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Abstract: 

The great grig, Cyphoderris monstrosa Uhler (Orthoptera: 
Prophalangopsidae), is a large (20-30 mm, >1 g), nocturnal ensiferan that 
inhabits montane coniferous forests in northwestern North America. C. 
monstrosa overwinters as a late-instar nymph, but its cold tolerance 
strategy has not previously been reported. We collected nymphs from near 
Kamloops, British Columbia, in late spring to determine their cold tolerance 
strategy. C. monstrosa nymphs were active at low temperatures until they 
froze at -4.6 ± 0.3 °C. The nymphs survived internal ice formation (i.e. are 

freeze tolerant), had a lethal temperature between -9 and -12 °C, and 
could survive for between five and ten days at -6 °C. Isolated C. monstrosa 
gut, Malpighian tubules and hind femur muscle tissues froze at 
temperatures similar to whole nymphs, and likely inoculate freezing in 
vivo. Hemolymph osmolality was 358 ± 51 mOsm, with trehalose and 
proline comprising approximately 10 % of that total. Glycerol was not 
detectable in hemolymph from field-fresh nymphs, but accumulated after 
freezing and thawing. The control of ice formation and presence of 
hemolymph cryoprotectants may contribute to C. monstrosa freeze 
tolerance and overwintering survival. 

  

 

 

Cambridge University Press

The Canadian Entomologist



For Peer Review

Toxopeus 1 

 

 

Freeze tolerance of Cyphoderris monstrosa (Orthoptera: Prophalangopsidae) 

 

Jantina Toxopeus*, Jacqueline E. Lebenzon, Alexander H McKinnon, Brent J. Sinclair 

 

Department of Biology, University of Western Ontario, 1151 Richmond Street N, London, ON, 

N6A 5B7, Canada 

 

*Author for correspondence 

Jantina Toxopeus 

Department of Biology, University of Western Ontario 

1151 Richmond Street N 

London, ON, N6A 5B7 

Canada 

Email: jtoxopeu@uwo.ca, Tel: (519) 661 2111 ext. 89158, Fax: (519) 661-3935 

 

Jacqueline E. Lebenzon 

Email: jlebenzo@uwo.ca, Tel: (519) 661 2111 ext. 89158 

 

Alexander H McKinnon 

Email: amckinn9@uwo.ca, Tel: (519) 661 2111 ext. 89158 

 

Brent J. Sinclair 

Email: bsincla7@uwo.ca, Tel: (519) 661 211 ext. 83138 

Page 1 of 18

Cambridge University Press

The Canadian Entomologist



For Peer Review

Toxopeus 2 

 

 

Abstract 1 

The great grig, Cyphoderris monstrosa Uhler (Orthoptera: Prophalangopsidae), is a 2 

large (20-30 mm, >1 g), nocturnal ensiferan that inhabits montane coniferous forests 3 

in northwestern North America. C. monstrosa overwinters as a late-instar nymph, but 4 

its cold tolerance strategy has not previously been reported. We collected nymphs 5 

from near Kamloops, British Columbia, in late spring to determine their cold 6 

tolerance strategy. C. monstrosa nymphs were active at low temperatures until they 7 

froze at -4.6 ± 0.3 °C. The nymphs survived internal ice formation (i.e. are freeze 8 

tolerant), had a lethal temperature between -9 and -12 °C, and could survive for 9 

between five and ten days at -6 °C. Isolated C. monstrosa gut, Malpighian tubules 10 

and hind femur muscle tissues froze at temperatures similar to whole nymphs, and 11 

likely inoculate freezing in vivo. Hemolymph osmolality was 358 ± 51 mOsm, with 12 

trehalose and proline comprising approximately 10 % of that total. Glycerol was not 13 

detectable in hemolymph from field-fresh nymphs, but accumulated after freezing 14 

and thawing. The control of ice formation and presence of hemolymph 15 

cryoprotectants may contribute to C. monstrosa freeze tolerance and overwintering 16 

survival.   17 
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Introduction 18 

The great grig, Cyphoderris monstrosa Uhler (Orthoptera: 19 

Prophalangopsidae), is a large (20 – 30 mm long, adults >1.5 g) ensiferan that 20 

inhabits montane coniferous forests of western North America (Morris and Gwynne 21 

1978; Kumala et al. 2005). C. monstrosa is nocturnal, emerging from below-ground 22 

burrows and climbing conifers to feed on staminate cones (Caudell 1904; Morris and 23 

Gwynne 1978; Ladau 2003). Males sing after dusk via tegminal stridulation (Morris 24 

and Gwynne 1978) from late May or early June until late August (Mason 1996). 25 

Cyphoderris spp. are active at much lower temperatures than is typical for acoustic 26 

insects, singing at temperatures near 0 °C (Morris and Gwynne 1978; Dodson et al. 27 

1983; Morris et al. 1989). C. monstrosa are thought to overwinter as late-instar 28 

nymphs in burrows below the leaf litter layer (Gwynne 1995), but nothing is known 29 

about their low temperature biology.  30 

 31 

Insects employ two dominant strategies to survive subzero temperatures: 32 

freeze avoidant insects depress the temperature at which their fluids freeze, but die 33 

upon ice formation, while freeze tolerant insects can withstand internal ice formation. 34 

Although orthopteran eggs are freeze avoidant (e.g. Hao and Kang 2004), many 35 

nymphs and adults are freeze tolerant (e.g. Alexander 1967). The mechanisms 36 

underlying freeze tolerance are unclear, but many freeze-tolerant insects accumulate 37 

low molecular weight cryoprotectants, including the disaccharide trehalose and free 38 

amino acid proline, both detected in hemolymph of freeze-tolerant New Zealand 39 
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alpine weta, Hemideina maori Pictet & Saussure (Orthoptera: Anostosmatidae) 40 

(Neufeld and Leader 1998). Many freeze-tolerant insects accumulate glycerol (Lee 41 

2010), but this cryoprotectant has not been detected in freeze-tolerant orthopterans 42 

(Ramløv et al. 1992; McKinnon 2015). Regulating the location and temperature of 43 

ice nucleation is thought to be essential for insect freeze tolerance (Zachariassen and 44 

Kristiansen 2000). These ice nucleators may be endogenous (e.g. proteins) or 45 

exogenous (e.g. ice nucleating-active bacteria or ice crystals), and can be located in 46 

the hemolymph (e.g. H. maori; Sinclair et al. 1999) and tissues (e.g. the Malpighian 47 

tubules and fat bodies of E. solidaginis; Mugnano et al. 1996).  48 

 49 

Here, we characterize the cold tolerance strategy, the lower lethal limits, 50 

likely sites of ice nucleation, and common low molecular weight cryoprotectants of 51 

the overwintering stage of C. monstrosa.  52 

 53 

Materials & Methods 54 

We collected 40 nymphs by hand from tree trunks in pine forests near 55 

Kamloops, British Columbia (50.45°N, 120.07°W, c. 1000 m a.s.l) from 27 May – 2 56 

June 2015. During this period, the air temperature ranged from 7.3 to 29.3 °C, with a 57 

daily mean of 17.8 °C (Environment Canada 2015). We placed nymphs in 100 ml 58 

perforated plastic containers, with apple pieces for food. We shipped the animals on 59 

ice to the University of Western Ontario, where we maintained them for 2-6 weeks at 60 
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4 °C until use in experiments. Nymphs fed in captivity, thus apple pieces were 61 

replaced weekly. 62 

 63 

For low temperature exposures, we placed nymphs (wet mass range: 0.3-1.48 64 

g) in 35 ml plastic vials in contact with a type T (copper-constantan) thermocouple 65 

and cooled them at 0.25 °C min
-1

 to the target temperature in an aluminum block 66 

through which 50% methanol was circulated from a programmable refrigerated 67 

circulator (Proline RP 55, Lauda, Wurzburg, Germany). We monitored the 68 

temperature from the thermocouple using PicoLog software via a Picotech TC-08 69 

thermocouple interface (Pico Technology, Cambridge, UK). Our general approach to 70 

characterizing cold tolerance is described by Sinclair et al. (2015). In all cases, we 71 

rewarmed the nymphs at 0.25 °C min
-1

 to 4 °C, weighed them (fresh mass ± 0.01 g), 72 

and transferred them to individual 100 ml containers with apple pieces at 15 °C for 73 

recovery. Nymphs were considered ‘alive’ if they could stand and move in a 74 

coordinated fashion 48 h after thawing. Because developmental stage of orthopterans 75 

can modify parameters such as metabolic composition (e.g. Anand and Lorenz 2008), 76 

we restricted subsequent experiments to larger nymphs (> 0.9 g). 77 

 78 

To determine the temperature at which ice formation begins (supercooling 79 

point, SCP), we cooled nymphs in 35 ml plastic vials as described above, and 80 

recorded the lowest temperature before the exotherm due to ice formation (Sinclair et 81 

al. 2015). The survival of these nymphs was monitored (details below). To determine 82 
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the critical thermal minimum (CTmin), or the temperature at which the nymphs 83 

entered chill coma, we cooled six nymphs from 25 °C to the SCP as described 84 

previously (MacMillan and Sinclair 2011). Nymphs were monitored continuously, 85 

and the CTmin was the temperature at which nymphs could no longer exhibit 86 

coordinated movement in response to probing. We determined cold tolerance strategy 87 

by monitoring survival of nymphs held for 1.5 h at -4 °C (unfrozen) or -6 °C (frozen), 88 

with freezing confirmed by detection of the SCP exotherm of each nymph. We 89 

considered them freeze tolerant if they survived both temperatures, freeze avoidant if 90 

they survived at -4 °C but not -6 °C, or chill-susceptible if they were killed by 91 

exposure both temperatures. We determined the lethal temperature by determining 92 

survival of nymphs exposed to temperatures between -9 °C and -16 °C for 1.5 h. To 93 

determine lethal time, we monitored survival of nymphs kept frozen at -6 °C for time 94 

periods between 1.5 h and 10 d, and subsequently thawed. Each nymph was exposed 95 

to only one cold treatment. 96 

 97 

To identify likely sites of ice nucleation, we compared the SCP of hemolymph 98 

and several excised tissues (foregut, midgut, hindgut, Malpighian tubules, fat bodies, 99 

and hind femur muscle) to whole body SCP. We extracted 4 µl of hemolymph from 100 

each of three nymphs (mass 1.16, 1.25, and 1.48 g) using a 20 µl pipette, and diluted 101 

it with 12 µl 3 % ascorbic acid to prevent coagulation (McKinnon 2015). We 102 

dissected tissues from the same three nymphs, and placed them in 20 µl 3 % ascorbic 103 
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acid. We cooled hemolymph, tissue samples, and 20 µl 3 % ascorbic acid in 1.7 ml 104 

microcentrifuge tubes at 0.25 °C min
-1

 from 4 °C to -30 °C, with thermocouples 105 

attached to the external surface of tubes to detect temperature. We compared the 106 

mean SCP of hemolymph (in 3 % ascorbic acid) to 3 % ascorbic acid alone, as well 107 

as the mean SCP of hemolymph and each tissue to whole-body SCP using a one-way 108 

ANOVA with planned contrasts in R version 3.0.3 (R Core Team 2013). Means are 109 

reported ± s.e.m. 110 

 111 

We also determined total hemolymph osmolality using a nanolitre osmometer 112 

(Otago Osmometers, Dunedin, New Zealand), as described previously (Crosthwaite 113 

et al. 2011). To quantify potential low molecular weight cryoprotectants in the 114 

hemolymph, we measured free proline (Carillo and Gibon 2011), glycerol 115 

(Crosthwaite et al. 2011) and trehalose (Tennessen et al. 2014) in 4 µl samples of 116 

hemolymph from three to eight nymphs (mass range: 0.9-1.48 g) using enzymatic 117 

spectrophotometric assays. Hemolymph was extracted from untreated nymphs, as 118 

well as nymphs that were frozen at -6 °C for 1 h. Mean osmolality and cryoprotectant 119 

concentrations are reported ± s.e.m. 120 

 121 

Results & Discussion 122 

Cyphoderris monstrosa nymphs remained active as they were cooled, until 123 

they froze at a mean SCP of -4.6 ± 0.3 °C (range: -2.4 to -6.8 °C). All C. monstrosa 124 

nymphs survived exposure to -4 °C (N=4, unfrozen) and -6 °C (N=4, frozen), thus we 125 
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conclude that they are freeze-tolerant. Most (75%) C. monstrosa survived being 126 

frozen at -6 °C for 5 days (Fig. 1a), demonstrating survival of equilibrium ice 127 

formation (which can take several hours in large Orthoptera; Ramløv and Westh 128 

1993). However, they did not survive acute (1.5 h) exposures at or below -12 °C (Fig. 129 

1b). This pattern is similar to other freeze-tolerant ensiferans, such as H. maori 130 

(Ramløv et al. 1992), that freeze at moderate subzero temperatures, but have a 131 

relatively high lower lethal temperature (Sinclair et al. 2003).  132 

 133 

The mean fresh mass of C. monstrosa nymphs was 0.95 ± 0.08 g (range: 0.30 134 

to 1.52 g), and SCP was independent of fresh mass (linear regression, F1,21 = 0.207, p 135 

= 0.65), suggesting that ice formation is initiated by ice nucleating agents (Sinclair et 136 

al. 2009). The relationship between dry mass and SCP could be examined to verify 137 

this trend (e.g. Ditrich and Koštál 2011). C. monstrosa hemolymph froze at -8.5 °C, 8 138 

°C higher than the ascorbic acid anticoagulant (Fig. 2), indicating the presence of a 139 

hemolymph ice nucleator (cf. Sømme 1986; Sinclair et al. 1999), although the low 140 

SCP of hemolymph suggests that it is not the source of the high SCP we observe in 141 

the whole animal. Fat body did not substantially increase the SCP of ascorbic acid, 142 

but gut tissues, hind femur muscle and Malpighian tubules in ascorbic acid froze at 143 

temperatures similar to whole-body SCP (Fig. 2). Thus, it appears that although there 144 

is a nucleating agent in the hemolymph, ice formation is initiated by one or more of 145 

these tissues, similar to the ice-nucleating Malpighian tubules and fat bodies of E. 146 

solidaginis (Mugnano et al. 1996).  147 
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 148 

The hemolymph osmolality of C. monstrosa nymphs was 358 ± 51 mOsm 149 

(N=4). This is lower than that of other freeze tolerant ensiferans, H. maori (700 150 

mOsm; Ramløv 1999) and Gryllus veletis Alexander & Bigelow (Orthoptera: 151 

Gryllidae) (615 mOsm; McKinnon 2015). C. monstrosa hemolymph contained 17.4 ± 152 

3.2 mM trehalose (N=4) and 12.7 ± 2.6 mM proline (N=8), accounting for 153 

approximately 10% of total hemolymph osmolality. The concentrations of these 154 

cryoprotectants are lower than in H. maori (Ramløv et al. 1992; Neufeld and Leader 155 

1998) and G. veletis (McKinnon 2015). Like G. veletis and H. maori, we detected no 156 

hemolymph glycerol in field-fresh nymphs (N=3). However, hemolymph sampled 2 157 

to 4 weeks after the nymphs had been frozen at -6 °C contained 14.6 ± 5.7 mM 158 

glycerol (N=3). No such changes in hemolymph concentrations of trehalose or proline 159 

were observed after freezing. The increase in glycerol suggests that C. monstrosa 160 

cryoprotectant composition is plastic, and that they may also be able to enhance 161 

freeze tolerance in response to short cold exposures, such as frosts in the fall or late 162 

spring (cf. Marshall and Sinclair 2015). Thus, although the hemolymph osmolality we 163 

measured in C. monstrosa was not high in our spring-collected specimens, there is 164 

potential for an increase in hemolymph osmolality prior to or during the winter 165 

months, which may support lower lethal temperatures and tolerance to longer 166 

durations frozen than we observed in this study. 167 

 168 
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To our knowledge, this is the first report of freeze tolerance in 169 

Prophalangopsidae. The minimum air temperature in Kamloops during the 2014-2015 170 

winter was -19.6 °C (Environment Canada 2015), well below the lethal temperature 171 

of C. monstrosa nymphs. However, their overwintering habitat is likely buffered by 172 

snow cover (Petty et al. 2015), such that burrow temperatures likely do not approach 173 

these low air temperatures. Future investigations could determine whether C. 174 

monstrosa exhibits seasonal plasticity in freeze tolerance, and which mechanisms 175 

(e.g. cryoprotectant accumulation) drive this plasticity. 176 

 177 
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Figure Legends 286 

 287 
Figure 1. Survival of C. monstrosa nymphs 48 h after being frozen for different 288 

periods of time at -6 °C (A) or at different temperatures for 1.5 h (B). N=4 for each 289 

temperature and time point. Survival curves were calculated using a generalized 290 

linear model. 291 

 292 

Figure 2. Mean ± s.e.m. SCP of whole C. monstrosa nymphs, 20 µl 3% ascorbic 293 

acid, hemolymph diluted 1:3 with 3% ascorbic acid, and tissues (c. 10 mg) in 20 µl 294 

3% ascorbic acid. N=23 for whole body SCP, N=3 for all other samples. Different 295 

letters indicate significant differences (α=0.05) in SCP (ANOVA with planned 296 

contrasts: F8,21 = 5.671, p < 0.001). 297 
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