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Abstract
Given a regular matroid M and a map λ : E(M)→ N, we construct a regular matroid Mλ. Then
we study the distribution of the p-torsion of the Jacobian groups of the family {Mλ}λ∈NE(M) . We
approach the problem by parameterizing the Jacobian groups of this family with nontrivial
p-torsion by the Fp-rational points of the configuration hypersurface associated to M. In this
way, we reduce the problem to counting points over finite fields. As a result, we obtain a closed
formula for the proportion of these groups with nontrivial p-torsion as well as some estimates.
In addition, we show that the Jacobian groups in this family with nontrivial p-torsion appear
with frequency close to 1/p, provided M is irreducible.

Keywords: Arithmetic statistics, regular matroid, series extension, Jacobian group, torsion,
configuration polynomial, configuration hypersurface, finite field, rational point, density.
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Summary for Lay Audience
Characterizing a mathematical property or object often proves to be an arduous task. A more
manageable approach is to consider a collection of mathematical objects of certain type and
then study the variation of a particular property within that collection. More precisely, one looks
for the proportion of members in the collection having said property. These techniques have
proved to be fruitful in arithmetic statistics and it is in this field that our problem lies.

In this work, we deal with matroids, which are combinatorial structures that were created
to study the abstract properties of linear independence. Starting with a “base” regular matroid,
we construct a collection of regular matroids. To each regular matroid, we associate a finite
abelian group, which is, in particular, a finite set. Understanding the structure of this group is
important for many areas of mathematics, yet, little is known. One natural step in this direction
is to establish when the Jacobian group of a regular matroid has p-torsion, that is, when is its
size divisible by p? In this thesis, we determine the proportion of members (in the collection
under consideration) having Jacobian group with non-trivial p-torsion. We conclude that this
proportion is close to 1/p when the base matroid is connected.
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Introduction

The problem addressed in this dissertation belongs to the field of arithmetic statistics, a branch
of number theory that is concerned with the distribution of invariants of arithmetic objects.
Questions on the statistical behavior of ray class groups, distribution of the zeros of L-functions
of number fields and function fields, distribution of the rank of elliptic curves, and distribution
of the Sylow p-subgroups of Jacobian groups of curves over finite fields, among others, are of
interest in this field.

The work of Henri Cohen and Hendrik W. Lenstra on heuristics on class groups of number
fields [12] along with the work of Eduardo Friedman and Lawrence C. Washington [16], which
addressed the function field case, marked the beginning of the field of arithmetic statistics. In
these papers, heuristics were established to explain statistical observations about class groups of
imaginary quadratic fields and divisor class groups of curves over a finite field. A consequence
of these heuristics is that a finite abelian group appears as a class group of an imaginary quadratic
field with frequency inversely proportional to the order of its automorphism group. Moreover,
this set of heuristics predict that for an odd prime p the proportion of imaginary quadratic fields
with class number divisible by p should be

1 −
∞∏

n=1

(1 − p−n).

One can view a finite graph as a discrete analogue of a Riemann surface (or an algebraic
curve over a finite field), and a remarkable number of properties of Riemann surfaces carry over
to graphs [3, 4, 20]. In particular, the Jacobian of a curve has a graph-theoretic analogue known
as the Jacobian group of a graph (or sandpile group or critical group, or chip-firing group). The
Jacobian group of a graph G, denoted Jac(G), arises in many contexts of mathematics such as
arithmetic geometry (for instance, the group of components of the Néron model of a Jacobian
of a curve over a local field is given as a Jacobian of a graph [10, 22]), combinatorics, and
statistical physics. We refer the reader to [23] for a discussion of these and other connections.
Consequently, understanding the structure of these groups is of interest; however, very little is
known. So far, there are very few families of graphs for which the Jacobian groups have been
described. Hence, one is naturally led to study Cohen-Lenstra Heuristics on graphs.

Some distributions of these groups have been considered. In [23], Lorenzini approaches
the question “How often is Jac(G) cyclic?” by studying some families of random graphs.
Along these lines, Clancy, Kaplan, Leake, Payne, and Wood [11] observed that the Jacobian
of a random graph is cyclic with probability slightly greater than 0.7935, agreeing with the
Cohen–Lenstra heuristics. In [31], Wood proved that the probability of a finite abelian group
being isomorphic to the Jacobian of a random graph is zero; yet, the frequency with which a

1



2 Introduction

finite abelian p-group Γ appears as the Sylow p-subgroup of the Jacobian of a random graph is
proportional to 1/(#Γ · #Aut(Γ)). Only random graphs have been explored so far.

The Jacobian group of a graph admits a generalization to regular matroids. This class of
matroids encompasses the class of cycle matroids, that is, the matroids associated to finite
undirected graphs. Moreover, their Jacobian groups coincide with the Jacobian groups of
their defining graphs. Motivated by the Cohen-Lenstra heuristics, in this dissertation, we
determine for a prime number p the distribution of the p-torsion of Jacobian groups in families
of regular matroids; to the best of this author’s knowledge, this is the first work that addresses
this problem. Starting with a “base” regular matroid M, and then applying extension operations
to M parameterized by maps λ : E(M)→ N of NE(M), where E(M) is the ground set of M, we
construct a collection of regular matroids {Mλ}λ∈NE(G) . We describe the variation of the p-torsion
of the Jacobian groups of this family.

Our first main result is the reduction of the problem to counting points over finite fields on
certain hypersurfaces. More precisely, if ΨM is the configuration polynomial of M and XM is
the hypersurface cut out by it over Fp, then we have the following result.

Theorem. Suppose that M is a regular matroid with #E(M) = n. If ΨM , 1, then

lim
m→∞

#{λ ∈ NE(M) : ht(λ) ≤ m, p | # Jac(Mλ)}
#{λ ∈ NE(M) : ht(λ) ≤ m}

=
(p − 1)#XM(Fp) + 1
(p − 1)#Pn−1

Fp
(Fp) + 1

.

The limit above is completely determined if we know the quantity #X(Fp). So, thinking of
#XM(Fp) as a function of p, it is of interest to determine whether there is a polynomial relation
for the values #X(Fp) as p varies. More specifically, consider the function #XM : q→ #XM(Fq)
defined on the set of prime powers q, then one is interested in knowing whether #XM ∈ Z[q].
In 1997, Kontsevich conjectured the following: for any graph G, #XM(G) ∈ Z[q], where M(G)
is the cycle matroid of G. In [27], Stembridge provided evidence in support of Kontsevich’s
conjecture by showing that the conjecture held for all graphs containing up to 12 edges. Yet,
Belkale and Brosnan [6] disproved the conjecture; in fact, they showed that these functions
can be rather general. In this fashion, the best one can hope for is to be able to find bounds for
#XM(Fq) independent of q or describe the matroids for which #XM ∈ Z[q]. In this thesis, we
provide an estimate for #XM(Fq). More concretely, we prove:

Theorem. If F ∈ Fq[T0, . . . ,Tn] is an irreducible homogeneous polynomial that is linear in one
of its variables, and XF ⊆ P

n
Fq

is the hypersurface cut out by F, then

#XF(Fq) = qn−1 + O(qn−2).

The implied constant is computable and depends only on deg F and dimPn
Fq

.

This result improves the estimates given in [17, 19] for these types of hypersurfaces when
their singular loci have codimension at most 3 (which is the case for the hypersurfaces XM, see
[14]). Finally, we establish the following result.

Theorem. Let p be a prime number. If M is an irreducible (i.e., connected) regular matroid,
then

lim
m→∞

#{λ ∈ NE(M) : ht(λ) ≤ m, p | # Jac(Mλ)}
#{λ ∈ NE(M) : ht(λ) ≤ m}

=
1
p

+ O
(

1
p2

)
.

The implied constant is computable and depends only on r(M) and #E(M).



3

We now discuss the structure of the document. In the first chapter we set the bases for graphs
and regular matroids. The key result of this chapter is Theorem 1.5.2, which states that a regular
matroid can be represented by a totally unimodular matrix. This result is fundamental for the
definition of the Jacobian group.

Chapter 2 introduces the Jacobian group of a regular matroid via lattices. Thus, an overview
of lattice theory is provided in the first subsection of Section 2.1. We generalize a result
(Theorem 2.1.13) of [2], which allows us to deduce different presentations for the Jacobian
group of a regular matroid. These presentations are used to prove the matroid version of
Kirchhoff’s matrix-tree theorem (Theorem 2.1.29) and that the Jacobian of a regular matroid
and its dual coincide (Corollary 2.1.25). In Section 2.2, the family of matroids {Mλ}λ∈NE(M) is
defined. We prove some properties about these new matroids, being the most relevant that
these are regular matroids as well (Proposition 2.2.10). Chapter 2 ends with the definition of
a configuration polynomial, which will be the defining equation of the hypersurface (called
configuration hypersurface) parameterizing the members of our family having Jacobian with
non-trivial p-torsion. This polynomial is homogeneous and linear in each of its variables.

Chapter 3 is the last part of the thesis. The first section is concerned with the geometry
of the hypersurface XF cut out by a homogeneous polynomial F that is linear in one of its
variables. We use tools of elimination theory to establish morphisms from some distinguished
subschemes of XF and lower dimensional subschemes of projective space (Propositions 3.1.1
and 3.1.3). The second section is about estimating #XF(k), where k is a finite field. The results
from the first section imply a disjoint union decomposition for XF(k), which is recorded in
Proposition 3.2.1 and Corollary 3.2.2; combined with Corollary 3.3 in [13], they yield lower
and upper bounds for #XF(k) (Theorem 3.2.4). In the third section, we define the notion of
density for a subset of Nn. Since the family {Mλ}λ∈NE(M) is parameterized by elements of Nn, we
show that the set of parameters for which Jac(Mλ) has non-trivial p-torsion is positive, in fact,
we give a formula for this density in Theorem 3.3.4, which is given in terms of the size of the
set of the Fp-rational points on the configuration hypersurface associated to M. We conclude
the thesis with an estimate for the formula given in the preceding theorem in the case that M is
irreducible, from which it follows that the Jacobian groups of the family {Mλ}λ∈NE(M) appear with
non-trivial p-torsion with frequency close to 1/p.



Chapter 1

Matroids

In this chapter, we cover the relevant background that is required for the development of the
main results in this thesis. The material presented in the first section follows [9], while the
remaining sections of this chapter follow [26].

1.1 Graph Theory
Graph theory provides the groundwork for many ideas in matroid theory, and will be used
frequently throughout this thesis. For the sake of completeness, in this section, we present a
brief introduction to graph theory.

1.1.1 Basic definitions and examples
Definition 1.1.1. A graph G is given by a triple (V, E, ep) where V and E are finite sets, called
respectively the set of vertices of G and the set of edges of G, and

ep : E → V (2)

is a map called the endpoint map, where V (2) is the set of subsets of V whose cardinality is 1 or
2.

When there is no confusion, we simply denote the graph G = (V, E, ep) by G and the sets V ,
E will always be understood as the vertex set and the edge set of G.

Definition 1.1.2. Let G be a graph.

(a) A loop is an edge e ∈ E such that # ep(e) = 1.

(b) Two edges e, f ∈ E are called parallel if ep(e) = ep( f ).

(c) Two vertices v,w ∈ V are called adjacent if v,w ∈ ep(e) for some e ∈ E.

(d) If e ∈ E is an edge and v ∈ ep(e), then we say that e is incident to v.

(e) If v,w ∈ V are vertices, then define E(v,w) := {e ∈ E : v,w ∈ ep(e)}. If v = w, then
E(v) := E(v, v).

4



1.1. Graph Theory 5

( f ) The valency of a vertex v is val(v) := #E(v).

Example 1.1.3 (Empty graph). The empty graph, denoted ∅, is the graph defined by the triple
(∅, ∅, ∅

ep
→ ∅).

Example 1.1.4 (Path graph). Let n ∈ N0. The n-path graph, denoted by Pathn, is the graph with
vertex set V = {0, . . . , n}, edge set E = {e1, . . . , en}, and endpoint map given by ep(ei) = {i− 1, i}
for all i ∈ {1, . . . , n}. When n = 0, Path0 is a graph with a single vertex and no edges.

0 1 2 3 4

Figure 1.1: Path4.

Example 1.1.5 (Banana graph). Let n ∈ N. The banana graph on n edges is the graph with two
vertices and n edges adjacent to both.

Figure 1.2: Banana graph on 4 edges.

Example 1.1.6 (Cycle graph). Let n ∈ N. The n-cycle graph, denoted by Cyclen, is the graph
with vertex set V = Z/nZ, edge set E = {e1, . . . , en}, and endpoint map defined by the rule
ep(ei+1) = {i, i + 1} for all i ∈ Z/nZ. When n = 1, Cycle1 is a graph with a single vertex and a
single edge.

0
6

5

4

3
2

1

Figure 1.3: Cycle7.

Example 1.1.7 (Complete graph). Let n ∈ N. The complete graph, denoted by Kn, is the graph
with vertex set V = {1, . . . , n}, edge set E = {(i, j) ∈ V × V : i < j}, and endpoint map given by
ep(i, j) = {i, j}.



6 Chapter 1. Matroids

1

2

3

4 5

Figure 1.4: K5.

Definition 1.1.8. Let G be a graph. A subgraph of G is a graph H = (V(H), E(H), epH)
satisfying:

(a) V(H) ⊆ V(G), E(H) ⊆ E(G); and

(b) epH(e) = epG(e), for all e ∈ E(H).

If H is a subgraph of G, then we write H ⊆ G.

Definition 1.1.9. If G is a graph and X ⊆ E, then the induced subgraph by X, denoted G[X], is
the subgraph of G with vertex set V(G[X]) := {v ∈ V(G) : v ∈ ep(e) for some e ∈ X} and edge
set E(G[X]) := X.

Definition 1.1.10. Let G = (V(G), E(G), epG) and H = (V(H), E(H), epH) be two graphs. A
morphism from G to H is a pair ( fV , fE), where fV : V(G)→ V(H) and fE : E(G)→ E(H) are
maps between the vertex sets and edge sets, respectively, such that the diagram

E(G) E(H)

V (2)
G V (2)

H

fE

epG epH

is commutative. (The bottom map is defined by {v,w} 7→ { fV(v), fV(w)}).

If ( fV , fE) : G → H is a morphism of graphs, we will simply refer to it as f : G → H
whenever there is no danger of confusion.

Remark 1.1.11.

(a) We can compose morphisms of graphs in the obvious way. If f : G → H and g : H → K
are morphisms of graphs, we define g ◦ f = (gV ◦ fV , gE ◦ fE), which gives a morphism
from G to K.

(b) If G is a graph, then the pair idG := (idV , idE) is a morphism from G to itself, which
verifies f ◦ idG = f and idG ◦ g = g for any morphisms f : G → H, g : K → G.

(c) Part (a) and (b) show that graphs together with morphisms form a category.



1.1. Graph Theory 7

Proposition 1.1.12. Let f : G → H be a morphism of graphs. Then f is an isomorphism if and
only if fV and fE are bijective.

Definition 1.1.13. Let G be a graph. A subgraph C ⊆ G is called a cycle if it is isomorphic to
Cyclen for some n ∈ N.

Definition 1.1.14. Let S be a set and ≡S be an equivalence relation on S . We say that ≡S is
discrete if and only if the canonical quotient map πS : S → S/≡S is bijective.

If S is a set and ≡S is an equivalence relation on S , then we denote the quotient S/≡S by S
and the equivalence class of an element s of S by s̄.

Definition 1.1.15. Let G be a graph. Let ≡V and ≡E be equivalence relations on V and E,
respectively. The pair (≡V ,≡E) is said to be compatible if and only if

e ≡E f =⇒ πV(ep(e)) = πV(ep( f )).

Definition 1.1.16. Let G be a graph and let (≡V ,≡E) be a compatible pair. The quotient graph
of G by (≡V ,≡E) is the graph, denoted by G, with vertex set V , edge set E, and endpoint map
given by epG(ē) = πV(ep(e)).

Remark 1.1.17. The pair (πV , πE) gives a morphism from G to G.

Definition 1.1.18. Let G be a graph and let X ⊆ E.

(a) We define the deletion of X from G to be the subgraph G − X := (V(G), E(G)− X). When
X = {e} we write G\e := G − {e}.

(b) We define the contraction of X to be the graph G/X := (G − X)/(≡V ,≡E), where ≡E is the
discrete relation on E(G − X) and ≡V is the smallest equivalence relation on V(G − X)
satisfying that the endpoints of each e ∈ X are in the same equivalence class. When
X = {e} we write G/e := G/{e}.

e

G G\e G/e

Figure 1.5: Example of deletion and contraction operations.

Definition 1.1.19. The disjoint union (or coproduct) of the graphs {Gi = (Vi, Ei, epi)}
n
i=1 is the

graph with vertex set
⊔n

i=1 Vi, edge set
⊔n

i=1 Ei, and endpoint map
⊔n

i=1 epi. We denote this graph
by

⊔n
i=1 Gi.



8 Chapter 1. Matroids

Definition 1.1.20. A pointed graph is a pair (G, v) where G is a graph and v ∈ V(G).

Let (G, v) and (H,w) be two pointed graphs. Define G ∨ H := (G t H)/(≡V ,≡E), where ≡E

is the discrete equivalence relation on the edge set of G t H and ≡V is the smallest equivalence
relation on V(G) t V(H) satisfying v ≡V w.

Definition 1.1.21. The pointed graph (G∨H, v̄) is called the wedge product of (G, v) and (H,w).

Example 1.1.22. Let n ≥ 1 be an integer. Suppose n = k + l for some nonnegative integers k, l.
Then (Pathn, k) is isomorphic to (Pathk, k) ∨ (Pathl, 0).

Remark 1.1.23. If G is a graph isomorphic to a graph H ∨ K for some graphs H,K, then G
has subgraphs H′,K′ isomorphic to H and K respectively, satisfying V(H′) ∪ V(K′) = V(G),
E(H′) ∪ E(K′) = E(G), V(H′) ∩ V(K′) = {v}, and E(H′) ∩ E(K′) = ∅. In this case, we
obtain (G, v) = (K′, v) ∨ (H′, v). Conversely, If G contains subgraphs H and K satisfying
V(H) ∪ V(K) = V(G), E(H) ∪ E(K) = E(G), V(H) ∩ V(K) = {v}, and E(H) ∩ E(K) = ∅, then
(G, v) = (K, v) ∨ (H, v).

1.1.2 Connectivity
Definition 1.1.24. Let G be a graph and let v,w ∈ V . A path from v to w is a morphism
f : Pathn → G satisfying f (0) = v and f (n) = w.

Proposition 1.1.25. Let G be a graph. Define the following relation on V :

v ∼ w ⇐⇒ there exists a path from v to w.

The relation ∼ is an equivalence relation on V.

Proof. See Section 3.1 in [9]. �

Lemma 1.1.26. Let G be a graph. Suppose that V1, . . . ,Vn are the equivalence classes of V
defined by the relation from Proposition 1.1.25. For each i = 1, . . . , n, define

Gi = (Vi, {e ∈ E | ep(e) ⊆ Vi}).

Then Gi is a subgraph of G.

Proof. See Section 3.1 in [9]. �

Definition 1.1.27. The subgraphs G1, . . . ,Gn from Lemma 1.1.26 are called the connected
components of G. We denote the set of connected components of G by π0(G). If #π0(G) = 1 or
G is the empty graph, then G is said to be connected, otherwise, it is disconnected.

Remark 1.1.28.

(a) If G1, . . . ,Gn are the connected components of a graph G, then G =
⊔n

i=1 Gi.

(b) Each connected component of a graph is connected.
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To conclude this subsection, we introduce the notion of 2-connectivity which is directly
linked to matroid connectivity.

Definition 1.1.29. A connected graph G with at least 3 vertices is said to be 2-connected if for
every vertex v ∈ V(G), the graph G − v := (V(G) − {v}, E(G) − E(v)) remains connected.

Proposition 1.1.30. Let G be a connected on at least 3 vertices. Then G is 2-connected if and
only if every pair of non-loop edges is contained in the edge set of a cycle of G.

Proof. The proof follows directly from Theorem 5.2 in [9]. �

Remark 1.1.31. If a connected graph G with more than 3 vertices fails to be 2-connected, then
G = H ∨ K for some subgraphs H,K ⊆ G, where neither H nor K is isomorphic to Cycle1.

1.1.3 Forests
Definition 1.1.32. Let G be a graph.

(a) A graph containing no cycles is called a forest or acyclic.

(b) A connected forest is called a tree.

(c) A subforest of G is a subgraph which is a forest, if it is connected, then it is called a
subtree. A spanning forest of G is a maximal subforest and a spanning tree of G is a
maximal subtree.

Remark 1.1.33.

(a) If F is forest of G for which there is a vertex v ∈ V(G) − V(F), then the subgraph
F′ = (V(F) ∪ {v}, E(F)) is a forest containing F. Hence, any spanning forest F of G must
satisfy V(F) = V(G).

(b) If G is a connected graph, then F ⊆ G is a spanning forest if and only if it is a spanning
tree (see Exercise 4.1.2 in [9]).

(c) Suppose that G1, . . . ,Gn are the connected components of a graph G and F ⊆ G is a
spanning forest. Consider the subgraphs F ∩Gi := (V(F) ∩ V(Gi), E(F) ∩ E(Gi)). Note
that F ∩Gi is a spanning tree of Gi since it is a spanning forest of a connected graph (see
Remark 1.1.33 (b)). Hence, when studying spanning forests we may reduce to the case
where G is connected.

Proposition 1.1.34. Every acyclic subgraph of a graph G is contained in a spanning forest of
G.

Proof. We may assume that G is connected by Remark 1.1.33 (c). Let H be an acyclic subgraph
of G. Consider the set

C = {I ⊆ G : H ⊆ I and I is acyclic}.
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The set C is nonempty since H ∈ C. As C is finite (because G is finite), it must have a maximal
element T with respect to inclusion. We claim that T is a tree.

First of all, observe that V(T ) = V(G). Otherwise, we could pick a vertex v ∈ V(G) − V(T )
and construct the acyclic subgraph (V(T ) ∪ {v}, E(T )) which contains H and it is strictly larger
than T violating the maximality of T . Now we are left to show that T is connected since by
assumption it is acyclic. Let C be a connected component of T . Observe that V(C) = V(G).
Otherwise, there is v ∈ V(G) − V(C) and w ∈ V(C) that are not connected by a path in T .
Consequently, the graph (V(T ), E(T ) ∪ {e}) is an acyclic subgraph of G containing H that it is
strictly larger than T . However, this is not possible by maximality of T . Thus V(C) = V(G). As
C is a connected component of T satisfying V(C) = V(T ), it follows that C = T . This proves
our claim. �

Corollary 1.1.35. Every graph has a spanning forest.

Figure 1.6: Some spanning trees of K4.

Proposition 1.1.36. Let T be a connected graph. T is a tree if and only if

#E(T ) = #V(T ) − 1.

If F is a forest, then #E(F) = #V(F) − #π0(F).

Proof. See Theorem 4.3 and Exercise 4.1.4 in [9]. �

Definition 1.1.37. A subset of edges X of a graph G is called a bond if it is minimal with respect
to the condition #π0(G − X) > #π0(G). When X = {e}, we call e a cut-edge.

e

f

g

Figure 1.7: The edge e is a cut-edge and the pair { f , g} is a bond.

Proposition 1.1.38. Let G be a graph. The following are equivalent:

(a) e ∈ E(G) is a cut-edge;

(b) e ∈ E(F) for every spanning forest F of G;
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(c) e < E(C) for every cycle C ⊆ G.

Proof. The equivalence (a) ⇐⇒ (c) corresponds to Proposition 3.2 in [9]. The equivalence
(b) ⇐⇒ (c) follows from Proposition 1.1.34 by noting that if C is a cycle with e ∈ E(C), then
C\e is acyclic. �

Definition 1.1.39. The number of spanning forests of a graph G is denoted by κ(G).

Proposition 1.1.40. If G is a graph, then

κ(G) =


κ(G\e) = κ(G/e), if e is either a loop or a cut-edge;

κ(G) = κ(G\e) + κ(G/e), otherwise.

Proof. It follows from Remark 1.1.33 (c) and Proposition 4.9 in [9]. �

Remark 1.1.41. If e is not a loop, then one can show that there is a one-to-one correspondence
between the spanning forests of G/e and the spanning forests of G containing e (see Exercise
4.2.1 in [9]). Similarly, if e is not a cut-edge, then one can show that there is a one-to-one
correspondence between the spanning forests of G\e and the spanning forests of G that do not
contain e.

1.1.4 Special matrices
In this subsection, G will denote a graph without loops.

Definition 1.1.42. An orientation on G is a function (t, h) : E → V × V with the property that if
(t, e)(e) = (t(e), v(e)), then ep(e) = {t(e), h(e)} for all e ∈ E.

Definition 1.1.43. Let (t, h) be an orientation on G. The incidence matrix of G with respect to
(t, h), denoted B(G), is the V × E-matrix whose entries are given by

bve :=


1, h(e) = v;
−1, t(e) = v;

0, otherwise.

If (t, h) and (t′, h′) are two orientations on G, and B, B′ are the incidence matrices with
respect to each orientation, then B′ = BP where P is the matrix obtained from the identity
matrix by multiplying the entry (e, e) by −1 if (t(e), h(e)) = (h′(e), t′(e)).

Note that B(G) is defined over any field. Henceforth, when a property of B(G) is stated
without indicating the field of definition, it will mean that we are working over an arbitrary field.

A finial observation is that if G1, . . . ,Gn are the connected components of G, then

B(G) =


B(G1) 0 · · · 0

0 B(G2) 0
...

. . .
...

0 0 · · · B(Gn)

 . (1.1)
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Proposition 1.1.44. rank B(G) = #V(G) − #π0(G).

Proof. See Theorem 2.3 in [5]. �

Proposition 1.1.45. A set of columns of B(G) are linearly independent if and only if the
corresponding edges induce a forest.

Proof. See Lemma 2.5 in [5]. �

A matrix A ∈ Mm×n(Z) is said to be totally unimodular if the determinant of any square
submatrix of A is 0 or ±1. By definition, it follows that each entry of A is 0 or ±1. There is a
partial converse, that is, if A is an integral matrix where each entry is 0 or ±1 and each column
contains at most one 1 and at most one −1, then it is totally unimodular (see Lemma 5.1.4 in
[26]).

Proposition 1.1.46. The matrix B(G) viewed as an integral matrix is totally unimodular.

Proof. See Lemma 2.6 in [5]. �

Definition 1.1.47. If G is a graph, then the V × V-matrix A(G) := (#E(v,w))v,w∈V is called the
adjacency matrix of G. The V × V diagonal matrix whose diagonal entries are the valencies of
the vertices of G is denoted by D(G).

Definition 1.1.48. The Laplacian matrix of a graph G is the V ×V matrix L(G) := D(G)−A(G).

Proposition 1.1.49. L(G) = B(G)B(G)t.

Proof. It follows from computing directly the product B(G)B(G)t. �

Lastly, we state a classical result from algebraic graph theory, which counts the number of
spanning forests of a graph via minors of its Laplacian.

Theorem 1.1.50 (Kirchhoff’s Matrix-Tree Theorem). If G is a graph without loops with con-
nected components G1, . . . ,Gn and vi ∈ V(Gi), i = 1, . . . , n, then the determinant of the matrix
obtained from L(G) by deleting the rows and columns indexed by v1, . . . , vn equals the number
of spanning forests of G.

Proof. One can reduce to the case where G is connected by noting that L(G) is a block diagonal
matrix with diagonal blocks L(Gi), i = 1, . . . , n. Indeed, this is a direct consequence from (1.1)
and Proposition 1.1.49. Hence, it all boils down to showing that any cofactor of L(G), with G
connected, equals κ(G). A proof for this fact can be found in [5]. �

1.2 Equivalent Characterizations of Matroids

1.2.1 Independent sets and circuits
Definition 1.2.1. A matroid M is a pair (E,I) consisting of a finite set E, called the ground set
of M, and a family I of subsets of E, called the independent sets of M, satisfying:
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(I1) ∅ ∈ I;

(I2) if I1 ∈ I and I2 ⊆ I1, then also I2 ∈ I;

(I3) if I1, I2 ∈ I and #I1 < #I2, then I1 ∪ {e} ∈ I for some e ∈ I2 − I1.

A subset of E that is not in I is called dependent.

From now on, we refer to a matroid by M and the sets E and I will be understood as
the ground set and the set of independent sets of M, respectively. If more matroids are being
considered, then we write E(M) and I(M).

Example 1.2.2 (Vector matroids). Let V be a finite dimensional vector space over a field K and
p : Kn → V be a surjective linear map. The vector matroid of V over K, denoted M(V), is the
matroid with ground set E(M(V)) := {e1, . . . , en} the canonical basis of Kn, and independent sets

I(M(V)) := {X ⊆ E(M(V)) : p(X) is linearly independent}.

In particular, when V = Kr the linear map p is represented by a matrix A ∈ Mr×n(K) with respect
to the canonical bases. In this fashion, we write M(A) for M(V). The matrix A together with the
labeling e1, . . . , en is all we need to describe M(A).

Example 1.2.3 (Uniform matroids). Let m, n ∈ N0 with m ≤ n. The uniform matroid of rank m
on an set of n elements, denoted Um,n, is the matroid with ground set E(Um,n) a set of size n and
independent sets

I(Um,n) := {X ⊆ E(Um,n) : #X ≤ m}.

The Uniform matroid U0,0 is called the empty matroid and we denote it by ∅.

Definition 1.2.4. Two matroids M1 and M2 are said to be isomorphic, written M1 � M2, if there
is a bijective map Φ : E(M1)→ E(M2) such that, X ∈ I(M1) if and only Φ(X) ∈ I(M2). We call
such a bijection Φ an isomorphism from M1 to M2.

Now we look at another characterization of matroids.

Definition 1.2.5. A minimal dependent set of a matroid M will be called a circuit. The set of
all circuits of M is denoted by C or C(M).

Theorem 1.2.6. Let E be a finite set and suppose C ⊆P(E). Then C is the collection of circuits
of a matroid with ground set E if and only if C has the following properties:

(C1) ∅ < C;

(C2) if C1,C2 ∈ C and C1 ⊆ C2, then C1 = C2;

(C3) if C1,C2 are distinct members of C and e ∈ C1 ∩ C2, then there is C3 ∈ C such that
C3 ⊆ (C1 ∪C2) − {e}.

Proof. See Theorem 1.1.4 and Lemma 1.1.3 in [26]. �

Remark 1.2.7. By Theorem 1.2.6, a matroid M is completely determined by its set of circuits.
Its independent sets will be those subsets of E(M) that contain no circuit.
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Example 1.2.8 (Cycle matroids). Let E(G) be the set of edges of a graph G and C be the
collection of edge sets of cycles of G. Then C is the set of circuits of a matroid with ground set
E(G) (see Proposition 1.1.7 in [26]). The matroid obtained this way is called the cycle matroid
of G. It is denoted by M(G). If X is a subset of edges, then X is an independent set of M(G) if
and only if X does not contain the edge set of any cycle of G if and only if G[X] is a forest.

Remark 1.2.9. Let G be a graph with connected components G1, . . . ,Gn. If H = G1 ∨ · · · ∨Gn,
then H is connected and its cycle matroid is isomorphic to M(G) (observe that the wedge product
of two graphs preserves the cycle structure of the two graphs). Hence, we may assume that a
graphic matroid is always isomorphic to the cycle matroid of a connected graph.

Example 1.2.10 (Circuits of a uniform matroid). Consider the matroid Um,n. Then

C(Um,n) =

{
∅, m = n;
{X ⊆ E(Um,n) : #X = m + 1}, m < n.

Definition 1.2.11.

(a) A matroid M is said to be linear or representable if it is isomorphic to the vector matroid
of a finite dimensional vector space V over a field K. In that case, we say that V represents
M over K.

(b) A matroid that is isomorphic to the cycle matroid of a graph is called graphic.

The cycle matroid of a graph G is linear. Indeed, fix a vertex v ∈ V(G) and let us suppose
that G is connected (we can assume this by Remark 1.2.9). Let B(G)[v] denote the incidence
matrix of G without row v and let B be the matrix obtained from B(G)[v] by adding an extra
zero column for each loop of G. Using Propositions 1.1.44, 1.1.45, and Example 1.2.2, it is easy
to see that M(G) = M(B). If G has no loops, then M(G) = M(B(G)[v]).

1.2.2 Bases
Definition 1.2.12. A maximal independent set of a matroid is called a basis. The collection of
all bases of a matroid M is denoted by B or B(M).

Theorem 1.2.13. Let B a set of subsets of a finite set E. Then B is the collection of bases of a
matroid with ground set E if and only if it has the following properties:

(B1) B , ∅;

(B2) if B1, B2 ∈ B and x ∈ B1 − B2, then there is y ∈ B2 − B1 such that (B1 − {x}) ∪ {y} ∈ B.

Proof. See Theorem 1.2.3 and Lemma 1.2.2 in [26]. �

Remark 1.2.14. By knowing the bases of a matroid M we can recover its independent sets as
follows: a subset of E(M) is independent if and only if it is contained in some basis of M.

Proposition 1.2.15. Let B be the set of bases of a matroid M. If B1, B2 ∈ B and x ∈ B2 − B1,
then there is y ∈ B1 − B2 such that (B1 − {y}) ∪ {x} ∈ B.
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Proof. See Lemma 2.1.2 in [26]. �

Proposition 1.2.16. If B1 and B2 are two bases of a matroid M, then #B1 = #B2.

Proof. See Lemma 1.2.1 in [26]. �

Example 1.2.17 (Bases of a uniform matroid). The bases of the matroid Um,n are all the subsets
of E(Um,n) whose cardinality is m.

Example 1.2.18 (Bases of a graphic matroid). Let G be a graph. In Example 1.2.8, we observed
that a subset X of E(G) is an independent set of M(G) if and only if G[X] is a forest. Thus, X is
a basis if and only if G[X] is a forest and G[X ∪ {e}] contains a cycle for all e < X. When G is
connected, X is a basis of M(G) if and only if G[X] is a spanning tree.

Example 1.2.19 (Bases of a linear matroid). If V is a finite dimensional vector space over a
field K and p : Kn → V is a surjective linear map, then X is a basis of M(V) if and only if p(X)
is a basis of V .

1.2.3 Rank
The rank of a matroid is the matroid version of the dimension of a vector space. This is achieved
by the fact that all bases of a matroid have the same cardinality (see Proposition 1.2.16).

Lemma 1.2.20. If M is a matroid and X ⊆ E, then the collection

I|X := {I ⊆ X : I ∈ I}

satisfies (I1), (I2), and (I3). Hence, the pair (X,I|X) is a matroid.

Definition 1.2.21. The matroid (X,I|X) from Lemma 1.2.20 is called the restriction of M to X
and it is denoted by M|X.

Remark 1.2.22. If M is a matroid and X ⊆ E. Then a direct computation shows that the
collection of circuits of M|X is precisely the collection {C ⊆ X : C ∈ C(M)}.

Definition 1.2.23. Let M be a matroid and suppose X ⊆ E. We define the rank of X, denoted
r(X), to be the cardinality of a basis B of M|X.

Theorem 1.2.24. Let E be a finite set. A function r : P(E) → N0 is the rank function of a
matroid with ground set E if and only if r has the following properties:

(R1) for all X ∈P(E), 0 ≤ r(X) ≤ #X;

(R2) if X ⊆ Y ⊆ E, then r(X) ≤ r(Y);

(R3) if X,Y ∈P(E), then r(X ∪ Y) + r(X ∩ Y) ≤ r(X) + r(Y).

Proof. See Theorem 1.3.2 and Lemma 1.3.1 in [26]. �

Proposition 1.2.25. Let M be a matroid with rank function r and suppose that X ⊆ E. Then
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(i) X ∈ I if and only if r(X) = #X;

(ii) X ∈ B if and only if #X = r(X) = r(M); and

(iii) X ∈ C if and only if X , ∅ and, for all x ∈ X, r(X − {x}) = #X − 1 = r(X).

Proof. See Proposition 1.3.5 in [26]. �

Example 1.2.26 (Rank function of a graphic matroid). Let G be a graph. A basis X of M(G)
is a subset of E(G) such that G[X] is a forest of G and G[X ∪ {e}] contains a cycle for all
e < X. By Proposition 1.1.36, we know that #E(G[X]) = #V(G)− #π0(G) (compare with 1.1.44).
Hence, r(M(G)) = #V(G) − #π0(G). Similarly, the rank of a subset X of E(G) is given by
#V(G[X]) − #π0(G[X]).

Example 1.2.27 (Rank function of a linear matroid). Let V be a finite dimensional vector space
over a field K and p : Kn → V be a surjective linear map. For any X ⊆ E(M(V)), we have
r(X) = dimK span(p(X)).

Example 1.2.28 (Rank function of a uniform matroid). If X ⊆ E(Um,n), then

r(X) =

{
#X, #X < m;
m, #X ≥ m.

We conclude this subsection by introducing some terminology borrowed from graphs.

Definition 1.2.29. Let M be a matroid. An element e ∈ E is called a loop if {e} is a circuit of
M. If { f , g} ⊆ E is a circuit of M, then f and g are said to be parallel in M.

Remark 1.2.30. Note that an element e of M is a loop if and only if e < B for all B ∈ B.
Particularly, in the case of a graphic matroid M(G), an edge e ∈ E(G) is a loop of M(G) if and
only if e is a loop (in the sense of graphs) of G. In the case of a linear matroid M(V) induced by
a surjective linear map p : Kn → V , we have that e ∈ E is a loop if and only if p(e) = 0.

1.3 Matroid Operations

1.3.1 Duality
Theorem 1.3.1. Let M be a matroid. The collection B∗(M) := {E − B : B ∈ B} is the set of
bases of a matroid on E.

Proof. See Theorem 2.1.1 in [26]. �

Definition 1.3.2. Let M be a matroid. The matroid with ground set E(M) and set of bases
B∗(M), is called the dual of M and is denoted by M∗.

The independent sets, bases, circuits, rank, and loops of M∗ are called coindependent sets,
cobases, cocircuits, corank, and coloops, respectively. Using this terminology, we see that
B∗ is a cobasis of M if and only if E − B∗ is a basis of M. This is not necessarily true for
coindependent sets and cocircuits. Also, an element e of M is a coloop if and only if e ∈ B for
every basis B of M.
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Example 1.3.3. For any matroid M, (M∗)∗ = M.

Example 1.3.4 (Dual of a uniform matroid). Consider Um,n. The collection B∗(Um,n) consists
of all subsets of E(Um,n) with n − m elements, therefore U∗m,n = Un−m,n.

Example 1.3.5 (Dual of a linear matroid). Let V be a finite dimensional vector space over a
field K with a surjective linear map p : Kn → V . If W = ker p, then we have the following short
exact sequence

0 −→ W
i
−→ Kn p

−→ V −→ 0,

by taking duals, we obtain the short exact sequence

0 −→ V∗
p∗
−→ Kn i∗

−→ W∗ −→ 0.

Consider the matroid M(W∗) induced by i∗. Observe that X is a basis of M(V) if and only if
E(M(V)) − X is a basis of M(W∗). This implies that M(V)∗ � M(W∗). In particular, we see that
the dual of a linear matroid is linear as well.

If we work with coordinates, then the linear matroid M(Kr) can be represented by a matrix
of the form [Ir|D] (see Section 1.5). Using the short exact sequences above one can show that the
matrix [−Dt|In−r] represents i∗. Thus M(Kr)∗ = M

(
[−Dt|In−r]

)
where the columns of [−Dt|In−r]

are labeled in the same order as the columns of [Ir|D].

Example 1.3.6 (Dual of a graphic matroid). Unlike linear matroids, the matroid M(G)∗ need
not be graphic for a graph G. A well-known example is M(K5)∗. Nonetheless, there is a class of
graphs called planar for which M(G)∗ is graphic. Intuitively, a connected graph G is planar if it
can be drawn in R2 so that no edge cross. This drawing determines a partition of R2 into regions
bounded by the edges of G plus the outer region. From this, we can construct a graph G∗ as
follows: the vertices will be the regions created by G, and two vertices are connected by k edges
if and only if their corresponding regions share k edges of G. It turns out that M(G)∗ � M(G∗).
For a more rigorous treatment of this topic see Chapter 2 Section 3 in [26].

Even though the dual of a graphic matroid M(G) is not graphic in general, we can still
characterize some special sets of M(G)∗ in terms of G. If X be a set of edges of G, then

• X is a cobasis if and only if there is a spanning forest F ⊆ G satisfying E(F) ∩ X = ∅.

• X is a cocircuit if and only if it is a bond of G (see Definition 1.1.37).

• e ∈ E(G) is a coloop if and only if it is a cut-edge (see Definition 1.1.37 and Figure 1.8).

Proposition 1.3.7. Let M be a matroid. Denote by r∗ the rank function of M∗. For all X ⊆ E,

r∗(X) = r(E − X) + #X − r(M).

In particular, r(M) + r∗(M∗) = #E.

Proof. See Proposition 2.1.9 in [26]. �
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e

G

e

G∗

Figure 1.8: Example of a graph G and its dual.

1.3.2 Deletion and contraction
These two operations are generalizations of those of graphs (see Definition 1.1.18).

Definition 1.3.8. Let M be a matroid and let e ∈ E.

(a) The deletion of e from M is the matroid M\e := M|(E − {e}).

(b) The contraction of e from M is the matroid M/e := (M∗\e)∗.

Let us describe the independent sets, bases, circuits, and rank functions of M\e and M/e.
Both matroids have as ground set E(M) − {e}. By Definition 1.2.21, we have

I(M\e) = {I ∈ I(M) : e < I}, (1.2)

B(M\e) =

{
{B − {e} : B ∈ B(M)}, if e is a coloop;
{B ∈ B(M) : e < B}, if e is not a coloop.

(1.3)

C(M\e) = {C ∈ C(M) : e < C}, (1.4)

rM\e(X) = rM(X), ∀X ⊆ E(M\e). (1.5)

For the matroid M/e, following Propositions 3.1.6, 3.1.7, and Corollary 3.1.8 in [26], we have

I(M/e) =

{
{I − {e} : I ∈ I(M), e ∈ I}, if e is not a loop;
I(M), if e is a loop.

(1.6)

B(M/e) =

{
{B − {e} : B ∈ B(M), e ∈ B}, if e is not a loop;
B(M), if e is a loop.

(1.7)

rM/e(X) =

{
rM(X ∪ {e}) − 1, if e is not a loop;
rM(X), if e is a loop.

(1.8)

The circuits of M/e are the nonempty minimal sets of the set {C − {e} : C ∈ C(M)}.



1.3. Matroid Operations 19

Example 1.3.9 (Deletion and contraction on graphic matroids). If G is a graph and e ∈ E(G),
then

M(G)\e = M(G\e) and M(G)/e = M(G/e).

So that, the deletion and contraction operations on a graphic matroid result in graphic matroids
again.

Example 1.3.10 (Deletion and contraction on linear matroids). Consider A ∈ Mr×n(K) and
let e ∈ E(M(A)). We denote by A\e the matrix obtained from A by removing the column
corresponding to e. Then

M(A)\e = M(A\e).

We now describe M(A)/e. If e is a loop, then the column in A corresponding to e is zero (see
Remark 1.2.30) and M(A)/e = M(A)\e. Otherwise, e is not a loop and by turning the eth column
of A into a standard basis vector (by performing row operations) we obtain a matrix A′. Let
A′/e be the matrix obtained from A′ by deleting the row and column containing the nonzero
entry of e. Then, by Proposition 3.2.6 in [26], we obtain

M(A)/e = M(A′)/e = M(A′/e).

So that, the deletion and contraction operations on a linear matroid result in linear matroids
again.

1.3.3 Direct sum

Proposition 1.3.11. Let M1 and M2 be two matroids. The set E(M1) t E(M2) along with the
collection {I1 t I2 : I1 ∈ I(M1), I2 ∈ I(M2)} define a matroid.

Proof. See Proposition 4.2.8 in [26]. �

Definition 1.3.12. The matroid from Proposition 1.3.11 is called the direct sum of M1 and M2.
It is denoted by M1 ⊕ M2.

Remark 1.3.13. By 4.2.12 and 4.2.14 from [26], we have C(M1 ⊕ M2) = C(M1) ∪ C(M2) and
B(M1 ⊕ M2) = {B1 t B2 : B1 ∈ B(M1), B2 ∈ B(M2)} for any two matroids M1 and M2.

Example 1.3.14. Let H,K be two graphs. If G ∈ {H ∨ K,H t K}, then M(G) = M(H) ⊕ M(K).

Example 1.3.15. If V1,V2 are finite dimensional vectors spaces over a field K with surjective
linear maps p1 : Kn → V1 and p2 : Km → V2 respectively, then the matroid M(V1 ⊕ V2) induced
by p1 ⊕ p2 : Kn+m → V1 ⊕ V2 verifies M(V1 ⊕ V2) � M1(V2) ⊕ M(V2).

Proposition 1.3.16. The classes of graphic matroids and linear matroids are closed under
direct sums.

Proof. See Proposition 4.2.11 in [26]. �
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1.3.4 Parallel and series extensions

Definition 1.3.17. Let M and N be two matroids.

(a) We say that N is a parallel extension of M if there is a circuit {e, f } of N such that e , f
and N \ e = M.

(b) We say that N is a series extension of M if there is a cocircuit {e, f } of N such that e , f
and N/e = M.

Example 1.3.18. Let G be a graph. Suppose that e ∈ E(G) is not a cut-edge. Let H be the
graph obtained from G by replacing e with a path of length 2 (intuitively, we are subdividing
the edge e). Then M(H) is a series extension of M(G). We stress that not all series extensions
of a graphic matroid arise this way. See Figure 1.9 for an example.

f e

G

f

G/e

Figure 1.9: Serial extension that does not come from subdivision.

Proposition 1.3.19. Let M and N be two matroids. Then N is a parallel extension of M if and
only if N∗ is a series extension of M∗.

Proof. See Chapter 5 Section 4 in [26]. �

1.4 Connectivity

The notion of matroid connectivity is inspired by graphs. We will see that this generalization to
matroids corresponds to the notion of 2-connectivity of graphs rather than connectivity as one
would expect. This is due to the fact that if G is a disconnected graph, then there is a connected
graph H such that M(G) � M(H).

Definition 1.4.1. A matroid is said to be irreducible (or connected) if is not the direct sum of
two nonempty matroids. Otherwise, it is reducible.

Proposition 1.4.2. A matroid M is irreducible if and only if for every pair of distinct elements
of E(M), there is a circuit containing both.
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Proof. We prove the proposition by contrapositive. Suppose M = M1 ⊕ M2 for two nonempty
matroids M1 and M2. Then there are elements e ∈ E(M1) and f ∈ E(M2). By Remark 1.3.13,
C(M) = C(M1) ∪ C(M2). Since E(M1) ∩ E(M2) = ∅, it follows that no circuit of M contains
both e and f .

Now suppose that there is a pair {e, f } ⊆ E(M) with the property that no circuit of M
contains it. Define the following relation on E(M):

a ∼ b ⇐⇒ there exists C ∈ C(M) such that a, b ∈ C.

This relation ∼ is an equivalence relation (for a proof of this claim see Proposition 4.1.2 in
[26]). There are at least two equivalence classes as e / f . Let E1, . . . , En, n ≥ 2, be all the
equivalences classes determined by ∼. We claim that M = M|E1 ⊕ · · · ⊕ M|En. It is clear that
E(M) = E1 t · · · t En. If I is an independent set of M, then for all k = 1, . . . , n, I ∩ Ek is an
independent set of M (by (I2)) contained in Ek. Furthermore, I is the disjoint union of the I∩Ek,
this shows that I(M) ⊆ I(M|E1 ⊕ · · · ⊕ M|En). To prove the other containment, observe that
the independent sets of each M|Ek are independent sets of M as well by Definition 1.2.21, in
addition, if Ik ∈ I(Ek), then any circuit C of M is not contained in I1 t · · · t In (see Remark
1.2.7). This completes the proof. �

Definition 1.4.3. The matroids M|E1, . . . ,M|En appearing in the proof of Proposition 1.4.2 are
called the irreducible (or connected) components of M.

Remark 1.4.4. It can be noted in the proof of Proposition 1.4.2 that if M is a matroid and
M1, . . . ,Mn are its irreducible components, then M = M1 ⊕ · · · ⊕ Mn.

Proposition 1.4.5. Let G be a graph without loops and without isolated vertices. If #V(G) ≥ 3,
then M(G) is irreducible if and only if G is 2-connected.

Proof. This is a direct consequence from Propositions 1.1.30 and 1.4.2. �

Proposition 1.4.6. A matroid M is irreducible if and only if M∗ is irreducible.

Proof. See Corollary 4.2.4 in [26]. �

Proposition 1.4.7. If N is a parallel (series) extension of an irreducible matroid M, then N is
irreducible.

Lemma 1.4.8. Let M be a matroid. If C1 and C1 are circuits of M such that f ∈ C1 ∩ C2 and
h ∈ C1 −C2, then M has a circuit C3 such that h ∈ C3 ⊆ (C1 ∪C2) − { f }.

Proof. See Exercise 14 from Chapter 1 Section 1 in [26]. �

Proof of Proposition 1.4.7. Suppose that N is a parallel extension of M, that is, there exits a
circuit {e, f } of N such that e , f and N\e = M. Let h, g ∈ E(N) be distinct. We will show that
{h, g} is contained in some circuit of N. If h, g , e, then h, g ∈ E(M) so that there is a circuit C
of M containing them. Note that C is also a circuit of N (see (1.4)). If g = e and h , f , then
there is a circuit C of M containing { f , h}. If we take C1 = C and C2 = {e, f }, then we can use
Lemma 1.4.8 to get a third circuit C3 of N such that h ∈ C3 ⊆ (C − { f }) ∪ {e}. Since C − { f }
is an independent set of N, C3 must contain e. Therefore C3 is a circuit of N containing {e, h}.
Whence, by Proposition 1.4.2, N is irreducible.

Now we assume that N is a series extension of M. By Proposition 1.4.6, M∗ is irreducible
and by Proposition 1.3.19, N∗ is a parallel extension of M∗. Therefore N∗ is irreducible and so
is N. �
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1.5 Regular Matroids
In this last section, we discuss some general facts of regular matroids, which constitute the class
of matroids we are most interested in since the Jacobian group of a graph admits a generalization
to this class.

Definition 1.5.1. A matroid that is representable over any field is called regular.

Before we continue the discussion on regular matroids, let us mention some facts on the
representations of general linear matroids. Suppose that M is a representable matroid over a
field K of rank r > 0. Thus there exists a matrix A ∈ Mr×n(K) of rank r such that M � M(A).
Observe that the linear dependence relations among the columns of A are preserved under row
operations, multiplication of a column by a nonzero scalar, interchanging two columns (labels
moving with the columns), and replacing the entries of A by their image under some field
automorphism of K. As a result, if A′ is a matrix obtained from A by performing some of these
operations, then the identity map id : E(M(A)) → E(M(A′)) induces a matroid isomorphism
M(A) � M(A′) (recall that E(M(A)) = E(M(A′)) is the canonical basis of Kn), whence A′ is
another representation of M over K. We would like to treat these two representations for M as
equal. Hence we say that two representations A1 and A2 of M are equivalent if

• the identity map id : E(M(A1))→ E(M(A2)) induces an isomorphism M(A1)→ M(A2);
and

• there is a field automorphism σ of K, and there are invertible matrices U ∈ GLr(K) and
P ∈ GLn(K), where P is a matrix obtained by permuting the rows of some nonsingular
diagonal matrix, such that

A1 = σ(UA2P).

This defines an equivalence relation on the set of all matrices of rank r over K representing M.
In particular, we see that A is equivalent to a matrix of the form [Ir|D], where Ir is the r × r
identity matrix and D is some r × (n − r) matrix (so that M � M(A) = M([Ir|D])). This can be
achieved by computing the reduced row echelon form of A and bringing the columns containing
a pivot to the first positions.

A representable matroid M over a field K is called uniquely K-representable if all the
matrices representing M over K are equivalent. For instance, regular matroids are uniquely
representable over any field.

Now we assume that A ∈ Mr×n(Z) is totally unimodular and M � M(A) over Q. If B is a
subset of E(M(A)) and A|B denotes the matrix formed with the columns of A labeled by B, then
B ∈ B(M(A)) if and only if #B = r and det A|B = ±1. Hence if K is an arbitrary field and we
regard A as a matrix over K, then the matroid M(A) is represented by A over K, the same is true
for M. In summary, a matroid represented by a totally unimodular matrix is regular. In fact, the
converse is also true as shown below.

The incidence matrix of a graph is an example of a totally unimodular matrix (Proposition
1.1.46). Therefore, a graphic matroid is always regular (see the comment right after Definition
1.2.11).

Theorem 1.5.2. For a matroid M the following are equivalent:
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(a) M is regular;

(b) M is representable over Q by a totally unimodular matrix.

Moreover, if M is regular and A is a totally unimodular matrix representing M over Q, then A is
also a representation of M over a field K when A is viewed as a matrix over K.

Proof. See Theorem 6.6.3 in [26]. �

If a linear matroid M of rank r is represented by an r × n matrix A, then A is equivalent to
the matrix [Ir|D] obtained from the reduced row echelon form of A by bringing the columns
containing a pivot to the first positions. One can use the following procedure, which some
authors called “pivoting”, to get the reduced row echelon form of A; choose a nonzero entry
ast of A and for each i ∈ {1, . . . , s − 1, s + 1, . . . , r}, replace row i of A by row i − (ait/ast) row s,
then multiply row s by 1/ast. As a result, we turn the tth column of A into the sth standard
basis vector of Kr. It turns out that the resulting matrix is again totally unimodular by Lemma
2.2.20 in [26]. So that, the reduced row echelon form of a totally unimodular matrix is totally
unimodular. Thus, the matrix [Ir|D] is totally unimodular as well.

Proposition 1.5.3. The dual of a regular matroid is regular.

Proof. Suppose that M is a regular matroid of rank r and #E(M) = n. If r = 0 or n − r = 0,
the result is trivial. Hence, we may assume that r and n − r are positive. Then there is a totally
unimodular matrix of the form [Ir|D] representing M. So, by Example 1.3.5, M∗ is represented
by the matrix [−Dt|In−r], which is totally unimodular. �

After all discussions held so far, it becomes clear that the class of regular matroids is closed
under direct sums and under deletion and contraction operations. Series and parallel extensions
of a regular matroid are also regular as shown below.

Proposition 1.5.4. Let M be a regular matroid. If N is a parallel (series) extension of M, then
N is regular.

Proof. Suppose that N is a parallel extension of M and #E(M) = n. There is a circuit {e, f } of N
such that e , f and N\e = M. If r(N) = 0, then N is represented over any field, thus N is regular.
If r(N) > 0, then r(M) > 0, in fact, r(N) = r(M) (see (1.8)). So there is a totally unimodular
matrix A representing M. Suppose that φ : M → M(A) is an isomorphism. Let A′ be the matrix
obtained from A by duplicating the column φ( f ). We label this new column with the (n + 1)th
canonical vector of Kn+1. It is clear that A′ is totally unimodular and that φ′ : E(N)→ E(M(A′))
given by φ′(g) = φ(g) for all g , e and φ′(e) = en+1 gives an isomorphism. Thus by Theorem
1.5.2, the result follows.

We now suppose that N is a series extension of M. By Proposition 1.3.19, N∗ is a parallel
extension of M∗. Being M regular, so is its dual (see Proposition 1.5.3). Thus, from what we
just proved it follows that N∗ is regular, consequently (N∗)∗ = N is regular as well. �



Chapter 2

Jacobian Groups

The Jacobian group of a graph (also known as the sandpile group, critical group, or chip-firing
group) admits a generalization to regular matroids. However, little has been said about the
structure of these groups. Some results along these lines may be found in [21] and [25].

2.1 Jacobian Group of a Regular Matroid
The Jacobian group of a regular matroid is an example of the determinant group of a lattice.
Since many of the properties we are going to describe for the Jacobian group of a matroid are
just consequences from the theory of lattices, we will develop some of the relevant ideas of this
theory.

2.1.1 Theory of lattices
In what follows, all rings are commutative with 1 and all modules are unital.

Let R be a ring and M be an R-module. The dual module of M, denoted M∗, is the R-module
HomR(M,R).

When M is a free R-module of rank n, M∗ is also a free R-module of rank n. In fact, for
each basis {e1, . . . , en} of M there exists a unique dual basis {e∗1, . . . , e

∗
n} of M∗ with the property

e∗i (e j) = δi j, where

δi j =

{
1 i = j,
0 i , j.

A pairing on M is a bilinear form 〈·, ·〉 : M × M → R. If 〈m, n〉 = 〈n,m〉 for all m, n ∈ M,
then 〈·, ·〉 is said to be symmetric. The pairing 〈·, ·〉 induces an R-module homomorphism

ϕ : M → M∗ (2.1)
m 7→ (n 7→ 〈m, n〉).

If kerϕ = {0} then 〈·, ·〉 is nondegenerate, and if ϕ is an isomorphism then 〈·, ·〉 is perfect.
Every perfect paring is nondegenerate, but the converse is not true in general, not even for

free modules of finite rank. However, if M is a finite dimensional vector space then the converse
is true.

24
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Suppose M is a free R-module of finite rank n and B = {e1, . . . , en} is a basis of M. If the
pairing 〈·, ·〉 is perfect, then (2.1) is an isomorphism of R-modules. If we let e′i := ϕ−1(e∗i ) for all
i = 1, . . . , n, then {e′1, . . . , e

′
n} is a basis of M satisfying 〈e′i , e j〉 = δi j. When 〈·, ·〉 is symmetric

we can similarly recover {e1, . . . , en} from {e′1, . . . , e
′
n}.

Definition 2.1.1. If M is a free R-module of finite rank n and B = {e1, . . . , en} is a basis of M,
then the Gram matrix of M with respect to B is the n × n matrix GrM(B) := (〈ei, e j〉).

Notice that GrM(B) is nothing but the matrix representing ϕ : M → M∗ in the bases
{e1, . . . , en} and {e∗1, . . . , e

∗
n}. If B′ = { f1, . . . , fn} is another basis of M and we let f j =

∑n
i=1 ci jei

for all j ∈ {1, . . . , n}, then the matrix C = (ci j) is invertible over R and we have

〈 fi, f j〉 =

〈 n∑
k=1

ckiek,

n∑
l=1

cl jel

〉
=

n∑
k=1

n∑
l=1

ckicl j〈ek, el〉

= (CtGrM(B)C)i j,

thus GrM(B′) = CtGrM(B)C.

Example 2.1.2. Let R be a ring. Consider the free R-module M = Rn. Define the pairing 〈·, ·〉
on M given by 〈(r1, . . . , rn), (s1, . . . , sn)〉 = r1s1 + · · · + rnsn. Let B = {e1, . . . , en} be a basis of
M and let B be the matrix whose columns are e1, . . . , en. Then GrM(B) = BtB.

Definition 2.1.3. Let M and N be two R-modules with pairings 〈·, ·〉M and 〈·, ·〉N , respectively.
An isometry from M to N is an R-module isomorphism φ : M → N such that for all m1,m2 ∈ M,
〈φ(m1), φ(m2)〉N = 〈m1,m2〉M .

Proposition 2.1.4. Two free R-modules of finite rank M and N with pairings 〈·, ·〉M and 〈·, ·〉N ,
respectively, are isometric if and only if there are bases B ⊆ M and B′ ⊆ N for which GrM(B)
and GrN(B′) coincide.

Proof. See Subsection 2.2.4 in [18]. �

Definition 2.1.5. Let R be an integral domain with fraction field K and let V be a finite
dimensional vector space over K. A (full) R-lattice of V is a finitely generated R-module Λ ⊆ V
that spans V as a K-vector space.

Definition 2.1.6. Let R be a Noetherian domain with fraction field K, and let V be a finite
dimensional vector space over K with a perfect pairing 〈·, ·〉. If Λ is an R-lattice of V , its dual
lattice (with respect to the perfect pairing 〈·, ·〉 on V) is the R-module

Λ# := {x ∈ V : 〈x, z〉 ∈ R for all z ∈ Λ}.

Theorem 2.1.7. Let R be a Noetherian domain with fraction field K, and let V be a finite
dimensional vector space over K with a perfect pairing 〈·, ·〉. If Λ is an R-lattice of V, then Λ#

is an R-lattice of V isomorphic to Λ∗.
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Proof. See Theorem 5.12 in [28]. �

Corollary 2.1.8. Let R be a Noetherian domain with fraction field K, let V be a finite dimen-
sional vector space over K with perfect pairing 〈·, ·〉, and let Λ be a free R-lattice of V with
R-basis {e1, . . . , en}. The dual lattice Λ# is a free R-lattice of V that has a unique R-basis
{e′1, . . . , e

′
n} that satisfies 〈e′i , e j〉 = δi j.

Proof. See Corollary 5.14 in [28]. �

Definition 2.1.9. Let R be an integral domain with fraction field K and let V be a finite
dimensional vector space over K with a pairing 〈·, ·〉. A lattice Λ of V satisfying 〈z1, z2〉 ∈ R for
all z1, z1 ∈ Λ is said to be integral over R.

Keeping the notation of Theorem 2.1.7, and assuming further that Λ is integral, we see that
Λ ⊆ Λ#. Hence we define the determinant group of Λ to be the R-module

Jac(Λ) :=
Λ#

Λ
.

Recall that there is a canonical R-module homomorphism

ϕ : Λ→ Λ∗

x 7→ (z 7→ 〈x, z〉).

Also, we have the following canonical isomorphism of R-modules (for more details see proof of
Theorem 5.12 in [28])

θ : Λ# → Λ∗

x 7→ (z 7→ 〈x, z〉).

Notice that θ(Λ) = ϕ(Λ). Hence the homomorphism θ induces an isomorphism of R-modules
θ̄ : Jac(Λ)→ Λ∗/ϕ(Λ).

When R is a PID, Λ is a free R-lattice of V . By the theory of finitely generated modules
over a PID, there exits a basis {b1, . . . , bn} of Λ# and nonzero elements d1, . . . , dn ∈ R such that
di | di+1 for all i ∈ {1, . . . , n − 1} and

Jac(Λ) � R/d1R ⊕ · · · ⊕ R/dnR.

Since Jac(Λ) � Λ∗/ϕ(Λ), one can find the sequence d1, . . . , dn by computing the Smith normal
form of the Gram matrix of Λ with respect to any of its bases. Additionally, we also obtain the
following result.

Proposition 2.1.10. Isometric integral lattices have isomorphic determinant groups.

Proposition 2.1.11. Let R be a Noetherian domain with fraction field K, and let V be a finite
dimensional vector space over K. Suppose that W is a subspace of V and Λ is an R-lattice of V.
If ΛW := Λ ∩W, then ΛW is an R-lattice of W.
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Proof. It is easy to see that ΛW is an R-module. Furthermore, it is finitely generated as it is a
submodule of the Noetherian module Λ. Lastly, we show that ΛW spans W. Choose a basis
{w1, . . . ,wk} of W and complete it to a basis {w1, . . . ,wk,wk+1, . . . ,wn} of V . Since Λ spans V
and it is finitely generated over R, there is a nonzero element r ∈ R such that rwi ∈ Λ for all
i ∈ {1, . . . , n}. Hence {rw1, . . . , rwk} is a basis of W contained in ΛW , which shows that ΛW

spans W, as desired. �

Recall that if V is a finite dimensional vector space over a field K with a symmetric perfect
pairing such that 〈v, v〉 , 0 for all nonzero v ∈ V , then for any subspace W ⊆ V we can define the
subspace W⊥ := {v ∈ V : 〈v,w〉 = 0 for all w ∈ W} and obtain the decomposition V = W ⊕W⊥.
We let P : V → W and P⊥ : V → W⊥ denote the projection maps.

The next theorem is a generalization of Lemma 1 from Section 4 in [2]. The proof given
there can be easily adapted to this case after noting the following.

Lemma 2.1.12. Let R be an integral domain with fraction field K and let V be a K-vector space.
If Λ ⊆ V is an R-module and W is a subspace of V, then Λ/ΛW is a torsion-free R-module.

Proof. Suppose rz ∈ ΛW for some r ∈ R − {0} and some z ∈ Λ. Then z = 1
r rz ∈ W, hence

z ∈ ΛW . �

Theorem 2.1.13. Let R be a PID with fraction field K, and let V be a finite dimensional vector
space over K with a symmetric perfect pairing 〈·, ·〉 such that 〈v, v〉 , 0 for all nonzero v ∈ V.
Suppose that W is a subspace of V and Λ is an R-lattice of V. Then

(a) P(Λ#) = Λ#
W and P⊥(Λ#) = Λ#

W⊥ .

(b) If Λ is integral over R, then the projections P and P⊥ induce the short exact sequences

0 −→
ΛW ⊕ Λ#

W⊥

ΛW ⊕ ΛW⊥
−→

Λ#

ΛW ⊕ ΛW⊥

P̄
−→

Λ#
W

ΛW
−→ 0

and

0 −→
Λ#

W ⊕ ΛW⊥

ΛW ⊕ ΛW⊥
−→

Λ#

ΛW ⊕ ΛW⊥

P⊥
−→

Λ#
W⊥

ΛW⊥
−→ 0.

(c) If Λ is integral and Jac(Λ) = 0, then P̄ and P⊥ are R-module isomorphisms.

Example 2.1.14. Let R = Z, K = Q, V = Q4, and Λ = Z4. We regard V with the standard inner
product. Consider the matrix

A =

[
1 0 2 −3
0 1 −1 1

]
,

and let W = ker(A) ⊆ V . Then W⊥ = row(A). The free abelian groups ΛW and ΛW have bases
{(−2, 1, 1, 0), (3,−1, 0, 1)} and {(1, 0, 2,−3), (0, 1,−1, 1)}, respectively. Hence

Λ

ΛW ⊕ ΛW⊥
= Coker


−2 3 1 0

1 −1 0 1
1 0 2 −1
0 1 −3 1

 � Z/17Z,
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where the isomorphism is deduced by looking at the Smith normal form of the 4 × 4 matrix.
By Theorem 2.1.13, we have that Jac(ΛW) � Z/17Z � Jac(ΛW⊥). One can directly compute
Jac(ΛW⊥) by looking at the Smith normal form of the Gram matrix of ΛW⊥ with respect to the
basis {(1, 0, 2,−3), (0, 1,−1, 1)}, which is AAt. The Smith normal form is[

1 0
0 17

]
.

2.1.2 Jacobian group of a graph

For a thorough treatment of the following exposition (and comparison with the Jacobian of a
Riemann surface) we recommend the references [2] and [7].

Suppose that G is a connected graph without loops. Let QE(G) and QV(G) be the free Q-vector
spaces on the edge set and vertex set of G, respectively. Analogously, we let ZE(G) and ZV(G) be
the free abelian groups on the edge set and vertex set of G respectively. We have canonical group
homomorphisms ZE(G) ↪→ QE(G) and ZV(G) ↪→ QV(G). The vector space QV(G) has a canonical
basis: for each v ∈ V(G), let χv : V(G)→ {0, 1} be the characteristic function of v. Hence the set
{χv : v ∈ V(G)} is a Q-basis of QV(G). Similarly, we construct the canonical basis {χe : e ∈ E(G)}
of QE(G). The vector spaces QE(G) and QV(G) come with canonical inner products defined as
follows:

〈 f , g〉 :=
∑
e∈F

f (e)g(e), ∀ f , g ∈ QF ,

where F ∈ {E(G),V(G)}.
Choose an orientation (t, h) on G and consider the Q-linear map ∂ : QE(G) → QV(G) which

is defined on basis elements by ∂(χe) = χh(e) − χt(e). There exists a unique Q-linear map
∂∗ : QV(G) → QE(G) satisfying 〈∂( f ), g〉 = 〈 f , ∂∗(g)〉 for all f ∈ QE(G) and g ∈ QV(G). Thus we
have the decomposition QE(G) = ker ∂ ⊕ Im ∂∗. The Q-vector spaces ker ∂ and Im ∂∗ are known
as the cycle space and cut space of G, respectively. Now let Λ(G) := ker ∂ ∩ ZE(G), which is a
full rank Z-lattice of ker ∂. It is integral over Z, and therefore we can speak of its determinant
group Jac(Λ(G)), which we call the Jacobian group of G. So that

Jac(G) :=
Λ(G)#

Λ(G)
.

We highlight that Jac(G) does not depend on the choice of (t, h).
Notice that Im ∂∗ = (ker ∂)⊥ so that V = QE(G), W = ker ∂, and Λ = ZE(G) verify the

conditions of Theorem 2.1.13. Hence ΛW = Λ(G) and Jac(G) � Jac(ΛW⊥).
Let us describe the lattice ΛW⊥ . This a lattice of W⊥ = Im ∂∗, which we denote by Λ∗(G).

The matrix representing ∂ with respect to the canonical bases is precisely B(G). Therefore, the
rows of B(G) span Im ∂∗. By Proposition 1.1.44 and noting that the sum of the rows of B(G) is
zero, it follows that any set consisting of #V(G) − 1 rows of B(G) is a basis of Im ∂∗. In fact, it
is a Z-basis of Λ∗(G). If v ∈ V(G) and B(G)[v] is the matrix obtained from B(G) by removing
the vth row, then B(G)[v]B(G)[v]t = L(G)v is the Gram matrix of Λ∗(G), where L(G)v is the
resulting matrix after removing the vth row and column of L(G). Since the sum of the rows of
L(G) is zero, we then have that the invariant factors of Jac(G) can be read off from the Smith
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normal form of L(G). We also have the isomorphism (see Theorem 2.1.13)

Jac(G) �
ZE(G)

Λ(G) ⊕ Λ∗(G)
.

To conclude this section, we compute the Jacobian groups for the families of path graphs,
banana graphs, cycle graphs, and complete graphs.

Example 2.1.15. Consider the path graph Pathn, n ∈ N0. Recall that V(Pathn) = {0, . . . , n} and
E(Pathn) = {e1, . . . , en}. Let (t, h) be given by (t, h)(ei) = (i− 1, i) for all i ∈ {1, . . . , n}. Then ∂ is
injective for if f =

∑n
i=1 f (ei)χei ∈ ker ∂, then

0 = ∂( f ) = f (en)χh(en) − f (e1)χt(e1) +

n−1∑
i=1

(
f (ei) − f (ei+1)

)
χt(ei+1).

The set {χt(ei) : i = 1, . . . , n} ∪ {χh(en)} is the canonical basis of QV(Pathn), thus it is linearly
independent, so that f (e1) = f (e2) = · · · = f (en) = 0. Hence Jac(Pathn) = 0 for all n ∈ N0.

Example 2.1.16. Consider the cycle graph Cyclen, n ∈ N. Recall that V(Cyclen) = Z/nZ and
E(Cyclen) = {e1, . . . , en}. Let (t, h) be defined by (t, h)(ei) = (i − 1, i). Pick f =

∑n
i=1 f (ei)χei in

ker ∂. We have

0 = ∂( f ) =
(

f (en) − f (e1)
)
χt(e1) +

n−1∑
i=1

(
f (ei) − f (ei+1)

)
χt(ei+1),

which implies that f (e1) = · · · = f (en). If we set α = χe1 + · · · + χen , then f = f (e1)α. It is
clear that α ∈ ker ∂, as a result, ker ∂ = spanQ(α). In particular, Λ(Cyclen) = Zα and a direct
computation shows that Λ(Cyclen)# = 1

nΛ(Cyclen). Consequently Jac(Cyclen) � Z/nZ.

Example 2.1.17. Let us compute Jac(Kn), n ≥ 2. To do so, we will compute the Smith normal
form of its Laplacian.

n − 1 −1 · · · −1
−1 n − 1 · · · −1
...

...
. . .

...
−1 −1 · · · n − 1


row and column sums

are zero
−−−−−−−−−−−−−−→


n − 1 −1 · · · −1 0
−1 n − 1 · · · −1 0
...

...
. . .

...
...

−1 −1 · · · n − 1 0
0 0 · · · 0 0



add columns 2 up to n − 1
to column 1

−−−−−−−−−−−−−−−−−→


1 −1 · · · −1 0
1 n − 1 · · · −1 0
...

...
. . .

...
...

1 −1 · · · n − 1 0
0 0 · · · 0 0


add column 1 to column 2

through n − 1
−−−−−−−−−−−−−−−−−→


1 0 · · · 0 0
1 n · · · 0 0
...

...
. . .

...
...

1 0 · · · n 0
0 0 · · · 0 0


.

Hence Jac(Kn) � (Z/nZ)n−2.

Example 2.1.18. The Laplacian matrix of the banana graph on n edges is[
n −n
−n n

]
,

then its Jacobian is isomorphic to Z/nZ.
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2.1.3 Jacobian group of a regular matroid
Now the aim is to be able to replicate the same constructions from the previous subsection for
regular matroids. One problem immediately arises: unlike graphic matroids, there is no natural
choice for the matrix representing a regular matroid. Nonetheless, recall that a matroid M is
regular if and only if it can be represented by a totally unimodular matrix (see Theorem 1.5.2).
Moreover, we know that the incidence matrix of a graph is totally unimodular (Proposition
1.1.46) and the Jacobian group is constructed from this matrix. Hence we will start by defining
the Jacobian group for a particular totally unimodular representation of M. Later we shall show
that the isomorphism type of this group is independent of the totally unimodular representation
of M.

The results presented in Subsection 2.1.3 and Subsection 2.1.4 are drawn from Section 4.3
in [24] and Section 2.3 in [30]. Let M be a regular matroid of rank r > 0 with ground set
E such that #E = n. Suppose that M is represented by an r × n totally unimodular matrix A
over Q. Consider the Q-vector space Qn equipped with the canonical inner product. We define
ΛA(M) := ker A ∩ Zn. This is an integral full rank Z-lattice of ker A so that we can speak of its
dual ΛA(M)#.

Definition 2.1.19. The Jacobian group of M with respect to the totally unimodular representa-
tion A is the determinant group

JacA(M) :=
ΛA(M)#

ΛA(M)
.

If r = 0, then Jac(M) := 0.

Theorem 2.1.20. If A and A′ are two totally unimodular representations of a matroid M of rank
r > 0, then JacA(M) � JacA′(M).

Before proving Theorem 2.1.20, we need the next result, which states that if we have two
totally unimodular representations of M, then we can obtain one from the other by performing
row and column operations over Z. More precisely:

Lemma 2.1.21. Let M be a regular matroid of rank r ≥ 1 represented by two r × n totally
unimodular matrices A and A′. Then there is an r × r unimodular matrix U and a signed
permutation matrix P such that UAP = A′.

Proof. See 4.2 in [24]. �

Proof of Theorem 2.1.20. If r = n, then ker A = ker A′ = 0, thus JacA(M) = JacA′(M). Assume
n − r , 0. By Lemma 2.1.21, there is a unimodular matrix U and a signed permutation matrix
P such that UAP = A′. Let B = {b1, . . . , bn−r} be a basis of ΛA′(M) and let B be the matrix
with columns b1, . . . , bn−r. Then A′B = 0. Using the identity UAP = A′, one shows that the
columns of the matrix PB form a basis of ΛA(M). If we look at the Gram matrices of B and
PB, then Gr(B) = BtB and Gr(PB) = ((PB)t)(PB) = Bt(PtP)B (see Example 2.1.2). Since P is
orthogonal, the result follows from Propositions 2.1.4 and 2.1.10. �

We now turn to other presentations for JacA(M). Let us define Λ∗A(M) := row(A) ∩ Zn. If we
let Λ = Zn, then Λ# = Λ and by Theorem 2.1.13

JacA(M) �
Zn

ΛA(M) ⊕ Λ∗A(M)
� Jac(Λ∗A(M)).
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Since A is totally unimodular, its rows form a basis of Λ∗A(M). The Gram matrix of Λ∗A(M) with
respect to this basis is AAt. Hence

JacA(M) � Coker(AAt).

Remark 2.1.22. Since we are interested in properties of JacA(M) that are invariant under
isomorphism, we drop the subscript A and simply speak of the Jacobian of M.

Remark 2.1.23. If G is a connected graph without loops, then Jac(G) = JacB(G)[v](M(G)). Hence
we define for any graph G its Jacobian group to be Jac(G) := Jac(M(G)).

Corollary 2.1.24. If M1 and M2 are regular matroids, then Jac(M1 ⊕M2) � Jac(M1)⊕ Jac(M2).

Proof. If A1 and A2 are two totally unimodular representations of M1 and M2 respectively, then
the block diagonal matrix A with blocks A1 and A2 on its diagonal is a totally unimodular
representation of M1 ⊕ M2. Hence Coker(AAt) � Coker(A1At

1) ⊕ Coker(A2At
2). �

In the case of graphic matroids, Corollary 2.1.24 implies that if H and K are graphs and
G ∈ {H ∨ K,H t K}, then Jac(G) = Jac(H) ⊕ Jac(K). As a consequence of this fact is
that any finite abelian group is isomorphic to the Jacobian of a connected graph. Indeed,⊕k

i=1 Z/pmi
i Z � Jac(Cyclepm1

1
∨ · · · ∨ Cyclep

mk
k

).

Corollary 2.1.25. If M is a regular matroid, then Jac(M) � Jac(M∗).

Proof. Suppose that M has rank r and #E(M) = n. If r = 0, then r(M∗) = n − r = n, so that
Jac(M) = 0 = Jac(M∗). Now assume r > 0 and n − r , 0. Then M � M([Ir|D]) where [Ir|D]
is totally unimodular , so that M∗ � M([−Dt|In−r]) by Proposition 1.5.3. Let A = [Ir|D] and
B = [−Dt|In−r]. Note that ABt = 0 and Bt has rank n − r = dimQ ker(A), which shows that the
columns of Bt form a basis of ker A, in fact, these form a basis of ΛA(M) for Bt being totally
unimodular. Similarly, the columns of At form a basis of ΛB(M∗). Thus we have

ΛA(M) = ker(A) ∩ Zn = Im(Bt) ∩ Zn = row(B) ∩ Zn = Λ∗B(M∗),
Λ∗A(M) = row(A) ∩ Zn = Im(At) ∩ Zn = ker(B) ∩ Zn = ΛB(M∗).

Consequently Zn/(ΛA(M) ⊕ Λ∗A(M)) = Zn/(ΛB(M∗) ⊕ Λ∗B(M∗)). Then the result is clear. �

Example 2.1.26. Let n ≥ 2. Consider G = Cyclen. Then G∗ is the banana graph on n edges. By
Corollary 2.1.25, Jac(G) � Jac(G∗). Compare this with Examples 2.1.16 and 2.1.18.

2.1.4 Number of bases of a regular matroid
If we consider the analogy between curves and graphs, one could think of the order of the
Jacobian of a graph as the class number of an ideal class group. In fact, the order of the Jacobian
of a graph appears in the analytic class number formula for graphs [20]. This number, by
Kirchhoff’s Matrix Theorem (see Theorem 1.1.50), corresponds to the number of spanning
forests, which is the number of bases of a graphic matroid.

Definition 2.1.27. The number of bases of a matroid M is denoted by κ(M).
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The following proposition is a generalization of Proposition 1.1.40.

Proposition 2.1.28. If M is a matroid and e ∈ E(M), then

κ(M) =


κ(M\e) = κ(M/e), if e is either a loop or a coloop;

κ(M\e) + κ(M/e), otherwise.

Proof. It is a direct consequence from (1.3) and (1.7). �

Theorem 2.1.29. If M is a regular matroid, then # Jac(M) = κ(M).

Proof. Let r = r(M). If r = 0, then κ(M) = 1 = # Jac(M). Suppose r > 0 and let A be an r × n
totally unimodular representation of M. Let Er = {S ⊆ E(M) : #S = r}. By the Cauchy-Binet
formula, we have

det(AAt) =
∑
S∈Er

det
(
A[{1, . . . , r}|S ]

)
det

(
At[S |{1, . . . , r}]

)
,

where A[{1, . . . , r}|S ] is the matrix formed by the columns of A labeled by S , similarly, the
matrix At[S | {1, . . . , r}] is formed by the rows of At labeled by S . Then, it is clear that
At[S |{1, . . . , r}] = A[{1, . . . , r}|S ]t. Therefore,

det(AAt) =
∑
S∈Er

det(A[{1, . . . , r}|S ])2.

Now observe that det(A[{1, . . . , r}|S ])2 is either 0 or 1 according to whether S is the set of labels
for r linearly independent columns of A, whence

det(AAt) =
∑

B∈B(M)

1 = κ(M).

As Jac(M) � Coker(AAt) and # Coker(AAt) = det(AAt), the result follows. �

2.2 The Matroids Mλ

2.2.1 Metric graphs
Let G be a graph. Consider the following operation on G: given an arbitrary map λ : E(G)→ N,
we let Gλ be the graph obtained from G by replacing every edge e ∈ E(G) with a path of length
λ(e). It is called a metric graph and the pair (G, λ) is called a model of Gλ. Intuitively, the map
λ assigns a length to each edge of G.

In this way, from G we obtain a one-parameter family of graphs {Gλ}λ∈NE(G) . Note that G is a
member of this family as G = G1 where 1 is the constant function 1.

e f
g

h

G Gλ

Figure 2.1: λ(e) = λ( f ) = 2, λ(g) = 1, λ(h) = 3.
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Example 2.2.1. If G = Cycle1 and λn denotes the map that sends the unique edge of G to n,
then Gλn = Cyclen for all n ∈ N. Similarly, if H = Path1, then Hλn = Pathn for all n ∈ N.

2.2.2 Metric matroids
Suppose that M is a matroid of rank r where #E(M) = n. Pick λ ∈ NE(M). For each e ∈ E(M)
we let Ee(M) denote a set with λ(e) elements such that e ∈ Ee(M) and Ee(M) ∩ E f (M) = ∅ for
e , f . We define

E(Mλ) :=
⊔

e∈E(M)

Ee(M).

Let B(Mλ) be the collection of all subsets B of E(Mλ) for which there exists a basis B′ of B(M)
and a tuple (xe)e<B′ ∈

∏
e<B′ Ee(M) such that B = E(Mλ)− {xe : e < B′} (equivalently, there exists

a basis B′′ of B(M∗) and a tuple (xe)e∈B′′ ∈
∏

e∈B′′ Ee(M) such that B = E(Mλ) − {xe : e ∈ B′′}).

Proposition 2.2.2. The collection B(Mλ) is the set of bases of a matroid with ground set E(Mλ).

Proof. We must prove that B(Mλ) verifies (B1) and (B2). The first condition follows immedi-
ately as B(M∗) , ∅. For the second condition, we pick B1, B2 ∈ B and suppose x ∈ B1 − B2.

By definition, there are bases B′1 = {a1, . . . , an−r} and B′2 = {b1, . . . , bn−r} of the matroid M∗

for which there are tuples (c1, . . . , cn−r) ∈
∏n−r

i=1 Eai(M) and (d1, . . . , dn−r) ∈
∏n−r

i=1 Ebi(M) such
that B1 = E(Mλ) − {c1, . . . , cn−r} and B2 = E(Mλ) − {d1, . . . , dn−r}.

Observe that B1 − B2 = {d1, . . . , dn−r} − {c1, . . . , cn−r}. Similarly, we have the equality
B2 − B1 = {c1, . . . , cn−r} − {d1, . . . , dn−r}. Thus, there is j ∈ {1, . . . , n− r} such that x = d j. Let us
consider two cases. The first one is that there exists k ∈ {1, . . . , n − r} such that b j = ak. In this
case, ck ∈ Eb j(M) so that ck ∈ B2 − B1 and (B1 − {d j})∪ {ck} = E(Mλ)− ({c1, . . . , cn−r, d j} − {ck})
where

(c1, . . . , ck−1, d j, ck+1, . . . , cn−r) ∈
n−r∏
i=1

Eai(M).

Hence (B1 − {d j}) ∪ {ck} ∈ B(Mλ).
The second case is that b j , ai for all i ∈ {1, . . . , n − r}. Then b j ∈ B′2 − B′1. By Propo-

sition 1.2.15, there exists ak ∈ B′1 − B′2 such that (B′1 − {ak}) ∪ {b j} ∈ B(M∗). Since ak < B′2,
Eak(M) , Ebi(M) for all i ∈ {1, . . . , n − r}. Therefore ck < Ebi(M) for all i and consequently
ck ∈ B2 − B1. As before, we have that (B1 − {d j}) ∪ {ck} = E(Mλ) − ({c1, . . . , cn−r, d j} − {ck})
where

(c1, . . . , ck−1, ck+1, . . . , cn−r, d j) ∈
n−r∏
i=1
i,k

Eai(M) × Eb j(M).

Then (B1 − {d j}) ∪ {ck} ∈ B(Mλ) as {a1, . . . , an−r, b j} − {ak} ∈ B(M∗). This completes the
proof. �

Definition 2.2.3. If λ ∈ NE(M), then the metric matroid Mλ is given by (E(Mλ),B(Mλ)).

The matroid M1 given by the constant function e 7→ 1 is equal to M.
For e ∈ E(M), let χe : E(M)→ {0, 1} be the characteristic function of e.
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Example 2.2.4. The matroid M1+χe has ground set E(M1+χe) = E(M)t {e′} and its collection of
bases is

B(M1+χe) = {B ∪ {e′} : B ∈ B(M)} ∪ {B ∪ {e} : B ∈ B(M), e < B}. (2.2)

Proposition 2.2.5. Let e ∈ E(M). Then

(a) if e is not a coloop of M, then M1+χe is a series extension of M;

(b) if e is a coloop of M, then M1+χe � M ⊕ U1,1.

Proof. (a) From the description of B(M1+χe) in (2.2), it is clear that the set {e, e′} is a cocircuit
of M1+χe satisfying e , e′. In addition, from (1.7) it follows that M1+χe/e

′ = M.
(b) If e is a coloop of M, then M1+χe =

(
E(M) t {e′}, {B t {e′} : B ∈ B(M)}

)
, which is

isomorphic to M ⊕ U1,1. �

Example 2.2.6. Let us describe a procedure to compute M1+χe for a representable matroid M.
Suppose that e is not a coloop of M so that M1+χe is a series extension of M. By Proposition
1.3.19, M∗

1+χe
is a parallel extension of M∗. Assume M∗ � M(A) where A ∈ Mn−r×n(K) for

some field K. Suppose that e corresponds to ei in M(A). If A′ is the matrix obtained from A
by duplicating column ei and labeling this new column by en+1, then M∗

1+χe
� M(A′), hence

M1+χe � M(A′)∗. For the sake of clarity, we illustrate this with the next example.
Consider the following matrices over Q:

A =

[e1 e2 e3 e4

1 0 −1 2
0 1 0 1

]
, B =

[ e1 e2 e3 e4

1 0 1 0
−2 −1 0 1

]
.

Let M = M(A). We shall find a representation for M1+χe1
over Q . Observe that M∗ = M(B).

Then the matrix

B′ =

[ e1 e5 e2 e3 e4

1 1 0 1 0
−2 −2 −1 0 1

]
represents the matroid M∗

1+χe1
. Therefore, the matroid M1+χe1

is represented by the matrix


e1 e5 e2 e3 e4

1 0 0 −1 2
0 1 0 −1 2
0 0 1 0 1

.
Proposition 2.2.7. For any λ ∈ NE(M),

r(Mλ) =
∑

e∈E(M)

(λ(e) − 1) + r(M).

Proof. By Proposition 1.3.7, we have that r(Mλ) + r(M∗
λ) = #E(Mλ). By definition of B(Mλ),

we have r(M∗
λ) = r(M∗), then r(M∗

λ) = #E(M) − r(M). Hence

r(Mλ) = #E(Mλ) − #E(M) + r(M) =
∑

e∈E(M)

(λ(e) − 1) + r(M).

�
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Proposition 2.2.8. Let M be a matroid. If λ ∈ NE(M), then

κ(Mλ) =
∑

B∈B(M)

∏
e<B

λ(e).

Proof. By definition, there is a bijection between B(Mλ) and the set⊔
B∈B(M)

∏
e<B

Ee(M).

Hence the result follows. �

The next proposition will allow us to prove properties about Mλ by induction on λ.

Proposition 2.2.9. Let e ∈ E(M) and λ ∈ NE(M). If λ(e) > 1, then (Mλ−χe)1+χe = Mλ.

Proof. Suppose that E(Mλ) =
⊔

f∈E(M) E f (M). By definition, the ground set of Mλ−χe can be
taken to be E(Mλ−χe) =

⊔
f∈E(M) E′f (M), where E′f (M) = E f (M) for f , e, and E′e(M) = Ee(M)−

{e′} for some e′ ∈ Ee(M) − {e}. So that, by (2.2), we have that E((Mλ−χe)1+χe) = E(Mλ−χe) t {e
′}

and

B((Mλ−χe)1+χe) = {B ∪ {e′} : B ∈ B(Mλ−χe)} ∪ {B ∪ {e} : B ∈ B(Mλ−χe), e < B}. (2.3)

We will show that B((Mλ−χe)1+χe) ⊆ B(Mλ) and B(Mλ) ⊆ B((Mλ−χe)1+χe). To see the first
containment, we pick an arbitrary basis B′ ∈ B((Mλ−χe)1+χe). According to (2.3), we must
consider two cases for B′:

(i) If B′ = B ∪ {e′} with B ∈ B(Mλ−χe), then there exist a basis B0 ∈ B(M) and a tuple
(x f ) f<B0 ∈

∏
f<B0

E′f (M) such that B = E(Mλ−χe) − {x f : f < B0}. Since e′ < {x f : f < B0}

we have
B′ = B ∪ {e′} = E(Mλ) − {x f : f < B0} ∈ B(Mλ).

(ii) If B′ = B ∪ {e} with B ∈ B(Mλ−χe) and e < B, then there exist a basis B0 ∈ B(M) and
a tuple (x f ) f<B0 ∈

∏
f<B0

E′f (M) such that B = E(Mλ−χe) − {x f : f < B0}. Since e < B,
then xe = e and e < B0. Define for f < B0 with f , e, y f = x f and ye = e′. Then
(y f ) f<B0 ∈

∏
f<B0

E f (M) and

B′ = B ∪ {e} = E(Mλ) − {y f : f < B0} ∈ B(Mλ).

This shows that B((Mλ−χe)1+χe) ⊆ B(Mλ).
Now pick B ∈ B(Mλ). There exist B0 ∈ B(M) and (x f ) f<B0 ∈

∏
f<B0

E f (M) such that
B = E(Mλ) − {x f : f < B0}. If e′ ∈ B, then e′ < {x f : f < B0}; thus

B = E(Mλ) − {x f : f < B0} =
(
E(Mλ−χe) − {x f : f < B0}

)
∪ {e′} ∈ B

(
(Mλ−χe)1+χe

)
.

If e′ < B, then e′ ∈ {x f : f < B0}, that is, e < B0 and xe = e′. We define y f = x f if f , e and
ye = e. So (y f ) f<B0 ∈

∏
f<B0

E′f (M) and

B = E(Mλ) − {x f : f < B0} =
(
E(Mλ−χe) − {y f : f < B0}

)
∪ {e} ∈ B

(
(Mλ−χe)1+χe

)
.

Thus B(Mλ) ⊆ B((Mλ−χe)1+χe). �
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Suppose E(M) = {e1, . . . , en}. We regard λ as the tuple (λ(e1), . . . , λ(en)) ∈ Nn and order Nn

by the lexicographical order.

Proposition 2.2.10. If M is irreducible (resp. linear or regular), so is Mλ for any λ ∈ NE(M).

Proof. We use induction on λ. The base case is λ = (1, 1, . . . , 1) ∈ Nn, then Mλ = M. Thus, the
result follows by assumption. We now suppose λ > (1, . . . , 1) and that the proposition is true
for any γ < λ. Let i = min{ j : λ(e j) > 1}. Set γ = λ − χei so that γ < λ. Thus, by the induction
hypothesis, the matroid Mγ is irreducible (resp. linear or regular). By Proposition 2.2.9,
(Mγ)1+χei

= Mλ.
If Mγ is irreducible, then ei is not a coloop of Mγ, therefore, by Proposition 2.2.5, Mλ is a

series extension of Mγ. Whence Mλ is irreducible by Proposition 1.4.7.
If Mγ is linear (resp. regular), then we consider two cases:

(i) If ei is not a coloop of Mγ, then by Proposition 2.2.5, the matroid Mλ is a series extension
of Mγ. Hence, by Proposition 1.5.4, the result follows.

(ii) If ei is a coloop of Mγ, we have that Mλ � Mγ ⊕ U1,1 (see Proposition 2.2.5). Since the
direct sum of linear (resp. regular) matroids is linear (resp. regular), the result is clear.

�

Proposition 2.2.11. If G is a graph and λ ∈ NE(G), then M(G)λ = M(Gλ).

Proof. First of all, note that M(G)1+χe = M(G1+χe) for all e ∈ E(G) (this follows from (2.2)).
We proceed by induction on λ. If λ = (1, . . . , 1), then there is nothing to show. Suppose

that (1, . . . , 1) < λ and that the proposition is true for all γ ∈ NE(G) verifying γ < λ. Let
i = min{ j : λ(e j) > 1} (we are assuming E(G) = {e1, . . . , en}). Set γ = λ − χei so that γ < λ.
Thus, by the induction hypothesis, M(G)γ = M(Gγ). As a result,

M(G)λ = (M(G)γ)1+χei
= M(Gγ)1+χei

= M((Gγ)1+χe) = M(Gλ).

�

2.3 Configuration Polynomials
Let M be a regular matroid. Let λ := {λe : e ∈ E(M)} be a set of variables indexed by the
elements of M. The configuration polynomial of M is

ΨM :=
∑

B∈B(M)

∏
e<B

λe ∈ Z[λ]. (2.4)

By convention, a product of variables indexed by the empty set equals 1. If G is a graph, we
define the configuration polynomial of G to be ΨG := ΨM(G).

The configuration polynomial of a linear matroid can be defined by the theory of configura-
tions of vector spaces; however, it depends on the field of definition. Under this new definition,
the configuration polynomial of a regular matroid is independent of the field of definition and
has exactly the form as in (2.4). For further discussion of the general case we refer the reader
to [14].
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Remark 2.3.1.

(a) By definition, ΨM is a homogeneous polynomial of degree r(M∗). It is linear in each
variable and its coefficients are all 1.

(b) If e is a loop of M, then λe divides ΨM. Thus, the configuration polynomial of a regular
matroid is reducible in general.

(c) If e is a coloop of M, then ∂λeΨM = 0.

Example 2.3.2. Consider the diamond graph

e5
e1

e3

e2

e4

Figure 2.2: Diamond graph.

Its configuration polynomial is

λe1λe3 + λe1λe4 + λe2λe3 + λe2λe4 + λe1λe5 + λe2λe5 + λe3λe5 + λe4λe5 .

Example 2.3.3. Let G be the banana graph on n edges. Then

ΨG =

n∑
i=1

n∏
j=1
j,i

λe j .

Example 2.3.4. Let G = Cyclen. Then

ΨG =

n∑
i=1

λei .

Lemma 2.3.5. If M = N ⊕ K is a direct sum of two matroids, then ΨM = ΨNΨK .

Proof. By Remark 1.3.13, a basis of M is of the form B1 t B2 with B1 ∈ B(N) and B2 ∈ B(K).
Furthermore, E(M) − B1 t B2 = (E(N) − B1) t (E(K) − B2). Thus

ΨM =
∑

B∈B(M)
B=B1tB2

 ∏
e∈E(N)−B1

λe

∏
e∈E(K)−B2

λe

 =

 ∑
B∈B(N)

∏
e<B

λe


 ∑

B∈B(K)

∏
e<B

λe

 = ΨNΨK .

�

The following proposition relates the irreducibility of a matroid and the irreducibility of its
configuration polynomial. This result was proved in [14]. For the sake of completeness, we give
a proof here.
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Proposition 2.3.6. Let M be a regular matroid.

(a) If M1, . . . ,Mn are the irreducible components of M, then ΨM = ΨM1 · · ·ΨMn .

(b) If M is nonempty and has no coloops, then M is irreducible if and only if ΨM is irreducible
over any field.

(c) ΨM = 1 if and only if r(M) = #E(M) if and only if M is isomorphic to a finite direct sum
of copies of U1,1.

Proof. (a) Since M is the direct sum of its irreducible components, part (a) follows from
Lemma 2.3.5 by induction.

(b) We prove (b) by contrapositive. Assume first that M is reducible, that is, M = N ⊕ K
where N,K are nonempty matroids. So that ΨM = ΨNΨK . As M has no coloops, it follows that
r(N) < #E(N) and r(K) < #E(K), which shows that ΨN and ΨK are nonconstant.

Now assume that ΨM is not irreducible, then ΨM = GH for some nonconstant homogeneous
polynomials G,H. Define EG = {e ∈ E(M) : degλe

G > 0} and EH = {e ∈ E(M) : degλe
H > 0}.

Consider the matroids MG = M|EG and MH = M|EH. We claim that M = MG ⊕ MH.
Since M has no coloops, degλe

ΨM > 0 for all e ∈ E(M); moreover, as ΨM is linear in each
variable, the polynomials G and H have no variables in common, then E(M) = EG t EH. Now
we shall show that B(M) = B(MG ⊕ MH). Before proving this, let us note the following.

If BG ∈ B(M|EG), then there exists B ∈ B(M) such that BG = B ∩ EG. So that

(EG − BG) t EH = E(M) − BG = E(M) − (B ∩ EG) = (E(M) − B) ∪ EH,

then

#(EG − BG) + #EH = #(E(M) − B) + #EH − #((E(M) − B) ∩ EH)
= deg ΨM + #EH − deg H,

from which it follows that #(EG − BG) = deg G. A similar argument shows that for any basis BH

of M|EH, #(EH − BH) = deg H.
If B ∈ B(M), then B = (B∩EG)t(B∩EH), then E(M)−B = (EG−(B∩EG))t(EH−(B∩EH)).

As #(E(M) − B) = deg ΨM, deg G ≤ #(EG − (B ∩ EG)), and deg H ≤ #(EH − (B ∩ EH)), it
follows that each of these inequalities is in fact an equality. Hence B ∩ EG ∈ B(M|EG) and
B ∩ EH ∈ B(M|EH). Consequently, B ∈ B(M|EG ⊕ M|EH).

If BG t BH ∈ B(MG ⊕ MH), then

#(BG t BH) = #BG + #BH = (#EG − deg H) + (#EH − deg G) = E(M) − deg ΨM = r(M).

Therefore BG t BH is a basis of M by Proposition 1.2.25. Hence M = M|EG ⊕ M|EH, showing
that M is reducible.

(c) If ΨM = 1, then E(M) − B = ∅ for any B ∈ B(M). Therefore, r(M) = #E(M).
If r(M) = #E(M), then E(M) is the only basis of M. Then M =

⊕
e∈E(M) M|{e}. Since

M|{e} � U1,1, M is isomorphic to a finite direct sum of copies of U1,1 (we assume that a direct
sum of matroids over the empty set equals the empty matroid). Lastly, if M is isomorphic to a
finite direct sum of copies of U1,1. Then E(M) is the only basis of M, hence ΨM = 1. �
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Proposition 2.3.7. If M is a regular matroid and e ∈ E(M), then

ΨM =


ΨM/e, if e is a coloop;
λeΨM\e, if e is a loop;
λeΨM\e + ΨM/e, otherwise.

Proof. This follows from definition of ΨM, Proposition 2.1.28, and the descriptions of B(M/e)
and B(M\e) in (1.7) and (1.3). �

Theorem 2.3.8. If M is a regular matroid and λ ∈ NE, then ΨM(λ) = # Jac(Mλ).

Proof. If λ ∈ NE, then by Proposition 2.2.8, we have

ΨM(λ) =
∑

B∈B(M)

∏
e<B

λ(e) = κ(Mλ).

Since Mλ is regular (see Proposition 2.2.10), it follows that ΨM(λ) = # Jac(Mλ) by Theo-
rem 2.1.29. �



Chapter 3

Configuration Hypersurfaces

The configuration polynomial of a regular matroid is a homogeneous polynomial with the
property that is linear in each variable. We will study the hypersurfaces cut out by polynomials
that are linear in one of their variables.

3.1 Geometric Aspects
Throughout this section k will denote an arbitrary field . We denote respectively by An

k and
Pn

k the affine and projective space of dimension n over k defined by An
k := Spec k[T1, . . . ,Tn]

and Pn
k := Proj k[T0, . . . ,Tn]. If F ∈ k[T0, . . . ,Tn] is a homogeneous polynomial, then the

hypersurface cut out by F is XF := Proj k[T0, . . . ,Tn]/(F). If G ∈ k[T0, . . . ,Tn]/(F), then we
endow the closed set V+(G) := {p ∈ Proj k[T0, . . . ,Tn]/(F) : G ∈ p} ⊆ XF with the structure of
closed subscheme induced by the canonical closed immersion Proj k[T0, . . . ,Tn]/(F,G) ↪→ XF .
The principal open set determined by G is D+(G) := {p ∈ Proj k[T0, . . . ,Tn]/(F) : G < p}. If
Z,Y are closed subschemes of Pn

k , then Y ∩ Z is the scheme-theoretic intersection.
Let F ∈ k[T0, . . . ,Tn] be a nonzero homogeneous polynomial that is linear in one of its

variables; we can write (up to a permutation of the variables)

F = T0G1 + G0, (3.1)

for some some homogeneous polynomials G0,G1 ∈ k[T1, . . . ,Tn] with G1 , 0. Note that
deg G0 = deg F and deg G1 = deg F − 1. Consider the hypersurfaces XF , XGi , i = 0, 1. These
come with canonical closed immersions XF ↪→ P

n
k , XGi ↪→ P

n−1
k , i = 0, 1. Lastly, consider the

subschemes V+(G1),D+(G1) ⊆ XF .

Proposition 3.1.1. Pn−1
k − XG1 and D+(G1) ⊆ XF are isomorphic as k-schemes.

Proof. Define the following homomorphism of graded k-algebras:

ϕ : k[T0, . . . ,Tn]G1 → k[T1, . . . ,Tn]G1

Ti 7→ Ti, i = 1, . . . , n

T0 7→ −
G0

G1
.

40
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It is well-defined by the universal property of localization. We claim that kerϕ = (F)G1 . The
inclusion (F)G1 ⊆ kerϕ follows from observing that ϕ(F) = (−G0/G1)G1 + G0 = 0. Now let
P/Gm

1 ∈ kerϕ and write P = T l
0P1 + P0 for some P0, P1 ∈ k[T1, . . . ,Tn] and some l ∈ N0. We

have

0 = ϕ

(
P

Gm
1

)
=

(−1)lGl
0P1 + Gl

1P0

Gm+l
1

=⇒ Gl
1P0 = (−1)l+1Gl

0P1, (3.2)

from which it follows that

P
Gm

1
=

T l
0P1 + P0

Gm
1

=
(T0G1)lP1

Gm+l
1

+
(−1)l+1Gl

0P1

Gm+l
1

=
(
(T0G1)l + (−1)l+1Gl

0

) P1

Gm+l
1

.

Note that (T0G1)l + (−1)l+1Gl
0 = (F −G0)l + (−1)l+1Gl

0 and that the latter term is divisible by F
(by the Binomial Theorem). Hence P/Gm

1 ∈ (F)G1 . This proves our claim.
It is clear that ϕ is surjective, hence it is an isomorphism and(

k[T0, . . . ,Tn]
(F)

)
G1

�
k[T0, . . . ,Tn]G1

(F)G1

� k[T1, . . . ,Tn]G1 ,

where the first isomorphism is the canonical one. Since the degree zero parts of these graded
algebras are preserved under these isomorphisms, we get(

k[T0, . . . ,Tn]
(F)

)
(G1)

� k[T1, . . . ,Tn](G1). (3.3)

As these are the coordinate rings of the affine open sets D+(G1) and Pn−1
k − XG1 , respectively, the

result is clear. �

Let p = [1, 0, . . . , 0] ∈ Pn
k be the rational point corresponding to the ideal (T1, . . . ,Tn). Let

πp : Pn
k−{p} → P

n−1
k denote the projection centered at p induced by the k-algebra homomorphism

φ : k[T1, . . . ,Tn]→ k[T0, . . . ,Tn] given by φ(T j) = T j for all j = 1, . . . , n. At the level of rational
points we have πp([a0, . . . , an]) = [a1, . . . , an].

Corollary 3.1.2. The restriction of πp to D+(G1)→ Pn−1
k − XG1 is an isomorphism of k-schemes.

Proof. Observe that p < D+(G1) and πp(D+(G1)) ⊆ Pn−1
k − XG1 . Thus πp restricts to a morphism

of k-schemes D+(G1)→ Pn−1
k − XG1 . This morphism corresponds to the homomorphism

k[T1, . . . ,Tn]G1 →

(
k[T0, . . . ,Tn]

(F)

)
(G1)

Ti

Gk
1

7→
T i

G
k
1

, i = 1, . . . , n.

It is easy to see that this homomorphism and the one given in (3.3) are inverses of each other. �
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From Corollary 3.1.2 we have the following commutative diagram:

D+(G1) XF − {p} Pn
k − {p}

Pn−1
k − XG1 Pn−1

k

� πp

When F is irreducible it follows from Proposition 3.1.1 that XF is birational to Pn−1
k . Hence

XF is rational.
If X = Proj k[T1, . . . ,Tn]/I is a projective scheme, then the scheme Proj k[T1, . . . ,Tn][T0]/I

is called the projective cone of X with vertex p and it is denoted by Conep(X). It is well-known
that πp induces a surjective morphism θ : Conep(X) − {p} → X where the fibre of θ over x ∈ X
is isomorphic to A1

κ(x) (here κ(x) is the residue field of x).

Proposition 3.1.3. The projection morphism πp induces a surjective morphism of k-schemes
θ : V+(G1) − {p} → XG1 ∩ XG0 , where the fibre of θ over y ∈ XG1 ∩ XG0 is isomorphic to A1

κ(x).

Proof. The closed immersion XF ↪→ P
n
k induces an isomorphism V+(G1) � V+(F) ∩ V+(G1) (as

k-schemes) and V+(F) ∩ V+(G1) = V+(G1,G0) ⊆ Pn
k as schemes. Since G1,G0 are independent

of T0, then V+(G1,G0) = Conep(XG1 ∩ XG0). Hence the result follows. �

Definition 3.1.4. Let M be a regular matroid and k be an arbitrary field. The scheme

XM := Proj k[λe : e ∈ E(M)]/(ΨM) ⊆ P#E(M)−1
k

is called the configuration hypersurface of M.

If G is a graph, we define the configuration hypersurface of G to be XG := XM(G).

3.2 Counting Points over Finite Fields
We keep the notation from the preceding section and we assume k to be a finite field with q
elements.

Proposition 3.2.1. If F ∈ k[T0, . . . ,Tn] is a homogeneous polynomial as in (3.1), then there is
a natural identification

XF(k) = Conep(XG1 ∩ XG0)(k) t (Pn−1
k (k) − XG1(k)).

Proof. We have XF = V+(G1)tD+(G1) as topological spaces. Since V+(G1) � Conep(XG1∩XG0)
as k-schemes, the result is a direct consequence of Propositions 3.1.1 and 3.1.3. �

Corollary 3.2.2. If F ∈ k[T0, . . . ,Tn] is a homogeneous polynomial as in (3.1), then

#XF(k) = q#(XG1(k) ∩ XG0(k)) + #Pn−1
k (k) − #XG1(k) + 1.

Proof. It is a direct consequence of Proposition 3.2.1. �
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The equality in Corollary 3.2.2 was first deduced by Stembridge [27]. Nonetheless, the
geometry behind this identity is concealed by the probabilistic methods used.

Theorem 3.2.3 ([13, Corollary 3.3]). If X ⊆ Pn
k is an equidimensional closed subscheme of

dimension d < n and degree δ, then

#X(k) ≤ δ
(
#Pd

k(k) − #P2d−n
k (k)

)
+ #P2d−n

k (k).

When m is a negative integer then the value of #Pm
k (k) is zero by convention.

Theorem 3.2.4. Suppose that F ∈ k[T0, . . . ,Tn] is a homogeneous polynomial as in (3.1). If
F is irreducible over k, then there are monic polynomials f (t), g(t) ∈ Z[t] of degree n − 1
independent of k such that

g(q) ≤ #XF(k) ≤ f (q).

The coefficients of g(t) and f (t) depend only on deg F and dimPn
k .

We need the following result to prove Theorem 3.2.4. But before that, let us define what a
complete intersection is. We say that X = Proj k[T0, . . . ,Tn]/( f1, . . . , fr) is a complete intersec-
tion if codim(X,Pn

k) = r (equivalently, dim X = n − r).

Proposition 3.2.5. Suppose that F ∈ k[T0, . . . ,Tn] is a homogeneous polynomial as in (3.1). If
F is irreducible over k of deg F > 1, then XG1 ∩ XG0 is a complete intersection.

Proof. We need to prove that codim(XG1 ∩ XG0 ,P
n−1
k ) = 2. It is enough to show that the height

of the ideal (G0,G1), denoted ht(G0,G1), is 2 in k[T1, . . . ,Tn]. Since this ideal is generated by
two polynomials, ht(G0,G1) ≤ 2. Let p be a prime ideal containing (G0,G1). Then (G0) ⊆ p.
We claim that p is not a minimal prime ideal of (G0). Indeed, as F is irreducible, G1 and G0

are coprime, therefore G1 is not a nonzero divisor of k[T0, . . . ,Tn]/(G0), which shows that G1

cannot be contained in any minimal prime ideal of G0. Consequently there must be a nonzero
prime ideal q strictly contained in p. Then ht(p) ≥ 2, which implies that ht(G0,G1) ≥ 2 as
ht(G0,G1) = inf{ht(p) : (G0,G1) ⊆ p}. This completes the proof. �

Proof of Theorem 3.2.4. If m := deg F = 1, then XF � P
n−1
k so that #XF(k) = (qn − 1)/(q − 1).

Hence we take f (t) = g(t) = tn−1 + tn−2 + · · · + t + 1.
Now assume m > 1 so that XG1 ∩ XG0 is a complete intersection by Proposition 3.2.5. Since

complete intersections are equidimensional (see Section 10.135 in [29]), it follows that XG1∩XG0

is equidimensional of dimension n − 3. By Bézout’s theorem (see Theorem III-71 in [15]) its
degree is m(m − 1). We now use Theorem 3.2.3 to get

#XG1(k) ∩ XG0(k) ≤ m(m − 1)(#Pn−3
k (k) − #Pn−6

k (k)) + #Pn−6
k (k).

The polynomial

h(t) = m(m − 1)
(
tn−2 − 1

t − 1

)
+ (1 + m − m2)

(
tn−5 − 1

t − 1

)
∈ Z[t]

has degree n − 3 and satisfies #XG1(k) ∩ XG0(k) ≤ h(q). Moreover, #Pn−1
k (k) − #XG1(k) + 1 is

bounded above by (qn − 1)/(q − 1) + 1. Hence, if we take f (t) = (tn − 1)/(t − 1) + th(t) ∈ Z[t],
then f (t) is monic of degree n − 1 and #XF(k) ≤ f (q) by Corollary 3.2.2.
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On the other hand, by Proposition 3.2.1 and by Applying Theorem 3.2.3 to XG1 we have

#XF(k) ≥ #Pn−1
k (k) − #XG1(k) + 1

≥ #Pn−1
k (k) −

(
(m − 1)

(
#Pn−2

k (k) − #Pn−4
k (k)

)
+ #Pn−4

k (k)
)

+ 1,

so we take

g(t) =
tn − 1
t − 1

− (m − 1)
(
tn−1 − 1

t − 1

)
+ m

(
tn−3 − 1

t − 1

)
+ 1 ∈ Z[t]

then g(t) is monic of degree n − 1 and g(q) ≤ #XF(k). �

Theorem 3.2.6. Suppose that F ∈ k[T0, . . . ,Tn] is a homogeneous polynomial satisfying (3.1).
If F is irreducible over k, then

#XF(k) = qn−1 + O(qn−2).

The implied constant is computable and depends only on deg F and dimPn
k .

Lemma 3.2.7. If h(t) = antn + · · ·+a0 ∈ R[t] is a polynomial with an , 0 and C = |an|+ · · ·+ |a0|,
then −Ctn ≤ h(t) ≤ Ctn for t > 1.

Proof. for t > 1 we have that

|antn + · · · + a0| ≤ |an|tn + · · · + |a0|

= tn

(
|an| +

|an−1|

t
+ · · · +

|a0|

tn

)
≤ tn(|an| + · · · + |a0|)
= Ctn.

�

Proof of Theorem 3.2.6. Consider the polynomials f (t), g(t) from the Theorem 3.2.4. Let C1

and C2 be the sum of the absolute values of the coefficients of the polynomials f (t) − pn−1 and
g(t) − pn−1, respectively. If C = max{C1,C2}, then by Lemma 3.2.7

−Cqn−2 ≤ #XF(k) − qn−1 ≤ Cqn−2.

Whence #XF(k) = qn−1 + O(qn−2). �

The next two propositions will be useful for some computations in Example 3.3.7.

Proposition 3.2.8. Suppose that F ∈ k[T0, . . . ,Tn] is a homogeneous polynomial as in (3.1).
Let Fλ be the homogeneous polynomial obtained from F by replacing T0 with S 0 + · · · + S m,
that is, Fλ = (S 0 + · · · + S m)G1 + G0 ∈ k[S 0, . . . , S m,T1, . . . ,Tn]. Then

#XFλ(k) = qm#XF(k) + #Pm−1
k (k).
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Proof. By applying the projective change of coordinates induced by

k[S 0, . . . , S m,T1, . . . ,Tn]→ k[S 0, . . . , S m,T1, . . . ,Tn]

S 0 7→ S 0 −

m∑
i=1

S i,

S i 7→ S i, i = 1, . . . ,m,
Ti 7→ Ti, i = 1, . . . , n.

We see that XFλ � XG (as k-schemes) where G = S 0G1 + G0. Consider the linear scheme
Y = V+(S 0,T1, . . . ,Tn) ⊆ Pm+n

k , then Y � Pm−1
k . Let πY : Pm+n

k − Y → Pn
k be the projection from

Y to Pn
k . This morphism is induced by

k[T0, . . . ,Tn]→ k[S 0, . . . , S m,T1, . . . ,Tn]
T0 7→ S 0,

Ti 7→ Ti, i = 1, . . . , n.

At the level of k-rational points this morphism is given by [a0, . . . , am+n] 7→ [a0, am+1 . . . , am+n].
The pullback of G is precisely F. Therefore this projection induces a surjective morphism
XG − Y → XF , where the fiber of each x ∈ XF is isomorphic to Am

k(x). Lastly, note that Y ⊆ XG

whence XG(k) = Pm−1
k (k) t

⊔
x∈XF (k)A

m
k (k). �

The next proposition is the matroid version of Lemma 1.3 and Corollary 1.4 in [1]. The proof
given there works for this case too. We let Σn denote the union of the coordinate hyperplanes.

Proposition 3.2.9. Suppose that M is a regular matroid with #E(M) = {e1, . . . , en}. Then

ΨM(λe1 , . . . , λen) =

 n∏
i=1

λei

 ΨM∗(λ−1
e1
, . . . , λ−1

en
).

Moreover, the Cremona transformation induces an isomorphism XM − Σn � XM∗ − Σn over k.

3.3 The Family {Mλ}λ∈NE(M)

In this section, we fix a prime number p. Let M be a regular matroid and let λ ∈ NE, we define
λp ∈ N

E to be the map given by the rule λp(e) = k, where 1 ≤ k ≤ p and λ(e) ≡ k mod p.

Definition 3.3.1. The height for a map λ ∈ NE is ht(λ) := max{λ(e) : e ∈ E}.

Definition 3.3.2. The density of a subset S ⊆ NE is

µ(S ) := lim
m→∞

#
(
S ∩ {λ ∈ NE : ht(λ) ≤ m}

)
#{λ ∈ NE : ht(λ) ≤ m}

,

provided the limit exits.
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Definition 3.3.3. We define Jp(M) := {λ ∈ NE : p | # Jac(Mλ)}. If G is a graph, we define
Jp(G) := Jp(M(G)).

Observe that for a graph G, we have that Jp(G) = {λ ∈ NE : p | # Jac(Gλ)} by virtue of
Proposition 2.2.11.

Theorem 3.3.4. If #E(M) = n and ΨM , 1, then

µ(Jp(M)) =
(p − 1)#XM(Fp) + 1
(p − 1)#Pn−1

Fp
(Fp) + 1

.

Proof. For m ∈ N, we let

Bm := {λ ∈ NE(M) : ht(λ) ≤ m}
Am := {λ ∈ Bm : ΨM(λ) ≡ 0 mod p}.

By Theorem 2.3.8, ΨM(λ) = # Jac(Mλ), therefore

#Am = #{λ ∈ Bm : p | # Jac(Mλ)}.

Now suppose m ≥ p and write m = ptm + l for some tm ∈ N and 0 ≤ l < p. Consider the
following map:

θm : Bm → Bp

λ 7→ λp.

The map θm is surjective as Bp ⊆ Bm and λp = λ for all λ ∈ Bp. We will find a lower bound and
an upper bound for the size of #θ−1

m (γ) with γ ∈ Bp. A map λ : E(M)→ N is a preimage of γ if
and only if the following two conditions hold:

(a) 1 ≤ λ(e) ≤ ptm + l for all e ∈ E(M) and

(b) for each e ∈ E(M), there exists a nonnegative integer ke such that λ(e) = pke + γ(e).

According to whether γ(e) ≤ l or γ(e) > l, the possible values for ke are:

(i) 0 ≤ ke ≤ tm, if γ(e) ≤ l;

(ii) 0 ≤ ke ≤ tm − 1, if γ(e) > l.

It follows that
tn
m ≤ #θ−1

m (γ) ≤ (tm + 1)n.

Moreover, as θ−1
m (Ap) = Am we have

#Am =
∑
γ∈Ap

#θ−1
m (γ)

then

tn
m#Ap ≤ #Am ≤ (tm + 1)n#Ap.
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On the other hand, #Bm = mn = (ptm + l)n and #Bp = pn. Using the inequalities

(ptm + l)n ≤ (ptm + p)n = pn(tm + 1)n and pntn
m ≤ (ptm + l)n,

we get

#Am

#Bm
≤

(tm + 1)n#Ap

(ptm + l)n ≤
(tm + 1)n#Ap

pntn
m

=
(tm + 1)n

tn
m

#Ap

#Bp
,

#Am

#Bm
≥

tn
m#Ap

(ptm + l)n ≥
tn
m#Ap

(tm + 1)n pn =
tn
m

(tm + 1)n

#Ap

#Bp
.

So that, (
tm

tm + 1

)n #Ap

#Bp
≤

#Am

#Bm
≤

(
tm + 1

tm

)n #Ap

#Bp
.

By letting m→ ∞ on both sides and noting that tm → ∞, we get

µ(Jp(M)) = lim
m→∞

#Am

#Bm
=

#Ap

#Bp
.

Finally, notice that
#Ap

#Bp
=

(p − 1)#XM(Fp) + 1
(p − 1)#Pn−1

Fp
(Fp) + 1

This follows easily by noting that there is a bijection between Bp and An
Fp

(Fp), and that there is
a bijection between Dp and V(ΨM)(Fp) ⊆ An

Fp
(Fp), and that each equivalence class of Pn−1

Fp
(Fp)

contains p − 1 points of An
Fp

(Fp). �

Example 3.3.5. Let G = Cycle2.

e

f

Figure 3.1: Cycle2.

For λ ∈ NE(G) we have Gλ = Cycleλ(e)+λ( f ), whence Jac(Gλ) � Z/(λ(e) + λ( f ))Z. Hence
{Jac(Gλ)}λ∈NE(G) is the family of all finite cyclic groups.

On the other hand, ΨG = λe + λ f so that XG � P
0
Fp

. Thus, by Theorem 3.3.4 we obtain

µ(Jp(G)) =
(p − 1)#XG(Fp) + 1
(p − 1)#P1

Fp
(Fp) + 1

=
1
p
,

as expected.

Theorem 3.3.6. If M is irreducible, then

µ(Jp(M)) =
1
p

+ O
(

1
p2

)
.

The implied constant is computable and depends only on r(M) and #E(M).
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Proof. If M is irreducible, then ΨM is irreducible and we can write ΨM = λeΨM\e + ΨM/e for
any e ∈ E(M) (see Proposition 2.3.7) where ΨM\e,ΨM/e are independent of λe. So all the results
from the previous section apply to XM. In particular,

#XM(Fp) = pn−1 + O(pn−2)

where n = #E(M) − 1 (notice that #E(M) ≥ 3 as M is irreducible).
On the other hand, by Theorem 3.3.4

µ(Jp(M)) =
(p − 1)#XM(Fp) + 1
(p − 1)#Pn

Fp
(Fp) + 1

.

Observe that (p − 1)#Pn
Fp

(Fp) + 1 = pn+1. From Theorem 3.2.6 we know that there exists a

computable constant C depending only on deg ΨM(= #E(M) − r(M)) and dimP#E(M)−1
k , which

shows that C depends only on #E(M) and r(M), such that

−Cpn−2 ≤ #XM(Fp) − pn−1 ≤ Cpn−2,

furthermore

(p−1)#XM(Fp)+1 = (p−1)
(
(#XM(Fp)−pn−1)+pn−1

)
+1 = (p−1)(#XM(Fp)−pn−1)+(p−1)pn−1+1,

from which it follows that

−C(p − 1)pn−2 + (p − 1)pn−1 + 1 ≤ (p − 1)#XM(Fp) + 1 ≤ C(p − 1)pn−2 + (p − 1)pn−1 + 1.

Thus,

1
p
−

C + 1
p2 +

C
p3 +

1
pn+1 ≤

(p − 1)#XM(Fp) + 1
(p − 1)#Pn

Fp
(Fp) + 1

≤
1
p

+
C − 1

p2 −
C
p3 +

1
pn+1 .

Since C ≥ 1 (see Proof of Theorem 3.2.6), we get

−
C + 1

p2 ≤
(p − 1)#XM(Fp) + 1
(p − 1)#Pn

Fp
(Fp) + 1

−
1
p
≤

C + 1
p2 .

This concludes the proof. �

To illustrate the preceding results, we propose the following example.

Example 3.3.7. Let k be a finite field with q elements. Let G be the following graph

V

X Y

W

Z
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Its configuration polynomial is given by

ΨG = VWY + WXY + VWX + VXY + VWZ + XYZ + WXZ + VYZ.

The diamond graph is the dual of G. Hence we have #(XG(k) − Σ4(k)) = #(XG∗(k) − Σ4(k)) by
Proposition 3.2.9. Let us compute #(XG∗(k) − Σ4(k)), which is equal to

#XG∗(k) − #

 ⋃
T∈{V,W,X,Y,Z}

(
XG∗(k) ∩ V(T )(k)

) .
Firstly, we compute #XG∗(k). Observe that G∗ can be obtained from the banana graph on 3 edges
by subdividing two of its edges as shown below.

X

Y
Z

Y W

X

Z Y W

V

Z

X

G1 G2 G∗

Figure 3.2: Diamond graph obtained from Banana graph by subdividing edges.

Observe that ΨG∗ = (X + V)ΨG2\X + ΨG2/X and ΨG2 = (Z + W)ΨG1\Z + ΨG1/Z. Then by
Proposition 3.2.8, we can compute #XG∗(k) as follows. It is easy to see that XG1 � P

1
k so that

#XG1(k) = q + 1. Therefore

#XG2(k) = q#XG1(k) + #P0
k(k),

#XG∗(k) = q#XG2(k) + #P0
k(k).

Thus we get #XG∗(k) = q3 + q2 + q + 1.
Next we calculate #

(
XG∗(k) ∩ V(T )(k)

)
for T ∈ {V,W, X,Y,Z} and then we use the exclusion-

inclusion principle to compute

#

 ⋃
T∈{V,W,X,Y,Z}

(
XG∗(k) ∩ V(T )(k)

) .
Observe that for any T ∈ {V,W, X,Z} we have an isomorphism of k-schemes XG∗ ∩ V(T ) � XG2 .
Thus then #

(
XG∗(k) ∩ V(T )(k)

)
= q2 + q + 1 for T ∈ {V,W, X,Z}. In addition, the scheme

XG∗ ∩ V(Y) is isomorphic to the configuration hypersurface of the graph Cycle2 ∨Cycle2, then
#
(
XG∗(k) ∩ V(Y)(k)

)
= 2q2 + q + 1. Hence we obtain

#(XG∗(k) − Σ4(k)) = q3 − 5q2 + 10q − 7. (3.4)

A similar argument shows that

#(XG(k) ∩ Σ4(k)) = 7q2 − 9q + 8. (3.5)
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Adding the expressions (3.4) and (3.5) we obtain

#XG(k) = q3 + 2q2 + q + 1.

The proof of Theorem 3.2.4 shows us how to compute f (t) and g(t) explicitly. These are
f (t) = t3 + 7t2 + 7t + 1 and g(t) = t3 − t2 − t + 3. Also, the constants C1 and C2 from
Theorem 3.2.6 are C1 = 15 and C2 = 5. Finally,

µ(Jp(G)) =
(p − 1)(p3 + 2p2 + p + 1) + 1

p5 =
1
p

+
1
p2 −

1
p3 .

Remark 3.3.8. If M is a regular matroid, then we have the family of regular matroids {Mλ}λ∈NE(M) .
By taking duals, we obtain a new family of regular matroids {(Mλ)∗}λ∈NE(M) . In particular, the
matroid (M1+χe)

∗ is a parallel extension of M∗ when e is not a coloop of M; this follows from
Proposition 1.3.19 and Proposition 2.2.5.

In addition, by Corollary 2.1.25, we know that Jac(Mλ) � Jac((Mλ)∗). So that, Theorem 3.3.4
and Theorem 3.3.6 also predict the distribution of the p-torsion of the Jacobian groups for this
new family. More concretely, if we let J∗p(M) := {λ ∈ NE(M) : p | # Jac((Mλ)∗)}, then

µ(J∗p(M)) =
(p − 1)#XM(Fp) + 1
(p − 1)#Pn−1

Fp
(Fp) + 1

.

If M is irreducible, then

µ(J∗p(M)) =
1
p

+ O
(

1
p2

)
.

In general, given a regular matroid M and a map λ : E(M) → N, the Jacobian groups of
Mλ and M∗

λ are not isomorphic; in fact, their orders might not have any common prime factors.
Also, it is not true that µ(Jp(M)) = µ(Jp(M∗)). Nonetheless, Proposition 3.2.9 allows us to
relate the distribution of the p-torsion of the Jacobian groups in the families {Mλ}λ∈NE(M) and
{M∗

λ}λ∈NE(M∗) as follows.
Let us define Sp(M) := {λ ∈ NE(M) : p | # Jac(Mλ) and p - λ(e) for all e ∈ E(M)}.

Proposition 3.3.9. If M is a regular matroid with #E(M) = n, then

µ(Sp(M)) =
(p − 1)#

(
XM(Fp) ∩

(
Pn−1
Fp

(Fp) − Σn(Fp)
))

(p − 1)#Pn−1
Fp

(Fp) + 1

Proof. For m ∈ N, we let

Bm := {λ ∈ NE(M) : ht(λ) ≤ m}
Dm := {λ ∈ Bm : ΨM(λ) ≡ 0 mod p and p - λ(e) for all e ∈ E(M)}.

The argument of the proof of Theorem 3.3.4 applies to Bm and Dm in place of Am. Hence, one
obtains

µ(Sp(M)) = lim
m→∞

#Dm

#Bm
=

#Dp

#Bp
,
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and
#Dp

#Bp
=

(p − 1)#
(
XM(Fp) ∩

(
Pn−1
Fp

(Fp) − Σn(Fp)
))

(p − 1)#Pn−1
Fp

(Fp) + 1
.

�

Corollary 3.3.10. If M is a regular matroid with #E(M) = n, then

µ(Sp(M)) = µ(Sp(M∗)).

Proof. By Proposition 3.2.9, XM − Σn � XM∗ − Σn over Fp. Hence, the result follows from
Proposition 3.3.9. �



Chapter 4

Conclusion

Given a regular matroid M and a map λ : E(M)→ N, we constructed a regular matroid Mλ. To
each regular matroid, we associated a finite abelian group, called Jacobian group. We studied
the variation of the p-torsion of the Jacobian groups of the family {Mλ}λ∈NE(M) .

We established a correspondence between the Fp-rational points of the configuration hyper-
surface XM of M and the maps λ for which # Jac(Mλ) is divisible by p. Hence, we reduced the
problem to counting points over finite fields. As a consequence, we obtained a closed formula
for the proportion of these groups with non-trivial p-torsion as well as some estimates. In
addition, we proved that the Jacobian groups in this family with non-trivial p-torsion appear
with frequency close to 1/p, provided M is irreducible.

Two open questions stem from this work. The first one is concerned with the natural
generalization of the problem addressed in this thesis, that is, how often is # Jac(Mλ) divisible
by pn? One could use a similar approach by reducing the problem to determining #XM(Z/pnZ).
The second question is regarding Sylow p-subgroups. If Jac(Mλ)p denotes the unique Sylow
p-subgroup of Jac(Mλ), then one would like to know the following: given a finite abelian
p-group Γ, how often is Jac(Mλ)p � Γ?
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