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Abstract 

Extracellular vesicles (EVs), which are nanoscale vesicles secreted by cells into biofluids, are 

of research interest due to their roles in intercellular communication. EVs released from 

mesenchymal stromal cells (MSCs) have tremendous potential in cell-free regenerative 

medicine, while EVs released from diseased cells are being studied as biomarkers for 

minimally invasive and early disease detection. Presented in this thesis are gold nanohole 

arrays for the capture and sensitive detection of EVs by surface-enhanced Raman spectroscopy 

(SERS), a plasmonic technique capable of single molecule detection. Herein, we have 

characterized EVs released from MSCs and ovarian cancer cells, with a focus on cell lines that 

have been underexplored by SERS in literature. Using a hybrid principal component analysis-

machine learning approach, we have demonstrated the platform’s potential in classifying EV 

groups with high (~ 99 %) accuracy, sensitivity, and specificity, which we hope will one day 

translate to point-of-care detection for disease diagnosis. 

Keywords 

Extracellular vesicles, nanohole arrays, surface-enhanced Raman spectroscopy, plasmonics, 

electron-beam lithography, mesenchymal stromal cells, ovarian cancer, machine learning, 

biosensing 
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Summary for Lay Audience 

The fields of rehabilitative and diagnostic medicine are constantly evolving, where the former 

is seeking safer and more effective ways to repair tissue and organ damage, and the latter is 

developing methods for rapid, non-invasive, and early disease detection. One area of research 

with applications in both these fields is extracellular vesicle (EV)-based technology. EVs are 

a complex group of membrane-bound vesicles released from cells into biofluids including 

blood, saliva, and urine. EVs are traditionally separated into three subclasses based on 

attributes such as size, biomolecular cargo, and mechanisms of formation and release. The 

most interesting subclasses of EVs consist of exosomes and microvesicles since they play roles 

in intercellular communication. Released from mesenchymal stromal cells (MSCs), EVs have 

shown immense promise in cell-free regenerative and restorative applications, while EVs 

released from diseased cells (e.g., cancer cells) are studied for their applications as disease 

biomarkers. However, the nanoscale size and molecular heterogeneity of EVs pose a 

significant research problem since sensitive methods are required for their detection. 

Surface-enhanced Raman spectroscopy (SERS) is a sensitive, non-destructive plasmonic 

technique that has shown potential in biosensing applications, including EV detection. The 

highly sensitive nature of SERS is based on the collective oscillation of free electrons at a 

nanoscale, metallic surface. Consequently, large electromagnetic fields are produced at the 

edges of the nanoscale features, and analytes that are confined to these regions experience 

significant enhancement with respect to their Raman signal intensity. Proposed in this work 

are gold nanohole arrays for the capture and SERS characterization of EVs. The SERS spectra 

gathered provide insight into the biochemical composition of EVs, and EVs from both MSCs 

and ovarian cancer cells are explored. SERS characterization of EVs from the specific cell 

sources investigated in this thesis have been largely underexplored in literature, and so the 

work presented here is novel. Statistical analysis is utilized to find patterns in the complex 

spectra acquired, and machine learning is further implemented to classify EVs from various 

cell sources. The high (~ 99 %) accuracies, sensitivities, and specificities reported in this thesis 

demonstrate great promise for translation to clinical testing. 
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Chapter 1  

1 General Introduction 

Extracellular vesicles (EVs) are complex, membrane-bound, nanoscale vesicles that are 

secreted by nearly all cells into human biofluids. EVs play an important role in intercellular 

signaling and communication by the transfer of proteins and RNA to near and distant cells. 

There is a strong research interest in EVs since they have high potential as non-invasive 

disease biomarkers, may additionally offer prognostic information in a variety of diseases, 

and can be used in therapeutic applications. Discussed in this introductory chapter are the 

classification of EVs in terms of size, contents, and biogenesis as well as current detection 

methods and their limitations. Nanoplasmonic techniques for EV characterization, which 

are used extensively throughout this thesis, are also introduced in this chapter. 

1.1 EV Background 

Interestingly, the concept of minute-sized cell derivatives dates back approximately 150 

years to Darwin’s pangenesis theory.[1] This theory postulated that every cell type in the 

human body generates small particles called gemmules which communicate to other cell 

types through the transfer of molecules and may also mediate the maternal-fetal transfer of 

heritable information. Although this theory was not accepted at the time due to lack of 

experimental evidence, scientists today can relate the concept of Darwin’s gemmules to 

EVs that indeed carry nucleic acid and protein cargo of their parent cell,[2,3] and also 

mediate maternal-fetal dialogue.[4] 

Although historically thought of as carriers of cell waste, EVs have long been implicated 

in cell development,[5] intercellular signaling,[6] cellular stress responses,[7] and cell 

maturation.[8] Early work in EV research in 1969 recognized gene expression via EVs and 

their functional roles when EVs were found to be associated with epiphyseal cartilage 

matrix calcification in mice.[5] Around the same time, EVs were identified in the periaxonal 

space within the mouse atrium and a model was proposed for neuronal signaling.[6] Half a 

decade later, early evidence of the association of EVs with mechanisms for cellular stress 

was uncovered.[7] In the 1980s, it was observed sheep reticulocytes shed their transferrin 
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receptors by releasing EVs during maturation and it was theorized that EV secretion was a 

mechanism for the removal of membrane components no longer need during reticulocyte 

maturity.[8,9] These findings, however, were misinterpreted, leading to the misidentification 

of EVs as simply a means of the disposal of unwanted cellular components or cellular 

waste.[10] 

Nearly three decades after EVs were first identified, serious work in elucidating EV 

signaling functions began to be published, and EVs were finally established as intercellular 

communication agents. In 1996, it was observed that B-cells from both humans and mice 

secrete EVs carrying the major histocompatibility class-II (MHC-II) molecule initiated T-

cell responses.[11] Later studies further reported EV-associated signaling activities such as 

enhancing cell proliferation, survival, adhesion, and chemotaxis.[12] Multiple studies in 

2006 through 2008 elucidated EV nucleic acid cargo and determined that EV-derived 

RNAs were transferrable to recipient cells,[13-15] leading to the exponential increase in EV 

research over the past decade. 

1.1.1 Overview of EV Classification 

EVs are secreted by nearly all cell types and are found in biofluids including blood, urine, 

breast milk, cerebrospinal fluid, amniotic fluid, and ascites.[16] EVs are generally separated 

into three subclasses: apoptotic bodies, microvesicles, and exosomes (Figure 1-1). 

Multiple factors are considered when dividing extracellular vesicles into these three 

subclasses, including size, chemical and biomolecular composition, biogenesis, and 

mechanism of formation.[17] Apoptotic bodies are the largest subclass of EVs in terms of 

their size distribution, as they typically have a diameter range of 1 – 5 μm.[18] Apoptotic 

bodies are formed, as their name suggests, from cells in the late stages of apoptosis, and 

are released by directly budding from the cell’s plasma membrane.[17] They typically 

contain cytosolic contents including proteins, RNA, and fragmented DNA, as well as 

cellular organelles.[19] Microvesicles, like apoptotic bodies, are also released by directly 

budding from the plasma membrane.[20] However, microvesicles are not released by cells 

undergoing apoptosis, so they are more interesting to researchers in their roles in 

intercellular communication. Microvesicles are also smaller than apoptotic bodies as their 

diameter range is approximately 100 – 1000 nm.[17] Microvesicles also contain contents 
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that are reflective of their parent cell and carry surface markers (e.g., integrins and 

selectins), cytosolic proteins, lipids, and nucleic acids such as messenger RNAs (mRNAs), 

microRNAs (miRNAs), circular RNAs (circRNAs) and long noncoding RNAs 

(lncRNAs).[21] Exosomes are the smallest subclass of EVs in terms of size with a diameter 

range of approximately 30 – 150 nm.[18] Exosome cargo and content is similar to 

microvesicles, albeit with distinct surface markers such as tetraspanins CD9, CD63, and 

CD81,[22] and their main distinction is in their biogenesis. Exosomes do not bud directly 

from the plasma membrane, but are rather released following the fusion of multivesicular 

bodies (MVBs) with the plasma membrane.[23] MVBs contain intraluminal vesicles (ILVs), 

which once expelled from the cell, are termed exosomes. Alternatively, ILVs may fuse 

with lysosomes for the degradation of their content. 
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Figure 1-1: (A) Schematic illustration of the three subclasses of EVs and their 

biogenesis and release with (B) transmission electron microscope (TEM) images of 

the three EV types for comparison. TEM images are adapted with permission from 

reference [24] (copyright 2016 Elsevier B. V.). 

ILVs are formed within MVBs by the invagination of late endosomal membranes. During 

this process, certain proteins are incorporated into the invaginating membrane while 

cytosolic contents are engulfed within the ILVs. There are two pathways that are proposed 

for the mechanism of ILV formation: one that is dependent on the endosomal sorting 

complex required for transport (ESCRT) function, and one that is ESCRT-independent.[25] 
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A complex protein machinery made up of four separate ESCRTs (0 through III) work 

together to facilitate the formation of MVBs, vesicle budding, and protein cargo-

sorting.[26,27] 

The ESCRT-dependent mechanism is initiated by the recognition and sequestration of 

ubiquitinated proteins to specific domains of the endosomal membrane via the ubiquitin-

binding subunits of ESCRT-0. After interaction with ESCRT-I and ESCRT-II, the total 

complex combines with ESCRT-III, which is the protein complex that is involved in 

promoting the budding process. The MVB membrane buds are cleaved to form ILVs and 

the ESCRT-III complex separates from the membrane using energy supplied by a sorting 

protein (VPS4). ESCRT components (e.g., TSG101 and CHMP4), ESCRT-associated 

proteins (e.g., ALIX), and ubiquitinated proteins have been identified in exosomes 

originating from various cell types, thus providing evidence for the ESCRT-dependent 

pathway.[25] 

The ESCRT-independent biogenesis mechanism instead depends on raft-based 

microdomains for the lateral segregation of cargo within the endosomal membrane and 

emphasizes the key role of exosomal lipids in exosome biogenesis. Microdomains (i.e., 

highly enriched sphingomyelinases) can form ceramides via the hydrolytic removal of the 

phosphocholine moiety.[25] Ceramides induce the lateral phase separation and coalescence 

of microdomains in membranes. Furthermore, the cone-shape structure of ceramides may 

cause the spontaneous negative curvature of the endosomal membrane, thus promoting 

domain-induced budding. The ESCRT-independent mechanism is supported by the fact 

that ILVs can be formed despite silencing key subunits of all ESCRT complexes.[28,29] 

Researchers warn that although it is useful to conceptualize EV biogenesis and classify 

EVs by either direct plasma membrane budding or fusion of the plasma membrane with 

MVBs, this is an oversimplified model that does not entirely encapsulate or explain the 

complexity of EVs. Furthermore, the distinction between the two pathways is becoming 

less clear as researchers discover and elucidate pathway interdependencies and cell 

specialization. For example, the interdependencies of EV biogenesis pathways can lead to 

EVs that biochemically and biophysically resemble an endosomally-derived EV (i.e., an 
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exosome) that were produced by budding directly from the plasma membrane.[30] This 

phenomenon indicates that cells can indeed specialize to operate beyond a binary 

classification of EV biogenesis pathways. Furthermore, while it is conceptually simple to 

classify EVs based on their size (i.e., exosomes are smaller than microvesicles, which are 

smaller than apoptotic bodies), there is substantial overlap of size distributions among each 

group, and there exist variations in the size distributions from author to author. 

Nevertheless, the generally accepted criteria for EV classification are summarized in Table 

1-1. 

Table 1-1: Characterization of EVs based on their size, density, contents, biogenesis, 

and mechanism of release. 

Feature Exosomes Microvesicles Apoptotic Bodies 

Size 30 – 150 nm 100 – 1000 nm 1 – 5 μm 

Content Proteins (e.g., 

CD9/63/81, ALIX, 

TSG101), lipids, 

RNAs (e.g., mRNAs, 

miRNAs, lncRNAs), 

DNAs 

Proteins (e.g., 

CD154), lipids, 

RNAs (e.g., mRNAs, 

miRNAs, lncRNAs), 

DNAs 

Cytosolic content 

(proteins, RNAs, 

fragmented DNA) and 

cellular organelles 

Mechanism 

of Release 

Release of ILVs 

from MVBs 

following the fusion 

of MVBs with 

plasma membrane 

Direct outward 

budding from the 

plasma membrane 

Plasma membrane 

blebbing during 

apoptosis 

1.1.2 EVs in Intercellular Communication 

EVs, specifically microvesicles and exosomes, play an important role in intercellular 

signaling and communication either by transmitting information via direct contact or 

through the transfer of proteins and nucleic acids,[31] and can occur by three general 

mechanisms (Figure 1-2). The first mechanism involves the “docking” of secreted EVs 

onto the membrane of the recipient cell via a ligand-receptor interaction. This interaction 



7 

 

involves the transfer of information between cells rather than the delivery of EV cargo into 

the recipient cell, and examples include immunomodulation[11,32] and morphogen 

signaling.[33,34] The second mechanism involves the direct fusion of secreted EVs with the 

membrane of the recipient cell, resulting in the direct uptake of proteins and nucleic acids 

from the donor cell into the cytosol of the recipient cell. For example, the delivery of 

mRNAs,[14] miRNAs,[35,36] lncRNAs,[37] DNAs,[38,39] and oncoproteins[40,41] by EVs has 

been reported. The third mechanism, which also results in the direct uptake of donor cell 

cargo, involves the ingestion of secreted EVs into the recipient cell via endocytosis.[42,43] 

Endocytosis is a broad term for cellular internalization, and can occur, for example, by 

phagocytosis (i.e., the secreted EV is “eaten” by the recipient cell), or be receptor-

mediated, caveolin-mediated, or lipid raft-mediated.[44] For successful intercellular 

communication to occur, particularly via receptor-mediated pathways, secreted EVs must 

contain recognition molecules that will direct them to the proper target and be accepted 

onto or into the recipient cell. 

 

Figure 1-2: Schematic illustration of the three general mechanisms of intercellular 

communication via EV exchange between a secreting cell and a recipient cell. 

1.2 Cellular Origins 

Since EVs play an important role in intercellular communication, there is strong research 

interest in their therapeutic roles as well as their roles as biomarkers in disease detection, 
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diagnosis, and prognosis. EVs that are released from mesenchymal stromal cells (MSCs) 

are considered to be potent cell-free regenerative and curative agents.[45] EVs have also 

been implicated as mediators of many cardiovascular diseases (e.g., heart failure and 

obesity),[46] neurogenerative diseases (e.g., Alzheimer’s and Parkinson’s),[47] inflammatory 

diseases (e.g., arthritis),[48] and musculoskeletal diseases.[49] One of the most prominent 

research areas of EVs is their role as cancer biomarkers, since they have been associated 

with many cancers such as ovarian,[50] prostate,[51] and breast cancer.[52] 

1.2.1 Mesenchymal Stromal Cell (MSC)-Derived EVs 

MSCs, which are multipotent stem cells capable of differentiating into many different cell 

types, serve to maintain and repair tissues in vivo.[53] Although found in a variety of 

different sources in the body, MSCs are most commonly isolated from bone marrow, 

adipose tissue, and umbilical cord blood.[54] MSCs that are administered locally or 

systematically can release a mixture of bioactive molecules, including EVs, which can 

promote the activation of endogenous repair pathways and lead to anti-inflammatory, anti-

apoptotic, and restorative effects.[55,56] However, EVs isolated from MSCs can be used as 

therapeutic agents by themselves, and have shown similar and even superior functional 

capacities compared to MSCs. There are additionally safety advantages of administering 

EVs over living cells, since EVs are non-oncogenic, less immunogenic, less toxic, and 

easier to sterilize, handle, and store than living cells.[57] 

MSC-derived EVs have demonstrated to be effective therapeutic agents in many conditions 

and diseases. For example, EVs have been used in the therapy of lung diseases,[58] such as 

pulmonary infections (including COVID-19),[59,60] asthma,[61,62] acute respiratory distress 

syndrome,[63,64] idiopathic pulmonary fibrosis,[65,66] and cystic fibrosis.[67,68] In addition to 

lung disease therapies, MSC-derived EVs have been implicated in tissue engineering and 

many regenerative therapies.[69] In neurological regeneration, EVs have been used 

following nerve crush injury,[70-72] stroke,[73,74] traumatic brain injury,[75] and spinal cord 

injury.[76-78] MSC-derived EVs have also been used to improve motor function outcomes 

in multiple sclerosis[79] and autoimmune encephalitis,[80] as well as to improve cognitive 

function recovery in Alzheimer’s disease.[81] In the case of cardiovascular regeneration, 

EVs have been used to reduce infarct size,[82] increase myocardial viability,[83] and increase 
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cardiac repair[84] following myocardial ischemia/reperfusion injury. MSC-derived EVs 

have also been in bone regeneration,[85-87] cartilage regeneration,[88-90] muscle 

regeneration,[91-93] kidney regeneration,[94-96] and liver regeneration.[97-99] Lastly, EVs have 

been used in wound healing therapies including photo-damaged dermal fibroblasts,[100] 

excisional skin wounds,[101] ischemic wounds,[102] cutaneous wounds,[103] and second-

degree burns.[104] 

Although the application of EVs in therapeutic and regenerative medicine is a very 

interesting area of research, this thesis will focus on the development of methods for the 

sensitive detection, characterization, and analysis of MSC-derived EVs. Clinical 

applications of MSC-derived EVs in therapeutics is challenged by the lack of standardized 

techniques for EV isolation, purification, characterization, and analysis. The topic of the 

characterization of MSC-derived EVs is explored in detail in Chapter 3. 

1.2.2 Cancer-Derived EVs 

In 2020 alone, approximately 19.3 million new cancer cases were diagnosed globally, and 

nearly 10.0 million cancer deaths occurred.[105] Cancer remains one of the leading causes 

of premature death worldwide,[106] and so there is a need for the development of effective 

methods for cancer treatment and prevention. During cancer development and progression, 

a tumor develops for a long time at the subclinical or microscopic level before it 

metastasizes; to be clinically detectable, a tumor must grow to a size of approximately 1 

cm3, containing about 109 cells.[107] Since there is a high probability of prior dissemination 

at the time of diagnosis, methods for early cancer diagnosis must be developed to combat 

the global mortality of cancer. Since EVs have a specific profile of miRNAs, proteins, and 

lipids that mirror the cargo of their parent cells, EVs can be used as biomarkers for cancer 

detection, and can even be used to monitor cancer progression and drug resistance.[108,109] 

EV-derived miRNAs have been identified as potential biomarkers of many different 

cancers, including liver,[110] lung,[111,112] gastrointestinal,[113] colorectal,[114] pancreatic,[115] 

breast,[116] and ovarian cancer,[117] as well as melanoma.[118-120] Furthermore, it has been 

observed that cancer cells secrete a higher number of EVs compared to their normal or 

non-malignant counterparts.[121] 
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In addition to acting as cancer fingerprints, EVs are involved in a wide range of processes 

involved in cancer progression, including inflammatory responses, angiogenesis, 

lymphogenesis, cell migration and proliferation, immune suppression, and metastasis.[121-

123] Cancer-derived EVs have also been shown to influence non-cancer cells to generate a 

tumor microenvironment conducive for tumor growth by influencing endothelial cells to 

support neoangiogenesis,[124] as well as metastasis by inducing vascular permeability.[125] 

Furthermore, cancer-derived EVs have been shown to not only suppress immune 

responses,[126] but to also modify immune cells towards pro-tumorigenic and pro-metastatic 

phenotypes through the transfer of functional oncoproteins from cancerous donor cells to 

recipient cells.[125,127] EV transfer of miRNAs as well as oncogenic entities (e.g., mutated 

proteins, fusion gene mRNAs, and lncRNAs) from cancer cells to neighboring cells within 

the tumor microenvironment can not only drive malignancy,[128] but lead to drug 

resistance.[129] 

Clinical translation of EV technology in cancer diagnosis, especially at the early stage, is 

hindered by the lack of standardization of methods for the isolation, quantification, 

characterization, and analysis of EVs, particularly from complex biofluids like blood. 

Another challenge is the fact that the percentage of total blood vesicles that are cancer-

derived is unknown,[130] even for advanced stage cancers that are associated with the 

release of a higher number of EVs compared to early stage cancers. Therefore, it is 

currently unknown if a given blood sample will contain levels of cancer-derived EVs 

within the range of current technological capabilities for EV detection.[121] Although EVs 

are involved in many facets of cancer biology, the focus of this thesis is the sensitive 

detection and characterization of EVs for early cancer diagnosis, which is the topic of 

Chapter 4. 

1.3 Methodologies for EV Detection and Characterization 

EVs are generally characterized by at least two methods. One of these methods is a physical 

characterization method to confirm that the analytes are within the acceptable size ranges 

for EVs, as well as for EV enumeration and morphology. Although this is an important 

study, physical characterization alone is not suitable for diagnostic studies, and so 
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biochemical characterization is required. Biochemical characterization is used to determine 

the surface composition of EVs as well as the composition of their cargo. 

1.3.1 Common Physical Characterization Methods 

Commonly used methods for EV size quantification are dynamic light scattering (DLS), 

nanoparticle tracking analysis (NTA), and flow cytometry. Microscopy techniques can also 

be used for EV enumeration and size quantification in addition to providing insight into 

EV morphology and topography. Commonly used microscopy techniques for EV 

characterization include transmission electron microscopy (TEM), scanning electron 

microscopy (SEM), and atomic force microscopy (AFM). 

Both DLS and NTA measure the size of particles based on their Brownian motion in 

solution, the basis of which is that lighter particles will diffuse faster, and that speed is 

relative to particle size.[131] In DLS, EVs are illuminated with a laser beam and the light is 

scattered. The intensity changes of scattered light are recorded as a function of time, thus 

allowing the Brownian motion of EVs to be observed.[132] While DLS can detect particles 

as small as 10 nm in diameter, the detection of particles in a heterogenous solution is biased 

towards larger particles since they scatter more light compared to smaller particles.[132] 

Therefore, in a solution containing exosomes and microvesicles, the average EV diameter 

calculated is more likely to be skewed towards microvesicle size. In NTA, the Brownian 

motion of individual EVs is tracked and their size and total concentration is calculated 

based on their mean velocity.[131] NTA can detect EVs in the range of approximately 50 – 

1000 nm, which nearly encompasses the generally accepted size ranges for exosomes and 

microvesicles.[133] NTA however cannot typically detect particles larger than 1000 nm in 

diameter since larger particles have limited Brownian motion, and therefore move too 

slowly. 

Flow cytometry has been commonly used over the past couple of decades for EV analysis. 

With a resolution of approximately 300 – 500 nm, depending on the setup, flow cytometry 

is not as sensitive as DLS or NTA, but it is advantageous in that it offers a higher 

throughput and multiple markers can be determined simultaneously.[132] Flow cytometry 

operates by directing a laser beam through a stream of sheath fluid containing suspended 
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EVs, which cause light scattering, similarly to DLS or NTA. At the same time, the EVs are 

labelled with fluorescent dyes either in their interior or on their surface, thus providing 

insight into their cellular origins.[134] Nanoscale flow cytometry (nFC) has emerged in more 

recent years, following the same operating principles as conventional flow cytometry, but 

capable of detecting particles as small as approximately 100 nm.[131] Additionally, nFC can 

discriminate EVs from other nanoparticles or contaminants in the solution. 

Electron microscopy techniques like TEM and SEM are attractive for imaging EVs since 

they offer much higher resolution compared to light microscopy techniques due to the fact 

that the wavelength of an electron is approximately 100 000-fold smaller than the 

wavelength of a photon in visible light.[135] In TEM, stained, thin sections of a preserved 

sample are imaged by passing a broad electron beam through the sample above a 

fluorescent screen or charge coupled device (CCD) (Figure 1-3A).[134] The resulting two-

dimensional image provides insight into the internal structure of the sample. In SEM, a 

focused beam of electrons is scanned across the sample surface, interacting with atoms on 

the sample surface (Figure 1-3B). Secondary electrons are collected and counted by a 

detector, producing a three-dimensional image containing information of the sample’s 

surface topography.[134] Both TEM and SEM offer sub-nanometer resolution,[135,136] but 

require laborious sample preparation when imaging biological samples like EVs, which 

must be cryogenically or chemically preserved.[137] Freezing the EVs also causes them to 

shrink, and so volume lost must be accounted for in order to accurately determine EV size. 

Like electron microscopy techniques, AFM can offer high resolution images of EVs. 

Images are generated by quantifying the forces between a probe (cantilever tip with a very 

low spring constant, usually composed of silicon or silicon nitride) and the sample surface 

(Figure 1-3C).[138] The cantilever scans the surface while a piezoelectric crystal raises or 

lowers the cantilever to maintain constant bending. A laser beam is constantly reflected 

from the top of the cantilever towards a position-sensitive photodetector, recording the 

actual position of the cantilever. Since AFM ages are three-dimensional, height information 

can be obtained simultaneously with lateral information, with resolutions of approximately 

0.001 nm and 0.1 – 1.0 nm, respectively.[138] The tip can interact with the surface 

topography of the sample either by directly tracing the sample (contact mode), oscillating 
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vertically at or below its resonant frequency and gently tapping the sample surface (tapping 

mode), or oscillating above the sample surface with a small amplitude at a frequency larger 

than its resonant frequency (non-contact mode).[139] An advantage of AFM over TEM and 

SEM is that minimal sample preparation is required for EV imaging, since scans can be 

conducted in air or even in fluid, thereby mimicking the native conditions of the EVs.[137] 

However, high resolution scans are very time consuming, especially when large areas are 

imaged. 

 

Figure 1-3: Schematic illustration of some high-resolution microscopic techniques for 

EV characterization, including (A) TEM, (B) SEM, and (C) AFM. 

Although physical characterization of EVs is important for the quantification of their size, 

these methods alone are not suitable for applications such as disease diagnosis. They are 

usually used to supplement such studies and confirm the presence of EVs in a given sample, 

but diagnostic studies require at least one type of biochemical characterization method to 

determine EV chemical composition. 

1.3.2 Conventional Biochemical Characterization Methods and 
their Limitations 

Specific proteins can be detected by immunoblotting (IB) techniques that utilize labelled 

antibodies for protein capture. For EV detection by IB, purified EVs are generally lysed to 
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release their proteins. Western blotting is commonly used to confirm the presence of EVs 

in a sample by detecting EV-associated surface proteins like CD9, CD63, and CD81, as 

well as EV-associated cytosolic proteins like ALIX and TSG101.[134] Common protein 

contaminants like apolipoproteins, albumin, and uromodulin that are often co-isolated with 

EVs in complex samples (e.g., blood) can also be identified in this manner. However, IB 

techniques like Western blotting are semi-quantitative, require a large sample volume, and 

only allow for bulk assays, so individual EVs cannot be analyzed.[134] IB methods are 

typically not used for EV diagnostic applications, but are simple ways to confirm the 

presence of EVs and fulfil EV characterization guidelines outlined by the International 

Society of Extracellular Vesicles (ISEV). 

Mass spectrometry (MS)-based “omic” analyses such as lipidomics and proteomics have 

been used for high-throughput, multiplexed EV profiling of lipids and proteins, 

respectively.[10] Lipidomics involves the characterization and quantitation of lipids in 

biological samples as well as lipid compositional responses of cell and organism levels to 

stimuli.[140] The typical workflow involves EV lysis, lipid extraction, and the separation of 

lipid species, usually by gas chromatography (GC)-MS or liquid chromatography (LC)-

MS.[140] Lipidomic analysis of EVs is mainly used to elucidate and understand EV 

biogenesis and protein packaging pathways, but it has also recently been explored in 

determining lipid-based biomarkers for disease diagnosis, prognosis, and treatment. For 

example, prostate cancer cell-derived exosomes have been found to be highly enriched in 

glycosphingolipids, sphingomyelin, cholesterol, and phosphatidylserine compared to their 

parent cells, and such lipids could potentially be exploited as cancer biomarkers.[141] 

Similarly to lipidomics, the two main goals of EV proteomic analysis include the 

determination of disease-associated proteins that can be exploited as diagnostic and 

prognostic biomarkers,[142] and the investigation of the roles of EVs and their proteomes in 

biological processes and phenomena (e.g., disease progression).[143] Proteomic analysis 

workflow is similar to lipidomic analysis in that EVs are lysed, and proteins are extracted 

and fractionated (typically by LC-MS).[27] MS-based proteomic analysis that utilizes 

advanced instruments allows for the rapid identification of thousands of proteins.[140] 

However, analysis is complicated by contamination from high-abundant proteins found in 

EV source media, as well as low EV recovery (and thus protein yield) due to losses at 
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various stages of isolation, sample processing, and fractionation.[140] Although perhaps not 

yet ideal for point-of-care diagnostic applications, the increased depth of EV proteomic 

profiling is beneficial for the complete characterization of EV proteomes and the 

understanding of their functions. 

Enzyme-linked immunosorbent assay (ELISA) is commonly used and widely available for 

the detection of an analyte based on the antigen-antibody reaction. In ELISA, an antibody 

is linked to an enzyme, and a detectable signal like a color change is detected by a 

spectrophotometer upon the addition of a substrate.[144] ELISAs are usually performed on 

96-well polystyrene plates, allowing for the analysis of multiple samples per assay, and can 

be performed by one of four methods: direct, indirect, sandwich, and competitive (Figure 

1-4A).[144] Direct ELISA is the fastest of the four, as the target antigen is immobilized on 

the well and detected with an antibody conjugated to an enzyme. In contrast, indirect 

ELISA utilizes a primary antibody for antigen detection and an enzyme-coupled secondary 

antibody is used to detect the primary antibody. In sandwich ELISA, the capture antibody 

is coated on the well and the sample is added. Based on the detection antibody, this method 

can be either direct or indirect. Lastly, in competitive ELISA, the primary antibody is 

incubated with the sample antigen, and the antigen-antibody complexes are added to a plate 

containing the same antigen, resulting in a competitive reaction between the sample antigen 

and the antigen bound to the plate. If more antigen is present in the sample, less primary 

antibody will be available to bind to the coated antigen. ELISA is a powerful tool for EV 

analysis since the use of tetraspanins offers high sensitivity for EV detection. For example, 

EVs derived from ovarian cancer cells can be identified based on their CD24 and EpCAM 

expression.[145] 

Lateral-flow immunoassay (LFIA) is another method that can be used for EV detection. 

The operation principle is similar to ELISA, except the capture antibody or immobilized 

antigen is bound to a membrane like nitrocellulose instead of a plastic well. Unlike 

ELISAs, LFIAs can be performed in a single step and in a few minutes, thus avoiding the 

tedious steps and long incubation times required for ELISA.[146] In LFIAs, four components 

are integrated serially, with small overlap between components allowing for sample flow 

(Figure 1-4B).[144] A small sample volume is added to a sample pad, which then migrates 
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to the conjugate pad onto which the detection reagent has been conjugated. The analyte 

interacts with the conjugate and both migrate to the membrane onto which the capture 

reagent has been immobilized. Immunoassay formats in LFIA can vary like in ELISA, and 

typically sandwich and competitive formats are selected.[147] After interaction, excess 

sample and reagent migrate to the absorbent pad, which is used as storage and waste. In 

the case of EVs, tetraspanins are commonly used for detection, and the LFIA platform can 

even be modified into a multiple target assay by utilizing different antibodies on different 

test lines,[144] thereby allowing for the detection of a broad range of EVs based on their 

surface content.[148] 

 

Figure 1-4: Schematic illustration of two common immunoassay techniques for EV 

detection and characterization, including (A) ELISA, which highlights four common 

detection methods, and (B) LFIA, which highlights sample flow along four main 

components. 

Immunoassay approaches as described above can be attractive methods for EV detection 

and characterization, but there are several limitations. For example, ELISA involves 

multiple wash steps that introduce ample opportunity for error, and the process is time-
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consuming.[144] Microfluidic biosensors are currently being developed to reduce assay time 

and cost of analysis, possibly rendering traditional ELISA as obsolete in the future.[149] 

Although LFIA is quicker, simpler, and easier to operate than ELISA, its simplicity limits 

its sensitivity, and thus its performance for point-of-care diagnostics.[144] General 

limitations regarding immunoassays such as high cost, lack of automation, low sensitivity, 

and low specificity can be overcome by the use of nanoplasmonic techniques.[150] 

1.3.3 Nanoplasmonic Approaches for Biochemical 
Characterization 

Nanoplasmonics refers to the study and application of light-metal interactions at the 

nanoscale.[151,152] Metals can be viewed as a plasma in which conduction electrons move 

throughout the bulk material. When incident light interacts with the metal, the photons 

induce a collective oscillation of free electrons in the conduction band of the metal, 

producing surface plasmon polaritons (SPPs) that propagate at the metal-dielectric 

interface (Figure 1-5A).[150] Nanoplasmonic biosensors are beneficial in that there is 

potential for label-free quantitative analysis, a high degree of multiplexing, and potential 

for miniaturization.[153] Prominent examples of nanoplasmonic techniques for biosensing 

include surface plasmon resonance (SPR) sensing, SPR imaging (SPRi), localized surface 

plasmon resonance (LSPR) sensing, and surface-enhanced Raman spectroscopy (SERS). 

SPR occurs when the frequency of incident light matches the oscillation frequency of the 

surface plasmons. A common SPR experimental setup known as the Kretschmann 

configuration implements a prism tightly connected to a glass sensor chip coated with a 

thin film of gold.[154,155] For biosensing, the gold film is usually covered with antibodies 

for the target capture of biological analytes.[156] Analytical signals of biomolecules can then 

be measured by considering the refractive index (RI) of the volume in which the surface 

plasmons are travelling.[150] The resonance condition for a given plasmonic setup is 

sensitive to changes in RI within a nanometer-sized length from the material. In SPR, this 

area extends usually 100 – 400 nm away from the metal surface (Figure 1-5B).[156] Upon 

the binding of biomolecules to the metal surface (e.g., by antigen-antibody interactions), 

subtle changes in the RI lead to large observable changes in the resonance condition. Thus, 

SPR is a very sensitive technique for biosensing. Although miniaturization of SPR devices 
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for clinical applications is being explored and developed, commercially available setups 

are still quite bulky as well as costly.[150] Furthermore, SPR devices have limited 

multiplexing capability, often requiring multiple sensor chips and multi-flow channels.[156] 

As opposed to conventional SPR sensing, SPRi allows for detection and imaging in the 

entire sensor area, thus providing multiplexed detection. Most SPRi devices utilize the 

aforementioned Kretschmann configuration but with a CCD camera for the detection of 

reflected light, allowing for real-time visualization of the chip.[154,157] However, since a less 

compact optical configuration is used with less sensitive detectors, SPRi suffers from 

reduced sensitivity (about one order of magnitude) compared to SPR sensing.[156] 

LSPR occurs when the surface plasmon is confined to a nanoparticle surface with 

dimensions that are far smaller than the wavelength of incident light.[150] LSPR is 

fundamentally similar to SPR as photons of the incident light interact with metallic 

nanofeatures to create a free electron oscillation in the conduction band of the metal 

(Figure 1-5C). In contrast to SPR, the free electron oscillation is non-propagating, and the 

electric field enhancement observed is confined much closer to the metallic surface 

(approximately 10 – 30 nm).[150] Although LSPR sensing requires nanoscale probes or 

substrates with nanoscale features, thereby increasing cost and complexity, LSPR offers 

high surface sensitivity compared to SPR, has negative contribution from the bulk 

sensitivity and bulk temperature fluctuations, and has high potential for 

miniaturization.[156,158] 
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Figure 1-5: (A) Schematic illustration of an SPP at the interface of a dielectric 

material and metal surface, and (B) the strength of the resulting electric field, which 

decays exponentially away from the metal surface. (C) Schematic illustration of the 

LSPR of a metal nanoparticle induced by light. 

The theory of LSPR is also fundamental to SERS, which is the analytical technique of 

choice for EV characterization in this thesis. Although conventional Raman spectroscopy 

offers high chemical specificity, is non-destructive, and inert to aqueous background, the 

recorded signal is very weak (i.e., low sensitivity) and often masked by fluorescent 

background, particularly in biological samples.[150] These drawbacks are overcome by 

SERS, which exploits LSPR to achieve very high sensitivity (i.e., single molecule 

detection).[159] The theory of Raman spectroscopy and SERS are explained in Chapter 2 of 

this thesis, and several probes and substrates used in the SERS characterization of EVs are 

reviewed. 
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1.4 Scope of Thesis 

This thesis presents the fabrication of plasmonic gold nanohole arrays for EV capture and 

subsequent EV spectral characterization and analysis by SERS. The following four 

chapters are summarized below. 

In Chapter 2, the theory of and instrumentation for Raman spectroscopy and SERS are 

explained in detail. Further reviewed in this chapter are SERS probes and platforms that 

have been proposed for EV characterization in recent years. Chapter 2 also details the 

methodology and theory behind several other techniques used throughout this thesis, 

including electron-beam lithography, principal component analysis (PCA), and machine 

learning. 

In Chapter 3, nanohole arrays fabricated for EV capture and SERS characterization are 

presented and characterized in detail. Further characterized are EVs isolated from MSCs 

derived from two sources (bone marrow and pancreatic tissue). The SERS signals from 

these samples are further analyzed by PCA and machine learning. 

In Chapter 4, the nanohole arrays presented in Chapter 3 are used again but are challenged 

with a larger scale of EV samples, this time derived from ovarian cancer cells. Four ovarian 

cancer cell lines are explored by SERS here and compared with the SERS signals from a 

normal ovarian cell line as a control. The SERS signals from these samples are further 

analyzed by PCA, and machine learning is used to discriminate the cancerous EVs from 

the normal EVs. 

In Chapter 5, the thesis is concluded and summarized. Also discussed in this chapter are 

suggested ideas for future work. 
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Chapter 2  

2 Principles of EV Detection and Characterization 

This chapter focuses on the fundamentals of Raman spectroscopy and SERS, the latter of 

which was the main technique used throughout this thesis for EV characterization. To 

simplify the analysis and characterization of EVs, PCA is used in this thesis, as well as 

machine learning for the classification of various EV sources. Therefore, the fundamentals 

of PCA are also discussed, and an overview of machine learning and its various algorithms 

is also provided. The performance and fabrication of several SERS probes and substrates 

used for EV detection in recent years, including both direct and indirect methods, are also 

reviewed.  

2.1 Principles of Raman Spectroscopy 

Raman spectroscopy is a technique used to study the vibrational modes of a system based 

on Raman scattering, a phenomenon that was observed by Raman and Krishnan in 1928.[1,2] 

Photons can be elastically or inelastically scattered from an atom or molecule. When a 

photon is elastically scattered from an atom or molecule, the scattered photon has an energy 

that is equal in energy to the incident radiation.[3] This process is commonly referred to as 

Rayleigh scattering. When a photon is inelastically scattered from an atom or molecule, the 

scattered photon has an energy that is not equal to that of the incident radiation. The 

inelastic scattering process is referred to as Raman scattering. Raman scattering occurs 

very infrequently compared to Rayleigh scattering (approximately 1 in 107 photons).[4] 

Depending on the initial vibrational state of the atom or molecule, Raman scattered photons 

can be of lower or higher energy than the incident radiation (Figure 2-1).[5] A molecule in 

its ground vibrational state (𝜈 = 0) can absorb a photon of energy ℎ𝜈𝑒𝑥 and reemit a photon 

of energy ℎ(𝜈𝑒𝑥 − 𝜈𝑉). When Raman scattered photons are of lower energy than the 

incident radiation, they are said to be Stokes scattered. A molecule in an excited vibrational 

state (𝜈 = 1) can absorb a photon of energy ℎ𝜈𝑒𝑥 and reemit a photon of energy ℎ(𝜈𝑒𝑥 +

𝜈𝑉). When a scattered photon is of higher energy than the incident radiation, it is said to be 

anti-Stokes scattered. At room temperature, more molecules exist in their ground 
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vibrational state than an excited vibrational state, and so Stokes Raman scattering occurs 

more frequently than anti-Stokes Raman scattering.[6] In both cases of Raman scattering 

(±ℎ𝜈𝑉), the observed wavenumber or Raman shift is a direct measure of the molecule’s 

vibrational energy and specific to chemical bonds in molecules (i.e., “fingerprints”). 

 

Figure 2-1: Schematic illustration of the Rayleigh and Raman (Stokes and anti-

Stokes) scattering processes. 

Raman line intensity (𝐼𝑅) can be described by:[4] 

  𝐼𝑅 ∝  𝜈4 ∙ 𝜎 ∙ 𝐼 ∙ 𝑒− 
𝐸𝑖
𝑘𝑇 ∙ 𝑐    (2-1) 

In Equation 2-1, 𝜈 and 𝐼 are the frequency and intensity of the incident radiation, 

respectively, 𝜎 is the Raman scattering cross-section, 𝑒− 
𝐸𝑖
𝑘𝑇 is the Boltzmann factor for state 

𝑖, and 𝑐 is the concentration of the molecule that scattered the radiation. The typical value 

for Raman scattering cross-section of molecules is between 10-31 and 10-26 cm-2 molecule-

1.[4] A direct consequence of this low cross-section is one of the main limitations of Raman 

spectroscopy: low signal intensity. 
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2.1.1 Instrumentation for Raman Spectroscopy 

Modern instruments for Raman spectroscopy generally consist of an optical microscope, 

an excitation laser, light filters, and a sensitive detector (Figure 2-2). Light from a laser 

beam, usually in the green (e.g., 532 nm), red (e.g., 633 nm), or near-infrared (e.g., 785 

nm) regions, is passed through an interference filter to maintain a near-zero absorption 

coefficient for the desired wavelength. Samples are then illuminated with the laser beam 

focused through an optical microscope objective. High magnification and high numerical 

aperture (N.A.) objectives provide higher spatial resolution than lower magnification and 

lower N.A. objectives, which are beneficial when probing biological samples since specific 

biological architecture can be examined.[7] Wavelengths that are close to the laser 

wavelength, due to Rayleigh scattering, must be optically filtered out since Rayleigh 

scattering is much more intense compared to Raman scattering.[8] Commonly used filters 

include edge filters, which transmit light above or below the laser wavelength, and notch 

filters, which allow both Stokes and anti-Stokes measurements by filtering out only the 

excitation laser wavelength. The remaining unfiltered light is then passed through a 

confocal pinhole, which allows only Raman scattering through from the focal plane of the 

microscope, and is dispersed by a diffraction grating onto a detector and recorded. Since 

Raman scattering intensity is very weak, detectors used in Raman systems must be very 

sensitive. CCDs are most commonly used for their high quantum efficiencies and low 

signal-to-noise ratios, especially in comparison to other detectors such as photomultiplier 

tubes and photodiode arrays.[9] CCDs are made up of arrays of pixels that can each collect 

charge from scattered photons, which is directly proportional to the Raman scattering 

intensity. The resulting spectrum obtained is a plot of Raman scattering intensity versus 

Raman shift in wavenumbers (cm-1). 
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Figure 2-2: Schematic illustration of a general Raman spectrophotometer setup, 

where the green beams and arrows represent the incident photons and the red beams 

and arrows represent the Raman-scattered photons. 

2.1.2 Raman Spectroscopy and Biological Samples 

Although Raman spectroscopy is hailed for its molecular specificity, Raman analysis of 

biological samples can be quite complicated since all biological systems are composed of 

biological macromolecules such as lipids, proteins, nucleic acids, and carbohydrates.[10] 

Vibrations of all modes from these macromolecules will be present in the spectra, and often 

bands from different origins overlap, confounding the spectra and challenging spectral 

analysis (Figure 2-3). However, there is a wealth of information available to researchers 

on the classification of Raman spectra of biological systems, and with informed judgement 

on the researcher’s behalf, peak assignments can be made. 
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Figure 2-3: Raman spectral regions associated with proteins, nucleic acids, lipids, and 

carbohydrates. 

Proteins serve many biological functions in cells, including transmitted information and 

controlling the passage of molecules around the cell membrane. As discussed in Chapter 

1, proteins play important roles in EV formation and biogenesis. Raman spectroscopy is an 

excellent technique to probe the protein structure of biological samples, whose signals are 

found in the fingerprint region. Frequencies associated with protein backbones can be 

found at 1230 – 1300 cm-1 (amide III),[11,12] 1550 cm-1 (amide II),[13] and 1630 – 1680 cm-

1 (amide I).[14-18] These ranges encompass α-helices (1270 – 1300 cm-1 and 1650 – 1655 

cm-1),[11,18] β-sheets (1230 – 1240 cm-1,[12] 1630 – 1635 cm-1,[14,17] and 1660 – 1670 cm-

1),[15] β-turns (1670 – 1680 cm-1),[16] and random coils (1240 – 1250 cm-1 and 1670 – 1680 

cm-1).[12] Peaks corresponding to disulfides can be located around 505 – 550 cm-1, which 

includes the gauche-gauche-gauche conformation at 505 – 515 cm-1, the gauche-gauche-

trans and gauche-trans-gauche conformations at 520 – 530 cm-1, and the trans-gauche-

trans conformation at 540 – 545 cm-1.[19,20] Lastly, common amino acid side chain peaks 

can be found at 643 cm-1, 830 cm-1, and 1615 cm-1 (tyrosine),[21] 750 cm-1, 1010 cm-1, and 

1550 cm-1 (tryptophan),[22] and 1003 cm-1, 1205 cm-1, and 1609 cm-1 (phenylalanine).[23] 

Also found in the fingerprint region are nucleic acids. Many thorough studies have been 

conducted to elucidate peaks for various nucleic acid moieties including sugars, 

phosphates, and bases, which provide insight into backbone conformation and base pairing. 

Regarding the bases, frequencies associated with ring breathing modes can be found at 668 
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cm-1 (guanine), 668 cm-1, 746 cm-1, and 785 cm-1 (thymine), 726 cm-1 (adenine), 781 cm-1 

and 785 cm-1 (cytosine), and 785 cm-1 (uracil).[24] Frequencies of unspecified ring modes 

can be found at 1257 cm-1 (cytosine and thymine)[24] and 1336 cm-1 (adenine and 

guanine),[25] while frequencies of ring stretching modes can be found at 1485 cm-1 (guanine 

and adenine) and 1576 cm-1 (adenine and guanine).[25] Peaks corresponding to the backbone 

of A-DNA are located at 807 cm-1 (O-P-O stretching), 1099 cm-1 (PO2
- symmetric 

stretching), and 1415 cm-1 (CH2 deformation), while peaks corresponding to the backbone 

of B-DNA are located at 784 cm-1 (O-P-O symmetric stretching), 830 cm-1 (O-P-O 

asymmetric stretching), 1090 cm-1 (PO2
- symmetric stretching), and 1420 cm-1 (CH2 

deformation).[26] Lastly, peaks belonging to the backbone of Z-DNA are found at 748 cm-

1 (O-P-O symmetric stretching), 748 cm-1 and 792 cm-1 (O-P-O asymmetric stretching), 

810 cm-1 (O-P-O asymmetric stretching), 1095 cm-1 (PO2
- symmetric stretching), and 1425 

cm-1 (CH2 deformation).[26] 

Spectral peaks of lipids and carbohydrates are generally found in the high frequency region, 

although they can also be present in the fingerprint region. Raman spectroscopy can be 

used to estimate certain structural properties of lipids such as the degree of unsaturation. 

Spectral regions associated with lipids are as follows: 2800 – 3100 cm-1 (CH/CH2/CH3 

stretching), 1600 – 1800 cm-1 (C=C and C=O stretching), 1400 – 1500 cm-1 (CH2/CH3 

bending and scissoring), 1200 – 1300 cm-1 (CH deformation and CH2 twisting), 1050 – 

1200 cm-1 (C-C and P-O stretching), 800 – 1050 cm-1 (CH bending, a skeletal C-O-O mode, 

and N+(CH3)3 asymmetric stretching), and 500 – 700 cm-1 (CH2 bending, N+(CH3)3 

symmetric stretching, C=O-O deformation, and cholesterol ring deformation).[27] Specific 

lipid bands that have been identified include 1430 cm-1 (CH2 scissoring), 1443 cm-1 

(CH2/CH3 deformation of lipids and triglycerides), and 1453 cm-1 (C-H bending),[28] as 

well as 1749 cm-1 (C=O).[27] Bands at 2846 cm-1 and 3015 cm-1 have been used to quantify 

total fatty acid content and total unsaturated fatty acid content, respectively.[29] Structural 

investigations on different types of carbohydrates are very difficult since the basic 

monomeric unit in polymeric carbohydrate chains is very similar. However, broad spectral 

regions have been identified as follows: 3100 – 3600 cm-1 (O-H stretching), 2800 – 3100 

cm-1 (CH/CH2 stretching), 1200 – 1500 cm-1 (CH/CH2 deformation), 800 – 1200 cm-1 (C-

O and C-C stretching), and 100 – 800 cm-1 (CCO deformation).[30] 
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As mentioned in Section 2.1, the biggest disadvantage of Raman spectroscopy is the low 

signal intensity caused by small Raman scattering cross-sections associated with molecules 

(approximately 10-31 – 10-26 cm-2 molecule-1).[4] Raman spectroscopy of biological 

molecules can be further complicated by the fact that many biological compounds are 

fluorescent in nature. The fluorescence scattering cross-section is typically much larger 

compared to the Raman scattering cross-section (approximately 10-16 cm-2 molecule-1) and 

a resulting fluorescence background may suppress any underlying Raman spectrum to the 

point where it is no longer detectable.[4,7] Fortunately, many techniques have emerged over 

the past few decades that are capable of enhancing this weak Raman signal, one of which 

is SERS. 

2.2 Principles of SERS 

As the name implies, SERS provides the same chemical information as conventional 

Raman spectroscopy but with a dramatically enhanced signal (i.e., up to 1010 

enhancement).[31] Additionally, minimal sample preparation is generally required, and 

measurements can easily be multiplexed.[32] Since SERS is a surface-sensitive and non-

destructive technique capable of single molecule detection,[33] it is a promising technique 

for the characterization of EVs.[34,35] 

SERS was first observed in 1974 by Fleischmann et al. when an unexpectedly large Raman 

signal arose from pyridine adsorbed onto a roughened silver electrode.[36] Not long after 

this observation, Albrecht and Creighton hypothesized that the phenomenon was due to the 

formation of a molecule-metal complex.[37] Concurrently, Jeanmaire and van Duyne 

hypothesized that the observed phenomenon arose from strong electrochemical fields at 

the surface of the metal.[38] Not long after, Moskovits proposed the idea that the collective 

oscillation of conduction electrons at the nanoscale roughness features on a metal surface 

was responsible for the intense signal.[39,40] Studies since have confirmed that the SERS 

enhancement arises from two distinct mechanisms based on initial hypothesis by Albrecht 

and Creighton as well as Jeanmaire and van Duyne: the chemical enhancement mechanism 

and the electromagnetic (EM) enhancement mechanism.[41,42]  

The enhancement factor 𝐸𝐹 of a substrate can be determined experimentally by:[43] 
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𝐸𝐹 =
𝐼𝑆𝐸𝑅𝑆

𝐼𝑅𝑎𝑚𝑎𝑛
∙

𝑛𝑅𝑎𝑚𝑎𝑛

𝑛𝑆𝐸𝑅𝑆
     (2-2) 

In Equation 2-2, 𝐼𝑆𝐸𝑅𝑆 and 𝐼𝑅𝑎𝑚𝑎𝑛 represent the observed intensities with and without a 

SERS substrate, respectively, of a specific vibrational mode, while 𝑛𝑆𝐸𝑅𝑆 and 𝑛𝑅𝑎𝑚𝑎𝑛 

represent the number of molecules contributing to SERS and normal Raman scattering, 

respectively. This equation is generally used to estimate the enhancement factor of a 

substrate when both enhancement mechanisms are present. The main difficulty of 

accurately estimating 𝐸𝐹 is properly defining the number of molecules in a given focal 

volume that yield a Raman spectrum and a SERS spectrum. 

2.2.1 Chemical Enhancement 

The chemical enhancement mechanism arises from the physio-chemical interactions 

between a substrate and analyte. For chemical enhancement to be observed, the analyte 

must either be adsorbed during onto the substrate surface, or a very small (i.e., a few 

Ångströms) distance away from the substrate.[32,44] Therefore, it is considered to be a short-

range effect. This mechanism is site-specific, analyte-dependent, and dependent also on 

the orientation of the adsorbed analytes.[45] 

The adsorption of a molecule on a substrate can be physical in nature (“physisorption”) or 

chemical in nature (“chemisorption”). The former is driven by Van der Waals forces, and 

so the interaction enthalpy is generally around -20 kJ mol-1.[46] As a result, the structure of 

the molecule is modified only slightly. In the latter, a chemical bond is formed between the 

molecule and the surface, and so stronger perturbation is expected. The interaction enthalpy 

in this process is around -200 kJ mol-1.[46] In both physisorption and chemisorption 

processes, the molecule’s electronic and geometric structure is changed, albeit to a different 

extent. Therefore, the Raman cross-sections of its vibrational modes will generally be 

different with respect to the free molecule, and the chemical enhancement factor 𝐸𝐹𝑐ℎ𝑒𝑚 

can thus be defined as:[32] 

   𝐸𝐹𝑐ℎ𝑒𝑚 =
𝜎𝑘

𝑎𝑑𝑠

𝜎𝑘
𝑓𝑟𝑒𝑒     (2-3) 
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In Equation 2-3, 𝜎𝑘
𝑎𝑑𝑠 and 𝜎𝑘

𝑓𝑟𝑒𝑒
 refer to the Raman scattering cross-sections of the 𝑘-th 

vibrational mode of the adsorbed and free molecule, respectively. 

Chemical enhancement can arise from two different mechanisms, including the non-

resonant chemical effect and the resonant charge transfer effect.[47] In the non-resonant 

mechanism, the molecular orbitals of the analyte do not lay close enough in energy to the 

Fermi level of the metal, and thus a new electronic state is not formed. This interaction, 

however, may induce a geometrical change in the molecule as well as a change in the 

electronic structure of the molecule, leading to a small change in the Raman shifts and 

intensity of the vibrational modes.[32] Alternatively, chemical enhancement can arise from 

the resonant charge transfer effect, which increases the probability of a Raman transition 

by providing a pathway for resonant excitation.[44] If Raman scattering is excited with a 

laser that is in resonance or pre-resonance with the metal-molecule charge transfer state, 

Raman modes may be strongly enhanced, especially those coupled to the allowed 

electronic transitions.[32] The resonant charge transfer effect can also be transient in nature, 

in which temporary electron or hole transfer occurs between the metal and the analyte.[41] 

Out of the two accepted theories for SERS enhancement, chemical enhancement is 

generally thought to contribute less to the overall enhancement observed compared to 

electromagnetic enhancement. The approximate contributions of the chemical 

enhancement mechanism typically range from magnitudes of 102 – 104, where 102 

enhancement is achieved from atomic scale roughness and 104 enhancement is achieved 

through charge transfer resonance.[48] 

2.2.2 EM Enhancement 

The EM enhancement mechanism is based on the LSPR processes described in Section 

1.3.3. Unlike the chemical enhancement mechanism, EM enhancement is analyte-

independent but substrate-dependent. The LSPR of a given substate, which is the resonant 

frequency of the conduction electrons at the metal surface, is governed by the size and 

shape of nanoscale features on the metal substrate as well as the nature of the metal itself.[44] 

When the frequency of impinging light matches the LSPR of the substrate, large EM fields 

or “hot spots” are generated at the edges of the “roughness” features of the metal. When 
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analytes are confined within these large EM regions, the resulting Raman intensity is 

greatly amplified. 

The Raman scattering cross-section of a given molecule is dependent on the strength of the 

local field |𝐸𝑙𝑜𝑐|, and the enhanced local field acts on both incident and scattered rays of 

light. Therefore, the overall Raman scattering cross-section is enhanced by the 

enhancement factor 𝐸𝐹𝐸𝑀 which can be described as:[49] 

              𝐸𝐹𝐸𝑀 =
|𝐸𝑙𝑜𝑐(𝜔𝐼)|2

|𝐸0|2 ∙
|𝐸𝑙𝑜𝑐(𝜔𝑅)|2

|𝐸0|2     (2-4) 

In Equation 2-4, 𝐸𝑙𝑜𝑐 is the local field, 𝜔𝐼 is the frequency of the incident light, 𝜔𝑅 is the 

frequency of Raman-scattered light, and 𝐸0 is the electric field of the incident light. In the 

case of small Raman shifts, where 𝜔𝐼 ≅ 𝜔𝑅, Equation 2-2 can be simplified to:[50] 

            𝐸𝐹𝐸𝑀 =
|𝐸𝑙𝑜𝑐(𝜔𝐼)|4

|𝐸0|4      (2-5) 

Equation 2-5 is known as the |𝐸|4 approximation. Consequently, a modest field 

enhancement by a factor of 10 will yield an 𝐸𝐹 of 104. It is important to note that this 

approximation is more accurate at small Raman shifts if 𝐸𝑙𝑜𝑐(𝜔𝐼) is not too sharp near 

𝜔𝐼,
[32] and that some situations require a more specific approach for quantifying 

enhancement. Nevertheless, the scaling of the enhancement factor to the fourth power 

greatly increases the sensitivity of SERS for molecules that are located near or at hot spot 

areas, allowing for even single molecule detection to be achieved. 

The SERS effect arising from EM enhancement is generally strongest when the analyte is 

confined within 1 – 10 nm from the roughness features, a sensing distance much farther 

than what is required for chemical enhancement to be observed.[32] Therefore, the EM 

enhancement mechanism can be thought of as the long-range effect. As mentioned above, 

the EM enhancement mechanism is the dominant mechanism that contributes to the SERS 

effect, which can reach magnitudes of 108 – 1010, where 108 enhancement is observed when 

averaged over the substrate, and 1010 enhancement is observed in a hot spot area.[51] 
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2.2.3 Materials for SERS 

SERS substrates are traditionally fabricated with metals whose resonance positions are 

located in the visible and near-infrared regions, thereby matching the wavelengths of 

commonly used laser excitation sources (i.e., 532 nm, 633 nm, and 785 nm). Examples of 

commonly used metals for SERS probes and substrates include gold, silver, copper, and 

aluminum.[44] Gold and silver are the most commonly used metals for SERS 

applications,[52,53] particularly in biological studies, with their own unique advantages over 

the other. For example, gold has low toxicity and is far more stable in air than silver, which 

tends to readily oxidize and react with sulfur compounds in the atmosphere.[54,55] Copper 

and aluminum are less chemically stable in the environment as well, as they also form 

oxide layers in air.[56,57] Oxidation of SERS substrates and probes can decrease their 

plasmonic performances; for example, an oxide layer limits the proximity of an analyte to 

the SERS-active metal surface, lowering the enhancement observed, and can modify the 

analyte’s affinity towards the metal surface. However, silver, copper, and aluminum 

substrates are much less expensive than gold substrates, which is not an insignificant factor 

when considering a platform for various applications, such as point-of-care diagnostics.[58] 

Less traditional materials for SERS substrates are dielectric[59] and semiconductor 

materials,[60] which are being investigated to avoid optical losses[61] and unwanted 

plasmonic heating[62] that can occur with metallic substrates. The absorption and 

dissipation processes in metals leads to the release of heat which can modify an analyte. 

For example, plasmonic heating has been observed to change the composition of protein 

corona.[63] Non-metallic materials that have been studied in SERS substrates include 

transparent conductive oxides (e.g., indium tin oxide, aluminum-doped zinc oxide, and 

gallium-doped zinc oxide),[61,64] refractory transition metal nitrides (e.g., titanium nitride 

and zirconium nitride),[65,66] and two-dimensional materials (e.g., graphene).[67,68] Although 

interesting alternatives to conventional metallic probes and substrates, these materials have 

not been widely adopted in the SERS characterization and analysis of EVs. 
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2.3 Spectral Interpretation 

Like Raman spectroscopy, a disadvantage of using SERS to probe complex biological 

systems and samples such as EVs is that, unlike a small molecule, there is no single unique 

spectral fingerprint or spectrum that can belong to a single EV. Unlike the standard 

biochemical detection methods introduced in Section 1.3.2, which can identify specific 

protein and lipid cargo of EVs, SERS can only be used to identify small molecular moieties 

not necessarily specific to a particular biological macromolecule. Therefore, SERS spectra 

are generally interpreted by reducing their dimensionality, determining peaks responsible 

for the most variance within a data set, and establishing patterns for a set of EVs. Such 

methods include the commonly used PCA,[69,70] which can be used on its own or in series 

with stronger classification methods such as linear discriminant analysis (LDA)[71,72] or 

machine learning.[73,74] 

2.3.1 Principles of PCA 

PCA is a method for dimensionality-reduction that involves transforming a large set of 

variables into a smaller one that contains most of the information of the original data set.[75] 

The new variables produced by this method are referred to as principal components (PCs) 

and are constructed as linear combinations of the initial variables.[76] PCs are uncorrelated 

and most of the information of the initial data set is contained in the first PCs. For example, 

a data set with 5 dimensions will be represented by 5 PCs, where the maximum variance 

or information is squeezed into the first PC, then next, and so on until 100 % of variance 

is explained (Figure 2-4A). PCA is extremely valuable for the analysis of spectral data 

since these data sets can have hundreds or thousands of dimensions (i.e., wavenumbers). 

Before treating data with PCA, the data must be standardized so that each initial variable 

contributes equally to the analysis.[77] PCA is sensitive to the variances in the initial data 

set, and variables with larger ranges will dominate over those with smaller ranges, leading 

to biased results. Covariance matrices are computed to identify correlations among the 

input data set. The sign of the covariances indicate how the variables are correlated: if the 

covariance is positive, then the two variables increase or decrease together (i.e., directly 

correlated), but if the covariance is negative, then one variable increases while the other 
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decreases (i.e., inversely correlated). Simply put, covariance matrices are tables that 

summarize the correlations between all possible pairs of variables. PCs can be solved by 

determining the eigenvectors and eigenvalues for the covariance matrices. For a data set 

with 5 dimensions, there are 5 variables, and so 5 eigenvectors will be calculated with 5 

eigenvalues. The eigenvectors of a covariance matrix are the directions of the axes where 

there is the most variance (i.e., most information). In other words, the eigenvectors 

corresponding to the covariance matrix are the PCs. Ranking the eigenvalues from highest 

to lowest will rank the PCs in order of significance, and the graphical interpretation of this 

is what is known as a scree plot (Figure 2-4B). The percentage of explained variance of 

each PC is calculated by dividing the eigenvalue of each component by the sum of 

eigenvalues. Recasting the data along the PC axes generates score plots (Figure 2-4C), 

which can be useful in classification tasks and examining trends in the data. 

 

Figure 2-4: Schematic illustration of the process of PCA. (A) The original 5-variable 

data set can be visually represented by a maximum of 3 axes. The first PC is fitted so 

that it contains the maximum variance, and the second is positioned perpendicular to 

it. (B) The 5 calculated PCs can be visualized in a scree plot, and (C) a score plot is 

created by re-casting the original data on PC1 and PC2 axes. 

Naturally, simplifying a data set in this manner will lead to a decrease in accuracy. 

However, reducing the complexity of a spectral data set makes it easier to visualize and 

analyze the data, and also reduces the computational demand when further using machine 

learning or deep learning algorithms. However, PCA alone often fails to distinguish classes 

or separate them with a high enough accuracy to be used in diagnostic applications. This 

is due to the fact that PCA is an unsupervised transformation technique, meaning it ignores 

class labels. Usually, PCA is used in combination with techniques that explicitly attempt 
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to model the difference between classes of data such as LDA. While PCA determines the 

relationship between independent variables, the supervised technique LDA determines the 

relationship between dependent and independent variables, resulting in class separation by 

finding a lower-dimensional space that has better discriminatory power.[78] Another 

method that can be used to achieve higher classification accuracy than PCA is machine 

learning. 

2.3.2 Machine Learning 

Machine learning is a type of artificial intelligence that is based on the idea that systems, 

with minimal intervention from humans, can learn from data, identify patterns in data, and 

make decisions. Although machine learning has been around as early as the 1950s,[79] 

recent developments made in the past couple of decades has led to its widespread use in 

many applications, including, but not limited to, finance analysis,[80,81] fraud detection,[82,83] 

search engines,[84,85] marketing,[86,87] and medical diagnosis.[88,89] 

Two broad categories of machine learning are unsupervised machine learning, in which no 

labels are provided to the system and the algorithm finds hidden patterns in a data set, and 

supervised machine learning, whereby the system is trained through example inputs and 

their desired outputs.[79] Some of the most common supervised machine learning 

techniques include regression and forecasting, in which the machine analyzes trends in past 

and present data to make predictions about the future, and classification, in which the 

machine learns to draw conclusions from the data set and determines into which categories 

new observations belong. 

Supervised machine learning with the goal of finding a classifier generally consists of the 

identification of a problem and required data, data pre-processing, selection of a training 

set, selection of an algorithm, training, and evaluation with a test set (Figure 2-5).[90] The 

researcher is, of course, responsible for the collection of data and its pre-processing to 

reduce noise and outliers. In cases with large data sets, dimensionality reduction (e.g., by 

PCA) is suggested to reduce computational time and improve computational efficiency. 

The choice of learning algorithm is a critical step in the machine’s classification 

performance and is assessed by computing prediction or classification accuracy. Classifier 
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evaluation can be achieved by randomizing the data and splitting it into training and test 

sets, the ratio of which is defined by the user (e.g., 80 % is used for training and 20 % is 

used for testing).[91] Alternatively, classifiers can be evaluated by cross validation (CV), in 

which the data set is split into 𝑛 mutually exclusive and equally sized subsets. In CV, 𝑛 −

1 subsets are used as training sets while the remaining set is used as a test group until each 

subset has been used for testing once, and the error rate of each subset is averaged to 

estimate the error rate of the classifier.[90] Leave-one-out CV (LOOCV) is a special case of 

CV in which each piece of data is used to train and test the classifier, which is the most 

accurate estimator of the classifier’s error rate, but the most computationally expensive.[90] 

If the classification performance is unsatisfactory, modifications must be made, which can 

look like fine-tuning training parameters, selecting a different algorithm, reducing data or 

problem dimensionality, or even collecting a larger data set for training. The best learning 

method for a set of data can be chosen from a variety of different algorithms, which can be 

logic-based, perceptron-based, statistical, instance-based, or support-vector machines 

(SVM). 

 

Figure 2-5: Schematic illustration of the process of supervised machine learning. 

A common example of a logic-based algorithm is the decision tree, which classifies 

instances (i.e., rows of data) by sorting them based on features, or input variables, in a 

sequence of branching statements (Figure 2-6A).[92] The first split, or root node, considers 

all features of the training data during the test. Branches represent outcomes of tests, and 

can either flow into internal nodes, which are tests on the attributes, or leaf nodes, which 

hold class labels. Decision trees tend to perform better when features are discrete or 

categorical rather than continuous.[90] While decision trees are easy to read and interpret, 

they can create overly complex models that pose the risk of overfitting data.[93] While 

decision trees can be translated into a set of rules by creating a separate rule for each branch, 
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rules can also be directly induced from the training data via a rule-based algorithm,[94] such 

as the CN2 algorithm.[95] Rule-based algorithms are typically more comprehensible 

compared to decision trees when learning binary problems since rule-based algorithms 

learn a set of rules for the positive class only. However, if multiple classes must be learned, 

decision trees are more efficient than rule-based algorithms since they consider the entire 

data set one class at a time.[90] 

Perceptrons or “artificial neurons” are nodes in artificial neural networks (ANNs) that take 

one or more input values, run a (typically nonlinear) function on the weighted sum of the 

inputs, and compute a single output value.[96] Feed-forward ANNs allow signals to travel 

in only one direction (i.e., input to output) (Figure 2-6B).[97] A hidden layer between the 

input and output layers contains a function for training. The network is initially trained on 

a set of paired data to determine input-output mapping, and weights of the connections 

between neurons are fixed. When a new data set is introduced, the network is used to 

determine new classifications. Multilayer perceptron-based ANNs can usually provide 

incremental learning more easily compared to decision trees, but training time is usually 

much longer and they perform about equally as well.[90] 

Statistical learning algorithms, in contrast to neural networks, have an explicit underlying 

probability model, meaning they calculate a probability that an instance belongs in each 

class, rather than a simple classification.[90] Examples of statistical learning algorithms 

include LDA, discriminant correspondence analysis (DCA), Bayesian networks, and 

logistic regression. LDA, as mentioned in Section 2.3.1, finds the linear combination of 

features which best separates classes.[98] LDA is used when observations are continuous 

quantities, while DCA is an equivalent technique used for discrete or categorical data.[90] 

Bayesian networks are graphical models for probability relationships among a set of 

variables and, unlike decision trees or neural networks, can consider prior information 

about a given problem in terms of structural relationships among its features (Figure 2-

6C).[99] However, since Bayesian network classifiers try to construct a very large network, 

it is not a suitable method for examining data sets with many features.[100] Logistic 

regression is often used in binary classification problems and implements a sigmoid 

function to convert the raw prediction of a linear model into a value between 0 and 1.[101] 



50 

 

This output value can be interpreted as either the probability that the instance belongs to 

the positive class in the binary classification problem or as a value to be compared against 

a classification threshold (i.e., a criterion separating positive and negative classes). 

Instance-based learning algorithms are specific types of statistical methods. Since instance-

based learning algorithms delay the generalization process until classification is performed, 

they are known as lazy-learning algorithms.[102] Such algorithms require less computational 

time during the training phase compared to eager learning methods (e.g., decision trees, 

neural networks, and Bayesian networks), but require more computational time during 

classification. One of the most common instance-based learning algorithms is k-Nearest 

Neighbor (kNN), which is based on the idea that instances within a data set will generally 

exist in close proximity to other instances that have similar qualities or properties (Figure 

2-6D).[103] Using labelled instances, the value of the label of an unclassified instance can 

be determined by observing the class of its nearest neighbors, and the algorithm locates its 

k nearest instances and determines its class by identifying the single most frequent class 

label. Although kNN can be very powerful, they can become very computationally 

expensive since the only to choose k (i.e., number of nearest instances to consider) is 

through cross validation.[90] 

Compared to other machine learning algorithms, SVM has emerged quite recently. SVMs 

are based on “margins” surrounding hyperplanes that separate data classes (Figure 2-

6E).[104] Support vectors refer to the data points closest to the hyperplane that influence its 

optimal position and orientation. By maximizing the margin, the largest possible distance 

is created between the separating hyperplane and the instances on either side of it, which 

increases the confidence in the projections and reduces the expected generalization error. 

Since the number of support vectors selected by the SVM is usually small, the number of 

features in a data set does not affect the model complexity of an SVM, making SVMs 

suitable to deal with learning tasks in which the number of features is large compared to 

the number of training instances.[90] 
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Figure 2-6: Schematic illustrations of some machine-learning algorithms, 

highlighting (A) decision trees, (B) feed-forward ANNs, (C) Bayesian networks, (D) 

kNNs, and (E) SVMs. 

The discriminatory power of classification models is commonly compared using accuracy, 

sensitivity, specificity, and receiver operator characteristic (ROC) curves.[101] Sensitivity, 

which can also be referred to as recall, is a measure of the true positive rate, while 

specificity is a measure of the true negative rate. Plotting (1 – specificity) versus sensitivity 

at varying values of classification threshold generates an ROC curve, which is a simple 

graphical tool for displaying the accuracy of a diagnostic test.[105] The area under the curve 

(AUC) of the ROC curve is therefore a summary of the diagnostic accuracy. An AUC value 

of 0.5 corresponds to random chance, while an AUC value of 1.0 corresponds to perfect 

accuracy. While an AUC greater than 0.5 is generally good, researchers aim for as close to 

1.0 as possible, which is especially important in medical applications. If the AUC is less 

than 0.5, the test is worse than random chance.[106] 

There is no single learning algorithm that can uniformly outperform other algorithms 

across all data sets. The simplest approach to determine the most accurate algorithm for a 
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particular data set is to estimate the accuracies of several algorithms and select the 

algorithm that is most accurate. In Chapters 3 and 4, several algorithms are tested and 

compared to determine the best algorithms for classifying MSC-derived EVs and cancer-

derived EVs. 

2.4 SERS Probes and Platforms for EV Capture and 
Characterization 

SERS probes and platforms can generally be grouped into two methods: direct or “label-

free” detection and indirect detection. Direct detection methods allow for direct probing of 

an analyte without a label or “tag”, since the analyte’s SERS spectrum is recorded.[107,108] 

Indirect detection methods rely on a SERS tag for analyte detection. SERS tags consist of 

an efficient Raman reporter, which is a molecule with a large Raman-scattering cross-

section and characteristic peak or spectrum, and are engineered to selectively bind to the 

analyte. The analyte is thus detected through the Raman reporter, whose signal intensity is 

proportional to the analyte concentration.[109,110] Indirect detection can be used when 

analytes are immersed in complex matrices (e.g., plasma) that can generate an interfering 

signal with the analyte. Although indirect detection often requires more complex 

fabrication and analysis compared to direct detection, the available sensitivity and 

specificity are oftentimes much higher. The main disadvantage of indirect detection is that, 

although readout is greatly simplified for medical personnel who are not experts in Raman 

spectroscopy, rich biological information is lost when true analyte signals are not tracked. 

SERS probes and platforms have been developed for EV analysis using both direct 

detection and indirect detection methods; the former is reviewed in Sections 2.4.1 and 2.4.2 

while the latter is reviewed in Sections 2.4.3 and 2.4.4. Although both are reviewed to 

discuss recent advances and shortcomings of current studies, only direct SERS sensing is 

used in Chapters 3 and 4. 

2.4.1 Nanoparticle Probes for Direct Sensing 

Nanoparticle probes, either cast on a substrate or in suspension, are commonly used for 

SERS due to their simplicity. Simple gold nanoparticles (AuNPs) have been used as SERS 

probes in the characterization of EVs derived from lung cancer cells.[111-113] AuNPs with a 
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diameter of approximately 80 nm were implemented by Park et al. to probe EVs analyzed 

from two lung cancer cell lines, H1299 and H522, as well as from alveolar cells as a normal 

control.[111] These AuNPs were dried on coverglasses, and SERS measurements were 

performed on dried EVs overtop the substrate with an excitation wavelength of 785 nm. 

Using PCA, cancerous EVs and normal EVs could be discriminated with 95.3 % sensitivity 

and 97.3 % specificity, although accuracy was not reported. The authors further attempted 

to use PCA score plots to predict the outcomes of clinical samples consisting of 2 lung 

cancer patients and 2 healthy individuals. However, the platform failed at this stage, as the 

clinical sample scores did not fall into the 95 % confidence ellipses of their respective 

group. One year later, Shin et al. built on this work, instead clustering AuNPs on a (3-

aminopropyl)triethoxysilane (APTES)-coated substrate.[112] In contrast to the previous 

work, the authors instead performed SERS measurements in a liquid state to prevent signal 

deformation by EV damage or salt formation. The AuNPs were also coated with 

cysteamine, which has been used to induce the electrostatic adsorption of EVs via 

interactions between the cationic amino groups of cysteamine and anionic EV surfaces. 

Cancer cell lines PC9 and H1299 were investigated with the normal lung cell line HPAEC 

as a control. Although cancerous and noncancerous groups could be distinguished by PCA, 

the authors did not report sensitivity or specificity for comparison with the previous study. 

Additionally, despite the proposed SERS effect, the raw spectra still contained background 

fluorescence, thus requiring treatment prior to analysis. 

Recently, Shin et al. implemented the same substrate idea, but greatly improved analysis 

with a sophisticated deep learning algorithm.[113] AuNPs with 100 nm diameter were coated 

onto an APTES-covered substrate (Figure 2-7A), and used to analyze dried EVs from lung 

cancer cell lines (A549, H460, H1299, H1763, and PC9) and from normal alveolar 

epithelial cells HPAEC (Figure 2-7B). The deep learning algorithm trained with 80 % of 

the cell-derived EV data could predict the validation set with 94.8 % accuracy, and thus 

the entire cell-derived data set was used as a training set to predict the outcomes of clinical 

plasma-derived EVs (Figure 2-7C). The clinical data set was comprised of 20 healthy 

individuals and 43 lung adenocarcinoma patients. The lung cancer patients were further 

identified by their disease stage, where 22 patients had stage IA cancer, 16 patients had 

stage IB cancer, and 5 patients had stage II cancer. PCA was employed to determine the 
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similarity between the clinical samples and the cancer cell line-derived EVs, which was 

quantified by calculating the Mahalonobis distances between PC score clusters (Figure 2-

7D). On average, cancer patients displayed 1.5 times more similarity to the cancer cell-

derived EVs compared to the healthy individuals, and the cancer patients could be 

discriminated from the healthy individuals with 84 % sensitivity and 85 % specificity. 

Furthermore, the authors established the potential of the device for early cancer screening 

by discriminating the stage IA patients from the healthy individuals with 73 % sensitivity 

and 85 % specificity. However, like the previous study, the raw spectra required significant 

preprocessing prior to analysis due to high background fluorescence, and the calculated 

sensitivity and specificity remains low for clinical translation. 

 

Figure 2-7: A 100 nm AuNP-covered SERS substrate for the analysis of lung cancer-

derived EVs. (A) SEM images and an optical image (inset, top left) of the AuNPs 

assembled over an APTES-covered substrate. (B) Schematic illustration of the 

acquisition of SERS spectra. (C) Lung cancer cell line-derived EVs and normal lung 
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cell line-derived EVs are used to train a deep learning algorithm for lung cancer 

diagnosis. (D) The deep learning model is tested with EVs derived from lung cancer 

patients and healthy individuals, and their similarities to the lung cancer cell-derived 

EVs are compared. Adapted with permission from reference [113] (copyright 2020 

American Chemical Society). 

Simple nanoparticles have additionally been used as SERS probes to characterize EVs 

derived from pancreatic and cervical cancer cells.[114,115] AuNPs with 10 nm diameter were 

utilized by Carmichael et al. to analyze EVs from two pancreatic cancer cell lines, 

CD18/HPAF and MiaPaCa, and a normal pancreatic cell line, HPDE, and SERS 

measurements were performed with a 785 nm excitation wavelength.[114] With principal 

component analysis-discriminant function analysis (PCA-DFA), cancer EVs could be 

discriminated from normal EVs with 90.0 % accuracy, 90.6 % sensitivity, and 97.1 % 

specificity. The probes were further tested with clinical samples from patient sera, 

examining 10 healthy individuals and 10 early-stage pancreatic cancer patients. However, 

the discriminatory capabilities were not as strong as with the cell line models, with 

characterization efficiencies ranging from 20 – 87 % for healthy individuals and 30 – 90 

% for cancer patients. Another research group utilized citrate-reduced silver nanoparticles 

(AgNPs) with 200 nm diameter to analyze cervical cancer EVs.[115] Such nanoparticles 

were able to surround individual EVs (approximately 2 – 5 AgNPs per vesicle), and 

displayed a resonance position around 434 nm. Spectra of EVs from two cervical cancer 

cell lines, HeLa and Atg5-/-, and one noncancerous cell line, HEK293, were collected with 

a 633 nm excitation wavelength and analyzed by PCA. Although the cluster of normal EVs 

was separate from the HeLa-derived EVs, the normal EVs overlapped with the Atg5-/--

derived EVs, and accuracy, sensitivity, and specificity were not reported. Furthermore, 

each spectrum was heavily dominated by background peaks resulting from the total 

exosome isolation reagent used for EV isolation. 

Recognizing the importance of single vesicle characterization for diagnostic applications, 

Stremersch et al. implemented 4-(dimethylamino)pyridine (DMAP)-coated AuNPs 

approximately 10 nm in diameter.[116] DMAP-coated AuNPs were able to form irregularly-

shaped nanoshells around single EVs based on the electrostatic absorption of cationic 
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DMAP-AuNPs onto anionic EV surfaces, and display an LSPR band around 522 nm. The 

authors analyzed EVs derived from melanoma cell line B16F16 and red blood cell (RBC)-

derived vesicles, and SERS spectra were obtained with a 785 nm excitation wavelength. 

Using partial least squares-discriminant analysis (PLS-DA), melanoma EVs could be 

discriminated from RBC-derived EVs with 88.0 % sensitivity and 95.4 % specificity, while 

accuracy was not reported. Although the authors attempted to characterize both spectra, 

EV-related peaks were generally poorly resolved, and each spectrum was additionally 

dominated by presumed DMAP molecules. In addition to having a high Raman scattering 

cross-section, DMAP molecules are closest to the AuNP surface, and therefore at the region 

of highest enhancement. To address the problem of DMAP-dominated spectra, Fraire et al. 

developed in situ silver-coated AuNPs.[117] In situ-coating of silver allowed the EV 

membrane to be in direct contact with a metal surface (Figure 2-8A,B), as opposed to 

DMAP, and also shifted the LSPR to 490 nm, with an additional band appearing at 418 

nm. The same EV sources were analyzed again, and with PLS-DA, melanoma EVs could 

be discriminated from RBC-derived EVs with 91.7 % sensitivity and 96.9 % specificity, 

an improvement compared to the use of bare DMAP-coated AuNP probes (Figure 2-

8C,D). Although DMAP peaks no longer dominated each spectrum, there remained 

substantial noise in both spectra, and both studies may have benefited from using a laser 

excitation wavelength better matched to the LSPR of the probes, such as a 532 nm laser. 
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Figure 2-8: DMAP-coated AuNPs with silver nanoshells are used as SERS probes for 

the analysis of melanoma-derived EVs. Schematic illustrations of SERS acquisition 

(A) without and (B) with the silver nanoshell, highlighting the closer proximity of the 

EV membrane to the SERS-active metal surface when the probes are coated in situ 

with a silver layer. Analysis of melanoma cell line-derived EVs (red cluster) and RBC-

derived EVs (green cluster) (C) without and (D) with the silver nanoshell, illustrating 

higher discriminatory power when the silver nanoshell is implemented. Adapted with 

permission from reference [117] (copyright 2019 American Chemical Society). 

Magnetic beads (MBs) functionalized for EV capture are commonly used in the SERS 

analysis of EVs. With the application of an external magnet, EVs can be concentrated under 

a laser spot, further enriching signal intensity.[118-121] Li et al. have reported gold nanodot-

covered MBs for the analysis of breast cancer EVs.[118] Superparamagnetic nanoparticles 

were modified to introduce thiol groups for the anchorage of gold nanodots and were 

further functionalized with anti-CD9 for EV capture. Such probes had a diameter of 360 

nm and displayed an LSPR band around 540 nm. EVs from two breast cancer cell lines, 

MCF-7 and MDA-MB-231, were chosen due to the cell lines’ differences in metastatic 
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potential. With PCA, the two groups were able to be discriminated with 100 % sensitivity 

and specificity. The authors further tested the platform with clinical serum samples from 

14 breast cancer patients and 6 healthy individuals, and were able to discriminate these 

groups with 91.67 % sensitivity and 100 % specificity. Although the calculated sensitivities 

and specificities appear extremely high, it is important to note that a very limited sample 

size was used, and the reported SERS spectra across the groups were virtually identical. 

The spectra appear not to have been standardized prior to PCA, in which case the PC score 

plots are based on variations in signal intensity rather than variations in Raman shift. 

Variations in Raman signal intensity cannot be interpreted without knowing analyte 

concentrations. 

An unconventional substrate consisting of AgNPs grown in situ into bacterial cellulose 

(BC) from commercial nata de coco was described by Ferreira et al.[122] The motivation 

behind this work was to develop a cost-efficient SERS substrate for breast cancer 

diagnosis, since silver is less expensive than the more commonly used gold, and nata de 

coco is a low-cost and mass-produced source of BC. The AgNPs grown into the BC 

membrane were approximately 92 nm in diameter, providing an LSPR band around 390 – 

460 nm. EVs were analyzed from the breast cancer cell line MDA-MB-231, with 

nontumorous breast epithelial cells MCF-10A used as a control. A laser with an excitation 

wavelength of 532 nm was used to probe 20 cancerous and 18 normal samples, and PCA 

was used to discriminate the groups. No overlap was observed between the 95 % 

confidence ellipses of the two groups. Furthermore, 2 test samples (i.e., 1 cancer-derived 

sample and 1 normal sample) were used as proof-of-concept to demonstrate diagnostic 

potential, and each fell into their respective cluster. However, limited sample sets were 

used in this study. 

Another novel nanoparticle-based substrate was proposed by Pramanik et al., who 

implemented a mixed-dimensional heterostructure platform consisting of two-dimensional 

graphene oxide and gold nanostars (GO-AuNS) for the analysis of breast cancer EVs.[123] 

The SERS effect is influenced by both the GO and the AuNSs, the former of which 

contributes via the chemical enhancement mechanism, whereas the latter contributes via 

the stronger electromagnetic enhancement mechanism. A strong LSPR band around 580 
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nm is observed, as well as a broader band around 720 nm, and so the authors selected a 670 

nm excitation laser. EVs from breast cancer cell lines MDA-MB-231 and SKBR3 were 

characterized by SERS. Although the spectra were well-characterized, a normal control 

group was not utilized, and so conclusions cannot be drawn to the platform’s diagnostic 

potential. 

2.4.2 Periodic Arrays of Nanostructures for Direct Sensing 

Nanopillars are common, simple SERS substrates for EV analysis.[124-126] Early work 

involving pillars for SERS analysis of EVs was published by Tirinato et al., who fabricated 

super hydrophobic structures (silicon micropillars, approximately 10 nm in diameter) by 

standard optical lithography techniques and reactive ion etching (RIE).[124] The pillars were 

further covered with silver nanoaggregates. EVs from a colon cancer cell line (HCT116) 

and from healthy colon cells (CCD-841-CoN) were analyzed by SERS with a 514 nm 

excitation wavelength. However, the SERS spectra of both EV types appeared nearly 

identical, with variations limited to differences in intensity rather than peak positions. In 

addition to limited characterization, the diagnostic potential of the platform was not 

assessed. Many years later, Sivashanmugan et al. proposed a gold nanorod (AuNR) array 

covered with silver nanocubes (AgNCs) on top of the rods for the analysis of lung cancer 

EVs.[125] AuNRs, with diameters of approximately 126 nm and heights of approximately 

400 nm, were fabricated by a focused ion beam method. AgNCs with edge lengths of 

approximately 65 nm were able to self-assemble overtop the pillars. The resulting gap 

mode substrate provided three LSPR modes around 529 nm, 752 nm, and 881 nm. EVs 

from three lung cancer cell lines (HCC827, H1975, and PC9) and three normal lung cell 

lines (L929, BEAS-20, and NL-20) were analyzed by SERS with a selected excitation 

wavelength of 785 nm. The normal EVs exhibited strong protein, nucleic acid, and lipid 

signals, while the cancer-derived EVs exhibited only strong protein signals. Additionally, 

the authors found that the cancer-derived EVs displayed a higher diversity in peaks 

compared to the normal EVs, which was confirmed by Western blotting, and potentially 

the result of the highly dysregulated feature of cancer cells. Although the authors describe 

the potential of this platform in diagnostic applications, diagnostic criteria such as 
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accuracy, sensitivity, and specificity were not assessed. Furthermore, the SERS spectra of 

all six EV types were extremely noisy, with peaks not well-resolved. 

A novel nanopillar array was proposed by Kim et al. and named Functionalized Array for 

SERS (FASERS).[126] Gold nanopillars with 300 nm diameter and 500 nm height were 

fabricated by colloidal lithography and plasma etching and were functionalized with 8 

different self-assembled monolayers (SAMs) (Figure 2-9A,B). The SAMs varied in 

functional group (i.e., alkyl, hydroxyl, carboxyl, and amine) as well as in carbon chain 

length (i.e., 3-carbon and 11-carbon). SAMs were selected for EV capture as an alternative 

to an immunoaffinity-based approach, so that compositional diversity of biological 

samples are not lost. When examined with small test molecules, the SERS signal was 

observed to substantially diminish with longer-chain SAMs, owing to the fact that the 

molecule is positioned farther away from the enhancement region of the nanopillars. 

Carboxyl and amine groups were also generally able to provide more favorable interactions 

with test molecules, leading to a higher observed SERS signal compared to the other 

SAMs. The platform was tested with EVs from the breast cancer cell line MDA-MB-231 

using an excitation wavelength of 785 nm (Figure 2-9C). However, since EV analysis was 

not the focus of the paper and rather for proof-of-concept, multivariate analysis was not 

reported. Instead, the authors tested the platforms with more complex cell lysates from the 

breast cancer cell line Hs578T and from the normal cell line Hs578Bst. With PCA-LDA, 

the lowest obtained accuracy was 41.7 %, obtained with the 11 carbon-length COOH SAM. 

The highest accuracy obtained was with the 3 carbon-length NH2 SAM at 91.7 %, with a 

corresponding sensitivity and specificity of 83.3 % and 100 %, respectively. Although an 

interesting platform design, the diagnostic potential is not as high as other SERS platforms 

that use EVs for analysis. 
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Figure 2-9: FASERS substrate for the analysis of breast cancer-derived EVs and cell 

lysates. (A) Schematic illustration of FASERS. Each SAM uniquely provides insight 

into the biological composition of a given analyte. (B) Schematic illustration (top), 

top-view SEM image (bottom left), and tilted-view SEM image (bottom right) of the 

bare FASERS (scale bars = 400 nm). (C) SERS spectra of breast cancer cell line-

derived EVs collected with each FASERS. Adapted with permission from reference 

[126] (copyright 2020 Yarovsky, I. & Stevens M. M.). 

A periodic array of gold pyramidal nanostructures overlaid with single-layer graphene for 

the analysis of lung cancer-derived EVs was reported by Yan et al.[127] Such nanopyramids 

have a base edge length of approximately 200 nm and 57.7 ° sidewall angle, as well as a 
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center-to-center distance of approximately 400 nm. The graphene layer serves a dual 

purpose: to provide a biocompatible and protective layer over the metal surface (e.g., 

prevent oxidation) since it is chemically inert, and to gauge local EM field intensity. 

Gauging the EM field intensity by normalizing the biological SERS signal with the 

graphene peaks allows for the direct correlation of the biological analyte peaks with the 

amount of analyte present in the sample, as opposed to a convolution existing between the 

EM field intensity and the amount of analyte. EVs from two lung cancer cell lines, HCC827 

and H1975, were analyzed by SERS with a 785 nm excitation wavelength, and human and 

bovine serum were used as controls. Using PCA, all four sample sources could be separated 

with < 5 % overlap among groups and a sensitivity > 84. %. Interestingly, the highest 

degree of overlap was not between the two lung cancer cell groups, but between the H1975-

derived EVs and the bovine serum. However, the sensitivity achieved is not competitive 

with other SERS substrates and methodologies for cancer diagnosis, and accuracy and 

specificity were not assessed. 

Recently, a microfluidic device based on silver nanobowtie-shaped antennae was reported 

by Jalali et al.[128] These antennae were approximately 150 nm in length, with gaps ranging 

from 0 – 100 nm, and provided three LSPR modes at 410 nm, 460 nm, and 580 nm. The 

microfluidic device was fabricated by a top-down standard lithography method while a 

bottom-up method based on the self-assembly of a polystyrene monolayer on silicon was 

used to fabricate the antennae. EVs derived from two human glioma cell lines, U373 and 

U87, were analyzed by SERS using an excitation wavelength of 532 nm, along with 

synthetic liposomes and normal glial cells (NHA) as controls. Such groups could be 

distinguished by PCA, as their 95 % confidence ellipses displayed low overlap. 

Additionally, the U87-derived EVs could be discriminated from the U373-derived EVs, 

the latter of which shared more similarity with the normal EVs. However, a limited sample 

size was studied, and clinical samples have not yet been analyzed. Furthermore, the 

antennae were not uniformly distributed over the substrate surface, meaning the EM field 

intensity is not homogenous across the substrate. Since the authors utilized silicon for 

substrate fabrication, a strong silicon peak around 520 cm-1 was present in the spectra, and 

so the spectra required normalization. 
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An unconventional, grooved SERS substrate for EV analysis was proposed by Avella-

Oliver et al.[129] These structured polycarbonate substrates were obtained from standard 

recordable disks (CD-R and DVD-R) and coated with silver for SERS. The goal of this 

study was to develop an extremely cost-effective device by reusing disks and by utilizing 

silver instead of gold. The groove pitches for the DVD-based and CD-based substrates 

were approximately 1.4 μm and 0.7 μm, respectively. The resulting LSPRs were located at 

650 nm for the DVD-based substrates and at 780 nm for the CD-based substrates. EVs 

from lung cancer cell line A549 were analyzed by SERS, with excitation wavelengths of 

633 nm (for the DVD-based substrates) and 785 nm (CD-based substrates). Although the 

SERS spectra were published, the authors did not characterize the spectral peaks. The paper 

was positioned as proof-of-concept, focusing more on the novelty of the substrate rather 

than the diagnostic potential, so normal controls were not analyzed as opposed to most 

studies. 

A novel beehive-inspired three-dimensional gold-coated TiO2 macroporous inverse opal 

(MIO) structure was introduced by Dong et al. (Figure 2-10A).[130] Advantages of such a 

substrate include ideal trapping conditions for separating EVs from biofluids (Figure 2-

10B) and the enhancement of Raman signal by both LSPR and by the slow light effect (i.e., 

the ability to trap and scatter light multiple times). With a pore diameter of approximately 

290 nm, the resulting resonance band was located around 630 nm. EVs from prostate 

cancer cell line LNCaP and normal prostate cell line RWPE-1 were analyzed by SERS 

using an excitation wavelength of 633 nm. Since protein phosphorylation is one of the most 

fundamental mechanisms for the regulation and control of protein activities and functions 

within cells, the authors monitored the degree of protein phosphorylation by quantifying 

the spectral peak at 1087 cm-1, corresponding to the P-O bond. LNCaP-derived EVs 

displayed a P-O peak approximately 3.0 times higher than RWPE-1-derived EVs, 

indicating a higher degree of protein phosphorylation in the cancer cells. The authors also 

analyzed EVs derived from patient samples, assessing not only prostate cancer patients, 

but lung, liver, and colon cancer patients as well. EVs were derived from 15 prostate cancer 

patients, 15 lung cancer patients, 15 liver cancer patients, 8 colon cancer patients, and 10 

healthy individuals. Again, a higher degree of protein phosphorylation was observed in the 

cancer-derived EVs, with the P-O peak 2 – 2.5 times more intense than that from the normal 
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control group (Figure 2-10C) and was stronger in over 93 % of cancer cases compared to 

the healthy individuals. However, the patient data sample size was limited, and the authors 

did not report accuracy, sensitivity, and specificity based on their method. 

 

Figure 2-10:  A beehive-inspired three-dimensional gold-coated TiO2 MIO structure 

for the analysis of prostate cancer, lung cancer, liver cancer, and colon cancer 

derived-EVs. (A) Schematic illustration of the structure fabrication and acquisition 

of SERS spectra. (B) SEM image of the substrate that has captured 4 EVs, which are 

circled in red (scale bar = 300 nm). (C) The P-O band intensities of EVs derived from 

cancer patients are significantly higher on average compared to the P-O band 

intensities of EVs derived from healthy individuals. Adapted with permission from 

reference [130] (copyright 2020 American Chemical Society). 



65 

 

Other nanoarrays consisting of cavities for EV capture have been reported, such as silver 

nanobowls fabricated by soft lithography[131] and nanoholes fabricated by electron-beam 

lithography.[132,133] Since these platforms were used in the investigation of ovarian cancer-

derived  cells in literature and for this thesis, respectively, they are reviewed in detail in 

Chapter 4. 

2.4.3 Probe-Based Immunocomplexes for Indirect Sensing 

One sandwich-type immunocomplex detailed by Zong et al. consists of a magnetic capture 

probe and a gold core-silver shell nanorod (Au@AgNR) as a SERS tag.[119] Prior to 

functionalization with capture antibody anti-CD63, the Fe3O4 MBs are coated with a silica 

shell to provide more available surface area for the antibodies as well as to protect the MBs 

from degradation. The Au@AgNRs are attached to Raman reporter 5,5-dithiobis-(2-

nitrobenzoic acid) (DTNB) via Ag-S bonds and further coated with a silica shell to protect 

the DTNB from disturbance from the outer environment. For binding with EVs, the DTNB-

tagged Au@AgNRs are further functionalized with rabbit anti-human HER2 antibodies, 

which specifically targets a biomarker in breast cancer cells, and the final probe offers 

LSPR positions around 430 nm, 500 – 550 nm (shoulder peak), and 690 nm. EVs from a 

breast cancer cell line (SKBR3) and normal lung fibroblasts (MRC5) were used as models 

for cancerous and normal cells, respectively, and probed with a 632.8 nm laser. The 

characteristic peak for DTNB is located at 1327 cm-1, which corresponds to the nitro group 

symmetric stretching, and was found to decrease with decreasing EV concentration, while 

the controls were associated with low intensity, and the detection limit was estimated to be 

1200 EVs. In fact, the DTNB signal intensity from the cancer-derived EVs was 

approximately 2.5 times stronger than the normal EVs, and even 3.8 times stronger when 

cell numbers were normalized, since cancerous cells tend to secrete more EVs than their 

normal counterparts. 

Another sandwich-type immunocomplex was proposed by Wang et al., which consists of 

MBs covered by a silica layer and gold shell and modified by aptamers of CD63 via Au-S 

bonds for EV capture (Figure 2-11A).[120] Three different SERS probes based on AuNPs 

were implemented with varying aptamers, each targeting a specific cancer type, and Raman 

reporters for multiplexed detection. For the detection of breast cancer EVs derived from 
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the SKBR3 cell line, AuNPs were modified with the aptamer of HER2 (i.e., breast cancer 

biomarker) and Raman reporter DTNB, as in the previous paper reviewed. For the detection 

of colorectal cancer EVs derived from the T84 cell line, AuNPs were modified with the 

aptamer of CEA, which binds to a carcinoembryonic antigen overexpressed in T84 cells, 

and Raman reporter 2,7-mercapto-4-methylcoumarin (MMC). MMC has a characteristic 

peak located at 1170 cm-1, corresponding to the triangular and symmetric benzene ring 

breathing deformations including the in-plane deformations of the C(O)-O group. Lastly, 

for the detection of prostate cancer EVs derived from the LNCaP cell line, AuNPs were 

modified with the aptamer of PSMA, which binds to a prostate-specific membrane antigen, 

and Raman reporter 2-naphthalenethiol (2NAT), which has a characteristic peak at 1378 

cm-1 corresponding to ring stretching. Each EV type was analyzed by SERS using a 632.8 

nm excitation wavelength, and the detection limits for the SKBR3 EVs, T84 EVs, and 

LNCaP EVs were estimated to be 32 EVs μL-1, 73 EVs μL-1, and 203 EVs μL-1, 

respectively. In this case, characteristic peaks were found to decrease with increasing EV 

concentration. The performance of the model was further validated with clinical samples 

(3 cancer patients and 1 healthy individual) (Figure 2-11B), but accuracy was not reported, 

and limited sample sizes were used in both cell line and clinical cases. 
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Figure 2-11: Sandwich-type immunocomplex for the analysis of breast cancer, 

colorectal cancer, and prostate cancer-derived EVs. (A) Schematic illustration of the 

fabrication of capture probes and SERS probes, as well as the formation of the 

immunocomplex and acquisition of SERS spectra. (B) Simultaneous detection of 

breast cancer, colorectal cancer, and prostate cancer markers demonstrated using 

patient-derived EVs. Adapted with permission from reference [120] (copyright 2018 

Royal Society of Chemistry). 
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A sandwich-type immunocomplex that targets EVs via bivalent cholesterol-labelled DNA 

anchors has been proposed by Tian et al.[121] Herein, the capture probes consist of MBs 

functionalized with anti-CD9, and DNA-labelled SERS probes consist of AuNSs modified 

with Raman reporter 4-mercaptobenzoic acid (MBA) and covered with a gold nanoshell. 

The SERS probe allows for monitoring of EVs via the characteristic 1078 cm-1 peak and 

offers an LSPR around 615 nm. The probes were tested with EVs derived from liver cancer 

cell line HepG2. The authors observed the characteristic MBA peak only in the presence 

of EVs, since the immunocomplex cannot form without them. The detection limit was 

estimated to be 27 particles μL-1, far more sensitive than commercially available methods 

and even other SERS techniques. Human serum samples from 3 liver cancer patients and 

3 healthy individuals were also used to validate this method, and EVs from these samples 

were quantified using a calibration equation established by the cell line model. The EV 

amounts were further validated by the standardized method qNano, and the results were in 

agreement. Although a lower EV count was identified in the healthy patients compared to 

the cancer patients, a diagnostic threshold was not established, and the diagnostic potential 

of the biosensor was therefore not quantified. 

An EV-probe assembly was detailed by Jiang et al., in which DTNB-modified AuNPs were 

functionalized with locked nucleic acids (LNAs) targeting miRNA-10b.[134] Rather than 

targeting EVs via surface interactions, the LNA-modified SERS tags are transported into 

EVs by incubation (Figure 2-12A), which the authors confirmed with TEM imaging and 

fluorescence measurements. These SERS probes also provided LSPR modes around 520 

nm and 625 nm. Fe3O4 core-TiO2 shell MBs were used for EV capture, which can 

concentrate EVs with an efficiency of 96.5 % in 10 minutes with the application of an 

external magnet due to the high specificity binding between TiO2 and the phosphate groups 

on EV membranes. EVs from pancreatic ductal adenocarcinoma (PDAC) cells (PANC-01) 

and normal pancreatic cells (HPDE6-E7) were probed under a 785 nm excitation 

wavelength laser. The characteristic DTNB peak was found to be 3-fold higher in the 

cancer-derived EVs compared to the normal EVs (Figure 2-12B). The authors 

demonstrated high specificity by distinguishing the target miRNA-10b from the single base 

mismatched miRNA-10a and estimated the detection limit to be 0.21 fM. Since miRNA-

10b has also been reported to be overexpressed in colorectal cancer cell EVs, the authors 
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further validated miRNA-10b detection with EVs derived from the colorectal cancer cell 

line HCT116 and the normal colonic epithelial cell line CCD841. The authors went on to 

monitor miRNA-10b levels in sera of 15 PDAC patients and 15 individuals and found that 

the characteristic peak intensity in the case of the cancer patients was 3-fold higher 

compared to the healthy individuals (Figure 2-12C). While the authors assessed the 

diagnostic capabilities of the assembly with an ROC curve and found the AUC to be quite 

high at 0.996, accuracy, sensitivity, and specificity were not reported. 

 

Figure 2-12: EV-probe assembly for the SERS analysis of pancreatic cancer-derived 

EVs. (A) Schematic illustration of the uptake of SERS probes into EVs and the affinity 

of Fe3O4 core-TiO2 shell MBs to the EV surface. (B) SERS maps of normal pancreatic 

cell line-derived EVs (left) and pancreatic cancer cell line-derived EVs (right), 

highlighting the higher SERS intensity observed when the target is present. (C) 
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Higher characteristic peak intensity is also observed with EVs derived from clinical 

samples. Adapted with permission from reference [134] (copyright 2021 American 

Chemical Society). 

2.4.4 Sandwich-Type Immunoassays for Indirect Sensing 

One sandwich-type immunoassay reported by Li et al. consists of a glass slide modified by 

the self-polymerizing polydopamine (PDA) and antibodies (e.g., anti-MIF) for EV 

capture.[135] PDA provides a biocompatible, uniform layer into which antibodies can be 

homogeneously encapsulated with high efficiency.  The SERS probes utilized were 

multilayered, consisting of an 18 nm gold core, silver shell, Raman reporter 4-

aminobenzenethiol (pATP), PDA, and antibodies, and provided LSPR modes around 400 

nm and 500 nm. The Raman reporter has a characteristic peak around 1072 cm-1, 

corresponding to the benzene ring breathing vibration, and the PDA layer served to protect 

the silver layer from oxidation. EVs from the pancreatic cancer cell line PANC-01 and 

normal cell line HPDE6-C7 were analyzed by SERS using a 785 nm excitation wavelength, 

and the detection limit was estimated to be 544 particles μL-1. The biosensor was further 

tested with EVs derived from patient serum samples (71 PDAC patients and 32 healthy 

individuals) and was able to distinguish the serum of cancer patients from that of healthy 

donors, but with low sensitivity (62.5 %) and low specificity (76.2 %). The authors noted 

that the biosensor was even able to distinguish 37 patients with higher stage (P3) stage 

tumors from 4 patients with lower stage (P1-2) tumours. Although the sensitivity was high 

in this instance (95.7 %), the specificity was again found to be low (53.4 %). When the 

authors attempted to distinguish 10 patients with metastatic cancer from 61 patients with 

nonmetastatic cancer, low sensitivity and specificity were again achieved, at 53.3 % and 

73.9 %, respectively. Additionally, the laser excitation wavelength at 785 nm was not well 

matched to the LSPR bands of the biosensor, which poses the question of whether the 

SERS effect was indeed observed. 

Another sandwich-type immunoassay was proposed by Kwizera et al. consisting of 

antibody (anti-CD63) arrays on a gold-coated slide for specific EV capture.[136] The SERS 

probes consisted of AuNRs of 35 nm length and 12 nm width capped with cetrimonium 

bromide (CTAB) and coated with an organic dye, QSYTM 21 carboxylic acid-succinimidyl 



71 

 

ester (QSY21), as a Raman reporter, providing an LSPR band around 720 nm. Cationic 

CTAB was chosen to allow for the electrostatic adsorption of the SERS probes onto the 

anionic lipid EV bilayer, and to provide a hydrophobic pocket into which the hydrophobic 

Raman reporter could be loaded. QSY21 was chosen as the Raman reporter for its 

nonfluorescent properties and fingerprinting signal at 1497 cm-1. EVs from three breast 

cancer cell lines (MDA-MB-231, MDA-MB-468, and SKBR3) were analyzed with the 

normal breast cell line MCF12A used as a control. The EVs were probed with a 785 nm 

excitation wavelength laser, and the detection limit was estimated to be 2000 EVs μL-1, 

approximately 500 times lower than the estimated concentration of EVs in plasma. MDA-

MB-231 was used as the model cell line to determine protein expression in breast cancer 

EVs by examining levels of the epithelial marker EpCAM, breast cancer markers CD44, 

HER2, EGFR, and IGFR, and exosome markers CD9, CD63, and CD81. MDA-MB-231-

derived EVs displayed a high expression of CD44, and low expression of EpCAM and 

other breast cancer markers, consistent with literature and validated with the gold standard 

ELISA. MDA-MB-468-derived EVs also displayed high EpCAM expression and moderate 

HER2 expression, while SKBR3-dervied EVs displayed high EpCAM and HER2 

expressions. The control EVs were also positive for EpCAM, but with a much lower level 

compared to the cancer-derived EVs. All EVs also displayed high exosome marker 

expressions. The authors further evaluated the biosensor with plasma samples from 10 

breast cancer patients (2 stage I patients, 2 stage II patients, and 6 stage III patients) and 5 

healthy individuals. The cancer-derived EVs showed much higher expressions of EpCAM 

and HER2 compared to the healthy controls, whereas the differences in CD44 among all 

patients were less noticeable. Both cancer-derived EVs and normal EVs additionally 

displayed strong exosomal marker expressions. However, accuracy, sensitivity, and 

specificity were not reported, and a limited data set was evaluated. The authors also noted 

that EV isolation from plasma was required prior to analysis. 

An immunoassay targeting miRNAs via specific LNA probes was proposed by Lee et 

al.[137] Flocked gold nanopillars with 200 nm diameter and 800 nm height were used as a 

SERS substrate, fabricated by the RIE of silicon followed by electron beam evaporation of 

gold (Figure 2-13A). The nanopillars are termed flocked since the pillars lean towards 

each other due to a capillary force developed during solvent evaporation, improving the 
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coupling of localized surface plasmons by reducing the gap between nanopillars 

(approximately 100 – 200 nm) (Figure 2-13B,C). Each LNA probe used targets miRNAs 

closely related to breast cancer (miRNA-21, miRNA-222, miRNA-200c). The probes were 

labelled with Cy3 dye, providing a characteristic peak at 1150 cm-1. EVs from luminal 

subtype (MCF7, BT474), HER2+ subtype (SKBR3, AU565), and TN subtype (MDA-MB-

231, HCC1143) breast cancer cell lines were analyzed by SERS using a 785 nm excitation 

wavelength. The probes were able to discriminate single base-mismatched miRNAs, and 

the detection limit was estimated to be 1 aM. By monitoring SERS signal intensity, the 

authors found that miRNA-21 was significantly higher in the luminal and TN subtypes 

compared to the HER2+ subtype, and miRNA-222 and miRNA-200c were also clearly 

distinguishable. These findings were also validated with the standard quantitative reverse 

transcription-polymerase chain reaction (qRT-PCR). While the authors proposed a highly 

selective and sensitive platform for breast cancer diagnosis, the study lacked a normal 

control group, so the diagnostic capability could not be assessed. 

 

Figure 2-13: Flocked gold nanopillars for the SERS analysis of breast cancer-derived 

EVs. (A) Schematic illustration of the fabrication and functionalization of the 

nanopillars. (B) Top-view (left) and tilt-view (right) SEM images of upright 

nanopillars. (C) Top-view (left) and tilt-view (right) SEM images of head-flocked 

nanopillars. Adapted with permission from reference [137] (copyright 2019 Wiley-

VCH). 
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A microfluidic sandwich-type immunoassay device named the EV phenotype analyzer chip 

(EPAC) was introduced by Wang et al.[138] Capture substrates consisted of a series of 

asymmetric gold electrodes fabricated by photolithography, which allowed for nanoscopic 

lateral fluid flow, and were aligned with microfluidic channels fabricated by soft 

lithography. The substrate or “chip” was functionalized with capture antibodies anti-CD63 

and anti-MSCP, although a lower detection limit could be achieved with the anti-MSCP-

functionalized EPAC. Four SERS tags based on 60 nm AuNPs were implemented, each 

targeting a single biomarker. Raman reporters MBA and DTNB, described above, were 

used to target markers MCSP and ErbB3, respectively. Raman reporters 4-

mercaptopyridine (MPY) and 2,3,5,6-tetrafluoro-MBA (TFMBA), which have 

characteristic peaks at 1000 cm-1 and 1375 cm-1, respectively, targeted markers LNGFR 

and MCAM. EVs from melanoma cell line SK-MEL-28 were analyzed under a 632 nm 

excitation wavelength laser. SK-MEL-28 cells are expected to have high expressions of 

MCSP and MCAM and low expressions of ErbB3 and LNGFR. As a negative control, EVs 

from breast cancer cell line MCF7 were utilized, which are expected to have low 

expressions of all four markers. Indeed, SK-MEL-28 EVs demonstrated quantifiable signal 

while negligible signal was observed with MCF7-derived EVs. The response of EVs from 

SK-MEL-28 along with EVs derived from two other BRAF mutation cell lines (LM-MEL-

33 and LM-MEL-64) when treated with a BRAF inhibitor drug was also monitored. Two 

control groups were also used, including LM-MEL-64 EVs without treatment and NRAS 

mutation cell line LM-MEL-35, which is not expected to respond to this type of drug 

treatment. After 30 days of treatment, EVs from all three BRAF mutation cell lines showed 

obvious phenotypic changes (quantified by LDA), while the negative control EVs 

displayed no phenotypic changes. The authors further challenged the biosensor with patient 

plasma-derived EVs (11 melanoma patients and 12 healthy individuals), and found that 

based on MCSP levels, melanoma patients could be differentiated from healthy controls. 

These findings were also validated with the standard ELISA by monitoring ErbB3 levels. 

Phenotypic changes of these EVs in response to drug treatment was also monitored, but in 

some cases, changes were not observed by SERS despite radiological imaging confirming 

disease progression. The authors therefore highlighted the need to further study and 

evaluate the choice and number of biomarkers implemented in the EPAC. 
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Probing DNAs immobilized onto gold octahedra with an edge length of 50 nm have been 

introduced by Kang et al. for the analysis of miRNA-7a in breast cancer EVs.[139] Gold 

octahedral NPs are able to self-assemble into a hexagonal arrangement in liquid and were 

transferred to a solid (silicon) substrate (Figure 2-14A), providing a uniform electric field 

distribution and an LSPR mode around 666 nm. The SERS tag consisted of a Cy5 dye-

labelled oligonucleotide probe was designed into a hairpin structure and immobilized on 

the array via the Au-S bond. Cy5 has prominent spectral peaks at 938 cm-1 (C-H 

deformation), 1120 cm-1 (C-H in-plane bending), 1230 cm-1 (C-N stretching), 1359 cm-1 

(methine chain deformation), 1467 cm-1 (C=C ring stretching), and 1597 cm-1 (C=N 

stretching). Additionally, Cy5 has an absorption centered around 660 nm, overlapping with 

the resonance of the array and leading to coresonance. When the let-7a target is present, 

the probe hybridizes with let-7a and opens its hairpin structure, forcing Cy5 away from the 

SERS-active surface and resulting in a signal intensity decrease across all Cy5 peaks 

(Figure 2-14B,C). The detection limit was estimated to be 5.3 aM, and the authors also 

demonstrated specificity by introducing other miRNAs to the biosensor such as miRNA-

21, miRNA-375, let-7fi (4 base mismatch), let-7i (2 base mismatch), and let-7f (1 base 

mismatch). EVs from breast cancer cell line MCF7 and normal breast cell line MCF-10A 

were analyzed using an excitation wavelength of 633 nm, and the expression of let-7a in 

MCF7-derived EVs was found to be 3.27-fold higher compared to MCF-10A-derived EVs. 

The authors also monitored the response of let-7a levels to treatment with the 

chemotherapeutic drug 5-fluorouracil for 48 hours and found a higher intensity change in 

treated EVs compared to non-treated EVs, which was validated with qRT-PCR. However, 

at this stage, the authors have not challenged their biosensor with clinical samples. 
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Figure 2-14: (A) TEM image of a gold octahedral self-assembled monolayer. (B) 

Schematic illustration of the sensing principle of the structure, in which the hairpin 

structure P opens upon hybridization with let-7a, forcing the Cy5 molecules (red star) 

farther away from the gold surface. (B) SERS spectra of Cy5 in the (a) absence and 

(b) presence of let-7a, highlighting the change its change in intensity when the target 

is present. Adapted with permission from reference [139] (copyright 2021 American 

Chemical Society).  

2.5 Summary 

The focus of this chapter was to provide detailed background information of techniques 

utilized throughout this thesis. The principles of Raman spectroscopy and SERS were 

introduced in this chapter. Raman spectroscopy and SERS were then explained in the 

context of biological systems, reviewing expected peaks arising from biological 

macromolecules and explaining how spectra are typically used and analyzed in biological 

applications. PCA was introduced and explained in detail, since it is the dimensionality-

reduction method used to process SERS spectra in this thesis. Since machine learning was 

used in series with PCA for EV classification in this thesis, the process of machine learning 

and various algorithms that can be used were also reviewed. Finally, various SERS probes 

and platforms that have been reported in literature were thoroughly reviewed, highlighting 

both recent advances in the field and limitations of current methods.  
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Chapter 3  

3 Characterization of Extracellular Vesicles Derived from 
Mesenchymal Stromal Cells by Surface-Enhanced 
Raman Spectroscopy 

A version of this work has been published in the journal Analytical and Bioanalytical 

Chemistry: Ćulum, N. M.; Cooper, T. T.; Bell, G. I.; Hess, D. A.; Lagugné-Labarthet, F. 

Characterization of Extracellular Vesicles Derived from Mesenchymal Stromal Cells by 

Surface Enhanced Raman Spectroscopy. Anal. Bioanal. Chem. 2021, 413, 5013-5024. This 

chapter has been reproduced with permission from Springer Nature. 

In this chapter, EVs released by MSCs derived from bone marrow (BM-MSC) and 

pancreatic tissue (Panc-MSC) are characterized by SERS. The SERS platform fabricated 

by electron-beam lithography consists of gold nanohole arrays of varying size (100 – 1000 

nm) and shape (triangles, circles, and squares). While BM-MSC EVs have been previously 

investigated by conventional Raman spectroscopy, they have not to date been characterized 

by SERS. Panc-MSC EVs have indeed been characterized by SERS in the past, although 

this study looked into a larger sample size. Discussed in this chapter are the main 

compositional differences between BM- and Panc-MSC EVs determined by PCA. Machine 

learning was implemented in order to discriminate the two groups from each other and 

demonstrate the classification power of the platform. 

3.1 Introduction 

An overview of MSC-derived EVs and their applications was provided in Section 1.2.1. 

Briefly, MSCs have been shown to induce cellular changes in nearby cells through the 

release of chemical messengers, known as paracrine signaling, particularly via their 

secreted EVs.[1] EVs released from MSCs are potent cell-free regenerative and restorative 

agents that are effective in neural,[2-4] myocardial,[5-7] hepatic,[8,9] renal,[10-12] cutaneous,[13-

15] skeletal,[16,17] cartilage,[18,19] and muscular regeneration.[20,21] In particular, BM-MSCs 

have been widely studied due to the regenerative potential of their secreted EVs. For 

example, BM-MSC EVs have been shown to reduce neuroinflammation in traumatic brain 

injuries,[22] promote survival of retinal ganglion cells and the regeneration of their axons,[23] 
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suppress inflammation response in acute myocardial infarction,[24] and promote the 

proliferation of cisplatin-damaged proximal tubular epithelial cells.[25] However, to be used 

in therapeutic and regenerative practices, sensitive and reproducible characterization 

protocols must be established. The characterization of EVs is challenged by their nanoscale 

size (30 – 150 nm for exosomes and 100 – 1000 nm for microvesicles) and heterogeneity 

in terms of size range, morphology, molecular composition, and biogenic mechanisms.[26-

28] 

While SERS has been extensively used in the characterization of cancer-derived EVs, its 

application in the characterization of MSC EVs has been largely underexplored. Although 

BM-MSC EVs have been characterized by Raman spectroscopy, none to date to our 

knowledge have been characterized using SERS.[29,30] Gualerzi et al. conducted a Raman 

spectroscopy study comparing EVs isolated from BM-MSCs, adipose tissue MSCs, as well 

as EVs released from dermal fibroblasts.[29] The authors reported decent discriminatory 

power using PCA-LDA with 93.7 % accuracy, 88.6 % sensitivity, and 95.1 % specificity. 

However, the Raman spectra reported in this work were of low resolution and quality, and 

required baseline correction to remove a fluorescence background, and were bulk 

measurements of EVs, as opposed to single or near-single EV detection. The subsequent 

study published compared Raman spectra of BM-MSC EVs and EVs released from human 

liver stem cells.[30] Although the main purpose of this study was to assess EV purity from 

various isolation protocols (i.e., ultracentrifugation and size-exclusion chromatography) by 

PCA-LDA, the authors reported that both EV sources could be discriminated from non-EV 

cell fractions with 97 % accuracy. The main limitation of this study again was the low-

quality Raman spectra reported due to the fluorescent nature of biological samples.  

In this proof-of-concept study, we have investigated EVs derived from BM-MSCs as well 

as Panc-MSCs by SERS. Previous preliminary work reported from our group has 

demonstrated the feasibility of using these platforms for SERS characterization of Panc-

MSC EVs, but a small sample size was reported.[31] Herein, we have built on these concepts 

and further explored the capacity of these nanohole arrays to trap, detect, and differentiate 

EVs from these two sources. We have fabricated plasmonically active gold nanohole arrays 

of varying size (100 – 1000 nm) and shape (circles, squares, and triangles) by electron-



88 

 

beam lithography (EBL) that are capable of EV trapping and signal enhancement for SERS. 

Reported in this chapter are spectral fingerprints associated with both EV sources. The 

main compositional differences between Panc-MSC and BM-MSC EVs were determined 

by PCA, and machine learning was further employed to differentiate the two groups with 

high accuracy, sensitivity, and specificity. 

3.2 Methods 

3.2.1 Nanohole Array Fabrication by EBL 

Nanohole arrays were fabricated using the protocol established by Kaufman et al.[31] A 

negative-tone resist, ma-N 2405 (Microchem), was spin-coated onto reactive O2-cleaned 

glass coverslips at 3000 rpm for 45 seconds, corresponding to a thickness of approximately 

500 ± 50 nm, then baked at 90 °C for 90 seconds. AquaSAVETM conductive polymer 

(Sigma-Aldrich) was then spin coated at 1000 rpm for 45 seconds and baked at 90 °C for 

45 seconds. EBL and SEM imaging were performed using a LEO 1530 scanning electron 

microscope (Zeiss) with a 30.0 kV voltage, 10.0 μm aperture, and 30.0 – 50.0 pA current. 

Arrays of varying shape (square, circle, and triangle) and size (0.1 – 1.0 μm in 0.1 μm 

increments, 1.0 μm width between holes) were written using ELPHY Quantum software 

(Raith Nanofabrication). All patches measured 50 × 50 μm2. Following beam exposure, 

substrates were soaked in DI water to remove the conductive layer. Samples were 

developed in MF-319 (MicroChem) for 40 seconds, soaked in DI water, and air dried to 

avoid collapsing the nanopillars. Samples were subjected to an O2 plasma descum process 

(Trion Technology) for 60 seconds to remove residual resist surrounding the nanopillars. 

A 3 nm adhesion layer of titanium was then deposited onto the samples followed by 30 nm 

of gold by electron beam evaporation (Angstrom Engineering). For lift-off, samples were 

exposed to Remover-PG (MicroChem) and heated to 80 °C for 2 hours. Remover-PG was 

removed from the samples by soaking in a 1:3 solution of methyl isobutyl ketone (MIBK) 

and isopropanol (IPA). Samples were then rinsed with IPA and dried under N2. For final 

cleaning, samples were immersed in Nano-Strip® (Cyantek) and heated to 80 °C for 30 

minutes, then DI water for 15 minutes, and dried under N2. Finally, samples were again 

subjected to O2 plasma for 5 minutes to remove any remaining resist from the holes. 



89 

 

3.2.2 Absorption Measurements 

Vis-NIR spectra of gold nanohole arrays were obtained with a homebuilt setup consisting 

of an HL-2000 halogen lamp (Ocean Optics), which covers a spectral range of about 400 

– 1000 nm, coupled to an inverted optical microscope by a 100 μm optical fiber. The source 

beam was first expanded by a 10 × objective (N.A. = 0.25), recollimated using 20 × 

objective (N.A. = 0.40), and finally collected by a 20 × objective (N.A. = 0.50). The 

resulting spot sizes were approximately 50 μm in diameter, covering the surface of a single 

array. Scattered light was then analyzed with a USB 4000-Vis-NIR-ES spectrometer 

(Ocean Optics). 

3.2.3 Cell Culture 

Human bone marrow aspirates were obtained from healthy donors with informed consent 

from the London Health Sciences Centre, Western University (London, ON) following 

protocol REB#12934. BM-MSCs were established and cultured in AmnioMax-C100TM 

media with AmnioMaxTM C100 supplement (Life Technologies) as previously described 

by Sherman et al.[32] Ricordi-chamber isolated human islets were obtained through the 

Integrated Islet Distribution Program (USA) for the establishment of Panc-MSCs as 

previously described by Cooper et al.[33] 200 islet equivalents were plated in RPMI 1640 + 

10% fetal bovine serum (FBS) for up to 7 days. Between 5 – 7 days, adherent fibroblast-

like cells were separated from non-adherent islets by media aspiration followed by 

trypsinization and filtration using a 40 μm cell strainer. Single cell suspensions were 

subsequently reseeded on tissue culture plastic at 4000 cells/cm2 and expanded in 

Amniomax-C100TM with AmnioMaxTM E100 supplement (Life Technologies). 

3.2.4 EV Isolation 

EVs were isolated by ultrafiltration as previously described by Cooper et al.[34] Conditioned 

media (CM) was generated by culturing BM-MSC and Panc-MSC to ~80% confluency, 

rinsed 3 times with pre-warmed phosphate buffer solution (PBS), and switched to basal 

AmnioMaxTM C100 media (Life Technologies) without supplement. Media was collected 

after 24 hours of cell culture. Cell debris were removed by centrifugation for 10 minutes at 

600 × g. Cell-free CM was concentrated by centrifugation in 100 kDa centrifuge filter units 
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for 20 minutes at 2800 × g. A 20 mL solution was concentrated in a single unit, requiring 

two centrifugations, producing a final volume of 120 μL. After the second centrifugation, 

10 mL of 0.22 μm-filtered PBS was used to wash out residual phenols, proteins, and salts. 

EV samples were collected and placed into Eppendorf tubes and stored at -20 °C for up to 

one month. 

3.2.5 AFM Measurements 

Purified EV solutions were diluted (1:20) in Milli-Q water. 10 μL of the dilute EV samples 

were drop-casted onto chemically cleaned glass coverslips (22 mm × 22 mm × 0.15 mm) 

and dried overnight in a biological safety cabinet. Scans were obtained using a BioScope 

Catalyst atomic force microscope (Bruker). NCLR-50 Silicon probes (Nanoworld) with a 

force constant of 48 N/m and a resonance frequency of 190 kHz were employed under 

tapping mode. Height images were recorded at 256 × 256 pixels and a scan rate of 0.50 Hz. 

Imaging processing was subsequently performed using Gwyddion software. 

3.2.6 SERS Measurements 

Concentrated EV samples were diluted 1:20 with Milli-Q water. 10 – 20 μL of dilute EV 

samples were drop-cast onto nanohole arrays. EV-water solution was removed from the 

array using cohesive properties allowed by a Kimwipe absorbent paper (Kimberly-Clark 

Inc.). The edge of the absorbent paper was placed on the corner of the solution droplet, 

allowing solution removal via capillary action. This capillary flow also induces EVs to 

locate and stay in the nanoholes. Lastly, EV solutions were allowed to dry for 15 – 30 

minutes prior to SERS measurements.  SERS spectra presented in Figure 3-5 were 

acquired with a LabRAM HR spectrometer (Horiba Scientific) using a 632.8 nm excitation 

laser source, 600 grooves/mm grating, 100 × objective (N.A. = 0.9), and 200 μm pinhole. 

Laser power was set to 2.5 mW with an acquisition time of 60 seconds per spectrum. SERS 

spectra presented in Figure 3-3 and Figure 3-6 were extracted from SERS maps that were 

acquired with an XploRATM PLUS spectrometer (Horiba Scientific) using a 785 nm 

excitation laser source, 600 grooves/mm grating, 100 × objective (N.A. = 0.9), and 100 μm 

pinhole. Laser power was set to 5 mW with an acquisition time of 4 seconds per spectrum. 
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3.2.7 Statistical Analysis and Machine Learning 

All spectra were normalized prior to PCA. The first 19 PCs were selected to explain 98% 

of variance among spectra. After score plots were constructed, 95% confidence ellipses 

were fitted around each cluster type. The first 19 PCs were then used as input data for five 

different machine learning algorithms: logistic regression, support vector machine, random 

forest, Naïve Bayes, and CN2 rule induction. In each machine learning case, models were 

tested using leave-one-out cross validation. PCA and machine learning were performed 

using Orange software (version 3.27.1). 

3.3 Results and Discussion 

3.3.1 Nanohole Array Fabrication and Characterization 

EBL is a nanofabrication technique used to create nanostructures with 20 nm spatial 

resolution. Nanostructures are fabricated by scanning a focused beam of electrons from an 

SEM onto an electron-sensitive photoresist, which undergoes chemical changes in exposed 

areas. The EBL nanofabrication process is illustrated in Figure 3-1A. Some substrates, 

such as the glass coverslips used here, additionally require the application of a conductive 

layer on top of the resist to prevent charging on the substrate surface during the inscription 

of the pattern, which minimizes the loss of resolution when the substrate is exposed to the 

electron beam. Following exposure, the substrate is developed in a chemical bath to remove 

some of the resist and reveal the desired pattern. For the purpose of fabricating nanohole 

arrays, a negative-tone resist is desired, and ma-N 2405 was used. Negative-tone resists 

undergo cross-linking in exposed areas, and non-exposed regions are removed during 

development, thus producing the reverse or “negative” image of the final pattern. For 

nanohole arrays, this “negative” image translates to nanopillar arrays (Figure 3-1B). Since 

the objective of the work is to use the nanohole arrays in SERS sensing, metals must be 

deposited onto the developed substrate for the propagation of plasmons. Gold was selected 

for these experiments due to its greater stability in air compared to other common SERS-

active metals such as silver and copper. Finally, the metallic substrate is placed into a 

chemical bath to remove any remaining resist and reveal the final nanoholes in a process 

called lift-off (Figure 3-1C). 
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Figure 3-1: (A) Schematic illustration of nanohole array fabrication by EBL using a 

negative-tone resist, with example SEM images of 700 nm circular arrays (B) before 

lift-off and (C) after lift-off (scale bars = 2 μm). 

Gold nanohole arrays of varying size (100 – 1000 nm) and shape were fabricated by EBL, 

imaged by SEM, and characterized by vis-NIR spectroscopy. Shapes explored for these 

arrays consisted of triangles (Figure 3-2A,D), squares (Figure 3-2B,E), and circles 

(Figure 3-2C,F). Fallen nanopillars or nanocaps are visible on the smaller-sized arrays 

(Figure 3-2D-F) and not on the larger-sized arrays (Figure 3-2A-C) since negative resists 

become increasingly difficult to remove as hole size decreases. Nevertheless, smaller 

arrays are still suitable for EV capture if the nanocaps do not collapse directly into the 

holes. Absorption measurements were subsequently performed to determine the position 

of their plasmonic resonances, as shown on the triangular arrays (Figure 3-2G,H). Two 

resonance wavelengths are observed: one around 650 – 690 nm, and another around 750 – 

780 nm. Similar results were observed with the circular and square arrays, and is consistent 

with the results previously reported by our group.[31] When the excitation wavelength 

matches their resonance wavelengths (i.e., 633 and 785 nm), the conduction electrons at 

the metal surface of the arrays are driven to collective oscillation at a frequency referred to 

as the LSPR.[35] The higher energy band around 650 – 690 nm is generally referred to as 

the quadrupolar resonance, while the lower energy band around 750 – 780 nm is referred 
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to as the dipolar resonance. Consequently, large enhancements of the local electromagnetic 

fields of radiation are confined at the vicinity of the nanoholes. Since the EVs are smaller 

in diameter compared to the hole sizes, we expect EVs to be captured by the nanoholes and 

their Raman signals to be enhanced as a result. 

 

Figure 3-2: SEM images of 1000 nm (A) triangular, (B) square, and (C) circular 

arrays, and 500 nm (D) triangular, (E) square, and (F) circular arrays (scale bars = 1 
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μm). (G) Background-corrected absorption spectra of 500 – 1000 nm triangular 

arrays and (H) corresponding raw absorption spectra. 

The trapping capabilities of these nanohole arrays have been previously published by our 

group, both by polystyrene beads as proof-of-concept, as well as with EVs themselves.[31] 

Trapping of the EVs is enabled by the flow of the EV-containing solution and the size 

match between the EVs and the nanohole cusps. However, trapping of small EVs cannot 

be observed optically due to the diffraction limited spatial resolution of our optical 

measurement. Therefore, blind SERS mapping over large areas of the nanohole arrays is 

necessary to reveal which holes are filled with one or more EVs (areas with signal) and 

which holes are empty (areas without signal). SERS mapping experiments showed that 

approximately 12 % of the holes were occupied by one or more EVs (Figure 3-3). For 

SERS of EVs, the circular arrays were the least preferential due to a lower throughput from 

the EBL process compared to the triangular and square arrays. This lower throughput could 

potentially be due to the fact that the corners of the triangles and squares provided more 

anchoring points for the pillars with three and four points, respectively. Conversely, the 

highest throughput of arrays was achieved with the square arrays, allowing more 

opportunity for the square arrays to capture EVs. Therefore, square arrays were generally 

preferred for SERS experiments. By utilizing these SERS platforms in conjunction with 

lasers of excitation wavelengths that match their LSPRs, we are able to study samples with 

inherently weak Raman signals without the need to increase laser power or accumulation 

time, which is likely to burn the samples, or the need to use a higher energy laser 

wavelength (i.e., green laser), which is likely to induce high background fluorescence.[36] 
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Figure 3-3: (A) SERS map comprised of 100 spectra of BM-MSC EVs over an area of 

16 1.0 μm-sized square nanoholes, where high intensity areas (blue) correspond to 

trapped EVs and low intensity areas (red) correspond to empty holes. (B) SERS map 

from (A) smoothed and overlaid with an optical image of the array and (C) 

corresponding spectra of points (1) – (3) from (B), with spectra shifted vertically for 

clarity. 

3.3.2 EV Characterization 

AFM was employed for EV imaging and height quantification since it causes minimal 

deformations to the soft EV surface when scanning in tapping mode. For AFM imaging, 

dilute solutions of EVs were drop-casted on clean glass coverslips and allowed to dry. 

AFM scans of EVs isolated from both Panc-MSC (Figure 3-4A) and BM-MSC (Figure 3-

4C) revealed small, quasi-spherical objects on the substrate surface. A cross-section of one 

of these features is shown in Figure 3-4B. The average height of the adhered EVs from the 

Panc-MSC samples measured over 106 individual EVs was 210 ± 40 nm, with the size 

distribution ranging from 110 – 330 nm (Figure 3-4D). Similarly, the average height of 

the adhered EVs from the BM-MSC samples was 190 ± 50 nm, with a size distribution of 

50 – 300 nm. Recalling that microvesicles range in diameter from 100 – 1000 nm, these 

distributions are well within the accepted EV size range. 
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Figure 3-4: (A) (5 × 5) μm2 AFM scan of Panc-MSC EVs on a bare glass coverslip and 

(B) the cross-section of a single EV, as indicated by the white line in (A). (C) (1 × 1) 

μm2 AFM scan of an individual BM-MSC EV on a bare glass coverslip. (D) A 

histogram representing the height distribution of a Panc-MSC sample containing 106 

EVs. 

Initial SERS characterization of EVs from the Panc-MSC sample was conducted with an 

excitation wavelength set at 632.8 nm, which utilizes the quadrupolar resonance of the 

nanohole arrays. Spectra were acquired by focusing a 632.8 nm laser with a 100 × objective 

(N.A. = 0.90) on holes presumably containing EVs, and a background spectrum was 

recorded by focusing the same laser off the array on flat gold. The resulting spectra of three 

individual EVs reveal an abundance of  peaks in the 700 – 1800 cm-1 fingerprint region, as 

expected since this is a significant Raman spectral window for biological samples, whereas 

none are visible in the background spectrum (Figure 3-5). Since the LSPR decays 

exponentially away from the platform surface, the effective sensing zone of the plasmonic 

arrays is confined within the first 10 – 20 nm away from the metal surface.[37] Since plasma 

membranes are typically about 5 nm thick, we expect to detect not only SERS signals 
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corresponding to the surface content of the EVs (i.e., surface proteins and lipids), but also 

the SERS signals of their cargo (i.e., proteins and genetic material). The analysis of the 

collected spectra showed that some Raman modes are common among the three EVs, 

which are summarized in Table 3-1. Protein peaks are observed at 1052 cm-1 and 1242 cm-

1 which can be assigned to C-O/C-N stretching and amide III, respectively. Additionally, 

amino acid peaks are present at 1210 cm-1, which is found in tyrosine and phenylalanine, 

and at 1580 cm-1, which is found in phenylalanine. Nucleic acid peaks are present at 791 

cm-1 and 1509 cm-1, corresponding to pyrimidines and adenine/cytosine, respectively. The 

peak present at 1308 cm-1 can be attributed to the CH2/CH3 twisting, bending, or wagging 

in lipids or collagen. Although these peaks are shared in a couple of spectra, there is still 

variety in the spectra in terms of peak positions and intensities, which can be attributed to 

the molecular heterogeneity of EVs. 

 

Figure 3-5: Three SERS spectra of Panc-MSC EVs acquired with a 632.8 nm laser 

with a background spectrum for comparison and common peaks highlighted in blue. 
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Table 3-1: Assignments of common peaks shared among Panc-MSC EV spectra from 

Figure 3-5. 

Peak (cm-1) Presumed Origin Ref. Peak (cm-1) Ref. 

791 Pyrimidine 791 [38] 

1052 C-O/C-N stretch in proteins 1053 [38] 

1193 Ring stretch, CH bend, CH2 twist 1194 [39] 

1210 C-C6H5 stretch in tyrosine and 

phenylalanine 

1210 [38] 

1242 Amide III 1243 [38,40] 

1308 CH2/CH3 twisting, bending, and wagging 

in lipids or collagen 

1308 [38] 

1413 Ring stretch 1412 [38] 

1509 Ring breathing mode of adenine and 

cytosine 

1510 [38] 

1580 C-C stretch and C=C bend of 

phenylalanine 

1580 [38] 

While we were able to collect spectra for the Panc-MSC EVs at 632.8 nm, the spectral 

acquisition for the BM-MSC EVs was unsuccessful at the same wavelength due to the 

presence of a fluorescence background. To mitigate the background fluorescence, we 

switched to a 785 nm laser, thus exploiting the dipolar resonance of the nanohole arrays. 

Data sets for Panc-MSC and BM-MSC EVs comprised of 25 and 19 SERS spectra, 

respectively, were obtained with a 785 nm excitation laser source. Since EVs of this size 

are not visible with an optical microscope, we located EVs on the nanohole arrays by 

mapping areas approximately (10 × 10) μm2 in size. Similarly to the Panc-MSC results 

obtained with the 632.8 nm laser, the spectra corresponding to Panc-MSC (Figure 3-6A) 

and BM-MSC (Figure 3-6B) EVs vary considerably, but common peaks within each data 

set can still be identified. These common peaks are summarized in Table 3-2. Regarding 

the SERS spectra of the Panc-MSC EVs (Figure 3-6A), protein peaks are identifiable at 

813 cm-1 and 1151 cm-1, corresponding to C-C and C-N stretching, respectively. 

Additionally, the peak at 1274 cm-1 belongs to amide III. Many amino acid peaks are 
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located at 761 cm-1 (tryptophan), 873 cm-1 (hydroxyproline, tryptophan), 1206 cm-1 

(hydroxyproline, tyrosine), and 1364 cm-1 (tryptophan). Lastly, the peak at 1334 cm-1 can 

be attributed to CH2/CH3 twisting, bending, or wagging in  collagen or nucleic acids. 

Interestingly, there are far less peaks attributable to nucleic acids for the Panc-MSC EV 

spectra obtained with the 785 nm laser compared to those obtained with the 632.8 nm laser, 

and far more attributable to proteins and amino acids. The spectral differences between 

Panc-MSC EVs acquired with the 632.8 nm and 785 nm lasers could be explained by EV 

rupturing due to differences in laser energy, since the 632.8 nm excitation wavelength used 

to collect the spectra in Figure 3-5 is higher in energy compared to the 785 nm excitation 

wavelength used to collect the spectra in Figure 3-6A. Additionally, the spectra presented 

in Figure 3-5 were gathered with longer acquisition times than the spectra presented in 

Figure 3-6A, at 60 and 4 seconds, respectively. Although not specific to EVs, targeted 

laser-induced cell lysis, or the breakdown of the cell membrane, has been demonstrated, 

and a similar process could be unfolding here.[41,42] Since genetic material carried in EVs 

is contained by a membrane typically decorated with surface proteins, we might expect to 

see more protein signals compared to nucleic acid signals when the membrane is intact. 

Regarding the SERS spectra of the BM-MSC EV (Figure 3-6B), many protein peaks are 

also visible at 866 cm-1, 1158 cm-1, 1236 cm-1, 1265 cm-1, and 1658 cm-1. A few nucleic 

acid peaks can be additionally seen at 803 cm-1 (uracil), 1480 cm-1 (guanine and adenine), 

and 1612 cm-1 (cytosine). A lipid peak can also be found at 1077 cm-1, corresponding to a 

C-C/C-O stretch. 
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Figure 3-6: SERS spectra of (A) Panc-MSC EVs and (B) BM-MSC EVs acquired with 

a 785 nm laser, where individual spectra are represented by lighter lines, average 

spectra are represented by darker lines, and common spectral peaks are highlighted 

in yellow. 
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Table 3-2: Assignments of common peaks shared among BM-MSC and Panc-MSC 

EV spectra from Figure 3-6. 

Peak (cm-1) BM Panc Presumed Origin Ref. Peak (cm-1) Ref. 

761  x Ring breathing in tryptophan 760 [38] 

803 x  Ring breathing mode in uracil 802 [38] 

813  x C-C stretch in collagen 813 [38] 

836  x Deformative vibrations of 

amine groups 

838 [38] 

866 x  C-C stretch in collagen 868 [39] 

873  x Hydroxyproline, tryptophan 873 [38] 

920  x C-C stretch of proline 

ring/glucose/lactic acid; 

collagen assignment 

920 [38] 

998 x  C-O in ribose, C-C 996 [29,38] 

1061 x  C-C in-plane bending; C-N 

stretching 

1053 [38] 

1077 x  C-C or C-O stretch in lipids 1078 [43] 

1151  x C-N stretch in proteins 1152 [38,43] 

1158 x  C-C/C-N stretch in proteins 1158 [38] 

1206  x Hydroxyproline, tyrosine 

(collagen assignment) 

1206 [38] 

1236 x  Amide III 1235 [38] 

1265 x  Amide III (collagen 

assignment) 

1265 [43] 

1274  x Amide III 1275 [38] 

1334  x CH2CH3 twisting and wagging 

in collagen and nucleic acids 

1335 [38,43] 

1364  x Tryptophan 1365 [38] 

1400 x  N-H in-plane deformation 1400 [38] 

1480 x  Ring breathing mode in 

guanine and adenine 

1485 [38] 
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Peak (cm-1) BM Panc Presumed Origin Ref. Peak (cm-1) Ref. 

1500  x N-H bending 1506 [38] 

1528  x In-plane vibrations of -C=C- 1528 [40] 

1612 x  Cytosine (NH2) 1610 [38] 

1658 x  Amide I (α-helix) 1658 [38] 

3.3.3 Statistical Analysis and Machine Learning 

PCA was employed to reduce the dimensionality of the spectral data sets and to determine 

the main compositional differences between the Panc-MSC and BM-MSC EVs. With 

respect to the spectra presented in Figure 3-6, the first principal component (PC1) that 

explains 50.7 % of variance corresponds to a protein peak at 1236 cm-1, which belongs to 

amide III. The second principal component (PC2) that explains 15.5 % of variance 

corresponds to an amino acid peak at 761 cm-1, which corresponds to tryptophan. However, 

plotting PC1 versus PC2 reveals a large overlap in data between the two groups, limiting 

the ability to separate the two EV types (Figure 3-7A). We additionally plotted PC1 versus 

the third principal component (PC3), which accounts for 7.7 % of variance and corresponds 

to a peak at 1528 cm-1 (in-plane -C=C- vibrations). In the second score plot, both data sets 

are clustered more tightly compared to the first score plot, as evidenced by the smaller 

confidence ellipses surrounding the former compared to the latter (Figure 3-7B). However, 

there was still a great amount of overlap between the two ellipses, and we could only 

classify the two EV groups with 82 % accuracy, 74 % sensitivity, and 84 % specificity. 

It is not uncommon for PCA to perform poorly in terms of classification tasks since PCA 

ignores class labels while attempting to maximize variance, and often PCA is used in 

conjugation with other classification techniques to improve class separability.[44] To 

mitigate this problem, we used the PC scores as classifiers in various machine learning 

algorithms. Machine learning is a powerful and automatized technique that can be used to 

make predictions about data without being explicitly programmed for these tasks. Treating 

spectral data sets with PCA is favored when exploring classification techniques by machine 

learning since smaller data sets are less computationally demanding for machine learning 

algorithms, and therefore faster. Furthermore, feeding raw spectral data to a machine 

learning algorithm can lead to overfitting due to the high dimensionality of the data.[45] 



103 

 

Machine learning algorithms in conjunction with the PCA data obtained were thus explored 

to increase class separation between the BM- and Panc-MSC EV spectral data as well as 

classification accuracy.  

Five different machine learning algorithms were employed: random forest (RF), SVM, 

Naïve Bayes (NB), CN2 induction (CN2), and logistic regression (LR). RF is a technique 

that includes an ensemble of decision trees, in which data are modeled in hierarchical 

structures by a series of if/else statements.[46,47] SVM creates an optimal separating line for 

the classification of all the input data into different classes, while NB is a statistical method 

that computes the probability of an input’s relevance to a pre-defined class.[47] In rule 

induction systems such as CN2, rules are created that fit the example cases, and solutions 

are found by linking rules to known facts (i.e., the data set).[48] Lastly, LR calculates the 

probability of class membership based on the sigmoid or logistic function.[49] Each model 

was tested using LOOCV to minimize bias that could occur when training with a small 

sample size. In the LOOCV procedure, one spectrum is held as a test sample while the 

remaining 43 spectra are used to train the model, until each spectrum has been used as a 

test sample once. 

By visualizing the output scores, we observed that RF could not significantly separate the 

two groups of EVs, while NB and LR performed the best in terms of class separation 

(Figure 3-7C). To further assess the models, we plotted ROC curves and determined 

AUCS. While all five models had high AUC values, NB, RF, and LR outperformed CN2 

and SVM with AUC values of 0.901, 0.921, and 0.926, respectively, compared to 0.866 

and 0.891 (Figure 3-7D). Since AUC values are quite close together, it is necessary to also 

compare the models in terms of classification accuracy, sensitivity, and specificity (Table 

3-3). CN2 had an unfavorable accuracy of 80 %, which was even lower than the accuracy 

achieved using PCA only. SVM, RF, and NB performed marginally better than PCA only 

with accuracies of 84 % each. LR was able to achieve a high accuracy of 89 %, as well as 

a high sensitivity and specificity of 89 % and 88 %, respectively. While all five machine 

learning algorithms performed well in terms of differentiating the Panc- and BM-MSC 

EVs, LR is the most favorable approach for this data set, considering the high AUC, 

accuracy, sensitivity, and specificity achieved compared to the four other algorithms. 
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Figure 3-7: PCA score plots of Panc-MSC and BM-MSC clusters constructed with 

(A) the first and second PCs and (B) the first and third PCs, where one data point 

corresponds to one SERS spectrum. (C) Comparison of final output scores of data 

given by PCA only (PC1 vs. PC3) and five machine learning algorithms, where one 

data point corresponds to one SERS spectrum. (D) ROC curves comparing various 

machine learning algorithms. 
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Table 3-3: Comparison of abilities of PCA and various machine learning algorithms 

to discriminate BM-MSC and Panc-MSC EVs based on SERS spectra. 

Model Sensitivity Specificity Accuracy 

PCA Only (PC1 vs. PC3) 74 % 84 % 82 % 

Logistic Regression 89 % 88 % 89 % 

Support Vector Machine 89 % 80 % 84 % 

Random Forest 84 % 84 % 84 % 

Naïve Bayes 95 % 76 % 84 % 

CN2 Rule Induction 79 % 80 % 80 % 

In terms of differentiating MSC-derived EVs from different sources, our model works 

comparatively well with respect to other published studies, such as Gualerzi et al., who 

achieved a classification accuracy of 93.7 %.[29] Although this accuracy is higher than that 

achieved by our PCA-LR model, it is important to note that the spectra collected by 

Gualerzi et al. had to undergo significant treatment prior to data analysis to remove 

autofluorescence and background induced by their 532 nm laser. The use of a SERS 

platform and a lower energy excitation wavelength (i.e., 785 nm) usually removes the need 

for significant data treatment for better peak resolution, as demonstrated by the spectra we 

obtained in this study (Figure 3-6) and highly simplifies the data analysis.  

3.4 Conclusions 

Plasmonically active nanohole arrays were used to trap single EVs isolated from Panc- and 

BM-MSCs, which were subsequently analyzed by SERS. Although the nanohole arrays are 

plasmonically active in the red and near-infrared wavelength regions, we determined that 

the near-infrared (785 nm) laser was the most suitable for probing these biological samples. 

By irradiating both Panc-MSC and BM-MSC EVs with the 785 nm laser, we found that 

the SERS spectra for both groups contained predominantly protein peaks, as we would 

expect to find on EV membrane surfaces, as well as some nucleic acid peaks. PCA was 

employed to determine the main compositional differences between these two EV sources. 

We determined that the peaks responsible for the most variance were located at 1236 cm-

1, corresponding to amide III, 761 cm-1, belonging to tryptophan, and 1528 cm-1, 
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corresponding to in-plane -C=C- vibrations. PC scores were then used as simple classifiers 

in training machine learning algorithms to separate the Panc- and BM-MSC EVs. Using 

simpler classifiers instead of the entire spectral data lowers the computational demand and 

time required to complete this classification task. With a logistic regression machine 

learning algorithm, we were able to distinguish between the two EV types with 89 % 

accuracy, 89 % sensitivity, and 88 % specificity. In future work, we would like to challenge 

these platforms with cancer-derived EVs to explore their feasibility as a tool in disease 

detection and diagnosis. 

3.5 References 

1. Jing, H.; He, X.; Zheng, J. Transl. Res. 2018, 196, 1-16. 

2. Xin, H.; Li, Y.; Buller, B.; Katakowski, M.; Zhang, Y.; Wang, X.; Shang, X.; Zhang, Z. 

G.; Chopp, M. Stem Cells 2012, 30, 1556-1564. 

3. Takeda, Y. S.; Xu, Q. PLoS ONE 2015, 10, e0135111. 

4. El Bassit, G.; Patel, R. S.; Carter, G.; Shibu, V.; Patel, A. A.; Song, S.; Murr, M.; Cooper, 

D. R.; Bickford, P. C.; Patel, N. A. Endocrinology 2017, 158, 183-195. 

5. Ibrahim, Ahmed G.-E.; Cheng, K.; Marbán, E. Stem Cell Rep. 2014, 2, 606-619. 

6. Zhao, Y.; Sun, X.; Cao, W.; Ma, J.; Sun, L.; Qian, H.; Zhu, W.; Xu, W. Stem Cells Int. 

2015, 2015, 761643. 

7. Agarwal, U.; George, A.; Bhutani, S.; Ghosh-Choudhary, S.; Maxwell, J. T.; Brown, M. 

E.; Mehta, Y.; Platt, M. O.; Liang, Y.; Sahoo, S., et al. Circ. Res. 2017, 120, 701-712. 

8. Tan, C. Y.; Lai, R. C.; Wong, W.; Dan, Y. Y.; Lim, S. K.; Ho, H. K. Stem Cell Res. Ther. 

2014, 5, 76. 

9. Nojima, H.; Freeman, C. M.; Schuster, R. M.; Japtok, L.; Kleuser, B.; Edwards, M. J.; 

Gulbins, E.; Lentsch, A. B. J. Hepatol. 2016, 64, 60-68. 



107 

 

10. Borges, F. T.; Melo, S. A.; Özdemir, B. C.; Kato, N.; Revuelta, I.; Miller, C. A.; Gattone 

Ii, V. H.; LeBleu, V. S.; Kalluri, R. J. Am. Soc. Nephrol. 2013, 24, 385-392. 

11. Zhou, Y.; Xu, H.; Xu, W.; Wang, B.; Wu, H.; Tao, Y.; Zhang, B.; Wang, M.; Mao, F.; 

Yan, Y., et al. Stem Cell Res. Ther. 2013, 4, 34. 

12. Jiang, Z. Z.; Liu, Y. M.; Niu, X.; Yin, J. Y.; Hu, B.; Guo, S. C.; Fan, Y.; Wang, Y.; 

Wang, N. S. Stem Cell Res. Ther. 2016, 7, 24. 

13. Zhang, J.; Chen, C.; Hu, B.; Niu, X.; Liu, X.; Zhang, G.; Zhang, C.; Li, Q.; Wang, Y. 

Int. J. Biol. Sci. 2016, 12, 1472-1487. 

14. Li, X.; Liu, L.; Yang, J.; Yu, Y.; Chai, J.; Wang, L.; Ma, L.; Yin, H. EBioMedicine 

2016, 8, 72-82. 

15. Zhao, B.; Zhang, Y.; Han, S.; Zhang, W.; Zhou, Q.; Guan, H.; Liu, J.; Shi, J.; Su, L.; 

Hu, D. J. Mol. Histol. 2017, 48, 121-132. 

16. Furuta, T.; Miyaki, S.; Ishitobi, H.; Ogura, T.; Kato, Y.; Kamei, N.; Miyado, K.; 

Higashi, Y.; Ochi, M. Stem Cells Transl. Med. 2016, 5, 1620-1630. 

17. Qi, X.; Zhang, J.; Yuan, H.; Xu, Z.; Li, Q.; Niu, X.; Hu, B.; Wang, Y.; Li, X. Int. J. 

Biol. Sci. 2016, 12, 836-849. 

18. Zhang, S.; Chu, W. C.; Lai, R. C.; Lim, S. K.; Hui, J. H. P.; Toh, W. S. Osteoarthr. 

Cartil. 2016, 24, 2135-2140. 

19. Zhu, Y.; Wang, Y.; Zhao, B.; Niu, X.; Hu, B.; Li, Q.; Zhang, J.; Ding, J.; Chen, Y.; 

Wang, Y. Stem Cell Res. Ther. 2017, 8, 64. 

20. Nakamura, Y.; Miyaki, S.; Ishitobi, H.; Matsuyama, S.; Nakasa, T.; Kamei, N.; 

Akimoto, T.; Higashi, Y.; Ochi, M. FEBS Lett. 2015, 589, 1257-1265. 

21. Choi, J. S.; Yoon, H. I.; Lee, K. S.; Choi, Y. C.; Yang, S. H.; Kim, I.-S.; Cho, Y. W. J. 

Control. Release 2016, 222, 107-115. 



108 

 

22. Zhang, Y.; Chopp, M.; Zhang, Z. G.; Katakowski, M.; Xin, H.; Qu, C.; Ali, M.; 

Mahmood, A.; Xiong, Y. Neurochem. Int. 2017, 111, 69-81. 

23. Mead, B.; Tomarev, S. Stem Cells Transl. Med. 2017, 6, 1273-1285. 

24. Teng, X.; Chen, L.; Chen, W.; Yang, J.; Yang, Z.; Shen, Z. Cell. Physiol. Biochem. 

2015, 37, 2415-2424. 

25. Tomasoni, S.; Longaretti, L.; Rota, C.; Morigi, M.; Conti, S.; Gotti, E.; Capelli, C.; 

Introna, M.; Remuzzi, G.; Benigni, A. Stem Cells Dev. 2013, 22, 772-780. 

26. Shpacovitch, V.; Hergenröder, R. Anal. Chim. Acta 2018, 1005, 1-15. 

27. van Niel, G.; D'Angelo, G.; Raposo, G. Nat. Rev. Mol. Cell Biol. 2018, 19, 213-228. 

28. Möller, A.; Lobb, R. J. Nat. Rev. Cancer 2020, 20, 697-709. 

29. Gualerzi, A.; Niada, S.; Giannasi, C.; Picciolini, S.; Morasso, C.; Vanna, R.; Rossella, 

V.; Masserini, M.; Bedoni, M.; Ciceri, F., et al. Sci. Rep. 2017, 7, 9820. 

30. Gualerzi, A.; Kooijmans, S. A. A.; Niada, S.; Picciolini, S.; Brini, A. T.; Camussi, G.; 

Bedoni, M. J. Extracell. Vesicles 2019, 8, 1568780. 

31. Kaufman, L.; Cooper, T.; Wallace, G.; Hawke, D.; Betts, D.; Hess, D.; Lagugné-

Labarthet, F., Trapping and SERS Identification of Extracellular Vesicles Using Nanohole 

Arrays. In Proc. SPIE 10894, Plasmonics in Biology and Medicine XVI, 108940B: 2019. 

32. Sherman, S. E.; Kuljanin, M.; Cooper, T. T.; Putman, D. M.; Lajoie, G. A.; Hess, D. 

A. Stem Cells 2017, 35, 1542-1553. 

33. Cooper, T. T.; Sherman, S. E.; Bell, G. I.; Ma, J.; Kuljanin, M.; Jose, S. E.; Lajoie, G. 

A.; Hess, D. A. Stem Cells 2020, 38, 666-682. 

34. Cooper, T. T.; Sherman, S. E.; Bell, G. I.; Dayarathna, T.; McRae, D. M.; Ma, J.; 

Lagugné-Labarthet, F.; Pasternak, S. H.; Lajoie, G. A.; Hess, D. A. Stem Cells Dev. 2021, 

30, 247-264. 



109 

 

35. Haynes, C. L.; McFarland, A. D.; Van Duyne, R. P. Anal. Chem. 2005, 77, 338 A-346 

A. 

36. Sur, U. K. Resonance 2010, 15, 154-164. 

37. Guo, L.; Jackman, J. A.; Yang, H.-H.; Chen, P.; Cho, N.-J.; Kim, D.-H. Nano Today 

2015, 10, 213-239. 

38. Talari, A. C. S.; Movasaghi, Z.; Rehman, S.; Rehman, I. U. Appl. Spectrosc. Rev. 2015, 

50, 46-111. 

39. Rehman, I. U.; Movasaghi, Z.; Rehman, S. FTIR and Raman Characteristic Peak 

Frequencies in Biological Studies. In Vibrational Spectroscopy for Tissue Analysis, CRC 

Press: Boca Raton, 2012; Vol. 1, pp 213-294. 

40. Stremersch, S.; Marro, M.; Pinchasik, B.-E.; Baatsen, P.; Hendrix, A.; De Smedt, S. 

C.; Loza-Alvarez, P.; Skirtach, A. G.; Raemdonck, K.; Braeckmans, K. Small 2016, 12, 

3292-3301. 

41. Rau, K. R.; Guerra, A.; Vogel, A.; Venugopalan, V. Appl. Phys. Lett. 2004, 84, 2940-

2942. 

42. Gazor, M.; Talesh, S. S. A.; kavianpour, A.; Khatami, M.; Javidanbardan, A.; Hosseini, 

S. N. Biotechnol. Bioproc. E. 2018, 23, 49-54. 

43. Huang, Z.; McWilliams, A.; Lui, H.; McLean, D. I.; Lam, S.; Zeng, H. Int. J. Cancer 

2003, 107, 1047-1052. 

44. Shin, H.; Oh, S.; Hong, S.; Kang, M.; Kang, D.; Ji, Y.-G.; Choi, B. H.; Kang, K.-W.; 

Jeong, H.; Park, Y., et al. ACS Nano 2020, 14, 5435-5444. 

45. Howley, T.; Madden, M. G.; O'Connell, M.-L.; Ryder, A. G., The Effect of Principal 

Component Analysis on Machine Learning Accuracy with High Dimensional Spectral 

Data. In Proc. AI-2005, Applications and Innovcations in Intelligent Systems XII: 2005; 

pp 209-222. 



110 

 

46. Qi, Y., Random Forest for Bioinformatics. In Ensemble Machine Learning: Methods 

and Applications, Zhang, C.; Ma, Y., Eds. Springer US: Boston, MA, 2012; pp 307-323. 

47. Binkhonain, M.; Zhao, L. Expert Syst. Appl. 2019, 1, 100001. 

48. Swe, S. M.; Sett, K. M. Int. J. Trend Sci. Res. Dev. 2019, 3, 1581-1584. 

49. Dreiseitl, S.; Ohno-Machado, L. J. Biomed. Inform. 2002, 35, 352-359. 

 



111 

 

Chapter 4  

4 Characterization of Ovarian Cancer-Derived 
Extracellular Vesicles by Surface-Enhanced Raman 
Spectroscopy 

A version of this work has been published in the journal Analyst: Ćulum, N. M.; Cooper, 

T. T.; Lajoie, G. A.; Dayarathna, T.; Pasternak, S. H.; Liu, J.; Fu, Y.; Postovit, L.-M.; 

Lagugné-Labarthet, F. Characterization of Ovarian Cancer-Derived Extracellular Vesicles 

Derived by Surface Enhanced Raman Spectroscopy. Analyst 2021, Accepted manuscript, 

DOI: 10.1039/d1an01586a. This chapter has been reproduced with permission from the 

Royal Society of Chemistry. 

Ovarian cancer is the most lethal gynecological malignancy, owing to the fact that most 

cases are diagnosed at a late stage. To improve prognosis and reduce mortality, we must 

develop methods for the early diagnosis of ovarian cancer. A step towards early and non-

invasive cancer diagnosis is through the utilization of EVs, which can be thought of as 

nanoscale cancer biomarkers. In this chapter, the gold nanohole arrays presented in Chapter 

3 are again used for the capture of EVs, this time from ovarian cancer (OvCa) cells, and 

subsequent characterization by SERS. Investigated in this chapter are EVs isolated from 

two established OvCa cell lines (OV-90 and OVCAR3), two primary OvCa cell lines 

(EOC6 and EOC18), and one human immortalized ovarian surface epithelial cell line 

(hIOSE) by SERS. The main compositional differences among these groups are identified 

by PCA and machine learning is further employed to discriminate the groups with high 

accuracy, sensitivity, and specificity. 

4.1 Introduction 

In 2021, ovarian cancer is estimated to be the fifth most lethal cancer in the United States 

and the most lethal gynecological malignancy with 13 770 projected deaths.[1] The 5-year 

survival rate for women diagnosed with ovarian cancer is 47 %.[2,3] However, ovarian 

cancer usually presents at a late stage when the 5-year relative survival rate is 27 %, and 

few cases are diagnosed when the tumor is localized with a 5-year relative survival rate of 

92 %.[4] The high mortality rate of ovarian cancer is due to the diagnostic delay arising 
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from the lack of early disease warning signs as well as the lack of early ovarian cancer 

screening options.[3] There is a need for the development of non-invasive approaches for 

the diagnosis of ovarian cancer, particularly at the early stage, which can be achieved by 

the characterization of EVs and the analysis of their biomarkers. 

Cancer-derived EVs and their functions were introduced in Section 1.2.2. Briefly, EVs are 

involved in physio-pathological activities including cancer progression by mediating 

crosstalk between tumor and stromal cells.[5,6] Cancer cells have additionally been  

associated with an increase in EV production in comparison to normal cells, which could 

be related to the specific conditions of the tumor microenvironment.[5] Since EVs carry 

complex biological information from their parent cells, they are particularly interesting in 

cancer research as they can be exploited as cancer biomarkers.[7,8] SERS, as utilized in 

Chapter 3, is a promising technique for EV detection and characterization.[9] SERS analysis 

of cancer-derived EVs has been greatly explored, particularly in breast,[10-16] lung, [17-23] and 

pancreatic cancer.[24-26] Some studies have explored the SERS characterization of OvCa-

derived EVs,[27-30] but analysis has generally been less thorough compared to the other 

cancer-derived EVs listed. 

Early work in SERS characterization of OvCa EVs dates back to 2014, in which simple 

AuNPs were utilized to analyze EVs from cell line A2780 grown in normoxic (normal O2) 

and hypoxic (1 % O2) conditions.[27] However, with principal component analysis (PCA) 

followed by discriminant function analysis, the two EV types could be only be 

differentiated with 57.1 % sensitivity and 53.8 % specificity, and accuracy was not 

reported. One year later, a silver film-coated plasmonic nanobowl substrate fabricated by 

soft lithography on flexible polydimethylsiloxane was proposed for SERS analysis of EVs 

isolated from the SKOV-3 cell line.[29] The authors did not evaluate the diagnostic potential 

of the substrate since the purpose of the study was to compare EV purity from different 

isolation methods. In 2017, a more selective approach using a thiolated peptide ligand for 

the capture of EVs from SKOV-3 cells was reported.[28] The ligand was also bound to silver 

NPs by a thiol-metallic bond for SERS analysis. While the authors were able to 

demonstrate the targeted detection of OvCa EVs, they did not perform statistical analysis 

to evaluate the diagnostic potential of the probe, and so accuracy, sensitivity, and 
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specificity were not reported. Most recently in 2020, a simple plasmonic scaffold 

consisting of a cysteamine-treated microscale biosilicate substrate embedded with AgNPs 

was introduced for SERS analysis of EVs.[30] The authors investigated OvCa EVs derived 

from SKOV-3 cells as well as from patients with ovarian and endometrial cancer. With 

PCA-LDA, cancer could be diagnosed with 99.4 % accuracy, 100 % sensitivity, and 99.2 

% specificity. However, the authors warned that these numbers must be interpreted with 

caution given the small sample size used in analysis that could lead to biased results. 

As evidenced by these four studies, most OvCa EVs analyzed by SERS are derived from 

the SKOV-3 cell line. For this work, we sought to characterize EVs derived from OVCAR3 

and OV-90 cells, which are well-established model systems for epithelial ovarian 

adenocarcinomas. Given that most (90 %) malignant ovarian tumors are epithelial in origin, 

and of these cancers, 70 % present as high-grade serous and < 5 % present as low-grade 

serous,[4] we also chose to characterize EVs from high-grade serous (EOC6) and low-grade 

serous (EOC18) primary cell lines. These four cell lines were compared to EVs derived 

from a non-malignant human immortalized ovarian surface epithelial (hIOSE) cell line as 

a control. As a SERS substrate, we again employed gold nanohole arrays fabricated by 

EBL that we have extensively reported and characterized in past work.[31][32] Herein, we 

report SERS spectra of the five aforementioned cell lines and were able to discriminate 

their spectral signals by PCA and logistic regression with extremely high accuracy, 

sensitivity, and specificity of approximately 99 % each. 

4.2 Methods 

4.2.1 Cell Culture 

OV-90 (ATCC® CRL-11732) and NIH:OVCAR3 (ATCC® HTB-161) were obtained 

from the ATCC. Human immortalized surface epithelial cells hIOSE (OSE364) were 

obtained from the Canadian Ovarian Tissue Bank at the BC Cancer Agency.  Primary cell 

lines EOC6 and EOC18 were isolated from the ascites of patients with high-grade and low-

grade serous ovarian cancer, respectively. All cell lines, except OVCAR3, were maintained 

in M199+MCDB105 supplemented with 5 – 15% FBS. NIH:OVCAR3 cells were cultured 

in RPMI-1640 supplemented with 20 % FBS and 5 µg/mL insulin. Media was exchanged 
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with serum-free media for 20 – 30 hours to generate conditioned media (CM) for EV 

purification. All work involving the use of patient samples (cell lines, plasma, and ascites) 

was approved by the Health Research Ethics Board of the Alberta Cancer Committee. 

4.2.2 EV Isolation 

OvCa CM samples were first centrifuged at 200 – 300 × g at 4 °C to pellet cells. 

Supernatants (except CM) were diluted 1:10 in PBS and centrifuged at 3000 × g for 20 

minutes at 4 °C to remove cell debris. To remove large membrane fragments, supernatants 

were spun at 10 000 × g for an additional 20 minutes at 4 °C. Lastly, supernatants were 

ultracentrifuged at 120 000 – 140 000 × g (SW-28 rotor) for 2 hours at 4 °C to pellet EVs 

on an Optima L-100 XP ultracentrifuge (Beckman Coulter). The supernatant was removed 

and EVs were resuspended in 100 – 300 µL of PBS and stored at -80 °C until further use. 

4.2.3 EV Protein Extraction and Digestion 

To prepare CM for proteomic analysis, ~ 30 µg of EVs were lyophilized to dryness and 

reconstituted in 8 M urea, 50 mM ammonium bicarbonate (ABC), 10 mM dithiothreitol 

(DTT), and 2 % SDS lysis buffer. Proteins were sonicated at 10 × 0.5 s pulses (Level 1) 

with a probe sonicator (Fisher Scientific, Waltham, MA), reduced in 10 mM DTT for 30 

minutes at room temperature (RT), alkylated in 100 mM iodoacetamide for 30 minutes at 

RT in the dark, and  precipitated in chloroform/methanol.[33] On-pellet in-solution protein 

digestion was performed in 100 µL of 50 mM ABC (pH 8) by adding 1/50 Trypsin/Lys-C 

(Promega) to digest EV proteins.  EV proteins were incubated at 37 °C overnight (~ 20 h) 

in a ThermoMixer C (Eppendorf) at 900 rpm before acidifying to pH 3 – 4 with 10 % 

formic acid (FA). Salts and detergents were removed from peptide samples using C18 

stagetips made in-house. Briefly, 10 layers were stacked into 200 µL pipette tips and rinsed 

with ice-cold methanol. Stagetips were conditioned with solution A (80/20/0.1 %; 

acetonitrile (ACN)/water/trifluoroacetic acid (TFA)), followed by solution B  (5/95/0.1 %; 

ACN/water/TFA) prior to loading ~ 20 µg of peptides resuspended in solution B. Duplicate 

washes were performed with solution B prior to elution of peptides using solution C 

(80/20/0.1 %; ACN/water/FA) and final elution using a 50/50 mixture of ACN/0.1 % FA. 

Peptides were centrifuged at 45 ⁰C under vacuum and resuspended in 0.1 % FA prior to 
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quantification by the bicinchonic acid assay (BCA) and injection into the mass 

spectrometer.  

4.2.4 Ultraperformance Liquid Chromatography Coupled to 
Tandem Mass Spectrometry (UPLC-MS/MS) 

Peptides were analyzed using an ACQUITY UPLC M-class system (Waters) connected to 

a Q ExactiveTM Plus mass spectrometer (Thermo Scientific) using a nonlinear gradient. 

Buffer A consisted of water/0.1 % FA and buffer B consisted of ACN/0.1 % FA. Peptides 

(~ 1 µg estimated by BCA) were initially loaded onto an ACQUITY UPLC M-Class 

Symmetry C18 Trap Column (100 Å, 5 µm, 180 µm × 20 mm) and trapped for 5 minutes 

at a flow rate of 5 µL/min at 99 % A/1 % B. Peptides were separated on an ACQUITY 

UPLC M-Class Peptide BEH C18 Column (130 Å, 1.7 µm, 75 µm × 250 mm) operating at 

a flow rate of 300 nL/min at 35 °C using a non-linear gradient consisting of 1 – 10 % B, 

10 – 20 % B, 20 – 30 % B, 30 – 40 % B, 40 – 50 % B, 60 – 70 % B, and 80 – 90 % B for 

10 minute intervals before cyclic washing between 5 – 95 % B, equaling 140 minute 

gradient total. Settings for data acquisition on the Q ExactiveTM Plus are outlined in Table 

4-1. 

Table 4-1: Parameters for Q ExactiveTM Plus. 

Parameter Parameter Setting 

Orbitrap Resolution (MS1) 7 × 104 

Mass Range 400 – 1500 m/z 

MS1 Injection Time 200 ms 

MS1 Automatic Gain Control (AGC) Target 3 × 106 ions/cycle 

Lock Mass 445.120025 m/z 

MS2 Detection Fourier Transform 

MS2 Resolution 1.75 × 104  

MS2 AGC Target 2 × 105 ions/cycle 

MS2 Injection Time 50 ms 

Loop Count 12 

Isolation Width 1.2 m/z 
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Parameter Parameter Setting 

Isolation Offset 0.5 m/z 

MS2 Activation Higher-energy C-trap dissociation 

Normalized Collision Energy 25 % 

Dynamic Exclusion 12 

Minimum AGC Target 2 × 103 ions/cycle 

MS2 Intensity Threshold 8 × 104 

Exclusion Duration 30 s 

Charge Exclusion Unassigned, 1, 8, > 8 

Polarity Positive 

4.2.5 UPLC-MS/MS Data Analysis 

MS raw files were searched with de novo peptide sequencing software PEAKS (version 

10.5) using the Human Uniprot database (reviewed only, updated November 2020). Missed 

cleavages were set to 5 and I = L. Cysteine carbamidomethylation was set as a fixed 

modification. Oxidation (M), N-terminal acetylation (protein), and deamidation (NQ) were 

set as variable modifications (maximum number of modifications per peptide = 7) and all 

other settings were left as default. Precursor mass deviation was left at 20 ppm and 4.5 ppm 

for first and main search, respectively. Fragment mass deviation was left at 20 ppm. Protein 

and peptide false discovery rate was set to 0.01 (1 %) and the decoy database was set to 

revert. Proteomic data analysis and visualization was performed in a Python 3+ 

environment, albeit comparison to Vesiclepedia databases was performed using the open-

source FunRich (version 3.1.3) software.  

4.2.6 nFC Measurements 

OvCa EVs were analyzed for the number of microparticles/mL and EV size distribution by 

nanoscale flow cytometry (nFC). Serial injections (2, 5, 10, or 20 mL) of each concentrate 

were diluted to 300 mL with 0.22 mm-filtered PBS within low-attachment 96-well plates 

at RT. EVs were enumerated in duplicate on the Apogee A60 nanoscale flow cytometer 

with autosampler, capable of EV resolution between 150 and 1000 nm.[34] 130 μL of diluted 

CM was injected and analyzed at 1.5 μL/min for 1 minute. The size of secreted 
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microparticles was estimated using silica beads ranging 110 – 1300 nm using properties of 

large-angle light scatter and small-angle light scatter. Silica beads provide a refractive 

index (k = 1.42) that is closer to cells (k = 1.35 – 1.39) than commonly used polystyrene 

beads (k = 1.59). 

4.2.7 Nanohole Array Fabrication 

The nanohole arrays presented in this chapter were fabricated by EBL following the same 

protocol outlined in Section 3.2.1, established by Kaufman et al.[31] 

4.2.8 SERS Measurements 

Concentrated EV samples were diluted 1:20 with Milli-Q water. 10 – 20 μL of dilute EV 

samples were drop-cast onto nanohole arrays and subsequently removed using cohesive 

properties allowed by a Kimwipe absorbent paper (Kimberly-Clark Inc.). The edge of the 

absorbent paper was placed on the corner of the solution droplet, allowing for solution 

removal via capillary action. EV solutions were allowed to dry for 15 – 30 minutes prior 

to SERS measurements. EVs were located in nanoholes by SERS mapping, and spectra 

were extracted from these maps. SERS spectra were acquired with an XploRATM PLUS 

spectrometer (Horiba Scientific) using a 785 nm excitation laser source, 600 grooves/mm 

grating, 100 × objective (N.A. = 0.9), and 100 μm pinhole. Laser power was set to 5 mW 

with an acquisition time of 4 seconds per spectrum. 

4.2.9 Statistical Analysis and Machine Learning 

PCA and machine learning were completed with Orange software (version 3.28.1). All 

SERS spectra were standardized to μ = 0, σ2 = 1 prior to PCA, and outliers were removed 

by the Local Outlier Factor method with contamination set to 10 %. Retained spectra were 

analyzed by PCA and the first 25 PCs were selected to explain 97 % of variance among 

spectra. The first 25 PCs were used as input data in a logistic regression-based machine 

learning algorithm. Models were trained and tested using 5-fold CV. 
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4.3 Results and Discussion 

4.3.1 Validation of EV Size and Proteomic Cargo 

Size quantification of EVs by nFC and proteomic analysis by UPLC-MS/MS was 

conducted to validate the enrichment of EVs by ultracentrifugation (UC) from CM 

generated by four OvCa cell lines and one normal control cell line (Figure 4-1). Amongst 

several methods available for EV purification,[35-38] this study considered UC as an optimal 

balance between EV yield and purity. UC provides a heterogenous mixture of EVs which 

includes both microvesicles and exosomes. Therefore, the use of the term EV throughout 

this study is in accordance with the ISEV.[39] 

 

Figure 4-1: Schematic illustration of nFC and UPLC-MS/MS analysis of OvCa EVs. 

The size distribution of EVs was verified by nFC (Figure 4-2A), estimated by small-angle 

light scatter measurements. In support of previous studies,[34] we demonstrate a near-linear 

detection of particles as the volume of sample analyzed was diminished, indicating 

acceptable EV purity (Figure 4-2B). The majority of EVs detected were estimated to be 

less than 240 nm in diameter (Figure 4-2C), which is consistent with the size of 

microvesicles and exosomes.[40] However, the resolution of exosomes less than 100 nm in 

diameter from background noise was unattainable based on the properties of the cytometer 

used in this study, but subsequent proteomic analysis was able to verify the presence of EV 

markers in each OvCa sample. 
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Figure 4-2: (A) Representative flow cytometry plots (top) and corresponding size 

distributions (bottoms) of EV samples from OV-90 (left) and hIOSE (middle) cell 

lines, as well as conditioned media (right). (B) nFC results revealed a near-linear 

decrease in the number of particles as the volume of sample analyzed diminished. The 

horizontal dashed line indicates the mean particle number when an equal volume of 

background media (PBS) was analyzed. (C) Size distribution of EVs. 

UPLC-MS/MS is a powerful tool to detect and quantify proteomic cargo within EVs 

(Figure 4-3A-B). In total, we identified over 3000 proteins in EVs generated by all five 

cell lines. However, unique proteomic cargo was detected among each. Specifically, 1014 

peptides were shared by EVs from all five cell lines, whereas 138, 410, 115, 304, and 145 
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peptides were unique to hIOSE, OV-90, OVCAR3, EOC6, and EOC18, respectively 

(Figure 4-3C). Distinct proteomic fingerprints were identified by PCA, where PC1 and 

PC2 scores correspond to tetraspanin-8 (TSPAN8) and histone H2A type 1 (HIST1H2A), 

respectively (Figure 4-3D). EVs isolated from OVCAR3, OV-90, and EOC6 each 

demonstrate a distinguishing proteome compared to EVs isolated from hIOSE and EOC18. 

A high PC1 score indicates the presence of TSPAN8 in EVs isolated from OV-90 and 

EOC6, while a high PC2 score indicates the presence of HIST1H2A in EVs isolated from 

OVCAR-3 and OV-90. EVs isolated from hIOSE and EOC18 are both associated with low 

PC1 and PC2 scores, indicating a low presence of TSPAN8 and HIST1H2A in these EVs. 

Furthermore, EVs from hIOSE and EOC18 are clustered closely to one another on the score 

plot, indicating that there is a high similarity between normal EVs and low-grade OvCa 

EVs, as expected. OvCa proteomes identified here were compared with those available in 

the Vesiclepedia database filtered for OvCa cell lines (Figure 4-3E). Of 6202 proteins with 

OvCa EV proteomes in this database, 1429 were shared with EV proteomes identified 

within our samples. Classical EV markers (e.g., CD9/81/63) were also confidently detected 

in EVs isolated from all five cell lines in addition to 22 core exosome proteins recently 

identified by UPLC-MS/MS (Figure 4-3F).[41] Collectively, our nFC and proteomic data 

support UC as a suitable method for the enrichment of EVs for downstream SERS analysis. 
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Figure 4-3: (A) Number of MS1 and MS2 scans for duplicate injections of each EV 

sample. (B) Number of peptides identified by de novo sequencing, which led to 

confident protein identification with false discovery rate (p < 0.01). (C) Venn diagram 

highlighting the distinct proteomics cargo contained within EVs from various OvCa 

cell lines, leading to distinct proteomic “fingerprints” as demonstrated by (D) PCA. 

(E) Overlap of OvCa EV proteomes with Vesiclepedia database filtered for OvCa. (F) 

Heat map indicating that classical EV markers (e.g., CD9/81/63) were confidently 

identified in all OvCa EV samples. 
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4.3.2 EV Characterization by SERS 

Gold nanohole arrays of different shapes (squares, triangles) and sizes (500 nm, 1000 nm) 

were fabricated by EBL as plasmonic substrates for the capture and SERS analysis of 

normal and OvCa-derived EVs. SEM images of these arrays and the characterization of 

their LSPRs can be found in Chapter 3. EVs isolated from the hIOSE cell line serve as a 

control group (Figure 4-4A). The majority of peaks found in hIOSE EVs are attributed to 

proteins and amino acids, which include the peaks at 755 cm-1 (tryptophan), 818 cm-1 (C-

C stretching in collagen), 935 cm-1 (proline, valine, protein backbone), 1029 cm-1 

(phenylalanine), 1303 cm-1 (collagen, amide III), and 1545 cm-1 (amide II).[42,43] Several 

nucleic acid peaks are located at 724 cm-1 (adenine), 787 cm-1 (cytosine, uracil, thymine), 

1185 cm-1 (cytosine, guanine, adenine), 1356 cm-1 (guanine), and 1482 cm-1 (guanine, 

adenine).[42,43] Lipid and carbohydrate peaks can be found at 1254 cm-1 and 865 cm-1, 

respectively.[42,43] A complete list of SERS peaks of hIOSE EVs are summarized in Table 

4-2. 

Table 4-2: Summary of peak assignments of hIOSE EVs, as highlighted in Figure 4-

4A. 

Peak (cm-1) Presumed Origin Ref. Peak (cm-1) Ref. 

630 Glycerol 630 [42,43] 

692 Ring deformation 686 [43] 

724 Ring breathing mode of adenine 725 [42,43] 

755 Symmetric breathing of tryptophan 755 [43] 

787 Ring breathing mode of cytosine, uracil, 

thymine 

786 [42,43] 

818 C-C stretching in collagen 817 [42,43] 

837 Deformative vibrations of amine groups 838 [42,43] 

865 C-C stretching or C-O-C skeletal mode in 

carbohydrates 

868 [42,43] 

935 C-C stretching mode of proline, valine, 

and protein backbone (α-helix); glycogen 

935 [42,43] 

961 Unassigned in protein assignments 963 [42,43] 
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Peak (cm-1) Presumed Origin Ref. Peak (cm-1) Ref. 

1029 Phenylalanine of collagen 1030 [43] 

1090 Symmetric phosphate stretching 

vibrations  

1090 [42,43] 

1185 Cytosine, guanine, adenine 1180 – 1184 [42,43] 

1254 Lipids 1255 [42,43] 

1303 CH2/CH3 twisting, wagging, or bending 

mode of lipid/collagen; amide III 

1302 [42,43] 

1356 Guanine 1355, 1357 [42,43] 

1404 C-H deformation 1404 [42] 

1455 Deoxyribose; CH2 scissoring of proteins 

and lipids 

1455 [43] 

1482 Ring breathing mode of guanine, adenine 1485 [42,43] 

1545 Amide II 1544 [42] 

EVs from two established OvCa cell lines, OV-90 and OVCAR3, serve as cancer models 

(Figure 4-4B). SERS spectra of EVs from both OV-90 and OVCAR3 are dominated by 

protein and amino acid peaks. For OV-90 EVs, these peaks are located at 755 cm-1 

(tryptophan), 908 cm-1 (tyrosine), 1008 cm-1 (phenylalanine), 1036 cm-1 (phenylalanine), 

1151 cm-1 (C-N stretch), 1274 cm-1 (amide III), 1335 cm-1 (collagen, amide III), and 1533 

cm-1 (amide II).[42,43] For OVCAR3 EVs, the protein and amino acid peaks are found at 741 

cm-1 (tryptophan), 818 cm-1 (collagen), 935 cm-1 (proline, valine, protein backbone), 956 

cm-1 (CH3 stretching), 1055 cm-1 (C-O, C-N stretching), 1176 cm-1 (tyrosine), 1197 cm-1 

(tryptophan), 1226 cm-1 (amide III), and 1584 cm-1 (phenylalanine).[42,43] Second most 

abundant for OV-90 and OVCAR3 EVs are nucleic acid peaks. For OV-90 EVs, these 

nucleic acid peaks are located at 675 cm-1 (guanine), 782 cm-1 (thymine, cytosine, uracil), 

822 cm-1 (phosphodiester), 1186 cm-1 (cytosine, guanine, adenine), and 1201 cm-1 (nucleic 

acids and phosphates).[42,43] For OVCAR3 EVs, the nucleic acid peaks are located at 675 

cm-1 (guanine), 724 cm-1 (adenine), 1176 cm-1 (cytosine, guanine), 1376 cm-1 (adenine), 

and 1483 cm-1 (guanine, adenine).[42,43] Carbohydrate peaks in the OV-90 SERS spectrum 

are found at 943 cm-1, 1118 cm-1, and 1370 cm-1, and in the OVCAR3 SERS spectrum are 
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found at 848 cm-1, 929 cm-1, and 994 cm-1.[42,43] Lastly, OV-90 lipid peaks are located at 

714 cm-1, 719 cm-1, and 1467 cm-1, while an OVCAR3 lipid peak is found at 1299 cm-

1.[42,43] The complete list of spectral peaks for OV-90 and OVCAR3 EVs are summarized 

in Table 4-3 and Table 4-4, respectively. 

Table 4-3: Summary of peak assignments of OV-90 EVs, as highlighted in Figure 4-

4B. 

Peak (cm-1) Presumed Origin Ref. Peak (cm-1) Ref. 

632 Glycerol 630 * [42,43] 

675 Ring breathing mode in guanine 678 [42,43] 

714 C-N (membrane phospholipid head); 

adenine 

717 [43] 

719 C-N (membrane phospholipid head), 

symmetric stretch vibration of choline 

group N+(CH3)3; nucleotide 

719 [42,43] 

755 Symmetric breathing of tryptophan 755 * [43] 

782 Ring breathing in thymine, cytosine, 

uracil 

782 [42,43] 

822 Phosphodiester 822 [42,43] 

908 Tyrosine 906 [42] 

943 Skeletal modes in polysaccharides 941 [42,43] 

1008 Phenylalanine 1008 [42,43] 

1036 C-H in-plane bending mode of 

phenylalanine 

1036 [43] 

1118 Glucose 1117 [42,43] 

1151 C-N stretching in proteins 1152 [42,43] 

1186 Cytosine, guanine, adenine 1180 – 1184 * [42,43] 

1201 Nucleic acids and phosphates; aromatic 

C-O and C-N 

1200 [42,43] 

1220 C=N=C stretching 1220 [42,43] 

1274 Amide III 1275 [42,43] 
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Peak (cm-1) Presumed Origin Ref. Peak (cm-1) Ref. 

1335 CH2/CH3 twisting and wagging in 

collagen and nucleic acids; C-N stretching 

in amide III 

1335 [42,43] 

1370 Saccharide band 1370 [42,43] 

1403 C-H deformation 1404 * [42] 

1467 Lipids 1465 [42,43] 

1533 Amide II  1542 [42] 

* Also present in control (hIOSE) spectrum. 

Table 4-4: Summary of peak assignments of OVCAR3 EVs, as highlighted in Figure 

4-4B. 

Peak (cm-1) Presumed Origin Ref. Peak (cm-1) Ref. 

675 Ring breathing mode in guanine 678 [42,43] 

687 Ring deformation 686 * [43] 

724 Ring breathing mode of adenine 725 * [42,43] 

741 DNA, tryptophan 742 [42] 

818 C-C stretching in collagen 817 * [42,43] 

848 C-O-C skeletal mode in carbohydrates 847 [42,43] 

929 Carbohydrates 931 [42,43] 

935 C-C stretching mode of proline, valine, 

and protein backbone (α-helix); glycogen 

935 * [42,43] 

956 CH3 stretching in proteins (α-helix) 951 [42,43] 

994 C-O ribose, C-C 996 [42,43] 

1055 C-O stretching, C-N stretching in proteins 1053 [42,43] 

1176 C-H bending in tyrosine 1176 [42] 

1197 Tryptophan ring breathing 1199 [42] 

1226 Amide III (β-sheet) 1224 [42,43] 

1299 Acyl chains, fatty acids 1298 [42,43] 

1324 CH2/CH3 wagging mode in collagen and 

purine bases 

1324 [42,43] 
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Peak (cm-1) Presumed Origin Ref. Peak (cm-1) Ref. 

1346 Adenine and guanine; C-H deformation of 

proteins 

1344 [43] 

1376 Ring breathing mode of adenine 1376 [43] 

1455 Deoxyribose; CH2 scissoring of proteins 

and lipids 

1455 * [43] 

1483 Ring breathing mode of guanine, adenine 1485 * [42,43] 

1529 -C=C- in-plane vibrations 1525 [42,43] 

1584 C=C bending mode of phenylalanine 1583 [42,43] 

* Also present in control (hIOSE) spectrum. 

EVs from two primary OvCa cell lines, EOC6 and EOC18, were also probed as models of 

high-grade and low-grade serous cancer, respectively (Figure 4-4C). Like the EVs from 

the three aforementioned cell lines, the SERS spectra of EOC6 and EOC18 EVs are 

dominated by protein and amino acid peaks. For EOC6 EVs, these peaks are located at 639 

cm-1 (tyrosine), 939 cm-1 (C-C skeletal stretching), 1003 cm-1 (phenylalanine), 1159 cm-1 

(C-C/C-N stretching), 1162 cm-1 (tyrosine), 1225 cm-1 (amide III), 1265 cm-1 (collagen, 

phenylalanine), 1439 cm-1 (collagen), and 1558 cm-1 (tryptophan, tyrosine, amide II).[42,43] 

For EOC18 EVs, protein and amino acid peaks are found at 756 cm-1 (tryptophan), 852 cm-

1 (proline, hydroxyproline, tyrosine), 935 cm-1 (proline, valine, protein backbone), 987 cm-

1 (phenylalanine), 1032 cm-1 (phenylalanine, proline), 1209 cm-1 (tryptophan, 

phenylalanine), 1248 cm-1 (amide III), 1338 cm-1 (amide III), and 1362 cm-1 

(tryptophan).[42,43] However, fewer nucleic acid peaks are located compared to OV-90 and 

OVCAR3 EVs, which are found at 797 cm-1 (uracil) for EOC6 EVs and 677 cm-1 (guanine) 

and 1577 cm-1 (guanine, adenine) for EOC18 EVs.[42,43] Lipid peaks for EOC6 EVs are 

located at 736 cm-1, 775 cm-1, and 1367 cm-1, and in EOC18 EVs are found at 1166 cm-1, 

1300 cm-1, 1466 cm-1.[42,43] Lastly, carbohydrate peaks of EOC6 EVs are present at 845 cm-

1 and 1023 cm-1, while one carbohydrate peak at 1425 cm-1 is present in the SERS spectra 

of the EOC18 EVs.[42,43] The complete list of spectral peaks of the EOC6 and EOC18 EVs 

are summarized in Table 4-5 and Table 4-6, respectively. 
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Table 4-5: Summary of peak assignments of EOC6 EVs, as highlighted in Figure 4-

4C. 

Peak (cm-1) Presumed Origin Ref. Peak (cm-1) Ref. 

639 Tyrosine ring breathing 639 [42] 

694 Ring deformation 686 * [43] 

736 Phosphatidylserine 733 [42,43] 

775 Phosphatidylinositol 776 [42,43] 

797 Ring breathing mode in uracil 802 [42,43] 

845 C-O-C skeletal mode in carbohydrates 847 [42,43] 

886 Ring deformation and symmetric C-N-C 

stretching 

886 [43] 

939 C-C skeletal stretching in proteins 939 [43] 

1003 C-C skeletal mode, phenylalanine 1003 [42,43] 

1023 Glycogen 1023 [42,43] 

1096 Phosphodioxy group (PO2
- in nucleic 

acids) 

1096 [42,43] 

1159 C-C/C-N stretching in proteins 1158 [42] 

1162 Tyrosine 1163 [42] 

1225 Amide III (β-sheet) 1224 [42,43] 

1265 Amide III of collagen; C-C6H5 stretching 

in phenylalanine  

1265 [43] 

1332 C-C stretching in phenyls, C-O stretching, 

C-H in-plane bending 

1332 [42,43] 

1367 CH3 stretching in phospholipids 1367 [42,43] 

1404 C-H deformation 1404 * [42] 

1439 CH2/CH3 deformation in collagen 1439 [42,43] 

1520 -C=C- in-plane vibrations 1525 [42,43] 

1558 Tryptophan, tyrosine, amide II 1558 [42,43] 

* Also present in control (hIOSE) spectrum. 
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Table 4-6: Summary of peak assignments of EOC18 EVs, as highlighted in Figure 4-

4C. 

Peak (cm-1) Presumed Origin Ref. Peak (cm-1) Ref. 

612 Cholesterol ester 614 [42,43] 

648 Ring, cyclic deformation 649 [43] 

677 Ring breathing in guanine 678 [42,43] 

756 Symmetric breathing of tryptophan 755 * [43] 

835 Deformative vibrations of amine groups 838 * [42,43] 

852 Proline, hydroxyproline, tyrosine 852 [42,43] 

935 C-C stretching mode of proline, valine, 

and protein backbone (α-helix); glycogen 

935 * [42,43] 

987 Phenylalanine 991 [42] 

1032 CH2/CH3 bending modes of phenylalanine 

and proline of collagen, phospholipids 

1032 [42,43] 

1076 Symmetric stretching of PO4
3- 1076 [42] 

1166 Lipids 1168 [42,43] 

1209 C-C6H5 stretching mode in tryptophan and 

phenylalanine 

1209 [42,43] 

1248 Amide III 1248 [42] 

1262 Ring breathing mode in thymine, adenine; 

=C-H bending in proteins 

1263 [42,43] 

1300 CH2 twisting in lipids, fatty acids 1300 [42,43] 

1338 Amide III 1338 [43] 

1362 Tryptophan 1360 [42,43] 

1386 CH3 band 1386 [42,43] 

1425 Deoxyribose 1424 [42,43] 

1466 Lipids 1465 [42,43] 

1473 C=N stretching 1470 [42,43] 

1577 Guanine, adenine 1578 [42] 

* Also present in control (hIOSE) spectrum. 
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Figure 4-4: Average SERS spectra of (A) ovarian epithelial cell line-derived EVs 

(control), (B) established OvCa cell line-derived EVs, and (C) primary OvCa cell line-
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derived EVs. Average SERS spectra of hIOSE, OV-90, OVCAR3, EOC6, and EOC18 

are comprised of 207, 123, 106, 166, and 156 spectra, respectively. 

4.3.3 Spectral Analysis by PCA 

Often, the first two PCs are used to compare different classes of samples as they contain 

most of the information of the original data set. However, sometimes the first two PCs 

alone are not enough to differentiate classes of samples.[44] In our case, the PC18 and PC25 

scores best separated the EV types, although they account for a very small percentage of 

the original data set (Figure 4-5A-C). These PCs were determined by the informative 

projections feature in Orange software, which ranks attribute pairs by classification 

accuracy. PC18 best differentiates the normal group from the cancer groups, where the 

latter tends to be associated with more negative PC18 scores. (Figure 4-5D). PC25 

interestingly best separates the cancer groups in terms of the severity of cancer, where 

higher-grade cancers (e.g., EOC6, OVCAR3, OV-90) tend to be associated with more 

positive PC25 scores.  
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Figure 4-5: PC score plots comparing (A) normal (hIOSE) vs. cancer (OV-90, 

OVCAR3) EVs, (B) normal vs. high-grade cancer (EOC6) EVs, (C) normal vs. low-

grade cancer (EOC18) EVs, and (D) all groups to highlight separation along PC18. In 

(A) – (C), each point corresponds to one SERS spectrum while the points in (D) 

correspond to the centroids of each group in (A) – (C). 

PC loading spectra of PC18 and PC25 scores were compared to the average spectrum of 

each EV type presented in Figure 4-4 to interpret which spectral peaks are responsible for 

the most variance in the data set (Figure 4-6). PC18 is best described by protein 

assignments at 728 cm-1 (tryptophan) and 1237 cm-1 (amide III), nucleic acid assignments 

at 782 cm-1 (thymine, cytosine, uracil), 1180 cm-1 (cytosine, guanine), and 1483 cm-1 

(guanine, adenine), and a carbohydrate peak at 942 cm-1 (polysaccharides) (Figure 4-6A, 

Table 4-7). The more positive PC18 peaks at 782 cm-1, 1181 cm-1, and 1483 cm-1 tend to 

be more associated with the normal EVs than the OvCa EVs (i.e., all three peaks are found 
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in the hIOSE spectrum but not in each of the OvCa spectra). Interestingly, these three peaks 

are all nucleic acid in origin. PC25 is best described by protein assignments at 743 cm-1 

(tryptophan), 832 cm-1 (tyrosine), 973 cm-1 (CH3, CCH vibrations), and 1170 cm-1 

(tyrosine), a carbohydrate peak at 940 cm-1 (polysaccharides), and a lipid peak at 1060 cm-

1 (ceramide) (Figure 4-6B, Table 4-8). More positive PC25 peaks located at 940 cm-1, 

1060 cm-1, and 1170 cm-1 tend to be associated more with the high-grade cancer EVs 

(EOC6) than the low-grade cancer EVs (EOC18). While PCA is a valuable tool to 

determine how spectra differ from one another, the PC scores determined can also serve as 

classifiers in machine learning algorithms to better differentiate classes of data. 

 

Figure 4-6: Average SERS spectra of EVs derived from each cell type (also shown in 

Figure 4-5) compared with (A) PC18 and (B) PC25 loading spectra. Key peaks (i.e., 

spectral peaks that best describe each PC) are highlighted with vertical dashed lines. 
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Table 4-7: SERS peaks that best differentiate normal vs. cancer groups, as 

highlighted in Figure 4-7A. 

Peak (cm-1) Presumed Origin Ref. Peak (cm-1) Ref. 

728 Ring breathing of tryptophan 728 [42] 

782 Thymine, cytosine, uracil ring breathing 

modes 

782 [42,43] 

942 Skeletal modes of polysaccharides 941 [42,43] 

1181 Cytosine, guanine 1180 [42,43] 

1237 Amide III, CH2 wagging vibrations from 

glycine backbone and proline side chains 

1237 [42,43] 

1483 Guanine, adenine ring breathing modes 1485 [42,43] 

Table 4-8: SERS peaks that best differentiate low-grade vs. high-grade cancer groups, 

as highlighted in Figure 4-7B. 

Peak (cm-1) Presumed Origin Ref. Peak (cm-1) Ref. 

743 DNA, tryptophan 742 [42] 

832 Asymmetric O-P-O stretching, tyrosine 831 [42,43] 

940 Skeletal modes of polysaccharides 941 [42,43] 

973 CH3, CCH vibrations in proteins 973 [42,43] 

1060 C-C in-plane bending, C-N stretching, 

ceramide 

1061 [42] 

1170 C-H in-plane bending mode of tyrosine 1170 [42,43] 

4.3.4 Machine Learning for Ovarian Cancer Diagnosis 

A logistic regression-based machine learning algorithm was used to classify normal and 

OvCa EVs based on the first 25 PCs calculated. Several algorithms were tested and 

compared based on the AUC values of their ROC curves (Figure 4-7). Logistic regression 

was chosen for the high AUC obtained as well as extremely high accuracy, precision, and 

recall, although some algorithms like SVM worked almost as well (Table 4-9). The 

algorithm was trained and tested with 5-fold CV to reduce potential overfitting. 
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Figure 4-7: ROC curves comparing six different machine learning algorithms: SVM, 

logistic regression, random forest, kNN, Naïve Bayes, and CN2 rule inducer. The 

upper left-most portion is zoomed in and highlighted in red (right). 

 

Table 4-9: Comparison of accuracies, sensitivities, and specificities achieved with the 

six machine learning algorithms shown in Figure 4-8. 

Model Accuracy Precision Recall 

Logistic Regression 98.6 % 98.6 % 98.6 % 

SVM 97.3 % 97.4 % 97.3 % 

Random Forest 91.0 % 91.1 % 91.0 % 

Naïve Bayes 86.5 % 88.4 % 86.5 % 

kNN 86.5 % 87.1 % 86.5 % 

CN2 Rule Inducer 77.4 % 77.4 % 77.4 % 

Four groups of data were compared: (1) normal (hIOSE) EVs vs. established OvCa cell 

line (OV-90, OVCAR3) EVs (Figure 4-8A), (2) normal EVs vs. high-grade OvCa (EOC6) 

EVs (Figure 4-8B), (3) normal EVs vs. low-grade OvCa (EOC18) EVs (Figure 4-8C), 

and (4) low-grade vs. high-grade OvCa EVs (Figure 4-8D). Heat maps shown in Figure 

4-8 were created to visualize the machine learning output scores of each sample. A vast 

majority of OvCa EVs were successfully classified as cancerous, as indicated by the red 
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and dark orange bars in Figure 4-8A-C. Similarly, a majority of the EOC6 EVs were 

successfully classified as high-grade, also indicated by the red and dark orange bars in 

Figure 4-8D. 

EVs isolated from hIOSE were compared to EVs isolated from OV-90, OVCAR3, and 

EOC6 to determine the platform’s capability of correctly diagnosing OvCa. When the 

established cell line EVs were used as training sets for the cancer group, 196 out of 198 

OvCa EV samples were correctly identified as cancerous, while 199 out of 200 normal EV 

samples were correctly identified as non-cancerous (Figure 4-8A), corresponding to 99.2 

% classification accuracy, 99.0 % sensitivity, and 99.5 % specificity. When the EOC6 EVs 

were used as a training set for a cancer group, 155 out of 157 OvCa samples were correctly 

identified as cancerous, while 199 out of 200 normal EVs were again correctly classified 

as non-cancerous (Figure 4-8B). The resulting classification accuracy was identical to the 

normal vs. established OvCa cell line model at 99.2 %. The sensitivity dipped slightly to 

98.7 %, but the specificity remained the same at 99.5 %. 

EVs isolated from hIOSE were compared to EVs isolated from EOC18 to determine the 

platform’s capability of correctly diagnosing low-grade OvCa, which can be more of a 

challenge compared to high-grade OvCa since low-grade OvCa cells tend to more closely 

resemble normal cells. With the EOC18 EVs as a training set for the cancer group, all 136 

OvCa samples were correctly identified as cancerous, while 198 out of 200 normal EVs 

were correctly classified as non-cancerous (Figure 4-8C). The 99.4 % accuracy achieved 

here is comparable to the previous two models, suggesting we can successfully classify 

both low-grade and high-grade OvCa samples with extremely high accuracy. Furthermore, 

we were also able to achieve high sensitivity and specificity at 100 % and 99.0 %, 

respectively. 

EVs isolated from EOC6 and EOC18 were compared to determine the platform’s capability 

of predicting whether an OvCa sample is high-grade or low-grade, since the grade of OvCa 

can help predict the prognosis of the disease as well as how the cancer may respond to 

treatment. 154 out of 157 EOC6 samples were correctly identified as high-grade, while all 
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136 EOC18 samples were correctly identified as low-grade, corresponding to 99.0 % 

accuracy, 98.1 % sensitivity, and a 100 % specificity (Figure 4-8D). 

 

Figure 4-8: Heat maps (left) to visualize output scores of (A) normal vs. established 

cancer cell line EVs, (B) normal vs. high-grade cancer EVs, (C) normal vs. low-grade 

cancer EVs, and (D) low-grade vs. high-grade cancer EVs, with corresponding 

confusion matrices (right). In the heat maps, each horizontal bar corresponds to one 

SERS spectrum. Groups labeled on the left indicate the origin of the sample, while 

the color of the bar indicates the algorithm’s prediction. In (A) – (C), a red or dark 

orange color (output score > 0.5) corresponds to a cancer prediction and a yellow or 

light orange color (output score < 0.5) corresponds to a normal prediction. In (D), a 

red or dark orange color (output score > 0.5) corresponds to a high-grade cancer 

prediction and a yellow or light orange color (output score < 0.5) corresponds to a 

low-grade cancer prediction. 

The accuracies, sensitivities, and specificities achieved with each of the four models 

compared in Figure 4-8 is summarized in Table 4-10. The high accuracies presented here 

indicate that this platform and methodology is not only promising in terms of ovarian 
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cancer diagnosis, but also promising in determining the grade of disease. Since EVs are 

found in bodily fluids such as urine, plasma, and saliva, this approach has a strong potential 

for non-invasive ovarian cancer diagnosis. 

Table 4-10: Comparison of accuracies, sensitivities, and specificities achieved with 

each group compared in Figure 4-8. 

Model Accuracy Sensitivity Specificity 

hIOSE vs. OV-90, OVCAR3 99.2 % 99.0 % 99.5 % 

hIOSE vs. EOC6 99.2 % 98.7 % 99.5 % 

hIOSE vs. EOC18 99.4 % 100 % 99.0 % 

EOC18 vs. EOC6 99.0 % 98.1 % 100 % 

4.4 Conclusion 

In conclusion, we have presented plasmonic gold nanohole arrays for the capture of single 

EVs which we subsequently characterized by SERS. To our knowledge, this is the first 

time EVs from these five cell lines (OV-90, OVCAR3, EOC6, EOC18, and hIOSE) have 

been characterized by SERS. We then were able to determine their main compositional 

differences by PCA. We found that normal EVs could generally be differentiated from 

OvCa EVs by the presence of peaks at 782 cm-1 (thymine, cytosine, uracil ring breathing 

modes), 1181 cm-1 (cytosine, guanine), and 1483 cm-1 (guanine, adenine ring breathing 

modes). Interestingly, high-grade cancer could also be predicted based on the presence of 

peaks at 940 cm-1 (polysaccharides), 1060 cm-1 (C-C in-plane bending, C-N stretching, 

ceramide), and 1170 cm-1 (tyrosine). 

The PC scores calculated were then used as classifiers in a logistic regression-based 

machine learning algorithm, which was able to differentiate normal EVs from the 

established OvCa cell line EVs with 99.2 % accuracy, 99.0 % sensitivity, and 99.5 % 

specificity. Normal EVs could also be discriminated from the high-grade primary cell line 

EVs with 99.2 % accuracy, 98.7 % sensitivity, and 99.5 % specificity. Interestingly, we 

were also able to differentiate the normal EVs from the low-grade primary cell line EVs 

with 99.4 % accuracy, 100 % sensitivity, and 99.0 % specificity. Lastly, the low-grade and 

high-grade primary cell line EVs could also be discriminated with 99.0 % accuracy, 98.1 
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% sensitivity, and 100 % specificity. The diagnostic potential presented here is a great step 

towards early, non-invasive, facile, and rapid ovarian cancer diagnosis. However, at this 

stage in the study, the results are proof-of-concept; until clinical samples are obtained from 

ovarian cancer patients and from healthy individuals, we cannot determine precisely how 

the model will perform with new test data. Therefore, the next step in this study is to 

challenge the platforms with EVs from clinical samples to determine the feasibility of using 

this methodology in a clinical setting.  
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Chapter 5  

5 Conclusions and Outlook 

As highlighted in the introduction of this thesis, EVs can generally be split into two groups 

based on their cellular origins and applications: as cell-free therapeutic agents in 

regenerative medicine, and as biomarkers for various diseases, including cancer. The main 

research goal of this work was to fabricate SERS substrates for EV capture and 

characterization, and EVs from each of the aforementioned groups were studied. 

The first chapter of this thesis provided background information of EVs, including their 

functions and importance, and established the research interest of EVs in both therapeutic 

and diagnostic applications. Several standard methods for EV characterization were 

reviewed in this chapter, encompassing both physical (e.g., Brownian motion-based and 

microscopic techniques) and biochemical methods (e.g., MS-based and immunoassay 

techniques). An overview of nanoplasmonic approaches was also introduced, including 

SPR sensing, LSPR sensing, and SERS. Since SERS was the main technique implemented 

for EV characterization in this thesis, it was discussed further in Chapter 2. 

The second chapter of this thesis delved into the fundamentals of Raman spectroscopy and 

provided background information of the types of spectral fingerprints that could be 

expected for biological systems arising from biological macromolecules (i.e., proteins, 

nucleic acids, lipids, and carbohydrates). The main limitation of Raman spectroscopy, low 

sensitivity, was highlighted, and the need for SERS analysis was presented. In addition to 

providing the physical background behind SERS sensing, several SERS studies of EVs 

conducted in recent years were also reviewed. Special interest was taken in the types of 

probes and substrates used (e.g., nanoparticle-based, nanorod-based, etc.), the type of 

detection method (i.e., direct or indirect), and their performance in cancer diagnostics. Also 

explained in detail in this chapter was PCA for its use in EV analysis in Chapters 3 and 4, 

and an overview of machine learning and its various techniques was given. 

The third chapter of this thesis was focused on the characterization of EVs derived from 

BM- and Panc-MSCs, which are used in therapeutic applications (i.e., regenerative 
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medicine). The SERS platform consisted of gold nanohole arrays of various size (100 – 

1000 nm) and shape (triangles, circles, squares) and were fabricated by EBL. The nanohole 

arrays provided LSPR modes around 650 – 690 nm and 750 – 780 nm. For SERS analysis, 

the arrays were best matched with a 785 nm excitation wavelength laser. SERS spectra for 

each EV group were reported and characterized. PCA was used initially to elucidate trends 

in the EV groups and to explore the discriminatory power of the platform. While PCA was 

able to determine the peaks responsible for most variance in the data set, it did not perform 

well in classification tasks. Thus, various machine learning methods were explored, using 

the PCs as inputs, to classify the BM- and Panc-MSC EVs. The optimal machine learning 

algorithm determined for this data set was logistic regression, which could classify the EVs 

with 89 % accuracy, 89 % sensitivity, and 88 % specificity. 

The fourth chapter of this thesis explored ovarian cancer diagnosis via SERS 

characterization of cancer-derived EVs. The gold nanohole arrays presented and 

characterized in Chapter 3 were used again for EV trapping and SERS analysis. EVs 

derived from two established OvCa cell lines (OV-90 and OVCAR3) and two primary 

OvCa cell lines (EOC6 and EOC18) were investigated. As a normal control, EVs derived 

from one human immortalized ovarian surface epithelial cell line (hIOSE) were used. PCA 

was used again to provide insight to the compositional differences among the EVs, and as 

expected, failed at classification tasks as observed in Chapter 3. However, the machine 

learning algorithms tested in this chapter performed much better at EV classification using 

this data set than that from Chapter 3. The logistic regression-based algorithm again 

performed the best out of the various models tested. The model was used to classify four 

sets of data, which contained (1) normal and established cell line-derived EVs, (2) normal 

and high-grade cancer (EOC6) EVs, (3) normal and low-grade cancer (EOC18) EVs, and 

(4) high- and low-grade cancer EVs. The accuracies, sensitivities, and specificities 

achieved with such models ranged from 99.0 – 99.4 %, 98.1 – 100 %, and 99.0 – 100 %, 

respectively. Therefore, there is great potential in using this methodology for ovarian 

cancer diagnosis in a clinical setting. 

While EVs were successfully characterized using nanohole array substrates, there are many 

areas of this project that could be expanded on and further investigated. Of course, before 
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such a methodology could be used in a clinical setting, the platforms must be tested with 

clinical samples from cancer patients and healthy individuals. Samples from such patients 

would be gathered in a non- or minimally-invasive fashion (e.g., blood, saliva, urine, etc.). 

However, since these arrays are unfunctionalized, they are unable to specifically capture 

EVs from cancerous sources. Therefore, at the moment, analysis would require prior 

isolation of EVs from the samples rather than direct detection. There are also areas of 

fabrication that could be further developed and optimized, ranging from the 

nanofabrication technique, to device functionalization, to implementation in a microfluidic 

device. 

Nanofabrication by EBL is advantageous in that patterns are easily customizable, which is 

especially useful in research to determine optimal device dimensions and conditions. 

However, EBL is a very time-consuming and low-throughput process compared to other 

nanofabrication techniques.[1] Fortunately, once device parameters are optimized, EBL can 

be used to fabricate a mask that can be used in higher-throughput photolithography, which 

has been applied for nanohole array fabrication in literature.[2,3] The photolithography 

mask, which contains a master pattern, consists of opaque features (e.g., chrome-based) on 

a transparent substrate (e.g., quartz).[4] The principles of photolithography and EBL are 

very similar, but the former usually uses ultraviolet (UV) light in the 193 – 436 nm range 

to induce changes in the resist while the latter patterns the resist with an electron beam 

(Figure 5-1A).[1] Since each feature is exposed at the same time during photolithography, 

patterns can be written much faster than in EBL, in which features are written one at a time. 

Photolithography can be achieved by contact, proximity, or projection printing. While the 

most commonly used photolithographic methods are contact and proximity printing for 

highest throughput, they offer only moderate resolution with a minimum feature size 

around 2 – 3 μm.[5] For EV trapping and sensing applications where smaller features are 

required, projection printing is best-suited, which allows for resolution as small as 37 nm 

while still maintaining high throughput.[6] Unlike contact and proximity printing for 

photolithography, projection printing requires a sophisticated optical lens system to project 

a deep-UV pattern from an excimer laser, usually of 193 nm or 248 nm wavelength (Figure 

5-1B).[7] For comparison, a wafer with a diameter of approximately 7.62 cm can be 
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completely exposed in less than 1 minute with photolithography,[5] while a 50 μm × 50 μm 

patch of nanohole arrays made for this thesis required 1 – 2 minutes of exposure time with 

EBL. Photolithography would allow for the rapid and mass production of nanohole arrays, 

which would be ideal for clinical translation of the methodology, and warrants exploration. 

 

Figure 5-1: (A) Schematic illustration comparing photolithography, with proximity 

printing shown as an example, and EBL for nanohole array fabrication. (B) 

Schematic illustration of photolithography by projection printing. 

Unfunctionalized arrays are advantageous in that rich, heterogeneous biological spectra 

can be investigated, but a clinical diagnostic setting may benefit from a more specific and 

efficient capture technique. SERS probes and platforms have been functionalized with 

cysteamine in literature, which allows for more efficient EV trapping via electrostatic 

interactions between the cationic cysteamine and anionic EV membrane.[8,9] Cysteamine is 

the simplest aminothiol and a degradation product of cysteine, which is inexpensive and 

widely commercially available.[10] Cysteamine is able to anchor itself to gold surfaces 

through its terminal thiol group. In an acidic solution (pH = 6.5), the terminal amine group 

of cysteamine is expected to be protonated, thus allowing for electrostatic interactions with 

EV surfaces as aforementioned.[10] 

While cysteamine functionalization would allow for greater adhesion of EVs to the 

platform, it is not specific to cancer-derived EVs. Therefore, another avenue that could be 

explored for platform functionalization is immunocapture with antibodies. EpCAM is a 
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protein that has been identified as a diagnostic and prognostic biomarker in many 

carcinomas,[11] including ovarian cancer.[12] EpCAM has an overexpression rate of 55 % in 

mucinous ovarian cancer and a 76 % overexpression rate in serous and endometroid 

ovarian cancers.[13] The nanohole arrays could thus be functionalized with anti-EpCAM for 

the more specific capture of ovarian-cancer derived EVs, and could be achieved by 1-ethyl-

3-(3-dimethylaminopropyl)carbodiimide (EDC)  crosslinker chemistry (Figure 5-2).[14] 

EDC crosslinking begins with activating carboxyl groups for the direct reaction with the 

primary amines of the antibody. Since this carboxyl-containing molecule should be 

immobilized onto the gold nanohole arrays, the acid should also contain a terminal thiol 

(e.g., 3-mercaptopropionic acid). When EDC reacts with carboxylic acid groups, an 

unstable intermediate (O-acylisourea) that can be displaced by nucleophilic attack from the 

primary amines is formed.[15] However, since it is unstable in aqueous solutions, it is 

recommended to introduce N-hydrosucciminide (NHS) or its water-soluble analog (sulfo-

NHS). The sulfo-NHS group of this intermediate can then rapidly leave following the 

addition of amine nucleophiles, thus conjugating anti-EpCAM to the platform via a stable 

amide bond.[15] Anti-EpCAM has even been used in the immunocapture of breast cancer-

[16] and prostate cancer-derived EVs.[17] The platform could thus benefit from more specific 

ovarian cancer-derived EV capture using anti-EpCAM, and it could also be tested with 

EVs from other cancer sources. 
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Figure 5-2: Schematic illustration of antibody functionalization by EDC chemistry. 

Finally, once optimal fabrication and functionalization conditions are identified, the 

platform can be embedded in a microfluidic device. A microfluidic device would allow for 

the probing of EVs more similar to their native state (i.e., in liquid), rather than dry on the 

platform, which can introduce unwanted salt formation. The analyte flow can be controlled 

by a dielectric[18] or acoustic force.[19] Since EVs can be isolated and captured in the 

microfluidic chamber by both size-based[20-22] and immunoaffinity-based methods,[23-25] 

the nanohole arrays can be integrated either unfunctionalized, as was presented in Chapters 

3 and 4, or functionalized, as proposed in this chapter. Microfluidics is of interest in the 

precision medical field because it utilizes a small number of samples,[26] allows samples to 

be recycled,[27] and can be used in various analysis methods, including SERS.[28] 

The goal of this work is to develop a diagnostic device for the minimally-invasive, rapid, 

and early diagnosis of cancer. The preliminary work presented in this thesis displayed the 

potential of using gold nanohole arrays for cancer detection by SERS, but further tailoring 

of the device and testing with clinical samples is required before the device can be used on 

its own in real diagnosis applications. We hope that the work presented in this thesis will 

one day translate to point-of-care cancer detection and diagnosis. 
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Appendix A: Confusion Matrix Calculations 

A confusion matrix is a representation of the classification performance of a given 

algorithm (Table A-1).[1] There are four possible outcomes given a classifier and an 

instance. If a positive instance is correctly classified as positive, it is counted as a true 

positive (𝑇𝑃) outcome, but if it is misclassified as negative, it is counted as a false negative 

(𝐹𝑁). If a negative instance is correctly classified as negative, it is counted as a true 

negative (𝑇𝑁), but if it is misclassified as positive, it is counted as a false positive (𝐹𝑃). 

Table A-1: Example confusion matrix. 

 
 Predicted 

 
 Positive Negative 

A
ct

u
al

 

Positive 𝑇𝑃 𝐹𝑁 

Negative 𝐹𝑃 𝑇𝑁 

Sensitivity, which can also be referred to as recall, is a quantification of the true positive 

rate and is calculated by:[2] 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (A-1) 

Conversely, specificity is a quantification of the true negative rate and is calculated by:[2] 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
      (A-2) 

Precision is a quantification of the positive predictive value of an algorithm and is 

calculated by:[1] 

   𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (A-3) 

Lastly, accuracy is the proportion of all the correct predictions among the total population 

and is calculated by:[2] 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
     (A-4) 
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