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Abstract

Insect performance is limited by the temperature of the environment, and in temperate, 

polar, and alpine regions, the majority of insects must face the challenge of exposure to low

temperatures. The physiological response to cold exposure shapes the ability of insects to 

survive and thrive in these environments, and can be measured, without great technical 

difficulty, for both basic and applied research. For example, understanding insect cold 

tolerance allows us to predict the establishment and spread of insect pests and biological 

control agents. Additionally, the discipline provides the tools for drawing physiological 

comparisons among groups in wider studies that may not be focused primarily on the 

ability of insects to survive the cold. Thus, the study of insect cold tolerance is of a broad 

interest, and several reviews have addressed the theories and advances in the field.  Here, 

however, we aim to clarify and provide rationale for common practices used to study cold 

tolerance, as a starter’s guide for newcomers to the field, students, and those wishing to 

incorporate cold tolerance into a broader study. We cover the ‘tried and true’ measures of 

insect cold tolerance, the equipment necessary for these measurement, and summarize the 

ecological and biological significance of each. Additionally, we provide a suggested 

framework and workflow for measuring cold tolerance and low temperature performance in

insects. 

Keywords: chill coma, critical thermal minimum, supercooling point, cold tolerance 

strategy, lower lethal temperature, rapid cold-hardening, acclimation, deacclimation, 

phenotypic plasticity, experimental design 

2

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

3
4



1. Introduction

Temperature constrains the geographic distribution and seasonal activity of insects 

(Chown and Nicolson, 2004), and therefore can directly or indirectly affect the spread and 

impact of invasive pests, the success of species introduced for biological control, and the 

dynamics of native insect populations (Bale and Hayward, 2010). In temperate, polar and 

montane habitats, the majority of insects spend a large proportion of their life in an 

overwintering stage, and must survive the low temperatures and accompanying 

environmental stressors that are associated with winter (Leather et al., 1993; Williams et 

al., 2015).  Similarly, insects in deserts and tropical high mountains can also be regularly 

exposed to potentially-lethal freezing conditions (Sømme, 1995; Sømme et al., 1996; 

Sømme and Zachariassen, 1981). Thus, low temperature biology is a key component of 

insect fitness, and one of the best determinants of insect distribution (Andersen et al., 

2015b).  

Most insects are ectotherms, and as such, their body temperatures are generally 

similar to the ambient microclimate temperature, and changes in ambient temperature can 

thus have drastic effects on the physiology of an insect.  Thus, measuring low temperature 

performance (which we refer to loosely here as ‘cold tolerance’) is an excellent way to 

incorporate the pervasive effects of temperature in studies ranging from ecological (e.g. van

Dooremalen et al., 2013) to molecular (e.g. Reis et al., 2011).  In the cold, many insects 

enter a reversible state of paralysis, called chill coma, at the critical thermal minimum 

(CTmin) (MacMillan and Sinclair, 2011a).  At sub-zero temperatures, insects risk freezing of
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the body fluids, as well as a host of other low temperature injuries (Denlinger and Lee, 

2010).  The ability of an insect to survive at low temperatures is referred to as its cold 

hardiness, and their responses to low temperature have generally been categorized as chill-

susceptible, freeze-avoidant, and freeze-tolerant (Fig.  1, see Section 3) (Bale, 1993). 

There is a long history of the study of insect cold tolerance (Ring and Riegert, 1991;

Sømme, 2000), and the sub-discipline has consequently developed its own semantic and 

methodological traditions.  Although there are many excellent reviews on the subject (e.g. 

Asahina, 1969; Bale, 2002; Block, 1982a; Denlinger and Lee, 2010; Lee, 1991; Salt, 1961; 

Sinclair et al., 2003b; Zachariassen, 1985), a unified summary of the methods and 

approaches used in insect cold tolerance is not available.  Nevertheless, although care must 

be taken in the design and interpretation of experiments, measuring insect performance at 

low temperatures is by no means arcane, and many measurements require no specialist 

equipment.  Our purpose in this review is to explain some of the common measures of 

insect low temperature biology from a methodological viewpoint, with the intention of 

making these methods more accessible.  We try to identify some of the diverse 

measurements that are comparable among studies, and our ultimate goal is to reduce some 

of the trial-and-error inherent in learning a new set of techniques and measurement.  Our 

intended audience is newcomers to the field, students, and (particularly) those who are 

interested in incorporating low temperature performance into their existing studies, and are 

looking for an overview of common practices.  While there is an unavoidable bias towards 

the methods or approaches used over the past two decades by the first author, we have tried

to encompass alternative approaches wherever possible, and also provide (hopefully) lucid 
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explanations of why we favour one approach over others.  In some cases, we give examples

of equipment that has been used in these studies, but we do not intentionally endorse any 

manufacturer or model.

2. Technical and apparatus considerations

Studying insect low temperature performance requires some form of temperature control 

and measurement.  We conclude this section by discussing how to identify and measure an 

insect’s supercooling point (SCP), as measuring the SCP is fundamental to many other 

measures of insect cold tolerance and provides a useful application of measuring an insect’s

body temperature during cold exposure.

2.1 Temperature control

The simplest cold exposures involve constant low temperatures, and the equipment 

needed for these exposures is often readily available.  For example, an ice-water slurry is at

a constant (and precise) 0 °C, many laboratory and domestic refrigerators and cold rooms 

are held at approximately +4 °C, and domestic freezers are usually somewhere between -12

and -20 °C.  Similarly, refrigerated incubators or refrigerated baths can be easily set to a 

single temperature.  Ultra-low freezers (usually set somewhere between -70 and -90 °C), 

dry ice (-80 °C), a dry ice-acetone slurry (-78 °C) and liquid nitrogen (-196 °C) all provide 

constant low temperatures with reasonable precision.  Although these latter temperatures 

are of limited biological relevance when studying living insects, they can be useful if 

extreme rapid cooling is required.
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More commonly, insects are cooled using specialised cooling equipment, such as rate-

controlled incubators (e.g. Ju et al., 2011) or refrigerated circulators (e.g. Marshall and 

Sinclair, 2011).  These are often programmable, allowing precise cooling, hold (‘soak’ in 

engineering terminology), and warming programmes.  Refrigerated circulators will require 

a bath liquid (e.g. glycol, alcohol, or a synthetic or mineral oil) for sub-freezing use.  In our

laboratory we use ethylene glycol (usually mixed 1:1 with water) for moderate low 

temperatures (c. -20 °C) because it has a lower viscosity than the less-toxic propylene 

glycol and can be heated.  We use methanol (either undiluted or mixed 1:1 with water) for 

lower temperatures.  Samples (in containers) can either be placed directly in the bath, or the

batch liquid can be circulated to a cooling stage; in our laboratory we circulate liquid to an 

insulated aluminium block that is milled with holes to accommodate various sample 

container sizes, from 1.5 mL microcentrifuge tubes to 35 mL standard Drosophila vials.   

Thermoelectric cooling via Peltier devices can be used to construct efficient cooling 

devices (especially if the cooling modules are stacked and liquid-cooled), and we have used

these in the past (e.g. Sinclair et al., 2003a; Sinclair and Sjursen, 2001); unfortunately, 

neither of these devices (nor designs for them) are commercially available, so they must be 

custom-designed and –built (Wharton and Rowland, 1984).  However, they are light and 

robust and use little power, so are ideal for field situations.  Another field alternative is to 

use an endothermic reaction to provide cooling.  For example, Sømme et al. (1993) used a 

CaCl2·6H2O/crushed ice mixture to determine SCPs of mites at a field camp in Antarctica.  

This has the disadvantage of producing chemical waste, but greatly reduces the electricity 

6

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

11
12



requirements for cooling in the field.  Another approach to control cooling rate is to use a 

set-temperature incubator or freezer, and to moderate the cooling rate (if not the final 

temperature) using insulation, such as a Styrofoam box (e.g. Hao and Kang, 2004).  

Different methods of cold exposure will have different levels of among-sample and time-

related variance.  For example, there can be spatial variation among holes in the aluminium

block mentioned above, and also within incubators. Thermal fluctuations in incubators 

(especially at temperatures where compressors may be starting and stopping) can be quite 

substantial.  It is important to view these fluctuations in the context of biological relevance 

– for example, fluctuations of 1 °C may be unimportant if among-treatment differences are 

in the order of tens of degrees, but if differences among treatments are subtle (or 

fluctuations are large), the noise may overpower the signal.  Immersing samples in a liquid 

medium can be used successfully to significantly dampen fluctuations in incubators (e.g. 

MacMillan et al., 2009). In addition, the temperature actually experienced by an insect may

differ from that to which the instrument has been set.  Thus, good practice is to always 

measure the temperature which an animal or group of animals experiences, and to use that 

as the treatment temperature in analyses.

Investigations of insect cold tolerance initially adopted a uniform cooling rate of 

approximately 1 °C/min to standardize results (Salt, 1966). Although this rate is 

convenient, it is significantly faster than the cooling rates experienced in nature [e.g. 

Sinclair (2001) measured a maximum cooling rate of 0.01 °C/min in alpine microhabitats 
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in New Zealand –100-fold slower than used in these laboratory studies] and several studies 

have shown that fast cooling rates lead to additional cold shock (e.g. Bale et al., 1989; 

Cloudsley-Thompson, 1973; Miller, 1978).  In particular, directly plunging an insect into an

extreme temperature can significantly decrease survivorship, compared to that achieved 

during a ramping regime (Nguyen et al., 2014). Conversely, slow cooling rates can make 

experiments impractically long, and may allow insects to mount a physiological response to

cold, such as that observed during rapid cold-hardening (Kelty and Lee, 1999; Nguyen et 

al., 2014).  Most authors currently choose cooling rates that compromise between 

ecological relevance and time investment; generally 0.1 to 0.5 °C/min (e.g. Boardman et 

al., 2012; Crosthwaite et al., 2011; Renault et al., 2004; Sformo et al., 2011).  It is clear that

the rate of temperature change does affect the response of the insect (this has also been 

vigorously discussed in the context of high temperature tolerances, e.g. Santos et al., 2011; 

Terblanche et al., 2007; Terblanche et al., 2011).  Thus, it is important to maintain 

consistent cooling rates among sites or species for comparisons, and to be cognizant of the 

assumptions inherent in comparing thermal limits among studies that used different 

exposure conditions.

2.2 Temperature measurement

Thermocouples are the most common way to measure insect temperatures during 

cooling. Thermocouples are thin wires that measure temperature via the changes in the 

voltage output of a bimetallic junction.  Usually one thermocouple is used per insect, 

although it is also possible to increase throughput by carefully placing more than one 

(small) insect on a thermocouple (e.g. springtails; Sinclair et al., 2006a), or by connecting 
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multiple thermocouples in series (Nedvěd et al., 1995). Thermocouples differ in the types 

of metal used, and in the diameter of the wire; any thermocouple type is acceptable if it 

returns valid measurements over an appropriate range of sub-zero temperatures and is 

compatible with the recording device.  Types K (chromel-alumel) and T (copper-

constantan) are most common in insect cold tolerance studies.  Smaller-diameter 

thermocouples will yield a faster response (but are more fragile); we have found 36 AWG 

thermocouples to be a suitable compromise.  Pre-made thermocouples can be purchased in 

various lengths, or thermocouple wire can be purchased and used to make thermocouples 

by stripping the wires and twisting them together to create a thermocouple junction 

(damaged pre-made thermocouples can also be repaired this way).  Thermistors can be used

in an identical manner to thermocouples for SCP measurements (provided they are small 

enough), but require specific data acquisition apparatus.

To detect freezing, thermocouples must be close enough to (or in contact with) the insect 

during cooling so they can detect the latent heat of crystallization that indicates ice 

formation.  The lowest temperature that precedes this exotherm is termed the supercooling 

point (the SCP; Fig. 1). Small insects and eggs can be attached to thermocouples by coating

the tip of the thermocouple with a thin film of petroleum jelly, heat sink compound, or 

vacuum grease, which will adhere to the insect with a light touch (Fig. 2A).  This has been 

particularly successful with springtails and mites (Block, 1982b; Block and Young, 1979).  

For larger insects (e.g. crickets and beetles), thermocouples may be maintained in contact 

with the cuticle by placing (or chasing) the insect into a microcentrifuge tube or pipette tip, 

and packing cotton wool in to hold the animal and a thermocouple in place (Fig. 2B).  
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Removable adhesive putty (such as the sticky tack used to attach pictures to walls) may 

also be used to hold the tip of the thermocouple in contact with an insect such as a phasmid 

(Fig. 2C).  Exotherms can often be detected from large organisms even if the thermocouple 

is not in direct contact with the animal.  This approach – placing the thermocouple on the 

outside of a sealed respirometry chamber containing the animal – has worked for large 

caterpillars (e.g. Sinclair et al., 2004) and frogs (Sinclair et al., 2013). 

Data from thermocouples can be acquired directly by a computer using 

commercially-available thermocouple interfaces, such as the Sable Systems International 

T2000 (www.sablesys.com) and the Pico Technology TC-08 (www.picotech.com).  

Alternately, thermocouple data loggers can be used to record data (many will interface 

directly to a computer).  For example, the Hobo UX120 (www.onsetcomp.com), the Grant 

Squirrel (www.grantinstruments.com), or the Campbell range (www.campbellsci.ca).  

Thermocouples can nucleate ice formation, particularly for soft-bodied or moist 

animals, or if the thermocouple cools more quickly than the insect. For example, Sinclair et

al. (2009) found that ice nucleation appeared to begin at the thermocouple attached to 

drosophilid larvae. Although this impact of thermocouple contact on the SCP is probably 

negligible for most insects, care should be taken with moist, soft-bodied animals that may 

be susceptible to inoculative freezing. One way to avoid this problem is to use differential 

scanning calorimetry (DSC) or infrafred thermography (see below), or to place a very fine 

(and therefore sensitive) thermocouple near, but not in contact with, the insect. 
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Differential scanning calorimetry measures heat flow into or out of a sample, 

usually for chemical analysis.  However, the sensitivity and precision of DSC means it can 

be used to measure freezing in small insects placed in the cooling chamber.  Many DSC 

instruments are cooled by liquid nitrogen, and can therefore be used to measure very low 

SCPs (e.g. below -40 °C).  Differential Scanning Calorimetry likely avoids artifacts from 

thermocouple contact, and can be used for multiple small insects at once (e.g. Worland and 

Convey, 2001).  Infrared thermography is another approach to detecting and measuring 

SCPs without physical contact. This approach has been used successfully to detect SCPs 

(Palmer et al., 2004), to analyze the ice formation process (Sformo et al., 2009), and to 

separate freezing of insects from ice formation in their substrate (Koštál et al., 2012).  It is 

now possible to purchase infrared cameras that interface with a smartphone, so the 

availability of this technology may increase rapidly.  Infrared ‘thermocouples’ are also 

commercially available, but have not, to our knowledge, been used for measuring insect 

cold tolerance in the published literature.  

2.3 Measuring Supercooling Points

The supercooling point is the temperature at which freezing begins, and ice 

formation will usually then proceed from the site of nucleation to other parts of the insect’s 

body (Lee and Lewis, 1985).  Many investigations of insect cold tolerance begin with 

preliminary measurements of the SCP because this provides an anchor point about which 

the cold tolerance strategy can be determined: an initial step is to determine whether insects

survive freezing or not (see Section 3.1).  Additionally, changes in the SCP with treatment 
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or season can indicate biochemical or physiological changes, even if the SCP is not a good 

measure of survival of low temperatures (Coleman et al., 2014).  Because the SCP does not

necessarily equate to cold-hardiness, it must be interpreted with caution, and in many cases 

has limited ecological relevance (Bale, 1987; Baust and Rojas, 1985; Renault et al., 2002).  

However, for freeze tolerant and freeze-avoidant insects (see below), the SCP does 

represent an important physiological threshold or lower lethal limit, respectively, and can 

indicate ecologically-relevant variation in cold tolerance in the latter (e.g. Crosthwaite et 

al., 2011; van der Merwe et al., 1997; Worland et al., 2006).  

Measuring the SCP is as simple as placing an insect in contact with a thermocouple,

and cooling it at a reproducible rate to a temperature at which all of the individuals have 

frozen.  The exotherm released by the latent heat of crystallisation is easily detected (Fig.  

3). The SCP is defined as the lowest temperature recorded prior to the initiation of the 

exotherm, the duration and shape of which will depend on the size of the insect.  Larger 

insects (e.g. crickets and caterpillars) have more water, and the freezing process takes 

longer than in small insects (Drosophila and springtails) yielding distinctly different shapes

(Fig. 3).  In terms of data acquisition, higher sampling rates may be required to capture the 

SCP of small insects (e.g. springtails) with exotherms that occur rapidly releasing a small 

amount of heat. In general, a sampling rate of <1 Hz is suitable for larger insects, and (from

experience) 10 Hz should be sufficient for even small insects, insect eggs, Collembola, and 

mites.  If the cooling method results in fluctuations in temperature, or there is a large 

amount of condensation present, it is sometimes possible to detect artifactual freezing 
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events that are not the result of the insect freezing (Fig.  3). A simple solution to this is to 

include a thermocouple without an insect attached, to allow interpretation of any artifacts.

Supercooling points are usually measured on 20-30 individuals, which provides a 

robust sample size with which to assess the shape of the distribution of SCPs. Although 

cold-hardy populations of insects often have unimodal SCP distributions, some species 

(and also microarthropods like springtails and mites) have bimodal SCP distributions 

(Cannon and Block, 1988; Sinclair et al., 2006a; Figure 4).  Bimodal SCP distributions can 

arise due to variation in the presence of ice nucleators or differences in body composition.  

For example, springtails that have recently fed (introducing ice nucleators into the gut 

leading to a high group of SCPs; Sømme, 1982), and/or moulted (removing nucleators; 

Worland et al., 2006) have very different SCPs.  Starved adult Alphitobius diaperinus 

beetles also had a bimodal SCP distribution, but this was due to s starvation × sex 

interaction such that the SCPs of males decreased with starvation, but the SCps of females 

did not (Salin et al., 2000).  Although techniques do exist to determine breakpoints in 

bimodal distributions (e.g. Aldrich, 1987), many authors simply decide on an a priori high 

group-low group divider by collating all SCPs and visually assessing a histogram for an 

obvious break and then compare the frequency, means or medians of the high and low 

groups among treatments using standard methods (e.g. Sinclair et al., 2006a). Because 

supercooling point distributions are seldom normal, and abnormally high or low values 

from one or two individuals can skew the entire distribution, care must be taken in using 

parametric statistics when comparing SCPs among samples or treatments.  In addition, 

because larger insects contain more water, they have a higher probability of freezing, and 
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therefore higher SCPs.  One approach to account for this potential confounding factor is to 

incorporate body size (e.g. as mass) into statistical model (or conduct analyses on residuals 

of a regression of body size on SCP), demonstrated by Hahn et al. (2008).  This may be 

necessary if (e.g.) dietary treatments yield individuals of markedly different body sizes.  An

alternate approach (when possible) is to use broadly size-matched individuals for 

comparison.

Ice formation can take only a few seconds in small animals, particularly at low 

SCPs.  By contrast, freezing can be a slow process in larger insects.  For example, the peak 

of the exotherm in 3-5 g alpine weta, Hemideina maori (Orthoptera: Anostostomatidae) 

occurs approximately 1.5 min after the SCP, but at that point only 5 % of the body water is 

converted into ice.  Ice content reached an equilibrium 70-80 % after c. 8 h (Figure 5; 

Ramløv and Westh, 1993).   Because the amount of heat released is proportional to the 

quantity of water converted to ice, it is tempting to use the exotherm area to estimate ice 

content.  However, a thermocouple does not capture the heat release accurately enough to 

quantify ice formation from its measurements (or to usefully interpret the highest 

temperature the thermocouple records), so the amount of ice formed must be measured 

calorimetrically (e.g. Block et al., 1998; Layne and Blakeley, 2002; Ramløv and Westh, 

1993). 
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3. Cold tolerance strategy

An insect’s cold tolerance strategy describes how it survives temperatures where its 

body fluids might be expected to freeze.  Chill susceptible species are killed by cold in the 

absence of internal ice formation (Bale, 1993).  Chill susceptibility is sometimes referred to

as chilling- or cold-intolerance. For example, the larvae of the false codling moth, 

Thaumatotobia leucotreta (Lepidoptera: Tortricidae), freeze between -13 °C and -22 °C but

are killed by brief exposures between -8 °C and -12 °C (Boardman et al., 2012). Chill 

susceptibility is not a strategy per se, but represents the impact of cold on a majority of 

insects, particularly those that are not at all cold-hardy, and including many insects from 

the tropics or in temperate areas during the growing season.  Freeze avoidance (sometimes

referred to as freezing-intolerance) refers to species that survive cold in the absence of 

internal ice formation, but that are killed by any internal ice.  Most of these insects 

maintain their body fluids in a supercooled state (i.e. remain liquid below the melting 

point) via accumulation of cryoprotectants and prevention of ice nucleation (Salt, 1961). 

For example, prepupae of the emerald ash borer, Agrilus planipennis can survive prolonged

exposures to subzero temperatures, provided they do not freeze, and in the winter have 

SCPs below -25 °C (Crosthwaite et al., 2011). Cryoprotective dehydration is a special case 

of freeze avoidance, whereby ice formation is prevented via removal of freezable water to 

environmental ice through a permeable cuticle.  This dehydrates the animal, increasing the 

concentration of solutes to an equilibrium point that is unfreezeable at a given temperature 

(Holmstrup et al., 2002).  For example, larvae of the Antarctic midge, Belgica antarctica 

(Diptera: Chironomidae), overwinter in the soil matrix, which dehydrates them to the point 

that they cannot freeze (Elnitsky et al., 2008). Finally, Freeze-tolerant insects tolerate the 

formation of ice in their body tissues and fluids. For example, the pre-pupae of the golden 
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rod gall fly Eurosta solidaginis (Diptera: Tephritidae) freeze around -8 °C but can survive 

with more than 60 % of their body converted to ice, with mortality beginning below -25 °C 

(Morrissey and Baust, 1976). Many temperate species switch from one strategy to another 

at the onset of winter (Salt, 1961), and the presence or absence of external ice can also 

determine cold tolerance strategy (e.g. Shimada and Riihimaa, 1988).

Defining a species’ cold tolerance strategy is essential for interpreting the SCP, and 

for determining the subsequent approach to measuring lethal temperatures (see Section 4).  

However, while the cold tolerance strategy helps explain how insects respond to and 

survive exposure to low temperatures, it does not predict or quantify survival in a particular

winter or overwintering site, nor does it designate absolute levels of cold toelrance (Bale, 

1993; Sinclair, 1999).  For example, in temperate southwestern Ontario, Canada, winter 

temperatures regularly drop below -25 °C, yet freeze avoidant (e.g. Crosthwaite et al., 

2011), freeze-tolerant (e.g. Marshall and Sinclair, 2011) and chill-susceptible (Udaka and 

Sinclair, 2014) species are all abundant.  Thus, cold tolerance strategy is not a substitute for

understanding lethal limits, and cannot be used on its own to predict survival.  Despite its 

inability to predict cold tolerance, the cold tolerance strategy can indicate potential 

prediction and control methods (see Leather et al., 1993, for a comprehensive review). For 

example, freeze-avoidant species may be susceptible to conditions that promote ice 

formation, such as the application of ice nucleators (e.g. Fields, 1993; Lee et al., 1994). 
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3.1 Determining cold tolerance strategy

Cold tolerance strategy is best inferred from two pieces of information gathered 

from the same individual during a cold exposure: 1) Whether or not the insect froze, and 2) 

whether or not it survived (Table 1; Salt, 1961).  Cold tolerance strategy can be determined 

with a small number of individuals cooled, in contact with thermocouples, to a temperature 

close to the SCP.  By rewarming all of the individuals once half of them have frozen 

(evident from exotherms), it is possible to generate a population of insects that includes 

individuals that did and did not freeze, but that were all exposed to the same low 

temperature.  The cold tolerance strategy can then be determined from the survival of these 

individuals (Tables 1 and 2; see section 4.1 for a discussion of survival metrics).  

Many studies (e.g. Bemani et al., 2012; Slabber and Chown, 2004) derive cold 

tolerance strategy from separate measurements of SCP and lower lethal temperature 

(reasoning that LT50<SCP = freeze tolerant; LT50=SCP = freeze avoidant; and LT50>SCP = 

chill susceptible).  While this indirect method is suitable if there are very large differences 

between SCP and LLT [e.g. Drosophila melanogaster dies at approximately -5 °C, but has 

an SCP below -15 °C (Czajka and Lee, 1990)], it is imprecise if SCP and LLT are in close 

proximity.  In particular, it can be difficult to distinguish between freeze avoidance and 

chill-susceptibility if the latter insects are cold-hardy.  

Ice formation is a slow process, particularly in larger insects (Fig.  5). Thus, 

survival of brief exposures below the SCP may not reflect survival of ‘complete’ freezing 

(i.e. freezing to an equilibrium ice content).  While it is possible to measure the ice content 
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of insects (e.g. Block et al., 1998; Layne and Blakeley, 2002; Ramløv and Westh, 1993), 

holding insects below the SCP for a longer period (e.g. overnight) can indicate whether the 

animal is tolerant of equilibrium ice content (Dennis et al., 2015; Sinclair et al., 1999).  

Insects that do not survive complete ice formation [termed ‘partially freeze tolerant’ by 

Sinclair (1999)] may nevertheless use freeze tolerance as a component of their cold 

tolerance strategy, depending on the environmental conditions, particularly if sub-freezing 

conditions are brief (e.g. Sømme et al., 1996; Sømme and Zachariassen, 1981), although 

this has not been well-explored.  Voituron et al. (2002) hypothesised that this partial freeze 

tolerance may be an important intermediate step in the evolution of freeze tolerance.  

Similarly, although some insects may survive short periods of acute cold exposure if they 

remain unfrozen, freeze-avoidant insects must remain unfrozen when supercooled for long 

periods (Sømme, 1996).  The ability to remain supercooled is easily tested by cooling 

insects to close to the SCP, and holding them at that temperature, for example, overnight 

(e.g. Crosthwaite et al., 2011).  

Some species of insect tolerate freezing only if ice formation is initiated 

(inoculated) at relatively high subzero temperatures (Lee, 2010). For example, larvae of 

Chymomyza costata,(Diptera: Drosophilidae) were initially classified as freeze-avoidant, 

but if freezing is inoculated by contact with ice crystals, then diapausing larvae will survive

below -80 °C (Shimada and Riihimaa, 1988). This is most relevant to species expected to 

overwinter in moist conditions, and ice formation can be inoculated by placing an animal in

contact with a moist substrate (e.g. Boardman et al., 2012; Koštál and Havelka, 2000), 

applying ice (e.g. Layne et al., 1990), or applying a known ice nucleator, such as silver 
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iodide (e.g. Strachan et al., 2011).  Cold tolerance strategy can then be assessed as 

described above.

To identify cryoprotective dehydration, insects need to be exposed to low 

temperatures in the presence of (but not actually in contact with) ice.  In the field, this 

occurs in frozen soil or moss (Holmstrup, 2014), and the most common laboratory method 

is to confine insects in a mesh or perforated container within a larger sealed container that 

contains crushed ice (e.g. Elnitsky et al., 2008; Sørensen and Holmstrup, 2011; Udaka and 

Sinclair, 2014), which is exposed to cold, usually in an incubator or other large chamber.  

The hallmarks of cryoprotective dehydration are a decrease in water content (usually 

measured gravimetrically), such that the concentration of solutes in the body fluids 

increases to yield a melting point approximately equivalent to the ambient temperature, 

rendering the insect essentially unfreezable [Fig. 6; see Holmstrup (2014) for an extensive 

review]. Simultaneously, the insect may also accumulate low molecular weight 

cryo/anydroprotectants, such as trehalose. Thus, insects using cryoprotective dehydration 

will have both reduced water content and depressed supercooling points, and these should 

decrease in concert with decreasing temperature.  

Cold tolerance strategy is not necessarily fixed.  First, many species only express 

their winter-relevant cold-tolerance strategy after appropriate seasonal cues.  For example, 

Eurosta solidaginis is chill-susceptible in the summer, but freeze-tolerant in the winter (Lee

and Hankison, 2003), and Pyrrhocoris apterus (Hemiptera: Pyrrhocoridae) is chill-
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susceptible in the summer, but freeze-avoidant in the winter (Koštál and Simek, 2000). 

Second, there may be variation in cold tolerance strategy among populations, for example 

Pieris rapae (Lepidoptera Pieridae) is freeze-avoidant in northern Europe, but freeze 

tolerant in central Siberia (Li and Zachariassen, 2007). Third, some species may switch 

strategy entirely.  For example, overwintering larvae of the beetle Dendroides canadensis, 

(Coleoptera: Pyrochroidae) switched from freeze tolerant in the winter of 1978-1979 to 

freeze avoidant in 1981-1982 (Horwath and Duman, 1984). We will discuss approaches to 

elicit this plasticity in Section 6.

4. Lower lethal limits

Lower lethal limits quantify the temperatures that kill an insect population or species 

under specified conditions.  Lethal temperatures are usually expressed as a proportional 

lethal temperature (LTx), the point where x % of exposed individuals die.  For example, the 

LT50 is the median lethal temperature, expected to kill 50 % of a population.  The Lower 

Lethal Temperature (LLT) is the temperature at which all individuals are killed (the LT100; 

functionally, this is often expressed as the highest temperature at which measured survival 

was zero).   The lowest temperature at which no individuals are killed has been called the 

Upper Limit of the Cold Injury Zone (ULCIZ; Nedvěd, 1998).  Note that any assessment of

the lower lethal temperature is dependent also on the exposure time (see section 4.1).

The LLT estimates an absolute limit to low temperature survival and, as such, can 

provide information about likelihood of survival under a given set of conditions (e.g. 
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Hatherly et al., 2005), and allow survival to be compared under circumstances where the 

SCP is uninformative about survival (e.g. for chill-susceptible or freeze-tolerant species; 

Baust and Rojas, 1985).  Other thresholds, such as the LT90, indicate thresholds associated 

with specified levels of probability, and are therefore useful for assessing the risk of 

mortality or survival under a given set of conditions.  Used in conjunction with the 

supercooling point, lower lethal temperatures can be used to indirectly estimate cold 

tolerance strategy (see Section 3.1).  However, estimates of LLT are sensitive to exposure 

conditions, especially cooling and rewarming rates.  For example, survival of Chymomyza 

costata larvae exposed to -40 °C decreases from >90 % to zero when the cooling rate is 

increased from 0.1 to 1 °C/min (Shimada and Riihimaa, 1988). Thus, if the laboratory 

conditions do not reflect the salient features of the conditions in nature, laboratory-derived 

LLT estimates may over- or under-estimate the probability of mortality in the field. 

4.1 Estimating Lower lethal limits

Lower lethal limits are usually determined by exposing individual insects (or more 

commonly, groups of individuals) to a pre-determined range of test temperatures, each for 

the same fixed period of time.  Approximately five temperatures spanning the range of 0 to 

100 % mortality are usually sufficient to determine the LT50, although additional 

temperatures are sometimes added to obtain a finer-scale estimate of LT50. After cold 

exposure, insects are returned to recovery conditions (e.g. room temperature or the rearing 

temperature), and allowed to recover before survival is assessed. 
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The choice of exposure time is dictated by both the temperatures encountered in 

nature, and convenience.  Lower lethal temperature estimates that examine responses to 

short cold exposures (1-2 h; e.g. Clarke et al., 2013) estimate survival of an acute, transient 

extreme temperature.  In many habitats, these might reflect the minimum temperature 

experienced over a winter.  However, a case can be made for longer exposures, such as 

overnight treatments, that may be more ecologically-relevant (Sømme, 1996).  Ideally these

measurements (or assessment of the risk of survival) will be interpreted in the context of 

known overwintering or exposure conditions, such as temperature records from 

microclimate monitoring (e.g. Udaka and Sinclair, 2014).  A similar approach can be used 

to measure high temperature tolerance (ULT) and lethal time at a low temperature (LLt).  

The latter is particularly relevant for risk assessment for insects that may be exposed to 

prolonged cold during refrigerated shipping (e.g. Beaudry et al., 1998) or while 

overwintering under snow (Pauli et al., 2013), or to extensive periods below freezing 

(Sømme, 1996).  To estimate LLt, a similar approach to LLT is taken, but with exposures to

a set temperature across a range of pre-determined times. Ultimately, LLT and LLt are both 

important information: for most species, thermal tolerance is a temperature-time surface 

(see Nedvěd, 1998; Nedvěd et al., 1998), which has seldom been fully parameterized.

 

Determining LLT is, by necessity, an iterative process.  Ideally, survival metrics, 

SCP, and cold tolerance strategy have already been determined, and can help to determine a

starting point, with the goal of anchoring the analysis with exposures to temperatures that 

yield 0 % and 100 % survival, with additional replicates to fill the intervening space (e.g. 

Udaka and Sinclair, 2014). An alternative approach is to expose groups of insects to a pre-

22

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

43
44



determined set of temperatures (e.g. at 5 °C intervals; Bouchard et al., 2006; Kleynhans et 

al., 2014).  This approach has advantages in design and execution; in particular, it can allow

random assignment of insects to treatments, allow all of the exposures to be made on a 

single day, and is more suitable for using longer-term measures of survival.

Assessing mortality after cold exposures requires a consistent (and ecologically-

relevant) estimate of whether or not an insect is alive, and an appropriate time period to 

capture mortality caused by cold, but exclude mortality from other causes.  Ideally, survival

to reproduction indicates that an insect has retained fitness after cold exposure (Baust and 

Rojas, 1985), but this is surprisingly rare as a metric.  Survival to the reproductive stage for

immature insects (i.e. successful eclosion as an adult) is an ecologically-relevant estimate 

of mortality that is more common (e.g. Strachan et al., 2011; Williams et al., 2014).  

However, for species that do poorly in captivity, those with long life cycles, or because of 

pressure to obtain data, most researchers choose simple metrics of survival that can be 

rapidly assessed.  These metrics are often a coordinated movement (standing or a righting 

response, e.g. MacMillan and Sinclair, 2011b; Nyamukondiwa et al., 2011; Tomcala et al., 

2006), although resumption of feeding, or a more ‘athletic’ ability (running, jumping, or 

flying) would also be appropriate.  More simple measures can be problematic, as they can 

lack an assessment of biologically-relevant performance.  For example, cold-exposed 

insects can be injured and able to move in an uncoordinated fashion, but unable to perform 

more complex functions.  Such individuals have been characterized as ‘injured’ (Koštál et 

al., 2006; MacMillan and Sinclair, 2011b) or ‘moribund’ (Sinclair, 1997).  These 
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individuals are usually considered ‘dead’ in analyses on the basis that since they could not 

reproduce, their fitness is zero. 

Mortality is usually assessed within the first 24 hours to a few days after cold exposure. 

Thus, lethal temperature estimates may ignore mortality that occurs in the longer term, and 

also disregard sub-lethal effects on behavior or reproductive capacity (Baust and Rojas, 

1985).  For example, adults of the freeze-tolerant carabid Pterostichus brevicornis will 

survive for a few days when frozen and thawed under sub-optimal conditions, but die after 

a week (Miller, 1969).   By contrast, it is sometimes possible to significantly reduce the 

recovery period needed for a survival assessment.  For example, Udaka & Sinclair (2014) 

found no difference in survival estimates of cold-exposed Curculio glandium (Coleoptera: 

Curculionidae) larvae made 15 min and 24 h after rewarming. Choosing a timeframe and 

metric for assessment of mortality will thus depend on the goal of the study; when 

assessing potential for overwintering survival, longer-term survival and reproductive-

capacity measures may be most appropriate. 

Lower lethal temperature experiments are usually conducted with sequential 

exposure of different groups of individuals to a range of temperatures (e.g. Bouchard et al., 

2006; Figure 7). The response variable is percent or proportion mortality (or survival, for 

the optimistic).  Thus, the unit of replication in an LLT study is a group of individuals, not 

the individuals themselves; five groups of ten individuals gives n=5, whereas one group of 

fifty (the same number of animals) gives n=1.  Because survival is expressed as a 

24

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

47
48



proportion, groups of fewer than five are less useful than larger groups, but the balance 

between resolution and replication usually leads most researchers to use groups of 5-10.  

There are statistical power advantages to treating each individual’s survival separately 

(using, for example, survival or failure time analyses, e.g. Jakobs et al., 2015), however, 

researchers rarely take this approach, perhaps because most exposures are conducted in 

groups.  Even if individuals are individually housed, a single exposure treatment should 

probably be considered a group, to avoid pseudoreplication (McArdle, 1996).  When using 

multiple experimental groups of individuals (e.g. 3-5) at each temperature, 3-5 independent

LLT curves do not need to be generated; instead, the order of exposure temperatures can be 

randomized to yield replication, and all the data considered in the same model. Because 

lethal limits are estimated using a regression approach, it is not necessary to expose insects 

to precisely determined temperatures; it is sufficient to have an accurate measurement of 

the temperature to which each group was exposed.

Lethal temperatures can be estimated graphically by plotting the survival 

proportions by temperature and ‘eyeballing’ the lethal limits (Fig. 7A). However, a formal 

statistical analysis of survival is relatively simple, and can yield values for LT50 and LLT 

(and any other level of mortality), and also variance or confidence intervals around those 

estimates.  Because survival has a binomial error distribution (individuals are either alive or

dead), linear models, such as ANOVA, are inappropriate for determining LLT (although 

ANOVA may be suitable for comparing among models, particularly in R, where this is a 

common approach – e.g. Crawley, 2005).  A logistic regression (Fig. 7B) with logit link and

binomial error distribution (i.e. a probit analysis) is, a priori, most appropriate (e.g. Bürgi 
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and Mills, 2010; Sinclair, 1997). Alternative forms of survival analysis (e.g. Ransberry et 

al., 2011) are inappropriate for LLT analyses, because they assume that an individual is 

followed throughout an exposure until it dies – clearly this is not the case when the 

individual has to be rewarmed to ascertain survival.

5. Chill Coma

When cooled, a majority of insects will slow down and eventually lose the ability to

move. At a specific temperature, an insect will cross a threshold (the critical thermal 

minimum, CTmin), into a reversible state of paralysis, known as chill coma. (Hazell and 

Bale, 2011).  Because insects cannot move, feed, reproduce, or evade predators while in 

chill coma, the CTmin provides a useful lower limit to insect function (Andersen et al., 

2015b; David et al., 1998; Gibert et al., 2001; MacMillan and Sinclair, 2011a), and is often 

used to approximate insect cold tolerance because it is broadly correlated to lethal limits 

(Andersen et al., 2015b). Resumption of movement after rewarming (chill coma recovery, 

CCR) is usually measured as the amount of time it takes insects to recover from a 

standardised period in chill coma (David et al., 1998; Gibert et al., 2001; MacMillan and 

Sinclair, 2011a).  Additionally, because chill coma is usually non-lethal, it is possible to use

insects for further experiments, or even breed from them, allowing for selection 

experiments (e.g. Bertoli et al., 2010; Franke et al., 2012; Mori and Kimura, 2008; Telonis-

Scott et al., 2009).   

Although insects may accumulate injuries (or die) while in chill coma (MacMillan 
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and Sinclair, 2011a), CTmin and CCR are  not measures of cold tolerance, but rather of 

resistance to the effects of cold (although it provides a useful estimate of thermal biology 

for comparative purposes; Andersen et al., 2015b). CTmin is also limited as a measurement 

of resistance to cold, because it can only be measured in mobile life stages; specifically, 

monitoring when an insect enters chill coma requires identifying and timing the loss or 

recovery of some form of movement. Some insects become immobile when disturbed (e.g. 

some species of stick insects and beetles), making it difficult to determine the CTmin. 

Finally, not all species have a CTmin. For example, freezing occurs before chill coma in the 

freeze-avoidant Antarctic springtail, Isotoma klovstadi (Sinclair et al., 2006a) and in some 

freeze-tolerant cockroaches (Sinclair and Chown, 2005). 

5.1 Chill coma Onset (CTmin)

The CTmin is the most common measure of the threshold at which chill coma onset 

(CCO) occurs. A similar measure of maintenance of performance at low temperatures, 

knockdown time, could be used to determine the amount of time at a predetermined 

temperature after which coordination is lost (cf. Hoffmann et al., 1997).  However, it is 

unclear whether these two approaches measure the same physiological phenomenon 

(MacMillan and Sinclair, 2011a), so CTmin and knockdown time should not be used 

interchangeably.  Because most literature currently uses CTmin we suggest that this provides

the measure of chill coma onset that is most readily comparable among studies (and is the 

approach we will discuss further below), assuming assessments have been made under 

comparable conditions. 
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To measure the CTmin, the point at which an insect loses its ability to move needs to 

be identified.  This could be through direct observation during cooling (e.g. Klok and 

Chown, 1997), or through identification of failure to remain in a chamber, or on a perch 

(e.g. Huey et al., 1992). These observations need to be coupled to a measurement of 

temperature in the chamber (or even at the surface of the insect).  When direct observations

are being made, an ideal response will be repeatable among researchers and individual 

animals, involuntary, and easily discerned, although stimulus is often necessary at low 

temperatures because insects move more slowly (MacMillan and Sinclair, 2011a).  Motor 

responses include the righting response (standing after being placed on back or knocked 

over; e.g. David et al., 1998), response to a stimulus such as prodding with a probe (e.g. 

Klok and Chown, 1997), or coordinated standing (e.g. Koštál et al., 2004); an appropriate 

species-specific response can be identified via a pilot study. We note (from experience) that

some species are simply not tractable for CTmin studies; for example, stick insects are 

immobile when threatened – this is it hard to tell if a stick insect is not moving because it 

cannot move, or because it will not move.

The cooling rate used for CTmin measurement is a balance between being slow enough to 

ensure that the insect's body temperature does not lag behind the chamber (leading to 

inaccurate estimation of CTmin), and being fast enough to avoid substantial physiological 

(e.g. acclimation) responses during cooling (Huey et al., 1992).  Thus, most CTmin protocols

require less than 2 h to complete the entire assay.  Most studies use cooling rates between 

0.1 and 0.25 °C/min for determining CTmin (e.g. Kleynhans et al., 2014; MacMillan and 

Sinclair, 2011b; Terblanche et al., 2006). Note that there has been considerable recent 
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debate on the ‘correct’ rate for measuring high temperature tolerances (Rezende et al., 

2011; Santos et al., 2011; Terblanche et al., 2007; Terblanche et al., 2011), and it is 

therefore imperative to clearly report the conditions when describing CTmin experiments. To

expedite measurements, it should be possible to rapidly reduce the temperature from the 

rearing temperature to an intermediate temperature (e.g. 10 °C), allowing equilibration 

before cooling at the pre-determined rate.  To our knowledge, the consequences of different

equilibration times in such protocols have not been explored.  

A variety  of  methods  can  be  used  to  cool  individual  insects  for  manual  CTmin

determination,  including  controlled-temperature  incubators  (e.g.  Hu  and  Appel,  2004),

immersing insects in tubes or containers in the bath of a refrigerated circulator (e.g. Klok

and  Chown,  1997),  or  using  purpose-built  chambers  cooled  by  fluid  circulated  from

refrigerated circulators (e.g. MacMillan and Sinclair, 2011b; Sinclair et al., 2006b).  Higher

throughput  has  been  achieved  by  placing  a  population  of  insects  into  a  column  with

baffles/perches (Huey et al., 1992; Ransberry et al., 2011; Renault and Lalouette, 2012).

The insects lose coordination at the CTmin as the column is cooled, and can be collected at

intervals (or counted electronically; e.g. Shuman et al., 1996) as they fall out the bottom of

the  column,  with  each interval  representing individuals  that  entered chill  coma over  a

specific time period.  

Other methods to observe the CTmin have also been explored.  Renault et al. (1999) 

used a microbalance to detect activity during declining temperature to identify the CTmin in 

a beetle.  Similarly, Hazell et al. (2008) describe making a video recording as an insect is 
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cooled, and then extracting from the video the point at which the last voluntary movement 

was made [Everatt et al. (2013) describe a means to automate this measurement].  

Alternately, physiological measurements may be plausibly developed that allows the CTmin 

to be identified from a physiological threshold. Such a measure could use heart function 

(Andersen et al., 2015a), metabolic rate (Lighton and Turner, 2004; Sinclair et al., 2004), or

automated activity monitoring (MacMillan et al., 2012a), although most of these 

approaches are low-throughput.

Individual- or group-based studies of insect CTmin usually use 10-20 individuals per 

treatment (e.g. Clarke et al., 2013; Jumbam et al., 2008; Klok and Chown, 1997; Renault 

and Lalouette, 2012), but the knockdown column approach allows for larger sample sizes 

(as many as 263 flies in Ransberry et al., 2011).  Critical thermal minima can be compared 

among treatments by treating each individual as a replicate, and using conventional 

statistics (e.g. ANOVA; Klok and Chown, 1997), or non-linear approaches such as 

Generalized Linear Models, if not normally distributed. Critical thermal minima may also 

satisfy the assumptions of survival analyses such as Accelerated Failure Time models (e.g. 

Ransberry et al., 2011).

5.2 Chill Coma Recovery

Because chill coma is reversible and movement is easy to detect in mobile insects, 

recovery from chill coma is also used as a measure of cold tolerance.  Although some 

authors have measured this as a temperature at which movement reinitiates (e.g. Sinclair et 

al., 2006a), current research suggests that chill coma recovery is a complex interplay 
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between the rate of loss of homeostasis, the low temperature equilibrium attained, and the 

rate and threshold for recovery (Fig. 8).  Thus, the most-used metric tends to be time until 

recovery under standardised conditions (Chill Coma Recovery time; CCRT), since this 

minimises confounding variables (e.g. confounding the rate of recovery versus a 

temperature threshold for recovery). Here we will therefore discuss only CCRT, although 

we note that although it is simple to measure under standardised conditions, it is difficult to

interpret in ecological context.  

To measure CCRT, insects are exposed to a temperature-time combination that 

induces chill coma, and returned to a recovery temperature (often the rather vague ‘room 

temperature’ – we recommend at least reporting and measuring that temperature).  The 

insects are observed, and the time taken to resume a pre-determined behavior or activity is 

recorded.  Movements and behaviors include coordinated leg movement (Halle et al., 

2015), standing or walking (e.g. Macdonald et al., 2004), righting response, or abdominal 

contractions (e.g. Macmillan et al., 2012b).  It should be possible to use video analysis to 

automate CCRT (e.g. by modifying the method described by Hazell et al., 2008 for CTmin).  

Insects can be cold-exposed via refrigerated baths or incubators (see Section 2.1); however,

because many insects enter chill coma around 0 °C, an ice-water slurry is often sufficient 

(e.g. Gibert et al., 2001; Nilson et al., 2006; Ransberry et al., 2011).  Recovery can be 

observed in any clear container; a convenient approach for smaller insects, such as 

Drosophila is to transfer the insect to 6- or 12-well cell culture plates, which allows 

multiple individuals to be observed simultaneously.  The recovery temperature will likely 

influence the CCRT, however, this has not been well-explored (Macmillan et al., 2012b).
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Ideally, cold exposures for CCRT are convenient (e.g. overnight, or within the span 

of a working day), and yield chill coma recovery times within a convenient range (we 

suggest 20-30 minutes).  It is important that the resolution of observation is compatible 

with the expected variation in CCR.  For example, the difference between 15 and 20 

minutes (a 33 % increase) is easily distinguished, but the difference between 3 and 4 

minutes may not be if each individual is observed at 30 s intervals.  There is often a bi-

phasic relationship between exposure time (or temperature) and CCRT (David et al., 2003; 

Macdonald et al., 2004; Macmillan et al., 2012b), and in the plateau region (which may be 

narrow or broad), the loss of ion and water balance is putatively at an equilibrium 

(MacMillan and Sinclair, 2011a; Macmillan et al., 2012b); this ensures that differences 

among individuals, treatments or populations are primarily due to variation in the recovery 

processes (Fig. 8).  Thus, comparing CCR across a combination of temperatures and times 

is a useful first step to ensure that the exposure conditions used to induce chill coma result 

in a recovery time that is convenient, appropriate for distinguishing between groups, and 

within the plateau region. 

Because of its simplicity, sample sizes for CCRT can be larger than those for CTmin, 

typically 10-20 individuals/treatment (e.g. Andersen et al., 2015b; David et al., 2003; 

Findsen et al., 2013; Gibert et al., 2001; Macdonald et al., 2004; Ransberry et al., 2011).  

Because only a limited number of individuals can be observed at a time (typically <20, if 

the observation interval is 20-30 s), we recommend that the treatments in each observation 

set be randomised.  Analysis approaches mirror those of CTmin, although because the CCRT
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has a lower bound (an insect can't take a negative time to recover), survival analyses or 

generalized linear models might be more appropriate than linear parametric statistics such 

as ANOVA. Chill coma recovery time is often compared among treatments measured 

together as a way to examine relative differences; however, because of the diversity of 

exposure temperatures and times (Table 3), recovery metric and recovery temperatures, we 

recommend caution when comparing CCRT among species, studies, and laboratories.  

6. Detecting variation in low temperature performance among 
individuals, populations, seasons and treatments

Phenotypic plasticity is the ability of an organism with a given genotype to express 

different phenotypes.  Phenotypic plasticity in thermal biology includes hardening, 

acclimation, which occurs in the laboratory, and acclimatization, which happens in nature, 

although the mechanisms of acclimation and acclimatization are assumed to be similar 

(Kingsolver, 2009; Tattersall et al., 2012), but different to the mechanisms underlying 

hardening (Sinclair and Roberts, 2005; Teets and Denlinger, 2013).  Developmental 

plasticity is the response to conditions experienced during development (e.g. Sisodia and 

Singh, 2010), while maternal (or trans-generational) effects refer to epigenetic signals 

passed from the mother to offspring that determine phenotype (e.g. Magiafoglou and 

Hoffmann, 2003).  The time scale of phenotypic plasticity responses can range from 

minutes or hours (often termed ‘hardening’ responses) to long-term shifts, such as seasonal 

changes in cold tolerance (Fischer and Karl, 2010; Sinclair and Roberts, 2005).  Genetic 

adaptation is plasticity on an evolutionary scale, and may play out among populations or 

species (Gibert and Huey, 2001; Kellermann et al., 2009; Sinclair et al., 2012).  
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All of these levels of variation in physiology can dramatically alter cold tolerance; 

thus, one way to account for this variation is to attempt to induce as much plasticity in cold 

tolerance as possible.  Although this approach may not reveal the absolute limits of cold 

tolerance (and cannot determine the adaptive significance of the plasticity), it can at least 

indicate the presence of plasticity, and put a study into the context of a species’ plasticity.  

Here we define and explain the major sources of plasticity in insect low temperature 

performance, and discuss approaches that can be used to detect this plasticity.

6.1 Phenotypic plasticity of low temperature biology in nature

Phenotypic plasticity of cold tolerance is readily observed in populations of insects 

in nature at multiple timescales, most commonly as seasonal changes in cold tolerance.  For

example, field-collected larvae of the freeze-avoidant codling moth Cydia pomonella 

(Lepidoptera: Torticidae) are more cold-tolerant during the winter than in the summer 

(Khani and Moharramipour, 2010).  Similarly, emerald ash borer have depressed 

supercooling points in winter (Crosthwaite et al., 2011), and freeze-tolerant alpine 

cockroaches have a lower LT50 in winter (Sinclair, 1997), both of which enhance 

overwintering survival.  

In addition to seasonal variation in cold tolerance, there is also evidence of 

phenotypic plasticity over shorter timescales in nature.  For example, survival of cold 

exposure increases at night and decreases during the day in field-caged Drosophila 

melanogaster (Overgaard and Sørensen, 2008).  Similarly, the supercooling point 

distribution of field-collected Antarctic springtails Desoria klovstadi (Collembola: 
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Isotomidae) decreases markedly between midday and midnight, reflecting changes in 

ambient temperature (Sinclair et al., 2003c). Thus, it is important to consider these natural 

variations in cold tolerance when determining the overwintering potential of an insect. 

6.2 Rapid cold-hardening

Rapid cold-hardening (RCH) is the shortest time-scale of plastic responses, and 

describes enhanced survival of temperature extremes after a brief (minutes to c. 3 h) pre-

exposure to sub-lethal temperatures (reviewed by Teets and Denlinger, 2013).  Rapid cold 

hardening can affect a range of cold tolerance parameters; for example, by decreasing LLT 

(Lee et al., 1987), CTmin and CCRT (Ransberry et al., 2011), and even modifying the SCP in

some cases (e.g. Worland and Convey, 2001). Thus, RCH rapidly shifts insects from a non-

cold-hardy to a cold-hardy state in life stages that are not normally cold-tolerant, or at times

of year when seasonal cold tolerance has not yet been acquired.  Because of this rapid shift 

in cold tolerance, parameters like LLT may be substantially underestimated if RCH is not 

taken into account. For example, non-diapausing adults of the elm leaf beetle 

Xanthogaleruca luteola (Coleoptera: Chrysomelidae), have only 15 % survival after 1 h at 

-7 °C, but survival increases to 90 % if the -7 °C exposure is preceded by 4 h at 0 °C (Lee 

et al., 1987). Rapid cold-hardening is mainly expressed in chill-susceptible species, but has 

been reported in freeze-tolerant and freeze-avoidant species as well (Lee and Denlinger, 

2010).  

RCH may be induced by slow cooling, diurnal cycles and mild low temperatures 

(usually -2 to +4 °C) (Teets and Denlinger, 2013). Unlike the heat shock response (see 
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Harrison et al., 2012), RCH does not normally require a recovery period after the pre-

exposure to express the enhanced cold tolerance.  Nevertheless, including a recovery period

is commonly incorporated in laboratory assessments of RCH (e.g. Jakobs et al., 2015; 

Nunamaker, 1993; Sinclair and Chown, 2003).  Because the mechanisms of RCH are still 

poorly understood (Teets and Denlinger, 2013), it is not entirely clear whether these 

different treatments eliciting ‘RCH’ are actually triggering the same physiological 

response, so it is important to report the methods fully, and potentially include several 

different treatments in a study (e.g. Nunamaker, 1993).

6.3 Acclimation, deacclimation and acclimatization

Cold acclimation and acclimatization are processes that improve cold-hardiness 

over a span of days-to-weeks, within a single life stage.  Acclimation can have a marked 

effect on cold tolerance; for example, a six-week cold acclimation increased survival of the 

rusty grain beetle, Cryptolestes ferrugineus, from 1.4 days to 24 days at -10 °C.  Cold-

acclimation regimes may be based on measured field conditions (e.g. Jakobs et al., 2015), 

or based on convenience (e.g. the 4 °C of many domestic and laboratory refrigerators). 

Notably, acclimation under fluctuating temperatures usually leads to greater cold tolerance 

(Colinet et al., 2015).  Although laboratory acclimation can never properly replicate field 

conditions, the aim of incorporating laboratory acclimation is to provide some indication of

the extent of plasticity, and therefore the extent to which potential cold tolerance is being 

underestimated.  

Both acclimation and acclimatization are reversible; in the C. ferrugineus example 
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above, the enhanced cold tolerance was lost within a week of returning the insects to the 

rearing temperature of 30 °C (Fields et al., 1998), a process termed deacclimation.  In the 

field, deacclimation could occur during seasonal temperature variation (e.g. mid-winter 

thaws).  For example, Sobek-Swant et al. (2012) found that winter-acclimatized freeze-

avoidant emerald ash borer prepupae had increased SCPs and decreased glycerol 

concentrations after exposure to mid-winter warm spells (+10 and +15 °C), and that this 

deacclimation was not reversed when the prepupae were returned to -10 °C.  Deacclimation

is rarely included in cold tolerance studies, but is clearly relevant when attempting to 

understand the plasticity of cold tolerance, particularly in relation to variable environments.

6.4 Developmental and cross-generational plasticity

Developmental plasticity is the non-reversible change in phenotype of one life stage

that is decided by the experience of an earlier life stage (for review and examples, see 

Davidowitz and Nijhout, 2004; Kingsolver and Huey, 2008; Nylin and Gotthard, 1998).  

For example, Bicyclus butterflies reared at a high temperature have slower chill coma 

recovery than those reared at a lower temperature, regardless of their adult experience 

(Franke et al., 2012); by contrast, flour beetles raised under high temperatures have faster 

chill coma recovery than their low temperature counterparts (Scharf et al., 2015). 

Developmental plasticity is thus important when considering overwintering, because entry 

into appropriate physiological state for overwintering may be initiated during an earlier life 

stage.  

In some species, the overwintering phenotype is determined not by an individual’s 
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experience, but by the experience of the previous generation.  For example, diapause by 

Aedes eggs is determined by the photoperiod experienced by the mother (Denlinger and 

Armbruster, 2014).  Both developmental plasticity and trans-generational effects are easily 

missed in laboratory studies, and could therefore mean that laboratory studies 

underestimate low temperature performance in the field, but, to our knowledge, have been 

rarely explored.  

6.5 Detecting phenotypic plasticity

The complexity of phenotypic plasticity means that it cannot be completely 

encompassed in simple laboratory experiments.  Thus, we emphasise that the goal of 

laboratory studies of phenotypic plasticity is to provide an indication of the extent to which 

the full cold tolerance potential is being captured by the laboratory experiments.  A 

valuable alternative or complement to these experiments is to conduct seasonal 

measurements of the cold tolerance of field-collected (or at least field-caged) individuals 

(e.g. Baust and Miller, 1970; Crosthwaite et al., 2011; Koštál et al., 2014; Udaka and 

Sinclair, 2014).  These field studies may provide the best, and most ecologically-relevant, 

estimate of the cold tolerance changes driven by the combined effects of temperature, 

photoperiod and trans-generational and developmental plasticity.

The general approach to detecting plasticity of cold tolerance in the laboratory is to 

apply pre-treatments or acclimation treatments, and measure some (preferably ecologically-

relevant) response variable or phenotype, such as CTmin, SCP or LLT.   The treatments 

could include both brief pre-treatments (to elicit rapid cold-hardening) and longer 
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treatments (to elicit acclimation responses).  One convenient approach to detecting 

plasticity phenotypes is the ‘discriminating temperature’ approach (Powell and Bale, 2004).

In this approach, a discriminating temperature (one that causes ~80 % mortality) is chosen 

from preliminary investigations.  Insects are then exposed to various pre-treatments and 

acclimations, and their survival is measured only at that temperature.  While the 

discriminating temperature approach does not estimate the change in absolute limits of 

survival, increased survival does provide evidence of plasticity, which can be explored in 

greater detail as required.  Discriminating temperatures are most often used in studies 

documenting the RCH response (e.g. Sinclair and Chown, 2006), but it can also be used to 

explore other sources of plasticity, including heat shock and acclimation (e.g. Rajamohan 

and Sinclair, 2008, 2009).  However, SCP is a relevant metric for freeze-avoidant species 

(e.g. Worland and Convey, 2001), and CTmin or CCRT may also be used to identify 

plasticity in a relatively high-throughput fashion (e.g. Everatt et al., 2013; Fischer et al., 

2010; Hoffmann et al., 2005; Sisodia and Singh, 2010).

There is an almost infinite variety of combinations of potential cues for phenotypic 

plasticity (Table 4), so if the goal is simply to detect plasticity, it is most convenient to 

choose a small combination of treatments that encompass a variety of cues and time 

frames.  Because it is the plasticity itself, not the precise cues, that is important, it can be 

useful to deliberately conflate photoperiod and temperature cues to maximize the likelihood

of inducing plasticity.  For example, acclimation treatments often combine short day length 

with low temperatures, without controlling for each factor independently (e.g. Jakobs et al.,

2015).  
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We suggest four basic treatment approaches that encompass the main components 

of plasticity (Fig. 9): A) Some form of pre-treatment intended to elicit rapid cold-hardening

(Lee et al., 1987); B) A 5-10 day low temperature-short day length treatment to elicit an 

acclimation response (e.g. Slabber and Chown, 2005); C) Development at low temperature 

with a short day length (e.g. Colinet and Hoffmann, 2012); and D) Fluctuating temperatures

and decreasing photoperiod, for example based upon climate (e.g. a nearby weather station)

or microclimate (e.g. Jakobs et al., 2015).  The precise temperature and photoperiod details,

as well as the duration of the treatments, will depend on the natural history and timing of 

the life cycle of the organism, its lifespan, and its propensity for laboratory culture.  A 

developmental acclimation treatment will not necessarily be possible for a univoltine 

species, or one that is not readily reared in the laboratory.  Deacclimation has been poorly 

explored, but is usually achieved through exposures to warmer-than-usual winter 

temperatures for a period of days (see Section 6.2).  

Using the discriminating temperature approach means that a simple comparison of 

low temperature survival by each treatment to that of the control can reveal significant 

effects of the plasticity treatments.  In this approach, the unit of replication is the group (see

also section 4.1), and 5-10 groups per treatment should provide adequate power.  As with 

LLT measurements, it is best if replicates are randomized, and controls run alongside 

treatment groups.  Some care may need to be taken to control for aging if this is a potential 

factor in lengthy acclimation treatments, as aging can decrease (e.g. Halle et al., 2015) or 

increase (e.g. Lalouette et al., 2010) cold tolerance, depending on the species.  Survival of 
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pre-treated groups can be directly compared to that of controls, using t-tests, ANOVA with 

planned comparisons, or GLZ (with binomial error distributions) and planned comparisons.

If ANOVA or t-tests are used, note that the binomial error distribution inherent in survival 

data is inappropriate for these tests, but an arcsine-square-root transformation can 

normalize data somewhat prior to analysis.  

Interpreting data from the discriminating temperature approach is difficult, because 

it allows the detection of plasticity, but does not quantify the magnitude of that plasticity.  If

survival increases markedly (e.g. from 20 to 100%), it makes it clear that LLT has been 

underestimated, but to obtain parametric predictions it will be best to construct new LLT 

curves with individuals in which plasticity has been detected (see section 4.1).  Note that it 

is possible that plasticity treatments may also modify the cold tolerance strategy (e.g. 

Shimada and Riihimaa, 1988), thereby modifying the approach to determining potential for

overwintering survival. 

7. Suggested workflow

Leaving aside the thrill of basic discovery, there are two main reasons to measure 

low temperature performance in a previously-uninvestigated insect: 1) to provide a detailed

description of its cold tolerance, perhaps in the context of an invasion or interesting habitat 

or 2) to provide a measure of low temperature performance to facilitate comparisons among

treatments or populations, or to round out a study incorporating a wider array of stressors.  

In the latter case, the priority is therefore to choose a metric that is both biologically-
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relevant and easy to measure, while in the former case, the emphasis may be on 

determining thresholds that can be explored in the context of the habitat.  No single 

measure will be appropriate for all species or situations, and (like all work on living 

organisms), it is best to begin with some basic observations.  In this final section, we 

provide two suggested approaches, one for a general exploration of low temperature 

biology, the other for choosing a measure of low temperature performance.  

To begin a comprehensive description of insect cold tolerance, we recommend 

beginning with two simple observations: SCP (Section 2.3) and CTmin (Section 5.1).  These 

two parameters provide anchor points for designing experiments to further investigate 

CCRT, cold tolerance strategy, and lethal limits (Fig. 10).  In turn, these measures help to 

determine appropriate response variables for examining phenotypic plasticity (Section 6).  

Examples of this approach can be found in many of the papers cited in this review (e.g. 

Koštál et al., 2014; Sinclair and Chown, 2005; Slabber and Chown, 2004).  Subsequent 

investigations of the biochemistry underlying plasticity and cold tolerance, for example, 

changes in hemolymph composition, can then be incorporated into suitably-informed 

sampling and analyses, that are beyond the scope of this review (see, e.g., Bale and 

Hayward, 2010; Duman et al., 1991; Lee, 2010; Storey and Storey, 1991, 2013; 

Zachariassen, 1991; Zachariassen and Kristiansen, 2000; Zachariassen et al., 2004).  As we 

have discussed, the biology of the organism will determine the utility of metrics used – 

overwintering and diapausing insects, for example, often do not merit measurement of 

CTmin, so CTmin is consequently absent from studies on many overwintering insects (e.g. 

Koštál et al., 2014).  A reasonable description of cold tolerance can be made with small 
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sample size, by carefully combining individual measures of SCP, survival, and lower lethal 

temperature (e.g. Sinclair and Chown, 2005).

Choosing a single metric as a proxy for cold tolerance in a wider study can be more 

difficult.  If a more-or-less complete description of cold tolerance is available, it is a simple

matter to compare (or correlate) the possible variables, and choose a metric that is broadly 

representative of thermal tolerances and logistically convenient for the organism at hand.  

In Drosophila, for example, the CTmin provides a reasonably good proxy for cold tolerance 

(including LT50), and is thus a parsimonious choice for comparison among treatments 

(Andersen et al., 2015b).  If this information is not available, then choosing an appropriate 

metric is going to be based partially on the life history of the organism, and striking a 

useful measure may be somewhat dependent on luck.  In Table 5, we present the 

advantages and disadvantages of using each metric to facilitate choosing a particular one to

suit the aim of the study. 

8. Final remarks

Low temperatures are one of the key limiting factors for the distribution and 

performance of many terrestrial insects, and cold is a key component of overwintering 

stress in temperate, polar, and alpine habitats.  Because of this, the signal-to-noise ratio for 

measures of cold tolerance is large, providing useful information in comparing insects at 

multiple scales in time and space.  In particular, to fully understand the implications of 

climate change, there is increasing need to expand beyond growing-season studies to 
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biology in the fall and winter (Gallinat et al., 2015; Williams et al., 2015), for which low 

temperature biology is a critical component.  Thus, there is significant incentive for insect 

ecologists, both basic and applied, to measure some aspect of low temperature biology.  It 

is our hope that this review will be of some value in demystifying what are, for the most 

part, relatively straightforward methods; our advice is, of course, our own, and we hope 

that we have also provided enough reference to the literature to allow a newcomer to the 

field to reflect on, and judge for themselves, our recommendations.  

We end with the observation that the field of insect cold tolerance research has 

always been small and diverse.  However, our experience has been that it is a welcoming 

community, and that for many of its members, cold tolerance is something of a side-

interest.  Nevertheless, for many of those researchers, the fascination of insect biology at 

low temperatures means that while insect cold tolerance is not necessarily the most 

substantial part of their research portfolio, it is almost always a favourite and we therefore 

end by encouraging others to join us.
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Figure Captions

Figure 1. Classifications of insect cold tolerance. Insect cold tolerance is divided into 

three main classifications, based on survival of low temperatures and extracellular ice 

formation. Chill-susceptible insects die of cold exposure unrelated to freezing, whereas 

freeze-avoiding insects maintain their body fluids in a supercooled state and die when ice 

formation occurs (i.e. at the supercooling point). Freeze-tolerant insect are able to withstand 

extracellular ice formation.  Adapted from Lee (2010).

Figure 2. Attaching thermocouples to insects. A. For small insects, thermocouples are 

secured to the insect using a thin layer of vacuum grease. B. For medium-sized and/or active

insects, a piece of cotton can be inserted into the vessel (pipette tip, microtube) to 

immobilize the insect near the tip and secure the thermocouple in contact with the insect. C. 

For large and highly active insects, the thermocouple can be secured in contact with the 

insect using adhesive, such as adhesive putty. 

Figure 3. Exotherms from insects of different sizes. A: an exotherm from a small insect, a

c. 1.6 mg fruit fly (Drosophila suzukii). B: an exotherm from a larger insect, a c. 153 mg 

cricket (Gryllus veletis). C: an exotherm from Gryllus veletis (135 mg) preceded by an 

artifact caused by condensation in or on the chamber.   All measurements were made using 

36 AWG type-T thermocouples.
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Figure 4. Supercooling point distributions from two different species of Antarctic 

Collembola. A. A bimodal distribution of supercooling points of Cryptopygus 

cisantarcticus (Isotomidae).  B. A unimodal distribution of supercooling points of Friesea 

grisea (Neanuridae).  Redrawn from Sinclair et al., (2006a).

Figure 5. Time course of ice accumulation in adult Hemideina maori held at -5 °C. 

Redrawn after Ramløv and Westh (1993).

Figure 6. Hallmarks of cryoprotective dehydration in insects. A. Characteristically, 

insect body water content and the melting point of the insect will decrease as the ambient 

temperature decreases. Redrawn from Sinclair et al. (2003b). B. In the collembolan 

Onychiurus arcticus, the melting point of the body fluids does not change over time if the 

insect is held over water, whereas the melting point decreases over time and mimics that of 

the ambient temperature when the insect is held over ice. The dotted line represents the 

average melting point over ice and the solid line represents the ambient temperature. 

Redrawn from Holmstrup et al. (2002). 

Figure 7. Determining lethal temperatures. A. Estimate of the lower lethal temperature of 

Diamesa mendotae based on survival of subzero temperatures.  Flies were cooled to subzero

temperatures and immediately re-warmed upon reaching the designated temperature. 

Survival was recorded 24h following exposure. The lower lethal temperature was estimated 

to be -21.5 °C.  Redrawn from Bouchard et al. (2006). B. Survival of Eldana saccharina 
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larvae exposed to low temperatures. Larvae were directly exposed to temperatures ranging 

from 10 °C to -10 °C for 2 h.  Solid line represents the fitted logistic regression model. Re-

drawn from Kleynhans et al. (2014).  

Figure 8. Variation in chill-coma recovery time depending on entry (A, B) and exit (C, 

D) from chill coma. A. CCR of insects x, y, and z are equal, because equilibrium is reached 

during time spent in chill coma. B. CCR of x is less than y (and z), because the rate of entry 

into chill coma did not allow for equilibrium to be reached before recovery began. C. CCR 

of y is greater than x, despite the same time spent in chill coma, because the equilibrium of y

is lower than that of x. D. The CCR of y is greater than x because recovery occurs at a 

slower rate. Ek = membrane equilibrium potential of K+.

Figure 9. Examples of temperature & photoperiod manipulations used induce 

phenotypic plasticity in the laboratory. A. Acute exposure to low temperatures to induce a

rapid cold-hardening response. B. A 5-10 day exposure to low temperatures and short day-

length. C. Development under low temperatures and short day-length. D. Exposure to 

gradually declining temperature and photoperiod. L = light, D = dark.

Figure 10. Recommended work flow to determine cold tolerance strategies and lower 

thermal limits for investigating overwintering potential and comparisons of cold tolerance 

among groups. A. Work flow for determining cold tolerance strategy and overwintering 

potential. B. Work flow for using lower limits as a physiological comparison among groups. 
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Tables

Table 1. Cold tolerance strategies of insects as determined by survival of internal ice 

formation. Chill-susceptible insects die of injuries unrelated to freezing, freeze-avoidant 

insects die upon internal ice formation, and freeze-tolerant species are able to survive 

internal ice formation. 
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avoidant

Dead Chill-susceptible or freeze-
avoidant 

Chill-susceptible 

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

129
130



Table 2. Cold tolerance strategies of insects as determined by survival following 

exposure to the supercooling point. When half of the insects have reached their 

supercooling point during cooling, all insects are returned to warm conditions to monitor 

survival. This provides a group of insects that experienced freezing, and a group that did 

not, while maintaining exposure to approximately the same low temperature. Survival 

following freezing indicates freeze-tolerance, whereas survival until freezing is reached 

indicates freeze-avoidance. Mortality before the supercooling point is reached indicates 

chill-susceptibility. Drosophila suzukii: Jakobs et al. (2015); Reticulitermes flavipes: Clarke

et al. (2013); Perisphaeria sp.: Sinclair and Chown (2005). 

Species Drosophila suzukii Reticulitermes flavipes Perisphaeria sp.

Physiological 
state

Unfroze
n

Frozen Unfroze
n

Frozen Unfroze
n

Frozen

Survival 0 % 0 % 100 % 0 % 100 % 100 % 

Strategy Chill-susceptible Freeze-avoidant Freeze-tolerant
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Table 3. Examples of time and temperature treatments for measuring chill coma 

recovery. Time and temperature exposures often vary widely between studies and labs, and 

will depend on the low-temperature tolerance of the species of interest. 

Study Study species Time (h) Temperature

Andersen et al. (2015b) Drosophila spp. 2 -2 °C 

Findsen et al. (2013) Locusta migratoria 2  -4 °C 

(Ransberry et al., 2011) Drosophila melanogaster 6 0 °C 

Coello Alvarado et al. 
(2015)

Gryllus veletis and Gryllus 
pennsylvanicus

12 0  °C 

David et al. (2003) Drosophila subobscura (four 
populations)

16 -7 °C to + 2 °C
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Table 4. Cues and conditions for inducing phenotypic plasticity in insect cold tolerance. 

Cue/Condition Example Reference 

Shortened 
Photoperiod

Shortened photoperiod (12 hours of light, 12 hours of dark) triggers increased cold-hardiness in 
Aulacophoro nigripennis (Coleoptera: Chrysomelidae)

(Watanabe and Tanaka, 
1998) 

Changes in diet Drosophila ananassae larvae reared on carbohydrate-rich food are more cold- tolerant. 

Chymomyza costata larvae reared on a proline-rich diet are more freeze-tolerant

(Sisodia and Singh, 2012)
(Koštál et al., 2011b)

Maternal Effects The LT50 of Sitobion avenae offspring is lower if adults are reared at 10°C, compared to 20°C. (Powell and Bale, 2008)

Acute decrease 
in temperature Rapid cold 

hardening
Exposure to 5 °C for 30 min increases survival of Drosophila melanogaster at -5 °C

10 min to 1 hr exposure to 0 °C increases the freezing tolerance of Sarcophaga crassipalpis

Cooling at 0.05 °C/min or 0.1 °C/min increased survival of Drosophila melanogaster held at -7 °C 
for one hour 

(Czajka and Lee, 1990)

(Chen et al., 1987)

(Kelty and Lee, 1999)

Slow cooling

Heat shock Exposure to 34 °C for 40-80 min increases survival of Drosophila melanogaster larvae at 0 °C

Heat pre-treatment (36.5 °C, 1 hr) increased cold tolerance in larvae of Drosophila melanogaster

(Burton et al., 1988)

(Rajamohan and Sinclair, 
2008)

Acclimation 
Short (5-10 d) Halmaeusa atriceps were held at 5 °C for 7 d (Slabber and Chown, 

2005)

Slow decrease Acclimation to 15 °C for 1 wk, followed by 6 °C for 1 wk, extends survival of Drosophila 
melanogaster at 0 °C

(Koštál et al., 2011a)

Ecologically 
relevant

Lepidopteran pupae were exposed to fluctuating temperatures of 14:10 °C day: night for 2 wk, 
followed by 10:6 °C day: night for 2 wk, followed by a constant 6 °C

(Williams et al., 2012)
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Rearing 
temperature

Three generations of Sitobion avenae were reared at 10 °C (Powell and Bale, 2005)

Table 5. Requirements and considerations for measurements of cold tolerance in insects

Measurement Equipment 
requirements

Ecological relevance Constraints Advantages Typical 
sample size

Chill coma recovery
(CCR)
Section 5.2

Simple cooling 
Simple constant 
temperature

Unclear Active/mobile 
insects only
Cannot compare 
among studies

Easy to measure
Can be compared among treatment 
groups

10-20 

Critical thermal 
minimum (CTmin)
Section 5.1

Controlled cooling
Temperature 
measurement

Moderate-high: sets the
lower limit for activity 

Continual 
observation
Active/mobile 
insects only

Correlated to other measures of cold 
tolerance (e.g. in Drosophila)
Can be compared among species and 
treatments
Can be compared to ambient 
temperatures

10-20

Supercooling point
(SCP)
Section 2.3

Controlled cooling
Temperature 
measurement 

High if insect is freeze-
avoidant 
Important threshold for 
freeze-tolerant insects
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Determine lower lethal 
temperature 
Section 4.1

Investigate effects of 
plasticity on cold 

tolerance 
Section 6.5

Chill-susceptible

Freeze-tolerant

Freeze-avoidant

Determine critical thermal 
minimum

Section 5.1

Investigate chill coma 
recovery

Section 5.2

Compare cold tolerance 
among groups

(See also Table 5 for 
additional metrics)

A B

Assess cold tolerance in 
context of overwintering 

potential 
(e.g. comparisons to 
ambient temperatures)


	Western University
	Scholarship@Western
	10-1-2015

	An invitation to measure insect cold tolerance: Methods, approaches, and workflow.
	Brent J Sinclair
	Litza E Coello Alvarado
	Laura V Ferguson
	Citation of this paper:


	Abstract
	1. Introduction
	2. Technical and apparatus considerations
	2.1 Temperature control
	2.2 Temperature measurement
	2.3 Measuring Supercooling Points

	3. Cold tolerance strategy
	3.1 Determining cold tolerance strategy

	4. Lower lethal limits
	4.1 Estimating Lower lethal limits

	5. Chill Coma
	5.1 Chill coma Onset (CTmin)
	5.2 Chill Coma Recovery

	6. Detecting variation in low temperature performance among individuals, populations, seasons and treatments
	6.1 Phenotypic plasticity of low temperature biology in nature
	6.2 Rapid cold-hardening
	6.3 Acclimation, deacclimation and acclimatization
	6.4 Developmental and cross-generational plasticity
	6.5 Detecting phenotypic plasticity

	7. Suggested workflow
	8. Final remarks
	9. Acknowledgements
	10. References
	Figure Captions
	Tables

