 , and written Zp0p1 ≡ Zp0⊗Zp1 . A näıve generalization
of CRT, applies for a set of distinct primes {p0, . . . , pe} and e ∈ N, yielding the following:

Zp0p1 ··· pe ≡ Zp0 ⊗ Zp1 ⊗ · · · ⊗ Zpe .

In a näıve approach, Sk(a mod pi, b mod pi) modulo Zpi [y] are computed for a set of
distinct large primes {p0, . . . , pe} of size e + 1. Then, CRT algorithm yields Sk(a, b)
modulo Zp0 [y] ⊗ · · · ⊗ Zpe [y]. For a large enough e, results of the CRT algorithm get
stabilized and for such e, we can deduce Sk(a, b) in Z[y].

To determine the number of primes e which is required in CRT, we need to determine
an upper-bound for the maximum size of coefficients of res(a, b). This estimation is
usually challenging and not practical. Thus, we make use of an optimized algorithm
from [75] to perform CRT iteratively and probabilistically. In this approach, we continue
adding modular images to the CRT direct product until the reconstruction stabilizes.
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Speculative and Caching Schemes in Zp[x, y] and Z[x, y]

We further exploit this technique to compute subresultants of bivariate polynomials over
prime fields and the integers. Let a, b ∈ B[y] be polynomials with coefficients in B = Zp[x],
thus B[y] = Zp[x, y], where the main variable is y and p ∈ N is an odd prime.

A desirable subresultant algorithm then uses an evaluation-interpolation scheme and
the aforementioned univariate routines to compute subresultants of univariate images of
a, b in Zp[y] and then interpolates back to obtain subresultants in Zp[x, y]. This approach
is well-studied in [75] to compute the resultant of bivariate polynomials. We can use the
same technique to compute the entire subresultant chain, or even particular subresultants
speculatively through Algorithms 7 and 8.

We begin by choosing a set of evaluation points of size N ∈ N and evaluate each
coefficient of a, b ∈ Zp[x, y] with respect to the main variable (y). Then, we call the
subresultant algorithm to compute subresultants images in Zp[y]. Finally, we can retrieve
the bivariate subresultants by interpolating each coefficient of each subresultant from the
images. The number of evaluation points is determined from an upper-bound on the
degree of subresultants and resultants with respect to x. From Theorem 7, we have:

N ≥ deg(b, y) deg(a, x) + deg(a, y) deg(b, x) + 1.

For bivariate polynomials with integer coefficients, we can use the CRT algorithm
in a similar manner to that which has already been reviewed for univariate polynomials
over Z. Figure 3.1 demonstrates this procedure for two polynomials a, b ∈ Z[x, y]. In this
commutative diagram, ā, b̄ represent the modular images of the polynomials a, b modulo
prime pi for 0 ≤ i ≤ e.

a, b ∈ Z[x, y] subres(a, b, y) ∈ Z[x, y]

ā, b̄ ∈ Zpi [x, y] subres(ā, b̄, y) ∈ Zpi [x, y]

ā(x, y)|x=ti , b̄(x, y)|x=ti ∈ Zpi [y] subres(ā(x, y)|x=ti , b̄(x, y)|x=ti , y) ∈ Zpi [y]

Algorithm 1

modulo p0,p1,...,pi

Evaluate at t0,...,tN

CRT

Algorithm 8

Interpolate at x

Figure 3.1: Computing the subresultant chain of a, b ∈ Z[x, y] using modular arithmetic,
evaluation-interpolation and CRT algorithms where (t0, . . . , tN) is the list of evaluation
points, (p0, . . . , pi) is the list of distinct primes, ā = a mod pi, and b̄ = b mod pi.
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In practice, as the number of variables increases, the use of dense evaluation-interpolation
schemes become less effective, since degree bound estimates become less sharp. In fact,
sparse evaluation-interpolation schemes become more attractive [104, 78], and we will
consider them in future works.

3.5 Parallel Subresultant Algorithms

As we have seen in Section 2.1, the computation of subresultant chains is essential in
order to the Regular GCD (Definition 5) from Theorem 1 and consequently to all the
core subroutines of the Triangularize algorithm.

In practice, the computation of subresultant chains can become a bottleneck when the
coefficient sizes and the degrees of the input polynomials become larger and larger. Par-
allelizing this computation is a way to use more computing resources (in particular cache
memories and CPU), which can have a significantly positive impact on the performance
of the client procedures.

This parallelization is more fine-grained than the tasks of Triangularize as the
amount of work for each worker (task) is low, while the total number of tasks may be
high. Nonetheless, it can sometimes be the most computationally expensive subroutine
and thus should not be ignored as a candidate for parallelization.

To illustrate how this can be done, we consider the computation of subres(a, b) for
a, b ∈ B[y], with B = Z[x]. Related strategies, for the case where B is a ring of multivariate
polynomials, are presented in [83].

Parallel Scheme based on Classical Evaluation-Interpolation

Algorithm 10 presents the evaluation-interpolation approach to compute the entire subre-
sultant chain that is illustrated in Figure 3.1. Here, we discuss the parallel opportunities
and techniques in this algorithm.

From [75], there is an upper bound h for the coefficient size of subres(a, b) with
a, b ∈ Z[x, y]. Thus, Algorithm 10 terminates after finitely many iterations of its while-
loop at Lines 2 to 17. However, the stabilization condition, that is, the test at Line 15,
may break this while-loop earlier. The equality C∗ = C means that C[k] equals C∗[k]
for every 0 ≤ k < deg (b, y), that is, the two subresultant chains (computed modulo M
and modulo Mp, respectively) are equal.

At Line 3, the function NextGoodPrime generates a stream of distinct primes that
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Algorithm 10 BivariateSRC(a, b)
Require: a, b ∈ Z[x, y] with m = deg (a, y), n = deg (b, y), m ≥ n, h ∈ N be a coefficient

bound for subres(a, b), and d = max (deg(a, x), deg(b, x)).
Ensure: subres(a, b) = (Sn−1(a, b), . . . , S0(a, b)) in Z[x, y].

1: N := n deg(a, x) +m deg(b, x); M := 1; C∗ := 0
2: while M ≤ 2h do
3: p := NextGoodPrime(a, b);
4: ā := a mod p; b̄ := b mod p

5: parallel for j from 0 to N do
6: Compute distinct non-zero evaluation point ej mod p

such that init(a)|x=ej , 0 mod p and init(b)|x=ej , 0 mod p

7: Aj := subres( ā|x=ej , b̄
∣∣∣
x=ej

)

8: parallel for k from 0 to n− 1 do
9: r := min(N, (m+ n− 2k)d)

10: B[k] := Interpolate([A0[k], . . . , Ar[k]], [e0, . . . , er])

11: if M = 1 then C := B;
12: else
13: parallel for k from 0 to n− 1 do
14: C[k] := CRT(C∗[k],M,B[k], p)

15: if C = C∗ then break

16: M := Mp; C∗ := C

17: return C∗

are good for a, b, that is, not cancelling their leading coefficients. For a given good prime
p, the parallel for-loop at Lines 5 to 7 computes images of subres(a mod p, b mod p) by
evaluating x at appropriate values.

With the parallel for-loop at Lines 8 to 10, those images are interpolated yielding
subres(a mod p, b mod p). Note that, for every 0 ≤ k < deg(b), we interpolate the k-th
subresultant of ā, b̄ ∈ Zp[x, y] from the first r+1 images of Sk( ā|x=ej , b̄

∣∣∣
x=ej

) for 0 ≤ j ≤ r

where r = min (N,N ′), N = n deg(a, x) + m deg(b, x), N ′ = (m + n − 2k)d, and d =
max (deg(a, x), deg(b, x)). Indeed, it is shown in Theorem 8 that deg(Sk(a, b), x) ≤ N ′,
and more precisely, deg(S0(a, b), x) ≤ N (Theorem 7).
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Algorithm 11 FastBivariateSRC(a, b)
Require: a, b ∈ Z[x, y] with m = deg (a, y), n = deg (b, y), m ≥ n, h ∈ N be a coefficient

bound for subres(a, b), and d = max (deg(a, x), deg(b, x)).
Ensure: subres(a, b) = (Sn−1(a, b), . . . , S0(a, b)) in Z[x, y].

1: N := smallest power of 2 > n deg(a, x) +m deg(b, x); M := 1; C∗ := 0
2: while M ≤ 2h do
3: p := NextGoodPrime(a, b);
4: ā := ZeroPadding(a mod p,m+ 1, N)
5: b̄ := ZeroPadding(b mod p, n+ 1, N)
6: Compute a N -th root of unity ω mod p such that

init(a)|x=ωi and init(b)|x=ωi are non-zero modulo p for all 0 ≤ i < N .
7: parallel for j from 0 to m do
8: αj := FFT(coeff(a, j, y), ω,N, p)

9: parallel for j from 0 to n do
10: βj := FFT(coeff(b, j, y), ω,N, p)

11: α := Transpose(α); β := Transpose(β)
12: parallel for j from 0 to N − 1 do
13: Aj := subres(αj, βj)

14: At := Transpose3D(A)
15: parallel for k from 0 to n− 1 do
16: B[k] := 1

N
FFT([At0[k], . . . , AtN−1[k]], ω−1, N, p)

17: if M = 1 then C := B

18: else
19: parallel for k from 0 to n− 1 do
20: C[k] := CRT(C∗[k],M,B[k], p)

21: if C = C∗ then break

22: M := Mp; C∗ := C

23: return C∗

With the parallel for-loop at Lines 13-14, CRT is applied to deduce,

subres(a mod Mp, b mod Mp),

from
subres(a mod M, b mod M) and subres(a mod p, b mod p).
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For these three parallel-loops, the work can divided evenly between threads. This is, in
fact, an instance of the map pattern discussed in Section 2.3. Therefore, we consider the
following three parallel opportunities for Algorithm 10 where p is a good prime:

(i) Evaluate a, b at x and compute the univariate subresultant chains images in Zp[y];

(ii) Interpolate subresultants in Zp[x, y] from the univariate images in Zp[y]; and

(iii) Combine the interpolated subresultant chain in Zp[x, y] and the CRT result of the
previous iteration.

Parallel Scheme based on FFT-based Evaluation-Interpolation

Algorithm 11 is a variant of Algorithm 10 where the evaluation and interpolation steps
are performed via FFT techniques. When the coefficient bound h and the degrees n,m, d
are large enough, this FFT-based approach substantially reduce the amount of work
(algebraic complexity) without reducing the opportunities for concurrency. However, it
increases memory consumption (as zero-padding is needed, see Lines 4 and 5, in order to
apply FFT) and require careful memory manipulation (like data transposition, see Lines
11 and 14) in order to reduce the number of cache misses.

Since a three-dimensional transposition could have different definitions depending on
the context, we specify that used at Line 14. Given a 3-dim array A of format N×n×N ,
the Transpose3D(A) returns a 3-dim array At of format n × N × N such that every
element A[j][k][i] is mapped to At[k][i][j], for 0 ≤ j < N , 0 ≤ k < n, 0 ≤ i < N . The
two-dimensional transposition (at Line 11) and the three-dimensional transposition (at
Line 13) can efficiently be done in parallel fashion. This is not necessary in Algorithm 11,
however, since the contributions of those transpositions on the critical path are negligible.

Returning to the idea of speculative computation of subresultants, discussed at the
previous section, one can easily modify Algorithm 10 and Algorithm 11 so that they
compute a given pair of consecutive non-zero subresultants from subres(a, b) rather than
computing the entire chain.

In the context of the Regular GCD algorithm, we use this speculative approach in
order to compute S0(a, b), S1(a, b). In the rare case where subresultants of index higher
than 1 are needed, other pairs of consecutive non-zero subresultants from subres(a, b) are
computed, one pair at a time.
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3.6 Experimentation

In this section, we discuss the implementation and performance of our various subresul-
tant algorithms and their underlying core routines. Our methods are implemented as
part of the Basic Polynomial Algebra Subprograms (BPAS) library [8] and we compare
their performance against the NTL library [93] and Maple 2020 [71]. Throughout this
section, our benchmarks were collected on a machine running Ubuntu 18.04.4, BPAS
v1.791, GMP 6.1.2, and NTL 11.4.3, with an Intel Xeon X5650 processor running at
2.67GHz, with 12×4GB DDR3 memory at 1.33 GHz.

The coefficients of univariate polynomials are stored in a C array containing all zero
and non-zero terms in Zp or Z, while the bivariate polynomials are stored as a C ar-
ray of univariate polynomials containing all zero and non-zero terms in Zp[x] or Z[x].
This polynomial view is known as a dense representation. We study a so-called sparse
representation for multivariate polynomials in Chapter 4.

Moreover, we utilize the low-level routines of the GMP library for arbitrary-precision
integers. That is broken into two distinct parts, which is called the head and the tree as
described in [12]. The head contains a pointer to the tree and metadata about the tree,
while the tree itself is what holds the numerical data. Thus, users only interact with the
head.

Example 7 Figure 3.2 demonstrates the polynomial a = any
n + · · ·+ a1y + a0 ∈ Z[y] in

BPAS where a0, a1, . . . , an are arbitrary-precision integers in GMP.

a0 a1 · · · an

head 0 head 1 head n

tree 1 tree 2 tree n

Figure 3.2: A one-dimensional C-array representing polynomial a = ∑n
i=0 aiy

i of n + 1
terms showing GMP trees and GMP heads as a0, a1, . . . , an.

3.6.1 Routines in Zp[y]

We begin with foundational routines for arithmetic in finite fields and polynomials over
finite fields. For basic arithmetic over a prime field Zp where p is an odd prime, Mont-
gomery multiplication, originally presented in [80], is used to speed up multiplication.
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Figure 3.3: Comparing plain, Karatsuba, and FFT-based multiplication in BPAS with
the wrapper mul method in NTL to compute ab for polynomials a, b ∈ Zp[y] with deg(a) =
deg(b) + 1 = d.

We have developed a dense representation of univariate polynomials which take
advantage of Montgomery arithmetic (following the implementation in [30]) for prime
fields with p < 264. Throughout this section we examine the performance of each op-
eration for two randomly generated dense polynomials a, b ∈ Zp with a 64-bit prime
p = 4179340454199820289. Figures 3.3–3.6 examine, respectively, multiplication, divi-
sion, GCD, and subresultant chain operations. These plots compare the various imple-
mentations within BPAS against NTL.

Our multiplication in Zp[y] dynamically chooses the appropriate algorithm based on
the input polynomials: plain or Karatsuba algorithms (following the routines in [100,
Chapter 8]), or multiplication based on fast Fourier transform (FFT). The implementa-
tion of FFT itself follows that which was introduced in [31]. Figure 3.3 shows the per-
formance of these routines in BPAS against a similar “wrapper” multiplication routine
in NTL. From empirical data, our wrapper multiplication function calls the appropriate
implementation of multiplication as follows. For polynomials a, b in Zp[y], with p < 263,
the plain algorithm is called when s := min (deg(a), deg(b)) < 200 and the Karatsuba
algorithm is called when s ≥ 200. For 64-bit primes (p > 263), plain and Karatsuba
algorithms are called when s < 10 and s < 40, respectively, otherwise FFT-based multi-
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Figure 3.4: Comparing Euclidean and fast division algorithms in BPAS with the division
method in NTL to compute rem(a, b) and quo(a, b) for polynomials a, b ∈ Zp[y] with
deg(a) = 2(deg(b)− 1) = d.

plication is performed.
The division operation is again a wrapper function, dynamically choosing between

Euclidean (plain) and fast division algorithms. The fast algorithm is an optimized power
series inversion procedure that is firstly implemented in Aldor [40] using the so-called
middle-product trick. Figure 3.4 shows the performance of these two algorithms in com-
parison with the NTL division in Zp[y]. For polynomials a, b in Zp[y], b the divisor,
empirical data again guides the choice of appropriate implementation. Plain division
is called for primes p < 263 and deg(b) < 1000. However, for 64-bit primes, the plain
algorithm is used when deg(b) < 100, otherwise fast division supported by FFT is used.

Our GCD operation in Zp[y] had two implementations: the classical extended Eu-
clidean algorithm (EEA) and the Half-GCD (fast EEA) algorithm, respectively following
the pseudo-codes in [100, Chapter 11] and the implementation in the NTL library [93].
Figure 3.5 shows the performance of these two approaches named BPAS plainGCD and
BPAS fastGCD, respectively, in comparison with the NTL GCD algorithm for polynomials
a, b ∈ Zp[y] where gcd(a, b) = 1.

To analyze the performance of our subresultant implementations, we compare the
näıve EEA algorithm with the modular subresultant chain and the speculative subre-
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Figure 3.5: Comparing Euclidean-based GCD and Half-GCD-based GCD algorithms
in BPAS with the GCD algorithm in NTL to compute gcd(a, b) = 1 for polynomials
a, b ∈ Zp[y] with deg(a) = deg(b) + 1 = d.

sultant algorithm for ρ = 0, 2 in Figure 3.6. As this figure shows, using Half-GCD to
compute two successive subresultants S1, S0 for ρ = 0 is approximately 5× faster than
computing the entire chain, while calculating other subresultants, e.g. S3, S2 for ρ = 2
taking advantage of the cached information from the first call (for ρ = 0), is nearly
instantaneous.

3.6.2 Subresultants in Z[y] and Z[x, y]

Following our previous discussion of various schemes for subresultants, we have imple-
mented several subresultant algorithms in Z[y] and Z[x, y]. We have four families of
implementations:

1. BPAS modSRC, that computes the entire subresultant chain using Proposition 6 and
the CRT algorithm (and evaluation-interpolation in Z[x, y]);

2. BPAS specSRC, that refers to Algorithms 8 and 9 to compute two successive subre-
sultants using Half-GCD and caching techniques;
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Figure 3.6: Comparing EEA, modular subresultant, and Half-GCD-based subresultant
(BPAS specSRC, ρ = 0, 2), in BPAS for dense polynomials a, b ∈ Zp[y] with deg(a) =
deg(b) + 1 = d.

3. BPAS Ducos, for Ducos’ algorithm, based on Algorithm 18; and

4. BPAS OptDucos, for Ducos’ algorithm based on Algorithm 19.

Figure 3.7 compares the running time of those subresultant algorithms in Z[y] in
the BPAS library and Maple. The modular approach is up to 5× faster than the
optimized Ducos’ algorithm. Using speculative algorithms to compute only two successive
subresultants yields a speed-up factor of 7 for d = 2000.

Figure 3.8 provides a favourable comparison between the family of subresultant algo-
rithms in BPAS and the subresultant algorithm in Maple for dense bivariate polynomials
a, b ∈ Z[x, y] where the main degree is fixed to 50, i.e. deg(a, y) = deg(b, y) + 1 = 50,
and deg(a, x) = deg(b, x) + 1 = d for d ∈ {10, 20, . . . , 100}. Note that the BPAS specSRC

algorithm for ρ = 0, 2, 4, 6 is caching the information for the next call taking advantage
of Algorithm 9.
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Figure 3.7: Comparing (optimized) Ducos’ subresultant chain algorithm, modular sub-
resultant chain, and speculative subresultant for ρ = 0, 2, algorithms in BPAS with
Ducos’ subresultant chain algorithm in Maple for polynomials a, b ∈ Z[y] with deg(a) =
deg(b) + 1 = d.
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Figure 3.9: Comparing Opt. Ducos’ algo-
rithm (the top surface) and modular subre-
sultant chain (the bottom surface) to com-
pute the entire chain for polynomials a, b ∈
Z[x < y] with deg(a, y) = deg(b, y) + 1 = Y

and deg(a, x) = deg(b, x) + 1 = X.
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Figure 3.8: Comparing (optimized) Ducos’ subresultant chain, modular subresultant
chain, and speculative subresultant for ρ = 0, 2, 4, 6, in BPAS with Ducos’ algorithm in
Maple for dense polynomials a, b ∈ Z[x < y] with deg(a, y) = deg(b, y) + 1 = 50 and
deg(a, x) = deg(b, x) + 1 = d.

We next compare more closely the two main ways of computing an entire subresul-
tant chain: the direct approach following Algorithm 1, and a modular approach using
evaluation-interpolation and CRT (see Figure 3.1). Figure 3.9 shows the performance of
the direct approach (the top surface), calling our memory-optimized Ducos’ algorithm
BPAS OptDucos, in comparison with the modular approach (the bottom surface), calling
BPAS modSRC. Note that, in this figure, interpolation may be based on Lagrange interpo-
lation or FFT algorithms depending on the degrees of the input polynomials.

Next, Figure 3.10 highlights the benefit of our speculative approach to compute the
resultant and subresultant of index 1 compared to computing the entire chain. The
FFT-based modular algorithm is presented as the top surface, while the speculative
subresultant algorithm based on the Half-GCD is the bottom surface.

Lastly, we investigate the effects of different subresultant algorithms on the perfor-
mance of the BPAS polynomial system solved based on triangular decomposition and
regular chains; see [10, 27]. Tables 3.3, 3.1, and 3.2 investigate the performance of
BPAS modSRC, and BPAS specSRC and the caching technique, for system solving.

Table 3.3 shows the running time of well-known and challenging bivariate systems,
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Table 3.1: Comparing the execution time (in seconds) of subresultant implementations
for constructed bivariate systems in Listing 3.1. Column headings follow Table 3.3, and
FFTBlockSize is block size in the FFT-based evaluation and interpolation algorithms.

n ModSRC SpecSRCnaı̈ve SpecSRCcached deg(src[idx]) Indexes FFTBlockSize

100 171.213 272.939 83.966 (0,50,100,150) (0,51,101,150) 1024
110 280.952 370.628 117.106 (0,55,110,165) (0,56,111,165) 1024
120 491.853 1035.810 331.601 (0,60,120,180) (0,61,121,180) 2048
130 542.905 1119.720 362.631 (0,65,130,195) (0,66,131,195) 2048
140 804.982 1445.000 470.649 (0,70,140,210) (0,71,141,210) 2048
150 1250.700 1963.920 639.031 (0,75,150,225) (0,76,151,225) 2048

where we have forced the solver to use only one particular subresultant algorithm.
In SpecSRCnaı̈ve, BPAS specSRC does not cache data and thus does not reuse the se-
quence of quotients computed from previous calls. Among them, the caching ratio
(SpecSRCnaı̈ve/SpecSRCcached) of vert lines, L6 circles, ten circles, and SA 2 4 eps are 24.5,
21.6, 19.8, 9.2, respectively, while the speculative ratio (ModSRC/SpecSRCcached) of tryme, mign-

otte xy, and vert lines are 1.5, 1.2, and 1.2, respectively.

Tables 3.1 and 3.2 examine the performance of the polynomial system solver on con-
structed systems which aim to exploit the maximum speed-up of these new schemes.
Listing 3.1 and 3.2 provide the Maple code to construct these input systems. For those
systems created by Listing 3.1, we get 3× speed-up through caching the intermediate
speculative data rather than repeatedly calling the Half-GCD algorithm for each subre-
sultant call. Using BPAS specSRC provides a 1.5× speed-up in using the BPAS modSRC

algorithm. Another family of constructed examples created by Listing 3.2 is evaluated
in Table 3.2. Here, we get up to 3× speed-up with the use of cached data, and up to 2×
speed-up in the modular method.

Figure 3.11 demonstrates the performance of parallel subresultant algorithms for bi-
variate polynomials over the integers using evaluation and interpolation operations. As
discussed in Section 3.5, to implement these schemes, we took advantage of the map
pattern mechanism in the BPAS multithreaded interface (Section 2.3) to parallelize eval-
uation, interpolation, and combination parts of the code. Our experimentation for a test
suite of over 3000 polynomial systems, that are collected from user-data and bug reports
of the RegularChains library and real-world applications, shows a parallel-speed-up factor
of 4× on a 12-core machine [10].
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Table 3.2: Comparing the execution time (in seconds) of subresultant algorithms for
constructed bivariate systems in Listing 3.2. Column headings follow Table 3.1.

n ModSRC SpecSRCnaı̈ve SpecSRCcached deg(src[idx]) Indexes FFTBlockSize

100 894.139 1467.510 474.241 (0,2,2) (0,2,2) 512
110 1259.850 2076.920 675.806 (0,2,2) (0,2,2) 512
120 1807.060 2757.390 963.547 (0,2,2) (0,2,2) 512
130 2897.150 4311.990 1505.080 (0,2,2) (0,2,2) 1024
140 4314.300 5881.640 2134.190 (0,2,2) (0,2,2) 1024
150 5177.410 7869.700 2609.170 (0,2,2) (0,2,2) 1024

Figure 3.11: The parallel-speed-up of the Triangularize algorithm in BPAS when we
use parallel subresultant algorithms (Section 3.5) for a test suite of more than 3000
polynomial systems.
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Table 3.3: Comparing the execution time (in seconds) of subresultant algorithms on
the BPAS Triangularize solver for well-known bivariate systems in the literature.
deg(src[idx]) shows a list of minimum main degrees of the computed subresultants in
each subresultant call and Indexes indicates a list of requested subresultant indexes.

SysName ModSRC SpecSRCnaı̈ve SpecSRCcached OptDucos deg(src[idx]) Indexes

13 sings 9 3.416 3.465 3.408 3.417 (1) (0)
compact surf 11.257 26.702 10.26 10.258 (0,2,4,6) (0,3,5,6)
curve24 4.992 4.924 4.911 4.912 (0,0,1) (0,0,0)
curve issac 2.554 2.541 2.531 2.528 (0,0,1) (0,0,0)
cusps and flexes 4.656 8.374 4.656 4.488 (0,. . . ,2) (0,. . . ,2)
degree 6 surf 81.887 224.215 79.394 344.564 (0,2,4,4) (0,2,4,4)
hard one 48.359 197.283 47.213 175.847 (0,. . . ,2) (0,. . . ,2)
huge cusp 23.406 33.501 23.41 23.406 (0,2,2) (0,2,2)
L6 circles 32.906 721.49 33.422 32.347 (0,. . . ,6) (0,. . . ,6)
large curves 65.353 64.07 63.018 366.432 (0,0,1,1) (0,0,0,0)
mignotte xy 348.406 288.214 287.248 462.432 (1) (0)
SA 2 4 eps 4.141 37.937 4.122 4.123 (0,. . . ,6) (0,. . . ,6)
SA 4 4 eps 222.825 584.318 216.065 197.816 (0,. . . ,3) (0,. . . ,6)
spider 293.701 294.121 295.198 293.543 (0,0,1,1) (0,0,0,0)
spiral29 24 647.469 643.88 644.379 643.414 (1) (0)
ten circles 3.255 56.655 2.862 2.116 (0,. . . ,4) (0,. . . ,4)
tryme 3728.085 4038.539 2415.28 4893.04 (0,2) (0,2)
vert lines 1.217 24.956 1.02 1.021 (0,. . . ,6) (0,. . . ,6)

Maple Code for Polynomial Systems

1 SystemGenerator1 := proc(n)

2 local R := PolynomialRing ([x,y]);

3 local J := PolynomialIdeals :- Intersect (<xˆ2+1 , xy+2>,

4 <xˆ2+3 , xyˆfloor(n/2)+floor(n/2) +1>);

5 J := PolynomialIdeals :- Intersect (J, <xˆ2+3 , xyˆn+n+1>);

6 local dec := Triangularize ( Generators (J),R);

7 dec := map( NormalizeRegularChain ,dec ,R);

8 dec := EquiprojectableDecomposition ([%[1][1] ,%[2][1]] , R);

9 return map(expand , Equations (op(dec),R));

10 end proc:

Listing 3.1: Maple code of constructed polynomials in Table 3.1.
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1 SystemGenerator2 := proc(n)

2 local R := PolynomialRing ([x,y]);

3 local f := randpoly ([x],dense , coeffs =rand ( -1..1) ,degree =n);

4 local J := <f,xy+2>;

5 J := PolynomialIdeals :- Intersect (J,<xˆ2+2 ,(xˆ2+3x+1)yˆ2+3 >);

6 local dec := Triangularize ( Generators (J),R);

7 dec := map( NormalizeRegularChain ,dec ,R);

8 dec := EquiprojectableDecomposition ([%[1][1] ,%[2][1]] , R);

9 return map(expand , Equations (op(dec),R));

10 end proc:

Listing 3.2: Maple code of constructed polynomials in Table 3.2.



Chapter 4

Sparse Multivariate Polynomials

4.1 Introduction

In this chapter we begin with reviewing basic arithmetic including the pseudo-division
operation for multivariate polynomials. Then, we study a natural application of division,
that is so-called multi-divisor division (or normal form), and pseudo-division, that is
so-called multi-divisor pseudo-division, algorithms. We further introduce an optimized
recursive algorithm in order to compute the multi-divisor pseudo-division where the set
of divisors is a strongly normalized triangular set.

These multi-divisor (pseudo-) divisions could be utilized in Intersect to skip the use
of the specialization property of subresultants via reducing (or normalizing) the subresul-
tants w.r.t. the regular chains computed so far in the Triangularize algorithm. This
technique is discussed in [72].

Subresultant algorithms for polynomials with more than 2 variables are crucial for
developing a multivariate polynomial system solver via the Triangularize algorithm
(Section 2.1). Therefore, there are subresultant algorithms for multivariate polynomials
in almost all computer algebra software.

Most notably, the RegularChains library [64] in Maple provides three different al-
gorithms to compute the entire chain based on Ducos’ optimization [36], Bézout matrix
[3], or evaluation-interpolation based on FFT. Each one is well-suited for a particular
type of input polynomials w.r.t the number of variables and the coefficients ring; see the
Maple help page for SubresultantChain command.

Similarly, the Algebramix library in Mathemagix [98] implements different sub-
resultant algorithms, including routines based on evaluation-interpolation, Ducos’ algo-

62
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rithm, and an enhanced version of Lickteig-Roy’s algorithm [61].
In this chapter, we discuss a well-studied scheme known as Ducos’ algorithm to com-

pute the entire subresultant chain using a recursive and sparse representation of multi-
variate polynomials with taking advantage of a heap-based pseudo-division.

We further optimized this algorithm in the sense of performing efficient memory access
patterns and utilizing in-place arithmetic that remarkably deducts the total memory
usage. This so-called optimized Ducos’ algorithm is discussed in Section 4.4.

In this approach we are no longer using fast modular arithmetic, as inputs are often
substantially sparse and the complexity of utilizing a dense representation for multi-
variate polynomials is much more costly than the potential performance that modular
routines could carry out. Moreover, the aforementioned algorithms for evaluation and
interpolation of dense polynomials are not practical for sparse polynomials anymore.

Co-Authorship Statement

The data-structure and basic arithmetic are implemented by Brandt [11]. The nor-
mal form, multi-divisor pseudo-division, and (optimized) Ducos’ subresultant chain al-
gorithms are implemented by Asadi [11]. Theorem 12 is proved by Asadi and Moir [12]
under the supervision of Prof. Marc Moreno Maza.

4.2 Basic Arithmetic

We have studied univariate and bivariate polynomials in the previous chapter. A common
feature between those two categories of polynomials is that we represent them as dense,
and so store them in memory with all their zero and non-zero terms. This representation
has benefits including performing fast univariate and bivariate arithmetic such as dense
evaluation-interpolation operations (Section 3.3). However, this is not practical neither
for an increasing number of variable nor polynomials with many zero terms (i.e. sparse
polynomials).

In this section, we study a sparse representation of polynomials with an arbitrary
number of variables over the integers. We follow definitions and pseudo-codes from [12].

Example 8 Let a = x100 − 1 ∈ Z[x]. This is a sparse representation as zero terms of
polynomial a are eliminated while a dense representation of a would be:

a =
100∑
i=0

aix
i,
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with a0 = −1, ai = 0 for all 0 < i < 100, and a100 = 1. In addition, this is considered
as a sparse polynomial because of its many zero terms.

Let B be a commutative ring with unity 1. We define B[X] = B[x1, . . . xv]. A
distributed polynomial a ∈ B[X] with variables X = (x1, . . . , xv) is indicated as:

a =
na∑
i=1

Ai =
na∑
i=1

aiX
αi ,

where na is the number of non-zero terms, Ai = aiX
αi is a term, ai ∈ B, and αi is an

exponent vector for the variables X. In this section, we make use of variable ordering:

x1 < x2 < · · · < xv,

and a lexicographical term order so that the terms are ordered decreasingly for multivari-
ate polynomials; see Section 4.3 for more details on the lexicographical ordering.

Further, We can represent polynomials in another practical way using a so-called
recursive view. Let a ∈ B[x1, . . . , xv], we can convert a to a univariate polynomial based
on its main variable, xv = mvar(a) in B̃[xv], where B̃ = B[x1, . . . , xv−1]. In this chapter,
we say that a is in B[x1, . . . , xv−1][xv], if a is represented (and stored in the memory) in
the recursive view.

In this section, we review basic arithmetic including addition, multiplication, divi-
sion, and pseudo-division of multivariate polynomials. To study and implement these
operations for polynomial in B[x1, . . . , xv], we make use of both distributed and recursive
representations in the BPAS library [12].

Addition and Subtraction Operations

Addition and subtraction of two polynomials simply performs by sorting the terms after
combining those with identical exponents. To sort the terms of a polynomial, we use a
merge-step based on merge sort [12, 51].

Multiplication and Division Operations

For multiplication and division, we make use of sparse polynomial arithmetic studied
firstly in [51] and later extended in [76, 77]. An efficient multiplication algorithm for
polynomials,

a =
na∑
i=0

aiX
i, and b =

nb∑
i=0

biX
i,
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in B[X] computes:

ab =
na∑
i=0

aib,

by merging all the partial products using a binary max-heap [92, Section 2.4]. We take
advantage of the same idea to compute the division:

a/b = a−
k∑
i=0

qib,

where the heap elements multiply by qi for 0 ≤ i ≤ k (which are terms of the quotient
q = ∑k

i=0 qiX
i ∈ B[X] and generate incrementally along with the divisor); see [12] for

algorithms.

Pseudo-Division Operation

The pseudo-division algorithm is essentially a fraction-free division in B[x1, . . . , xv][y].
For two polynomials a, b ∈ B[X][y], this algorithm performs by multiplying a and h :=
lc(b) ∈ B[X] rather than dividing a by h for each term of the quotient q. If deg(q) = k,
then this operation must satisfy:

hk+1a = qb+ r, (4.1)

where pquo(a, b) := q ∈ B[X][y] is known as the pseudo-quotient and prem(a, b) := r ∈
B[X][y] is known as the pseudo-remainder. Algorithm 12 is adapted from the division
algorithm and shows the näıve pseudo-division algorithm. Recall from Section 3.2 that
lt(a) and lc(a) are denoted, respectively, as the leading term and leading coefficient of a.

Algorithm 12 NäıvePseudoDivide (a, b, y)
Require: a, b ∈ B[X][y], deg(b, y) > 0
Ensure: q, r ∈ B[X][y] and ` ∈ N such that h`a = qb+ r, with deg(r, y) < deg(b, y).
1: q := 0; r := 0; ` := 0; h := lc(b); γ = deg(b, y); r̃ := a

2: while r̃ , 0 do
3: if yγ | r̃ then
4: q := hq + r̃/yγ ; ` := `+ 1
5: else
6: r := r + r̃

7: r̃ := lt(h`a− qb− r)

8: return q, r, `
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In [11] and later in [12], a heap-optimization technique to compute the pseudo-division
of two multivariate polynomials is introduced and developed in the BPAS library. The
management of the heap in this algorithm is so that the computation of the products of
ab requires:

• heapInsert(ai, bj) that adds the product of ai and bj to the heap;

• heapPeek() that gets the exponent vector ε of the top element in the heap; and

• heapExtract() extracts from the heap a term of maximal degree from a product
aibj. The next term of the product aibj (if one exists) is then inserted back into
the heap.

Algorithm 13 from [12] shows the pseudo-division algorithm based on a max-heap
implemented in BPAS.

Algorithm 13 PseudoDivide (a, b, y)
Require: a =

∑na
i=1 aiy

αi =
∑na
i=1Ai, b =

∑nb
i=1 biy

αi =
∑nb
i=1Bi ∈ B[X][y], with b , 0

Ensure: q, r ∈ B[X][y] and ` ∈ N such that h`a = qb+ r, with deg(r, y) < deg(b, y).
1: q := 0; r := 0; ` := 0; s := 0; k := 1; h := lc(b); ε := −1; γ := deg(b, y)
2: while ε > −1 or k ≤ na do
3: if ε < deg(Ak, y) then
4: r̃ := h`Ak

5: η := deg(Ak, y); k := k + 1
6: else if ε = deg(Ak, y) then
7: r̃ := h`Ak − heapExtract()
8: η := ε; k := k + 1
9: else

10: r̃ := −heapExtract()
11: η := ε

12: if deg(b, y) ≤ η then
13: ` := `+ 1; q := hq

14: Q` := r̃/yγ ; q := q +Q`

15: heapInsert(Q`, B2)
16: else
17: r := r + r̃

18: ε := heapPeek()

19: return q, r, `
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Example 9 Consider a = (x1x2 + x2)y3 + x1, b = x1x2y + x1x2 in Z[x1, x2][y]. The
pseudo-division algorithm calculates:

r := prem(a, b) = −x4
1x

4
2 + x4

1x
3
2 − x3

1x
4
2,

and,
q := pquo(a, b) = x3

1x
3
2y

2 − x3
1x

3
2y + x2

1x
3
2y

2 + x3
1x

3
2 − x2

1x
3
2y + x2

1x
3
2,

so that, the equation hka = qb+ r satisfies with h = x1x2 and k = 2.

4.3 Multi-Divisor Division and Pseudo-Division

One natural application of multivariate division with remainder is the computation of
normal forms with respect to a set of polynomials, a kind of multi-divisor division. In
this section, we review the definition of the multi-divisor division algorithm, that we also
call normal form. We study an efficient recursive algorithm to compute the normal form
of triangular sets, and introduce a recursive multi-divisor pseudo-division for strongly
normalized triangular sets.

For polynomials in k[X] := k[x1, . . . , xv], a monomial order is a relation < on Nv such
that < is a total order, and if α < β then α + γ < β + γ for all α, β, γ ∈ Nv.

Definition 13 A monomial order < is a lexicographic order if for every α, β ∈ Nv,

α < β ⇐⇒ the leftmost non-zero entry in α− β is negative.

Example 10 For monomials in k[x, y, z] with Lexicographic order, we have:

z5 = x0y0z5 < y5 = x0y5z0 < x1y1z5 < x1y2z1 < x5 = x5y0z0.

Throughout this thesis, we assume a lexicographic order for all polynomial ring. Our
next goal is to define an algorithm for division with remainder in k[X] and for many
divisors. Before presenting the pseudo-code, we review a couple of examples from [100]
to illustrate important features of this algorithm.

Example 11 Consider a = xy2 + 1, b1 = xy + 1, b2 = y + 1 in Z[x, y], we have:

xy + 1 y + 1
xy2 + 1 y

−(xy2 + y)
−y + 1 -1

−(−y − 1)
2
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Here, the quotient in each step is recorded in the column below its divisor. In the last
step, 2 is not divisible by the leading term of b1 or b2, and the process terminates. Hence,

a = (y)b1 + (−1)b2 + (2).

However, the multi-divisor division is not a determinism algorithm in the sense of the
returned remainder. For instance, if we divide a by b2 instead of b1 at the first step, the
final reduced result would be x+ 1 instead of 2, and we have:

a = (0)b1 + (xy − x)b1 + (x+ 1).

In the following example, we experience a situation that only occurs within multivari-
ate cases. In the third step, the leading term x is not divisible by the leading term of b1

or b2 and is moved to the remainder column, and then, the division continues further.

Example 12 Consider a = x2y + xy2 + y2, b1 = xy − 1, b2 = y2 − 1 in Z[x, y], we have:

xy − 1 y2 − 1 remainder
x2y + xy2 + y2 x

−(x2y − x)
xy2 + x+ y2 y

−(xy2 − y)
x+ y2 + y x

−x
y2 + y 1

−(y2 − 1)
y + 1 y + 1

The result is a = (x+ y)b1 + (1)b2 + (x+ y + 1).

4.3.1 Triangular Set Normal Form

Let k be a field. If B = (b1, . . . , bk) is a set of polynomials where bj ∈ k[x1, . . . , xv] for
1 ≤ i ≤ k, we can compute the normal form r of a polynomial a ∈ k[x1, . . . , xv] (together
with the quotients qj) with respect to B by Algorithm 14, yielding,

a = q1t1 + · · ·+ qktk + r,

where r is reduced with respect to B so that no monomial in r is divisible by any of the
leading terms of bi for 1 ≤ i ≤ k.
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Algorithm 14 NormalForm (a, T )
Require: a ∈ k[x1, . . . , xv], B = (b1 . . . , bk) ⊂ k[x1, . . . , xv]
Ensure: q = (q1, . . . , qk) ⊂ k[x1, . . . , xv] and r ∈ k[x1, . . . , xv] such that a = q1b1+· · ·+qkbk+r,

where r is reduced in the sense of no monomial in r is divisible by any of the leading terms
of bi for 1 ≤ i ≤ k.

1: r := 0; p := a

2: q1 := 0; q2 := 0; · · · ; qk := 0
3: while p , 0 do
4: if lt(bi) | lt(p) for some i ∈ {1, . . . , k} then
5: qi := qi + lt(p)

lt(bi)
6: p := p− lt(p)

lt(bi)
bi

7: else
8: r := r + lt(p); p := p− lt(p)

9: end while
10: return q1, . . . , qk, r

Theorem 11 Algorithm 14 terminates and is correct.

Proof. [100, Theorem 21.12]
This näıve normal form algorithm makes repeated calls to a multivariate division with

remainder algorithm, thus we can take advantage of our optimized heap-based division
to perform this procedure. Moreover, We can offer algorithmic improvements in some
cases where the set of divisors forms a triangular set.

Definition 14 A triangular set T = {t1, . . . , tk}, with tj ∈ k[x1, . . . , xv] and,

mvar(t1) < · · · < mvar(tk),

is called normalized if, for every polynomial of T , every variable appearing in its initial
is free, that is, is not the main variable of another polynomial of T .

In the case where a normalized triangular set is also zero-dimensional, i.e., k = v so
that being normalized implies that init(ti) ∈ k holds, the triangular set T is actually a
so-called Gröbner basis for the ideal it generates.

For this case of zero-dimensional normalized (so-called Lazard) triangular sets one can
use a recursive algorithm (Algorithm 15) which is taken from [65]. Since the algorithm
is recursive we appropriately use the recursive representation of polynomials.
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If v = 1, the result is obtained by simply applying normal division with remainder.
Otherwise the coefficients of a with respect to xv = mvar(tv) are polynomials belonging
to k[x1, . . . , xv−1], because T is a triangular set. The coefficients of a are reduced with
respect to the set (t1, t2, . . . , tv−1) by means of a recursive call, yielding a polynomial r.
At this point, r is divided by tv by applying the division algorithm. Since this operation
can lead to an increase in degree of for the variables less than xv, the coefficients of r are
reduced with respect to (t1, . . . , tv−1) by means of a second recursive call.

Algorithm 15 TriangularSetNormalForm (a, T )
Require: a ∈ k[x1, . . . , xv], T = (t1, . . . , tv) ⊂ k[x1, . . . , xv], with x1 = mvar(t1) < · · · < xv =

mvar(tv) and init(t1), . . . , init(tv) ∈ k
Ensure: q = (q1, . . . , qv) ⊂ k[x1, . . . , xv] and r ∈ k[x1, . . . , xv] such that a = q1t1+· · ·+qvtv+r,

where r is reduced (in the sense of Gröbner bases) with respect to the Lazard triangular
set T

1: if v = 1 then
2: (q1, r) := Divide(a, t1)
3: else
4: for i = 0 to deg(a, xv) do
5: (q(i) := (q(i)

1 , . . . , q
(i)
v−1), r(i)) :=

TriangularSetNormalForm(coeff(a, xv, i), (t1, . . . , tv−1))

6: q := 0
7: r :=

∑
i
r(i)xv

i

8: for j = 1 to v − 1 do
9: qj := qj +

∑
i
q

(i)
j xv

i

10: (q̃, r) := Divide(r, tv); qv := qv + q̃

11: for i = 0 to deg(r, xv) do
12: (q(i) := (q(i)

1 , . . . , q
(i)
v−1), r(i)) :=

TriangularSetNormalForm(coeff(r, xv, i), (t1, . . . , tv−1))

13: execute Lines 8-11
14: return (q, r)

4.3.2 Triangular Set Pseudo-Division

This approach can be extended to pseudo-division of a polynomial by a triangular set,
an operation that is important in triangular decomposition algorithms, in the case that
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the triangular set is normalized.

The pseudo-remainder r and pseudo-quotients qj of a polynomial a ∈ k[x1, . . . , xv]
pseudo-divided by a triangular set T = (t1, . . . , tk) must satisfy:

ha = q1t1 + · · ·+ qktk + r, deg(r,mvar(tj)) < deg(tj,mvar(tj)) for 1 ≤ j ≤ k (4.2)

where h is a product of powers of the initials (leading coefficients in the univariate sense)
of the polynomials of T . If this condition is satisfied then r is said to be reduced with
respect to T , again using the convention that deg(r) = −∞ if r = 0.

The pseudo-remainder r can be computed näıvely in k iterations where each iteration
performs a single pseudo-division step with respect to each main variable in decreas-
ing order mvar(tk),mvar(tk−1), . . . ,mvar(t1). The remainder is initially set to a and is
updated during each iteration.

This näıve algorithm is inefficient for two reasons:

(i) Since each pseudo-division step can increase the degree of lower variables in the
order, if a is not already reduced with respect to T , the intermediate pseudo-
remainders can experience significant coefficient swell; and

(ii) It is inefficient in terms of data locality because each pseudo-division step requires
performing operations on data distributed throughout the polynomial.

A less näıve approach is a recursive algorithm that replaces each of the k pseudo-
division steps in the näıve algorithm with a recursive call, amounting to k iterations
where multiple pseudo-division operations are performed at each step. This algorithm
deals with the first inefficiency issue of coefficient swell, but still runs into the issue with
data locality. To perform this operation more efficiently we conceive a recursive algorithm
based on the the recursive normal form algorithm (Algorithm 15). Using a recursive call
for each coefficient of the input polynomial a ensures that we work only on data stored
locally, handling the second inefficiency of the näıve algorithm.
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Algorithm 16 TriangularSetPseudoDivide (a, T )
Require: a, t1, . . . , tk ∈ k[x1, . . . , xv], T = (t1, . . . , tk), with mvar(t1) < · · · < mvar(tk) and

init(tj) < {mvar(ti) | ti ∈ T} for 1 ≤ j ≤ k
Ensure: q = (q1, . . . , qk) ⊂ k[x1, . . . , xv] and r, h ∈ k[x1, . . . , xv] such that ha = q1t1 + · · · +

qktk + r, where r is reduced with respect to T
1: if k = 1 then
2: (q1, r, e) := PseudoDivide(a, t1); h = init(t1)e

3: else
4: xm := mvar(tk)
5: for i = 0 to deg(a, xm) do
6: (q(i) := (q(i)

1 , . . . , q
(i)
k−1), r(i), h(i)) :=

TriangularSetPseudoDivide(coeff(a, xm, i), (t1, . . . , tk−1))

7: q = 0
8: h1 := lcm(h(i)), 0 ≤ i ≤ deg(a, xm)
9: r :=

∑
i

(h1/h
(i)) r(i)xim

10: for j = 1 to k − 1 do
11: qj := qj +

∑
i

(h1/h
(i)) q(i)

j xim

12: if mvar(r) = xm then
13: (q̃, r, ẽ) := PseudoDivide(r, tk)
14: h̃ = init(tk)ẽ

15: for j = 1 to k − 1 do
16: qj := qj h̃

17: qk := q̃

18: for i = 0 to deg(r, xm) do
19: (q(i) := (q(i)

1 , . . . , q
(i)
k−1), r(i), h(i)) :=

TriangularSetPseudoDivide(coeff(r, xm, i), (t1, . . . , tk−1))

20: h2 := lcm(h(i)), 0 ≤ i ≤ deg(r, xm)
21: for j = 1 to k do
22: qj := qjh2

23: execute Lines 9-13 with h2 replacing h1

24: h := h1h̃h2

25: else
26: h := h1; qk = 0

27: return (q, r, h)
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Theorem 12 Algorithm 16 terminates and is correct.

Proof. The key difference between this algorithm and Algorithm 15 is the change from
division to pseudo-division. By the correctness of Algorithm 13 the computed pseudo-
remainders are reduced with respect to its divisor. The fact that the loops of recursive
calls are all for a triangular set with one fewer variables ensures that the total number
of recursive calls is finite and the algorithm terminates. If k = 1, then pseudo-division
algorithm shows correctness of this algorithm, so assume that k > 1.

We must first show that lines 4 to 13 correctly reduce a with respect to the polynomials
(t1, . . . , tk−1). Let ci = coeff(a, xm, i), so a = ∑deg(a,xm)

i=0 cix
i
m. Assuming the correctness

of the algorithm, the result of these recursive calls are q(i)
j , r(i) and h(i) such that:

h(i)ci =
k−1∑
j=1

q
(i)
j tj + r(i),

where deg(r(i),mvar(tj)) < deg(tj,mvar(tj)) and h(i) = ∏k−1
j=1 init(tj)ej for some non-

negative integers ej. It follows that ci =
(∑k−1

j=1 q
(i)
j tj + r(i)

)
/h(i). We seek a minimal h1

such that:

h1a =
∑
i

h1cix
i
m =

∑
i

(h1/h
(i))

k−1∑
j=1

q
(i)
j tj + r(i)

xim
is denominator-free, which is easily seen to be lcm(h(i)). This then satisfies the required
relation of the form (4.2), with h1 in place of h, by taking qj = ∑

i(h1/h
(i))q(i)

j tjx
i
m and r =∑

i(h1/h
(i))r(i)

j x
i
m. This follows from the conditions deg(r(i),mvar(tj)) < deg(tj,mvar(tj))

since h1 contains none of the main variables of (t1, . . . , tk−1) because T is normalized.
If at this point mvar(r) , xm, then no further reduction needs to be done and the

algorithm finishes with the correct result by returning (q1, . . . , qk−1, 0, r, h1). This is
handled by the else clause on lines 30-31 of the conditional on lines 14 to 32. If, on the
other hand, mvar(r) = xm, we must reduce r with respect to tk. The pseudo-division
algorithm indicates that after executing line 15,

deg(r,mvar(tk)) < deg(tk,mvar(tk)),

and together with lines 16-20 implies that with the updated pseudo-quotients:

h̃h1a =
k∑
j=1

qjtj + r. (4.3)

Since the pseudo-division step at line 15 may increase the degrees of the variables
of r less than xm in the variable ordering, we must issue a second set of recursive calls
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to ensure that (4.2) is satisfied. Again given the correctness of the algorithm, it follows
that the result of the recursive calls on lines 21-23 taking as input r = ∑deg(r,xm)

i=0 cix
i
m,

with ci = coeff(r, xm, i), are q(i)
j , r(i) and h(i) such that h(i)ci = ∑k−1

j=1 q
(i)
j tj + r(i), where

deg(r(i),mvar(tj)) < deg(tj,mvar(tj)). Combining these results as before and taking
h2 = lcm(h(i)) it follows that:

h2r =
k−1∑
j=1

q̃jtj + r̃, (4.4)

satisfies a reduction condition of the form (4.2) with q̃ = ∑
i(h2/h

(i))q(i)
j tjx

i
m and r̃ =∑

i(h2/h
(i))r(i)

j x
i
m, again because T is normalized. Multiplying (4.3) by h2 and using

equation (4.4) yields:

h2h̃h1a =
k∑
j=1

h2qjtj + h2r =
k∑
j=1

h2qjtj +
k−1∑
j=1

q̃jtj + r̃ =
k−1∑
j=1

(h2qj + q̃j)tj + h2qktk + r̃,

which gives the correct conditions for updating the pseudo-quotients on lines 25-27, with
the q̃j and r̃ computed at line 28. Now r̃ is reduced with respect to xm because r is
and with respect to mvar(t1), . . . ,mvar(tk−1) because of the above argument, so that the
correct overall multiplier is h = h2h̃h1, set on line 29. The algorithm is therefore correct.

4.3.3 Experimentation

For comparing multi-divisor division (normal form) and pseudo-division with respect to
a triangular set, we require more structure to our operands. For these experiments we
use a zero-dimensional normalized (Lazard) triangular set. Throughout this section, our
benchmarks were collected on a machine running Ubuntu 18.04.4, and GMP 6.1.2, with
an Intel Xeon X5650 processor running at 2.67GHz, with 12×4GB DDR3 memory at
1.33 GHz.

For our benchmarks we use polynomials with 5 variables, say x1, x2, x3, x4, x5, and
thus a triangular set of size 5: T = (t1, t2, t3, t4, t5). The polynomials in the divisor set
and dividend (a) are always fully dense and have the following degree pattern. For some
positive integer δ we let deg(a, x1) = 2δ, deg(a, xi) = lg(δ), deg(a, x1) − deg(t1, x1) = δ

and deg(a, xi)− deg(ti, xi) = 1 for 1 < i ≤ 5.
There is a large gap in the lowest variable, but a small gap in the remaining variables,

a common structure of which the recursive algorithms can take advantage. For both
polynomials over Q (Figures 4.1 and 4.3) and over Z (Figures 4.2 and 4.4) we compare the
näıve and recursive algorithms for both normal form and pseudo-division by a triangular
set against Maple.
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For normal form we call Maple’s Groebner:-NormalForm with respect to the rem

while for triangular set pseudo-division we implement Algorithm 16 in Maple using
prem. Since prem is a kind of pseudo-division that we implement in the BPAS library.
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Figure 4.1: Comparing normal form algorithms over Q where polynomials are in Q[x1,

x2, x3, x4, x5] and the coefficient bound is 128-bit.
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Figure 4.2: Comparing normal form algorithms over Z where polynomials are in Z[x1,

x2, x3, x4, x5] and the coefficient bound is 128-bit.
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Figure 4.3: Comparing triangular set pseudo-division algorithms over Q where polyno-
mials are in Q[x1, x2, x3, x4, x5] and the coefficient bound is 128-bit.
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Figure 4.4: Comparing triangular set pseudo-division algorithms over Z where polyno-
mials are in Z[x1, x2, x3, x4, x5] and the coefficient bound is 128-bit.

4.4 Ducos’ Subresultant Chain Algorithm

In [37], Ducos proposes two optimizations for Algorithm 1. The first one, attributed
to Lazard, deals with the potentially expensive exponentiations and division at Line
11 of Algorithm 1. The second optimization considers the potentially expensive exact
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division (of a pseudo-remainder by an element from the coefficient ring) at Line 15 of
this algorithm.

Applying both improvements to Algorithm 1 yields an efficient subresultant chain pro-
cedure that is known as Ducos’ algorithm. In this section, we review both optimizations
that are so-called Lazard optimization and Ducos optimization algorithms. In addition,
we discuss a memory-efficient version of the latter optimization. The performance of
these routines have been examined within the BPAS system solver; see Sections 3.6.2
and 4.4.3 for the experimentation details.

4.4.1 Original Scheme

In Algorithm 1 that computes the list of entire non-zero subresultants of two polynomials
in B[y], two main calculations are carried out in the main while-loop. The Theorem 13
borrowed from [37] shows both formulas in this algorithm.

Theorem 13 Let B be an integral ring. Sd be a regular (i.e. of degree d) subresultant
polynomial of a, b ∈ B[y] with d ≤ min(deg(a), deg(b)) and Sd−1 , 0 of degree e ∈
{0, . . . , d− 1}. Then:

Se := lc(Sd−1)d−e−1Sd−1

lc(Sd)d−e−1 ,

Se−1 := prem(Sd,−Sd−1)
lc(Sd)d−e+1 .

Proof. [37, Theorem 1]

Lazard Optimization

For the first equation in Theorem 13, Lazard proved that it is possible to avoid the
expensive exponentiations lc(Sd−1)d−e−1 and lc(Sd)d−e−1, and their division as follows:

Se :=

lc(Sd−1)2

sd
×···×lc(Sd−1)
sd

×lc(Sd−1)
sd

×lc(Sd−1)
sd

× Sd−1

sd
,

where sd := lc(Sd) and every division is exact division; see Algorithm 17. In this equation,
we have:

lc(Sd−1)δ+1

lc(Sd)δ
∈ B,
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for all 0 ≤ δ ≤ d−e. Algorithm 17 shows this so-called Lazard optimization and used in
the Ducos subresultant chain algorithm to compute Se (Algorithm 20). This optimization
is indeed efficient in the case of large degree gaps in the subresultant chain; see [37] for
the details.

Algorithm 17 LazardOptimization (Sd, Sd−1)
Require: Sd, Sd−1 ∈ B[y]
Ensure: Se, the next subresultant in the subresultant chain of a, b
1: n := deg(Sd)− deg(Sd−1)− 1
2: if n = 0 then
3: return Sd−1

4: (x, z) := (lc(Sd−1), lc(Sd))
5: a := 2blog2(n)c

6: c := x

7: n := n− a
8: while a , 1 do
9: a := a/2

10: c := c2/z

11: if n ≥ a then
12: c := cx/z

13: n := n− a
14: return cSd−1/z

Ducos Optimization

Ducos also proved a further optimization in order to compute the second equation. The
calculation of prem(Sd,−Sd−1), the exponentiation and the quotient are usually expen-
sive. So, Ducos presented a so-called Ducos optimization in order to compute Se−1 while
limiting the size of intermediate coefficients.

In Ducos optimization, he extended a so-called Euclidean divisibility relation between
subresultant polynomials from [68, Section 6] to compute Se−1 similar to the computation
of Se with Lazard optimization. This method is presented in Algorithm 18. Ducos in
[37] took advantage of both improvements to present Algorithm 20.

The Ducos’ Subresultant Chain presented in Algorithm 20 is one of the fastest and
optimized algorithm to compute the entire subresultants of two polynomials a, b ∈ B[y].
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This algorithm is implemented in different computer algebra software including, but not
limited to, Maple as part of the RegularChains library [64].

Algorithm 18 DucosOptimization (Sd, Sd−1, Se, sd)
Require: Given Sd, Sd−1, Se ∈ B[y] and sd ∈ B
Ensure: Se−1, the next subresultant in the subresultant chain of a, b
1: (d, e) := (deg(Sd),deg(Sd−1))
2: (cd−1, se) := (lc(Sd−1), lc(Se))
3: for j = 0, . . . , e− 1 do
4: Hj := sey

j

5: He := sey
e − Se

6: for j = e+ 1, . . . , d− 1 do
7: Hj := yHj−1 −

coeff(yHj−1, e)Sd−1
cd−1

8: D :=

d−1∑
j=0

coeff(Sd, j)Hj

lc(Sd)
9: return (−1)d−e+1 cd−1(yHd−1+D)−coeff(yHd−1, e)Sd−1

sd

4.4.2 Memory-Efficient Scheme

The Ducos optimization that is presented in Algorithm 18 from [37, Section 3], is a well-
known improvement of Algorithm 1 to compute the subresultant Se−1. This optimization
provides a faster procedure to compute the pseudo-division of two successive subresul-
tants, namely Sd, Sd−1 ∈ B[y], and a division by a power of lc(Sd). The main part of this
algorithm is for-loops to compute:

D :=

d−1∑
j=0

coeff(Sd, j)Hj

lc(Sd)
.

Recall that coeff(Sd, j) is the coefficient of Sd in yj. We now introduce a new optimization
for this algorithm to make better use of memory resources through in-place arithmetic.
This is shown in Algorithm 19.

In this algorithm we use a procedure named InplaceTail to compute the tail (the
reductum of a polynomial with respect to its main variable) of a polynomial, and its
leading coefficient, in-place. This operation is essentially a coefficient shift. In this way,
we reuse existing memory allocations for the tails of polynomials Sd, Sd−1, and Se.
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Algorithm 19 cache-friendly DucosOptimization (Sd, Sd−1, Se, sd)
Require: Sd, Sd−1, Se ∈ B[y] and sd ∈ B
Ensure: Se−1, the next subresultant in the subresultant chain of subres(a, b)
1: (p, cd) := InplaceTail(Sd)
2: (q, cd−1) := InplaceTail(Sd−1)
3: (h, se) := InplaceTail(Se)
4: Convert p to a recursive representation format in-place
5: h := −h; a := coeff(p, e) h
6: for i = e+ 1, . . . , d− 1 do
7: if deg(h) = e− 1 then
8: h := y tail(h)−ExactQuotient(lc(h) q, cd−1)
9: else h := y tail(h)

10: a := a+ lc(coeff(p, i)) h

11: a := a+ se
∑e−1
i=0 coeff(p, i)yi

12: a := ExactQuotient(a, cd)
13: if deg(h) = e− 1 then
14: a := cd−1 (y tail(h) + a)− lc(h) q
15: else a := cd−1 (y h+ a)

16: return (−1)d−e+1 ExactQuotient(a, sd)

Furthermore, we reduce the cost of calculating ∑d−1
j=e coeff(Sd, j)Hj computing the

summation iteratively and in-place in the same for-loop that is used to update polynomial
h (lines 6-10 in Algorithm 19). This greatly improves data locality.

We also update the value of h depending on its degree with respect to y as deg(h) ≤
e− 1 for all e+ 1 ≤ i < d. We utilize an optimized exact division algorithm denoted by
ExactQuotient to compute quotients rather a classical Euclidean algorithm.
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Algorithm 20 Subresultant (a, b, y)
Require: a, b ∈ B[y] with m = deg(a) ≥ n = deg(b) and B is an integral domain
Ensure: the non-zero subresultants from (Sn, Sn−1, Sn−2, . . . , S0)
1: if m > n then
2: S := (lc(b)m−n−1b)
3: else S := ()

4: s := lc(b)m−n

5: A := b; B := PseudoDivide(a,−b)
6: while true do
7: d := deg(A); e := deg(B)
8: if B = 0 then return S

9: S := (B) ∪ S; δ := d− e
10: if δ > 1 then
11: C := LazardOptimization of Se
12: S := (C) ∪ S
13: else C := B

14: if e = 0 then return S

15: B := (cache-friendly) DucosOptimization of Se−1

16: A := C; s := lc(A)
17: end while

4.4.3 Experimentation

Table 4.1: Ducos’ test examples in [37, Section 5].

Test a ∈ Z[X] b ∈ Z[X]

1 ax6 + bx5 + cx4 + dx3 + ex2 + fx+ g derivative of a
2 x5 + ax4 + bx3 + cx2 + dx+ e x5 + fx4 + gx3 + hx2 + ix+ j

3 x7 + ax3 + bx2 + cx+ d x7 + ex3 + fx2 + gx+ h

4 x20 + ax15 + b x20 + cx5 + d

5 (x+ a)15 (x+ z)15

6 x30 + ax20 + 2ax10 + 3a x25 + 4bx15 + 5bx5

7 (a+ x)90 (a− x)60

8 ∑75
j=0 a

75−jxj
∑n
j=0 ja

n−jxj

9 ∑200
j=0 x

j 1 +∑100
j=0 jx

j

10 1 +∑900
j=1 jx

j 1 +∑900
j=1 j

2xj
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Table 4.2: Comparing memory usage (GB) of Ducos’ subresultant chain algorithms for
polynomials a, b ∈ Z[y] with deg(a) = deg(b) + 1 = d in Figure 3.7 in Z[y].

Degree BPAS Ducos BPAS OptDucos Maple Ducos

1000 1.088 0.320 3.762
1100 1.450 0.430 5.080
1200 1.888 0.563 6.597
1300 2.398 0.717 8.541
1400 2.968 0.902 10.645
1500 3.655 1.121 12.997
1600 4.443 1.364 15.924
1700 5.341 1.645 19.188
1800 6.325 1.958 23.041
1900 7.474 2.332 27.353
2000 8.752 2.721 31.793

We compare both the original Ducos’ subresultant chain and the optimized one with
the Ducos subresultant chain algorithm in Maple that is implemented as part of the
RegularChains library [64]. Throughout this section, our benchmarks were collected on
a machine running Ubuntu 18.04.4, GMP 6.1.2, and Maple 2020, with an Intel Xeon
X5650 processor running at 2.67GHz, with 12×4GB DDR3 memory at 1.33 GHz.

Table 4.2 shows the memory usage for computing the entire subresultant chain of
polynomials a, b ∈ Z[y], with deg(a) = deg(b) + 1 = d. The table presents BPAS Ducos,
BPAS OptDucos, and Maple Ducos. For d = 2000, Table 4.2 shows that the optimized
algorithm uses approximately 3× and 11× less memory than our original implementation
and the Ducos’ algorithm in Maple, respectively.

In [37, Section 5], Ducos compared Algorithm 20 over 10 pairs of multivariate poly-
nomials presented in Table 4.1. We compare the implementation of these methods in
BPAS for these pairs of polynomials. The results are demonstrated in Table 4.3.
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Table 4.3: Comparing the execution time (in seconds) of Ducos’ subresultant chain al-
gorithms for polynomials in Table 4.1.

Test BPAS Ducos BPAS OptDucos BPAS Ducos/BPAS OptDucos

1 5.38 5.044 1.067
2 95.445 79.978 1.194
3 63.582 62.239 1.021
4 0.65 0.622 1.045
5 86.615 90.416 0.958
6 95.412 53.385 1.787
7 16.352 10.305 1.586
8 21.371 20.372 1.049
9 9.064 10.39 0.873

10 13.894 12.818 1.083

Table 4.4: Comparing memory usage (MB) of Ducos’ subresultant chain algorithms for
extended Ducos’ Tests in Table 4.1 where deg(a, x) = deg(b, x) + 1 = d.

Test d BPAS Ducos BPAS OptDucos Maple Ducos

1 9 421.8 427.7 466.1
2 90 30.4 29.9 21.9
3 14 154.6 153.6 130.1
4 55 36.2 34.8 53.4
5 30 84.4 77.5 320.5
6 120 123.4 47.128 46.4
7 540 5068.7 4434.3 14425.6
8 500 406.2 245.4 2279.4
9 2000 297.156 193.612 3007.7

10 5000 3955.5 300.2 22192.3

We further consider an extension of these test examples in Table 4.1 increasing the
degree of x in both a, b ∈ Z[X] and collected the memory usage of them in Table 4.4. The
result indicates the remarkable impact of our cache-friendly algorithm in the performance
of Ducos’ subresultant chain (Algorithm 20).



Chapter 5

Bézout Matrix over Multivariate
Polynomials

5.1 Introduction

In the previous chapter, we reviewed the multivariate polynomial arithmetic over the
sparse representation implemented in the BPAS library. In addition, we introduced
a cache-friendly version of the well-known Ducos’ subresultant chain algorithm. In this
chapter, we study an alternative way to compute subresultants using linear-algebra meth-
ods, and introduce speculative subresultant algorithms for multivariate polynomials based
on Hybrid Bézout Matrices.

As reviewed in Section 3.2, the standard definition of subresultants is based on
the so-called Sylvester matrix (Definition 10); for two non-constant polynomials a =∑m
i=0 aiy

i, b = ∑n
i=0 biy

i in B[y] with B = Z[x], their Sylvester matrix is:

sylv(a, b) =

am am−1 · · · a0
am am−1 · · · a0

. . .
. . .

. . .
am am−1 · · · a0

bn bn−1 · · · b0
bn bn−1 · · · b0

. . .
. . .

. . .
bn bn−1 · · · b0





n

m

.

For two polynomials a, b ∈ Z[x, y] with deg(a, x) = deg(b, x) = d, and deg(a, y) =
deg(b, y) = n. The determinant of the Sylvester matrix of a, b is the subresultant of
index 0 that is in fact the resultant of a, b, is a polynomial of degree bound d2n. However,

84
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this degree bound is pessimistic in practice and as this matrix formulation is highly
structured, its determinant can be computed in quadratic time instead of the usual cubic
time; see Section 2.2 for more details.

There is another matrix formulation known as Bézout matrix for computing the re-
sultant of a, b given as the determinant of matrix of size n × n where coefficients have
degree 2d. This determinant returns a polynomial of degree bound (2d)n. Unlike the for-
mer approach, the Bézout matrix approaches involve a less structured matrix requiring
a cubic algorithm to perform determinants.

There have been several studies to reduce the complexity of computing subresul-
tants based on Bézout matrices. Most notably, Abdeljaoued et al. in [2] introduced
an algorithm to compute the nominal coefficients of subresultants from calculating the
determinants of sub-matrices of a modified version of the Bézout matrix. Later, Kerber
in [55] generalized this approach to compute the entire subresultants instead of only the
nominal coefficients.

Although this approach is still theoretically slower than Ducos’ subresultant chain al-
gorithm, early experimental results in Maple, that is collected during the development of
the SubresultantChain method in the RegularChains library [64], indicates that Bézout
approaches are well-suited for super sparse polynomials with many variables.

Section 5.2 tackles the problem of computing determinants of sub-matrices of the
Bézout matrix. In this section, we study a so-called fraction-free LU decomposition
algorithm (FFLU) that is one of the most practical approaches to compute the exact ma-
trix factorization, and so determinant, over the polynomial ring Z[x1, . . . , xv] for v > 2
[50, 62]. We further make use of different optimization techniques including the fraction-
free Bareiss algorithm (Section 5.2.1), smart-pivoting (Section 5.2.2), and BPAS mul-
tithreaded interface to parallelize the row elimination step (Section 5.2.3). The perfor-
mance of these routines in BPAS are demonstrated in Section 5.2.4.

Section 5.3 is focused on the computation of subresultants using Bézout matrix. In
section 5.3.1, we review definitions of Bézout matrix and a modified version of it that
is known as Hybrid Bézout matrix. We also discuss different approaches to calculate
subresultants from these matrices. Furthermore, we introduce speculative and caching
schemes to compute two successive subresultants, e.g. (S0, S1), (S2, S3), with modifying
the fraction-free LU factorization and utilizing the Hybrid Bézout matrices in Section
5.3.2. We implement these schemes in the BPAS library and the results are presented
in Section 5.3.3.
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Co-Authorship Statement

The data-structure and basic matrix arithmetic along with the determinant and subre-
sultants schemes are implemented by Asadi follows [50] under the supervision of Prof.
Marc Moreno Maza.

5.2 Fraction-Free LU Decomposition

The fraction-free methods for exact matrix computations is emphasized by Bareiss [17] to
find the solutions of systems with integer equations. He introduced fraction-free Gaussian
elimination of the augmented matrix [Ab] for the system,

AX = b.

Because of the close relation between linear system solving and the LU matrix decom-
position, this fraction-free idea is extended to compute the exact matrix factorization
[62, 50]. In this section, we study the Bareiss algorithm to compute the fraction-free LU
(FFLU) decomposition with following definitions in [50] and the determinant algorithm
based on FFLU. Given a matrix A over Z[x1, . . . , xv]:

A = PrLDUPc,

where L and U are respectively lower and upper triangular matrices, and D is a diag-
onal matrix. Note that the entries of these matrices are multivariate polynomials from
Z[x1, . . . , xv]. The main specification of Bareiss’ algorithm is that it creates common
factors to every entry in a row, but these factors can be removed by doing exact divisions
afterwards.

To further optimize the FFLU algorithm, we introduce a new technique named smart-
pivoting to find the best pivot by searching into the sub-matrices to pick the polynomial
with the minimum number of terms in each iteration. The goal of this technique is to
reduce the cost of the exact divisions in the Bareiss’ algorithm; see Section 5.2.2 for the
details.

In addition, we discuss the parallel opportunities of this algorithm in Section 5.2.3
using the BPAS multithreaded interface. Finally, Section 5.2.4 demonstrates the perfor-
mance of these algorithms in the BPAS library utilizing the sparse multivariate polyno-
mials arithmetic (Chapter 4).
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5.2.1 Bareiss FFLU Algorithm

Let B be an integral domain and A ∈ Bm×n be a matrix. We are interested in computing
the determinant of A over B. A standard LU decomposition for A in the context of linear
algebra is performed as follow. Suppose that

A =


a . . .

b . . .
...

. . .

 ,

where a, b are non-zero elements of B. We first choose a pivot in the usual Gaussian
elimination. Let a ∈ B be our pivot. We next perform a row operation by subtracting
the quo(b, a) multiplied by the first row from the second row. This division forces the
computation in the quotient field of B, that may be computationally expensive. From
Chapter 9 in [43], a straightforward way to avoid this division is to multiply the second
row by a and then subtract b multiplied by the first row. This division-free technique
avoids fractions, but, this is computationally expensive and infeasible.

Bareiss [17] introduced another technique to deal with fractions in the Gaussian
elimination. He noticed that in the division-free technique after carrying out cross-
multiplication for the first two rows every entry of the updated matrix in the third row
and below is divisible by a, and so, one can utilize exact divisions to remove these fac-
tors. In [50] a fraction-free LU factorization based on the idea of Bareiss’ algorithm is
introduced. We review the main result of that paper in Theorem 14.

Theorem 14 A rectangular matrix A with elements from an integral domain B, having
dimensions m × n and rank r, may be factored into matrices containing only elements
from B in the form,

A = PrLDUPc = Pr

 L
M

D (
U V

)
Pc,

where the permutation matrix Pr is m × m; the permutation matrix Pc is n × n; L is
r × r, lower triangular and has full rank:

L =



p1 0 . . . 0
l21 p2

. . .
...

...
...

. . . 0
lr1 lr2 . . . pr

 ,
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where the pi , 0 are the pivots in a Gaussian elimination; M is (m − r) × r and could
be null; D is r × r and diagonal:

D = diag(p1, p1p2, p2p3, · · · , pr−2pr−1, pr−1pr),

U is r × r and upper triangular, while V is r × (n− r) and could be null:

U =



p1 u12 . . . u1r

0 p2 . . . u2r
...

. . .
. . .

...

0 . . . 0 pr

 .

Proof. [50, Theorem 2].
Algorithm 21 is the Bareiss’ algorithm and is in fact the core routine of the fraction-

free LU decomposition algorithm in [50]. This algorithm updates the input matrix A

in-place, to become the upper triangular matrix U , the denominator d, rank and the
permutation patterns of the input matrix. These are sufficient information to calculate
the determinant of a matrix by Algorithm 22 and the L and U matrices by Algorithm
23.

In Algorithm 22, the check-parity routine calculates the parity of the given per-
mutation modulo 2. Note that in both Algorithms 21 and 23, we only consider row-
operations to find the pivot and store the row permutation patterns in list Pr of size
m. We take into account the column-operations and the list Pc of column permutation
patterns in Section 5.2.2.

Example 13 Consider matrix A ∈ B4×4 where B = Z[x],

A(0) =


11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0 0

0 11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0
0 0 11x2 − 11x+ 3 −3(x− 1)(2x− 3)

−2x+ 3 0 0 −x

 .

To compute the determinant of this matrix, Algorithm 21 starts with d = 1, k = 0, c = 0,
Pr = [0, 1, 2, 3], A0,0 = 11x2 − 11x + 3 , 0, and r = 1. The nested for-loops updates the
entire sub-matrix from the second row and column:

A(1) =


11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0 0

0 (11x2 − 11x+ 3)2 A
(1)
1,2 0

0 0 (11x2 − 11x+ 3)2 A
(1)
2,3

−2x+ 3 3(x− 1)(2x− 3)2 0 (11x2 − 11x+ 3)x

 ,
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Algorithm 21 fflu-helper(A)
Require: a m× n matrix A = (ai,j)0≤i<m, 0≤j<n over B (ai,j ∈ B).
Ensure: r, d, Pr where r is the rank, d is the denominator, so that, d = s det(S) where S is

an appropriate sub-matrix of A (S = A if A is square and non-singular) and s ∈ (−1, 1) is
decided by the parity of permutations, and Pr is permutation patterns of A.

1: k := 0; d := 1; k := 0; c := 0; Pr := [0, 1, . . . ,m− 1]
2: while k < m and c < n do
3: if ak,c = 0 then
4: i := k + 1
5: while i < m do
6: if ai,c , 0 then
7: swap i-th and k-th rows of A
8: Pr[i], Pr[k] := Pr[k], Pr[i]
9: break

10: i := i+ 1
11: if m ≤ i then
12: c := c+ 1
13: continue
14: r := r + 1
15: for i = k + 1, . . . ,m− 1 do
16: for j = c+ 1, . . . , n− 1 do
17: ai,j := ai,c ak,j − ai,j ak,c
18: if k = 0 then ai,j := −ai,j
19: else ai,j := ExactQuotient(ai,j , d)

20: d := −ak,c; k := k + 1; c := c+ 1

21: return r,−d, Pr

Algorithm 22 det(A)
Require: a n× n matrix A over B
Ensure: det(A), the determinant of A
1: r, d, Pr := fflu-helper(A)
2: if r < n then return 0
3: p := check-parity(Pr)
4: if p , 0 then d := −d

5: return d
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Algorithm 23 fflu(A)
Require: a m× n matrix A = (ai,j)0≤i<m, 0≤j<n over B (ai,j ∈ B).
Ensure: r, d, P, L, U where r is the rank, d is the denominator, so that, d = s det(S) where S

is an appropriate sub-matrix of A (S = A if A is square and non-singular) and s ∈ (−1, 1)
is decided by the parity of permutations, P is permutation patterns of A, L is the lower
triangular matrix, and U is the upper triangular matrix s.t. PA = LDU .

1: U := A; i = 0; j = 0; k = 0
2: r, d, P := fflu-helper(U)
3: while i < m and j < n do
4: if U [i, j] , 0 then
5: for l = 0, . . . , i− 1 do Ll,k := 0

6: Li,k := Ui,j

7: for l = 0, . . . ,m− 1 do Ll,k := Ul,j ; Ul,j := 0

8: i := i+ 1; k := k + 1

9: j := j + 1

10: while k < m do
11: for l = 0, . . . , k − 1 do Ll,k := 0

12: Lk,k := 1
13: for l = k + 1, . . . ,m do Ll,k := 0

14: k := k + 1
15: return r, d, P, L, U

where A
(1)
1,2 = A

(1)
2,3 = 3(x − 1)(2x − 3)(11x2 − 11x + 3). In the second iteration of the

while-loop, we have d = −11x2 + 11x − 3, k = 1, c = 1, A1,1 = (11x2 − 11x + 3)2 , 0,
and r = 2. Then,

A(2) =


11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0 0

0 (11x2 − 11x+ 3)2 A
(1)
1,2 0

0 0 −(11x2 − 11x+ 3)3 −(11x2 − 11x+ 3)A(1)
23

−2x+ 3 3(x− 1)(2x− 3)2 0 −(11x2 − 11x+ 3)2x

 .

In the third iteration of the while-loop, we have d = −(11x2 − 11x + 3)2, k = 2, c = 2,
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A2,2 = −(11x2 − 11x+ 3)3 , 0, and r = 3. And so,

A(3) =


11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0 0

0 (11x2 − 11x+ 3)2 A
(1)
1,2 0

0 0 −(11x2 − 11x+ 3)3 −(11x2 − 11x+ 3)A(1)
2,3

−2x+ 3 3(x− 1)(2x− 3)2 0 A
(3)
3,3

 ,

where A(3)
3,3 = −1763x7 +7881x6−19986x5 +35045x4−41157x3 +30186x2−12420x+2187.

In fact, one can check that A(3)
3,3 is the determinant of the full-rank (r = 4) matrix A ∈

Z[x]4×4.

Moreover, Bareiss in [17] introduced an updated version of this algorithm as multi-
step Bareiss’ algorithm to compute fraction-free LU decomposition. This method reduces
the computation of row eliminations by adding three cheaper divisions to compute each
row in the while-loop and removing one multiplication in each iteration of the nested
for-loops; see the results in Table 5.1 and [43, Chapter 9] for more details.

In the next sections, we investigate optimizations of Algorithm 21 to compute the
determinant of matrices over multivariate polynomials. These optimizations are achieved
by reducing the cost of exact divisions by finding better pivots and utilizing the BPAS
multithreaded interface to parallelize this algorithm.

5.2.2 Smart-Pivoting in FFLU Algorithm

Returning to Example 13, we performed exact divisions for the following divisors in the
second and third iterations,

d(1) = −11x2 + 11x− 3,

d(2) = −121x4 + 242x3 − 187x2 + 66x− 9.

However we could pick a polynomial with the fewer terms as our pivot in every iteration
to reduce the cost of these exact divisions. Such a method, which finds a polynomial with
the minimum number of terms in each column as the pivot of each iteration, is refereed
to as column-wise smart-pivoting. For matrix A(0) ∈ Z4×4, one can pick A3,0 = −2x + 3
as the first pivot. Applying this method in Example 13, we have:

A(1) =


−2x+ 3 0 0 −x

0 −22x3 + 55x2 − 39x+ 9 12x3 − 48x2 + 63x− 27 0
0 0 −22x3 + 55x2 − 39x+ 9 12x3 − 48x2 + 63x− 27

11x2 − 11x+ 3 12x3 − 48x2 + 63x− 27 0 11x3 − 11x2 + 3x

 ,
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where d = −2x + 3. Continuing this method from Algorithm 21, we get the following
matrix for r = 4:

A(4) =


−2x+ 3 0 0 −x

0 −22x3 + 55x2 − 39x+ 9 12x3 − 48x2 + 63x− 27 0
0 0 A

(4)
2,2 A

(4)
2,3

11x2 − 11x+ 3 12x3 − 48x2 + 63x− 27 A
(4)
3,2 A

(4)
3,3

 ,

where

A
(4)
2,2 = −242x5 + 847x4 − 1100x3 + 693x2 − 216x+ 27,

A
(4)
2,3 = 132x5 − 660x4 + 1257x3 − 1134x2 + 486x− 81,

A
(4)
3,2 = 72x5 − 468x4 + 1206x3 − 1539x2 + 972x− 243,

A
(4)
3,3 = 1763x7 − 7881x6 + 19986x5 − 35045x4 + 41157x3 − 30186x2 + 12420x− 2187 and

Pr = [3, 1, 2, 0]. And we have det(A) = −A(4)
3,3 from Algorithm 22.

In the column-wise smart-pivoting, we limited our search to find the best pivot to the
corresponding column of the current row. To extend this method, one can try search-
ing the best pivot in the sub-matrix starting from the next current row and column.
To perform this method refereed to as (fully) smart pivoting, we need to use column-
operations and column-wise permutation matrix Pc. The column operations along with
row operations are not cache-friendly. This is certainly an issue for matrices with (large)
multivariate polynomial entries while this may not be an issue with (relatively small)
matrices with numerical entries. Therefore, we avoid column swapping within the de-
composition, and instead we keep track of column permutations in the list of column-wise
permutation patterns Pc to calculate the parity check later in Algorithm 22.

Algorithm 24 presents the pseudo-code of the smart pivoting fraction-free LU de-
composition utilizing both row-wise and column-wise permutation patterns Pr, Pc. This
algorithm updates A in-place, to become the upper triangular matrix U , and returns the
rank and denominator of the given matrix A ∈ Bm×n.

5.2.3 Parallel FFLU Algorithm

We further investigate the parallel opportunities of the fraction-free LU decomposition
with using the parallel for loop from the BPAS multithreaded interface (Section 2.3)
to do the row reduction step in parallel. Algorithm 25 shows a näıve implementation of
this algorithm in parallel.



5.2. Fraction-Free LU Decomposition 93

Algorithm 24 spfflu-helper(A)
Require: a m× n matrix A = (ai,j)0≤i<m, 0≤j<n over B (ai,j ∈ B).
Ensure: r, d, Pr, Pc where r is the rank, d is the denominator, so that, d = s det(S) where S

is an appropriate sub-matrix of A (S = A if A is square and non-singular) and s ∈ (−1, 1)
is decided by the parity of permutations, and Pr, Pc are permutation patterns of A.

1: k := 0; d := 1; k := 0; c := 0
2: Pr := [0, 1, . . . ,m− 1]
3: Pc := [0, 1, . . . , n− 1]
4: while k < m and c < n do
5: if ak,c = 0 then
6: i := k + 1
7: while i < m do
8: if ai,c , 0 then
9: (i, j) := FindBestPivot(A, i, c)

10: swap i-th and k-th rows of A
11: Pr[i], Pr[k] := Pr[k], Pr[i]
12: Pc[j], Pc[c] := Pc[c], Pc[j]
13: break
14: i := i+ 1
15: if m ≤ i then
16: c := c+ 1
17: continue
18: else
19: (i, j) := FindBestPivot(A, k, c)
20: swap i-th and k-th rows of A
21: Pr[i], Pr[k] := Pr[k], Pr[i]
22: Pc[j], Pc[c] := Pc[c], Pc[j]

23: r := r + 1
24: for i = k + 1, . . . ,m− 1 do
25: for j = c+ 1, . . . , n− 1 do
26: ai,Pc[j] := ai,Pc[c] ak,Pc[j] − ai,Pc[j] ak,Pc[c]
27: if k = 0 then ai,Pc[j] := −ai,Pc[j]
28: else ai,Pc[j] := ExactQuotient(ai,Pc[j], d)

29: d := −ak,Pc[c]; k := k + 1; c := c+ 1

30: return r,−d, Pr, Pc
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In practice, as the size of the sub-matrices decreases in each iteration and to address
the load-balancing between threads to maximize parallelism, we only use the parallel loop
within the first for-loop (line 1) of this nested for-loops in Algorithm 25.

Algorithm 25 parallel-spfflu-helper(A)

// --snip--

1: parallel for i = k + 1, . . . ,m− 1
2: parallel for j = c+ 1, . . . , n− 1
3: ai,j := ai,c ak,j − ai,j ak,c
4: if k = 0 then ai,j := −ai,j
5: else ai,j := ExactQuotient(ai,j , d)

6: end for
7: end for

// --snip--

8: return r,−d, Pr, Pc

5.2.4 Experimentation

In this section, we compare the fraction-free LU decomposition algorithms for Bézout ma-
trix (Definition 16) of randomly generated, non-zero and sparse polynomials in Z[x1, . . . , xv]
for v ≥ 5 in the BPAS library. Throughout this section, our benchmarks were collected
on a machine running Ubuntu 18.04.4 and GMP 6.1.2, with an Intel Xeon X5650 pro-
cessor running at 2.67GHz, with 12×4GB DDR3 memory at 1.33 GHz.

Table 5.1 shows the comparison between the standard implementation of the fraction-
free LU decomposition (Algorithm 21) denoted as plain, the column-wise smart pivoting
denoted as col-wise smart-pivoting, the fully smart-pivoting method (Algorithm 24),
and the multi-step Bareiss technique in Algorithm 24 denoted as multi-step for sparse
polynomials with v = 5 and sparsity ratio 0.98 where sparsity is defined as the maximum
degree difference between any two successive non-zero terms.

This table indicates that using smart-pivoting yields speed-up up to factor 3. Com-
paring col-wise smart-pivoting and smart-pivoting also shows that calculating Pc
(column-wise permutation patterns) along with Pr (row-wise permutation patterns) does
not cause any slow-down in the calculation of d.

Moreover, using both multi-step technique and smart-pivoting does not bring any
additional speed-up as the smart-pivoting technique is already minimized the cost of
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exact divisions in each iteration. Table 5.2 shows plain/smart-pivoting, plain/multi-step in Algo. 24,
and smart-pivoting/multi-step ratios from Table 5.1.

Table 5.1: Compare the execution time (in seconds) of fraction-free LU decomposition
algorithms for Bézout matrix of randomly generated, non-zero and sparse polynomials
a, b ∈ Z[x1, x2, . . . , x5] with x5 < · · · < x2 < x1, deg(a, x1) = deg(b, x1) + 1 = d,
deg(a, x2) = deg(b, x2) + 1 = 5, deg(a, x3) = deg(b, x3) = 1, deg(a, x4) = deg(b, x4) = 1,
deg(a, x5) = deg(b, x5) = 1.

d plain col-wise smart-pivoting smart-pivoting (Algo. 24) multi-step in Algo. 24

6 0.048346 0.018623 0.021154 0.021257
7 2.379480 0.941655 0.954981 0.953532
8 3.997310 0.444759 0.426654 0.475043
9 73.860600 32.531600 31.764200 30.882500

10 2726.690000 1431.430000 1408.140000 1398.370000
11 9059.290000 5113.530000 4768.950000 5348.520000
12 5953.150000 3937.250000 3521.140000 3711.790000
13 81411.900000 42858.500000 42043.600000 41850.800000

Table 5.2: Ratios of FFLU algorithms for polynomials in Table 5.1.
d plain/smart-pivoting plain/multi-step in Algo. 24 smart-pivoting/multi-step

6 2.285431 2.274357 0.995155
7 2.491652 2.495438 1.001520
8 9.368973 8.414628 0.898138
9 2.325278 2.391665 1.028550

10 1.936377 1.949906 1.006987
11 1.899640 1.693794 0.891639
12 1.690688 1.603849 0.948637
13 1.936368 1.945289 1.004607

To analyze the performance of parallel FFLU algorithm, we compare Algorithm 25
and Algorithm 24 for n × n matrices of randomly generated non-zero univariate poly-
nomials with integer coefficients and degree 1. Table 5.3 and Figure 5.1 show a 2.14×
speed-up for n = 75, where with increasing n > 150, we can achieve speed-up of up to
factor 3.
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Figure 5.1: Comparing Algorithm 24 (BPAS FFLU Serial) and Algorithm 25 (BPAS FFLU

Parallel) for n × n matrices filled with random non-zero univariate polynomials with
integer coefficients and degree 1.

Table 5.3: Comparing the execution time (in seconds) of Algorithm 24 and Algorithm
25 for n × n matrices filled with random non-zero univariate polynomials with integer
coefficients and degree 1.

n serial FFLU parallel FFLU serial/parallel

10 0.011976 0.012765 0.938190
15 0.118972 0.076118 1.562994
20 0.628613 0.339738 1.850288
25 2.299270 1.126620 2.040857
30 6.241600 3.109840 2.007049
35 15.305100 7.552200 2.026575
40 33.831800 16.387200 2.064526
45 67.702600 32.307100 2.095595
50 127.438000 60.420000 2.109202
55 224.681000 106.043000 2.118773
60 392.795000 177.456000 2.213478
65 607.089000 284.659000 2.132689
70 947.805000 444.181000 2.133826
75 1432.180000 668.991000 2.140806
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5.3 Bézout Subresultant Algorithms

In Section 4.4, we studied subresultants of two multivariate polynomials with integer
coefficients using pseudo-division and introduced a cache-friendly Ducos’ subresultant
chain algorithm to compute the entire subresultants in a top-down procedure. In this
section, we continue exploring the subresultant algorithms for multivariate polynomials
based on calculating the determinant of (Hybrid) Bézout matrices.

5.3.1 Bézout Matrix and Subresultants

A traditional way to define subresultants is via computing determinants of submatrices
of the Sylvester matrix (Section 2.2). Li [67] presented an elegant way to calculate
subresultants directly from the following matrices. This method follows the same idea as
subresultants based on Sylvester matrix.

Theorem 5.3.1 The k-th subresultant of a = ∑m
i=0 aiy

i, b = ∑n
i=0 biy

i ∈ B[y] is calculated
by the determinant of the following (m+ n− k)× (m+ n− k) matrix:

Ek :=

am am−1 · · · a2 a1 a0
. . . . . .

am am−1 · · · a2 a1 a0
1 −y

. . .
. . .
1 −y

bn bn−1 · · · b2 b1 b0
. . .

. . .
bn bn−1 · · · b2 b1 b0





n− k

k

m− k

, (5.1)

so that,
Sk(a, b) = (−1)k(m−k+1)det (Ek) .

Proof. [67, Section 2]
Another practical division-free approach is through utilizing the Bézout matrix to

compute the subresultant chain of multivariate polynomials by calculating determinant
of the Bézout matrix of input polynomials [48]. From [20], we define the symmetric
Bézout matrix as follows.

Definition 15 The Bézout matrix associated to a, b ∈ B[y] with m := deg(a) ≥ n :=
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deg(b) is the symmetric matrix:

Bez(a, b) :=


c0,0 · · · c0,m−1
...

. . .
...

cm−1,0 · · · cm−1,m−1

 ,
where the ci,j for 0 ≤ i, j < m are defined by the so-called Cayley expression as follows,

a(x)b(y)− a(y)b(x)
x− y

=
m−1∑
i,j=0

ci,jy
ixj.

The relations between the Sylvester and Bézout matrices have been studied for decades
yielding an efficient algorithm to construct the Bézout matrix [3] using a so-called Hybrid
Bézout matrix.

Definition 16 The Hybrid Bézout matrix of a = ∑m
i=0 aiy

i and b = ∑n
i=0 biy

i is defined
as the m×m matrix

HBez(a, b) :=


h0,0 · · · h0,m−1
...

. . .
...

hm−1,0 · · · hm−1,m−1

 ,
where the hi,j for 0 ≤ i, j < m are defined as:

hi,j = coeff(Hm−i+1,m− j) for 1 ≤ i ≤ n,

hi,j = coeff(xm−ib,m− j) for m+ 1 ≤ i ≤ n,

with,

Hi = (amyi−1 + · · ·+ am−i+1)(bn−iym−i + · · ·+ b0y
m−n)

− (am−iym−i + · · ·+ a0)(bnyi−1 + · · ·+ bn−i+1).

Example 14 Consider polynomials a = 5y5 + y3 + 2y + 1 and b = 3y3 + y + 3 in Z[y].
The Sylvester matrix of a, b (Definition 10) is:

Sylv(a, b) =



5 0 1 0 2 1 0 0
0 5 0 1 0 2 1 0
0 0 5 0 1 0 2 1
3 0 1 3 0 0 0 0
0 3 0 1 3 0 0 0
0 0 3 0 1 3 0 0
0 0 0 3 0 1 3 0
0 0 0 0 3 0 1 3



,
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and the Bézout matrix of a, b is:

Bez(a, b) =



0 −15 0 −5 −15
−15 0 −5 −15 0

0 −5 −15 5 0
−5 −15 5 0 0
−15 0 0 0 −5


,

while the Hybrid Bézout matrix of a, b is:

HBez(a, b) =



15 −6 0 −2 −1
2 15 −6 −3 0
0 2 15 −6 −3
3 0 1 3 0
0 3 0 1 3


.

Diaz-Toca and Gonzalez-Vega indicated the relation of the Bézout matrices and the
subresultants [34], and Hou and Wang presented another way to prove the application of
the Hybrid Bézout matrix for the calculation of subresultants [48].

Definition 17 Let Jm denote the backward identity matrix of order m and let B and H
be defined as follows:

B := Jm Bez(a, b) Jm =


cm−1,m−1 · · · cm−1,0

...
. . .

...

c0,m−1 · · · c0,0

 ,

H := Jm HBez(a, b) =


hm−1,0 · · · hm−1,m−1
...

. . .
...

h0,0 · · · h0,m−1

 .
Now, we can define algorithms to compute the subresultants from Bézout matrices as

follows.

Theorem 15 For polynomials a = ∑m
i=0 aiy

i and b = ∑n
i=0 biy

i in B[y], the k-th subre-
sultant of a, b, i.e. Sk(a, b), can be obtained from:

(−1)(m−1)(m−k−1)/2am−nm Sk(a, b) =
k∑
i=0

Bm−k,k−i y
i,

where Bm−k,i for 0 ≤ i ≤ k denotes the (m− k)× (m− k) minor extracted from the first
m− k rows, the first m− k − 1 columns and the (m− k + i)-th column of B.
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Proof. [3, Theorem 2.3]

Theorem 16 For those polynomials a, b ∈ B[y], the k-th subresultant of a, b, i.e. Sk(a, b),
can be obtained from:

(−1)(m−1)(m−k−1)/2Sk(a, b) =
k∑
i=0

Hm−k,k−i y
i,

where Hm−k,i for 0 ≤ i ≤ k denotes the (m− k)× (m− k) minor extracted from the first
m− k rows, the first m− k − 1 columns and the (m− k + i)-th column of H.

Proof. [3, Theorem 2.3]
Abdeljaoued et al. in [3] studies further this relation between subresultants and Bézout
matrices. Theorem 17 is the main result of this paper.

Theorem 17 For those polynomials a, b ∈ B[y], the k-th subresultant of a, b can be
obtained from the following m×m matrices:

(−1)(m−k)(m−k−1)/2am−nm Sk(a, b) = (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cm−1,m−1 cm−1,m−2 · · · · · · · · · cm−1,0
...

... · · · · · · · · · ...

ck,m−1 ck,m−2 · · · · · · · · · ck,0

1 −y
. . .

. . .

1 −y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(−1)(m−k)(m−k−1)/2Sk(a, b) = (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

hm−1,0 hm−1,1 · · · · · · · · · hm−1,m−1
...

... · · · · · · · · · ...

hk,0 hk,1 · · · · · · · · · hk,m−1

1 −y
. . .

. . .

1 −y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Proof. [3, Theorem 2.4]
The advantage of this aforementioned method is that one can compute the entire

subresultant chain in a bottom-up fashion. This process starts from computing the
determinant of matrix H (or B) in Definition 17 to calculate S0(a, b), the resultant of
a, b, and update the last k-th row of H (or B) to calculate Sk(a, b) for 1 ≤ k ≤ n.
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Example 15 Consider polynomials a = −5y4x+3yx−y−3x+3 and b = −2y3x+3y3−x
in Z[x, y] where x < y. From Definition 16, the Hybrid Bézout matrix of a, b is:

HBez(a, b) =


11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0 0

0 11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0
0 0 11x2 − 11x+ 3 −3(x− 1)(2x− 3)

−2x+ 3 0 0 −x

 .

The determinant of this matrix is calculated using the fraction-free LU decomposition
schemes, similar to the Example 13. Theorem 17 for k = 0 yields that,

S0(a, b) = −1763x7 + 7881x6 − 19986x5 + 35045x4 − 41157x3

+ 30186x2 − 12420x+ 2187.

For k = 1, one can calculate S1(a, b) from the determinant of:

H(1) =


−2x+ 3 0 0 −x

0 0 11x2 − 11x+ 3 −3(x− 1)(2x− 3)
0 11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0
0 0 1 −y

 ,

that is,

S1(a, b) = −242x5y + 132x5 + 847x4y − 660x4 − 1100x3y + 1257x3

+ 693x2y − 1134x2 − 216xy + 486x+ 27y − 81.

We can continue calculating subresultants of higher indices with updating matrix H(1).
For instance, the 2nd and 3rd subresultants achieve, respectively, from the determinant
of:

H(2) =


−2x+ 3 0 0 −x

0 0 11x2 − 11x+ 3 −3(x− 1)(2x− 3)
0 1 −y 0
0 0 1 −y

 ,

and,

H(3) =


−2x+ 3 0 0 −x

1 −y 0 0
0 1 −y 0
0 0 1 −y

 ,
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that are,

S2(a, b) = 22yx3 − 12x3 − 55yx2 + 48x2 + 39yx− 63x− 9y + 27,

S3(a, b) = −2y3x+ 3y3 − x.

We further studied the performance of computing subresultants from Theorem 17 in
comparison to the Hybrid Bézout matrix in Definition 16 for multivariate polynomials
with integer coefficients. In our implementation, we took advantage of FFLU schemes
reviewed in Section 5.2 to compute the determinant of these matrices using smart-pivoting
technique in parallel; see Section 5.3.3 for implementation details and results.

5.3.2 Speculative Bézout Subresultant Algorithms

In Example 15, we made use of the Hybrid Bézout matrix to compute subresultants of
two polynomials in Z[x, y]. In this approach, we constructed the square matrix H from
Definition 17 and updated the last k ≥ 0 rows following Theorem 17. Thus, the kth
subresultant could be directly computed from the determinant of this matrix.

Consider the Triangularize algorithm (Section 2.1) to solve a polynomial system.
The Regular GCD subroutine of this algorithm requires the computation of subresultants
in a bottom-up fashion, starting from S0(a, b), S1(a, b) for multivariate polynomials a, b
with respect to their main variable.

In the aforementioned approach, we have to call the determinant algorithm twice
for H(0) := H and H(1) to compute S0, S1 respectively. Here, we study a speculative
approach to compute both S0, S1 within the complexity of computing only one of them.
This approach also can be extended to compute any two successive subresultants Sk, Sk+1

for 2 ≤ k < deg(b, xn) speculatively.
To compute S0, S1 of polynomials a = −5y4x+3yx−y−3x+3 and b = −2y3x+3y3−x

in Z[x, y] from Example 15, consider the (m+ 1)×m matrix H(0,1) with m = 4 derived
from the Hybrid Bézout matrix of a, b,

H(0,1) =



−2x+ 3 0 0 −x
0 0 11x2 − 11x+ 3 −3(x− 1)(2x− 3)
0 11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0

11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0 0
0 0 1 −y


.
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In this matrix, the first three rows are identical to the first three rows of H(0) and
H(1), while the 4th row is the 4th row of H(0) and the 5th row is the 4th row of H(1). A
deeper look into the determinant algorithm reveals that the Gaussian (row) elimination
for the first three rows in each iteration of the fraction-free LU decomposition is similar
in both H(0) and H(1) and the only difference is within the 4th row.

Hence, managing these row eliminations in the fraction-free LU decomposition, we
can compute determinants of H(0) and H(1) by utilizing H(0,1) instead where we only
need to call the FFLU algorithm once. Indeed, when this algorithm tries to eliminate
the last rows of H(0) and H(1), we should use the last two rows of H(0,1) separately and
return two denominators corresponding to S0, S1.

We further can extend this speculative approach to compute S2, S3 updating matrix
H(0,1) to get the (m+ 3)×m matrix H(2,3):

H(2,3) =



−2x+ 3 0 0 −x
0 0 11x2 − 11x+ 3 −3(x− 1)(2x− 3)
0 11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0

11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0 0
1 −y 0 0
0 1 −y 0
0 0 1 −y


.

Therefore, To calculate subresultants of index 2 and 3, we should respectively consider
the 2nd and 5th rows of H(2,3) in the fraction-free LU decomposition while the grey rows
are ignored. Therefore, an adaptation of the FFLU algorithm updates H(2,3) as follows
to return d(2) ignoring the 5th and grey rows,



−2x+ 3 0 0 −x
0 −2x+ 3 −y(−2x+ 3) 0
0 11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0

11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0 0
1 −y 0 0
0 0 −22x3 + 55x2 − 39x+ 9 12x3 − 48x2 + 63x− 27
0 0 −2x+ 3 d(2)


,

where d(2) = −22x3y + 12x3 + 55x2y − 48x2 − 39xy + 63x+ 9y − 27 and S2 = −d(2).
Note that the 2nd and 6th rows are swapped to find a proper pivot. The adapted FFLU
algorithm also updates H(2,3) to return d(3) ignoring the 2nd and grey rows,
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

−2x+ 3 0 0 −x
0 0 11x2 − 11x+ 3 −3(x− 1)(2x− 3)
0 11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0

11x2 − 11x+ 3 −3(x− 1)(2x− 3) 0 0
1 −y(−2x+ 3) 0 x

0 −2x+ 3 −y2(−2x+ 3) x

0 0 y(−2x+ 3) d(3)


,

where d(3) = −2xy3 + 3y3 − x and S3 = d(3).
Moreover, to compute subresultants of index k and k+1, one can construct the matrix

H(k,k+1) from the previously constructed H(k−2,k−1) for k > 1, and calculate the adapted
FFLU algorithm over:

• the first m− k − 1 rows,

• the blue row for computing Sk, or the red row for computing Sk+1, and

• the last k rows,

of matrix H(k,k+1) ∈ B(m+k)×k with B = Z[x1, . . . , xv],

H(k,k+1) =



hm−1,0 hm−1,1 · · · · · · · · · hm−1,m−1
...

... · · · · · · · · · ...

hk,0 hk,1 · · · · · · · · · hk,m−1

hk−1,0 hk−1,1 · · · · · · · · · hk−1,m−1
...

... · · · · · · · · · ...

h0,0 h0,1 · · · · · · · · · h0,m−1

1 −y
. . .

. . .

1 −y



.

As seen in the last example, the FFLU algorithm depending on the input polynomials
may create two completely different submatrices to calculate d(2) and d(3). Thus, the
cost of computing Sk, Sk+1 from H(k,k+1) speculatively may not necessarily be less than
computing them successively from H(k), H(k+1) for some k > 1.

We further optimize the computation of Sk, Sk+1 speculatively through caching the
intermediate data calculated to compute Sk−2, Sk−1 from H(k−2,k−1). In this approach,
the adapted FFLU algorithm returns d(k−2), d(k−1) along with H(k−2,k−1), the reduced
matrix H(k−2,k−1) to compute d(k−1), the list of permutation patterns and pivots.
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Therefore, we can utilize H(k−2,k−1) to construct H(k,k+1). In addition, if the first
δ := m− k− 1 pivots are picked from the first δ rows of H(k−2,k−1), then one can use the
first δ rows of the reduced matrix H(k−2,k−1) along with the list of permutation patterns
and pivots to perform the first δ row eliminations of H(k,k+1) via recycling the first δ rows
of the reduced matrix cached a priori.

5.3.3 Experimentation

In this section, we compare the subresultant algorithms based on (Hybrid) Bézout matrix
against the Ducos’ subresultant chain algorithm in BPAS and Maple. Throughout this
section, our benchmarks were collected on a machine running Ubuntu 18.04.4, GMP
6.1.2, and Maple 2020, with an Intel Xeon X5650 processor running at 2.67GHz, with
12×4GB DDR3 memory at 1.33 GHz.

Table 5.4 and Table 5.5 show the running time of plain, speculative subresultant algo-
rithms for randomly generated, non-zero, and sparse polynomials a, b ∈ Z[x1, x2, . . . , x6]
with x6 < · · · < x2 < x1, deg(a, x1) = deg(b, x1) + 1 = d, and deg(a, xi) = deg(b, xi) =
1 for 2 ≤ i ≤ 6. Table 5.6 and Table 5.7 show the running time of plain, speculative and
caching subresultant schemes for randomly generated, non-zero, and sparse polynomials
a, b ∈ Z[x1, x2, . . . , x7] with x7 < · · · < x2 < x1, deg(a, x1) = deg(b, x1) + 1 = d, and
deg(a, xi) = deg(b, xi) = 1 for 2 ≤ i ≤ 7.

Table 5.4: Comparing the execution time (in seconds) of subresultant algorithms
based on Bézout matrix for randomly generated, non-zero, and sparse polynomials
a, b ∈ Z[x6, x5, . . . , x1] with x6 < x5 < · · · < x1, deg(a, x1) = deg(b, x1) + 1 = d,
and deg(a, xi) = deg(b, xi) = 1 for 2 ≤ i ≤ 6.

Maple BPAS
d Bézout (ρ = 0) Ducos Bézout (ρ = 0) Bézout (ρ = 1) SpecBézout (ρ = 0) OptDucos

10 0.05128 0.03000 0.024299 0.026762 0.032166 0.045270
11 0.06001 0.04574 0.057312 0.068722 0.058843 0.049532
12 0.02515 0.05100 0.007223 0.019530 0.012792 0.061419
13 0.81209 16.81200 0.421278 0.739842 0.594225 9.527660
14 3.14360 112.280 2.414530 3.829530 3.250710 69.957100
15 518.380 7163.30 151.656 779.9240 512.260 3655.820

In these tables, the Bézout algorithm in Maple computes the resultant of a, b (S0(a, b))
while the Maple’s Ducos’ algorithm computes the entire subresultants. In BPAS,
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Bézout (ρ = 0) calculates the resultant (S0(a, b)) via the determinant of Hybrid Bézout
matrix of a, b; Bézout (ρ = 2) calculates S1(a, b) following Theorem 17 from the Hybrid
Bézout matrix of a, b; SpecBézout (ρ = 0) calculates S0(a, b), S1(a, b) speculatively from
utilizing H(0,1) in Section 5.3.2; SpecBézout (ρ = 2) calculates S2(a, b), S3(a, b) specu-
latively via H(2,3); SpecBézoutcached (ρ = 2) calculates S2(a, b), S3(a, b) speculatively via
H(2,3) using cached information calculated in SpecBézout (ρ = 0) fromH(0,1); SpecBézoutcached

(ρ = all) calculates the entire subresultant chain using speculative and caching subre-
sultant algorithm in Section 5.3.2; and OptDucos calculates the entire subresultant chain
using the optimized Ducos’ algorithm in Section 4.4 (Algorithm 20).

To Compute subresultants from Bézout matrices in Maple, we use the Subresultant-

Chain(..., ‘representation’=‘BezoutMatrix’) command in RegularChains that is
a näıve implementation of subresultant algorithm based on Bézout matrices. Our Bézout
algorithm is up to 3× faster than the Maple implementation to calculate only S0. Be-
sides, Our results indicate the performance of Bézout algorithms in comparison with the
Ducos’ algorithm in both BPAS and Maple for sparse polynomials with many variables.

Tables 5.4 and 5.6 show that the cost of computing subresultants S0, S1 speculatively
is comparable to the running time of computing only one of them. Tables 5.5 and
5.7 indicate the importance of recycling cached data to compute higher subresultants
speculatively. Our Bézout algorithms can calculate the entire subresultants speculatively
in a comparable running time to the Ducos’ algorithm. This allows one to integrate these
implementations on the BPAS solver for super sparse polynomials with many variables
(nvar ≥ 5) without losing performance.

We further investigate the performance of these subresultant implementations within
the BPAS system solver. Table 5.8 and Table 5.9 compare the execution time of systems
with the number of variables greater than 4 (nvar ≥ 5) from the pool of more than 3000
polynomial systems. This test suite is collected from user-data and bug reports of the
RegularChains library as well as real-world problems [10, Chapter 6].

To integrate subresultant algorithms based on the determinant of (Hybrid) Bézout
matrix in the BPAS system solver, we define thresholds with respect to our comprehen-
sive experimentation over polynomials with different number of variables, degrees, and
sparsity. The solver utilizes these Bézout-based schemes for polynomials of minimum
number of variables 5, sparsity ratio 0.8, and main degree 3 (that is the size of Bézout
matrix). From tables 5.8 and 5.9, we deduce a speed-up factor of 1.6× for solving a few
hard polynomials systems in the pool.
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Table 5.5: Comparing the execution time (in seconds) of speculative subresultant algo-
rithms for polynomials in Table 5.4.

BPAS
d SpecBézout (ρ = 0) SpecBézout (ρ = 2) SpecBézoutcached (ρ = 2) SpecBézoutcached (ρ = all)

10 0.032166 0.022125 0.016432 0.076283
11 0.058843 0.079425 0.043512 0.193512
12 0.012792 0.010566 0.004148 0.071435
13 0.594225 2.106280 1.535510 7.891180
14 3.250710 8.735510 4.133760 73.59940
15 512.260 953.1170 579.8580 4877.130

Table 5.6: Comparing the execution time (in seconds) of subresultant algorithms
based on Bézout matrix for randomly generated, non-zero, and sparse polynomials
a, b ∈ Z[x1, x2, . . . , x7] with x7 < · · · < x2 < x1, deg(a, x1) = deg(b, x1) + 1 = d,
and deg(a, xi) = deg(b, xi) = 1 for 2 ≤ i ≤ 7.

Maple BPAS
d Bézout (ρ = 0) Ducos Bézout (ρ = 0) Bézout (ρ = 1) SpecBézout (ρ = 0) OptDucos

5 0.00032 0.00041 0.000023 0.000277 0.000262 0.000258
6 0.00098 0.00372 0.001303 0.001427 0.001553 0.002444
7 0.01148 0.43145 0.080210 0.174460 0.095569 0.279023
8 15.1850 34.8540 7.057270 10.834100 8.380050 22.440500
9 74.1390 327.570 36.8450 66.8430 44.7160 194.4860

10 9941.20 inf 4130.980 6278.240 5686.060 14145.30

Table 5.7: Comparing the execution time (in seconds) of speculative and caching subre-
sultant algorithms for polynomials in Table 5.6.

BPAS
d SpecBézout (ρ = 0) SpecBézout (ρ = 2) SpecBézoutcached (ρ = 2) SpecBézoutcached (ρ = all)

5 0.000262 0.000351 0.000217 0.000479
6 0.001553 0.001812 0.001350 0.003519
7 0.095569 0.103801 0.053730 0.213630
8 8.380050 13.10210 5.7240 25.83050
9 44.7160 67.86560 31.12090 136.8930

10 5686.060 8853.10 3856.550 17569.20
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Table 5.8: Comparing the execution time (in seconds) of systems with nvar ≥ 5 from
the pool of more than 3000 polynomial systems [10] so that their running-times (t ∈ R)
using OptDucos take 1 ≤ t ≤ 50 seconds.

SysName OptDucos Bézout SpecBézout SpecBézoutcached OptDucos/SpecBézout Bézout/SpecBézout

Sys2922 7.91041 7.93589 7.95695 7.95698 0.994151 0.997353
Sys2880 5.55801 5.70138 5.46921 5.41538 1.016236 1.042450
Sys2433 8.75830 8.77473 8.75625 8.76812 1.000234 1.002110
Sys2161 1.08153 0.89279 0.56666 0.63128 1.908605 1.575530
Sys2642 8.06066 6.97177 4.89233 3.21021 1.647612 1.425041
Sys2695 3.18267 3.05706 2.98045 2.12872 1.067849 1.025704
Sys2238 8.75708 8.75923 8.75251 8.75813 1.000522 1.000768
Sys2943 6.70348 6.12246 4.54511 4.69512 1.474877 1.347043
Sys1935 4.14390 5.01831 3.01449 1.98466 1.374660 1.664729
Sys2882 2.42182 2.37203 2.38065 2.35716 1.017294 0.996379
Sys2588 4.49268 4.51135 4.49201 4.49792 1.000149 1.004305
Sys2449 1.23251 1.28321 1.24507 1.26588 0.989912 1.030633
Sys2874 6.99887 7.22326 6.99438 7.11027 1.000642 1.032723
Sys2932 6.27556 6.25798 6.31953 6.29113 0.993042 0.990260
Sys2269 1.03128 1.03253 1.03961 1.04012 0.991987 0.993190

Table 5.9: Comparing the execution time (in seconds) of systems with nvar ≥ 5 from
the pool of more than 3000 polynomial systems [10] so that their running-times using
OptDucos take > 50 seconds.

SysName OptDucos Bézout SpecBézout SpecBézoutcached OptDucos/SpecBézout Bézout/SpecBézout

Sys2797 466.4250 425.8670 386.3810 325.1170 1.207163 1.102194
Sys2539 55.8694 55.8531 55.5113 55.4933 1.006451 1.006157
Sys2681 458.6800 458.5810 458.5360 458.5780 1.000314 1.000098
Sys2745 599.8020 599.3290 599.0610 599.2150 1.001237 1.000447
Sys3335 6406.7400 5843.7300 4799.9700 4801.1200 1.334746 1.217451
Sys2703 322.2940 487.0120 485.8170 491.1520 0.663406 1.002460
Sys2000 55.7026 56.1724 56.3106 57.0079 0.989203 0.997546
Sys2877 2127.4900 1914.5200 1253.8200 1247.4400 1.696807 1.526950



Chapter 6

Multivariate Power Series in Maple

6.1 Introduction

In elementary courses on univariate calculus, power series are often introduced as limits
of sequences of the form “the first n terms of a given sequence”. This leads students to
the study of analytic functions and the use of power series in computing function limits.
While the extension of those notions to the multivariate case is a standard topic in
advanced calculus courses, the availability of multivariate power series and multivariate
analytic functions in computer algebra systems is somehow limited.

In Maple [71], SageMath [95], and Mathematica [49], power series are restricted
to being either only univariate or truncated, that is, reduced modulo a fixed power of
the ideal 〈X1, . . . , Xn〉 generated by the variables of those power series. A truncated
implementation, while simple, may be insufficient for, or computationally more expen-
sive in, some particular circumstances. For instance, modern algorithms for polynomial
system solving require the intensive use of modular methods based on Hensel lifting. In
those lifting procedures, degrees of truncation may not be known a priori, thus leading
to truncated power series being ineffective.

Considering that a power series has potentially an infinite number of terms naturally
suggests to represent it as a procedure which, given a particular (total) degree, produces
the terms of that degree. This leads to a so-called lazy evaluation scheme, where the
terms of any power series are produced only as needed, via such a generator function.

The usefulness of lazy evaluation in computer algebra has been studied for a few
decades. In particular, see the work of Karczmarczuk [54], discussing different mathe-
matical objects with an infinite length; Burge and Watt [26], and van der Hoeven [97],

109
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discussing lazy univariate power series; and Monagan and Vrbik [79], discussing lazy
arithmetic for polynomials.

In this chapter, we present MultivariatePowerSeries, which is among the new
features released in Maple 2021 and publicly available in [1]. This library, written in
the Maple language, provides the ability to create and manipulate multivariate power
series with rational or algebraic number coefficients, as well as univariate polynomials
whose coefficients are multivariate power series. Through lazy evaluation techniques
and a careful implementation, our library achieves very high performance. These power
series and univariate polynomials over power series (UPoPS) are employed in optimized
implementations of Weierstrass Preparation Theorem and factorization of UPoPS via
Hensel’s lemma.

Our implementation follows the lazy evaluation scheme of multivariate power series in
the BPAS library [8]. The multivariate power series of BPAS, written in the C language,
is discussed in [22] and extends upon the work of the PowerSeries subpackage of the
RegularChains Maple library [6, 82]. The PowerSeries package is the only preexisting
implementation of multivariate power series integrated in Maple. In [22], it is shown
that the BPAS implementation provides exceptional performance, surpassing that of the
PowerSeries package, the basic Maple function mtaylor, and the multivariate power
series available in SageMath [95] by multiple orders of magnitude.

A key design element of our library, in addition to lazy evaluation techniques, is the
use of Maple objects and object-oriented programming. An object in Maple is a special
kind of module which encapsulates together data and procedures manipulating that data,
just like objects in any other object-oriented language; see [19, Chapters 8, 9]. To the best
of our knowledge, few Maple libraries make use of those objects, which, as our report
suggests, are worth considering for improving performance. In particular, objects allow
for the overloading of existing builtin Maple functions in order to integrate these new
custom objects with existing Maple library code. Our results show that Multivariate-

PowerSeries is comparable in performance to the implementation of BPAS, is thus
similarly several orders of magnitude faster than other existing implementations. These
experimental results are discussed in Section 6.6.

We begin in Section 6.2 with reviewing definitions of formal power series, and uni-
variate polynomial over power series, followed by a brief discussion about the basic arith-
metic, Weierstrass preparation theorem and factorization via Hensel’s lemma. Section 6.3
presents an overview of the MultivariatePowerSeries package, while Section 6.4 ex-
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plores its underlying design principles. Implementation details are discussed in Sec-
tion 6.5, followed by our experimentation in Section 6.6. Finally, we conclude and present
future works in Section 6.6.

Co-Authorship Statement

This library is designed and developed by Asadi under the supervision of Prof. Marc
Moreno Maza and Dr. Erik J. Postma [9], follows the C implementation of multivariate
power series in BPAS [22].

6.2 Preliminary

In this section we review the basic properties of formal power series and univariate polyno-
mials over those series, following G. Fischer in [41]. While various proofs of Theorems 18
of 6.2.1 can be found in the literature, the proofs given in [22] are constructive and
support our implementation. Throughout this chapter, k is an algebraic number field.

6.2.1 Power Series

Given a positive integer n, we denote by k[[X1, . . . , Xn]] the set of multivariate formal
power series with coefficients in k and variables X1, . . . , Xn.

Definition 18 Let f = ∑
e∈Nn aeX

e ∈ k[[X1, . . . , Xn]] and d ∈ N where Xe = Xe1
1 · · ·Xen

n

and e = (e1, . . . , en) ∈ Nn. The homogeneous part and polynomial part of f in degree d are
respectively defined by f(d) := ∑

|e|=d aeX
e, and f (d) := ∑

k≤d f(k), where |e| = e1 + · · ·+en.

The sum (resp. difference) of two formal power series f, g ∈ k[[X1, . . . , Xn]] is defined by
the sum (and resp. difference) of their homogeneous parts of the same degree; thus we
have:

f ± g :=
∑
d∈N

f(d) ± g(d).

The product h = f · g can be defined as h = ∑
d∈N h(d) with h(d) := ∑

k+l=d f(k) g(l).

With the above addition and multiplication, the set k[[X1, . . . , Xn]] is a local ring with
M := 〈X1, . . . , Xn〉 as maximal ideal; k[[X1, . . . , Xn]] is also a unique factorization domain
(UFD) [41].

Definition 19 The order of the power series f , denoted by ord(f), is defined as:

ord(f) := min{d ∈ N | f(d) , 0},
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if f , 0, and as ∞ otherwise.

We also observe that the following equality holds for every k ≥ 1:

Mk = {f ∈ k[[X1, . . . , Xn]] | ord(f) ≥ k}.

If f is a unit, that is, if f < M (or equivalently, if ord(f) = 0) then the sequence
(hm)m∈N, where

hm = c−1(1 + g + · · ·+ gm), c = f(0), and g = 1− c−1f,

converges to the inverse of f . This convergence is the sense of Krull topology, see [41]
for details.

6.2.2 Univariate Polynomials over Power Series

We denote by A and M the power series ring k[[X1, . . . , Xn]] and its maximal ideal.
We allow n = 0, in which case we have M = 〈0〉. Let f ∈ A[[Xn+1]], written as
f = ∑∞

i=0 aiX
i
n+1 with ai ∈ A for all i ∈ N. Then, Weierstrass Preparation Theorem

(WPT) states the following.

Theorem 18 Assume f . 0 mod M[[Xn+1]]. Let d ≥ 0 be the smallest integer such that
ad <M. Then, there exists a unique pair (α, p) satisfying the following:

(i) α is an invertible power series of A[[Xn+1]],

(ii) p ∈ A[Xn+1] is a monic polynomial of degree d,

(iii) writing p = Xd
n+1 + bd−1X

d−1
n+1 + · · ·+ b1Xn+1 + b0, we have bd−1, . . . , b0 ∈M,

(iv) f = αp holds.

Moreover, if f is a polynomial of A[Xn+1] of degree d + m, for some m, then α is a
polynomial of A[Xn+1] of degree m.

Proof [22, Theorem 1]

Since A is a UFD, then Gauss’ lemma implies that the polynomial ring A[Xn+1] is also
a UFD. Hensel’s lemma shows how factorizing a polynomial in A[Xn+1] can be reduced
to factorizing a polynomial in k[Xn+1].
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Theorem 6.2.1 (Hensel’s Lemma) Assume that f is a polynomial of degree k in
A[Xn+1]. We define f = f(0, . . . , 0, Xn+1) ∈ k[Xn+1]. We assume that f is monic
in Xn+1, that is, ak = 1. We further assume that k is algebraically closed. Thus, there
exists positive integers k1, . . . , kr and pairwise distinct elements c1, . . . , cr ∈ k such that
we have:

f = (Xn+1 − c1)k1(Xn+1 − c2)k2 · · · (Xn+1 − cr)kr .

Then, there exists f1, . . . , fr ∈ A[Xn+1], all monic in Xn+1, such that we have:

i. f = f1 · · · fr,

ii. the degree of fj is kj, for all j = 1, . . . , r,

iii. fj = (Xn+1 − cj)kj , for all j = 1, . . . , r.

Proof [22, Theorem 2]

Figure 6.1: List of the commands of MultivariatePowerSeries.

6.3 An Overview of the User-Interface

From the point of view of the end-user, the MultivariatePowerSeries package is a
collection of commands for manipulating multivariate power series and univariate poly-
nomials over multivariate power series. The field of coefficients of all power series created
by the command PowerSeries consists of all complex numbers that are constructible
in Maple, thus including rational numbers and algebraic numbers. The main algebraic
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functionalities of this package deal with arithmetic operations (addition, multiplication,
inversion, evaluation), for both multivariate power series and univariate polynomials over
multivariate power series (UPoPS), as well as factorization of such polynomials. The list
of the exposed commands is given in Figure 6.1.

The commands PowerSeries and UnivariatePolynomialOverPowerSeries create
power series and univariate polynomials over multivariate power series, respectively, from
objects like polynomials, sequences, and functions which produce homogeneous parts of a
power series, as illustrated in Figures 6.2 and 6.3. The commands GeometricSeries and
SumOfAllMonomials respectively create the geometric series and sum of all monomials
for an input list of variables.

Figure 6.2: Creating power series from a polynomial or an anonymous function.
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Figure 6.3: Creating a univariate polynomial over power series

Figure 6.4: Controlling the output format of a multivariate power series.

Whenever possible, the package associates every power series with its so-called ana-
lytic expression. For each power series s, created by the command PowerSeries as the im-
age of a polynomial p (under the natural embedding from C[X1, . . . , Xn] to C[[X1, . . . , Xn]])
the polynomial p is the analytic expression of s. If a power series is defined by the se-
quence of its homogeneous parts, as illustrated on Figure 6.3, the user can optionally
specify the sum of that series which is then set to its analytic expression. Power series
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that have an analytic expression are closed under addition, multiplication and inversion.
Propagating that information provides the opportunity to speed up some computations
and make decisions that could not be made otherwise. For instance, the command
HenselFactorize needs to decide whether its input polynomial has an invertible leading
coefficient; to do it starts by checking whether the analytic expression of that leading
coefficient is known and equal to one.

The commands Display, SetDefaultDisplayStyle and SetDisplayStyle control
the output format of multivariate power series and UPoPS. Meanwhile, the commands
HomogeneousPart, Truncate, GetCoefficient, Precision, Degree, MainVariable ac-
cess data from a power series or a univariate polynomial over power series, as illustrated
by Figure 6.4.

The commands TaylorShift, Add, Negate, Multiply, Exponentiate, Inverse, Divide,
and EvaluateAtOrigin perform arithmetic operations on multivariate power series and
univariate polynomials over multivariate power series. The functionality of the first six
commands can also be accessed using the standard arithmetic operators. As will be dis-
cussed in Sections 6.4 and 6.5, the implementation of every arithmetic operation, such
as addition, multiplication, inversion builds the resulting power series (sum, product or
inverse) “lazily”, by creating its generator from the generators of the operands, which
are called ancestors of the resulting power series.

Figure 6.5: Factoring univariate polynomials using WeierstrassPreparation.
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Figure 6.6: Factoring univariate polynomials using HenselFactorize.

The commands WeierstrassPreparation and HenselFactorize factorize univariate
polynomials over multivariate power series. Thanks to their implementation based on
lazy evaluation, each of these factorization commands returns the factors as soon as
enough information is discovered for initializing the data structures of the factors; see
Figures 6.5 and 6.6.

The precision of each returned factor, that is, the common precision of its coefficients
(which are power series) is zero. However the generator (see Section 6.4 for this term)
of each coefficient is known and, thus, the computation of more coefficients can be re-
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sumed when a higher precision is requested. Such a request can be explicit by calling
UpdatePrecision, or implicit, when requesting data of a higher precision than has been
previously requested through, e.g., Truncate or HomogeneousPart.

6.4 Design Principles

In this section we examine several design principles underpinning the implementation
of the MultivariatePowerSeries library. Foremost is lazy evaluation: an algorithmic
technique where the computation of data is postponed until explicitly required (Sec-
tion 6.4.1). The eventual implementations of these lazy-evaluation algorithms make
deliberate efforts to use appropriate Maple data structures and built-in functions to
optimize performance (Section 6.4.2). Lastly, in support of software quality and integra-
tion with existing Maple library code, we employ Maple’s object-oriented mechanisms
(Section 6.4.3).

6.4.1 Lazy Evaluation

Lazy evaluation is an optimization technique most commonly appearing in the study
of functional programming languages [46]. The lazy evaluation or “call-by-need” refers
to delaying the call to a function until its result is genuinely needed. This is often
complemented by storing the result for later look-up.

In the case of power series, consider a bivariate geometric series f = ∑∞
d=0 f(d) where

f(0) = 1, f(1) = x + y, f(2) = x2 + 2xy + y2, . . . , f(d) = (x + y)d. One can prove that f
converges to 1

1−x−y . Of course, in practice, it is impossible to store an infinite number
of terms on a computer with finite memory. A näıve implementation then suggests
storing f (d) for some large and predetermined d. Thus, one can approximate power series
as multivariate polynomials. Such an implementation could be called truncated power
series.

While this representation of power series is easy to implement, it leads to notable
restrictions for the study of formal power series. First, one must a priori determine
the precision, i.e. the particular value of d. Second, in a most näıve implementation,
previously-computed homogeneous parts must be recomputed whenever a new, greater
precision is required. For example, the polynomial f (d+1) is likely to be constructed “from
scratch” despite the polynomial f (d) possibly being already computed. Third, storing and
manipulating the polynomial part of a power series up to a degree d needs a large portion
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of memory. This latter problem is exacerbated when the predetermined precision is not
a tight upper bound on the required precision.

To combat the challenges of a truncated power series implementation, we take ad-
vantage of lazy evaluation. Every power series is represented by a unique procedure to
compute a homogeneous part for a given degree. For example, Listing 6.1 shows such a
procedure for the bivariate geometric series which converges to 1

1−x−y . As we will see, this
lazy evaluation design can be paired with an array of polynomials storing the previously
computed homogeneous parts.

1 generator := proc(d :: nonnegint )

2 return expand ((x+y)ˆd);

3 end proc;

Listing 6.1: A Maple implementation of f(d) in 1
1−x−y = ∑∞

d=0 f(d).

6.4.2 Maple Data Structures and Built-in Functions

Using an appropriate data structure for encoding and manipulating data is critical for per-
formance, particularly in high-level and interpreted programming languages like Maple.
In Maple, modifying an existing list or set—such as by appending, replacing, or delet-
ing an element—may lead to the creation of a new list or set, rather than modifying the
original one in-place. In contrast, an Array is a low-level and mutable data-structure
which allows for in-place modification of its elements. These functionalities provide much
better performance than lists or sets when the collection is frequently changed or when
the elements being modified are themselves large in size.

Looking more closely at the Array data structure, an n-dimensional Array is stored
as a n-dimensional rectangular block named RTABLE. The length of the associated RTABLE

is 2n+d where d is maximum number of elements that may be stored, i.e., the allocation
size of the Array; see [19, Appendix 1]. For the storage of homogeneous parts of a power
series, and the power series coefficients of a UPoPS, we utilize 1-dimensional Arrays.
Listing 6.2 in the next section shows this as the variables hpoly and upoly, respectively.

To further improve performance, we make use of low-level built-in functions. Such
functions are provided as compiled code within the Maple kernel, and therefore not
written in the Maple language. Most notably, instead of using Maple for-loops and
the typical + and * syntaxes for addition and multiplication, respectively, we reduce
the cost of summations and multiplications remarkably by taking advantage of built-in
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Maple functions, add and mul. These built-in functions, respectively, add or multiply
the terms of an entire sequence of expressions together to return a single sum or product.
These functions avoid a large number of high-level function calls and reduce memory
usage by avoiding copying and re-allocation of data.

6.4.3 Maple Objects

An often overlooked aspect of Maple is its object-oriented capability. An object allows
for variables and procedures operating on that data to be encapsulated together in a single
entity. In Maple, a class—the definition of a particular type of object—can be declared
by including the option object in a module declaration. Evaluating this declaration
returns an object of that class. This new object is often a so-called “prototype” object
which, when passed to the Object routine, returns a new object of the same class. See
[19, Chapter 9] for further details on object-oriented programming in Maple.

Our power series and UPoPS types are implemented using these object-oriented fea-
tures of Maple. The classes for each are named, respectively, PowerSeriesObject and
UnivariatePolynomialOverPowerSeriesObject.

The use of object-oriented programming in Maple has two key benefits: (i) the
organization object-oriented code provides better software quality through modularity
and maintainability; and (ii) allows for the overloading of built-in functions, thus allowing
objects to be integrated with, and used natively by, existing Maple library functions.

1 MultivariatePowerSeries := module ()

2 option package ;

3 local

4 PowerSeriesObject ,

5 UnivariatePolynomialOverPowerSeriesObject ;

6

7 # create a power series :

8 export PowerSeries := proc (...)

9

10 # create a UPoPS:

11 export UnivariatePolynomialOverPowerSeries := proc (...)

12

13 # Additional procedures to interface these two classes

14

15 module PowerSeriesObject ()

16 option object ;

17 local
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18 hpoly :: Array ,

19 precision :: nonnegint ,

20 generator :: procedure ;

21 # other members and methods

22 end module ;

23

24 module UnivariatePolynomialOverPowerSeriesObject ()

25 option object ;

26 local

27 upoly :: Array ,

28 vname :: name;

29 # other members and methods

30 end module ;

31

32 end module ;

Listing 6.2: An overview of the MultivariatePowerSeries package.

The MultivariatePowerSeries library contains a package of the same name which
groups together those two aforementioned classes along with additional procedures to
construct and manipulate objects of those classes. These additional procedures are used
to “hide” the object-oriented nature of the library behind simple procedure calls. This
keeps the package syntactically and semantically consistent with the general paradigm
of Maple which does not use object-oriented programming. As an example of such
a procedure, PowerSeries, as seen in Fig. 6.2 (Section 6.3), handles various different
types of input parameters to correctly construct a PowerSeriesObject object through
delegation to the correct class method.

Listing 6.2 shows the declaration of our two classes and the MultivariatePower-

Series package. The latter is created by using option package in a module declaration;
see [19, Chapter 8]. The implementation of these two classes is further discussed in
Section 6.5.

6.5 Implementation of MultivariatePowerSeries

The MultivariatePowerSeries package provides a collection of procedures which form
simple wrappers for the methods of the aforementioned classes, PowerSeriesObject and
UnivariatePolynomialOverPowerSeriesObject.
These classes, respectively, define the data structures and algebraic functionalities for
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creating and manipulating multivariate power series and univariate polynomials over
power series. This section discusses those data structures as well as the implementation
of basic arithmetic, Weierstrass Preparation Theorem, and factorization via Hensel’s
lemma, all following a lazy evaluation scheme.

6.5.1 PowerSeriesObject

The PowerSeriesObject class provides basic arithmetic operations, like addition, multi-
plication, inversion, and evaluation, for multivariate power series, all utilizing lazy evalu-
ation techniques. Let f ∈ k[[X1, . . . , Xn]] be a non-zero multivariate power series defined
as f = ∑∞

d=0 f(d). f is encoded as an object of type PowerSeriesObject, containing the
following attributes.

First, the power series generator is the procedure to compute f(d), the d-th homoge-
neous part of f , for d ∈ N. Second, the precision is a non-negative integer encoding the
maximum degree of the homogeneous parts which have so far been computed. Third, the
1-dimensional array storing the previously computed homogeneous parts of f , denoted
as hpoly in Listing 6.2.

To create a power series object this class provides a variety of constructors. Power
series objects may be created from polynomials, algebraic numbers, UPoPS objects, or
procedures defining the generator of the power series.

Every arithmetic operation returns a lazily-constructed power series object by creating
its generator from the generators of the operands, but without explicitly computing
any homogeneous parts of the result. Thus, this is a lazy power series, so that, the
homogeneous parts of the result are computed when truly needed. Once homogeneous
parts are eventually computed, they are stored in the array hpoly. An important aspect
of this organization is that the generator of the resulting power series becomes implicitly
connected to the generators of the operands; the latter are thus called the ancestors of
the former.

Moreover, the addition and multiplication operations are not only binary operations
(operations taking two parameters), but are m-ary operations. For multiplication, a
sequence of power series f1, . . . , fm ∈ k[[X1, . . . , Xn]] may be passed to the multiplication
algorithm to produce the product f1 · f2 · · · fm via lazy evaluation. Similarly, addition
may take the sequence f1, . . . , fm to return the sum f1 + f2 + · · ·+ fm. Further, addition
may also take as a parameter an optional sequence of polynomial coefficients c1, . . . , cm ∈
k[X1, . . . , Xn] to return the sum c1f1 + · · ·+ cmfm constructed lazily.
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A key part to the efficiency of lazy evaluation is to not re-compute any data. We
have already seen that the hpoly array stores previously computed homogeneous parts
for a PowerSeriesObject object. What is missing is to ensure that the array is accessed
where possible rather than calling the generator function. Moreover, one must avoid
directly accessing that array for homogeneous parts which are not yet computed. We
thus provide the function HomogeneousPart(f, d), demonstrated in Listing 6.3, to handle
both of these cases. This function returns the d-th homogeneous part of the power
series f ; if d is greater than the precision (f:-precision), then this method iteratively
calls the generator to update hpoly and precision, otherwise it simply returns the
previously computed homogeneous part. From here on we use hpart as shorthand for
the HomogeneousPart function.

1 export HomogeneousPart :: static := proc(f, d :: nonnegint )

2 if d > f:- precision then

3 # resize the hpoly array:

4 f:-hpoly(d+1) := 0;

5 for local i from f:- precision + 1 to d do

6 f:-hpoly[i] := f:- generator [i];

7 end do;

8 f:- precision := d;

9 end if;

10 return f:-hpoly[d];

11 end proc;

Listing 6.3: A simplified version of the HomogeneousPart function in PowerSeries-

Object.

Listing 6.4 shows a simplified implementation of Divide that computes the quotient
of two power series objects f, g ∈ k[[X1, . . . , Xn]]. In particular, notice the creation of the
local procedure gen for the generator of the quotient. Note that EXPAND is a local macro
defined in MultivariatePowerSeries to efficiently perform expansion and normalization
supporting algebraic inputs.

1 export Divide :: static := proc(f, g)

2 if hpart(g ,0) =0 then

3 error " invalid input: not invertible ";

4 end if;

5

6 local h := Array (0..0 , EXPAND (hpart(f ,0)/hpart(g ,0)));

7

8 local gen := proc(d :: nonnegint )



124 Chapter 6. Multivariate Power Series in Maple

9 local s := hpart(f,d);

10 s -= add( EXPAND (hpart(g,i)*hpart(f,d-i)),i=1..d);

11 return EXPAND (s/hpart(g ,0));

12 end proc;

13

14 return Object ( PowerSeriesObject ,h,0, gen);

15 end proc;

Listing 6.4: A simplified version of the division method in PowerSeriesObject.

6.5.2 UnivariatePolynomialOverPowerSeriesObject

The UnivariatePolynomialOverPowerSeriesObject class is implemented as a simple
dense univariate polynomial with the simple and obvious implementations of associated
arithmetic (see, e.g., [100, Chapter 2]). The arithmetic operations are achieved directly
from coefficient arithmetic, that is, PowerSeriesObject arithmetic. Since the latter
is implemented using lazy evaluation techniques, UPoPS arithmetic is inherently and
automatically lazy.

For example, the addition of two UPoPS objects f = ∑k
i=0 aiX

i
n+1 and g = ∑k

i=0 biX
i
n+1

in k[[X1, . . . , Xn]][Xn+1] is the summation (ai + bi)X i
n+1 for all 0 ≤ i ≤ k, where ai, bi are

PowerSeriesObject objects. Other basic arithmetic operations behave similarly. How-
ever, there are important operations on UPoPS which are not as straightforward. In the
following we explain our implementation of Weierstrass Preparation Theorem, Taylor
shift, and factorization via Hensel’s lemma for UPoPS, all of which follow lazy evaluation
techniques.

Weierstrass Preparation

Let f, p, α ∈ k[[X1, . . . , Xn]][Xn+1] be such that they satisfy the conditions of Theorem 18
and such that f = ∑d+m

i=0 aiX
i
n+1, p = Xn+1

d + ∑d−1
i=0 biX

i
n+1, and α = ∑m

i=0 ciX
i
n+1.

Equating coefficients in f = pα we derive the two following systems of equations:



a0 = b0c0

a1 = b0c1 + b1c0
...

ad−1 = b0cd−1 + b1cd−2 + · · ·+ bd−2c1 + bd−1c0

(6.1)
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

ad = b0cd + b1cd−1 + · · ·+ bd−1c1 + c0
...

ad+m−1 = bd−1cm + cm−1

ad+m = cm

(6.2)

To solve these systems we proceed by solving them modulo successive powers of M,
following the proof of Theorem 18 in [22]. Notice that solving modulo successive powers of
M is precisely the same as computing homogeneous parts of increasing degree. Thus, this
follows our lazy evaluation scheme perfectly. The power series b0, . . . , bd−1 are generated
by Equations (6.1) and c0, . . . , cm by Equations (6.2).

Consider that b0, . . . , bd−1, c0, . . . , cm are known modulo Mr while a0, . . . , ad−1 are
known moduloMr+1; this latter fact is simple since f is the input to Weierstrass Prepa-
ration and is fully known. From the first equation in (6.1), b0 can be computed modulo
Mr+1 since b0 ∈M, c0 is known moduloMr, and a0 is knownMr+1. Then, the equation
a1 = b0c1 + b1c0, that is, a1− b0c1 = b1c0 can be solved for b1 moduloMr+1 since, again,
b1 ∈M and the other terms are sufficiently known. We compute all b2, . . . , bd−1 modulo
Mr+1 with the same argument. After determining b0, . . . , bd−1 modulo Mr+1, we can
compute cm, cm−1, . . . , c0 modulo Mr+1 from Equations (6.2) with simple power series
multiplication and subtraction, working iteratively, in a bottom up fashion. For example,
cm−1 = ad+m−1 − bd−1cm.

As yet, we have not explicitly seen how the coefficients of p and α will be updated. The
key idea is that to update a single power series coefficient of p or α requires simultaneously
updating all coefficients of p and α. Thus, all the generators of b0, . . . , bd−1, c0, . . . , cm sim-
ply call a single “Weierstrass update” function to update all power series simultaneously
using Equations (1) and (2). Algorithm 26 shows this Weierstrass update function.

In order to update the coefficients of p, we frequently need to compute ai−
∑i−1
j=0 bjci−j

for 0 ≤ i < d. To optimize this operation, we a priori create helper power series as the set
F = {Fi | Fi = ai −

∑i−1
j=0 bjci−j, i = 0, . . . , d− 1}. The power series Fi, following power

series arithmetic with lazy evaluation, allows for the efficient computation of homogeneous
parts of increasing degree of ai −

∑i−1
j=0 bjci−j. This set F is passed to the Weierstrass

update function to optimize the overall computation.
Finally, the Weierstrass preparation must be initialized before continuing with Weier-

strass updates. Namely, the degree of p and the initial values of p and α modulo M
must first be computed. The degree of p, namely d, is set to be the smallest integer i
such that ai is a unit. If d = 0, then p = 1 and α = f , otherwise, m equals the difference
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Algorithm 26 WeierstrassUpdate(p, α,F , r)
Require: p = Xd

n+1 + ∑d−1
i=0 biX

i
n+1, α = ∑m

i=0 ciX
i
n+1, r ∈ N, and F = {Fi | Fi =

ai −
∑i−1
j=0 bjci−j, 0 ≤ i < d} are all known modulo Mr

Ensure: b0, . . . , bd−1, c0, . . . , cm modulo Mr+1

# update b0, ..., bd−1 modulo Mr+1

1: for i from 0 to d− 1 do
2: s := add(seq(hpart(bi, r − k) · hpart(c0 , k), k = 1 .. r − 1));
3: hpart(bi, r) := (hpart(Fi, r)− s)/hpart(c0, 0);

# ensure c0, ..., cm are updated modulo Mr+1

4: for i from 0 to m do
5: hpart(ci, r);

between the degree of f and d, and we initialize bi = 0 for 0 ≤ i < d. Then, cm, . . . , c0

are initialized using power series arithmetic following Equations (6.2). Lastly, the set F
is initialized.

Taylor Shift

This operation takes a UPoPS object f ∈ k[[X1, . . . , Xn]][Xn+1] and performs the trans-
lation Xn+1 → Xn+1 + c, i.e. f(Xn+1 + c), for some c ∈ k. In our implementation, c can
be a numeric or algebraic Maple type with the purpose of being used efficiently in
factorization via Hensel’s Lemma.

Assume f = ∑k
i=0 aiX

i
n+1 is a UPoPS in k[[X1, . . . , Xn]][Xn+1] and c ∈ k. As the

PowerSeriesObject objects a0, . . . , ak are lazily evaluated power series, we want to also
make Taylor shift a lazy operation. Thus, we need to create a generator for the power
series coefficients of f(Xn+1 + c). Let T = (ti,j) be the lower triangular matrix of the
coefficients of Xn+1

j in the binomial expansion (Xn+1 + c)i, for 0 ≤ i ≤ k, and 0 ≤ j ≤ i.
Let (b0, . . . , bk) be the list of coefficients of f(Xn+1 + c) in k[[X1, . . . , Xn]]. Then, it is
easy to prove that for every 0 ≤ i ≤ k, bi is the inner product of the i-th sub-diagonal
of T with the lower k + 1− i elements of the vector (a0, . . . , ak). This inner product can
be computed efficiently by taking advantage of the m-ary addition operation described
for the PowerSeriesObject (see Section 6.5.1). Since this operation returns a lazily-
constructed power series, this precisely defines the lazy construction of the power series
b0, . . . , bk, thus making Taylor shift a lazy operation.
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Factorization via Hensel’s Lemma

Hensel’s lemma for factorizing univariate polynomials over power series was reviewed
in Theorem 6.2.1, where k is algebraically closed and f ∈ k[[X1, . . . , Xn]][Xn+1] is a
UPoPS object. Following the ideas of [22], we compute the factors of f in a lazy fashion.
Algorithm 27 proceeds through iterative applications of Taylor shift and Weierstrass
Preparation Theorem in order to create one factor of f at a time. Those factors are
actually computed through lazy evaluation thanks to the lazy behavior of the procedures
WeierstrassPreparation and TaylorShift. This Algorithms thus computes and
updates the factors modulo the successive powers M,M2,M3, . . . of the maximal ideal
M.

Algorithm 27 HenselFactorize(f)
Require: f = ∑k

i=0 aiXn+1
i ∈ k[[X1, . . . , Xn]][Xn+1]

Ensure: A list of factors {f1, . . . , fr} so that f = akf1 · · · fr and Theorem 6.2.1
1: if ak <M then
2: f ∗ := 1

ak
f ;

3: else
4: error “ak must be a unit.”
5: f̄ := EvaluateAtOrigin(f ∗);
6: c1, . . . , cr := Roots(f̄ , Xn+1);
7: for i from 1 to r do
8: g := TaylorShift(f ∗, ci);
9: p, α := WeierstrassPreparation(g);

10: fi := TaylorShift(p,−ci);
11: f ∗ := TaylorShift(α,−ci);

12: return {f1, . . . , fr};

Note that the generation of the factors f1, . . . , fr takes place after factorizing f̄ ∈
k[Xn+1]. Recall that f̄ is obtained by evaluating each Xi to 0 for 1 ≤ i ≤ n. This
is called EvaluateAtOrigin in our implementation. To efficiently factor f̄ , we take
advantage of the package SolveTools [94], which allows us to compute the splitting field
of f̄ (which, in practice, is a polynomial with coefficients in some algebraic extension of
Q) and factorize f̄ into linear factors.

Let c1, . . . , cr be the distinct roots of f̄ and k1, . . . , kr their respective multiplicities.
To describe one iteration of Algorithm 27, let f ∗ be the current polynomial to factorize.
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For a root ci of f̄ , and thus f ∗, we perform a Taylor shift to obtain g = f ∗(Xn+1 + ci).
Then, we apply Weierstrass preparation on g to obtain p and α where p is monic and
of degree ki. Again, by using Taylor Shift, we apply the reverse shift to p to obtain
fi = p(Xn+1 − ci), a factor of f , and f ∗ = α(Xn+1 − ci), for the next iteration. As
mentioned above, since both Taylor shift and Weierstrass preparation are implemented
using lazy evaluation, our factorization via Hensel’s lemma is inherently lazy.

6.6 Experimentation

We compare the performance of the MultivariatePowerSeries package, denoted MPS,
with the previous Maple implementation of multivariate power series, the PowerSeries

package, denoted RCPS, and the recent implementation of power series via lazy evaluation
in the BPAS library. This latter implementation is written in the C language on top of
efficient sparse multivariate arithmetic; see [12, 22]. It has already been shown in [22]
that the implementation in BPAS is orders of magnitude faster than the PowerSeries

package, Maple’s mtaylor command, and the multivariate power series available in
SageMath. As we will see, our implementation performs comparably to that of BPAS.

Throughout this section, we collect our benchmarks on a machine running Ubuntu
18.04.4, Maple 2020, and BPAS (ver. 1.652), with an Intel Xeon X5650 processor
running at 2.67GHz, with 12x4GB DDR3 memory at 1.33 GHz.

Figures 6.7, 6.8, and 6.9, respectively, show the performance of division and mul-
tiplication algorithms to compute 1

f
and 1

f
· f for power series f1 = 1 + X1 + X2,

f2 = 1 + X1 + X2 + X3, and f3 = 2 + 1
3(X1 + X2). It can be seen that MPS power

series division is 9×, 2100×, and 3× faster than the previous Maple implementation
for f1, f2, and f3 respectively. The speed-ups for multiplication are significantly higher.
Moreover, MPS results are comparable with the C implementation of similar algorithms
in BPAS. Figure 6.10 then highlights the efficiency of m-ary addition (see Section 6.5.1),
compared to iterative applications of binary addition. Recall that m-ary addition is
exploited in the Weierstrass preparation algorithm.

Next, we compare the performance of Weierstrass preparation (Section 6.5.2). Figures
6.11 and 6.12 demonstrate the running time of this algorithm for two different UPoPS.
Looking at these results, we can see a 2200× speed-up in comparison with the similar
algorithm in RCPS and timings comparable to BPAS.

We also compare the factorization via Hensel’s lemma and Taylor shift algorithms for
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a set of UPoPS f = ∏k
i=1(X2− i) +X1(Xk−1

2 +X2) in k[[X1]][X2] with k = 3, 4 in Figures
6.13 and 6.14. Our factorization implementation is orders of magnitude faster than
that of RCPS. However, factorization performs worse than expected compared to BPAS,
having already seen comparable performance of Weierstrass preparation in Figures 6.11
and 6.12. This difference can be attributed to Taylor shift, the other core operation of
HenselFactorize, as seen in Figure 6.14. The implementation in MPS is slower than the
same procedure in BPAS by several order of magnitude. This, in turn, can be attributed
to using Maple matrix arithmetic, rather than the direct manipulation of C-arrays as
in BPAS, within the Taylor shift algorithm.

Conclusion and Future Work

Throughout this work we have discussed the object-oriented design and implementation
of power series and univariate polynomials over power series following lazy evaluation
techniques. Basic arithmetic operations for both are examined as well as Weierstrass
Preparation Theorem, Taylor shift, and factorization via Hensel’s lemma for univariate
polynomials over power series. Our implementation in Maple is orders of magnitude
faster than the existing multivariate power series implementation in the PowerSeries
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package of the RegularChains library. Moreover, our implementation is comparable
with the C implementation of power series and univariate polynomials over power series
in BPAS.

Further work is needed to extend lazy evaluation techniques to more sophisticated
algorithms. For example, a division algorithm based on Newton’s method, a general
Extended Hensel Construction (EHC) [82], and the Abhyankar-Jung Theorem [85]. As a
consequence, it is possible to re-implement the EHC algorithm found in RegularChains

using this library. Further, as Maple supports multithreading, it is possible to apply
parallel processing to our algorithms. In particular, the computation of UPoPS coeffi-
cients in Weierstrass preparation is embarrassingly parallel. Meanwhile, the successive
application of Weierstrass preparation and Taylor shift in HenselFactorize present an
opportunity for pipelining. Both should be exploited in to achieve even further perfor-
mance improvements.



Chapter 7

Conclusion and Future Work

In this research, we have optimized, designed and developed algorithms to compute
subresultants in support of developing a high-performance polynomial system solving.
We have also examined the performance of these schemes in the C/C++ BPAS library
and integrated them to work with the multithreaded BPAS solver.

In Chapter 3, we designed speculative algorithms taking advantage of fast arithmetic
over prime fields for univariate and bivariate polynomials over prime fields and arbitrary-
precision integers. These schemes address how subresultants are usually used by the
Triangularize algorithm. These speculative schemes yield speed-up factor of 7× and
2× for polynomials in Z[y] and Z[x, y], respectively.

To develop this speculative strategies for univariate and bivariate polynomials, we
extended a well-known divide-and-conquer algorithm naming Half-GCD. In addition, we
made use of asymptotically fast algorithms to implement basic arithmetic on polynomials
over prime fields with following best-practices in NTL and Aldor. These subresultant
algorithms based on fast arithmetic are up to 10× and 400× faster than non-modular
schemes, e.g. Ducos’ algorithm, for polynomials in Z[y] and Z[x, y], respectively.

In the case of subresultant chain algorithms based on evaluation and interpolation
schemes, we utilized the BPAS multithreaded interface to implement multithreaded mod-
ular and speculative subresultant algorithms for bivariate polynomials over prime fields
and integers. The integration of these schemes in the multithreaded BPAS solver yields
up to 4× speed-up on a 12-core machine.

In Chapter 4, we were interested on optimizing algorithms for a recursive and sparse
representation of multivariate polynomials over arbitrary-precision integers. We deployed
a recursive normal form algorithm by making use of an efficient heap-based division op-
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eration, and designed a multi-divisor pseudo-division algorithm where the set of divisors
is a strongly normalized triangular set. The latter routine is respectively up to 20× and
3.5× faster than a näıve implementation in Maple and BPAS.

We further optimized a well-studied scheme known as Ducos’ subresultant chain al-
gorithm. This optimization relies intensively on in-place basic arithmetic and efficient
memory access patterns. This optimized Ducos’ algorithm is 2× faster than its coun-
terpart in Maple. Moreover, for univariate polynomials of degree as large as 2000, the
optimized Ducos’ subresultant chain algorithm uses 3.2× and 11.7× less memory, re-
spectively, than our implementation of the original Ducos’ algorithm in BPAS and the
implementation of Ducos’ algorithm in Maple.

In Chapter 5, we studied subresultant algorithms based on computing the determinant
of (Hybrid) Bézout matrices. We made use of the Bareiss fraction-free LU decomposition
to compute determinant and further optimized this decomposition algorithm via smart-
pivoting technique and using BPAS multithreaded interface. To compute the resultant
of two sparse polynomials with 6 variables, our subresultant algorithm based on Hybrid
Bézout matrix is 24× faster than the optimized Ducos’ algorithm.

Furthermore, we designed speculative algorithms in order to compute subresultants
based on Hybrid Bézout matrix. For two sparse polynomials with 6 variables, computing
S0, S1 speculatively is around 2× faster than computing them successively. We also
showed that the integration of these schemes in the BPAS solver yields up to 1.6×
speed-up to solve several real-world multivariate polynomial systems.

In Chapter 6, we discussed our implementation of power series which is available as
the MultivariatePowerSeries library in Maple 2021. This library provides arithmetic
for formal power series and univariate polynomials over such series (UPoPS) by tak-
ing advantage of object-oriented mechanisms in Maple and lazy evaluation techniques.
The comprehensive results indicated that MultivariatePowerSeries is comparable in
performance to the C implementation of multivariate power series in BPAS that is thus
similarly several orders of magnitude faster than other existing implementations including
the previous Maple package for multivariate power series.
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7.1 Future Work

Research on subresultant chain algorithms in order to further optimizing the polynomial
system solver via the Triangularize algorithm can be continued in the following four
directions in the near future,

(i) For dense univariate and bivariate polynomials, one could use the big prime field
FFT approach. In [28], a FFT-based multiplication of two integers modulo Gen-
eralized Fermat Prime Fields (GFPF) of size 8 or 16 machine words on GPUs has
introduced. One of the primary results in this paper is that computing over a
single big prime field can outperform computing over several small (of size one ma-
chine word) prime fields. Thus, subresultant algorithms based on modular methods
can take advantage of primes larger than one machine-word size following ideas in
[28, 30].

(ii) For polynomials with more than 2 variables, but sparse, one should consider sparse
evaluation and interpolation algorithms. This problem was originally studied by
Zippel in [104] to compute GCDs and later by Monagan [78] to implement the
Hensel lifting step of a multivariate polynomial factorization. Furthermore, one
can implement speculative subresultant algorithms for such polynomials with taking
advantage of sparse evaluation-interpolation and fast modular arithmetic.

(iii) For subresultant algorithms based on the (Hybrid) Bézout matrix, one should con-
sider optimizations such as,

• computing determinants of such matrices modulo several small primes, or one
big prime to take advantage of fast modular arithmetic; and

• specializing one or more variables in order to optimize smart pivoting technique
through reducing the complexity of finding proper pivots.

• using different pivoting strategies like “Rook’s pivoting” [86] in the FFLU de-
composition algorithm and different formulations for computing Bézout ma-
trices such as “polynomial by values” [7].

(iv) For computing a subresultant chain in A[y] where,

A := Frac(B[x1, . . . , xv]/sat(T )),

and T is a regular chain of B[x1, . . . , xv], practically, there are two approaches:
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(a) computing the corresponding subresultant chain in B[x1, . . . , xv][y] and apply
the specialization property of subresultants (as in this thesis); or

(b) computing the corresponding subresultant chain directly in A[y] (as discussed
in [72]).

If T is a zero-dimensional regular chain, it is worth revisiting (b) since better
implementations of normal form algorithms are available today. In addition, where
T is positive dimensional, one can keep expression swelling under control and use the
second approach with taking advantage of more advanced algorithmic techniques
such as methods in order to reduce the input positive dimensional regular chain to
zero-dimensional regular chains.
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