
Western University
Scholarship@Western

Electrical and Computer Engineering Publications Electrical and Computer Engineering Department

2012

Autonomic Database Management: State of the Art
and Future Trends
Katarina Grolinger
Western University, kgroling@uwo.ca

Miriam AM Capretz
Western University

Follow this and additional works at: https://ir.lib.uwo.ca/electricalpub

Part of the Databases and Information Systems Commons, and the Software Engineering
Commons

Citation of this paper:
Grolinger, Katarina and Capretz, Miriam AM, "Autonomic Database Management: State of the Art and Future Trends" (2012).
Electrical and Computer Engineering Publications. 23.
https://ir.lib.uwo.ca/electricalpub/23

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electrical?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/electricalpub/23?utm_source=ir.lib.uwo.ca%2Felectricalpub%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages

Autonomic Database Management: State of the Art and Future Trends

Katarina Grolinger, Miriam A.M. Capretz

Department of Electrical and Computer Engineering, Faculty of Engineering

The University of Western Ontario

London, ON, Canada N6A 5B9

{kgroling, mcapretz}@uwo.ca

Abstract

In recent years, Database Management Systems

(DBMS) have increased significantly in size and
complexity, increasing the extent to which database
administration is a time-consuming and expensive task.
Database Administrator (DBA) expenses have become a
significant part of the total cost of ownership. This results
in the need to develop Autonomous Database
Management systems (ADBMS) that would manage
themselves without human intervention. Accordingly, this
paper evaluates the current state of autonomous database
systems and identifies gaps and challenges in the
achievement of fully autonomic databases. In addition to
highlighting technical challenges and gaps, we identify
one human factor, gaining the trust of DBAs, as a major
obstacle. Without human acceptance and trust, the goal of
achieving fully autonomic databases cannot be realized.

1 INTRODUCTION

The size and complexity of databases have been

increasing significantly in recent years. Innovations in
modern hardware and software have enabled systems with
hundreds of disks and numerous CPUs, thus allowing
databases to grow to previously unimaginable sizes, such
as the 8 exabytes in Oracle 11g [1]. In fact, the increase of
Internet use for activities such as online banking, trading
and shopping has increased the number of concurrent
users and caused the terabyte-sized database to become
common.

With each new database version, vendors are releasing
new features and data structures as well as table and index
types. These new features provide databases with great
strength and flexibility; however, they also cause
challenges in database management. The required
Database Administrator (DBA) skill set is growing, and
specialized database administrators, such as security or
warehouse administrators, are becoming common.
Nevertheless, database performance depends extensively
on the individual DBA’s skills.

Consequently, a major part of today’s database
expenses relate to DBAs. The solution for reducing this
cost involves autonomic computing systems that manage
themselves. “Autonomic systems are computer systems
that can regulate themselves much in the same way as our
autonomic nervous system regulates and protects our
bodies” [2]. Accordingly, Autonomic Database
Management Systems (ADBMS) should be able to self-
regulate, including the ability to self-configure and self-
optimize as well as self-protect and self-heal without

human intervention.

In recent years, there have been extensive research
efforts in the area of ADBMS, and commercial database
systems, especially Oracle 10g, IBM DB2 and Microsoft
SQL Server, have made significant steps towards
ADBMS. However, most efforts focus on specific
autonomic features rather than ADBMS as a whole. In
particular, significant advances have occurred in areas
where DBA work was repetitive and/or time consuming,
including memory management and index
recommendation. However, the long-term goal of
attaining fully autonomous DBMSs must be achieved
through many small steps.

This paper evaluates the current state of database
management system autonomy in leading commercial
databases. Specifically, the major challenges in achieving
autonomic databases and gaps in the current research are
identified. Unlike the objective of Mateen et al. [3], who
compare DB2, Oracle and SQL server and assign maturity
values to a variety of autonomic features, the goal of our
work is to observe the current state of autonomy and
identify areas where improvements are necessary.

The paper is organized in the following manner; first,
we present our view of autonomic categories in Section 2
and examine the current state of autonomy in Section 3.
Section 4 identifies challenges and technical gaps, while
Section 5 discusses human factors in ADBMS. Finally,
conclusions and future trends are presented in Section 6.

2 ADBMS REQUIREMENTS CATEGORIES

Typically, research related to ADBMS focuses on a

specific self-management feature [4][5]. However, some
works consider autonomous systems as a whole or a
significant subset of autonomous features [6][7]. In
particular, substantial advances have been made in the
area of memory optimization [1], query tuning [8] and
dynamic tuning for workloads [4] [5].

Requirements of the entire autonomous database
system are commonly grouped into four self-CHOP
categories [9]: self-configuring, self-healing, self-
optimizing and self-protecting. Furthermore, the areas of
self-organizing and self-inspecting are occasionally
treated as individual categories [10], while some authors
consider these categories as subcategories of the four self-
CHOP categories. However, the boundaries between
categories are very vague and various authors put the
same feature into different categories. For example, while
configuration parameters belong to the category of self-
configuring, they are also considered as self-optimizing,

since an optimal value must be selected for a good
database performance.

Self-knowledge, often referred to as self-inspection or
reporting, is not part of the four self-CHOP categories;
however, we consider this factor as the foundation for all
four categories. Therefore, in order to include self-
knowledge, we have modified the self-CHOP categories
to self-KCHOP; this revised depiction of ADBMS is
illustrated in Figure 1. In this figure, self-knowledge is the
centre of the system and the foundation for all other
categories. Before self-configuring or self-optimizing can
occur, the database must have self-knowledge, which
includes information about its current setup, its current
and usual workload and its available resources as well as
any other factor that could influence its performance. For
example health monitors infer about the database state by
relying on information provided by self-inspection. The
goal-driven self-management system of Holze and Ritter
[7] uses the system model as the knowledge base for the
autonomic solution.

3 AUTONOMIC FEATURES OF CURRENT

DBMS

The autonomic features of current database systems are

reviewed in the five self-KCHOP categories. The features
included in each category are not inclusive sets for the
category; rather the features comprise the representative
set that enables us to assess the overall state of autonomy
as well as to identify challenges and research gaps in
database management autonomy. The examples provided
from specific database vendors are solely for illustration
purposes and do not imply that other vendors do not have
similar features.

3.1 Self-knowledge

Self-knowledge is the knowledge that the database

possesses about itself. It is a prerequisite for autonomic
database management, as the database needs to
understand itself in order to make decisions about any of
the four self-CHOP categories.

Fig. 1: ADBMS: The five self-KCHOP

Self-knowledge is achieved through the use of monitors

that track necessary information for automatic and manual

database management, such as events, database activities,

resource usage and running processes.

For this purpose Oracle uses an Automatic Workload
Repository (AWR), which captures and stores snapshots
of performance statistics at a preset time intervals. The
Automatic Database Diagnostic Monitor (ADDM)
analyzes data in the AWR and reports the findings for the
observed time period. In addition to reporting, the ADDM
provides warnings and recommendations that are essential
for improving database performance. However, despite
the work of the ADDM, the DBA is still responsible for
the final decision of whether or not to implement the
recommended changes. A similar inspection and
notification process is used with DB2 Health Advisor.

3.2 Self-configuring

Self-configuring is the ability of the system to

configure itself in order to achieve its goal. In this
process, the system must detect changes in the
environment and adapt the configuration accordingly.
Since the adaptation needs to achieve optimal
performance, the category of self-configuring is
inseparable from self-optimization. Some of the self-
configuring features include the following:

 Memory management. In the past, memory
management required extensive human involvement
and substantial time investments. Today, most systems
have dynamic self-tuning memory management that
does not require human intervention. However, the
DBA can override automatic memory management and
manually control memory.

 Dynamic configuration parameters. All database
vendors have made the effort to make most of the
configuring parameters dynamic, thus indicating that
the database does not require restarting in order for the
parameter to take effect.

 Supporting objects, such as indexes, materialized
views, clusters and partitions are the foundation for a
good performance. Commercial database systems
provide recommendations through advisors. Nearly all
of these systems include indexes, materialized views
and SQL profiles, while only some of them, such as
DB2 Design Advisor or Oracle Partition Advisor,
include advice for clustering and partitioning. Oracle
11g includes Automatic SQL Tuning, which, in
addition to making recommendations, also implements
changes [8]. However, this ability is limited to the SQL
Profile.

 Self-organizing entails the ability of the database to
restructure its objects for maintaining optimal
performance. Specifically, this feature deals with
fragmentation problems. In the past, self-organization
was considered as a separate category [10], since it
required significant human effort. However, most

Self-

configuration
Self-

optimization

Self-

healing

Self-

protection

Self-

knowledge

Autonomous
database

current database systems have managed to decrease
fragmentation issues by modifying the way in which
they handle space allocation and de-allocation.

 Storage advisors reduce DBA involvement in the
process of specifying storage for database objects. For
instance, a highly autonomic storage advisor is Oracle
Automatic Storage Management (ASM). The DBA
only specifies the disks available for the storage, while
ASM decides how to split database objects between
disks and determines which objects are stored in which
places, thus ensuring optimal storage performance.
Storage management is sometimes considered part of
self-organization, as it deals with issues concerning
space.

3.3 Self-optimizing

Self-optimization involves the ability of the database to

configure and adapt itself in order to attain optimal
performance for the current environment, workload and
available resources. This ability is the performance tuning
category, and it includes the following features:

 The Query Optimizer determines the optimal query
execution plan. Although this characteristic was the
first truly autonomic database feature, there are still
significant research efforts in this area [11], as an
efficient query plan is essential for a strong database
performance.

 Statistics management. The Query Optimizer requires
up to date statistics to make decisions about optimal
query execution plans. Statistics collections in most
DBMS are fully automated.

 Resource-intensive process control. Processes such as
data loads, backups and batch processes require
significant resources, which may decrease the speed of
production processes. DB2 manages its process control
through Utility Throttling, which occurs when the DBA
specifies the extent to which the utility can impact
database performance. Oracle uses Resource Plans,
where the DBA assigns priorities for different
consumer groups.

 Workload management systems, sometimes referred to
as query management, control the flow of queries into
the database. These systems strive for a more efficient
allocation of system resources by assigning different
priorities to queries based on business requirements,
limiting resources for query categories and tracking
runaway queries [4]. The DB2 Query Patroller (DB2
QP) is a DB2 workload manager, the SQL server uses
Query Governor and Oracle has Resource Manager.

 Task scheduling is performed in Oracle and DB2
through windows that represent time periods.
Specifically, the DBA assigns a task for the time
window, and the task is executed when that window is
open. For instance, in most systems, the highest load
occurs during the day, so the window of time occurs
during the night and the tasks assigned to it are
executed. Today, with an increasing emphasis on a

twenty-four hour society, the maintenance windows are
disappearing, so it is becoming more difficult to
perform maintenance or batch operations.

3.4 Self-Healing

Self-healing involves the database’s ability to recover

itself after failures. In particular, the database needs to
acknowledge the occurrence of the failure, determine
whether a full or incremental recovery is needed,
recognize the resources that are available for the recovery
and perform the recovery. The self-healing features
include:

 Automatic Restore. The DBMS searches through
backup files and restores the database as needed. This
feature is initiated and usually supervised by DBA.

 Recovery of selected database objects. The database’s
ability to recover only certain objects shortens the
recovery process increasing availability. For example,
Oracle 11g can recover on the table level or even on the
database block level.

 Recovery Advisors/Experts assist DBAs in recovering
the database in easier and faster ways.

 Although standby databases are not a true self-healing
feature, they enable the DBMS to continue running
during failure. Specifically, a standby database is a
copy of the main database, which enables the user to
utilize this substitute database in the event of failure.

 The grid environment alleviates recovery concerns. In
the Oracle Real Application Clusters (RAC)
environment, a single database runs on several database
servers, enabling a single server to be taken offline
while the database remains functional.

 Health Monitoring Utilities monitor the database
activity, and if an unwanted situation occurs or is close
to occurring, the utility triggers an alarm. These utilities
are known by different names: in DB2, the utility is
called a Health Monitor, and in Oracle, it is an
Automatic Database Diagnostic Monitor (ADDM). In
addition to triggering alerts in a variety of forms,
including email or pager, monitors can provide
recommendations for improvements.

3.5 Self-protecting

A Self-protecting database can protect itself from

unwanted activity and includes:

 Authentication mechanisms that prevent unauthorized
access to the database.

 Privilege control. Each user can only access the parts of
the database necessary for performing certain tasks.
Specifically, the level of control can be at the table or
row level. The Oracle 11g Virtual Private Database
feature uses policies for fine-grained access control.

 Encryption. The database manages the encryption and
decryption of data. Existing databases or their parts can
be encrypted without the necessity of changing the

application. Existing applications still see decrypted
data, as the data is transparently decrypted by the
database.

4 CHALLENGES AND GAPS IN AUTONOMIC

DATABASE SYSTEMS

The high level of complexity in database systems and

the numerous features of databases complicate the task of
achieving database autonomy. With each new database
version, every vendor releases new features that are often
intended for specific situations. For example, Oracle 11g
offers special functionalities for medical imaging and
geospatial data. These highly specific and less frequently
used features are not significant for database autonomy
and efforts towards autonomy focus on the features that
are commonly used and/or require extensive DBA time.
Thus, some highly specialized features will remain
manual, as the efforts and costs of automating these
features may outweigh the benefits of autonomy.

In the following subsections, we discuss the ADBMS
features, focusing on their limitations, advantages,
disadvantages and areas for future improvement.

4.1 Challenges of Self-knowledge

The quality of self-optimization and self-configuration

depends on the quantity of the collected information.
More detailed monitoring enables better optimization, but
it also requires more resources. The way in which the
monitoring can be performed is limited by the need to
monitor without an impact on database performance.
Specifically, the monitoring must be done within the
database engine or it will utilize significant resources.

Generic approaches that are designed to be used with a
variety of database systems [6] and implemented as
independent entities require the monitoring to be
performed outside of the DBMS engine. Since these
approaches require significant resources, such approaches
have not been accepted in practice. The SQLCM
approach [12] provides a framework for monitoring from
within database engines, thereby decreasing the need for
resources. However, although the SQLCM framework is
generic, it requires a separate implementation for each
database engine.

Database vendors have implemented monitoring within
database engines where there is fast and easy access to
monitored information. In this case, information in the
memory is accessed directly and the beginning and end of
events can be trapped from within the database code.
Nevertheless, if information pooling, writing and
analyzing is performed frequently and extensive data is
collected and analyzed, a significant database load can be
incurred. To alleviate this load, vendors provide different
monitoring levels: a typical monitoring level, which is
used in production, and an extensive monitoring level,
which is intended for database tuning. However, since

tuning often needs to be performed on the production
system during regular working hours, extensive
monitoring may not be possible.

SQL Anywhere utilized an approach where a database
designed for embedded systems was installed along with
the application [13]. An embedded database requires little
or no human maintenance; these databases are typically
smaller databases, and, as such, they do not need the
flexibility and advanced functionalities of larger
databases. In addition, embedded databases usually do not
have a high number of users, which further simplifies the
administration processes. By sacrificing functionality and
flexibility, SQL Anywhere is able to achieve high
autonomy. However, due to its limitations, this approach
is only useful for a limited set of applications.

4.2 Challenges of Self-configuring

A self-configuring feature that requires little DBA

involvement is memory management. In the past, memory
management was an area where DBAs spent significant
time in properly configuring the database, and once
memory was configured, it required DBA involvement
when workload changes occurred. Today, most systems
do not require DBA involvement in memory tuning.
However, there are some exceptions to this rule, and the
DBA is still able to manually tune memory if needed.
Database vendors continue to work on improving memory
management algorithms.

Significant advances have also been made in regards to
supporting database objects, especially indexes and
materialized views. All major database systems have
advisors that provide recommendations for indexes,
materialized views and SQL profiles. However, there are
not as many advances for the support of partitioning and
clustering. Because of the wide range of different
partitioning methods, such as range, hash, list, range-hash
and range-list, as well as clustering types, such as index,
hash, and sorted hash, it is difficult to achieve autonomy.
At the same time, with the growth of database sizes,
clustering and partition have become common and DBAs
spend significant time in determining the appropriate
structures.

Automatic Storage Management (ASM), which
completely assumes the burden of storage management, is
available for most major database systems. However,
ASMs contain drawbacks; for example, Oracle ASM uses
a separate ASM database to manage storage information.
Although ASM requires minimal management, the
presence of an additional database requiring management
presents another burden on the DBA. Furthermore, ASM
database is another point of failure: if the ASM database
fails the production DB will fail as well. Also, when the
standby database is used, ASM requires the standby
database as well. These drawbacks of ASM have resulted
is its limited application in practice.

4.3 Challenges of Self-optimization

The first truly autonomic feature is the Query

Optimizer, whose quality has a significant impact on the
database performance. Thus, although the query optimizer
has been in existence for a long time and it is fully
autonomic, efforts on its improvements continue.
Specifically, the releases of new database structures and
data types require adjustments to the query optimizer.

The control of resource-intensive processes is
performed using a variety of approaches. The selection of
a simple approach increases the level of autonomy but
decreases the efficiency and flexibility. Thus, efficient
approaches currently require significant DBA
involvement. Consequently, current efforts aim to
simplify the control of resource intensive processes while
maintaining flexibility and efficiency.

The scheduling of administrative tasks has become
challenging with the 24/7 systems, which have
continually high workloads with few low-workload
periods during which maintenance operations would
typically occur. As a result, maintenance operations are
treated similarly to other resource-intensive operations,
where their resource usage is controlled using throttling or
a similar utility. Additionally, these 24/7 systems are
expected to result in the increased use of auxiliary,
standby databases during the maintenance of the main
database.

4.4 Challenges of Self-healing

The only area of self-healing that received significant

attention is the aspect of health monitoring and
notification. In this area, database recovery is not
considered a major burden on database administrators
because it is not a common, repetitive task. The use of
standby databases and grid technology enables a system
to continue running in case of database failures, thus
relieving the pressure on the DBA to recover the database
quickly.

Health monitors typically trigger alerts when unwanted
situations arise. The challenge in this process occurs in
deciding when the alert is needed. Some alerts rely on
thresholds, where the alert is triggered when a certain
threshold is reached. The drawback of the threshold
approach involves the DBA’s extensive work in
establishing thresholds. While default thresholds exist,
they are only applicable in limited situations. In addition,
other alerts rely on the comparison of the current database
state with the baseline, which is established by the DBA.
However, baselines do not require as much DBA
involvement as do threshold alerts. During satisfactory
database operation, the DBA tells the database that this
state is their required operation level, or, the baseline.
This approach contains the drawback of requiring the
database to be in a satisfactory performance state for the
baseline to be set. While this approach works in situations

when the database is running as required and DBA is
trying to keep it in such a state, it is problematic when the
database is in its initial stages and the normal operation
level is not known.

4.5 Challenges of Self-protecting

The feature of self-protecting concentrates on

preventing access to unauthorized users. Once a user has
access to the database, there is a little preventing him/her
from doing major harm. The attacks from within the
database can be malicious, which occur when the user
intentionally tries to harm the database, or non-malicious,
which happens when the user unintentionally harms the
database due to user error. Users, including DBAs and
developers, can make a mistake that can compromise data
or monopolize resources. Specifically, they can initiate a
process that slows down the database or they can change
thousands of records by error. Attacks from within the
database, whether intentional or unintentional, are
difficult to recognize, as it is challenging to distinguish if
a particular query is an attack or is merely a resource-
intensive operation. Intrusion detection research attempts
to identify actions that can compromise the
confidentiality, integrity or availability of a resource.

While Oracle flashback technology can help the
database to recover from some errors, it cannot prevent
such errors from happening. DBAs try to reduce the harm
that users can inflict upon the database by limiting access
and resources; however, this process is intensive with
regards to human involvement, and quite often, it does not
even truly protect the database. In fact, the effort to limit
access and resources can even cause problems, especially
when the user’s work requires more resources than the
DBA anticipated.

5 HUMAN FACTOR IN ADBMS

While the human factor is an essential part of

advancing toward autonomic databases, it is frequently
not considered. Current commercial databases provide
powerful tools to help DBAs in the administration process
and a variety of autonomic or semi-autonomic features.

However, DBAs frequently choose not to use these
features, especially in the case of legacy systems. When
legacy databases were first developed, most autonomic
features did not exist. Subsequent upgrades to new
database versions attempted to preserve as much of the
current setup as possible with the belief that extensive
changes may degrade performance. Even with newer
systems, DBAs are extremely cautious with their
decisions to use the latest autonomic features. For
instance, rather than implementing a feature in its first
release, they might wait for subsequent releases,
expecting any potential issues to be resolved by that time.
DBAs are more accepting of self-knowledge features, as
they represent a smaller risk than self-configuring or self-

optimizing features, which change the database
environment and potentially cause significant damage to
the database.

This resentment toward new features is much stronger
in the database field than it is in software development.
DBAs feel responsible for the database, and they consider
stability and reliability more important than the
availability of new features or the potential for
performance improvement. Sometimes, DBAs prefer to
use older established methods rather than the newer and
more efficient ones, if they do not completely trust the
new methods.

Therefore, one of the main challenges in the process
toward autonomous databases involves gaining the trust
of DBAs. In addition to providing autonomic features,
efforts need to be made for facilitating the acceptance of
those new features. Belknap et al. [8] consider reporting
and GUI support even more essential for autonomic
features than for manual ones. Specifically, these authors
believe that a lack of clarity in the features’ presentation
will create a lack of trust and the feature will be disabled.
Hence, presentation clarity is a step towards gaining the
trust of DBAs; however, additional research must be
conducted in order to identify other ways for building
trust. Autonomic features may be accompanied with a
variety of built-in safeguards, and consequently, efforts
should ensure that DBAs are educated about the
safeguards as well as the potential benefits of the feature.

One way of gaining the DBAs’ trust involves providing
the ability to review scripts semi-autonomic features
provide before their final execution. When database
vendors release powerful GUI tools for database
management, DBAs are initially unclear about how the
database responds to their GUI clicks. Therefore, database
vendors provide DBAs with an opportunity to review the
script GUI creates and, if needed, to manually modify the
script before its execution.

6 CONCLUSIONS AND FUTURE TRENDS

The size and complexity of database systems have

being growing significantly during the last decade, and it
is expected that these factors will be increasing even more
rapidly in the near future. Database administration is
becoming more complex and time-consuming, creating
the necessity for autonomous database systems. Even
though significant advances have been made towards
autonomous databases, further improvements are needed,
especially in the following areas:

 New approaches are necessary for facilitating the
development of trust in using autonomic feature in their
early releases. Without this step, the progress towards
achieving highly autonomic databases will be slowed
down.

 Since advisors recommend a variety of solutions, future
efforts need to implement these solutions.

 Although a variety of advisors and monitors exist, their
integration is limited. Thus, further integration is
necessary for the provision of comprehensive
autonomic solutions.

 Advances in monitoring are necessary for enabling
extensive data collection without an impact on
performance.
The increasing trend towards database autonomy will

not make DBAs obsolete. Rather, it will save time for
DBAs, thus enabling them to handle different tasks,
resulting in better, faster and more reliable systems.

7 REFERENCES

[1] Oracle Database 11g (11.2) Documentation,
http://www.oracle.com/technetwork/database/enterprise-
edition/documentation/index.html, 2009.

[2] G. Rabinovitch, D. Wiese, "Non-Linear Optimization of
Performance Functions for Autonomic Database Performance
Tuning", Proceedings of the Third International Conference on
Autonomic and Autonomous Systems, pp. 48-54, 2007.

[3] A. Mateen, B. Raza, M. Sher, M.M. Awais, T. Hussain, "Evolution
of Autonomic Database Management Systems", In the
Proceedings of the 2nd International Conference on Computer and
Automation Engineering, pp. 33-37, 2010.

[4] B. Niu, P. Martin, W. Powley. , Towards Autonomic Workload
Management in DBMSs, Journal of Database Management,
Volume 20, Issue 3, pp. 1-17, 2009.

[5] S. Narayanan, F. Waas, "Dynamic Prioritization of Database
Queries", Proceedings of 27th International Conference on Data
Engineering, pp. 1232-1241, 2011.

[6] S. Ramanujam, M.A.M. Capretz, "Design of a Multi-Agent System
for Autonomous Database Administration", Proceedings of
Canadian Conference on Electrical and Computer Engineering,
Volume 2, pp. 1167-1170, 2004.

[7] M. Holze, N. Rittera. , System Models for Goal-Driven Self-
Management in Autonomic Databases, Data & Knowledge
Engineering, Volume 70, Issue 8, pp. 685-701, 2011.

[8] P. Belknap, B. Dageville, K. Dias, K. Yagoub, "Self-Tuning for
SQL Performance in Oracle Database 11g", Proceeding of IEEE
25th International Conference on Data Engineering, pp. 1694-
1700, 2009.

[9] C.M. Garcia-Arellano, S.S. Lightstone, G.M. Lohman, V. Markl,
A.J. Storm. , Autonomic Features of the IBM DB2 Universal
Database for Linux, UNIX, and Windows, IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews,
Volume 36, Issue 3, pp. 365-376, 2006.

[10] S. Elnaffar, W. Powley, D. Benoit, P. Martin, "Today's DBMSs:
How Autonomic are they", Proceedings of the 14th International
Workshop on Database and Expert Systems Applications, pp. 651-
655, 2003.

[11] B. Raza, A. Mateen, M. Sher, M.M. Awais, T. Hussain,
"Autonomic View of Query Optimizers in Database Management
Systems", Proceedings of Eighth ACIS International Conference
on Software Engineering Research, Management and Applications,
pp. 3-8, 2010.

[12] S. Chaudhuri, A.C. Konig, V. Narasayya, "SQLCM: A Continuous
Monitoring Framework for Relational Database Engines",
Proceedings of the 20th International Conference on Data
Engineering, pp. 473-484, 2004.

[13] I.T. Bowman, P. Bumbulis, D. Farrar, A.K. Goel, B. Lucier, A.
Nica, et al., "SQL Anywhere: A Holistic Approach to Database
Self-Management", Proceeding of IEEE 23rd International
Conference on Data Engineering Workshop, pp. 414-423, 2007.

http://www.oracle.com/technetwork/database/enterprise-edition/documentation/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/documentation/index.html

	Western University
	Scholarship@Western
	2012

	Autonomic Database Management: State of the Art and Future Trends
	Katarina Grolinger
	Miriam AM Capretz
	Citation of this paper:

	-

