
Western University
Scholarship@Western

Oncology Publications Oncology Department

10-2011

Lung Cancer Brachytherapy: Robotics-Assisted
Minimally Invasive Approach
Edward Yu
The University of Western Ontario

Craig Lewis
The University of Western Ontario

Ana Luisa Trejos
The University of Western Ontario

Rajni V. Patel
The University of Western Ontario

Richard A. Malthaner
The University of Western Ontario

Follow this and additional works at: https://ir.lib.uwo.ca/oncpub

Part of the Electrical and Computer Engineering Commons, Medical Biophysics Commons, and
the Oncology Commons

Citation of this paper:
Yu, Edward; Lewis, Craig; Trejos, Ana Luisa; Patel, Rajni V.; and Malthaner, Richard A., "Lung Cancer Brachytherapy: Robotics-
Assisted Minimally Invasive Approach" (2011). Oncology Publications. 77.
https://ir.lib.uwo.ca/oncpub/77

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Foncpub%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/oncpub?utm_source=ir.lib.uwo.ca%2Foncpub%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/onc?utm_source=ir.lib.uwo.ca%2Foncpub%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/oncpub?utm_source=ir.lib.uwo.ca%2Foncpub%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.lib.uwo.ca%2Foncpub%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/668?utm_source=ir.lib.uwo.ca%2Foncpub%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/694?utm_source=ir.lib.uwo.ca%2Foncpub%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/oncpub/77?utm_source=ir.lib.uwo.ca%2Foncpub%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages


 Current Respiratory Medicine Reviews, 2011, 7, 000-000 1 

 

 1573-398X/11 $58.00+.00 © 2011 Bentham Science Publishers Ltd. 

Lung Cancer Brachytherapy: Robotics-Assisted Minimally Invasive 
Approach 

Edward Yu
*,1

, Craig Lewis
1
, Ana Luisa Trejos

2,3
, Rajni V. Patel

2,3
, and Richard A. Malthaner

1,2
 

1
The University of Western Ontario, London Health Science Center, Division of Radiation Oncology, 790 

Commissioners Road East, London, Ontario, N6A 4L6, Canada 

2
Canadian Surgical Technologies and Advanced Robotics, Lawson Health Research Institute, 339 Windermere Road, 

London, Ontario, N6A 5A5, Canada 
3
Department of Electrical and Computer Engineering, The University of Western Ontario, 1151 Richmond Street North, 

London, ON, N6A 5B9, Canada  

Abstract: New technological concepts have been evolving to manage the relative poor prognosis of lung cancer. 

Brachytherapy is becoming an option for both unresectable and early resectable lung cancer. Three-dimensional 

ultrasound (US) of lung tumours and image-guided minimally invasive robotics-assisted brachytherapy are feasible for 

dosimetry planning and management of lung tumours. The present article reviews the current knowledge of lung 

brachytherapy and discusses its potential in future management of lung cancer. 

Keywords: Brachytherapy, lung tumour, minimally invasive, robotics-assisted surgery and therapy. 

INTRODUCTION 

 Lung cancer is the leading cause of cancer death in men, 
and has surpassed breast cancer as the most frequent cause of 
death in women [1]. Surgical resection is the treatment of 
choice, but only one third of patients who present with early 
disease are eligible for a curative resection [2]. Open surgery 
provides ready access and optimal visualization of body 
cavities, however, it has a higher rate of morbidity compared 
to minimally invasive techniques. Other options need to be 
developed. Brachytherapy is a form of radiation therapy 
delivered by the direct placement of a radioactive source into 
a tumour or tumour bed. It provides an option that avoids 
major surgery, chemotherapy, and is not susceptible to the 
uncertainty of tumour motion while the patient receives 
external beam radiation. It also avoids conventional multiple 
external beam radiation fractions that occur over several 
weeks. Brachytherapy also has theoretical advantages 
including: i) it is easily adapted to the shape and size of 
tumour, ii) it delivers a higher tumour dose compared to 
external beam irradiation, and iii) the delivered radiation 
dose decreases rapidly outside the treated tumour volume, 
significantly sparing the normal tissue in the tumour vicinity. 

LUNG CANCER BRACHYTHERAPY 

 Endobronchial and/or intraoperative lung brachytherapy is 
effective and has a good curative potential in patients with 
localized tumours of small to moderate size, well defined and 
easily accessible. Large tumours, multiple lesions, or the pre-
sence of lymph node metastases precludes curative treatment by 
brachytherapy. In selected cases, quick and effective palliation 
may be obtained by an endobronchial outpatient procedure. 
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790 Commissioners Road East, London, Ontario, N6A 4L6, Canada;  
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 Brachytherapy techniques and approaches can be tailored 
to the clinical situation and can be administered over a very 
short period of time (high dose rate), or over a protracted 
time (low dose rate). Table 1 shows the commonly use 
isotopes in brachytherapy. 

 There are two common brachytherapy techniques for 
lung cancer: Endobronchial Brachytherapy and Interstitial 
Brachytherapy. The details of these two techniques are 
discussed below. 

Endobronchial Brachytherapy 

 Endobronchial treatment is the most common lung 
brachytherapy technique. Radiation therapy is delivered from 
within the trachea or bronchus lumen by placement of one or 
two afterloading applicators. The applicators, sometimes 
referred to as catheters, typically have a 5 or 6 French 
external diameter. A guidewire is often used to pass directly 
through the operating channel of a fibre optic bronchoscope 
and be threaded through the involved airway. Care must be 
taken to slowly advance the applicator over the guidewire, 
preferably under direct visual or fluoroscopic control. After 
placement of the brachytherapy catheter, the bronchoscope is 
removed and “dummy” seeds (an inactive strand of radio-
opaque marker pellets) are inserted within the applicator. An 
orthogonal set of chest radiographs (anterior-posterior and 
cross-table lateral) are obtained. The target is identified on 
the films using the visual information obtained that day by 
the bronchoscopist combined with previous radiological or 
bronchoscopic findings. The distal extent of the tumour 
cannot always be visualized by the bronchoscopist and must 
often be estimated from previous computerized tomography 
scans, chest radiographs, etc. Brachytherapy is delivered to 
the endobronchial tumour length with a 1–2 cm proximal 
and distal margin. The dummy seeds are then removed from 
the catheter and replaced with an inner applicator with 
radiation source of either Low Dose Rate (LDR) or High 
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Dose Rate (HDR) inner applicator. HDR remote afterloading 
machines contain a microprocessor that controls the transfer 
of the source down the flexible inner applicator to the 
specified region, and withdraws it automatically into the 
machine when treatment is complete. Treatment is delivered 
in a shielded room where the patient and the patient’s vital 
signs and oxygen saturation can be monitored from outside 
the room with the use of video equipment. The remote 
afterloading treatment can be interrupted at any time if 
necessary. 

Interstitial Brachytherapy 

 Several investigators have described the technical aspects 
of permanent interstitial brachytherapy, the placement of 
radioactive source into the tumour or target region where no 
lumen exists [3–7]. This can be accomplished 
intraoperatively, transbronchially, or percutaneously. 
Isotopes such as Iodine (I-125), Palladium (Pd-103) and 
Gold (Au-198) which have low energy gamma rays, small 
physical size, and short half-lives are often used. Mick 
applicators are commercially available to insert the seeds 
manually one by one into the target region. However, the 
risk of subsequent seed movement has led many 
brachytherapists to suggest, depending on the clinical 
situation, that seeds be in the form of a strand with a Vicryl

®
 

carrier which can be woven into a Dexon
®

 mesh and secured 
to the tumour bed [5]. Nori et al. [5] have described the 
intraoperative technique of sandwiching iodine seeds 
between sheets of Gelfoam and then securing these in place 
with Dexon

®
/Vicryl

®
 mesh. In their experience, the seeds 

have remained in site despite the fact that the mesh and 
Gelfoam are absorbed within the surrounding tissues within 
6–8 weeks. 

 Brachytherapy can be given in either HDR or in LDR as 
presented below. A review the clinical results of 
brachytherapy is also presented. 

HDR Brachytherapy 

 HDR brachytherapy has been defined as brachytherapy 
capable of delivering more than 12 Gy/h (>0.2 Gy/min) [8]. 

The isotopes most commonly used include Cobalt (Co-60), 
Caesium (Cs-137), and Iridium (Ir-192). Endobronchial 
HDR brachytherapy uses a flexible bronchoscope to place an 
intraluminal treatment applicator at the location of the 
tumour to provide higher radiation dose at the center of the 
tumour than at the periphery. This reduces the effect of the 
radiation on the surrounding tissue [9]. HDR brachytherapy 
has been used as an alternative to, and in combination with, 
external beam radiation therapy for palliation of symptoms 
such as dyspnea, cough, chest pain, and hemoptysis in 
nonsmall cell lung cancer (NSCLC) [10]. Quality of life 
assessment in HDR has been reported in randomized trials 
including Langendijk et al. [11] the European Organization 
for Research and Treatment of Cancer (EORTC) general 
questionnaires, Sur et al. [12,13] the National Cancer 
Institute Common Toxicity Criteria, Stout et al. [14] 
Rotterdam Symptom Checklist and Hospital Anxiety and 
Depression scale. In general HDR relieves and improves 
symptoms of dyspnea, atelectasis, and chest pain. In 
particular HDR is most valuable in patients previously 
treated with external beam radiation therapy and 
symptomatic for recurrent disease due to endobronchial 
obstruction. The general recommended dose for HDR in 
symptom control is 1000 cGy at 1 cm from central axis 
given in a single fraction, with 2 cm proximal and distal 
margin [10]. Most tumours either decreased in size or there 
was a reduction in pain. However, complications such as 
pneumothorax, and hemoptysis have been described [10]. 

 An electromagnetic navigated bronchoscopic approach to 
a small peripheral tumour has recently been described by 
Harms et al. [15]. A single patient with medically inoperable 
NSCLC in the right upper lobe was treated with external-
beam radiotherapy (50 Gy) and navigated endoluminal 
brachytherapy (15 Gy). Bronchoscopy was performed with 
an electromagnetic navigation using a microsensor mounted 
on the tip of a dedicated catheter placed within the working 
channel of a bronchoscope. Endobronchial ultrasound 
(EBUS) was performed to confirm the exact position in the 
center of the lesion. HDR brachytherapy (370 GBq Ir-192) 
was applied. Complete remission was found during follow-
up (12 months). HDR brachytherapy has also been delivered 
to lung cancers using a percutaneous route [16–20]. Ricke 

Table 1. Common Isotopes used in Brachytherapy 

 

Isotopes T1/2 -Ray (MeV) -Ray (Avg.MeV) T(R/mCi/hr@1cm) HVL (cmPb) 

60Co 5.26y 1.25 0.093 13.07 1.03 

90 Sr 28y - 0.196 - - 

98mTc 6.03h 0.141 0.014 0.6 - 

103Pd 16.97d 0.022 - 1.48 0.001 

125I 59.4d 0.028 0.036 1.33 0.003 

131I 8.06d 0.08-0.723 0.192 2.24 0.3 

137Cs 30.0y 0.662 0.186 3.28 0.6 

192Ir 74.0d 0.36 0.181 4.6 0.26 

198Au 2.7d 0.412 0.315 2.38 0.3 

226Ra 1604y 1.03 - 8.25 0.8 

T –Exposure rate constant; T1/2 – Half –life; HVL- Half value layer; y-year, d-day, h-hour. 
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and coworkers [19] reported a pilot study of 30 patients with 
interstitial HDR brachytherapy. In their study cohort the 
maximum tumour size was 4 cm and the brachytherapy 
catheter was positioned under CT fluoroscopy. A single 
fraction of 20 Gy was delivered to the tumour. Although the 
follow up was short (median 5 months) local tumour control 
was 97%. CT guided interstitial brachytherapy was safe. 

 Brachytherapy has been used by several investigators as 
a boost either before, during or after external beam radiation 
in the definitive treatment of unresectable NSCLC. The 
experience of HDR brachytherapy boost is extensive in the 
literature [21–27]. Patients selected for definitive external 
beam radiation and a brachytherapy boost were usually 
medically fit patients with centrally located stage IIIA or 
IIIB tumours, without weight loss in 6 months leading up to 
diagnosis. External beam radiation dose ranged from 50–70 
Gy with HDR boost of 2.7–10 Gy per fraction at 1–5 
fractions over a 1–2 week fraction interval. Response to 
brachytherapy was assessed by bronchoscopy 1–3 months 
from completion of treatment. As expected, initial patient 
performance status, tumour size and stage, and radiation 
dose are important predictors of outcome [22, 26, 28]. 
Aygun and colleagues [22] observed that response rates 
favour patients with tumours not visible radiographically. 
Higher combined doses of brachytherapy and external beam 
radiation have been associated with an increased 
endobronchial response. No complications were seen in 
patients treated to a dose of 70 Gy, as compared to a 24% 
complication rate seen in patients receiving more than 85 Gy 
[27]. Common complications are hemoptysis, bronchial 
stenosis, and bronchitis, with tracheoesophageal fistula being 
less commonly reported in the literature. Differentiating 
treatment complications from tumour progression is often 
challenging as autopsies have been done in only a small 
proportion of patients undergoing brachytherapy. For 
tumours in the mainstem or upper lobe bronchus, there 
appears to be an increased frequency of hemorrhage for 
right-sided (25%) as opposed to left-sided lesions (25% and 
10%), perhaps due to the proximity of the treatment catheter 
to the pulmonary artery [22]. 

LDR Brachytherapy 

 LDR brachytherapy is another form of radiation therapy 
with dose rates ranging from 0.1 cGy/hr to 50 cGy/hr. The 
radioisotopes most commonly used include Iodine (I-125), 
Palladium (Pd-103) and gold (Au-198), and when placed 
inside titanium shells are called seeds. They can be in the 
form of individual seeds or joined together to form a strand. 
The overall size of the seed can vary slightly depending on 
the application. 

 Hilaris and Martini reviewed the Memorial Sloan-
Kettering Cancer Center experience in over 1,000 patients 
that received intraoperative (LDR) brachytherapy via an 
open thoracotomy [20]. The use of interstitial brachytherapy 
as potential curative and palliative treatment of superior 
sulcus tumours have been reported extensively [29–31]. 
Results of 129 patient case series have been reported by the 
Memorial Sloan-Kettering Cancer Center with superior 
sulcus tumour treated with I-125 for permanent implantation 
or temporary implantation of Ir-192. The overall survival of 
this series was encouraging with 25% survival rate at 5 years 

favouring patients with adenocarcinomas, negative 
mediastinal involvement, preoperative radiation therapy 
followed by surgery. Radiation toxicity includes mild 
dysphagia for patients who received mild dose of pre-
operative radiation therapy. Selective intraoperative 
brachytherapy has been reported by Armstrong et al. [32]. In 
their case series of 10 patients receiving intraoperative 
brachytherapy for residual disease, in spite of the advanced 
disease in the brachytherapy group, actual progression free 
survival at 2 years and 5 years was 66% and 55% 
respectively. Intraoperative LDR lung brachytherapy alone 
or in combination with other local and systemic therapies 
suggest that a subgroup of patients with gross or microscopic 
disease left in the thorax after incomplete resection or biopsy 
only, can be controlled locally [33]. 

 Interstitial brachytherapy is not used frequently in 
clinical practice. This may be due to difficulty in gaining 
expertise with interstitial techniques, as compared to external 
beam treatment planning or even endobronchial 
brachytherapy. Endobronchial brachytherapy is more widely 
practiced in many cancer centers [10, 34]. Brachytherapy-
related complications have been graded and management has 
been proposed [25, 35]. 

 Brachytherapy-related hemoptysis has been graded as 
massive (fatal) or not massive, and management is the same 
as hemoptysis from other causes. Treatment includes bed 
rest, codeine, fluid replacement, avoidance of anticoagulants, 
selective lung insulation and bronchial artery embolization. 
A brachytherapy related bronchitis grading system to enable 
comparison of complication between various dose-
fractionation regimens has been proposed by Speiser and 
Spratling [25] and management is summarized in Table 2. 

INTERSTITIAL BRACHYTHERAPY – A CHALLENGING 

PROCEDURE 

 Interstitial brachytherapy allows more precise delivery of 
radiation and easier adaptation to the tumour shape than is 
possible with external radiation [20, 36], and a higher dose 
can be delivered to the tumour volume with less damage to 
the normal lung. The seeds are implanted into cancerous 
tissue using long and hollow needles, which have small outer 
diameters and at least one sharp end to allow penetration 
through the tissue. The seeds are manually loaded into the 
needle barrel and are spaced from each other by one or more 
inert spacers that are implanted together with the seeds. A 
small amount of bone wax is placed on the tip of the implant 
needles to prevent the seeds from falling out and to prevent 
the tissue from entering the hollow needle. A stylet inserted 
in the needle behind the last seed is used to release the bone 
wax and drop the seeds. 

 During the brachytherapy procedure, the goal is to 
implant the seeds into the tumour such that they are 
uniformly distributed in a particular pattern selected to 
ensure that the tumour receives the appropriate dose. In 
general, a series of aligned seeds is introduced with each 
insertion of the needle. To achieve this goal, each needle 
must be accurately inserted into the tissue following a 
particular path and reaching a specified depth. Accurate 
placement is required to avoid over-radiated and under-
radiated areas, and to ensure that all the seeds are located 
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within the target region. Once the needle has accurately 
reached the target location, the needle barrel is retracted 
towards the stationary stylet, thereby dropping from the tip 
of the needle. 

 This procedure is commonly performed in the prostate, 
for which coordinate grids are often used to guide the needle 
insertion in order to improve the accuracy of needle 
placement, while real-time ultrasound images are used to 
guide the needles to the desired depth. In a common prostate 
brachytherapy procedure, 80–100 seeds are implanted into 
the prostate using between 20 and 25 needles. 

 The biggest challenge in delivering radiation therapy is 
achieving an accurate dosage of radiation. Since the entire 
treatment is very complex, careful consideration of the 
planning and delivery is required in order to optimize results 
and minimize side effects [37]. During a lung brachytherapy 
procedure, this challenge translates into accurately placing 
the seeds, since small deviations in seed alignment can create 
significant areas of over-dosage and under-dosage. Some of 
the causes for seed misplacement are as follows: 

I. Difficulty in accessing the surgical site due to the 
presence of bone structures (rib cage), major nerves, 
or blood vessels. Significant clinical expertise is 
needed to properly access the surgical site [38]. 

II. Difficulty in locating the needle prior to the 
penetration, and in achieving the proper penetration 
depth. 

III. During needle barrel retraction, difficulty in holding 
of the stylet stable relative to the needle. Small 
unintended movements of the stylet relative to the 
barrel can result in inaccurate seed placement and a 
reduction in the effectiveness of the treatment. 

IV. Changes in tissue location and size between dose 
planning and seed implantation [39]. 

V. Patient movement during the procedure due to tissue 
shift, breathing, heartbeat, or swelling of the organs. 

 Furthermore, in traditional brachytherapy procedure the 
surgical personnel are exposed to the radiation source for a 
large amount of time. Manual insertion of the needles can 
take a long time, since it sometimes requires as many as 20 
insertions prior to achieving accurate placement. 

 The use of LDR encapsulated I-125 seeds with its 60 
days half-life and low energy photon make interstitial 
brachytherapy more practical. It greatly reduces the radiation 
outside of the treatment volume and minimizes the medical 
and nursing staff exposure. However, the intraoperative 
radiation exposure to the surgeon and radiation oncologist 
and the need for a large open thoracotomy with only a 
modest survival advantage has hindered its clinical 
acceptance. 

 There is only limited experience with LDR interstitial 
brachytherapy under bronchoscopic, fluoroscopic and CT 
guidance [2, 20, 40–42]. Although the CT-guided 
percutaneous approach is feasible, it is limited to small and 
soft tumours in the periphery of the lung, and the optimum 
radiation dose distribution frequently cannot be achieved due 
to the bony structures in the chest wall that inhibits precise 
seed implantation. The risk of injury to proximal mediastinal 
structures, bleeding, and lung collapse, also limits this 
technique to only small tumours adjacent to the chest wall. 

ROBOTICS-ASSISTED MINIMALLY INVASIVE 
THORACIC SURGERY 

 Minimally invasive surgery (MIS) employs the use of 
instruments through small incisions in the patient’s chest or 
abdomen to remove cancers. The procedure relies on 
endoscopic video images for guidance, and the surgeon for 
instrument manipulation. Procedure-related intraoperative 
complications can be dealt with immediately. Compared 
with a thoracotomy, MIS or video-assisted thoracoscopic 
surgery (VATS) offers patients a shorter length of hospital 
stay, less pain, and a quicker recovery, without 
compromising the adequacy of the operation [43, 44]. 
Thousands of VATS lobectomies have been performed since 
it was pioneered in 1992, but currently most lobectomies are 
still performed via a thoracotomy. Although most 
lobectomies could be performed as VATS, less than 5% are 
currently performed this way due to limitations of minimal 
access, restricted manoeuvrability of instruments, and 
impaired two-dimensional (2D) visualization. The 
techniques are difficult to learn and therefore not used as 
often. 

 Surgical robots have been shown to improve MIS 
efficiency by providing superior three-dimensional (3D) 

Table2. Grading of Radiation Bronchitis and Management 

 

Grading Radiation Bronchitis Treatment 

Grade I 
Mild mucosal inflammatory response with swelling, characterized by a thin, whitish, 

circumferential membrane. No significant luminal obstruction.  
Observation 

Grade II 
White fibrinous membrane with exudation causing systems such as cough and /or obstructive 

problems  

Steroids-oral and /or aerosol Fluconazole 

Saline-diluted bronchodilators 

Narcotic cough suppressants 

Grade III 
Severe inflammatory response with marked membranous exudate. Multiple debridement or 

other interventions required to reestablish full lumen of airway. 

Balloon or bougie dilatation 

Laser photoresection 

Debridement 

Stents 

Grade IV 
Greater degree of fibrosis with resulting circumferential stenosis leading to a decrease in 

luminal diameter. 
Same as in Grade III 
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magnification, enhanced dexterity, and improved precision 
by tremor filtration and motion scaling [45–48]. To the 
surgeon, surgical robots also offer improved ergonomics, 
instrument dexterity during VATS, and the opportunity to 
operate via telesurgery at a safer distance from the 
radioactive source [49]. Surgical use of robotics, or 
computer-assisted surgical systems (CAS), has evolved over 
the last 10 years for the treatment of chest diseases, however, 
significant development has really only occurred in the last 3 
to 4 years. Moreover, because of this modest experience, 
robotic thoracic procedures currently take more time than 
non-robotic cases and, thus, are more expensive. The 
surgical learning curve appears to be steep, especially for the 
more complex procedures [50]. As surgeons gain greater 
experience and the complexity and cost of the equipment are 
reduced, we should expect to see greater use of CAS in 
thoracic surgery. 

 The ZEUS
®

 surgical system was the world’s first and 
only telesurgical robotic platform able to provide surgical 
care at a distance. It had the potential to interface with 
surgeons in any part of the world and beyond. It was an 
ergonomically optimal environment that interfaced with a 
networked operating room and surgical devices. It was 
developed and manufactured by Computer Motion, Inc. 
Computer Motion merged with its competitor, Intuitive 
Surgical, Inc. and ZEUS robotic platform was replaced by 
the da Vinci

®
 platform. 

 The da Vinci Surgical System combines superior 3D 
visualization along with greatly enhanced dexterity, 
precision, and control, in an intuitive, ergonomic interface 
with breakthrough surgical capabilities [46–48, 51]. By 
enhancing surgical capabilities, the robots reduce trauma to 
the body, reduce blood loss and need for transfusions, 
decrease post-operative pain and discomfort, lower the risk 
of infection, decrease hospital stay, allow for faster recovery 
and return to normal daily activities, reduce scarring, and 
improve cosmesis. The robots also allow the surgeon to 
perform minimally invasive procedures more safely, by 
allowing immediate access to vital structures and the ability 
to repair injuries that may occur during the brachytherapy 
procedure. 

ADJUVANT BRACHYTHERAPY FOR LUNG CANCER 

 The recent increase in MIS has also renewed an interest 
in the role of adjuvant brachytherapy for lung cancer [52–
59]. Following resection of small lung tumours (T1N0), 
intraoperative I-125 seeds have been implanted with Vicryl

®
 

mesh along the resection margins [52, 53, 57]. The technique 
appears to be safe and appears to reduce local tumour 
recurrence rates, but long-term results are required. Pisch et 
al. have reported on the ability of da Vinci system to suture 
in brachytherapy seeds into a porcine lung [56]. MIS wedge 
resections were performed in the upper and lower lobes. 
Dummy I-125 seeds embedded in absorbable sutures were 
sewn into the resection margin with the aid of the da Vinci 
system without complications. The robotic technology 
allowed direct placement of radioactive seeds into the 
resection margin by endoscopic surgery. This renewed 
enthusiasm for lung brachytherapy has resulted in a multi-
institutional randomized phase III study of sublobar 
resection versus sublobar resection plus brachytherapy in 

high-risk patients with nonsmall cell lung cancer sponsored 
by the American College of Surgeons Oncology Group 
(ACOSOG 4032) [60]. This study is now closed accrual and 
results are pending. 

 It is believed that earlier detection of lung cancer should 
translate into more effective treatment. Lung cancer 
screening has been revived with various reports showing an 
advantage of low-dose CT over chest radiographs in 
detecting smaller size tumours and at an earlier stage [61]. 
Studies have found that eighty percent of all the tumours 
found were of stage I, with an estimated 8-year cure rate for 
resected lung cancers of 95% [62, 63]. This suggests that a 
higher proportion of deaths from lung cancer can be 
prevented by CT screening followed by early resection [63, 
63]. The gold standard therapy for NSCLC is a lobectomy, 
while lesser resections are reserved as a compromise 
operation for high-risk patients [64, 65]. Earlier studies have 
suggested that sublobar resections for stage I tumours are 
complicated by increased locoregional recurrence rates [64, 
66]. The increased identification of small NSCLC tumors by 
CT scan is leading many surgeons to question the 
appropriateness of lobectomy for these tumors. There is an 
increasing interest by many surgeons to use sublobar 
resection as the new standard for patients with small 
peripheral lung cancers [67]. Intentional sublobar resection 
for small lung cancers (T1N0) has been performed using 
minimally invasive techniques with equivalent results [68–
74]. Recently, intraoperative brachytherapy on the resection 
staple line has been shown to significantly decrease the local 
recurrence rates associated with these limited resections [52, 
54, 55, 57, 59]. Our experience with intraoperative 
brachytherapy reveals this technique can achieve 
considerable lung volume sparing for irradiation to normal 
tissue with less than 2% lung volume receiving 20 Gy

1
 (Fig. 

1). Future directions in the management of early lung cancer 
will include MIS surgery combined with brachytherapy. 

ROBOTICS-ASSISTED MINIMALLY INVASIVE 
BRACHYTHERAPY FOR LUNG CANCER 

 The future of lung cancer therapy may include the 
placement of individual brachytherapy seeds minimally 
invasively into lung cancers using a robotics-assisted 
brachytherapy seed delivery system. The prerequisites for 
such an approach are: i) a method to localize the tumour 
intraoperatively; ii) a means of tracking and guiding the 
needle in real time; iii) 3D images of the tumour from which 
the dosimetry will be planned (based on the tumour 
contours); and iv) a brachytherapy seed delivery device for 
the robot. Here we shall discuss the prerequisites of the 
robotics-assisted brachytherapy approach. 

Lung Tumour Localization 

 For minimally invasive brachytherapy to be performed in 
the lung, it is imperative that some form of image guidance 
be incorporated for instrument tracking and tumour 
localization. Tumours that are deep within the lung cannot be 
seen with the thoracoscope. The procedure is performed 

                                                
1Yu E, Lewis C, Malthaner RA. Intra-operative brachytherapy of localized 

Non-small cell Lung Cancer. Unpublished data. 
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through small incisions making it impossible to palpate the 
nodules manually [75]. Current tumour localization 
techniques include methylene blue staining and the insertion 
of a hook wire [76-81]. These methods have been found to 
be cumbersome, have a high failure rate, and increase 
medical risks and litigation [82-84]. A method that can 
reliably localize lung nodules intraoperatively during a 
minimally invasive procedure is needed. Although lung 
tumours may be readily seen using CT imaging, CT scanners 
are not available in operating rooms for intraoperative use 
and there is often a delay of several months between a 
preoperative CT scan and the actual surgical procedure. 
From a global perspective, intraoperative ultrasound imaging 
appears to be the modality of choice. Ultrasound does not 

expose the patient to radiation as a CT does, and it can 
achieve real-time dependable dose plans for the delivery of 
brachytherapy. MIS ultrasound probes are now available 
from many manufacturers, enabling its use in guiding 
minimally invasive thoracic surgeries. 

Needle Tracking and Guidance 

 Much effort has been put into overlaying real-time 
navigation information into preoperative information to 
serve as image guidance during procedures. A tracking 
device can be attached to the tool and its position displayed 
on the preoperative image (e.g. MRI, PET, CT). Kevin 
Cleary’s group at Georgetown University has developed a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Intraoperative lung brachytherapy. (A and B) Chest x-ray (PA and lateral films) of a stage I NSCLC patient with limited pulmonary 

capacity post sublobar resection and intraoperative brachytherapy. (C) Post intraoperative brachytherapy CT –simulation and treatment 

reveals I-125 seeds in place. Total dose prescribed was 100 Gy (blue isodose line). Isodose lines are also displayed for 50 Gy (yellow) and 

200 Gy (red). (D) 3D display of the Planning Target Volume (PTV) demonstrating dose coverage by the 100 Gy prescription. 
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system for surgical assistance incorporating magnetic 
tracking and CT image overlay for targeting internal organs 
such as the liver [85]. Roeddiger’s group in Germany [86] 
has studied virtual reality image overlays for brachytherapy. 
Their work uses preoperatively acquired image data that is 
then displayed together with the position of the tracked 
instrument on a transparent overlay that can be put on top of 
the patient. An ongoing challenge with the static 
preoperative CT images is the reduced navigational accuracy 
due to respiratory motion. Strides have been made with 
electromagnetic tracking for abdominal interventions [87-
91]. However, no system exists today that can compensate 
for lung motion around lung tumours. 

 Recent advances in electromagnetic tracking systems 
have led to the miniaturization of the sensors and better 
immunity to nearby metallic objects. For example, the 
microBIRD™ tracking system (Ascension Technology 
Corporation) features a 6 degree-of-freedom DC magnetic 
tracker with a sensor diameter of just 1.3 mm. An 
electromagnetic transmitter situated outside of the body 
generates a weak spatially varying magnetic field that can be 
measured by the sensor to dynamically compute position and 
orientation. Field distortions caused by nearby conductive 
metals, which significantly affected earlier AC systems, have 
been minimized using DC pulses. 

Brachytherapy Treatment Planning 

 CT simulation has been the standard for treatment 
planning in many modern radiation therapy centres; 
however, CT simulation is not readily available 
intraoperatively in most countries. The literature on 3D 
ultrasound simulation with permanent brachytherapy seed 
implantation treatment planning in lung cancer is limited 
[92]. The number of permanent seeds used in a given tumour 
volume and the angle of brachytherapy needle entry for a 
given tumour mass have yet to be defined. The dosimetry 
plan for MIS interstitial brachytherapy seeds in lung tumours 
is unknown. Standard needle templates used in prostate 
brachytherapy are not usable for intrathoracic tumours due to 
the bony rib cage and the restriction of only one entry port as 
a component of MIS. New approaches need to be developed. 

Brachytherapy Seed Delivery System 

 Many researchers have been working on ways to improve 
brachytherapy procedures. Currently the most common 
usage of brachytherapy is in the treatment of prostate cancer 
and hence many of the developments have focused on this 
area. The contributions found in the literature can be 
summarized as follows: control of the relative motion 
between the hollow needle and the plunger [93]; accurate 
positioning and orienting of the needle prior to penetration 
[94-96]; drivers for needle penetration [37, 96, 97]; real-time 
image guidance during needle insertion [85, 94-98]; force 
feedback during needle insertion [96-99]; and tissue motion 
compensation [100-103]. However, none of these devices is 
currently available on the market due to their complexity and 
lack of regulatory approval for clinical use. Additionally, 
they are designed only for percutaneous needle insertion, and 
most have been designed specifically to treat tumours 
located in the prostate. The process of implanting seeds 

within lung cancerous tissue could greatly benefit from the 
use of minimally invasive robotic systems; however, an 
instrument that can be attached to these systems for 
brachytherapy is not currently available. 

 We shall describe some of the pioneer work at Canadian 
Surgical Technologies and Advanced Robotics (CSTAR) on 
Robotics-Assisted Brachytherapy for the potential future 
management of lung cancer. 

SYSTEM AT CSTAR 

 Our work at CSTAR has focused on six areas: i) 
development of a lung tumour model and robotic 
brachytherapy test bed; ii) development of 3D ultrasound 
imaging for lung tumours; iii) design of a delivery system for 
robotic brachytherapy; iv) robotics-assisted brachytherapy 
using the ZEUS platform; v) development of an 
electromagnetic navigation system for precise needle 
insertion; and vi) dosimetry planning. 

 An experimental test bed was developed to assess the 
feasibility of robotics-assisted minimally invasive lung 
brachytherapy when compared to other more traditional 
methods [104-106] (Fig. 2). The system consists of a Video 
Assisted Thoracic Surgery (VATS) box, surgical robotic 
arms, a customized seed injector, an ultrasound machine, an 
electromagnetic tracking system, video monitors, a 
computer, and an endoscope. The ZEUS surgical system 
consists of two arms for instruments. The endoscopic camera 
is held by the AESOP robotic endoscope holder. All three 
arms can be teleoperated by the surgeon from a computer-
based remote console. The instrument arms mimic the 
motion of hand-held instruments, which are manipulated by 
the surgeon from the remote console. Control systems were 
designed for the ZEUS arms that replaced the existing 
controllers in order to provide more accurate and versatile 
control of the motions of the two arms. One of the arms can 
be used to hold and manipulate the ultrasound probe, and 
another to hold and position the seed injector [107]. 

 In this setup, the Aurora electromagnetic tracking system 
(Northern Digital Inc.) was used to track the location of the 
needle and the ultrasound probe. The tiny sensors available 
as part of the Aurora system allowed the placement of the 
sensor at the tip of the stylet inside the needle [106]. 

 In order to use the robotic system to deposit radioactive 
seeds inside a lung tumour within a minimally invasive 
environment when the target tumour is located within the 
lung and thus is not visible, we developed the InterNav3.0™ 
software environment [108]. It incorporates the ultrasound 
image, the information from the electromagnetic sensors, 
and calibration data to provide the user with enough 
information to accurately guide and position a needle at a 
desired target. A Graphical User Interface (GUI) was 
developed as a front end for the InterNav3.0 application. The 
InterNav3.0 GUI consists of several views that provide a 
wealth of information and functionality. Not only does the 
GUI allow the user to visualize the anatomical area of 
interest, it also allows the user to select the appropriate 
target, and provide all of the information required to guide 
the needle towards the target in a quick and intuitive manner 
(Fig. 3). 
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 The robotic arm carrying the seed injector allows the 
position and orientation of the needle to be adjusted inside 
the patient’s body prior to penetrating the target tissue. The 
MIS approach allows better access to organs inside the 
thoracic cavity, and therefore can safely avoid vital 
structures. The injector can easily penetrate the more 
scirrhous tumours, and the remote actuation of the needle 
retraction system reduces the exposure of the clinician to the 
radiation source. 

 A technique for creating intraoperative, near real time, 
3D ultrasound images of human lung nodules using MIS 
techniques was developed [109]. Multiple 2D ultrasound 
images of a subpleural nodule scanned intraoperatively were 
reconstructed into 3D images. We adapted the HDI 5000 
LapL9-5 laparoscopic probe to a transducer holder 
containing a mechanical motor attached to a standard 
computer. The modified probe was used to thoracoscopically 
detect and remove a subpleural nodule through three 12 mm 
incisions. The device was easy to use and the images 
accurately identified the tumour. The images correlated well 
with the preoperative CT scan and final pathology. 
Intraoperative 3D ultrasound proved to be feasible in 
localizing invisible or nonpalpable lung nodules in near real 
time and provided an accurate representation of the anatomy 
during thoracoscopic lung surgery. This is the world’s first 
example of thoracoscopic 3D ultrasound imaging of a human 
lung nodule (Fig. 4) [109]. 

 An ex vivo lung tumour model, using excised porcine 
lung and agar tumours was developed to provide a means of 
verifying 3D ultrasound images and to provide a teaching 
tool for intraoperative lung ultrasound techniques [110, 111]. 
Spherical tumours of various size were made from agar and 
were inserted through incisions on the underside of an 
excised porcine lung. The average coefficient of variation 
and volume error during tumour localization was 11.2% and 
12.9% respectively, and tumour volume error decreased as 
the tumour size increased [111, 112]. 

 Our initial proof of principle experiments demonstrated 
that permanent interstitial brachytherapy seeds can be safely 
and reproducibly inserted using an MIS technique with the 
assistance of the ZEUS robotic system and intraoperative 
ultrasound into in vivo porcine lungs [113]. There were no 

problems with bleeding or air leaks. The ZEUS system 
performed well and was able to remotely manipulate the 
ultrasound transducer and needle to allow deployment of the 
seeds [114]. The ultrasound images were of good quality, 
and provided adequate visualization of the needle insertion 
and seed deployment. There was no evidence of seed 
embolization in the two animals during three months. These 
experiments showed that interstitial brachytherapy seeds can 
be safely inserted into lungs using the ZEUS robotic system 
with 2D ultrasound image guidance. 

 We also compared the accuracy, effort, and time needed 
to place seeds next to a target using a manual method (open 
surgery), video-assisted thoracoscopy (VATS), and the 
ZEUS robot [115, 116]. Our brachytherapy seed injector was 
mounted on the ZEUS system [107]. Four different people 
inserted dummy brachytherapy seeds into clear agar-gelatin 
cubes containing a 1.6 mm stainless steel ball serving as a 
visible target. As anticipated, the open surgery technique 
with manual needle insertion is the most accurate, least 
traumatic (requiring less needle punctures), and the fastest 
method of inserting seeds into tumours. However, the ZEUS 
robotics-assisted brachytherapy was less traumatic and faster 
than the VATS technique. 

 Further experimental results showed that the InterNav3.0 
electromagnetic navigation system improved the 
performance of minimally invasive brachytherapy 
procedures in terms of effort and median tissue trauma, 
while also showing promise in improving the accuracy of 
seed deployment

2
. With manual insertions, the navigation 

system offered no advantage in time, although it led to a 
reduction of the number of attempts and an improvement in 
accuracy. The benefit of a guidance system was manifested 
only when visual information becomes limited in MIS 
scenarios; whereas the intuitive three-dimensional spatial 
perception afforded by the open manual technique has made 
an add-on guiding system seem unnecessary. When 
procedures must be done minimally invasively, however, 
electromagnetic guidance becomes essential. The addition of 
image guidance reduced the average task completion time of 

                                                
2Pytel M, Trejos AL, Patel RV, and Malthaner RA. The InterNav 

electromagnetic guidance system for robotic needle insertion. 2006/1/10. 

Unpublished data. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). MIRA V System showing the three robotic arms holding the seed injector, the thoracoscope, and the MIS ultrasound probe. (Photo 

credit: Meg Woodhouse). 
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one seed insertion by 60 seconds. For the robotic procedure, 
the average time was reduced by 30 seconds. The time saved 
becomes even more significant when more seeds need to be 
inserted. 

 Dosimetry planning was assessed using the Theraplan 
Plus

®
 software and has been found feasible [93]. In an effort 

to realize real time dosimetry replanning as brachytherapy 
seeds are deposited, preliminary software was developed by 
Dr. A. Fenster’s research team. The software accounts for 
actual seed position and recalculates the dosimetry as more 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). InterNav3.0
TM

 user interface showing the Ultrasound View (top left), the position of the target (blue sphere) with respect to the 

needle tip in the World View (top right), and the depth of the needle tip with respect to the target in the Depth View (bottom right). The 

controls for moving the seed injector and dropping the seeds are also part of the user interface (bottom left). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). 3D ultrasound image of a human lung tumour. 
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seeds are deposited (Fig. 5). The software has been modified 
from a template based system for prostate implants to allow 
nonparallel needle insertion that would be necessary in a 
minimally invasive approach. In vitro and ex vivo 
experiments were done to test the performance of the system 
in terms of its ability to optimize the quality of the radiation 
coverage on phantom tumours. 

 Three-dimensional ultrasound scans of phantom agar 
tumours were used for preplanning seed locations. The in 
vitro PTVs covered by at least 100% the prescribed dose 
(V100) was about 97%; that covered by at least 90% of the 
prescribed dose (V90) was about 99%. The minimum dose 
received by 90% of the volume (D90), a parameter that is 
most sensitive to deviations in seed deposition, remained 
high at about 125 Gy (compared to preplan value of about 
145 Gy). The results using ex vivo porcine lungs were 
slightly less accurate, although still acceptable in terms of 
potential for future therapeutic use. The lung brachytherapy 

system performed well in both in vitro and on ex vivo lung 
tissue

3
. 

LIMITATIONS AND FUTURE DIRECTIONS 

 A major limitation to any electromagnetic tracking 
system is the possible distortion in the field by magnetic 
interference caused by the presence of nearby metal objects. 
Improvements in technology have made the current 
generation of sensors less susceptible to such interferences. 
Our experience was that modest amounts of surgical steel in 
the environment do not cause any noticeable deterioration of 
accuracy. However, it would still be important to keep the 
amount of metal to a minimum, and the addition of metallic 
shields could ensure optimal performance. 

                                                
3Lin AW, Trejos AL, Bhatia P, et al. Minimally Invasive Robot-Assisted 

Image-Guided Optimal Dosimetry Planning And Execution Model For Lung 

Brachytherapy. Unpublished data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Image of a dosimetry plan for brachytherapy using 3D ultrasound imaging. (Courtesy of Dr. Aaron Fenster). 
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 The accuracy of brachytherapy seed injection was limited 
by the intrinsic resolution of the ultrasound probe. This 
resolution may be somewhat improved by using a newer 
probe or one with higher frequency (although this would 
have been at the expense of penetration depth). 3D 
ultrasound may hold the key to improved visualization and 
real time dosimetry planning. A better sense of the tissue 
may be obtained through reconstruction of the 3D space by 
piecing together 2D images and their position information. 

CONCLUSION 

 Lung cancer brachytherapy has been advocated for years. 
Recent advances in technology such as robotic assistance 
and image guidance give promise to improved performance 
of minimally invasive lung brachytherapy procedures, 
potentially expanding its clinical role and facilitating better 
patient outcomes. Robotic assistance enables precise 
manipulation of the brachytherapy needle while enhancing 
the ergonomics for the surgeon and radiation oncologist; 
real-time virtual reconstruction of the tissue of interest and 
image guidance allows more intuitive and reliable seed 
deposition. By integrating these two aspects of technology, 
the surgical procedure can be made more automatic, easier to 
learn, less susceptible to user variability, and may translate 
into better treatment efficacy with fewer side effects. 
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ABBREVIATIONS 

2D = Two-dimensional 

3D = Three-dimensional 

AC = Alternating current 

CAS = Computer-assisted surgical systems 

CSTAR  = Canadian Surgical Technologies & Advanced 
Robotics 

CT = Computed tomography 

DC = Direct current 

GUI  = Graphical User Interface 

HDR = High dose rate 

LDR = Low dose rate 

MRI = Magnetic resonance imaging 

MIS = Minimally invasive surgery 

NSCLC = Non small cell lung cancer 

PET = Positron emission tomography 

US = Ultrasound 

VATS  = Video-assisted thoracic surgery 

REFERENCES 

[1] CBC News. Cancer passes heart disease as top killer in U.S. Cancer 
Care Ontario Practice Guidelines Available from: 

http://news.bbc.co.uk/2/hi/health/4267513.stm [Accessed 2010, 
August 25] 

[2] Martinez-Monge R, Garran C, Vivas I, Lopez-Picazo JM. 
Percutaneous CT-guided 103Pd implantation for the medically 

inoperable patient with T1N0M0 non-small cell lung cancer: a case 
report. Brachytherapy 2004; 3(3):179-81. 

[3] Aye RW, Mate TP, Anderson HN, et al. Extending the limits of 
lung cancer resection. Am J Surg 1993; 165: 572-6. 

[4] Ginsberg RJ, Martini N, Zaman N, et al. Influence of surgical 
resection and brachytherapy in the management of superior sulcus 

tumour. Ann Thorac Surg 1994; 57: 1440-5. 
[5] Nori D, Baines M, Hilaris BS, et al. New intraoperative 

brachytherapy techniques for positive or close surgical margins. J 
Surg Oncol 1989; 42: 54-9. 

[6] Hilaris BS, Nori D, Beattie EJ, et al. Value of perioperative 
brachytherapy in the management of non-oat cell carcinoma of the 

lung. Int J Radiat Oncol Biol Phys 1983; 9: 1161-6. 
[7] Mittal BB, Nemcek AA Jr, Sider L. Malignant tumors invading 

chest wall: Treatment with CT-directed implantation of radioactive 
seeds. Radiology 1993; 186: 901-3. 

[8] Hall EJ. Radiobiology for the radiologist. 5th ed. Philadelphia: 
Lippincott Williams &Wilkins 2000. 

[9] Nag S, Kelly JF, Horton JL, et al. Brachytherapy for carcinoma of 
the lung. Recommendations from the American Brachytherapy 

Society. Oncology (Hunting) 2001; 15: 371-81. 
[10] Ung YC, Yu E, Falkson C, et al. The role of high-dose-rate 

brachytherapy in the palliation of symptoms in patients with non-
small-cell lung cancer: a systematic review. Brachytherapy 2006; 

5(3): 189-202. 
[11] Langendijk H, deJong J, Tjwa M, et al. External irradiation versus 

external irradiation plus endobronchial brachytherapy in inoperable 
non-small cell lung cancer: a prospective randomized study. 

Radiother Oncol 2001; 58: 257-68. 
[12] Sur R, Ahmed SN, Donde B, et al. Brachytherapy boost vs 

teletherapy boost in palliation of symptomatic locally advanced non 
small cell lung cancer. Preliminary analysis of a randomized, 

prospective study. J Brachyther Int 2001; 17: 309-15. 
[13] Sur R, Donde B, Mohuiddin M, et al. Randomized prospective 

study in palliation of symptoms in advanced non small cell lung 
cancer treated with radiation alone. Int J Radiat Oncol Bio Phys 

2004; 60: abstr 127. 
[14] Stout R, Barber P, Burt P, et al. Clinical and quality of life 

outcomes in the first United Kingdom randomized trial of 
endobronchial brachytherapy (intraluminal radiotherapy) vs 

external beam radiotherapy in the palliative treatment of 
inoperative non small cell lung cancer. Radiother Oncol 2000; 56: 

323-7. 
[15] Harms W, Krempien R, Grehn C, Hensley F, Debus J, Becker HD. 

Electromagnetically navigated brachytherapy as a new treatment 
option for peripheral pulmonary tumors. Strahlentherapie und 

Onkologie 2006; 182(2): 108-11. 
[16] Brach B, Buhler C, Hayman MH, Joyner LR Jr, Liprie SF. 

Percutaneous computed tomography-guided fine needle 
brachytherapy of pulmonary malignancies. Chest 1994; 106(1): 

268-74. 
[17] Imamura F, Chatani M, Nakayama T, Uda H, Nakamura S, Horai 

T. Percutaneous brachytherapy for small-sized non-small cell lung 
cancer. Lung Cancer 1999; 24(3): 169-74. 

[18] Ricke J, Wust P, Hengst S, Wieners G, Pech M, Herzog H, Felix R. 
CT-guided interstitial brachytherapy of lung malignancies. 

Technique and first results. Radiologe 2004; 44(7): 684-6. 
[19] Ricke J, Wust P, Wieners G, Hengst S, Pech M, Lopez Hanninen E, 

Felix R. CT-guided interstitial single-fraction brachytherapy of 
lung tumors: phase I results of a novel technique. Chest. 2005; 

127(6): 2237-42. 



12    Current Respiratory Medicine Reviews, 2011, Vol. 7, No. 5 Yu et al. 

[20] Hilaris BS, Martini N. The current state of intraoperative interstitial 

brachytherapy in lung cancer. International Journal of Radiation 
Oncology, Biology, Physics 1988; 15(6): 1347-54. 

[21] Kohek PH, Pakisch B, Glanzer H. Intraluminal irradiation in the 
treatment of malignant airway obstruction. Eur J Surg Oncol 1994; 

20: 674-80. 
[22] Aygun C, Weiner S, Scariato A, et al. Treatment of non-small cell 

lung cancer with external beam radiotherapy and high dose rate 
brachytherapy. Int J Radiat Oncol Biol Phys 1992; 23: 127-32. 

[23] Change LL, Horvath J, Peyton W, et al. High dose rate afterloading 
intraluminal brachytherapy in malignant airway obstruction of lung 

cancer. Int J Radiat Oncol Biol Phys 1994; 28: 589-96. 
[24] Speiser BL, Spratling L. Remote after loading brachytherapy for 

the local control of endobronchial carcinoma. Int J Radiat Oncol 
Biol Phys 1993; 25: 579-87. 

[25] Speiser BL, and Spratling L. Radiation bronchitis and the stenosis 
secondary to high dose rate endobronchial irradiation. Int J Radiat 

Oncol Biol Phys 1993; 25: 589-97. 
[26] Zajac AJ, Kahn ML, Heiser D, et al. High dose rate intraluminal 

brachytherapy in the treatment of endobronchial malignancy. Work 
in progress. Radiology 1993; 187: 571-5. 

[27] Cotter GW, Laricy C, Ellingwood KE, et al. Inoperable 
endobronchial obstructing lung cancer treated with combined 

endobronchial and external beam irradiation: a dosimetric analysis. 
Int J Radiat Oncol Biol Phys 1993; 27: 531-5. 

[28] Huber RM, Fischer R, Hautmann H, et al. Palliative endobronchial 
brachytherapy for central tumours. A prospective, randomized 

comparison of two fraction schedules. Chest 1995; 107: 463-70. 
[29] Hilaris BS, Luomanen RK, Mahan BS, et al. Interstitial irradiation 

of apical lung cancer. Radiology 1971; 99: 655-60. 
[30] Hilaris BS, Martini N, Luomanen JK, et al. The value of 

preoperative radiation therapy in apical cancer of the lung. Surg 
Clin N Am 1974; 54: 831-40. 

[31] Hilaris BS, Martini N, Wong GU, et al. Treatment of superior 
sulcus tumours (Panccoast tumor). Surg Clin N Am 1987; 65: 965-

77. 
[32] Armstrong JG, Martini N, Kris MG, et al. Induction chemotherapy 

for non-small cell lung cancer with clinically evident mediastinal 
node metastases: the role of postoperative radiotherapy. Int J Radiat 

Oncol Biol Phys 1992; 23: 605-13. 
[33] Hilaris BS, and Mastoras DA. Contemporary brachytherapy 

approaches in non-small cell lung cancer J Surg Oncol 1998; 69: 
258-64. 

[34] Nag S, Owen JB, Farnan N, et al. Survey of brachytherapy practice 
in the United States: A report of the Clinical Research Committee 

of the American Endocurietherapy Society. Int J Radiat Oncol Biol 
Phys 1995; 31: 103-7. 

[35] Gasper LE. Brachytherapy in lung cancer. J Surg Oncol 1998; 67: 
60-70. 

[36] Fleischman EH, Kagan AR, Streeter OE, et al. Iodine125 
interstitial brachytherapy in the treatment of carcinoma of the lung. 

J Surg Oncol 1992; 49(1): 25-8. 
[37] Ng WS, et al. Robotic radiation seed implantation for prostatic 

cancer. Proceedings of the 18th Annual International Conference of 
the IEEE, Engineering in Medicine and Biology Society: Bridging 

Disciplines for Biomedicine 1996 Oct 31-Nov 3; 1: 231-3. 
[38] Stoianovici D, Cadeddu JA, Demaree RD, et al. A novel 

mechanical transmission applied to percutaneous renal access. 
Proceedings of ASME Dynamic Systems and Control Division 

1997; DSC-61: 401-6. 
[39] Nag S, Kelly JF, Horton JL, Komaki R, and Nori D. Brachytherapy 

for carcinoma of the lung. Oncology (Williston.Park) 2001; 15(3): 
371-81. 

[40] Sider L, Mittal BB, Nemcek AA Jr, Bobba VS. CT-guided 
placement of iodine-125 seeds for unresectable carcinoma of the 

lung. J Comput Assist Tomogr 1988; 12(3): 515-7. 
[41] Tomberlin JK, Halperin EC, Kusin P, et al. Endobronchial 

interstitial Au-198 implantation in the treatment of recurrent 
bronchogenic carcinoma. J Surg Oncol 1992; 49(4): 213-9. 

[42] Mittal BB, Nemcek AA Jr, and Sider L. Malignant tumors invading 
chest wall: treatment with CT-directed implantation of radioactive 

seeds. Radiology 1993; 186(3): 901-3. 
[43] McKenna RJ Jr, Houck W, and Fuller CB. Video-assisted thoracic 

surgery lobectomy: experience with 1,100 cases. Ann Thorac Surg 
2006; 81(2): 421-5. 

[44] McKenna RJ Jr. The current status of video-assisted thoracic 

surgery lobectomy. Chest Surg Clin of North America 1998; 8(4): 
775-85. 

[45] Buckingham RA, Buckingham RO. Robots in operating theatres. 
BMJ 1995; 311(7018): 1479-82. 

[46] Panait L, Doarn CR, Merrell RC. Applications of robotics in 
surgery. Chirurgia (Bucur.) 2002; 97(6): 549-55. 

[47] Munz Y, Moorthy K, Dosis A, Hernandez, et al. The benefits of 
stereoscopic vision in robotic-assisted performance on bench 

models. Surg Endosc 2004; 18(4): 611-6. 
[48] Corcione F, Esposito C, Cuccurullo D, et al. Advantages and limits 

of robot-assisted laparoscopic surgery: preliminary experience. 
Surg Endosc 2005; 19(1): 117-9. 

[49] Morgan JA, Ginsburg ME, Sonett JR, Argenziano M. 
Thoracoscopic lobectomy using robotic technology. Heart Surg 

Forum 2003; 6(6): E167-E169. 
[50] Kernstine KH. Robotics in thoracic surgery. American Journal of 

Surgery 2004; 188(4A Suppl): 89S-97S. 
[51] Intuitive Surgical Inc. da Vinci Robot. Available from: 

http://www.intuitivesurgical.com/products/ [Accessed 2010, 
August 25]. 

[52] d'Amato TA, Galloway M, Szydlowski G, Chen A, Landreneau RJ. 
Intraoperative brachytherapy following thoracoscopic wedge 

resection of stage I lung cancer. Chest 1998; 114(4): 1112-5. 
[53] Chen A, Galloway M, Landreneau R, et al. Intraoperative 125I 

brachytherapy for high-risk stage I non-small cell lung carcinoma. 
Int J Radia Oncol, Biol, Phys 1999; 44(5): 1057-63. 

[54] Lee W, Daly BD, DiPetrillo TA, et al. Limited resection for non-
small cell lung cancer: observed local control with implantation of 

I-125 brachytherapy seeds. Ann Thorac Surg 2003; 75(1): 237-242. 
[55] Santos R, Colonias A, Parda D, et al. Comparison between 

sublobar resection and 125Iodine brachytherapy after sublobar 
resection in high-risk patients with Stage I non-small-cell lung 

cancer. Surgery 2003; 134(4): 691-7. 
[56] Pisch J, Belsley SJ, Ashton R, Wang L, Woode R, Connery C. 

Placement of 125I implants with the da Vinci robotic system after 
video-assisted thoracoscopic wedge resection: a feasibility study. 

Int J Radia Oncol, Biol, Phys 2004; 60(3): 928-32. 
[57] Fernando HC, Santos RS, Benfield JR, et al. Lobar and sublobar 

resection with and without brachytherapy for small stage IA non-
small cell lung cancer. J Thorac Cardiovasc Surg 2005; 129(2): 

261-7. 
[58] Voynov G, Heron DE, Lin CJ, et al. Intraoperative (125)I Vicryl 

mesh brachytherapy after sublobar resection for high-risk stage I 
non-small cell lung cancer. Brachytherapy 2005; 4(4): 278-85. 

[59] Birdas TJ, Koehler RP, Colonias A, et al. Sublobar resection with 
brachytherapy versus lobectomy for stage Ib nonsmall cell lung 

cancer. Ann Thorac Surg 2006; 81(2): 434-8. 
[60] American College of Surgeons Oncology Group. Z4032 Study: A 

Randomized Phase III Study of Sublobar Resection versus 
Sublobar Resection plus Brachytherapy in High Risk Patients with 

Non-Small Cell Lung Cancer (NSCLC), 3 cm or smaller. Available 
from: http://clinicaltrials.gov/ct2/show/NCT00107172 [Accessed 

2010, Aug 25]. 
[61] Artinian V, Kvale PA. Update in screening of lung cancer. 

Respirology. 2005; 10(5): 558-66. 
[62] Henschke CI. CT screening for lung cancer: update 2005. Surg 

Oncol Clin N Am 2005; 14(4): 761-76. 
[63] Henschke CI, Shaham D, Yankelevitz DF, Altorki NK. CT 

screening for lung cancer: past and ongoing studies. Semin Thorac 
Cardiovasc Surg 2005; 17(2): 99-106. 

[64] Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus 
limited resection for T1 N0 non-small cell lung cancer. Lung 

Cancer Study Group. Ann Thorac Surg 1995; 60(3): 615-22. 
[65] Smythe WR. Treatment of stage I non-small cell lung carcinoma. 

Chest 2003; 123(1 Suppl): 181S-187S. 
[66] Landreneau RJ, Sugarbaker DJ, Mack MJ, et al. Wedge resection 

versus lobectomy for stage I (T1 N0 M0) non-small-cell lung 
cancer. J Thorac Cardiovasc Surg 1997; 113(4): 691-8. 

[67] Ketchedjian A, Daly B, Landreneau R, aFernando H. Sublobar 
resection for the subcentimeter pulmonary nodule. Semin Thorac 

Cardiovasc Surg 2005; 17(2): 128-33. 
[68] Kodama K, Doi O, Higashiyama M, Yokouchi H. Intentional 

limited resection for selected patients with T1 N0 M0 non-small-
cell lung cancer: a single-institution study. J Thorac Cardiovasc 

Surg 1997; 114(3): 347-53. 



Lung Cancer Brachytherapy Current Respiratory Medicine Reviews, 2011, Vol. 7, No. 5      13 

[69] Yoshikawa K, Tsubota N, Kodama K, Ayabe H, Taki T, and Mori 

T. Prospective study of extended segmentectomy for small lung 
tumors: the final report. Ann Thorac Surg 2002; 73(4): 1055-8. 

[70] Fibla Alfara JJ, Gomez Sebastian G, Farina Rios C, Carvajal 
Carrasco A, Estrada Salo G, Leon Gonzalez C. Lobectomy versus 

limited resection to treat non-small cell lung cancer in stage I: a 
study of 78 cases. Arch Bronconeumol 2003; 39(5): 217-20. 

[71] Nonaka M, Kadokura M, Yamamoto S, et al. Tumor dimension and 
prognosis in surgically treated lung cancer: for intentional limited 

resection. American Journal of Clinical Oncology 2003; 26(5): 
499-503. 

[72] Koike T, Yamato Y, Yoshiya K, Shimoyama T, and Suzuki R. 
Intentional limited pulmonary resection for peripheral T1 N0 M0 

small-sized lung cancer. J ThoracCardiovasc Surg 2003; 125(4): 
924-8. 

[73] Koike T, Yamato Y, Yoshiya K, et al. Criteria for intentional 
limited pulmonary resection in cT1N0M0 peripheral lung cancer. 

Jpn J Thorac Cardiovasc Surg 2003; 51(10): 515-9. 
[74] El-Sherif A, Gooding WE, Santos R, et al. Outcomes of sublobar 

resection versus lobectomy for stage I non-small cell lung cancer: a 
13-year analysis. Ann Thorac Surg 2006; 82(2): 408-15. 

[75] Takizawa M, Oda M, Ohta Y, et al. Perioperative targeting 
brachytherapy for lung cancer invading the chest wall. Kyobu Geka 

2004; 57(13): 1198-201. 
[76] Hu J, Zhang C, and Sun L. Localization of small pulmonary 

nodules for videothoracoscopic surgery. ANZ.J.Surg. 2006; 76(7): 
649-51. 

[77] Ciriaco P, Negri G, Puglisi A, Nicoletti R, Del Maschio A, Zannini 
P. Video-assisted thoracoscopic surgery for pulmonary nodules: 

rationale for preoperative computed tomography-guided hookwire 
localization. Eur J Cardio-Thorac Surg 2004; 25(3): 429-33. 

[78] Lenglinger FX, Schwarz CD, Artmann W. Localization of 
pulmonary nodules before thoracoscopic surgery: value of 

percutaneous staining with methylene blue. AJR Am J Roentgenol 
1994; 163(2): 297–300. 

[79] Powell TI, Jangra D, Clifton JC, et al. Peripheral lung nodules: 
fluoroscopically guided video-assisted thoracoscopic resection after 

computed tomography-guided localization using platinum 
microcoils. Ann Surg 2004; 240(3):481-8 

[80] Wicky S, Mayor B, Cuttat JF, Schnyder P. CT-guided localizations 
of pulmonary nodules with methylene blue injections for 

thoracoscopic resections. Chest 1994; 106(5): 1326-8. 
[81] McConnell PI, Feola GP, Meyers RL. Methylene blue-stained 

autologous blood for needle localization and thoracoscopic 
resection of deep pulmonary nodules. J Pediatr Surg 2002; 37(12): 

1729-31. 
[82] Suzuki K, Nagai K, Yoshida J, et al. Video-assisted thoracoscopic 

surgery for small indeterminate pulmonary nodules: indications for 
preoperative marking. Chest 1999; 115(2): 563-8. 

[83] Hazelrigg SR, Nunchuck SK, and LoCicero J, III. Video Assisted 
Thoracic Surgery Study Group data. Ann Thorac Surg 1993; 56(5): 

1039-43. 
[84] Mack MJ, Shennib H, Landreneau RJ, Hazelrigg SR. Techniques 

for localization of pulmonary nodules for thoracoscopic resection. 
Journal of Thoracic & Cardiovascular Surgery 1993; 106(3): 550-3. 

[85] Cleary K, Freedman M, Clifford M, Lindisch D, Onda S, Jiang L. 
Image-guided robotic delivery system for precise placement of 

therapeutic agents. J Control Release 2001; 74(1-3): 363-8. 
[86] Wesarg S, Firle EA, Schwald B, Seibertk H, Zogal P, and 

Roeddiger S. Accuracy of needle implantation in brachytherapy 
using a medical AR system: a phantom study. Proceedings of SPIE 

Medical Imaging: Visualization, Image-Guided Procedures, and 
Display 2004; 5367:341-52. 

[87] Zhang H, Banovac F, Lin R, et al. Electromagnetic tracking for 
abdominal interventions in computer aided surgery. Comput Aided 

Surg 2006; 11(3): 127-36. 
[88] Zhang H, Banovac F, Glossop N, and Cleary K. Two-stage 

registration for real-time deformable compensation using an 
electromagnetic tracking device. Int Conf Med Image Comput 

Comput Assist Interv 2005; 8(Pt 2): 992-9. 
[89] Schweikard A, Glosser G, Bodduluri M, Murphy MJ, Adler JR. 

Robotic motion compensation for respiratory movement during 
radiosurgery. Comput Aided Surg 2000; 5(4):263-77. 

[90] Klein, GJ, Reutter BW, Huesman RH. 4D affine registration 
models for respiratory-gated PET. Nuclear Science Symposium; 

2000 October 15-20; Lyon, France. 2: 15/41-15/45. 

[91] Pitiot A, Malandain G, Bardine E, Thompson PM. Piecewise affine 

registration of biological images. Proceedings of Second 
International Workshop on Biomedical Image Registration (WBIR 

2003); 2003/6. 
[92] Lewis C, Bickhram M, Yu E, Wei Z, Hornblower V, Malthaner R. 

Feasibility of 3D ultrasound guided brachytherapy for lung cancer 
using a porcine lung tumour model. Medical Physics. 2006/July/15; 

33(7): 2675 Abstract. 
[93] Hoskins MW, Chang L, Kong H, and Hammerman MB. 

Brachytherapy instrument and methods. United States Patent 
Number: 6,752,753 2002 April. 

[94] Wei Z, Wan G, Gardi L, Mills G, Downey D, and Fenster A. 
Robot-assisted 3D-TRUS guided prostate brachytherapy: system 

integration and validation. Med Phys. 2004; 31(3): 539–548. 
[95] Bassan H, Hayes T, Patel RV, Moallem M. A novel manipulator 

for 3D ultrasound-guided percutaneous Needle Insertion. IEEE 
International Conference on Robotics & Automation; 2007 April 

10-4; Rome, Italy. 
[96] Bassan H, Patel RV, Moallem M. A novel manipulator for 

percutaneous needle insertion: design and experimentation. 
IEEE/ASME Transactions on Mechatronics 2009; 14: 746-61. 

[97] Maurin B, Piccin O, Bayle B, et al. A new robotic system for CT-
guided percutaneous procedures with haptic feedback. Computer 

Assisted Radiology and Surgery; 2004 June. International Congress 
Series; 1268: 515-20. 

[98] Yanof J, Bauer C, and Wood B. Tactile feedback and display 
system for CT-guided, robot-assisted percutaneous procedures. 

Computer Assisted Radiology and Surgery; 2004 June. 
International Congress Series; 1268: 521-6. 

[99] Abolhassani N, Patel RV. Teleoperated master-slave needle 
insertion. International Journal of Medical Robotics and Computer 

Assisted Surgery 2009; 5: 398-405. 
[100] Hong J, Dohi T, Hashizume M, Konishi K, Hata N. An ultrasound-

driven needle-insertion robot for percutaneous cholecystostomy. 
Phys Med Biol 2004; 49(3): 441-55. 

[101] Abolhassani N, Patel RV, Moallem M. Needle insertion into soft 
tissue: A survey. Med Eng Phys 2006; 29(4): 413-31. 

[102] Abolhassani N, Patel RV, Moallem M. Control of soft tissue 
deformation during robotic needle insertion. Minim Invasive Ther 

Allied Technol 2006; 15(3): 165-76. 
[103] Abolhassani N, Patel RV, Ayazi F. Minimization of needle 

deflection in robot-assisted percutaneous therapy. International 
Journal of Medical Robotics and Computer Assisted Surgery 2007; 

3: 140-8. 
[104] Trejos AL, Mohan S, Bassan H, et al. An Experimental Test Bed 

for Robotics-Assisted Image-Guided Minimally-Invasive Lung 
Brachytherapy. 2007 IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS’07), 2007 Oct 29–Nov 2; 
San Diego, California; pp. 392-7. 

[105] Trejos AL, Lin AW, Pytel MP, Patel RV and Malthaner RA. 
Robot-assisted minimally invasive lung brachytherapy. 

International Journal of Medical Robotics and Computer Assisted 
Surgery 2007; 3(1): 4-51. 

[106] Trejos AL, Lin AW, Mohan S, et al. MIRA V: an integrated system 
for minimally invasive robot-assisted lung brachytherapy. IEEE 

International Conference on Robotics and Automation; 2008 May 
19-23; Pasadena, California. pp. 2982-7. 

[107] Trejos AL, Patel RV, Malthaner RA. A device for robot-assisted 
minimally-invasive lung brachytherapy. IEEE International 

Conference on Robotics and Automation 2006 May 15-19; 
Orlando, FL. pp. 1487-92. 

[108] Pytel M. M.E.Sc. Thesis. The development of an image based 
navigation system for use in interstitial lung brachytherapy. 

2005/12/1. University of Western Ontario. 
[109] Hornblower V, Gardi L, Yu EW, Battista JJ, Fenster A, Malthaner 

RA. Intraoperative 3D ultrasound imaging of a lung tumour. 
Canadian Journal of Surgery. 2004/August/15; 47(Supplement):30 

Abstract # 78. 
[110] Hornblower V, Gardi L, Yu E, Battista JJ, Fenster A, Malthaner 

RA. Development of a lung tumour model for validating 3-
dimensional thoracoscopic ultrasound imaging. Canadian Journal 

of Surgery. 2005/August/15; 48(Supplement):32 Abstract # 89. 
[111] Hornblower V, Yu E, Fenster A, Battista JJ, Malthaner RA. 

Performance evaluation of thoracoscopic 3D ultrasound imaging in 
an in vitro porcine model. Canadian J Surg 2006/August/15; 

49(Supplement):28 Abstract # 72. 



14    Current Respiratory Medicine Reviews, 2011, Vol. 7, No. 5 Yu et al. 

[112] Hornblower V. M.E.Sc. Thesis. Three-dimensional ultrasound 

imaging of lung tumours. 2005/10/30. University of Western 
Ontario. 

[113] Malthaner RA., Yu E, Battista JJ, Blake C, Downey D, Fenster A. 
Robotically assisted ultrasound image guided interstitial lung 

brachytherapy in a porcine model. International Society for 
Computer Aided Surgery Computer Assisted Radiology and 

Surgery. 19th International Congress and Exhibition; Poster. 
Berlin, Germany. 

[114] Lin AW, Trejos AL, Patel RV, Malthaner RA. Robot-Assisted 
Minimally Invasive Brachytherapy for Lung Cancer. Telesurgery, 

Kumar S. & Marescaux J. editors 1st Editions 2008/Jan/15 Chapter 

4, pp. 37-56. 
[115] Ma G, Pytel M, Trejos AL, et al. Zeus robot assisted thoracoscopic 

brachytherapy: Zeus vs VATS vs manual seed implantation. 
Minimally Invasive Robotic Association: 1st Worldwide Meeting; 

Poster. Innsbruck, Austria. 
[116] Ma G, Pytel M, Trejos AL. et al. Robot-assisted thoracoscopic 

brachytherapy for lung cancer: comparison of the ZEUS robot, 
VATS, and manual seed implantation. Computer Aided Surgery 

2007; 12(5): 270-7. 

 

 

Received: June 15, 2010 Revised: August 24, 2010 Accepted: November 5, 2010 

 


	Western University
	Scholarship@Western
	10-2011

	Lung Cancer Brachytherapy: Robotics-Assisted Minimally Invasive Approach
	Edward Yu
	Craig Lewis
	Ana Luisa Trejos
	Rajni V. Patel
	Richard A. Malthaner
	Citation of this paper:


	Microsoft Word - Yu_CRMR

