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ABSTRACT 

 Nitrogen is the most abundant element in our atmosphere, yet has become 

increasingly limited in agricultural lands.  Legume plants offer a possible solution to this 

problem due to their innate ability to symbiotically interact with nitrogen-fixing bacteria 

called rhizobia.  In particular, a histidine kinase cytokinin receptor from the model 

legume Lotus japonicus (LHK1) has been clearly placed at the core of these interactions.  

Loss-of-function mutants in LHK1 fail to initiate timely cortical cell divisions in response 

to abundant bacterial infection, and gain-of-function mutations in the same locus cause L. 

japonicus plants to form spontaneous nodules in the absence of rhizobia, thus indicating 

that this receptor is required and sufficient for nodule organogenesis.  However, 

nodulation events do still occur in lhk1-1 mutants.  Therefore, this study has sought to 

address how nodule organogenesis persists in the lhk1-1 mutant background; is this 

achieved through cytokinin-independent signaling or perhaps redundancy in function 

with other members of the LHK family?  To that end, the present study has identified 

three new Lhk loci from L. japonicus (described herein as Lhk1A, Lhk2, and Lhk3) and 

provides a detailed characterization of their roles during the NFS.   Furthermore, we 

highlight the pivotal role of LHK1 signalling during the NFS, but also clearly indicate 

that the role of this receptor is not entirely unique.  Indeed, other LHK family members 

share promoter localization profiles with LHK1 and can complement for loss-of-function 

mutations in LHK1.  The results have allowed for the refinement of current models 

involving the cytokinin signalling network, which highlight a possible role for other 

receptors during LHK1-independent signalling events in the root cortex.   

 



 

 iv 

 

 

 

KEYWORDS: legumes, Lotus japonicus, nitrogen-fixing symbiosis, rhizobia, 

mycorrhizal fungus, cytokinin, histidine kinase, cytokinin receptor 



 

 v 

 

 

 

 

 

 

 

 

DEDICATION 

 

To my better half, Megan; who saw me through this journey. 



 

 vi 

ACKNOWLEDGEMENTS 

 

 

I am foremost grateful to my supervisor and mentor Dr. Krzysztof Szczyglowski, for his 

guidance, support and constant pursuit of excellence in science. 

 

I would like to thank the members of my advisory committee, Dr. Denis Maxwell and Dr. 

Kathleen Hill, and my co-supervisor Dr. Susanne Kohalmi for providing helpful advice 

and feedback during my graduate studies.  

 

Thank you to all the past and present Szczyglowski lab members who I have shared work, 

but also jokes with in the lab.  

 

In particular, I would like to thank Dr. Bogumil Karaś for all of his support and technical 

advice; for working late, many nights discussing new ideas or pushing me to new heights. 

 

I would like to thank the Natural Sciences and Engineering Research Council (NSERC) 

Postgraduate Scholarship, the Ontario Genomics Institute, and the UWO Biology 

department for providing me with financial support throughout my graduate studies.  

 

Thank you to all the close friends and family that have given me encouragement along 

the way; I could not have completed this task without your support. 

 

Lastly, but definitely not least, I thank my parents for making great sacrifices in their own 

lives so that I may have the opportunity to go this far. 



 

 vii 

TABLE OF CONTENTS 

TITLE PAGE ....................................................................................................................... I 

CERTIFICATE OF EXAMINATION .............................................................................. II 

ABSTRACT ...................................................................................................................... III 

KEYWORDS .................................................................................................................... IV 

DEDICATION ................................................................................................................... V 

ACKNOWLEDGEMENTS .............................................................................................. VI 

TABLE OF CONTENTS ................................................................................................ VII 

LIST OF TABLES ............................................................................................................ XI 

LIST OF FIGURES ........................................................................................................ XII 

LIST OF APPENDICES ................................................................................................ XIV 

LIST OF ABBREVIATIONS .......................................................................................... XV 

 

CHAPTER 1 

INTRODUCTION............................................................................................................. 1 

1.1  The green revolution ............................................................................................... 2 

1.2 Consequences of intensive agriculture.................................................................... 5 

1.3 Legumes as an alternative ..................................................................................... 10 

1.4 Evolution of the symbiotic program ..................................................................... 11 

1.5 Two programs are required during the NFS ......................................................... 16 

1.6 Genetic elements required for symbiotic signalling ............................................. 19 

1.7 Cytokinin: the key signalling element for symbiosis ............................................ 22 

1.8 Goal of the thesis .................................................................................................. 27 

 



 

 viii 

CHAPTER 2 

MATERIALS AND METHODS ................................................................................... 30 

2.1  Plant growth conditions ........................................................................................ 31 

2.2  Analyses of symbiotic phenotypes ........................................................................ 31 

2.3  Identification of putative cytokinin receptors in L. japonicus .............................. 32 

2.4  RACE validation and expression of putative Lhk ORFs in L. japonicus.............. 33 

2.5  Alternative splicing at the Lhk3 locus ................................................................... 34 

2.6  Isolation of Lhk mutants........................................................................................ 34 

2.7  Cytokinin-responsive assay in Saccharomyces cerevisiae ................................... 35 

2.8  Cytokinin-responsive assay in Escherichia coli ................................................... 36 

2.9  Root elongation and cytokinin insensitivity assays .............................................. 37 

2.10  Production of stable transgenics ........................................................................... 37 

2.11  GUS staining procedures ...................................................................................... 38 

2.12  Hairy-root complementation of lhk1-1 mutants .................................................... 38 

 2.12.1 Over-expression of Lhk cDNAs ................................................. 38 

2.13  Microscopy and image analysis ............................................................................ 39 

2.14  Statistical analyses ................................................................................................ 39 

2.15  BLAST analyses ................................................................................................... 40 

 

CHAPTER 3 

RESULTS ........................................................................................................................ 41 

3.1  Disclaimer and co-authorship ............................................................................... 42 

3.2  The L. japonicus cytokinin receptor family is comprised of four members ......... 43 



 

 ix 

3.3  Genomic organization of Lhk loci......................................................................... 43 

3.4  Phylogeny of LHK receptors ................................................................................ 45 

3.5  LHK proteins contain characteristic domains of known cytokinin receptors ....... 47 

3.6  Lhk transcripts possess overlapping expression profiles ...................................... 50 

3.7  The Lhk3 transcript undergoes alternative splicing .............................................. 54 

3.7  Lhk1A and Lhk3 code for functional cytokinin receptors ..................................... 56 

3.7.1  Lhk1A confers cytokinin-responsive growth to the sln1Δ mutant of S. 

cerevisiae .............................................................................................................. 56 

3.8  Isolation of lhk TILLING mutants ........................................................................ 62 

3.9 The lhk1a-1 and lhk3-1 mutations are deleterious to cytokinin responsive function 

of Lhk1A and Lhk3 ............................................................................................................ 65 

3.10 Symbiotic phenotypes of lhk TILLING mutants .................................................. 65 

3.10.1  Symbiotic interaction with M. loti is largely unaffected in lhk1a-1, lhk2-5, and 

lhk3-1 single mutant backgrounds .................................................................................... 65 

3.10.2  lhk double mutants carrying the loss-of-function lhk1-1 allele 

phenocopy lhk1-1 single mutants.......................................................................... 69 

3.10.3  Symbiotic interaction with AM fungi is unaltered in lhk mutants ........ 72 

3.11 Response of lhk mutants to exogenous cytokinin application .............................. 75 

3.12 Characterization of Lhk gene promoter expression profiles in transgenic L. 

japonicus plants ................................................................................................................ 77 

3.13 Complementation of the lhk1-1 symbiotic phenotype via overexpression of 

different Lhk cDNAs ......................................................................................................... 79 

3.14   Symbiotic phenotype of lhk1-1 symRK-14 double mutants .................................. 82 



 

 x 

CHAPTER 4 

DISCUSSION .................................................................................................................. 85 

4.1   Cytokinin and nitrogen fixing symbiosis .............................................................. 86 

4.2   The L. japonicus cytokinin receptor family is comprised of four members ......... 86 

4.3   Expression patterns of the Lhk gene family .......................................................... 88 

4.4   LHK1, a pivotal player during the NFS ................................................................ 90 

4.5   The role of cytokinin receptor-dependent signaling during symbiosis ................. 91 

4.6   LHK1 is the sensor for exogenous cytokinin ........................................................ 93 

4.7   Bacterial entry is required for LHK1-independent nodule organogenesis ........... 94 

4.8  LHK1, not a unique receptor ................................................................................ 95 

4.9   LHK1A and LHK3 act redundantly with LHK1 in the inner root cortex ............. 96 

PERSPECTIVES .......................................................................................................... 100 

 

BIBLIOGRAPHY ......................................................................................................... 102 

 

APPENDIX I 

Research contributions not included in the thesis ........................................................... 112 

 

CURRICULUM VITAE ............................................................................................... 113 

 



 

 xi 

LIST OF TABLES 

 

Table 3.1  Amino acid conservation of LHK homologues and presumed AHK 

counterparts ...................................................................................................................... 48 

 

 



 

 xii 

LIST OF FIGURES 

 

CHAPTER 1 

Figure 1.1   Changes in global land use strategies over time. ............................................ 4 

Figure 1.2   Global nitrogen fixation during the 20
th

 century ............................................ 6 

Figure 1.3   Changes in maize yield and nitrate leaching .................................................. 8 

Figure 1.4   Nutrient transfer during legume symbioses .................................................. 13 

Figure 1.5   Chemical stimuli for beneficial symbioses ................................................... 15 

Figure 1.6   Two programs are required for the NFS. ...................................................... 17 

Figure 1.7   Symbiotic signalling elements ...................................................................... 20 

Figure 1.8   Cytokinin signalling elements...................................................................... 23 

 

CHAPTER 3 

Figure 3.1   Genomic context of Lhk loci ........................................................................ 44 

Figure 3.2  Phylogeny of the Lotus japonicus LHK proteins. ........................................ 46 

Figure 3.3  A generalized structure of LHK cytokinin receptors. .................................. 49 

Figure 3.4  Alignment of the LHK kinase domain ......................................................... 51 

Figure 3.5  Alignment of LHK receiver domains .......................................................... 52 

Figure 3.6  Semi-quantitative RT-PCR of Lhk transcripts in L. japonicus .................... 53 

Figure 3.7  Lhk3 is alternatively spliced......................................................................... 55 

Figure 3.8   Steady-state level of Lhk3 transcripts during nodule development. ............ 57 

Figure 3.9   Functional analysis of Lhk1A ....................................................................... 58 

Figure 3.10 Lhk3 codes for a functional cytokinin receptor. ........................................... 60 



 

 xiii 

Figure 3.11  Rearrangements of the pSTV28-Lhk2 plasmid in the SRC122 strian. ......... 61 

Figure 3.12  Lhk mutant alleles as identified by the TILLING approach ........................ 63 

Figure 3.13  Selected TILLING mutants obtained for Lhk2 and Lhk3 ............................ 64 

Figure 3.14  The lhk1a-1 TILLING mutant is loss-of-function ....................................... 66 

Figure 3.15  The lhk3-1 mutation abolishes the cytokinin-responsive function of the 

LHK3 receptor .................................................................................................................. 67 

Figure 3.16  Bacterial infection is unaffected in lhk1a-1, lhk2-5 and lhk3-1 mutants ..... 68 

Figure 3.17  Nodule organogenesis is unaffected in lhk1a-1, lhk2-5 and lhk3-1 single 

mutant backgrounds .......................................................................................................... 70 

Figure 3.18  Symbiotic phenotype of lhk1a-1, lhk2-5, and lhk3-1 mutants ..................... 71 

Figure 3.19  Symbiotic phenotype of lhk double mutant lines ......................................... 73 

Figure 3.20 Symbiotic interaction of L. japonicus roots with AM fungi is unaffected in 

lhk mutant backgrounds .................................................................................................... 74 

Figure 3.21  Response of the L. japonicus wild-type and lhk mutant roots to exogenous 

cytokinin treatment ........................................................................................................... 76 

Figure 3.22  Localization of proLhk::GUS reporter gene activity in stable L. japonicus 

transgenic plants................................................................................................................ 78 

Figure 3.23  Complementation of the lhk1-1 symbiotic phenotype ................................. 81 

Figure 3.24  Symbiotic phenotype of the lhk1-1 symRK-14 double mutant .................... 84 

 

CHAPTER 4 

Figure 4.1   Working model for understanding the cytokinin signaling pathway during 

nodule organogenesis ........................................................................................................ 97 



 

 xiv 

LIST OF APPENDICES 

APPENDIX I   

Research contributions not included in the thesis ........................................................... 112 



 

 xv 

LIST OF ABBREVIATIONS 

AM  arbuscular mycorrhiza 

BAP benzylaminopurine 

B & D Broughton and Dilworth nutrient media 

C carbon 

Ca
2+

 calcium 

CaMV Cauliflower mosaic virus 

CHASE cyclases/histidine kinases associated sensory extracellular 

CI Confidence interval 

CSG common symbiosis genes 

cZ, Cis-Z cis-Zeatin 

DNA deoxyribonucleic acid 

EMS ethylmethanesulfonate 

GMO genetically modified organism 

GRAS GAI, RGA, SCR 

H hydrogen 

HA hectare 

HK histidine kinase 

HPT histidine phosphotransfer protein 

iP isopentenyl adenine 

IT infection thread(s) 

kDa kilodalton 

Mb megabase 



 

 xvi 

MC microcolony 

MMt million metric tonnes 

Mya million years ago 

MF mycorrhizal factor 

N nitrogen 

NAA 1-naphthaleneacetic acid 

NF nodulation or nod factor 

NFS nitrogen-fixing symbiosis 

ORF open reading frame 

P phosphorus 

pTZS tZ secretion plasmid 

R variable group 

RACE rapid amplification of cDNA ends 

RcsC regulator capsule synthesis C 

Rht reduced height gene 

RNA ribonucleic acid 

RR response regulator 

RT-PCR reverse transcription polymerase chain reaction 

SCAR suppressor of cAMP receptor defects  

Tg teragram (equivalent to MMt) 

TILLING targeted induced localized lesions in genomes 

TM transmembrane domain 

tZ trans-Zeatin 



 

 xvii 

UBI ubiquitin 

UTR untranslated region 

WASP Wiskott–Aldrich syndrome protein 

WAVE WASP family verprolin homologous protein 

 

All numerical units included in this thesis are standard SI units 

 



 

 

 

 

 

 

CHAPTER 1 

 

INTRODUCTION 

 

 

 



 

 

2 

1.1 The green revolution 

 The transition from hunter-gatherer lifestyles to agriculture coincided with the 

domestication of both plants and animals.  Historically, this was most likely to occur in 

geographic locations such as the Fertile Crescent (Western Asia), where, some 10 000 

years ago, indigenous peoples were surrounded by a local abundance of usable plants 

such as wheat, barley and peas as well as what would become livestock animals such as 

sheep, goats, cows and pigs (Diamond, 2002; Lev-Yadun et al., 2000).  Since that 

moment of inception, human agriculture practices have and continue to shape the global 

landscape of Earth.  Among the advances made since that time, the so-called „Green 

Revolution‟ of the mid twentieth-century was likely one of the most significant.  

Originally pioneered by the work of Norman Borlaug, the green revolution combined 

improved crop varieties, such as dwarf varieties of wheat containing altered forms of the 

giberellin-insensitivity genes (Rht; Smale, 1997), with refinement of pre-existing 

technologies such as irrigation and the development of novel technologies like 

agrochemicals in the form of synthetic fertilizers (Khush, 2001).  The combined effect of 

these variables significantly increased the productivity of agricultural lands the world 

over (Fig. 1.1).  For example, the semi-dwarf IR8 rice strain produced by the 

International Rice Research Institute (IRRI) provided exceptional yields under sufficient 

fertilizer and irrigation regimes.  IR8 represents a quintessential green revolution crop 

which significantly contributed to vast increases in agricultural output from developing 

and developed countries alike (Flinn et al., 1982; Khush, 2001).  For example, 

agricultural output doubled from developing nations between 1965-1981, largely as a 
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result of increased yields obtained from cereal crops such as rice, wheat, and corn (Fig. 

1.1; Foley et al., 2005).   

The vast majority of crops grown globally are now genetically-modified 

organisms (GMO) that have been engineered to exhibit, among other desired traits, 

increased resistance to herbicides, insecticides, and pests of various types (Conner et al., 

2003).  For example, in China improved varieties of wheat, rice and corn represent nearly 

100% of all crops planted (Huang et al., 1999).  In addition to these genetic variables, a 

great deal of investment has been made in maximizing yields of many crop species closer 

to those obtained in artificial lab settings, where conditions are ideal.  At the time of the 

green revolution researchers became very aware of this fact and thus, novel GMO crops  

used in modern agriculture depend heavily on nutrient status, particularly that of nitrogen 

(N) and phosphorus (P).   

Phosphorus and phosphate-containing fertilizers are obtained via intensive mining 

of limited deposits found in a few, specific locations like Canada.  A large portion of 

extracted P is applied to agricultural lands to supplement soil limitations, which affect a 

significant portion of the arable land globally (Vance et al., 2003).     

Elemental N comprises roughly 78% of the Earth‟s atmosphere.  However, N 

atoms in this state are unusable by nearly all organisms due to the triple bond connecting 

the two N atoms, which makes the conversion of dinitrogen into other compounds 

extremely difficult.  This is particularly significant when one considers that N is the most 

limiting factor for terrestrial crop growth and yield.  The production of nitrogenous 

compounds from hydrogen and N gas was pioneered by Fritz Haber and Carl Bosch, who 

were awarded Nobel prizes in 1918 and 1931, respectively, for their refinement of  
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Figure 1.1  Changes in global land use strategies over time.  (A) Agricultural lands have 

gradually transitioned from natural landscapes into areas largely dominated by intensive 

agriculture.  (B) Increases in crop production during and after the industrial and green 

revolutions of the 20
th

 century.  Figure modified from Foley et al., (2005). 
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industrial N fixation into an economically feasible process, aptly named the Haber-Bosch 

process.  This industrial N fixation consumes 1% of the total energy budget to produce 

roughly 100 million tons of largely anhydrous ammonia per year, which is mostly used 

for the production of N fertilizer (Smith, 2002).   

On a global scale, N from the Earth‟s atmosphere prior to the industrial and green 

revolution has been contributing to overall N cycle through natural processes, such as a 

combination of biological N fixation by bacteria and cyanobacteria inhabiting terrestrial 

and aquatic environments, lightning strikes and symbiotic N fixation of leguminous 

plants.  At this time, very little in the way of anthropogenic (human-derived) N fixation 

contributed to the global N fixation quotient (Fig. 1.2).  However, since the green and 

industrial revolutions of the mid-20
th

 century, the global balance of N inputs has shifted 

significantly due to humanity‟s increasing combustion of fossil fuels and our increasing 

employment of the Haber-Bosch process; up from only 10.3 MMt (million metric tones) 

to a projected 240 MMt by 2050 (Tilman, et al., 2002; Vance, 2001).  Over half of the 

total global N fixation budget is now derived from anthropogenic sources, with industrial 

N fixation used in the production of N-based fertilizers comprising the majority of that 

number (Fig. 1.2).     

 

1.2 Consequences of intensive agriculture 

In spite of the great advancements made by the green revolution and the countless 

number of human lives saved because of increases in the global production of cereal 

crops, there are a significant number of detrimental side-effects which we are only now 

beginning to comprehend including, health effects relating to pesticide usage, water 
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Figure 1.2  Global N fixation during the 20
th

 century.  The proportion of natural to 

anthropogenic N fixation has significantly changed with increasing demand for 

nitrogenous fertilizers as a result of the green revolution.  Figure modified from Vitousek 

and Matson (1993). 
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shortages and massive salination of once arable land, extensive loss of soil fertility and 

biodiversity, habitat loss due to the conversion of natural landscapes into agricultural land 

and the eutrophication of aquatic environments due to leaching of N and P-based 

fertilizers from agricultural lands (Foley et al., 2005; Godfray et al., 2010).  In addition, 

non-renewable sources of phosphate are expected to vanish within the next 40 years, 

based on current extraction rates (Vance et al., 2003). 

One of the greatest contributors to the nitrogen problem is the fact that a large 

portion of the applied compound is not utilized by the plant.  For N, it has been estimated 

from early reports that (depending on the crop) only up to 50% of applied fertilizer is 

recovered by the plant and for P this number is much lower at 5 to 25% (Papendick et al., 

1986).  This results in not only the accumulation of N and P within agricultural soils, but 

also in the subsequent inundation of aquatic, terrestrial and atmospheric environments 

with excess nitrate and phosphate.  For example, recent modeling of the correlation 

between maize yield and nitrate leaching has indicated that increased nitrate fertilizer 

application will lead to a drastic increase of leaching into groundwaters of the upper 

Mississippi river basin, while only providing marginal yield increases (Fig. 1.3).   

Agriculture is now the largest source of excess N and P in aquatic environments 

(Bennett et al., 2001).  This excess nitrate and P are known to have a number of 

detrimental effects on human health and the environment.  In the case of P, it has been 

estimated recently that the P storage value for terrestrial and freshwater ecosystems has 

increased 75% from pre-industrial revolution values (Bennett et al., 2001).  This scenario 
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Figure 1.3  Changes in maize yield and nitrate leaching.  Forecasted changes are shown 

as a function of fertilizer application.  Figure modified from Foley et al., (2005). 
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is compounded by the fact that early work by Schindler (1977) clearly indicated that P 

input is the driving factor for primary production in freshwater lakes, which leads to 

large-scale algal blooms in freshwater systems, reduced oxygen content and fish kills 

(Bennett et al., 2001; Carpenter et al., 1998).  The eutrophication of freshwater resources 

in the United States due to nitrate leaching and P run-off is believed to have produced the 

majority of so-called „impaired‟ lakes and river systems (Carpenter et al., 1998).  

Impairment in this context implies that a given body is unsuitable for recreational 

activities including fishing and boating, as well as irrigation, and use as drinking water 

(Carpenter et al., 1998; Foley et al., 2005; Matson et al., 1997). Moreover, hypoxic 

conditions affect vast stretches of coastal areas as algae and other primary producers 

proliferate in excess nutrient conditions.  These so-called „dead zones,‟ where the 

dissolved oxygen content is below levels required to sustain benthic fauna (Diaz and 

Rosenberg, 2008), are believed to affect nearly 250, 000 square kilometers of aquatic 

environments worldwide.   

In addition to widespread eutrophication, N leaching can affect human health 

directly.  High levels of nitrate in drinking water has been linked to methemoglobinemia; 

a condition affecting infants three to six months of age.  In this age group, bacteria found 

in the digestive tract can reduce nitrate into nitrite, leading to the accumulation of 

harmful methemoglobin and therefore, sequestering of oxygen-carrying hemoglobin in 

the blood stream (Carpentier et al., 1998).  The solution to this problem is complex, and 

likely requires the integration of several factors to be successful.  Early reports have 

suggested a combined approach employing genetic improvement of crop species for 

greater nutrient acquisition and use, as well as restrictions on the amount of N- and P-
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based fertilizers applied to agricultural land (Papendick et al., 1986) and these variables 

have been echoed by more recent publications (Godfray et al., 2010; Tilman et al., 2002).   

 

1.3 Legumes as an alternative 

 Farmers are now faced with a complex problem; N and P limitations affect the 

vast majority of arable land, so to maintain yields, an ever-increasing amount of 

fertilizers are applied, which result in further environmental degradation as outlined 

above.  It is clear that we must look for alternative means to increase acquisition and/or 

use efficiency of both N and P.  Fortunately, plants have evolved a number of 

mechanisms to deal with nutrient limitations as an adaptation to their sedentary growth 

habit, which can be grouped into two broad categories related to (i) enhanced nutrient 

uptake and (ii) conservation of nutrient use (Vance, 2001). Many researchers believe that 

the solution to the problem of N and P cycling might be solved in part by increasing our 

understanding of leguminous plants.   

Legumes benefit the environment because of their vast contribution to the natural 

input of N to soil environments and their ability to thrive under N- and P-limited soil 

conditions, a talent which is achieved by symbiotic interactions with both phosphate-

acquiring arbuscular mycorrhizal (AM) fungus of the phylum Glomeromycota (Parniske, 

2008), and N-fixing gram-negative soil bacteria, which are commonly referred to as 

rhizobia (Oldroyd and Downie, 2008). In more general terms, of the 380 or more 

angiosperm families known, nodulation is restricted to a single clade of Eurosid I, 

(Kistner and Parniske, 2002).  Although N-fixing symbiosis (NFS) is not present in all 

genera that belong to this clade, the four orders, namely Fabales, which include legumes, 
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Fagales, Cucurbitales and Rosales, contain all of the known plant species which form 

symbiotic, N-fixing interactions.  That is, except for one rare relationship known to exist 

between Gunnera (Gunaraceae), commonly known as giant rhubarb, and N-fixing 

cyanobacteria such as Nostoc (Adams and Duggan, 2008).   

Legumes, in addition to their significant, N-based contributions to the rhizosphere, 

provide also for a significant portion of the human diet, including dietary protein, fiber 

and essential nutrients (Graham and Vance, 2000).   Given their overall economic as well 

as environmental importance, a need arose for the development of model systems which 

could be use to understand and subsequently exploit their useful and often unique 

biological properties.  Study of the NFS of legumes with rhizobia constituted a major 

driving force behind the initial selection of model legumes, such as Lotus japonicus and 

Medicago truncatula.  The immediate aim here has been to rapidly advance our 

understanding of genetic elements that regulate the symbiotic interaction and also to 

define the factors that have contributed to the evolution of this useful relationship in such 

a limited number of plants.   

The model legumes have emerged as an attractive platform for this purpose due to 

their relatively small (~425Mb) diploid genomes, short generation time, ease of 

transformation, whole-genome sequence databases (Sato et al., 2008; Young and Udvardi, 

2009) and forward and reverse genetic resources (Szczyglowski and Stougaard, 2008).   

 

1.4 Evolution of the symbiotic program 

 Symbiotic interactions have improved the viability of terrestrial plants since their 

transition from aquatic environments during the Devonian period, more than 450 million 
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years ago (mya).  The most elegant of all symbiotic interactions are those which involve 

the intracellular accommodation of microsymbionts by the host plant.  One of the earliest 

intracellular symbiotic interactions of plants and fungi has been observed in the fossil 

record and its origin was postulated to coincide with the transition of plants into the 

terrestrial landscape and the evolution of root-like structures on primitive plants like 

mosses, liverworts and other bryophytes (Bonfante and Genre, 2010).  This so called AM 

symbiosis is ancient and also the most promiscuous of all known intracellular symbiotic 

interactions in terrestrial plants.  It has been presumed to persist in more than 90% of all 

extant land plants (Bonfante and Genre, 2010), but more reasonably only accounts for 65-

70% of land plants (Brundrett, 2004 and references therein).  The symbiotic partners in 

this case are AM fungi of the genera Glomeromycota, which, among other beneficial 

properties, serve to increase phosphate uptake by the host plant from the soil (Parniske, 

2008).   

In a more recent event (ca. 60 mya), a very confined group of flowering plants 

evolved the ability for intracellular symbiosis with N-fixing soil rhizobia, a beneficial 

interaction which allows plants to grow independent of N status in the soil.  The NFS is  

therefore characterized by the intracellular accommodation of beneficial rhizobia within 

specialized root-derived organs, called nodules, where the bacteria actively convert 

atmospheric N to ammonia and in return, are provided with (among other items) carbon 

sources by the host plant (Fig. 1.4).  There are a number of strikingly similar features of 

these two symbiotic interactions, which has lead many researchers to the proposition that 

the more derived NFS, evolved in part via the recruitment of functions once specific to  
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Figure 1.4  Nutrient transfer during legume symbioses.  Carbon sources are cycled from 

the plant‟s photosynthetic reactions to both fungal (AM symbiosis) and bacterial (NFS) 

partners in return for P or N, respectively.   
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the AM symbiosis (Amyot and Szczyglowski, 2003).  Firstly, both symbioses rely on 

chemical signals for their initiation, which are structurally similar.  Nodulation or nod 

factors (NF) have been known for quite some time as variants of a chitin molecule; these 

are produced by canonical gene clusters in many rhizobial genera in response to 

isoflavonoid secretion by the host root into the rhizosphere (Oldroyd and Downie, 2008).  

The mycorrhizal-specific or „Myc factor‟ (MF) on the other hand, has eluded discovery 

for quite some time.  However, a patent recently described the structure of the MF 

(Dénarié et al., 2010; patent No.  WO2010/049817 A2).   It is very reminiscent of NF; 

however, it is simpler in structure and likely less variable than the more derived molecule 

utilized during the NFS (Dénarié et al., 2010. Patent 
#
 WO2010/049817 A2).  Gross 

comparison of these two molecules indicates similarity in their basic structure and in 

some effects that they exert on the host plant.  The complexity of NF, as defined by a 

variety of strain-specific modifications present at the reducing and non-reducing end of 

the chitin backbone of this molecule, was likely an adaptation from the rudimentary 

chitin backbone of the MF (Fig. 1.5).  Secondly, both NF and MF are responsible for the 

initiation of symbiotic signaling through a subset of well-defined downstream plant 

genetic elements, which are shared by both symbioses (See section 1.6).   

Lastly, both fungi and bacteria are actively accommodated by the host root, which 

build similar structural features generally referred to as „cytoplasmic bridges‟, which 

guide the symbiont towards the root cortex (Genre et al., 2005).  Since early in their 

evolution, the complexity of interactions between legumes and rhizobial bacteria must 

have evolved quite significantly, which required at least two key adaptations; (i) 

intracellular accommodation of the bacteria and (ii) the production of a structure to house  
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Figure 1.5  Chemical stimuli for beneficial symbioses.  (A) Generalized structure of the 

proposed MF (Danarie et al., 2010.  Patent 
#
 WO2010/049817 A2) and (B) the more 

derived, lipochito-oligosaccharide NF of the NFS (figure modified from Niwa et al., 

2001).   
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those bacteria; namely the nodule (Sprent and James, 2007).   

In an evolutionary context, more rudimentary plant–bacteria interactions are 

believed to represent a „default‟ state, where bacteria remain restricted to the surface or 

enter inside the root through cracks while remaining extracellular (Sprent and James, 

2007) Direct intracellular entry of bacteria within the root cortex has been recognized in 

limited cases (Giraud, et al. , 2007).  However, a more complex scenario exists, which is 

observable in majority of herbaceous legumes, including L. japonicus (Sprent and James, 

2007).  In this scenario, rhizobia enter root hairs at the epidermis through plant plasma 

membrane-derived tubular structures called infection threads (IT).  They are then shuttled 

through this conduit to the root cortex in a highly controlled manner, which is set by the 

host plant (Karas et al., 2005). 

 

1.5 Two programs are required during the NFS 

The sophistication of symbiotic N fixation to incorporate bacterial entry and nodule 

organogenesis has been well-described by genetic and physiological analyses, which span 

a number of decades.  Firstly, bacterial entry is dictated by the epidermal program, which 

encompasses all processes related to the initial chemical cross-talk between the 

symbionts, entry and internalization of the rhizobia.  In wild-type plants, NF perception 

leads a number of cellular responses including the entrapment of bacterial microcolonies 

within root hairs curled in a typical „Sheppard‟s crook‟ conformation (Fig. 1.6A; Gage, 

2004).  Subsequently, the tonoplast of root hair cells invaginates in a polar-tip growth 

fashion, which directs bacteria to the base of the epidermal cell in the plant-derived IT.   
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Figure 1.6  Two programs are required for the NFS.  (A) The epidermal program 

regulates bacterial entry and the formation of infection threads, while the cortical 

program (B) is responsible for cell divisions which produce the nodule primordia.  In 

wild-type plants, bacteria are eventually released into nodule cortex, thus forming a 

functional, N fixing nodule (C).  Rhizobia carrying a hemA::LacZ cassette are visualized 

as a blue color following histochemical staining for β-galactosidase activity.  IT, infection 

thread; NP, nodule promordium; Nodule, colonized nodule (arrow).   
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Once past the epidermis, ITs ramify within the root cortex, the process that is 

dictated by cytoplasmic bridges laid down by the host plant; this typifies the epidermal 

program in derived legumes such as L. japonicus.  A wide range of mutant lines have 

been identified in L. japonicus and other model systems which are affected in their ability 

to achieve epidermal entry due to genetic lesions in a number of loci (Held et al., 2010).  

In particular, a group of root hair mutants was recently characterized from L. japonicus 

which elegantly portrayed the importance of the epidermal program, and also discovered 

alternative means for bacterial entry when the regular development of the root epidermis 

is disrupted (Karas et al., 2005).   

Bacterial perception at the surface of root epidermis also leads to drastic changes 

within the root cortex where anti- and peri-clinal cortical cell divisions give rise to the 

nodule primordium (Fig. 1.6B).  Simple, yet powerful; the nodule provides the bacteria 

with not only space, but also, maintains an oxygen-free environment for the rhizobia to 

fix N by actively scavenging free oxygen with leghemoglobin carriers (Madsen et al., 

2010).  This is a critical feature as the bacterially-encoded nitrogenase enzyme utilized 

for the reduction of N to ammonia is prone to break-down in the presence of oxygen 

(Dixon and Kahn, 2004).      

The epidermal program for bacterial entry and the cortical program for nodule 

primordium organogenesis converge eventually as the bacteria arrive at and are released 

into an intracellular space of the dividing nodule primordium cells, where they  

differentiate and begin fixing N (Fig. 1.6C). 
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1.6 Genetic elements required for symbiotic signalling 

As mentioned previously, both the AM symbiosis and the NFS require perception 

of chemical stimuli and share a number of signalling elements.  For simplicity, the 

signalling elements required for both the AM symbiosis and NFS will be described based 

on the extensive knowledge from L. japonicus, although many of these loci have also 

been identified in other model legumes such as Medicago truncatula (see Groth et al., 

2010 for summation).   

Initiation of symbiotic signaling is achieved during the NFS via the activation of 

two specific NF receptor kinases located at the plasma membrane (NFR1 and NFR5), 

which are known to bind NF (Radutoiu et al., 2003).  These receptors have yet to be 

identified for the AM symbiosis, but it is likely considering the recently discovered MF 

that they are similar in appearance to the LysM receptor kinases NFR1 and NFR5.  

Regardless, extensive genetic analyses conducted on model legumes such as L. japonicus 

have uncovered at least eight shared loci required for both the AM and NFS; thus named 

the „common symbiosis genes‟ (CSG; Fig. 1.7).   

The earliest defined participant downstream from NF receptors is the Symbiosis 

Receptor Kinase or SymRK (Strack et al., 2002), which is thought to relay the initially 

perceived  signal to core downstream elements of the CSG, including three nuclear pore 

proteins (NUP85, NUP133, and NENA; Groth et al., 2010; Kanamori et al., 2006; Saito 

et al., 2007).  These are believed to act in concert with two gated ion channels CASTOR 

and POLLUX (Imaizumi-Anraku et al. 2005) to produce rapid changes in intracellular  

calcium concentration (calcium influx and calcium spiking) within the perinuclear and  

nuclear space.  These changes in calcium concentration are thought to be perceived by a 
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Figure 1.7  Symbiotic signalling elements.  Portions of the pathway which are specific to the AM symbiosis are shown in yellow, 

while those for the NFS are shown in blue.  The CSG which are required for both symbioses are outlined in green.  For a detailed 

explanation of genes involved, please see text.  Figure modified from Groth et al., (2010).   
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Ca
2+

/calmodulin-dependent kinase (CCaMK; Tirichine et al., 2006) and modulated by 

its‟ phosphorylation target, CYCLOPS (Yano et al., 2008).   

Several, independent mutagenesis screens from model legumes like L. japonicus, 

Medicago truncatula and Pisum sativum have identified a number of deleterious 

mutations in all of the aforementioned loci within the CSG, which drastically impair the 

ability of the plant to form symbiotic interactions with rhizobial or fungal partners (for 

example, Duc et al. 1989, Kistner et al. 2005; Amor et al., 2003; Ané et al., 2004; Genre 

et al., 2002).  Downstream of the CSG, signaling pathways for the AM symbiosis and the 

NFS diverge.  Two GRAS-type transcriptional regulators (NSP1/NSP2; Heckmann et al., 

2006; Oldroyd and Long, 2003) which serve in a non-redundant fashion, along with the 

putative transcriptional regulator NIN (for Nodule Inception; Schauser et al., 1999) 

represent major elements required for bacterial entry and/or nodule organogenesis during 

the NFS, which are dispensable for the AM symbiosis (Fig. 1.7).   

Recently, a number of additional mutants have been described which further dissect this 

pathway and have revealed yet another set of symbiotic loci which are specifically 

required for bacterial entry, but not for nodule primordium organogenesis or the AM 

symbiosis (for recent review see, Held et al., 2010).  For example, NAP1 and PIR1 

proteins comprise part of the ancient and ubiquitously present SCAR/WAVE complex; a 

well-characterized complex from mammalian, yeast and plant systems which is 

responsible for regulating actin polymerization (Goley and Welch, 2006).  In a recent 

breakthrough, the importance of these functions was demonstrated in a symbiotic context 

from L. japonicus, where nap and pir mutants were able to form nodule structures, yet 

bacteria did not enter due to deficiencies in IT formation and progression (Yokota et al., 
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2009, Miyahara et al., 2010).  In addition to symbiotic defects, these mutants also display 

pleiotropic phenotypes including aberrant trichome formation, as well as impaired root 

and root hair development.  The phenotype of these „entry‟ mutants has expanded our 

understanding of the complex genetic network governing symbiotic interactions (Held et 

al., 2010). 

 

1.7 Cytokinin: the key signalling element for symbiosis 

Cytokinins represent a major plant hormone family that are essential for plant 

growth and development (Heyl and Schmülling, 2003).  They were first described by 

Miller and Skoog (1953), and subsequently utilized by Das et al., (1956) to induce cell 

division in cultured tobacco pith.  They are variable in structure, are all adenine-based 

derivatives (Mok and Mok, 1994) and are known to be involved in regulating a wide 

variety of processes such as floral transition (Corbesier et al., 2003), cell-cycle 

progression (D‟Agastino and Kieber, 1999), chlorophyll retention and leaf senescence 

(Downs et al., 1997), seed development (Emery et al., 1998), as well the regulation of 

specific organs such as the root and shoot apical meristems (Werner et al., 2003; for 

review see Perilli et al., 2010).  

Extensive research into the signalling elements utilized by these promiscuous hormones 

has been conducted in model organisms such as Arabidopsis thaliana as a means to better 

understand the molecular mechanisms underlying cytokinin action (Fig. 1.8).  Briefly, a 

wide variety of cytokinin molecules are known to be perceived in the extracellular space 

by the CHASE (for cyclases/histidine kinases associated sensory extracellular) domain of 

a well-characterized group of membrane-bound, hybrid histidine kinase (HK) receptors 
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Figure 1.8  Cytokinin signalling elements.  The general scheme for cytokinin-induced 

signal transduction as characterized in A. thaliana is shown. tZ, trans-Zeatin; iP, 

isopentenyl adenine; BA, benzylaminopurine; AHK2/3/4, Arabidopsis Histidine Kinase 

2/3/4; H, histidine; D, aspartic acid; P, phosphate; HPT, Histidine Phosphotransfer 

Protein; RR, response regulator.  For detailed explanation, please see associated text.  

Figure modified from Müller and Sheen (2007).   
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(Ferreira and Kieber, 2005).  Following perception of the ligand and dimerization of the 

receptor, a phosphorelay is initiated from a conserved histidine residue within the 

catalytic kinase domain, which is transmitted to a conserved aspartic acid residue in the 

C-terminal receiver or output domain.  Phosphorylation targets of the activated receiver 

domain include histidine phosphotransfer proteins (HPT), which shuttle phosphate groups 

into the nucleus, where B-type response regulators (RR) act directly to modulate gene 

expression of the effecter (Werner and Schmülling, 2009).  Negative feedback on the 

activity of these B-type RRs is achieved by their A-type counterparts (Toh et al., 2007), 

thus allowing for rapid and specific modulation of cytokinin signalling (Fig. 1.8).   

In a symbiotic context, cytokinin turned out to play a critical role in defining the 

success of mutualistic interactions.  It is evident from recent reports that cytokinin 

signalling is required and also sufficient for nodule primordium organogenesis in at least 

some legume species.  However, we are far from fully understanding the full extent of 

their involvement in the NFS (Frugier et al., 2008).  Since the discovery that cytokinins 

are produced by a number of symbiotic rhizobia (Sturtevant and Taller, 1989), it has been 

postulated that these hormones play an important role during the NFS. In agreement with 

this initial assumption, numerous studies have shown that exogenous application of 

cytokinin can mimic both NF and rhizobia application by inducing a similar subset of 

plant cellular responses, such as the activation of cortical cell divisions and accumulation 

of amyloplasts, as well as transcriptionally activating known early nodulin genes (e.g. 

Early Nodulin 40 or  ENOD40 gene expression) in a number of legume systems such as 

Trifolium repens, L. japonicus, and Sesbania rostrata (Dehio and de Bruijn, 1992; 

Mathesius et al., 2000; Murray et al., 2007).  That cytokinin signalling is indeed tightly 
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associated with infection has been demonstrated by analysing expression of the 

proARR5::GUS fusions (ARR5 is a cytokinin response regulator in A. thaliana; Lohar et 

al., 2004). The ARR5 promoter (proARR5) was shown to be rapidly activated, as 

measured by the accumulation of the GUS reporter activity, upon rhizobial inoculation 

both in the root epidermis and in the root cortex in association with nodule primordium 

organogenesis (Lohar et al., 2004).   

Furthermore, study of alfalfa (Medicago sativa) root nodules induced by 

Sinorhizobium meliloti produced a number of bacterial mutants unable to induce nodule 

formation, some of which contained mutations in the canonical nodABC genes, 

responsible for NF production (Cooper and Long, 1994).  When the Agrobacterium 

tumefaciens secretion system (pTZS), which constitutively produces cytokinins, was 

transformed to the S. meliloti non-nodulating (Nod
-
) strain that was unable to synthesize 

NF, this restored the ability of the mutant bacteria to induce the formation of nodule 

structures on M. sativa roots (Cooper and Long, 1994).  All these reports clearly 

indicated that cytokinin plays a pivotal role during the NFS. However, in spite of all these 

observations, the direct evidence which points to the necessity for rhizobia-derived 

cytokinins during signalling for NFS has never been obtained (Frugier et al., 2008).  

 What has become clear, however, is that the cytokinin signalling, likely 

originating as a response of the plant host to bacterial inoculation, acts downstream from 

NF perception to mediate the cortical program for nodule primordium inceptions 

(Gonzalez-Rizzo et al., 2006, Murray et al., 2007, Tirichine et al., 2007).   

In L. japonicus, cytokinin signalling through LHK1 (LOTUS HISTIDINE 

KINASE 1) cytokinin receptor is not only required, but also sufficient for nodule 
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organogenesis (Murray et al., 2007; Tirichine et al., 2007).  L. japonicus plants carrying 

loss-of-function mutations in Lhk1 fail to produce timely cortical cell divisions in spite of 

the fact that these mutants were hyperinfected by rhizobia (Murray et al., 2007).  

Moreover, a gain-of-function mutant of Lhk1, called spontaneous nodule formation 2 or 

snf2,  was identified, which formed empty nodules (i.e. nodules without bacteria)  in the 

absence of rhizobia (Tirichine et al., 2007), thus solidifying the proposal that cytokinin 

signalling through Lhk1 is required and also sufficient for nodule organogenesis in the 

root cortex.   

From the detailed analyses in L. japonicus, we know that cytokinin signalling is 

tightly linked to the regulation of NIN, a transcription factor which plays dual role in two 

spatially separated positions (Radutoiu et al., 2003).  Upon activation by the LHK1-

dependent cytokinin signalling, NIN is required in the root cortex for the inception of 

nodule primordia.  In the root epidermis, NIN appears to have a complex role. It initially 

supports bacterial infection and colonization (Schauser et al., 1999).  However, once 

infection occurs and nodule organogenesis is initiated, NIN also regulates the 

susceptibility of the root by restricting further colonization by the bacteria (Radutoiu et 

al., 2003; Tirichine et al., 2006).  Signalling through LHK1 is required for the activation 

of NIN in the cortex and therefore nodule organogenesis, as lhk1-1 mutants, which have 

dysfunctional cortical program, showed a reduced expression of NIN upon cytokinin 

application (Murray et al., 2007).   

Although induction of cytokinin signalling in root epidermis upon bacterial 

inoculation was demonstrated (Lohar et al., 2004), the infection process is LHK1 

independent (lhk1 loss-of function plants are hyperinfected ; Murray et al., 2007) and the 
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role, if any, of cytokinin in mediating root colonization by bacteria remains rather 

controversial (Frugier et al., 2008) 

 

1.8 Goal of the thesis 

Considering that only a very limited number of flowering plants, mostly legumes, 

form nodules, has the evolution of nodulating plants entailed novelty in cytokinin 

signaling?  Cytokinin receptors and signalling elements are ubiquitously present in all 

plants, so what dictates their specialized role in leguminous plants?   

Although cytokinins clearly play a critical role during N fixing symbiosis (see 

Section 1.7), many questions remain unanswered.  For example, how does NF perception 

at the root surface link with the inherent plant hormonal machinery and what is the nature 

of cytokinin signaling during symbiosis; does de-novo cytokinin biosynthesis occur or is 

it perhaps translocation of cytokinin from other parts of the plant that matters?  

Furthermore, is cytokinin signaling in addition to its role in nodule organogenesis also 

required for bacterial entry into the root, as recently discussed (Frugier at al., 2008)?  

Although the LHK1 cytokinin receptor has been defined as required and also 

sufficient for the nodule organogenesis (Murray et al., 2007; Tirichine et al., 2007),  

mutant plants carrying lhk1 loss-of–function alleles still form a limited number of 

aberrant nodules (Murray et al., 2007).  Is this rudimentary nodulation reflective of a 

cytokinin-independent signaling process or the result of at least partial functional 

redundancy among cytokinin receptors?  Thus, is LHK1 function unique during 

nodulation (among cytokinin receptors in L. japonicus) and if indeed it is, what attributes 

of the gene and/or protein define this phenomenon?   
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Answering these and related question should allow for an important insight into 

the evolution of this fascinating plant developmental process.  Moreover, the knowledge 

gained from pursuing this topic should bring us closer to the prospect of a rational 

evaluation of the potential for engineering nodule primordium organogenesis in currently 

non-nodulating plants.  

The goal of this thesis therefore, was to begin addressing some of these key 

questions. Ground-breaking experiments are reported herein, which identify and 

functionally characterize the cytokinin receptor gene family in a model legume L. 

japonicus in the context of its role in the establishment of functional NFS.  The central 

hypothesis is that the role of LHK1 during the NFS is not unique - other members of this 

receptor family act redundantly to LHK1 at the root epidermis to promote bacterial 

colonization and therefore allow for the persistence of infection and sparse nodule 

organogenesis observed in lhk1-1 mutants.  The following specific objectives were 

proposed: 

 

1. To characterize the abundance, genomic context, and protein domain structure of 

histidine kinase cytokinin receptors in the L. japonicus genome.   

 

2. To assess the cytokinin-responsive function of putative LHK receptors (Lhk1A, 

Lhk2, and Lhk3) using heterologous systems in yeast and E. coli.   
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3. To create mutant lines for all newly described Lhk loci via reverse genetics 

(TILLING) and assess the effect of these presumed, deleterious mutations on 

Lhk1A, Lhk2, and Lhk3 gene function via heterologous systems as above.   

 

4. To analyze the effect mutations in Lhk1A, Lhk2, and Lhk3 on the development of 

the NFS through extensive phenotypic characterization.   

 

5. To determine the spatial/temporal expression pattern for Lhk gene promoters 

using reporter constructs transformed into stable transgenic lines.   

 

6. To interrogate the biochemical interchangeability of different LHK receptors by 

using in planta complementation of the lhk1-1 mutant.   
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MATERIALS AND METHODS 
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2.1 Plant growth conditions 

 Seeds of L. japonicus were scarified lightly prior to surface sterilization.  A 

solution of 70% ethanol and 0.1% sodium dodecyl sulphate (SDS) was used for initial 

sterilization, followed by one rinse with sterile Milli-Q
TM

 water and treatment with a 

solution containing 20% bleach and 0.1% SDS.  Sterilized seeds were then rinsed ten 

times with sterile water and allowed to imbibe overnight.  After imbibition, germination 

was conducted in standard 100 x 15mm Petri plates sealed with Parafilm and containing 

6-8 layers of sterilized Whatmann filter paper (Fischer #09-801A), moistened with sterile 

Milli-Q H2O.  Seedlings were routinely germinated for a period of 7 days under 

continuous light at 23
o
C.     

 

2.2 Analyses of symbiotic phenotypes 

For nodulation assays, seedlings were transferred (under sterile conditions) to pots 

containing a mixture of vermiculite and coarse sand (6:1) and watered with a 1X B & D 

nutrient solution, containing 0.5mM KNO3 (Broughton and Dilworth, 1971).  Growth 

conditions were dictated by a light (18hr ON, 6hr OFF) and temperature (23
o
C, 18

o
C) 

regime.  After 7 days of growth, these seedlings were inoculated with either a wild-type 

Mesorhizobium loti strain (NZP 2355), or M. loti containing the hemA::lacZ cassette for 

visualisation of bacterial infection via a standardized β-galactosidase staining procedure 

(Wopereis et al. 2000).  This system was employed for the analysis of early infection 

events, generally scored at 7 days after inoculation (7 DAI) as well as later events scored 

at 14 and 21 DAI.   
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 For mycorrhizal assays, seedlings were transferred to pots containing a mixture of 

Turface
TM

 (MVP) and silica sand (1:1) and watered with ½ strength Hoagland‟s nutrient 

solution lacking phosphate (Hoagland and Arnon, 1950).  Inoculation was achieved via a 

mixture of cultured leek and chive roots, as well as application of a commercial 

inoculation containing a mixture of Glomus spp. fungi (MykePro
TM

, Premier Tech 

Biotechnologies).  Plants were routinely harvested eight weeks after inoculation and 

stained for mycorrhizal colonization using a standard, ink-vinegar protocol (Vierheilig et 

al., 1998).  Selected roots were cleared for 1hr in 10% KOH at 75
o
C, followed by one 

rinse with sterile ddH2O.  Staining proceeded for 1hr at room temperature in 5% ink 

(Schaeffer black)-vinegar (5% acetic acid).  Lastly, the roots were rinsed once more with 

sterile ddH2O and de-stained in 5% acetic acid for 20min before being stored at 4
o
C in 

ddH2O.   

 

2.3 Identification of putative cytokinin receptors in L. japonicus 

 TAC sequences containing putative L. japonicus HK cytokinin receptors isolated 

from the L. japonicus genome were kindly provided by Dr. Shuei Sato (Kasusza DNA 

Research Institute, Japan).  Exon/intron structure of all loci was predicted using the 

GenScan server (http://genes.mit.edu/GENSCAN.html) and validated using standard 

PCR and RT-PCR techniques.  The CLUTSALW2 

(www.ebi.ac.uk/Tools/clustalw2/index.html) and BoxShade (www.mobyle.pasteur.fr/cgi-

bin/portal.py?form=boxshade) software programs were used for the protein/DNA 

alignments, whereas TreeView Win32 (www.taxnomoy.zoology.gla.ac.uk/rod/rod.html) 
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was used for the development of phylogenetic trees (bootstrap values calculated 1000 

times).   

 

2.4 RACE validation and expression of putative Lhk ORFs in L. japonicus 

 Total mRNA was isolated from L. japonicus (Gifu) nodules with the RNeasy 

Plant Mini kit (Qiagen) and treated with DNAseI.  Full length cDNAs for Lhk1A, Lhk2, 

and Lhk3 were generated by 5‟ and 3‟ Rapid Amplification of cDNA Ends (RACE) using 

the FirstChoice RLM-RACE kit (Ambion).  For semi-quantiative reverse transcriptase 

polymerase chain reaction (RT-PCR), cDNA was synthesized using the Thermoscript 

RT-PCR system (Invitrogen) from uninoculated root tissue, nodules and leaves of wild-

type Gifu plants.  Lhk transcripts were routinely amplified from these tissues using High 

Fidelity Platinum Taq (Introgen) and subsequently sequenced.  The PCR program was as 

follows: 94
o
C 5min, followed by 30 cycles of 94

o
C 30sec, 58

o
C 30sec, 68

o
C 30sec, with 

a final extension for 7min at 68
o
C.  Gene-specific primers designed to amplify products 

encompassing the final exon and 3‟ UTR were as follows: 

 

(Lhk1A)  F  5‟-ATGGACGGATTTGAAGCAAC-3‟ 

 R  5‟-CAAGATCTCTTTCGGTCTGC-3‟ 

 

(Lhk2) F  5‟-CACTCATTGCAGGAGAAGAGG-3‟ 

 R  5‟-TTTTCCATCTTAGCCCCTCA-3‟ 

 

(Lhk3) F  5‟-TGGAACACAATGTGAACAGAGA-3‟ 
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 R  5‟-CCCATTTCTCCCATCCTTCT-3‟ 

 

Lhk1 RT-PCR primers were to those used in Murray et al., (2007). 

 

2.5 Alternative splicing at the Lhk3 locus 

 Primers were designed for PCR-based detection- and expression-based studies of 

the two, alternative splice variants produced from the Lhk3 locus (named Lhk3 variant 
#
1 

and variant 
#
2).  For the comparative analysis of these two, alternatively-spliced 

transcripts, a 5‟ product was amplified from cDNA template of various tissues using a 

common reverse primer and a transcript-specific, forward primer.  The PCR program was 

as follows: 5 min denature at 94
o
C, followed by 30 cycles of 94

o
C 30 sec, 58

o
C 30 sec, 

68
o
C 1 min, followed by a 7 min soak at 68

o
C.   

 

The primers are as follows: 

(Lhk3 variant #1)  F 5‟-CTTATATGAAGGGTGGTTTTGG-3‟ 

 R 5‟- CTTTCCAGAAAGCACGTCAAC -3‟ 

 

(Lhk3 variant #2)  F 5‟- GGTTGGTTACTGTTGTGGATGA -3‟ 

 R 5‟- CTTTCCAGAAAGCACGTCAAC -3‟ 

 

2.6 Isolation of Lhk mutants 

Targeted Induced Localized Lesions IN Genomes (TILLING; Perry et al., 2003) 

was utilized for the isolation of mutants in the Lhk1A, Lhk2, and Lhk3 loci.  The 
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TILLING approach was limited to a 1kb region encompassing mainly a single, large exon 

of the highly conserved and functionally required kinase domain based on predictions 

made by the CODDLE software (http://www.proweb.org/coddle/).  This reverse genetics 

approach produced a number of point mutations in each locus analyzed.  Mutations 

falling outside the coding region (i.e. within introns), or those that created synonymous 

and conservative substitutions were largely disregarded.  All selected lines were 

immediately back-crossed before extensive phenotypic analyses were conducted to 

ensure that no additional mutations skewed the data.   

For the creation of double mutant backgrounds, genetic crosses were conducted between 

homozygous single mutants for each of the two loci being analyzed.  The F1 plant was 

allowed to self-fertilize and produce the F2 segregating population, where the desired 

double mutant was selected for using a combination of sequence analysis, cleavage 

amplification polymorphisms (CAPS), and derived CAPS (dCAPS) markers depending 

on the line.  Only F3 progeny from confirmed, homozygous double mutants was utilized 

for phenotypic evaluation.   

 

2.7 Cytokinin-responsive assay in Saccharomyces cerevisiae  

 All Lhk cDNAs were directionally cloned into the multi-cloning site of a yeast 

expression vector (P415CYC; Mumberg et al. 1995) as follows: 

Lhk1A - HindIII and SalI  

Lhk2 - EcoRI and SalI  

Lhk3 splice variant #1 - SpeI and HindIII 

Lhk3 splice variant #2 - SpeI and HindIII 
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The previously analyzed Lhk1 cDNA was used as a positive control (Murray et al., 

2007).  Subsequent constructs were transformed into the sln1Δ mutant of Saccharomyces 

cerevisiae (kind gift from Tatsuo Kakimoto, Osaka University, Japan) and analyzed for 

response to exogenous treatment with different plant hormones including specific ligands 

such as benzyl-amino purine (BAP) and trans-zeatin (tZ), as well non-active cytokinin 

forms such as cis-zeatin (cZ) and the non-specific ligand 1-Naphthaleneacetic acid 

(NAA; as in Murray et al., 2007).  Suspensions of transformations were spotted out onto 

–LEU –URA drop-out media, with or without 2% galactose (GAL), in the presence or 

absence of the aforementioned hormones at a final concentration of 10μM.  Putative loss-

of-function mutations were also interrogated using this assay. 

 

2.8 Cytokinin-responsive assay in Escherichia coli 

 The appropriate Lhk cDNAs were cloned into the E. coli expression vector 

pSTV28 as follows: 

Lhk1 – SacI and SalI 

Lhk2 - EcoRI and SalI  

Lhk3 splice variant #1 - SacI and SalI   

Lhk3 splice variant #2 - SacI and SalI   

 Subsequent constructs were transformed into the sensor-negative SRC122 E. coli 

strain (kind gift from Dr. Takafumi Yamashino; Japan).  Following transformation, 

colonies were grown on LB plates containing 40mM sodium phosphate buffer and 20mM 

glucose, with or without the addition of 200μM BAP for two days at 25
o
C (Miwa et al., 

2007).  Activated blue colonies due to the engineered cps::lacZ fusion were clearly 

http://en.wikipedia.org/wiki/Escherichia_coli
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visible from the control.  This same media preparation was again employed for liquid 

cultures destined for analysis of β-galactosidase activity using a standard assay as 

described in Tirichine et al., (2007).   

Putative loss-of-function mutations were also interrogated using this assay.  The 

Quikchange XL II Site-directed mutagenesis kit (Stratagene) was used for the creation of 

Lhk loss-of-function constructs according to the manufacturer‟s protocol. 

 

2.9 Root elongation and cytokinin insensitivity assays 

 The extent of root growth was assessed for various genotypes as indicated in the 

text using standard protocols as described (Wopereis et al., 2000).  After two days of 

germination upside-down on standard Petri plates (Section 2.1), exposed radicles were 

carefully transferred to vertical plates containing ½ B5 with minimal organics, 2.5mM  2-

(N-morpholino)ethanesulfonic acid (MES), 4.5% sucrose, and 0.8% phytagel.  Roots 

were allowed to elongate for seven days at 23
o
C.  The average extent of elongation was 

scored for 15-20 roots per genotype. 

 For hormone treatments, the growth conditions and media were identical to those 

described above.  Where appropriate, BAP was added (10
-8

, 10
-7

, 10
-6

, and 10
-5

 M).  The 

control plates received no hormone treatment.   

 

2.10 Production of stable transgenics  

 To create promoter fusions for Lhk1, Lhk1A, Lhk2, and Lhk3, a 4kB fragment 

upstream of the 5‟ untranslated region (UTR) sequence was first isolated, amplified and 

cloned using Gateway
TM

 technology (Invitrogen) into the promoterless pKGWFS7,0 
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destination vector (GUS and GFP reporters; t35S terminator sequence).  After validation 

of the insert using sequence and restriction digest, the corresponding vectors were 

transferred to Agrobacterium tumefaciens LBA4404 using electorporation.  Standard 

transformation protocols were used to regenerate full transgenics from hypocotyl 

segments of wild-type (ecotype „Gifu’) plants.  No less than ten, independent 

transformants were isolated for analyses of promoter expression, following confirmation 

of transformation by PCR screen and GUS staining.   

 

2.11 GUS staining procedures 

 Various tissues were isolated from transgenic plants, including nodules, roots, and 

also whole seedlings at the timepoint indicated in the text for histochemical staining.  

Detection of the GUS reporter activity was routinely conducted using a staining solution 

which contained 0.1M potassium phosphate buffer, 5mM EDTA, 0.5mM potassium 

ferric- and ferrous-cyanides, and 0.5 mg/ml 5-bromo-4-chloro-3-indolyl glucuronide 

cyclohexylammonium salt (X-GLUC; Fermentas).  Triton X-100 (Sigma; 0.1% v/v) was 

added for leaf staining due to the hydrophobic cuticle of L. japonicus.  All tissues were 

vacuum-infiltrated for 15min, stained overnight at room temperature and cleared as 

described previously (Wopereis et al., 2000).   

 

2.12 Hairy-root complementation of lhk1-1 mutants  

 2.12.1 Over-expression of Lhk cDNAs 

To over-express different Lhk cDNAs in the lhk1-1 mutant background, Lhk 

cDNAs were cloned into the pEarleygate100 destination vector (35S promoter, 3‟ 
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octapine synthase (OCS) terminator) using the Gateway
TM

 technology and subsequently 

transformed into A. rhizogenes strain AR10, as describe above for A. tumefaciens 

transformation.  A. rhizogenes-mediated transformation procedures were followed to 

induce the formation of hairy roots from lhk1-1 mutant seedlings (Petit et al., 1987).  The 

inoculated plants containing hairy roots were transferred to soil and assessed for 

nodulation at 21 DAI as described above (see section 2.2).  No less than 10 plants were 

scored for each genotype, per experiment.   

  

2.13 Microscopy and image analysis 

 All microscopic observations were performed on a Nikon SMZ1500 (Nikon, 

Japan) dissecting or the Zeiss Axioscope 2 (Zeiss, Germany) compound light microscope.  

Both microscopes were integrated with a Nikon DXM1200 digital camera using the 

ACT1 media software (Nikon).  Optical ranges for the Nikon dissecting scope varied 

between 0.75 and 11.25X, while the compound Zeiss microscope was fitted with 10, 20, 

40, and 63X objectives.  All images captured were taken in a TIFF format at a resolution 

of 3840 x 3072.   

 

2.14 Statistical analyses 

 In all cases, means were calculated from data ranges containing no less than 10 

plants per genotype, per treatment.  All data were conformed to a normal distribution as 

confirmed by the Pearson‟s test and subsequent pair-wise comparisons were made using a 

Student‟s t-Test assuming unequal variance.  Unless otherwise stated, variance shown in 

all cases represents the 95% confidence intervals of the mean. 
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2.15 BLAST analyses 

The Blast Local Alignment Sequence Tool (BLASTp) was used for comparison 

of predicted LHK protein sequences using the default parameters provided at 

http://blast.ncbi.nlm.nih.gov.  A maximum of 100 matches were analysed, with a 

minimum word size of 3 and maximum matches to a query range set to zero.  The matrix 

utilized was BLOSUM62 since the query sequences were generally long (>900 amino 

acids) and provided strong matches to sequences within the database.  Gap costs were set 

to 11 and 1 for existence and extension, respectively with compositional adjustments set 

to a conditional compositional score matrix.   
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3.2 The L. japonicus cytokinin receptor family is comprised of four members 

 Recent advances in generating the L. japonicus whole-genome sequence (Sato et 

al., 2008; see also Szczyglowski and Stougaard, 2008) made it possible to 

comprehensively investigate the organization of the L. japonicus histidine kinase (Lhk) 

cytokinin receptor gene family. Using the Blast server 

(www.blast.ncbi.nlm.nih.gov/Blast), available genomic DNA sequences, and the 

predicted protein sequences of the previously described Lhk1 gene and the partial 

sequence of the Lhk2 cDNA (Murray et al., 2007) as queries, two additional putative 

members of the L. japonicus cytokinin gene family were identified. As well, the complete 

genomic sequence of Lhk2 was obtained (see below).  

Based on overall  sequence homology and the clustering pattern of LHK receptors 

with predicted orthologues in A. thaliana, M. truncatula, and P. sativum (see below), 

Lhk2 was renamed to Lhk1A,  while the two newly identified putative cytokinin receptors 

genes were named Lotus histidine kinase 2 (Lhk2) and Lotus histidine kinase 3 (Lhk3), 

respectively. The names for the corresponding predicted proteins were designated as 

LHK1 (Lotus Histidine Kinase 1), LHK1A, LHK2 and LHK3. 

 

3.3 Genomic organization of Lhk loci 

  All four Lhk genes were positioned onto the L. japonicus genetic map using 

available genomic sequence information (Sato et al., 2008). The Lhk1 and Lhk3 loci were 

localized to the large genomic clones, TM1769 and TM2189, positioned at the lower and 

upper arm of chromosome 4, while Lhk1A and Lhk2 were found on the upper and lower 

arm of chromosome 2, as represented by BM2030 and TM2188, respectively (Fig. 3.1A).   
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Figure 3.1  Genomic context of Lhk loci.  (A) The genetic map of L. japonicus is shown, 

highlighting the location of Lhk loci along with other known receptor kinases such as the 

NF receptors (Nfr1, Nfr5), the receptor-like kinase SymRK and two kinases which are 

involved in the regulation of nodule number Har1 and Klavier.  (B)  Predicted 

exon/intron structure of Lhk genes.  Boxes represent exons, while lines represent introns.  

The 5‟ and 3‟ UTRs are shown as open boxes.  The protein domain that a given exon is 

predicted to contribute to in the translational product is color-coded as per the legend. 

TM- transmembrane domain; CHASE: predicted ligand (cytokinin)-binding extracellular 

domain; Kinase: conserved protein kinase domain; Receiver: conserved C-terminal 

output domain.   
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 Full-length transcripts were obtained for the three newly described Lhk genes 

using the 5‟- and 3‟-RACE.  Subsequently, a variety of on-line tools, such as GenScan 

(www.genes.mit.edu/GENSCAN.html) and Spidey (www.ncbi.nlm.nih.gov/spidey) were 

utilized to determine the exon/intron structure for these loci (Fig. 3.1B).  

Divergence of intron length among different Lhk genes was noticed (Fig. 3.1B). 

However, the number and size of major exons was conserved amongst different Lhks; the 

Lhk1 and Lhk3 genes had 11 exons, there were 12 predicted exons representing both the 

Lhk1A and Lhk2 loci.  The length of the predicted open reading frames was found to be 

2994 bp, 3657 bp and 2961 bp for Lhk1A, Lhk2, and Lhk3 respectively.  These reflected 

the corresponding proteins of 997, 1219 and 987 amino acids in length, with predicted 

molecular masses of 111, 136, and 110 kDa for LHK1A, LHK2, and LHK3, respectively.  

When the predicted translational products were superimposed on the corresponding gene 

structures, their topology was found to be rather conserved amongst different Lhks (Fig. 

3.1B).   

 

3.4 Phylogeny of LHK receptors 

Alignments of all four predicted L. japonicus LHK receptors to other known 

cytokinin receptors from legumes such as M. truncatula and Pisum sativum as well as 

from a non-legume, A. thaliana positioned these proteins into three distinct groups (Fig. 

3.2).  The first group consisted of LHK1 and LHK1A and their presumed counterparts, A. 

thaliana Histidine Kinase 4 (AHK4), M. truncatula Histidine Kinase 1 (MtHK1), and P. 

sativum Histidine Kinase 1 (PsHK1).  The second group encompassed LHK2, AHK2 and 

MtHK2, while the third group contained proteins most similar to LHK3 (Fig. 3.2).    
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Figure 3.2  Phylogeny of the Lotus japonicus LHK proteins. The unrooted tree is based 

on an amino acid  alignment of full-length sequences from L. japonicus (LHK; Genbank 

accession numbers: LHK1, DQ848999; LHK1A, DQ848998; LHK2, this work; LHK3, 

AP009230; A. thaliana (AHK4, NP_565277.1; AHK2, NP_568532.1; AHK3, 

NP_564276.1), M. truncatula (MtHK1, ABE94286; MtHK2, CT571263X; TIGR TC 

accession number: MtHK3, TC105528), and P. sativum (PsHK1, DQ845485). Protein 

sequences were aligned with CLASTALW2 using the default settings. The phylogenic 

tree was created in TreeView v32, with bootstrap values and alignments calculated 1000 

times. 
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The similarity of LHK protein sequences within the predicted L. japonicus cytokinin 

receptor family and to representatives from A. thaliana is summarized in Table 3.1.  

LHK1 and LHK1A were the most similar, sharing 80% identity at the amino acid level.  

Conservation between these two proteins and the AHK4 cytokinin receptor was also high 

at 67 and 69%, respectively.  In contrast, LHK1 and LHK1A shared only ~50% identity 

with LHK2 and LHK3. Amino acid sequence conservation was greater in between both 

LHK2 and LHK3 and also to their presumed orthologues from A. thaliana (AHK2 and 

AHK3) than between these two proteins and LHK1 or LHK1A (Table 1).   

 

3.5 LHK proteins contain characteristic domains of known cytokinin receptors 

 To further investigate the prediction that the LHK proteins indeed constitute 

functional cytokinin receptors, their amino acid sequences were analysed for the presence 

of protein domains (Fig. 3.3A).  The site of action for the cytokinin receptors has 

classically been predicted to be the plasma membrane and accordingly, the WoLF 

PSORT software (http://wolfpsort.org/) heavily favoured localization to the plasma 

membrane for all LHKs, with the derived probability for LHK1, LHK1A, LHK2, and 

LHK3 being 0.92, 0.92, 0.69, and 0.92, respectively (on a scale of 0 - 1).  The N-terminal 

portion of all LHKs was found to contain a predicted extracellular CHASE domain, 

which is thought to be anchored to the plasma membrane by flanking transmembrane 

(TM) domains (Schmülling, 2001).  Although similar in structure to extracellular 

perception apparati in prokaryotes and lower eukaryotes (Stock et al., 2000), the CHASE 

domain is unique to cytokinin receptors in higher plants (Schmülling, 2001) and was 

found to be highly conserved within the LHK family and also between LHKs and 

CHASE domains of other known cytokinin receptors, such as AHK4 (Fig. 3.3B).  As 
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Table 3.1  Amino acid conservation of LHK homologues and presumed AHK 

counterparts. 
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Figure 3.3 (A). A generalized structure of LHK cytokinin receptors. Transmembrane 

(TM) domains are shown flanking the extracellular CHASE domain where the ligand is 

perceived.  The phosphorylation of conserved histidine residue within the cytosolic 

kinase domain initiates a phosphorelay, which is transferred to the C-terminal receiver or 

output domain.  H, N, G1, F, and G2, box motifs of the kinase domain are highlighted as 

well as a conserved aspartic acid within the receiver domain (D).  (B) Alignment of the 

CHASE domain from all LHK receptors with the well-characterized CHASE domain of 

AHK4.  The alignment was created using CLUSTALW2 and analyzed by the BoxShade 

software. A threshold of ≥80% conservation was used. Green shading indicates identical 

residues, whereas yellow indicates conservative substitutions.  
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expected, the predicted cytosolic portion of the LHK proteins was found to be largely 

comprised of the highly conserved kinase domain.  Found within this extensive catalytic 

domain were the canonical H, N, G1, F, and G2 box motifs known to be functionally 

required (Parkinson and Kofoid, 1992), as well as a highly conserved histidine residue at 

the N-terminal end, known to participate in signal transduction (Fig. 3.4).  Downstream, a 

C-terminal receiver or output domain was also identified in all LHK receptors.  This 

domain is known to participate in the phosphotransfer from the kinase domain to 

downstream signalling elements, such as HPT proteins (Ferreira and Kieber, 2005).  The 

receiver domain carries three, well-defined and characteristic motifs named the DD, D, 

and K motifs for the conserved residues found within them (Ueguchi et al., 2001).  All 

such conserved motifs were observed in putative LHK receptors, including an absolutely 

conserved aspartic acid in the D motif, known to transfer phosphate groups to trans-

acting HPT proteins (Fig. 3.5). 

 

3.6 Lhk transcripts possess overlapping expression profiles 

 To gain insight into expression profiles of the Lhk genes in L. japonicus, semi-

quantitative RT-PCR was employed to assess steady-state levels of all Lhk mRNAs in 

various L. japonicus tissues.  Lhk transcripts were detected in all major organs analyzed, 

with some apparent differences between tissues and between Lhk transcripts (Fig. 3.6).  

The closely-related Lhk1 and Lhk1A displayed similar expression profiles, being most 

abundant in roots and nodules and not as abundant in leafs.  Lhk2 was highly expressed in 

roots, but less so in nodules.  In contrast, Lhk3 was expressed at a low level in roots and 

more so in nodules and leaves.  These results indicate that although the Lhk1, 1A, 2 and 3  
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Figure 3.4 Alignment of the LHK kinase domain.  The conserved H, N, G1, F, and G2 

box motifs are indicated.  An asterisk denotes the presence of a conserved histidine (H) 

residue required for the phosphorelay.  The alignment was created as before (see Fig. 3.3).  
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Figure 3.5 Alignment of LHK receiver domains.  The conserved DD, D, and K motifs 

are indicated.  An asterisk denotes the presence of conserved aspartic acid (D) residue 

required for the phosphorelay.  The alignment was created as before (see Fig. 3.3).  
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Figure 3.6  Semi-quantitative RT-PCR of Lhk transcripts in L. japonicus.  The steady-

state level of Lhk transcripts in various L. japonicus tissues is shown along with the 

outcome of PCR amplification reactions without prior reverse transcription step (-RT) 

and the ubiquitin mRNA controls.  In all cases, a gene-specific RT-PCR product which 

encompassed a portion of the final exon and the 3‟ UTR was amplified and sequenced to 

ensure transcript specificity. 
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transcripts are ubiquitously present in all L. japonicus organs tested,  some tissue-

enhanced expression could be detected (Fig. 3.6), similar to the expression patterns 

described for cytokinin receptor gene family in A. thaliana (Higuchi et al., 2004; see also 

Discussion). 

 

3.7 The Lhk3 transcript undergoes alternative splicing  

 While performing pair-wise comparisons between LHK proteins and their 

presumed counterparts in A. thaliana, a significant difference at the N-terminus was 

detected between the predicted LHK3 and the A. thaliana AHK3 protein; this prompted 

additional investigation.  By using 5‟-RACE approach and total RNA derived from L. 

japonicus nodules, two variants (variant 1 and 2) of the Lhk3 mRNA were identified (Fig. 

3.7).  These variants differed in length, with variant no. 2 being extended by 228 bp at its 

5‟end in comparison with Lhk3 mRNA variant no. 1.  In order to solidify the 5‟-RACE 

result, transcript-specific primers were designed against the each predicted Lhk3 mRNA 

variant and the presence of both mRNA species was confirmed via RT-PCR in L. 

japonicus nodules (Fig. 3.7B).  After sequencing each product, the mRNA variant no. 2 

was found to be longer, resulting in the addition of 51 amino acids at the N-terminal end 

of its predicted translational product.  When aligned to AHK3, the translational product 

of Lhk3 mRNA for variant no. 2 produced an improved alignment over variant no. 1 (Fig. 

3.7C).   

As the initial RT-PCR experiment indicated differences in the relative abundance of the 

two Lhk3 mRNA variants in nodules, a semi-quantitative RT-PCR was again employed 

to analyze whether or not their abundance could be regulated in any way by infection  
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Figure 3.7  Lhk3 is alternatively spliced.  (A) Alternative splicing at the intron1/exon 2  

junction of the Lhk3 locus results in the production of two Lhk3 splice variants (named 

Lhk3 - Splice Variant #1 (dashed line) and #2 (solid line), differing by 228bp (green box). 

(B) RT-PCR and transcript-specific primers were used to detect and sequence these two 

splice variants in L. japonicus nodules.  (C) Alignment of the N-terminal portion for the 

two predicted LHK3 protein variants with the corresponding protein region of A. thaliana 

AHK3. The alignment was created as before (see Fig. 3.3) with a threshold set at 65%.  
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with M. loti, or by subsequent nodule development.  To simultaneously assess the 

expression of both Lhk3 splice variants, a duplex PCR was conducted (see Section 2.5).  

Both transcripts were detected at all stages during nodule development and in mature 

nodules (Fig. 3.8).  Consistent with the previous experiment (Fig. 3.7B), the relative 

abundance of mRNA variant no. 2 was higher in comparison to mRNA variant no. 1 and 

this did not change at any time-point/tissue analyzed. This result suggested therefore, that 

symbiotic interaction is unlikely to influence the relative abundance of Lhk3 splicing 

variants.    

 

3.7  Lhk1A and Lhk3 code for functional cytokinin receptors  

3.7.1  Lhk1A confers cytokinin-responsive growth to the sln1Δ mutant of S. 

cerevisiae 

To evaulate the cytokinin-specific function of LHKs identified in L. japonicus, 

the well-characterized sln1Δ HK mutant (a galactose auxotroph) of S. cerevisiae was used 

(Maeda et al., 1994). This mutant yeast strain was previously employed to demonstrate 

cytokinin responsive function of the LHK1 receptor (Murray et al., 2007).   Following 

transformation, the wild-type Lhk1A cDNA was able to restore growth of the sln1Δ strain 

in a cytokinin-dependent fashion (Fig. 3.9).  Repeated attempts to perform similar assays 

with Lhk2 and the two variants of the Lhk3 cDNA have failed due to apparent toxicity of 

these cDNAs in the yeast cells (not shown).  Therefore, an alternative approach based on 

a two-component phosphorelay assay developed in E. coli (Yamada et al., 2001) was 

used.  
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Figure 3.8  Steady-state level of Lhk3 transcripts during nodule development.  The top 

panel depicts the result of duplex, semi-quantitative RT-PCR for both splice variants in L. 

japonicus uninoculated wild-type roots (UR) and nodules collected 4, 7, 12, and 21 DAI 

with M. loti. The cDNA fragment for the Lhk3 mRNA variant no. 2 is larger in size (786 

bp), while the corresponding cDNA for the splicing variant no. 1 is represented by the 

lower molecular mass band (641 bp).  Although the total difference between Lhk3 splice 

variants is 228 bp, the image depicts 145 bp difference only due to transcript-specific 

primer design.  The bottom panel represents amplification products for the ubiquitin 

mRNA, used as a positive control. 
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Figure 3.9  Functional analysis of Lhk1A.  The wild-type Lhk1A cDNA confers cytokinin 

(Trans-Z and BA)-dependant rescue of yeast growth in the absence of galactose (-GAL) 

when transformed into the sln1Δ mutant of S. cerevisiae. Non-specific ligands do not 

restore yeast growth (Cis-Z and NAA). + Gal, 2% galactose supplement; Trans-Z, trans-

zeatin; Cis-Z, cis-zeatin; BAP, 6-benzylaminopurine; NAA, 1-naphthaleneacetic acid.  
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3.7.2  Lhk3 confers cytokinin-responsive growth to the sensor-negative SRC122 

mutant of E. coli 

 In addition to Lhk1 and Lhk1A, which were shown to confer cytokinin-dependent 

rescue of the sln1Δ yeast mutant growth and, therefore, were defined as functional 

cytokinin receptors (Murray et al., 2007 and this work), two additional loci, Lhk2 and 

Lkh3 remained to be functionally evaluated.  Given the failure of the yeast system, the 

sensor-negative SRC122 (ΔrcsC) mutant of E. coli was utilized for this purpose.  The 

presence of a functional HK receptor and the appropriate ligand in the SRC122 E. coli 

results in the activation of a cps::lacZ fusion. This provides both visible and also 

quantifiable assay based on the β-galactosidase (LacZ) reporter activity, which is inferred 

via the cleavage of the colorimetric ortho-Nitrophenyl-β-galactoside (ONPG) substrate to 

O-nitrophenol (Yamada et al., 2001).  Application of cytokinin to the SRC122 E. coli 

strain transformed with wild-type copies of either of the two splice variants of Lhk3 

significantly induced the β-galactosidase activity above the control level in the untreated 

samples, thus confirming the cytokinin-responsive function of these receptors (Fig. 3.10).   

In contrast to Lhk3, the Lhk2-containing replicon showed signs of instability when 

transformed into SRC122. This was reflected by DNA rearrangements (Fig. 3.11) that 

caused damage to the Lhk2 open-reading frame (not shown).  This outcome was not 

surprising given the initial observations made in yeast cells and also the presence of 

related reports on similar problems in A. thaliana (Yamada et al., 2001). Given these 

results, the LHK2 receptor remains undefined and continues to be considered here after 

as a presumed cytokinin receptor.  In the same context, none of the mutations in the Lhk2 

locus identified by the TILLING approach could be functionally evaluated.      
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Figure 3.10  Lhk3 codes for a functional cytokinin receptor.  The full-length cDNAs for 

the two alternative splice variants produced by Lhk3 were cloned into the pSTV28 

expression vector and transformed into sensor-negative SRC122 E. coli.  (A) A 

noticeable increase in the formation of blue color can be observed when bacteria were 

plated in the presence of X-gal and 200 μM BAP.  (B) Relative units of β-galactosidase 

activity from different Lhk constructs in the presence or absence of 200 μM BAP.  In all 

cases, values represent the mean ± 95% CI (n = 3).  An asterisk denotes significant 

differences (Student‟s t-Test, P<0.05). The Lhk1 cDNA was used as a positive control for 

these experiments. 
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Figure 3.11  Rearrangements of the pSTV28-Lhk2 plasmid in the SRC122 strain.  The 

full-length Lhk2 cDNA was cloned directionally into the pSTV28 expression vector and 

subsequently transformed into the XL-1 Blue E. coli strain.  Double digestion of this 

vector with EcoRI and SalI was predicted to release the Lhk2 cDNA (~3.8 kB) from the 

pSTV28 vector (~3 kB), as shown in the Lhk2 pSTV28 XL-1 control lane.  When 

transformed into the SRC122 E. coli mutant strain, the Lhk2 pSTV28 plasmid showed 

rearrangements (Lhk2 pSTV28 SRC122 colonies #1-13), as indicated by altered restriction 

patterns.  As a further control, plasmid DNA was isolated from the nascent SRC122 

strain without transformation to ensure that no additional plasmids were contributing to 

the additional bands observed for Lhk2 pSTV28 SRC122 colonies.  The control SRC122 

lane clearly shows that these E. coli cells do not carry any additional plasmids.   



 

 

62 

3.8 Isolation of lhk TILLING mutants 

 To address the functional significance of the Lhk gene family during symbiosis, a 

reverse genetics approach, Targeted Induced Localized Lesions IN Genomes (TILLING), 

was used to identify mutations in the Lhk1A, Lhk2 and Lhk3   loci.  The identification of 

such mutations would complement the already described, loss-of-function mutations in 

Lhk1 (see Murray et al., 2006), thus allowing for a more comprehensive, functional 

characterization of this small gene family with regard to its possible contribution to 

symbiosis.    

  A search for mutations using the TILLING approach was set to target a 1 kB 

region within the highly conserved and functionally required kinase domain. This was 

done to increase the likelihood of identifying mutations deleterious to the function of the 

resulting protein.  Several ethylmethyl sulfonate (EMS)-mutagenized L. japonicus lines 

that carried single nucleotide substitutions within the Lhk1A, Lhk2, and Lhk3 loci were 

successfully identified (Fig. 3.12). For Lhk1A, a mutant line that carried a G1695 to A 

transition was chosen for further detailed analyses (the mutant allele named lhk1a-1).  

This nonsense mutation was predicted to change a tryptophan residue in the kinase 

domain to a premature stop codon (W564 to STOP).  For the Lhk2 and Lhk3 loci, a 

number of single nucleotide transitions that resulted in amino acid substitutions were 

discovered.  Among these, the lhk2-5 (G834 to R) and lhk3-1 (R561 to Q) mutant lines were 

selected for subsequent analyses due to their affliction of an invariant residue within the 

conserved G1 and N box motifs of the kinase domain, respectively  (Fig. 3.13).     
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Figure 3.12  Lhk mutant alleles as identified by the TILLING approach.  Genetic lesions 

induced by EMS mutagenesis and identified by TILLING within the conserved kinase 

domains are shown (see Section 2.6). gDNA: a specific nucleotide substitution detected 

in the genomic DNA for a given locus; ORF change: the resulting alteration to the open 

reading frame of a given protein.  Adenine in the predicted ATG initiation codon was set 

as 1 for defining the position of a given mutation in gDNA. Similarly, a predicted 

initiating methionine residue was set as 1 to calculate the position of any given amino-

acid change.      
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Figure 3.13 Selected TILLING mutants obtained for Lhk2 and Lhk3.   lhk2-5 (G834 to R) 

and lhk3-1 (R561 - Q) carry genetic lesions in absolutely conserved residues (asterisks) 

within the predicted G1 and N box motifs of the kinase domain, respectively. The 

alignment was created as before (see Fig. 3.3).  LHK: L. japonicus MtHK: M. truncatula; 

PsHK: P. sativum; AHK: A. thaliana histidine kinase. 
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3.9 The lhk1a-1 and lhk3-1 mutations are deleterious to cytokinin responsive 

function of Lhk1A and Lhk3 

 

The cDNA corresponding to the lhk1a-1 mutant allele was functionally evaluated 

in the same manner as the wild-type Lhk1 cDNA by utilizing the sln1Δ HK mutant of S. 

cerevisiae (Fig. 3.14).  The lhk1a-1 cDNA failed to restore cytokinin-dependent growth 

of sln1Δ thus, unequivocally demonstrating the deleterious nature of the lhk1a-1 mutation. 

In an independent experiment, site-directed mutagenesis was performed to 

reconstruct the lhk3-1 mutation in wild-type variants of Lhk3. When assayed in the 

bacterial system outlined in section 3.7.2, the lhk3-1 mutation completely abolished the 

cytokinin responsiveness of the LHK3 receptor, regardless of the cDNA variant used, 

indicating that this mutation is indeed deleterious to the receptor function (Fig. 3.15).   

 

3.10 Symbiotic phenotypes of lhk TILLING mutants 

3.10.1  Symbiotic interaction with M. loti is largely unaffected in lhk1a-1, lhk2-5, and 

lhk3-1 single mutant backgrounds 

 To assess the possible roles of Lhk1A, Lhk2, and Lhk3 during the NFS, phenotypic 

analysis of the selected TILLING mutant lines carrying deleterious mutations in the 

aforementioned loci were conducted.  Early events that are characteristic of the epidermal 

program, such as the formation of bacterial microcolonies trapped within curled root 

hairs and subsequent production of ITs, were evaluated seven DAI with M. loti strain 

carrying the hemA: lacZ reporter gene fusion.  The lhk1a-1, lhk2-5 and lhk3-1 mutants 

showed no significant deviation from the wild-type phenotype with regards to these 

features (Fig. 3.16).  Nodule organogenesis in the lhk1a-1, lhk2-5 and lhk3-1 single  
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Figure 3.14  The lhk1a-1 TILLING mutant is loss-of-function.  Contrasting the wild-type 

scenario, the lhk1a-1 mutant cDNA failed to rescue the cytokinin-dependant growth 

when transformed into the sln1Δ mutant of S. cerevisiae in the absence of galactose 

(GAL) and in the presence of the appropriate ligand (BA and Trans-Z). Non-specific 

ligands also did not restore yeast growth (Cis-Z and NAA).  + Gal, 2% galactose 

supplement; Trans-Z, trans-zeatin; Cis-Z, cis-zeatin; BA, 6-benzylaminopurine; NAA, 1-

naphthaleneacetic acid. 



 

 

67 

 

 

Figure 3.15  The lhk3-1 mutation abolishes the cytokinin-responsive function of the 

LHK3 receptor.  Site-directed mutagenesis was used to recreate the lhk3-1 mutation in 

both of the two splice variants produced by Lhk3.  These were subsequently cloned into 

the pSTV28 expression vector and tested in the sensor-negative SRC122 E. coli.  (A) In 

contrast to the wild-type Lhk3 cDNA (see Fig.3.9),  the mutant Lhk3 variants  failed to 

induced the -galactosidase reporter activity above background levels in the presence of 

X-gal and 200 μM BAP l (B) Relative units of β-galactosidase activity from different Lhk 

constructs in the presence or absence of 200 μM BAP.  In all cases, values represent the 

mean ± 95% CI (n = 3).  
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Figure 3.16  Bacterial infection is unaffected in lhk1a-1, lhk2-5 and lhk3-1 mutants.  The 

formation of microcolonies and ITs were scored in lhk single mutants at 7 DAI and 

compared to the wild-type control.  In all cases, values reported are the mean ± 95% CI 

(n = 10). 
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mutant lines was also unaltered when evaluated at various time-points after inoculation 

(Fig. 3.17A, B, C).   For example, eight to ten pink nodules were formed on average by 

lhk1a-1, lhk2-5 and lhk3-1 mutant roots at 21 DAI.  This was not significantly different 

from the number of functional nodules formed by the wild-type control plants. As 

expected, the lhk1-1 mutant formed a significantly reduced number of nodule structures 

when analysed at the same time point (Fig. 3.17A, B). 

Histochemical staining for the -galactosidase reporter activity showed that like in wild-

type plants, nodules that formed on the roots of lhk1A-1, lhk2-5 and lhk3-1 mutants were 

colonized by M. loti, as indicated by the dark blue color within nodule structures. No 

excessive infection of the root epidermis by M. loti in these mutant lines was observed, 

which was in contrast with the hyperinfection phenotype of the lhk1-1 roots (Fig. 3.18).  

The lhk1-1 phenotype was consistent amongst mutant alleles tested in addition to lhk1a-1, 

lhk2-5, and lhk3-1 including lhk1a-2, lhk1a-5, lhk2-7, lhk2-8, lhk2-10, lhk3-2, and lhk3-3.  

Nodulation events (nodules and nodule primordia) were scored at 21 DAI and found to be 

not significantly different from the wild-type (not shown).   

 

3.10.2  lhk double mutants carrying the loss-of-function lhk1-1 allele phenocopy 

lhk1-1 single mutants 

 To further assess whether or not the Lhk1A, Lhk2, and Lhk3 loci participated in 

the NFS, different lhk single mutants were crossed into the lhk1-1 mutant background.  

All crosses were successfully achieved; however, growth of the F1 plant derived from the 

cross between Lhk2 and Lhk1-1 was very slow and, thus far, the production of F2 seeds 

was not sufficient to perform further analyses.   
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Figure 3.17  Nodule organogenesis is unaffected in lhk1a-1, lhk2-5 and lhk3-1 single mutant backgrounds.  Nodule and nodule 

primordia formation in lhk1-1, lhk1a-1, lhk2-5, and lhk3-1 single mutants was scored at (A) 7 DAI, (B) 14 DAI, and (C) 21 DAI. The 

lhk1-1 mutant was used for comparison.  In all cases, values reported are the mean ± 95% CI (n = 10).  An asterisk denotes significant 

differences (Student‟s t-Test, P<0.05). 
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Figure 3.18  Symbiotic phenotype of lhk1a-1, lhk2-5, and lhk3-1 mutants.  

Representative images of the nodulated root at 21 DAI for each line prior to staining 

(black background) and following histochemical staining for β-galactosidase activity 

(white background).  The lhk1-1 mutant was used for comparison.  Blue color reflects the 

β-galactosidase activity, which also indicates the presence of bacteria.  
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As shown Fig. 3.19, lhk1a-1 lhk1-1 or lhk3-1 lhk1-1 double mutants produced a 

symbiotic phenotype which mimicked the lhk1-1 single mutant.  At the whole root level, 

these double mutants formed only few, oblong nodules in a manner reminiscent of the 

lhk1-1 single mutant phenotype (Fig. 3.19A, B); they were also hyperinfected at the root 

epidermis, as observed in lhk1-1 (not shown).  Furthermore, when the lhk1a-1 mutant 

was crossed to lhk3-1, the resulting double mutant displayed a wild-type nodulation 

pattern, forming a wild-type number of ITs (not shown) and fully infected nodules (Fig. 

3.19B).   

 

3.10.3  Symbiotic interaction with AM fungi is unaltered in lhk mutants 

In addition to symbiotic interactions with N-fixing bacteria, phosphate acquisition is 

supplemented in L. japonicus via a mutualistic interaction with AM fungi of the phylum 

Glomeromycota (Bonfante and Genre, 2010). In contrast to NFS, where root nodules are 

formed, the interaction with AM fungi does not involve the formation of a new plant 

organ.  In order to address the question whether or not the LHK cytokinin receptors are 

required for AM symbiosis, L. japonicus wild-type and lhk mutant lines were inoculated 

with a mixture of Glomus sp. and scored for fungal infection and the presence of 

structural features, such as extra- and intra-radical hyphae, vesicles and arbuscules, that 

are  characteristic of the wild-type  interaction.  As shown in Figure 3.20, all lhk mutant 

lines tested were unaffected in their ability to interact with the fungi.   
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Figure 3.19  Symbiotic phenotype of lhk double mutant lines.  (A) Nodule organogenesis 

on L. japonicus roots prior to (black background) and following histochemical staining 

for the hemA:lacZ-tagged rhizobia (white background) is shown at 21 DAI.  (B) 

Nodulation events scored at 21 DAI from the corresponding lines.  In all cases, values 

represent the mean ± 95% CI (n = 10). 
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Figure 3.20 Symbiotic interaction of L. japonicus roots with AM fungi is unaffected in 

lhk mutant backgrounds.  Representative images of colonized roots eight weeks post-

inoculation are shown for the collection of lhk single and double mutants and the wild-

type L. japonicus.  EH, Extracellular hyphae; IH, Intracellular hyphae; V, vesicle; Ar, 

Arbuscle. 
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3.11 Response of lhk mutants to exogenous cytokinin application 

In wild-type L. japonicus plants, root elongation is significantly inhibited by external 

application of cytokinin, such as BAP. This effect is clearly observable even at the 

concentration of BAP as low as 1x 10
-8

 M.  At higher BAP concentrations, wild-type 

roots elongate only to roughly 20% of the untreated control (Fig. 3.21A). 

Deleterious mutations in the Lhk1 receptor, such as lhk1-1, were shown to render 

mutant roots strongly insensitive to exogenously applied cytokinin (Murray et al., 2007). 

These data indicated, therefore, that in addition to its significant role in nodule 

organogenesis, the LHK1 receptor mediates root responses to external (environmental) 

signals, such as cytokinin.   

To analyze whether or not other L. japonicus cytokinin receptors partake in this 

physiological response, all L. japonicus lhk mutant lines were subjected to the same root 

elongation assay. The lhk1-1 mutant and wild-type L. japonicus were used as controls.  In 

contrast to lhk1-1, which exhibited strong cytokinin insensitivity, the lhk1a-1, lhk2-5, and 

lhk3-1 mutants responded to exogenous treatment with BAP in a manner similar to wild-

type L. japonicus plants (Fig. 3.21A).  The lhk1-1 lhk1a-1, lhk1-1 lhk3-1, and lhk1a-1 

lhk3-1 double mutant line were also analyzed with regard to their response to 

exogenously supplied BAP (Fig. 3.21B).  In all cases, the double mutants carrying the 

lhk1-1 mutation showed strong insensitivity to cytokinin treatment in a manner similar to 

the lhk1-1 single mutant.  In contrast, the lhk1a-1 lhk3-1 double mutant displayed a wild-

type response in this assay (Fig. 3.21B).   
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Figure 3.21  Response of the L. japonicus wild-type and lhk mutant roots to exogenous 

cytokinin treatment.  (A) Root elongation in wild-type and lhk single mutants in the 

presence of increasing cytokinin (BAP) concentration.  (B) Root elongation in wild-type 

and double mutant lines under the same conditions.  In all cases, values represent the 

mean ± 95% CI (n ≥ 10). BAP: 6-benzylaminopurine.  
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3.12 Characterization of Lhk gene promoter expression profiles in transgenic L. 

japonicus plants 

 The results of this study pointed to LHK1 as being uniquely responsible for 

mediating the cytokinin signalling during the NFS.  We postulated that this could be the 

result of at least two mechanisms.  Firstly, the seemingly unique role of cytokinin 

signalling through LHK1 might be a result of spatial/temporal constraints dictated by the 

Lhk1 promoter. Alternatively, as yet unrecognized features of the receptor protein might 

dictate its involvement in signalling for root nodule primordium organogenesis. It is 

noteworthy that these two options are not necessarily mutually exclusive and both 

mechanisms might contribute to the LHK1-dependent nodule organogenesis.  

  To begin addressing the first option, the individual stable L. japonicus transgenic 

lines carrying each of the four Lhk promoters fused to the Gus reporter gene cassette (Fig. 

3.22A) were developed via an A. tumefaciens-mediated transformation (see Material and 

Methods).  Upon inoculation with M. loti, a portion of nodulated roots of the primary(T0) 

transgenic plants were collected and stained for -glucuronidase reporter gene activity. 

Simultaneously, the remaining T0 plants were re-potted and allowed to self in order to 

produce progeny for further detailed analyses.  Many of these plants although flowering 

profusely turned out to be partially sterile, thus hampering the progress in collecting 

seeds and performing subsequent study. Therefore, the results presented are based on the 

observations made with T0 plants only.   

For proLhk1 and proLhk1A, the expression profile was nearly identical in nodules. Both 

promoters were active in dividing cells of nodule primordia and subsequently, in the 

cortical cells and vascular bundles of mature nodules. Their activity was excluded from 
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Figure 3.22  Localization of proLhk::GUS reporter gene activity in stable L. japonicus 

transgenic plants.  (A) proLhk localization constructs used for stable transgenic 

production via A. tumefaciens-mediated transformation.  Histochemical staining of 

promoter activation in sections (30μm) form the root tip (B), in young nodule primordia 

(C), and mature nodules (D and E).  Panel (E) for proLhk2 and proLhk3 are whole 

mounts.  Major tissues are highlighted including RM, root meristem; NP, nodule 

primordium; VB, vascular bundle; IC, infected cells; UC, uninfected cells in the top panel 

and throughout the remainder of the panel where the comparison is not obvious.  

Representative images are shown for each of the four Lhk promoters (from top to bottom; 

Lhk1, Lhk1A, Lhk2, and Lhk3).  Sp
r
, Spectinomycin resistance; LB, left border; Kan

r
, 

kanamycin resistance; GUS, β-glucoronidase; GFP, green fluorescence protein; t35S, 35S 

terminator of CaMV; RB, right border. 
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the centrally located infected cells (i.e. these containing symbiotic bacteria) but appeared 

to be present in the uninfected cells. (Fig. 3.22B, D, E).  However, proLhk1::GUS 

displayed a unique expression profile in the root; it was active at the root tip, being 

strongly associated with cells of the root meristematic region; proLhk1A was not 

expressed in this position (Fig. 3.22B).  

The proLhk2 promoter activity appeared restricted to the vasculature in all organs 

analyzed. Strong expression was found in the root vasculature associated with developing 

nodules; however, it was excluded from the dividing cells of nodule primordia and also 

from the root tip (Fig. 3.22B, C).  In mature nodules, proLhk2::GUS expression was 

again restricted to vascular tissue of the root associated with nodules, and was also 

observed in vascular bundles of the nodule itself (Fig. 3.22C, D, E).   

The expression profile for proLhk3 was somewhat unique, although shared some aspects 

with the profile of other Lhk promoters.  Like proLhk1, proLhk3 was expressed at the 

root tip; however, this expression was confined to the ground tissues and was excluded 

from the meristematic region (Fig. 3.22B).  Much like proLhk2, proLhk3 expression was 

also restricted to the vasculature of mature nodules (Fig. 3.22D, E); however, unlike 

proLhk2, The Lhk3 promoter-dependent expression was also observed in nodule 

primordia in a manner similar to proLhk1 and proLhk1A (Fig. 3.22C). 

 

3.13 Complementation of the lhk1-1 symbiotic phenotype via overexpression of 

different Lhk cDNAs 

In a second approach, complementation experiments were designed to address the 

question of whether or not the biochemical function of the LHK1 receptor in mediating 
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nodule organogenesis could be substituted by another cytokinin receptor.  To address this 

question, the chimeric gene constructs carrying various Lhk cDNAs under the control of 

the constitutive CaMV 35S promoter were designed for in planta complementation 

experiments using Agrobacterium rhizogenes-mediated transformation (Petit et al., 1987). 

 When transformed with A. rhizogenes, the resulting hairy roots that formed on 

the wild-type shoots recapitulate the wild-type nodulation phenotype providing, therefore, 

useful and generally accepted platform for a variety of complementation experiments that 

target specific root phenotypes (e.g. Groth et al., 2010). 

  The lhk1-1 mutant is capable of forming several aberrantly shaped nodules when 

inculcated with M. loti, although this occurs with a significant delay in comparison to 

wild-type plants (Murray et al., 2007; see also below). However, hairy roots induced on 

lhk1-1 mutant shoots exaggerate the mutant nodulation phenotype, leading to a non-

nodulating (Nod
-
) phenotype in this mutant genetic background (Fig. 3.23 Vector).  This 

can be reversed by expressing the wild-type Lhk1 cDNA, as provided to the mutant plant 

via an A. rhizogenes-mediated transformation, which results in the wild type nodulation 

phenotype of the resulting hairy roots (Fig. 3.23 Vector + Lhk1).   

The same principle was used, therefore, to find out whether expression of Lhk1A, 

Lhk2 or Lhk3 (i.e. two Lhk3 cDNA variants as described above), as directed by the CaMV 

35S promoter, could restore the nodulation ability in the lhk1-1 mutant.  Interestingly, 

complementation of the lhk1-1 hairy root non-nodulation phenotype was obtained for 

both of the Lhk3 cDNA variants and not for Lhk2, or the closely-related Lhk1A.   
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Figure 3.23  Complementation of the lhk1-1 symbiotic phenotype.  Various Lhk 

homologues were expressed under the control of CaMV 35S promoter in the lhk1-1 

mutant background via A. rhizogenes-mediated hairy-root transformation.  Representative 

images of transgenic hairy roots are shown at 21 DAI.  Quantitative scores of nodule 

frequency are also given.  The values reported are the means ± 95% CI (n = 10) except 

for Lhk2, where only 3 plants were scored.  Kan
r
, kanamycin resistance; LB, left border; 

BaR, phosphinothricin acetyl transferase; pro35S, 35S promoter of CaMV; tOCS, 

terminator of octopine synthase gene; RB, right border. 
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3.14  Symbiotic phenotype of lhk1-1 symRK-14 double mutants 

As outlined above, the LHK1 receptor has been defined as necessary and also 

sufficient to mediate nodule organogenesis in L. japonicus.  However, the lhk1 mutants 

are able to form a limited number of nodules, as previously reported (Murray et al., 2007 

and this work).  The observation that cell divisions which eventually give rise to nodule 

formation in lhk1-1 mutants are initiated only after colonization of the mutant root 

interior by M. loti (the lhk1-1 roots are hyperinfected by M. loti in the absence of nodule 

organogenesis; Murray et al., 2007), might provide a plausible explanation for this 

apparent conundrum (for further information, see Discussion).   

We hypothesised that an as yet uncharacterized signalling event originating from 

M. loti inside the root cortex, acts in an LHK1-independent manner to trigger cortical cell 

divisions and subsequent nodule formation in the lhk1-1 mutant. If this is correct, 

blocking entry of the bacteria should completely abolish nodule formation in the lhk1-1 

mutant background.  We set to test this prediction by analyzing the symbiotic phenotype 

of the L. japonicus lhk1-1 symRK-14 double mutant.  

 In response to inoculation by M. loti, symRK-14 develops initially empty nodules 

while blocking IT-dependent bacterial colonization of the roots. However, symRK-14 

nodules eventually become colonized by M. loti via an alternative, IT-independent 

mechanism, which requires the prior formation of nodule structures (S. Kosuta, M. Held 

and K. Szczyglowski, unpublished data).  We reasoned, therefore that by incorporating 

the symRK-14 mutation into the lhk1-1 mutant background, IT-dependent hyperinfection 

of the lhk1-1 root cortex (Murray et al., 2007) will be prevented, thus allowing for testing 

the above outlined prediction.   
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Homozygous lhk1-1 and symRK-14 mutants were crossed and the resulting F1 

plant was allowed to self to produce F2 progeny.  The F2 segregating individuals were 

scored for nodulation phenotypes and also genotyped to identify their genetic status at the 

Lhk1 and SymRK loci (i.e. the presence of wild-type or mutant allele in either homo- or 

heterozygote state).  The double lhk1-1 symRK-14 mutant genotype was identified in 8 

out of 148 individuals tested, a frequency consistent with the predicted segregation of two 

unlinked loci (χ
2
 = 0.62, P < 0.05).   

 Unlike wild-type and single mutants of either lhk1-1 or symRK-14, which all 

formed colonized nodules when tested three weeks after inoculation with M. loti, all 

double lhk1-1 symRK-14 mutants showed Nod
-
 phenotype (Fig. 3.24D).  This was in spite 

of the fact that bacteria were heavily accumulated at the root surface in the absence of IT 

formation (Fig. 3.24D); a phenotype which is reminiscent of the failed infection attempts 

observed in symR-14 single mutants.  
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Figure 3.24  Symbiotic phenotype of the lhk1-1 symRK-14 double mutant.  

Representative root sections are shown for (A) wild-type, (B) lhk1-1, (C) symRK-14, and 

(D) lhk1-1 symRK-14 double mutants.  Rhizobia carrying the hemA::LacZ reporter 

cassette are blue following staining for β-galactosidase activity.  Arrowheads in (D) 

highlighted rhizobia attracted to the root surface in aggregates, which are unable to enter.  

Images are representative of the phenotype at 21 DAI with M. loti.   

 

 



 

 

 

 

 

 

 

CHAPTER 4 

 

DISCUSSION 

 

 

  



 

 

86 

4.1  Cytokinin and nitrogen fixing symbiosis 

Cytokinins are essential plant hormones that control many aspects of plant 

development including cell divisions, stem-cell control in shoots and roots, growth and 

branching of shoots, roots and inflorescence, chloroplast biogenesis, vascular 

differentiation, seed development and leaf senescence (for example, Riefler et al., 2006).  

In doing so, cytokinin signaling acts not only as a response to endogenous cues but also 

plays an important role as a messenger of external, environmental stimuli related to 

diverse biotic and abiotic stress conditions and nutrient availability (Tran et al., 2007).  

Given this wide-range of functions, it is perhaps not surprising that cytokinin turned out 

to be also essential in mediating nodule organogenesis in legumes.  However, the 

discovery that the activation of cytokinin signaling is sufficient for the formation of an 

entirely new organ, the root nodule, certainly provides a fascinating model for plant 

developmental biology.   This study focused on the characterization of histidine kinase 

cytokinin receptors from the model legume L. japonicus, by analysing their role during 

the NFS.   

 

4.2  The L. japonicus cytokinin receptor family is comprised of four members 

 A comprehensive search for genes encoding presumed cytokinin receptor proteins 

in the L. japonicus genome identified a small family consisting of at least four histidine 

kinase receptor-like genes, named Lotus histidine kinase (Lhk) 1, 1A, 2 and 3.  They were 

found to be localized to discrete positions in the L. japonicus genome. Lhk1 and Lhk3 

were positioned on opposite ends of chromosome IV, while Lhk1A and Lhk2 were placed 

on opposite ends of chromosome II, respectively.     
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Only three functional cytokinin receptors have been identified in another legume, 

M. truncatula and also in a non-legume A. thaliana (Gonzalez- Rizzo et al., 2006; Riefler 

et al., 2006).  However, the finding that L. japonicus has four predicted cytokinin 

receptor genes was not entirely surprising.  Other plants, such as rice (Oryza sativa), were 

shown to contain four members in this gene family (Du et al., 2007), suggesting that the 

presence of four receptors in the L. japonicus family is not necessarily unique.   

All Lhk genes were predicted to encode proteins that contain highly conserved 

domains, expected to be present in functional cytokinin receptors. In the A. thaliana 

AHK4 receptor, the CHASE domain was shown to bind cytokinin in vitro (Yamada et al., 

2001) and to be present in all  characterized cytokinin receptors in A. thaliana (Heyl and 

Schmülling, 2003) and other plant species, such as maize (Yunekura-Sakakibara et al., 

2004). This was also the case for all LHK proteins, where the N-terminally-positioned 

CHASE domain was predicted to be present.  The protein kinase domain and C-terminal 

receiver domain were also identified in all four LHK proteins and contained discrete 

amino-acid residues, which are highly conserved and also required for functioning of a 

sensor histidine kinase receptor (Werner and Schmülling, 2009). Although these data 

supported the notion that the identified LHK proteins indeed encode cytokinin receptors, 

additional functional tests were performed to verify this conclusion.   

By using independent heterogonous systems in yeast and E.coli, cytokinin 

responsiveness of cells expressing the LHK1 protein was confirmed, supporting previous 

data (Murray et al., 2007).  Similarly, the imposition of cytokinin responsiveness on yeast 

and E. coli cells could be demonstrated for LHK1A and LHK3 proteins, respectively.  

Therefore, LHK1, LHK1A and LHK3 represent functional cytokinin receptors in L. 



 

 

88 

japonicus. 

Unfortunately, the presence of Lhk2 or Lhk3 cDNAs and/or their corresponding 

protein products turned out to be toxic to yeast cells, precluding the use of this 

heterologous system.  Furthermore, in spite of repeating efforts to determine LHK2 

function in E. coli, this failed due to an apparent high instability of the expression vector 

containing the Lhk2 cDNA in these cells.  Thus, LHK2 remains defined as only a putative 

L. japonicus cytokinin receptor.   However, while developing a working model (see 

below), the assumption has been made that LHK2 represents a functional cytokinin 

receptor in L. japonicus and that the lhk2-5 mutation is deleterious to the protein function.  

Future investigations will have to revisit the accuracy of this assumption.    

 

4.3  Expression patterns of the Lhk gene family 

The expression profiles for Lhk genes were analyzed in major organs of L. 

japonicus and were found to be largely overlapping.  Thus, mRNA corresponding to the 

Lhk1, Lhk1A, Lhk2 and Lhk3 genes were all detected in L. japonicus roots, nodules and 

leaves.  Although quantification of transcripts was not performed, some tissue-

preferential expression was also observed.   For example, the steady-state level of Lhk1, 

Lhk1A and Lhk3 transcripts appeared elevated in nodule as compared to uninoculated 

roots, while this was not the case for Lhk2.  In the latter case, the majority of the 

transcript accumulation was detected in un-inoculated roots, with only some present in 

nodules and leaves.      

Ubiquitous expression of the three cytokinin receptor genes across different 

tissues has been observed in A. thaliana, likely reflecting the central role these hormones 
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play during a wide array of developmental processes (Gonzalez-Rizzo et al., 2006; 

Higuchi et al., 2004; Nishimura et al., 2004; Riefler et al., 2006).  The same notion is 

likely applicable to L. japonicus.   However, unlike A. thaliana, L. japonicus develops 

root nodules, making the observations as presented in this report relevant to nodulating 

plant species.  

Interestingly, two mRNA splicing variants were identified as being derived from 

the Lhk3 locus.  Alternative splicing of mRNA for kinase-type receptors is not novel 

(Kakita et al., 2007; Lee and Yamada, 1994; Premont et al., 1999; Radutoiu et al., 2003; 

Zhukov et al., 2008).  However, data regarding the presence of alternative splicing in 

association with cytokinin histidine kinase receptor loci are scarce.  The first documented 

observation of this type came from Inoue et al. (2001), who originally characterized Ahk4 

as a cytokinin receptor from A. thaliana.  Library screening revealed two transcripts for 

this gene, which shared the same ORF and differed only at the 5‟ end of the mature 

mRNA due to alternative splicing in the first intron.  In maize, three functional receptors 

have been identified and Zmhk3 mRNA was shown to undergo alternative splicing at the 

5‟end, producing two functional variants (Yunekura-Sakakibara et al., 2004).  Although 

detailed characterization of the possible role(s) of these variants was not conducted, the 

pattern of alternative splicing observed for both Ahk4 and Zmhk3 is strikingly similar to 

Lhk3, thus warranting further investigation.   

Corroborating the RT-PCR results, histochemical detection of the Lhk promoters‟ 

activity in L. japonicus stable transgenic lines provided a spatial resolution.  Expression 

of the -glucuronidase reporter gene activity as directed by proLhk1, proLhk1A, and 

proLhk3, was detected in the root apical meristem, root vascular bundles and a presumed 
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root transition, meristem to cell differentiation zone, respectively.  However, reporter 

gene activity was absent in more mature regions of the root cortex, where nodules would 

be expected to form.  Indeed, all three promoters were activated in the root cortex only in 

association with cell divisions for nodule primordia organogenesis.  In contrast, the Lhk2 

promoter remained active only in root and nodule vascular bundles, but was not activated 

in conjunction with the cortical cell divisions.  

Cumulatively, these data suggested that in addition to Lhk1, Lhk1A and Lhk3 

might partake in signaling events that initiate and/or maintain cell divisions for nodule 

primordia organogenesis.  Lhk2, along with the three other Lhk genes might also 

participate in the development of nodule vascular bundles, as expression of all of these 

genes was detected in this tissue.   

 

4.4  LHK1, a pivotal player during the NFS 

To further assess the role of LHK receptors during symbiosis, a collection of 

plants carrying mutations in the Lhk1A, Lhk2 and Lhk3 loci was identified by a TILLING 

approach.  Extensive phenotypic characterization, encompassing independent mutant 

lines and a variety of symbiosis-relevant developmental stages, showed no significant 

effects of these mutations on the symbiotic interaction.  Thus, although the lhk1a-1 and 

lhk3-1 mutations were found to be deleterious to the corresponding function of these 

genes, infection events at the root epidermis and the number of nodules formed by mutant 

plants was not significantly altered in comparison to the wild-type control.  Clear 

conclusions could not be drawn for the lhk2-5 mutant, as the effect of this mutation on 

the gene function could not be determined in the heterologuous assays used (see above).  
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Nevertheless, similar to lhk1A and lhk3 mutant lines, the lhk2-5 mutant showed wild-type 

symbiotic phenotype.   

 These observations were consistent with the results obtained in M. truncatula, 

where RNAi-mediated silencing of the presumed orthologous functions, namely Mthk2 (a 

presumed counterpart of L. japonicus Lhk2) and Mthk3 (a presumed counterpart of L. 

japonicus Lhk3), did not lead to any discernible aberrations in the ability of the plant to 

interact symbiotically with its natural micro-symbiont, Sinorhizobium meliloti (Gonzalez-

Rizzo et al., 2006).  In contrast, silencing of Mthk1 resulted in a significant inhibition of 

the symbiotic process, thus recapitulating to a significant extent the mutant phenotype of 

the loss-of-function lhk1-1 mutation in the L. japonicus Lhk1 locus (Murray et al., 2007; 

Frugier et al., 2008). 

These data supported, therefore, the notion that the activation of the LHK1 

receptor is required and also sufficient for nodule organogenesis, which was further 

corroborated by the results of the double mutant analyses (i.e. analyses of combined two 

gene mutations among different LHK gene family members, see Results).  At the same 

time, however, these observations stand in possible contradiction with the results of the 

histochemical analyses, which indicated a specific activation of the Lhk1A and Lhk3 gene 

expression during nodule primordia organogenesis; therefore arguing for their 

involvement in the symbiotic process.  This apparent conundrum is addressed further 

below.   

 

4.5  The role of cytokinin receptor-dependent signaling during symbiosis 

As indicated by previous work and also results presented in this thesis, the key 
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step in signaling for nodule primordium organogenesis in L. japonicus is mediated by the 

LHK1 cytokinin receptor (Murray et al., 2007).  Current data supports a notion that 

perception of bacterially-encoded NF by the host plant apparatus stimulates cytokinin 

signaling in the host plant (Gonzalez-Rizzo et al., 2006).  The accumulation of cytokinin 

in response to inoculation with nitrogen fixing bacteria has been demonstrated to occur 

rapidly in the root epidermis, including root hairs and subsequently, in the subtending 

root cortex (Oldroyd, 2007).  Furthermore, cytokinin signaling genes were shown to be 

up-regulated by rhizobial inoculation.  In L. japonicus, M. loti infection activates Lhk1 

gene expression within the root cortex (Tirichine et al., 2007 and this work).  Similarly, 

the expression of the Mthk1 (MtCRE1) gene, a presumed M. truncatula ortholog of Lhk1, 

was shown to be upregulated by rhizobia along with several cytokinin response regulator 

genes that are similar to the A. thaliana cytokinin responsive genes, such as ARR4 and 

ARR5 (Gonzalez-Rizzo et al., 2006).   

In the context of a recent proposal that the activation of LHK1 is required and 

also sufficient for nodule organogenesis, the finding that expression of at least two 

additional receptor genes, namely Lhk1A and Lhk3, is also stimulated in association with 

nodule primordium organogenesis in L. japonicus was somewhat surprising.  Thus, 

LHK1 might not be entirely unique in its function during nodule organogenesis.  Could 

this, therefore, explain why the L. japonicus plants carrying a loss-of-function lhk allele, 

such as lhk1-1, produces a limited number of aberrant nodules?  If so, why are these 

nodules misshaped?   

Based on the results presented in this thesis, it is argued that indeed, at least 

partial redundancy of the LHK receptors‟ function might be involved in nodule 
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organogenesis (see below).  However, the available data have not entirely ruled-out the 

possibility that LHK1-independent nodulation involves a mechanism that operates 

downstream from cytokinin signaling and thus, is cytokinin independent.     

 

4.6  LHK1 is the sensor for exogenous cytokinin 

The elongation of wild-type L. japonicus roots is significantly reduced in response 

to exogenous cytokinin treatment.  In contrast, roots of lhk1 loss-of-function mutants 

exhibit strong insensitivity with regard to the same treatment.  Similarly, a local 

application of cytokinin to the surface of L. japonicus roots induces empty nodule 

structure formation in an LHK1-dependent manner, as lhk1-1 mutants fail to form these 

structures (A. Heckmann and J. Stougaard, personal communication).    

Importantly, L. japonicus plants carrying mutations in one of the three other L. 

japonicus cytokinin receptor-genes (i.e. Lhk1A, 2 and 3) showed normal sensitivity to 

externally-applied cytokinin.  Assuming that the lhk2-5 mutation has a deleterious effect 

on gene function, these data would strongly support the conclusion that the external 

cytokinin signal is sensed primarily by LHK1.  This notion is consistent with similar 

observations in A. thaliana and M. truncatula, where AHK4 and MtHK1 (also known as 

MtCRE1) presumed orthologous functions with LHK1, were defined as solely 

responsible for the perception of exogenous cytokinin (Gonzalez-Rizzo et al., 2006; 

Nishimura et al., 2004).  Therefore, the role of LHK1 in sensing exogenously supplied 

cytokinin is likely to be exclusive and cannot be compensated for by any of the other 

LHK receptors.  Although not impossible, it is important to notice that redundancy 

among LHK receptors in sensing exogenous cytokinin is rather unlikely, given the strong 
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insensitivity shown by the lhk1 mutant roots and lack of additional effects on root 

elongation in the double receptor mutants that were tested.    

 

4.7  Bacterial entry is required for LHK1-independent nodule organogenesis 

In wild-type plants, the initiation of cell divisions for nodule primordia 

organogenesis is independent from bacterial entry into the root; this can be induced, for 

example, by ectopic application of NF in the absence of bacteria (van Brussel et al., 

1992).  Furthermore, several bacterial mutants have been described, which are unable to 

colonize plant roots, yet remain competent in signaling for the initiation of nodule 

organogenesis within the root cortex (Andourel et al., 1994).  Therefore, a signaling 

event that transduces the initial perception event at the root epidermis down to the inner 

root cortex must be involved.  Cytokinin, with its key role in this process, emerged as an 

excellent candidate for this function.  

In contrast to wild-type plants, lhk1 loss-of-function mutants do not initiate cell 

divisions upon inoculation.  They are hyperinfected by M. loti in the absence of nodule 

organogenesis.  The bacteria penetrate the root epidermis and descend deeper to at least 

the second sub-epidermal cortical layer, where they accumulate to a large extent while 

being confined to misguided infection threads (Murray et al., 2007).  Only then, in the 

inner cortical region which subtends extensively colonized portion of the sub-epidermal 

cortex, are cell divisions initiated.           

We hypothesized, therefore, that bacterial entry into the subepidermal cortical 

region of the root might be essential for the LHK1-independent nodule organogenesis in 

the lhk1-1 mutant.  To test this hypothesis, the lhk1-1 symRK-14 double mutant was 
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constructed.  As mentioned before (see Result section), the symRK-14 mutation aborts IT-

dependent root colonization by bacteria while having no significant effect on nodule 

organogenesis; therefore, the hyperinfection of lhk1-1 roots by M. loti was expected to be 

stopped in the double mutant background.  Consistent with this prediction, the lhk1-1 

symRK-14 mutants showed no sign of hyperinfection in the root cortex; M. loti was 

restricted to the epidermal surface of the root.  Unlike lhk1-1 and symRK-14 single 

mutants, nodule organogenesis was absent in the double mutant roots when analyzed 21 

days after inoculation.  This result, therefore, was consistent with the predicted need for 

bacterial entry into the sub-epidermal cortical region of the root for the LHK1-

independent nodule organogenesis.   

 

4.8  LHK1, not a unique receptor 

The study presented in this thesis has provided evidence that both the spatial 

expression from the Lhk1 promoter as well as the biochemical function of the LHK1 

receptor might not be entirely unique.  Firstly, expression of the Lhk1 promoter in stable 

transgenic lines was found to be induced in the root cortex upon bacterial inoculation in 

association with nodule primordia organogenesis.  However, similar expression patterns 

were also found for the promoters of both Lhk1A and Lhk3, but not for Lhk2 promoter, 

inviting the prospect that these two genes may act at least partially redundantly with 

LHK1 in the inner root cortex to signal nodule primordia organogenesis.  

Furthermore, in planta complementation of the lhk1-1 non-nodulating phenotype 

in transgenic hairy roots also indicated that the biochemical function of LHK1 is not 

unique.  One might predict a priori that LHK1A being the closest relative to LHK1 
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would be the most likely to complement the lhk1-1 mutant phenotype; however, this 

turned to be the wrong prediction.  The lhk1-1 loss-of-function phenotype was 

complemented only by the two LHK3 protein variants.  This was somewhat unexpected 

due to a relatively low conservation between LHK1 and the two LHK3 proteins.  

Nevertheless, this result indicated that the LHK1 and LHK3 proteins are biochemically 

interchangeable in planta; a finding which provides an important starting point for future 

comparative dissection of  protein domains, as pertinent to the mediation of symbiotic 

signaling by these receptors (for further discussion see Perspectives).  The only unique 

aspect of LHK1 function appeared therefore, to be its ability to sense externally applied 

cytokinin and also the fact that expression of the Lhk1 promoter was localized to the root 

apical meristem; a pattern not recapitulated by the remaining three Lhk promoters.     

 

4.9  LHK1A and LHK3 act redundantly with LHK1 in the inner root cortex 

Based on the data outlined above, a working model for the LHK cytokinin 

receptor-dependent signaling during symbiosis is proposed (Fig. 4.1).  In wild-type roots, 

NF perception leads to increased accumulation of cytokinin (plant-derived cytokinin, P-

CK) in the root epidermis.  An increase in cytokinin concentration is initially perceived 

by a low number of LHK1 receptors, which are constitutively present in the root 

epidermis and/or outer cortical cell layer and operate to sense external stimuli.  This 

generates a feed-back regulatory mechanism, which amplifies the initial signal in a 

presumed cell non-autonomous manner, generating a response in subtending cortical cell 

layers deep inside the root (Fig. 4.1A).  This is reflected in an increase in Lhk1 and also  
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Figure 4.1 Working model for the cytokinin signaling pathway during nodule 

organogenesis.  (A) In wild-type L. japonicus, rhizobially-produced NFs are perceived by 

NF receptors at the root epidermis. Signal transduction proceeds through common 

symbiosis elements leading to the intracellular production of cytokinin (P-CK), which is 

translocated from the epidermis to the outer cortical cells, where it is perceived 

exclusively by LHK1.  Activation of LHK1 by cytokinin leads to the amplification of 

cytokinin-dependent signaling through the increased expression of the Lhk1, Lhk1A and 

Lhk3 receptor genes in the inner cortical cells.  This results in the increased sensitivity 

and initiation of cell divisions responsible for production of the nodule primordium and is 

primarily achieved by signalling through LHK1.  (B) In lhk1-1 mutants, P-CK is not 

perceived due to the lack of LHK1.  This leads to the accumulation of rhizobia in the 

outer cortex of the root.  Transmissible signals produced by these bacteria, likely in the 

form of cytokinin (B-CK; Oldroyd, 2007), leads to the activation of other cytokinin 

receptors such LHK1A and/or LHK3 acting redundantly to LHK1 in the inner root cortex.   
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Lhk1A and Lhk3 expression within the inner cortical cell layers, which presumably 

further intensifies signaling events by increasing sensitivity of the cells to cytokinin.  As 

the result, a threshold is reached that is necessary for stimulation of the inner cortical 

cells to divide, which begins nodule organogenesis.  

 In the absence of LHK1 (Fig. 4.1B), the increased cytokinin content in the root 

epidermis is not transduced to the inner cortex.  Instead, bacteria enter the root without 

proper guidance, resulting in their accumulation along the longitudinal root axis within 

first and second layer of the cortical region (Murray et al., 2007).  Heavy accumulation of 

bacteria provides an alternative source of cytokinin in the root cortex, which leads to 

increase sensitivity, as mediated by the LHK1A and LHK3 receptors, and subsequently 

initiates cell divisions in the root cortex.   It is tempting to speculate that bacterially-

derived cytokinin (B-CK; Fig. 4.1B) and/or secretion by the bacteria of purine 

biosynthesis intermediates which undergo a plant-mediated conversion to biologically 

active cytokinin are responsible for initiation of these events.  Indeed, it is known that M. 

loti synthesize cytokinin (Frugier et al., 2008).   

Consistent with this scenario, large regions of the root inner cortex that are 

positioned directly below infected cells were observed to begin divisions in lhk1-1 mutant 

roots.  These extended regions of cell divisions likely give rise to aberrant nodules, as 

described for the lhk1-1 mutant background (Murray et al., 2007).  The same scenario 

might provide a plausible explanation how the NF-independent nodulation works in 

selected tropical legumes of the genus Aeschynomene, such as Aeschynomene sensitiva.  

What is intriguing for this group of legumes is that the nitrogen fixing Bradyrhizobium 

strain ORS278 that infect these plants do so without the canonical nodABC genes, which 



 

 

99 

are required for the production of NF (Giraud et al., 2007).  Thus, the NF-independent 

nodule symbiosis is exemplified by this interaction.  To address the question what 

bacterial signals (NF, cytokinin, or others) initiate this interaction, a mutagenesis screen 

was conducted on Bradyrhizobia sp. strain ORS278, which revealed a number of mutants 

defective in their ability to interact with A. sensitiva.  Surprisingly, the majority of 

afflicted loci in these mutants were represented by genes involved in purine biosynthesis; 

a major biosynthetic pathway for the production of, among others, cytokinins (Giraud et 

al., 2007).  The authors propose that cytokinin might be required for colonization of A. 

sensitiva nodules in legumes undergoing NF-independent symbiotic interactions.  

However, A. sensitiva nodules are colonized by bacteria in the IT-independent manner.  

They first enter the root through cracks in the root epidermis and then proceed to colonize 

a few sup-epidermal corticall cells, where they divide while significantly increasing their 

numbers.  This stimulates divisions of the infected cells, which eventually give rise to 

fully functional, nitrogen fixing nodules (Giraud et al., 2007). It is certainly intriguing to 

think that analogously to the postulated mechanism that mediates LHK1-idependent 

nodulation, the accumulation of Bradyrhizobium within subepidermal cortical root region 

leads to sufficient cytokinin production which, in turn, initiates cell division and nodule 

organogenesis, as seen in A. sensitiva. 
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Perspectives  

Many questions regarding involvement of cytokinin signaling in the establishment 

of functional nitrogen fixing symbiosis remained unanswered.  The work presented in 

this thesis, in addition to providing new insight into the organization and role of cytokinin 

receptors, stimulated the arrival of a new working model.  Most of the predictions made 

by this model can now be tested, using the resource generated by this study.  

A better resolution of the spatial-temporal expression of the Lhk genes is 

necessary along with the abilty to monitor in planta the cytokinin presence and/or 

redistribution within roots.  Complementing this, a quantification of the Lhk transcripts at 

different stages of the symbiotic development in wild-type and also selected mutant 

backgrounds should be informative.  Questions, such as whether or not the enhanced 

expression of Lhk1A and Lhk3 during nodulation depends on prior activation of the 

LHK1 receptor should be easily addressed by these experiments.  Based in the same 

principle, the cell-specific and subcellular localization/distribution of LHK proteins in 

roots should be investigated. Finally, the analysis of triple mutants, such as an lhk1, lhk1A 

and lhk3 mutant, will likely be able to test the postulated redundancy in functioning of the 

corresponding receptors in the root inner cortex and also nodule vascular bundles, 

providing that such mutants will be viable and not crippled to the extent that prevents 

direct interpretations of the results.  The ability to unambiguously define the LHK2 

receptor as being responsive to cytokinin will also be important in this context.    

The issue of the postulated involvement of bacterial cytokinin in nodule 

organogenesis remains highly controversial and will likely have to be resolved by further 

investigations of the NF-independent nodulation and/or used of defined mutants, such as 
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L. japonicus lhk1-1.  The observation that LHK3 can substitute LHK1 in mediating 

nodule organogenesis opens up the possibility to identify feature(s) of the proteins that 

likely contribute to this process.  Domain-swap experiments can be envisaged, which if 

successful, could be followed by targeted protein-protein interaction studies to identify 

relevant downstream interactors.  This could be further extended by employing genome-

wide analyses, where the entire transcriptome and proteome of the Lhk1 gain and loss-of-

function mutant lines could be analyzed through a comparative study.  

Many additional experiments could be listed here.  The overall challenge, 

however, will be to gain sufficient resolution in order to answer the key question, namely 

whether or not there exists a legume-specific “twist” to cytokinin signaling.  A logical 

extension from gaining the answer to this question should be the ability to judge whether 

root nodules can be produced in non-legume plants and if this will help to “fix the 

nitrogen problem”.     
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APPENDIX I 

Research contributions not included in the thesis 

In addition to data presented in this thesis, the following contributions were made by  

M. Held: 

 

1. Development of the har1-1 MG20 introgression for the map-based cloning of L. 

japonicus mutants displaying subtle symbiotic phenotypes (Murray et al., 2006; 

Molecular Plant-Microbe Interactions 19: 1082-1091). 

 

2. Extensive phenotypic characterization of the nap and pir mutants of L. japonicus 

(Yokoda et al., 2009; Plant Cell 21: 267-284). 

 

3. Intellectual review of the genetic mechanisms regulating bacterial entry, the NFS 

and AM symbiosis of legume plants (Held et al., 2010; TIPS DOI 

10.1016/j.tplants.2010.08.001). 

 

4. Detailed analysis of the symRK-14 mutant (Kosuta et al., in preparation; „Lotus 

japonicus symRK-14 uncouples epidermal calcium spiking from nodule primordia 

organogenesis‟). 

 

5. Mapping and phenotypic analysis of several symbiotic mutants of L. japonicus 

using the har1-1 MG20 introgression line (Hossain, M.D.S., Held, M., and 

Szczyglowski, K. unpublished data).   
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