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Abstract

The spatial control of cellular adhesion is fundamental to the development of studies

of cell interaction, cellular microarrays, and cell based biosensors. The ability to

pattern cell adhesion on flat substrates and in microfluidic channels is important for

locating cell near microdetectors in cell based biosensor devices. Cell adhesion can

be controlled by patterning a material’s wettability, as many cells prefer to adhere

to a hydrophilic surface over hydrophobic materials, due to differences in protein

adsorption and conformation on these materials.

This thesis focuses on patterning the surface wettability of poly(dimethylsilox-

ane) (PDMS) in order to spatially control cell adhesion. The polymer is selectively

modifed by the deposition of aluminum through a stencil mask in a magnetron sput-

tering system. After etching away the aluminum layer, a hydrophilic oxygen rich

silica-like layer is exposed. This technique permits the creation of hydrophilic dots

which are surrounded by the hydrophobic native PDMS. A second technique involv-

ing the use of photolithography results in a surface that can undergo hydrophobic

recovery. By contrast, the selected areas covered by aluminum are protected against

hydrophobic recovery. Finally, photolithography is used to selectively react a methyl

terminated alkyl silane with the modified surface.

Each surface modification was characterized by X-ray photoelectron spectros-

copy, atomic force microscopy, contact angle measurements, force distance curves,

cell attachment and viability tests; the effectiveness of the techniques to pattern

wettability and cell adhesion was assessed. The relative adsorption of fibronectin and

fibrinogen was visualized on the patterned surface. Further, the relative availability

of the cell binding sites were also visualized on the surface through immunofluorescent

labeling.

While all patterning methods were effective at controlling surface wettability,

cells did not show any selectivity on the surfaces patterned for hydrophobic recovery.

The use of an alkyl silane proved more effective, as cell attachment did show some

selectivity. However, cells were able to adhere and grow on the hydrophobic silanized

iii



Abstract

regions. The stencil mask patterned surfaces showed cell selectivity, with cells almost

completely avoiding the native hydrophobic PDMS background.

Overall, the stencil mask patterning technique proved to be the most effective

at controlling cell adhesion. Thus this surface patterning technique was integrated

into reversibly and irreversible sealed microfluidic channels.

Keywords: cell adhesion, hydrophobic recovery, magnetron sputtering, mi-

crofluidic, micropatterning, photolithography, plasma modification, protein adsorp-

tion, protein conformation, silanization, surface modification
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Chapter 1

Introduction

1.1 Cell Patterning for Cell Based Microsystems

and Microfluidics

In vitro cell culturing techniques involve growing cells outside of the body in cell

culture flasks or petri dishes. Outside of their natural environment cells are kept alive

in a cell media containing antibiotics, glucose, growth factors and other nutrients

[1]. The growth factors generally come in the form of calf or fetal bovine serum

(FBS). While cell culture lacks the three-dimensional architecture of an organism’s

tissue it still provides many advantages, as in vivo methods require the use of live

animals, are expensive, cumbersome and ethically questionable [1, 2]. Also, it is

not feasible to perform in vivo testing in humans due to potential toxicity, thus,

testing in vitro on human cells can give insight lacking in animal models. Despite

its advantages, cell culture requires large fluid volumes, bulky incubators and other

expensive equipment as large sample numbers are required to obtain statistically

relevant data. To overcome this, microfabrication and microfluidics technologies have

been used to miniaturize components and create new devices which reduce the cost

and time of cell culture studies [1].

Some advantages in using microfabrication and microfluidics technologies in-

clude the small size, the ability to perform multiple assays on a single array, multiple

processes integrated on one chip, as well as small reagent and sample sizes [2]. These
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advantages make microfabrication and microfluidic techniques ideal for cell culture as

they will allow for both controlled cellular micropatterning and control over the cell’s

environment [2]. Micropatterning cell cultures can allow for fundamental studies of

cell interactions and can help integrate cells into cell based biosensors. Micropattern-

ing for cell cultures is typically achieved by selectively modifying a surface to create

islands of materials which promote cell adhesion, while providing a background which

is non-adhesive and inhibits cell adhesion [2–4].

Controlling the size of cell adhesive regions may limit the ability of a cell to

spread and thus control the cell’s size and shape. Doing so has been shown to affect

cell growth, proliferation, cell function and cell death [5–8]. Cell patterns can also be

used to create co-cultures and study the interactions between different cell types [9].

Other cellular interactions, such as cell-cell and cell-surface interactions have also

been studied [4].

Cell patterning is also an important component for cell based biosensors and

bioarrays, as it is necessary to spatially position cell(s) directly on top of detectors

in these devices [10, 11]. In a cell-based biosensor the cell acts as a transducer which

responds to environmental changes in a way that is measurable by a secondary trans-

ducer [12–14]. The secondary transducer is a device such as a microelectrode or

optical sensor which then converts the cell’s response into an electrical signal which

is processed and analyzed [12]. Typical cell signals include fluorescence, metabolism,

impedance, intracellular and extracellular potentials [14]. Cell based sensors can be

used for drug discovery, clinical diagnostics and for the detection of toxic agents [2].
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1.2 Cell Adhesion and Proliferation on Surfaces

In Vitro

Many cells grow as adherent monolayers in vivo, and thus must attach and spread out

on a substrate before they are able to proliferate [1]. In order to adhere to a surface

a cell must bind to extra cellular matrix (ECM) proteins on the surface via specific

receptors. The surface properties can greatly affect the ability for cells to adhere

and spread. Properties such as surface wettability, charge, chemistry, roughness and

stiffness have all been shown to play an essential role in determining whether cells

are able to adhere [15, 16].

Before a cell approaches a surface, proteins found in the serum begin to adsorb to

the surface. The ability of a protein not only to adsorb but to do so in an appropriate

conformation, will determine whether or not cells are able to attach. Cells bind to

the serum proteins, such as vitronectin (Vn) or fibronectin (Fn), through integrins in

the cell membrane. The integrins attached to binding domains, such as the arginine-

glycine-aspartic acid (RGD) peptide sequence, found on serum proteins.

While many scientists have tried to establish criteria for a good biologically

active surface, it has not been easy or definitive since different cell lines may react

differently to the same surface. Also it is difficult, if not impossible, to completely

separate surface properties that affect cell growth. None-the-less general trends have

been established and are discussed below.

1.2.1 Surface Wettability Effect on Cell Adhesion

When proteins are in solution they interact with water molecules and attempt to lower

the the entopic penalty caused by the interaction between hydrophobic side chains
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with water by creating a folded protein structure [17, 18]. Generally the interior of

the structure is occupied by the non polar or hydrophobic amino acid side chains,

while the exterior is occupied with the polar, acidic and basic side chains. Even

so, the exterior or accessible area of the protein structure is 40 to 50 % non polar

groups. On a hydrophobic surface it is thermodynamically favorable for the proteins

to adsorb due to the large number of non polar groups on the protein [16–18]. On

hydrophilic surface there is a large energy barrier to protein adsorption caused by the

tightly bound water molecules on the surface. While there are some exceptions [19],

more often than not, hydrophobic surfaces adsorb more protein than hydrophilic

surfaces [20, 21].

In order to overcome the energy barrier associated with adsorbing to a surface,

proteins can undergo conformational changes. The changes can increase the entropy

of the system, by affecting the secondary structure and by increasing the contact

between the protein and the surface. Most adsorbed proteins undergo some type of

structural change; generally this change is more stable than in a dissolved state and

is affected by the wettability of the surface [16,22–24]. These conformational changes

can affect the protein’s activity by either exposing or hiding different functionalities

such as the RGD binding sequence, which directly affect cell adhesion (Figure 1.1).

Self assembled monolayers (SAMs) of alkyl thiols on gold surfaces are used to

vary surface wettability when studying protein adsorption and cell adhesion. Termi-

nating groups such as CH3, OH, COOH, and NH2 are often used to obtain a series

of surfaces with changing chemistry and wettability. Important ECM proteins, Fn

and Vn were found to adsorb the least on the OH terminated SAMs, however, the

OH terminated SAMs showed the higher availability of the binding domains for both

proteins [25, 26]. Similarly, Fn and Vn adsorption increased on more hydrophobic

SAMs created by mixing OH and CH3 thiols [27]. As the amount of OH terminated
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Figure 1.1: Protein conformation and its affects on cell attachment on hydrophilic
(left) and hydrophobic (right) surfaces
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thiols increased relative to the CH3 terminating thiols, protein adsorption decreased

but the availability of the binding sites increased significantly.

The differences in protein conformation on hydrophobic and hydrophilic SAMs

have been directly linked to increased cell spreading and adhesion on hydrophilic sur-

faces [27, 28]. The increase in cell adhesion is not limited to SAMs but also to other

materials [15, 29–33]. An important example is that of polystyrene. Polystyrene

is used to manufacture cell culture plates and petri dishes. Due to polystyrene’s

hydrophobic surface, many cells are unable to spread and adhere, limiting its use.

Surface treatments, including acid treatments and exposure to high energy ionizing

radiation are known to decrease polystyrene’s contact angle and thus increase cell ad-

hesion [29]. These high energy radiation treatments are used to manufacture standard

tissue culture plates [1].

While cells often prefer hydrophilic materials, there are some exceptions. Poly-

ethylene glycol (PEG) is a hydrophilic material which shows little bioactivitly. PEG’s

hydrophilicity reduces the amount of protein adsorption to its surface, such that, it

can no longer promote cell adhesion [34]. When PEG is mixed with other more hy-

drophobic materials, it can be used to lower the surface’s hydrophobicity and increase

cell adhesion [35]

1.2.2 Surface Charge Effects on Cell Adhesion

Due to electrostatic interactions between charged molecules, surface charge plays a

vital role in protein adsorption and cell adhesion [16, 36–38]. Often surfaces with

amine functionality show an increase in cell adhesion even over surfaces with lower

contact angles [30, 31, 39]. At a biological pH of 7.4, amine groups are positively

charged, which provides an attractive interaction with the negative cell membrane
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[16]. Other functional groups such as OH and COOH groups, provide a lower contact

angle but are neutral and negatively charged respectively. Cells have been observed

only making contact with positively charged surfaces when adhering to mixed surfaces.

These cells formed a bridge over the negatively charged areas in order to make contact

with the positive surface [36,37]. The effects of a charged surface is often mitigated by

the ions in solution, as these ions will act as counter ions and reduce the interaction

between the surface charge and the cell membrane.

1.2.3 Surface Roughness Effects on Cell Adhesion

In their natural environment cells may encounter many different surfaces, some of

which will be smooth while others maybe significantly rougher. Often an increase in

surface roughness is assumed to be responsible for better cellular adhesion [40–43].

Rougher surfaces will provide larger surface areas for adhesion and have been linked

to increased protein adsorption [40]. Some reports have even suggested that increased

surface roughness can lead to higher availability of protein binding sites [44]. This

increase in cell adhesion occurs despite the increase in hydrophobicity associated with

increased roughness [45].

The type of surface topography can greatly affect the biological processes of

cells. Cells will orientate in the direction of ridges or groves in a surface [46, 47].

Cells have also been shown not to proliferate well on surfaces with sharp edges, as

this topography does not mimic physiological conditions and leads to cellular rejec-

tion [47, 48]. Some cell types have also been reported to prefer smooth surfaces,

others intermediate roughness [42,49]. Overall the effects of surface roughness is cell-

type dependent as cells will respond best to surfaces which mimic their physiological

environment.
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1.2.4 Surface Stiffness Effects on Cell Adhesion

Another important physical property of a surface that affects cell growth is the sur-

face stiffness or elastic modulus [50–52]. To study surface stiffness without affecting

chemistry or roughness, polymeric materials with varying degrees of crosslinking are

used, typically polyacrylamide gels.

Typically, cells have been reported to proliferate and spread better on stiffer

surfaces, that is ones with larger moduli [51–55]. On materials with a modulus less

than 16 to 30 kPa, cells are unable to spread, remaining balled up, and thus do not

adhere to the surface [53–55]. Cells begin to spread out when the modulus of the

surface nears that of the cell, indicating that the ideal surface would be stiffer than

the cell [55]. Further, cells which are plated on polymers with a stiffness gradient

tend to migrate towards the stiffer areas after initial platting [53].

1.3 Patterning Cell Adhesion

Cell patterning is performed by creating cell adhesive regions and surrounding them

with non adhesive backgrounds. The microelectrical and semi-conducting industries

have provided many approaches for micropatterning surface chemistry. These ap-

proaches have been adapted for use in cell patterning and are discussed below.

1.3.1 Photolithography

Photolithography involves the use a photoactive polymer, a photoresist, to create

a pattern on the surface of a substrate [3, 4, 56]. There are two standard types of

photolithography: positive and negative (Figure 1.2). In both cases a thin layer of

photoresist is exposed to light through an optical mask containing the desired pattern.
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Figure 1.2: Photolithography using positive and negative photoresists

For a positive resist, the area exposed to light will break down and be washed away.

A negative resist will be further crossed linked and thus be more resistant to solvent.

After developing, the desired pattern remains on the surface and the photoresist can

be used as a protective mask for further prossessing.

In order to pattern cell adhesion, photolithography has been used to selectively

deposit molecules onto glass, quartz, pyrex, silicon and gold [3, 4]. After creating a

photolithographic pattern, the exposed surface can react with molecules containing

particular functionality. Amine terminated alkyl silanes are often used to react with

glass surfaces through a photoresist mask [57–62]. Once the remaining photoresist

is removed, the non-amine coated surface can be backfilled with a cell repelling ma-

terial such as methyl terminated alkyl silanes (Figure 1.3). Proteins have also been
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Figure 1.3: Photolithographic patterning of alkyl silanes on a glass surface. a) an
amine terminated alkyl silane reacts with the exposed glass surface, b) the

remaining photoresist is washed away, c) the surface is backfilled with a methyl
terminated alkyl silane
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immobilized on the surface using similar techniques [9]. Cells have been shown to

prefer certain metal oxides, and thus cell adhesion can be spatially controlled by

photolithgraphically patterning metal oxide deposition [63]. Further, thin gold layers

have been photolithographically patterned onto glass surfaces [64]. The gold patterns

were then reacted with amine terminated alkyl thiols, and the glass background with

PEG-silanes.

Photolithography has become the dominate technique for cell and protein pat-

terning [4]. Photolithography creates accurate patterns with submicron resolution,

and can be used to pattern a significant number of different molecules. As it requires

a cleanroom facility and expensive equipment, photolithography is often inaccessible

to many biologists [4, 5]. Further, the use of harsh chemicals can denature biological

molecules of interest and thus care must be taken when patterning these molecules.

Often, the high resolution of photolithgraphy is not necessary, which has led to the

development of other techniques for cell patterning.

1.3.2 Microcontact Printing

Microcontact printing using a elastomeric stamp to transfer molecules of interest to

another surface. Poly(dimethylsiloxane) (PDMS) is most commonly used to form a

stamp, as it is durable, biocompatible, and can make conformal contact with non flat

surfaces, and its surface can be modified to work with a large number of molecules. A

stamp is formed by casting liquid polymer against a mold. While molds are normally

created using photolithography, they can be reused many times. Further, stamps

have been used hundreds of time without degradation to the pattern [5].

Once the stamp has been created it is inked with the material to be patterned

onto the surface. The stamp is then brought into conformal contact with the sub-
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Figure 1.4: Microcontact printing used to pattern cell adherent and cell inhibiting
materials. a) a PDMS stamp is inked with cell adhesion promoting material, b) the
material is then stamped onto the substrate, c) the surface is backfilled with a cell

inhibiting material

strate, transferring the ink (Figure 1.4). Often the non-coated regions of the substrate

are backfilled with another molecule. Microcontact printing is often used to pattern

gold substrates with SAMs of alkyl thiols [65].

Microcontact printing has been used to create islands of ECM proteins in or-

der to direct cell adhesion [10, 65]. A methyl terminated thiol was stamped onto

a gold surface and back filled with tris(ethylene glycol terminated alkenethiol). Fn

was then adsorbed onto the surface only over the methyl terminated surface, while

avoiding the ethylene glycol surface. Methyl terminated thiols have also been used
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as cell adhesion inhibiting layers and backfilled using hydroxyl terminated thiols [6].

Cells then preferentially grew on the hydroxyl terminated regions, as they were more

hydrophilic.

While microcontact printing is most often performed to create SAMs on gold

surfaces, it has also been used to pattern alkylsiloxanes on glass [66] and to directly

transfer dried proteins [67]. Microcontact printing is a versatile method which pat-

terns a variety of molecules onto a large number of surfaces [4]. Due to the nature

of the elastomeric stamp, resolution beyond a few micrometers is difficult and areas

of only a few cm2 can be patterned at a time. The selection of substrate-ink combi-

nations can be limited as the ink must show a stronger affinity to the substrate than

the stamp, but must still be able to wet the stamp [4, 5, 56].

1.3.3 Microfluidic Patterning

Molded PDMS can also be used to create patterns using microfluidics. The PDMS

mold is placed into contact with the substrate forming a network of microchannels

which define the desired pattern. The material of interest is injected into the mi-

crochannels such that only select areas of the substrate come into contact with the

material (Figure 1.5). The material is brought through the channels by capillary force,

pressure from a pump, or electro-osmotically driven flow [68]. Microfluidics can be

used to directly pattern cells [69–71], proteins [72,73] and other biomolecules [74–76]

onto a substrate without the need for drying. Microfluidics allows for the parallel

patterning of many different molecules, which is not possible with other patterning

methods [74, 75]. A big drawback of microfluidic pattering is its limited geometries

as all channels must be interconnected.
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Figure 1.5: Patterning using microfluidic channels. a) molded PDMS is brought into
contact with a substrate and a solution of the material of interest is pumped

through the channels, depositing the material, b) the PDMS mold is removed from
the surface and a thin layer of the desired material is left behind
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Figure 1.6: Patterning using a stencil mask. a) a stencil mask it brought into
contact with a surface and the material of interest is deposited through the mask, b)

the mask is removed, leaving the material behind only in the desired regions

1.3.4 Stencil Patterning

Thin materials which contains holes can act as a stencil mask for patterning. These

materials are placed into contact with a surface and act as a barrier, protecting the

substrate from further modification (Figure 1.6). Stencil masks have been used for

direct patterning of cells [77], proteins [78] and other materials [79, 80]. They have

also been used to protect pre-deposited materials from ablation [81,82]. After initial

deposition, the mask can be realigned which allows for patterning multiple materials

on a single substrate [80]. Stencil patterning is compatible with almost any substrate

type, but is limited in its geometries.
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1.3.5 Ink-jet printing

A standard ink-jet printer can be modified to deposit a variety of molecules onto a

substrate. The pattern can be controlled with conventional graphic software using

a desktop computer. Ink-jet printing has been used to print alkyl thiols onto a

gold surface and has provided patterns similar to those obtained by microcontact

printing [83]. ECM proteins have been printed and these patterns further used to

control cell attachment [84–86]. Live cells have also been patterned directly using

inkjet printing with a survival rate over 75% [87]. The use of multiply feed nozzles

can lead to mixing of feed molecules during printing, similar to colour printing, and

can allow for chemical gradients [83]. Ink-jet printing is limited to the resolution of

office printers, the smallest reported feature size has been on the order of 100 µm;

still inkjet printing can allow for large scale patterning of a variety of molecules.

1.4 PDMS as a Component for Cell Based

Microsystems and Microfluidics

Microfluidic technology was developed in silicon and glass, utilizing well developed

techniques borrowed from the microelectronics industry [88, 89]. These techniques

require the use of a clean room environment, as they involve photolithography and

etching of silicon and glass, making them inaccessible for many researchers. Aside

from being relatively expensive, silicon is opaque in the visible and ultraviolet (UV)

regions, making it unsuitable for techniques involving optical detection, for example

optical microscopy. While glass is less expensive and transparent, its amorphous

structure makes it difficult to etch vertical walls. After etching, the channels are open

on one side, making it necessary to seal the glass or silicon to another substrate. As



Chapter 1: Introduction 17

Figure 1.7: Chemical structure of poly(dimethylsiloxane)

the sealing process for both silicon and glass requires high temperatures and voltages,

it makes this step difficult.

A less expensive and more robust alternative to silicon and glass is the use of

polymers, in particular PDMS, to build microfluidic devices [90]. Polymers, unlike

glass and silicon, can form channels by embossing or molding, and can easily be

sealed thermally, or with adhesives [91]. However, polymers can be incompatible

with organic solvents, low molecular weight organic solutes and high temperatures,

making them unsuitable for some processes.

For biological applications, PDMS microfluidic devices are becoming the stan-

dard. PDMS is inexpensive, easily molded to form micron scale shapes, optically

transparent at wavelengths greater than 280 nm, is produced by low temperature

polymerization, is nontoxic, and can be readily sealed to many other materials by

making molecular (van der Waals) contacts with the surface [91,92]. PDMS is a flex-

ible polymer composed of repeating siloxane, SiO(CH3)2, units (Figure 1.7). PDMS

is available commercially from Dow Corning as a two-part base/cure kit forming an

elastomeric material when the base is further crosslinked using a platinum catalyst

and siloxane crosslinking units found in the cure (Figure 1.8).
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Figure 1.8: Reaction scheme for platinum catalyzed PDMS curing
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1.5 Chemical Modification of PDMS Surfaces

Despite its many advantages, PDMS is extremely hydrophobic and chemically inert,

due to the closely packed methyl groups on the material’s surfaces. As many biological

assays are performed in aqueous media, PDMS’s extreme hydrophobicity limits it use

in biological devices. PDMS microfluidic devices are difficult to fill with aqueous

solutions, adsorb hydrophobic analytes and generate unstable electroosmotic flows

[93]. Further, cell adhesion is inhibited on hydrophobic materials limiting its use in

devices which are dependent on adherent cells [89, 90, 93]. Biologically active PDMS

surfaces have been obtained previously through chemical vapor deposition of bioactive

molecules [94], surface adsorption of surfactant or proteins [95], radiation induced

graft polymerization [93, 96], and plasma treatments [89–91, 97, 98].

The surface of PDMS can be modified with passive coating techniques. Materi-

als such as lipid biolayers, proteins, polyelectrolytes and surfactants can be deposited

on the polymer surface using a number of methods including chemical vapor depo-

sition, Langmuir-Blodgett film formation and diffusion from solutions [94, 99–101].

Passive coating methods rely on weak physical interactions to adhere the material of

interest to the PDMS surface, making the coating unstable. These coatings can be

easily damaged or eroded in microfluidic or physiological conditions where they are

exposed to intermittent or continuous flows.

Covalent linkages can be used to increase the stability of the coatings. Radiation

induced grafting and cerium (IV) catalyzed polymerization have both been used to

covalently modify the siloxane surface [93,96,102–104]. Both rely on a radical-initiated

reaction at the PDMS surface. Silanization has also been used to create covalently

linked coatings, by first oxidizing the siloxane surface then exposing it to a chemical

silanizing agent [89, 105, 106].
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1.5.1 Plasma and High Energy Modification of the PDMS

Surface

The most direct method to increase the biocompatibility of PDMS is to expose its

surface to high energy sources such as UV-radiation and gaseous plasmas [98,107–109].

In fact, the use of high energy sources is commonly an intermediate step in covalent

modification. The most common high energy source is that involving an oxygen

plasma. Energetic photons, electrons or ions found in a plasma break bonds within

the polymer backbone. Carbon-containing fragments leave the surface in the form of

volatile organic species, while low-molecular weight polymer chains and stable radicals

remain on the polymer’s surface. Silicon and oxygen radicals recombine through

bridging Si-O-Si bonds creating an oxygen enriched silica-like layer on the surface

[110–112]. The formation of a silica-like layer results in a decrease in the polymers’s

hydrophobicity, increasing its ability to maintain electroosmotic flows and cellular

adhesion [89]. Unfortunately this hydrophilic surface is transient, as the elastomer

undergoes hydrophobic recovery within several minutes following modification [110,

113–115].

Different analytical techniques have been used to evaluate the chemical composi-

tion of the plasma-modified PDMS surface and have confirmed the increase in oxygen

content. The techniques include: static secondary ion mass spectrometry (SSIMS), X-

ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform

infrared spectroscopy (ATR-FTIR), and neutron refractometry [112, 113, 116, 117].

ATR-FTIR spectra showed strong O-H stretching modes at 3400 cm−1 and Si-OH

stretching modes at 908 cm−1, indicating that the modified polymer is terminated

by silanol (Si-OH) moieties [117]. Further, hydroxyl-sensitive silanating agents react

readily with plasma treated siloxanes, once again indicating Si-OH group termina-
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Figure 1.9: Layered structure of plasma treated PDMS

tion [105]. Tapping-mode atomic force microscopy (AFM) has shown that the stiffness

of the polymer surface increases significantly after plasma treatment giving additional

evidence of a heavily crosslinked surface [116].

After plasma treatment, the uppermost surface of the polymer contains the

silica-like layer. Beneath this layer, low molecular weight PDMS fragments created

during plasma exposure remain uncrosslinked [110]. Figure 1.9 shows the three layer

structure of plasma treated PDMS. The third layer consist of the bulk elastomer

which is unaffected by the high energy plasma. The low molecular weight fragments

move through cracks in the silica-like layer coating the surface which leads to the re-

covery of the polymer’s hydrophobicity. Other theories have been reported to explain

hydrophobic recovery, including reorientation of the silanol groups, condensation of

silanol groups at the surface, and changes in the surface roughness [98]. There has

been a general consensus that the migration of low molecular weight fragments to the

modified surface is the most likely mechanism [89].

Even though it suffers from hydrophobic recovery, plasma treatment of PDMS
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is the fastest and most used method to increase the bioactivity and hydrophilicity

of the polymer. Plasma treatment of PDMS can also be used to bond the polymer

irreversibly to itself glass, silicon, silicon oxide, and oxidized polystyrene [90, 92, 118,

119]. This makes it ideal for microfluidic applications where plasma treatment of

PDMS not only activates the surface but can also be used as an effective method to

seal the device. Attempts have been made to prevent hydrophobic recovery including

submerging the treated surface in a polar solvent such as water or methanol, however

these methods are messy and difficult to transport [75, 90, 117].

1.6 Scope of Thesis

Plasma treatment of PDMS leads to a biocompatible and hydrophilic surface. This

surface undergoes hydrophobic recovery within minutes after plasma exposure. Hy-

drophobic recovery leads to an unpredicable surface which may hinder cell adhesion

and growth. Further, PDMS does not lend itself to photolithography as conventional

photoresists do not wet the surface and are unable to form a thin polymer layer. Sten-

cil mask patterning becomes the only method able to pattern plasma modification of

the PDMS surface.

Our group has developed a plasma treatment of PDMS which also involves the

deposition of a thin metal layer [120]. This layer preserves the modified surface as

long as it remains intact, by preventing hydrophobic recovery. Chapter 2 of this

thesis investigates three methods using this technique to pattern wettability and cell

adhesion. In the first method a stencil mask was used to selectively treat the exposed

polymer. In the second and third methods the polymer surfaces were fully modified

and photolithography used to remove portions of the aluminum layer. The exposed

modified surface underwent hydrophobic recovery under ambient conditions in the
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second patterning method and was reacted with a methyl terminated alkyl silane

in the third. Each method was characterized using the contact angle measurement,

XPS, and a water droplet test. The ability of each method to pattern cell adhesion

was also tested.

Chapter 3 further investigates the interactions of the surfaces developed in

Chapter 2 with proteins and adherent cells. Each surface was evaluated for cell at-

tachment and viability. Cells were counted using a hemocytometer and their viability

tested by a dye exclusion technique. Protein adsorption was visualized on the pat-

terned surfaces by adsorbing proteins which had been conjugated to a fluorescent dye.

Further, the conformation of the proteins on the patterned surfaces was assessed with

the use of immunofluorescence labeling and an antibody which attaches to specific

binding sites, important for cellular adhesion.

In Chapter 4, the physical properties of PDMS and modified PDMS were inves-

tigated. The topography of each surface was imaged and evaluated using an AFM.

Force distance curves were taken of PDMS and modified PDMS and used to establish

the material’s Young’s modulus.

While all previous chapters have dealt with the modification, patterning and

characterization of PDMS surfaces, Chapter 5 explores the fabrication and character-

ization of patterned microfluidic devices. Patterning was performed using the stencil

mask technique, and thus custom stencil masks were fabricated. A new method,

which uses the metal deposition treatment, to bond PDMS to itself and glass is also

reported. Patterned surfaces were integrated into reversibly and irreversibly sealed

channels, and assessed for biopatterning using a fluorescently conjugated protein.

Chapter 6 summarizes the findings in the previous chapters. It considers the

benefits and limitations of each patterning method and surface modification intro-

duced herein. It furthers examines the use of patterned PDMS for application in
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microfluidics and cell based biosensors, and future work which is required to further

advance these techniques.
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Chapter 2

Patterning the Wettability of PDMS for

Spatial Control of Cellular Adhesion

2.1 Introduction

Poly(dimethylsiloxane) (PDMS) has become an important polymer in the fields of

biomaterials and microfluidic devices as it is inexpensive, optically transparent at

wavelengths greater than 280 nm, it is produced by low temperature polymerization

and it is nontoxic [90,92]. Despite its many advantages, PDMS surfaces are extremely

hydrophobic, which is known to inhibit cell adhesion [89, 90, 93]. Consequently, the

modification of PDMS surfaces to increase bioactivity is necessary to expand its use

as a biomaterial. Biologically active PDMS surfaces have been obtained previously

through chemical vapor deposition of bioactive molecules [94], surface adsorption of

surfactant or proteins [95, 121], and radiation induced graft polymerization [93, 98].

Oxygen plasma treatment is perhaps the most popular method of modifying

the surface properties of PDMS [88–91,98]. When PDMS is exposed to a plasma, the

high energy electrons and ions remove the CH3 groups from the silicon back-bone.

When studied by XPS, the surface shows a decrease in carbon content and an increase

in oxygen content, the result of which is the formation of a SiOx silica-like layer on

the PDMS surface [122]. This change in chemical composition results in a decrease

of the polymer’s hydrophobicity [89]. Unfortunately, oxygen plasma treated PDMS
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Figure 2.1: Schematic representing the deposition of a material via magnetron
sputtering

recovers its hydrophobicity, within hours through the migration of PDMS chains to

the surface [98]. Submerging the treated polymer in a polar liquid, such as water,

immediately after plasma exposure allows the polymer to remain hydrophilic for an

extended period of time [75, 90, 117].

Patterning of cells is a necessary component for cell-based biosensors [2,69], cell

culture analogues [123, 124], tissue engineering [125], microfluidic assays [69, 70, 126]

and fundamental studies of cell biology [5–8]. Photolithography and microcontact

printing techniques are commonly used to pattern cells onto different surfaces [3,

4]. In both methods, areas of cell-adhesive materials, such as ECM components

are surrounded by areas of materials which are non-adhesive to cells, such as PEG-

based surfactants and polymers, and thus block indiscriminate cell attachment [104].

Neither of these techniques creates patterns that can withstand biological conditions

or microfluidic environments for an extended period of time.
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Our group has recently developed a method to activate and pattern the PDMS

surface that does not rely on the patterned deposition of ECM components, mediating

proteins or molecules [120]. The technique produces a surface that is less fragile in

physiological and microfluidic conditions and will allow for the study of ECM proteins

without interference from proteins already deposited on the surface. The surface is

activated by the sputter deposition of a thin aluminum layer in the presence of an

argon plasma in a magnetron sputtering system (Figure 2.1). The magnetron sputter

system uses assemblies to create combined magnetic and electric fields. The electric

field directs the charged atoms from the plasma towards a target, such as aluminum,

and upon impact, the high energy particles eject surface atoms from the target. These

atoms are energetic enough to deposit on the substrate forming a thin layer.

After subsequently etching away the aluminum, the modified PDMS surface

(PDMS-Al) is hydrophilic, with a contact angle of 39o, in comparison to 104o for

native PDMS. Studies by XPS showed no change in silicon content, while the oxy-

gen content increased and the carbon content decreased (Table 2.1) [120]. These

results are similar to previously studies of oxygen plasma treatment, and indicates

the breaking of silicon-carbon bonds and the formation of an SiOx film. While this

modification is still susceptible to hydrophobic recovery, the aluminum layer prevents

this from occurring as long as it remains intact.

In order to spatially control cell adhesion, we focused on patterning the hy-

drophilic PDMS-Al modification within hydrophobic surroundings. We expect that

the cells will prefer to grow on the PDMS-Al surface, while avoiding the hydrophobic

regions as proteins, which mediate cell adhesion, are know to adsorb to hydrophilic

materials with a more favourable conformation then on hydrophobic materials. In

this chapter we report three methods to obtain this patterning. The first approach

is to selectively magnetron modify the surface through a stencil mask. The mask
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Table 2.1: XPS atomic composition analysis of native and modified PDMS

Material Peak Binding Energy (eV) Atomic Composition (%)

PDMS C 1s 284.8 51.5

PDMS O 1s 532.6 28.8

PDMS Si 2p 102.1 19.7

PDMS-Al C 1s 284.8 36.9

PDMS-Al O 1s 532.6 42.5

PDMS-Al Si 2p 102.8 19.9

directly provides the required patterning of PDMS. An alternative approach was to

use photolithography, where-in the photoresist protects the modified PDMS-Al sur-

face while the exposed surface undergoes hydrophobic recovery. The third approach

used photolithography as before, but silanization chemistry was used to treat the

exposed surface, rendering it hydrophobic. The modified surfaces were characterized

using contact angle and XPS. The patterned surfaces were studied using a water

localization test, optical imaging, and cell culture.

2.2 Materials and Methods

2.2.1 Reagents

PDMS Sylgard 184A and B were purchased from Dow Corning. The materials used

for photolithography, Microposit SC1827 positive photoresist and Microposit MF-319

developer were purchased from Rohm &Haas Electronic Materials. COS-7 and C2C12

cell lines were purchased from ATCC. Dulbecco’s Modified Eagle Medium (DMEM),

L-glutamine, penicillin streptomycin, FBS, trypsin/ethylenediaminetetraacetic acid

(EDTA) and phosphate buffered saline (PBS) were all purchased from Invitrogen.

All other chemicals were purchased from Sigma-Aldrich and used as received.
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2.2.2 Preparation and Modification of PDMS

2.2.2.1 Preparation of Bulk PDMS

To allow for easy removal of PDMS, silicon wafers were exposed to hexamethyldis-

ilizane (HMDS) vapor in a vacuum oven (YES-3TA HMDS Oven) at 150 oC and 1

torr for 5 min. To remove water vapor and oxygen from the sample and the chamber,

the chamber was purged 3 times with nitrogen gas by evacuating the chamber to 10

torr and refilling the chamber with nitrogen gas to 600 torr.

PDMS precursors, Slygard 184A and B, were combined in a 10:1 mass ratio

and poured onto an HMDS primed silica wafer to a thickness between 1 and 5 mm.

The polymer was kept under vacuum for 60 min to remove solvent and air bubbles

produced during mixing, before baking at 70oC for 60 min.

2.2.2.2 Preparation of Micrometer- and Nanometer-Thick PDMS Films

Spin coating is a common method used to create thin polymers films. An excess

of a polymer solution is placed in the middle of a substrate, which is then rotated

at high speeds [127]. This evenly spreads the polymer solution across the substrate

using centrifugal forces. The thickness of the film is controlled by the spin rate and

viscosity of the polymer solution.

PDMS precursors, Sylgard 184A and B, were combined in a 10:1 mass ratio.

Micrometer-thick PDMS samples were generated by casting the PDMS mixture as-is

onto glass coverslips or silica wafers at 500 rpm for 5 s, then 2000 rpm for 30 s with a

Solitec 5110 spin coater (Solitec Wafer Processing). Nanometer-thick PDMS samples

were generated by dissolving the PDMS mixture in heptane to obtain a 5% (w/w)

solution. The solution was then cast onto a silicon wafer at 500 rpm for 5 s then 3000

rpm for 30 s. All PDMS samples were cured at 70oC for 60 min.
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The thickness of the micrometer-thick PDMS layer was 33 ± 3 µm, determined

using a Dektak profilometer (Veeco Instruments Inc). A profilometer drags a dia-

mond stylus, with a diameter of a few micrometers, laterally across a sample while

maintaining a constant force [128]. The stylus moves up and down with changing

topography; this movement is recorded and used to determine surface roughness and

height.

The nanometer-thick PDMS films were assessed using a Gaertner L2W16D 1.3

ellipsometer. Ellipsometry is an optical technique that measures the changes that

occur in polarized light when it interacts with matter [129]. When linearly polarized

light interacts with a thin film on a reflective surface, the reflected light is elliptically

polarized. Polarized light has two components, one parallel (p) and one perpendicular

(s) to the plane of incidence. The related phase change (∆) and the relative amplitude

change (Ψ) can be determined using the Fresnel equation (2.1) where ρ the complex

reflection coefficient and rp and rs are the parallel and perpendicular Fresnel reflection

coefficients. The Fresnel reflection coefficients are defined in (2.2) where n1 is the

refractive index of the film, n0 the refractive index of the media, φ1 the angle of

incident between the film and the surface, φ0 the angle of incident between the media

and the film.

ρ =
rp

rs
= tan(Ψ)ei∆ (2.1)

rp =
n1 cosφ0 − n0 cosφ1
n1 cosφ0 + n0 cosφ1

, rs =
n0 cosφ0 − n1 cosφ1
n1 cosφ0 + n1 cos φ1

(2.2)

The thickness of the nanometer films was calculated to be 220 ± 3 nm using the

Gaertner Ellipsometer measurements Program Version 1.2 (Gaertner Scientfic) with
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the following optical constraints: laser wavelength = 632.8 nm; angles of incidence

i1 = 70o, i2 = 50o; polarizer angle ip = 45o.

2.2.2.3 Magnetron Surface Modification of PDMS

Aluminum was sputtered onto the PDMS substrates with a thickness of 44 ± 3

nm using an Edwards Auto 500 Magnetron Sputtering System. The thickness was

determined using a Dektak profilometer (Veeco Instruments Inc). The sputter system

was operated at 300 W, 4.8 mTorr, with Ar gas flowing at a rate of 15 sccm. The

plasma was created using a RF generator with a frequency of 13.56 MHz. Prior to

metal deposition, the samples were kept in the chamber with the plasma struck and

the source shutter closed for 4 min. Before use, the aluminum layer was etched away

using 1.8 M orthophosphoric acid to expose the modified PDMS surface. The surface

was then rinsed 3 times in deionized water and dried under a stream of air.

2.2.2.4 Preparation of Hydrophobically Recovered PDMS

After magnetron surface modification, the sample was etched in 1.8 M orthophospho-

ric acid for 30 min, rinsed 3 times in water and dried under a stream of air. The

sample then underwent hydrophobic recovery at ambient conditions for at least 72

hrs.

2.2.2.5 Preparation of ODTMS Treated PDMS

After magnetron surface modification the sample was etched in 1.8 M orthophos-

phoric acid for 20 min, rinsed 3 times in water and dried under a stream of air. The

sample was then immersed in 1% (v/v) octadecyltrimethoxysilane (ODTMS) solution

in methanol with 1.5% (v/v) water, for 20 min. The sample was rinsed 3 times in
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Figure 2.2: The expected reaction between ODTMS and magnetron treated PDMS

methanol, and dried at 90oC for 60 min. The expected silanization reaction between

ODTMS and the magnetron modified PDMS is shown in Figure 2.2

2.2.3 Hydrophobic/Hydrophilic Patterning of PDMS

2.2.3.1 Stencil Mask Patterned Surfaces

Stencil masks were commercially available steel screens with etched holes of 180 or 260

µm diameter (InterNet Inc.). Aluminum was sputtered onto the PDMS substrates

through the stencil masks to a thickness of 50 nm using an Edwards Auto 500 Mag-

netron Sputtering System. The sputter system was operated at 300 W, 4.8 mTorr,

with Ar gas flowing at a rate of 15 sccm. Prior to metal deposition, the samples were

kept in the chamber with the plasma struck and the source shutter closed for 4 min.

The aluminum was etched using 1.8 M orthophosphoric acid for 30 min and rinsed 3

times in deionized water before use. This patterning sequence is illustrated in Figure

2.3.
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Figure 2.3: A schematic representation of the procedure for stencil mask patterning
of PDMS using magnetron sputtering of aluminum
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Figure 2.4: A schematic representation of the procedures for photolithographic
patterning of hydrophobically recovered and magnetron treated PDMS

2.2.3.2 Photolithographic Patterning of Hydrophobically Recovered PDMS

A positive photoresist, Microposit S1827, was spin coated on to an unpatterned alu-

minum coated PDMS surface, using a Solitec 5110 spin coater, at 500 rpm for 5 s

and 2000 rpm for 45 s to obtain a thickness of 4.0 µm. The sample was soft baked at

115oC for 4 min to remove solvent. The photoresist was then exposed to 405 nm UV

light through an acetate photomask for 22 s using a Karl Suss MJB3 optical lithogra-

phy system (Suss MicroTec) at a power of 18 mW/cm2. The photomask was designed

in L-edit (Tanner EDA) and printed onto an acetate file using a high resolution com-
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mercial printer (PhotoplotStore). The photoresist was developed using Microposit

MF-319 developer for 75 s, dissolving the exposed photoresist and revealing the alu-

minum layer below. The newly exposed aluminum was removed by immersion in 1.8

M orthophosphoric acid for 30 min and rinsed in deionized water. The remaining

photoresist was removed by immersion in acetone. The patterned sample was then

rinsed in deionized water and dried under a stream of air. The exposed surface was

allowed to undergo hydrophobic recovery by storage in ambient conditions for at least

72 hrs. The remaining Al was etched in 1.8 orthophosphoric acid and rinsed 3 times

in deionized water prior to use. Figure 2.4, illustrates the procedures used to create

the photolithographically patterned surfaces.

2.2.3.3 Octadecyltrimethoxysilane Patterning of PDMS

ODTMS patterned PDMS surfaces were created using photolithography as described

above. Instead of undergoing hydrophobic recovery the exposed PDMS-Al surface was

treated with a 1% (v/v) solution of ODTMS (Sigma-Aldrich) in methanol (Sigma-

Aldrich) with 1.5% (v/v) water for 20 min as shown in Figure 2.5. The treated surface

was then rinsed in methanol 3 times and dried at 90oC for 60 min. Prior to use, the

remaining aluminum was etched away in 1.8 M orthophosphoric acid for 30 min, the

modified surface was then rinsed 3 times in deionized water and dried under a stream

of air.

2.2.4 Characterization of Modified and Patterned PDMS

2.2.4.1 Sessile Drop Water Contact Angle Measurement

The angle formed when a liquid meets a solid is defined as its contact angle [130].

The contact angle can be related to the surface tension between the three interfaces
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Figure 2.5: A schematic representation of the procedures for photolithographic
patterning of ODTMS on magnetron treated PDMS
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by the Young equation,

γlv cos(θY ) = γsv − γsl (2.3)

where γlv is the liquid-vapor surface tension, γsv is the solid-vapor surface tension,

and γsl is the solid-liquid surface tension. When the liquid that forms the drop is

attracted to the surface it will wet the surface and form a angle close to 0o (Figure 2.6

a). When the liquid is not attracted to the surface, the liquid will prefer to interact

with itself and minimize contact with the surface, thus forming a larger contact angle

(Figure 2.6 b).

Water is often used as the liquid, and the term hydrophobic and hydrophilic is

used to describe the surfaces attractiveness towards water. Surfaces that are consid-

ered hydrophobic have a contact angle with water greater than 90o. On the other

hand, when the contact angle is less than 90o, the surfaces are considered hydrophilic.

Contact angle measurements were made using a model 100 manual goniometer

(Rame-Hart). 5.0 µL drops of deionized water were placed on the sample surfaces,

after 10 s the data were collected to obtain the static contact angle. The advancing

angle was obtained by placing the needle’s tip into the water droplet and slowing

adding a small amount of liquid until the base of the water droplet moved. The angle

that formed just prior to the droplet moving is recorded. Similarly, the receding

contact angle was measured by slowly removing water and recording the angle just

before the base of the droplet moved. Each measurement was taken at least 3 times

and averaged.

Micrometer-thick PDMS, magnetron treated PDMS, and hydrophobically re-

covered PDMS were immersed in water for up to 7 days. After each 24 hr period, 3

samples of each surface type were removed from water and dried under a stream of
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Figure 2.6: An illustration of how a water droplet might appear on (a) a hydrophilic
surface, (b) a hydrophobic surface

air. The static, receding and advancing contact angles were taken 3 times on each

sample.

2.2.4.2 X-ray Photoelectron Spectroscopy

XPS is a surface analysis techniques that measures the elemental composition, chem-

ical stoichiometry, chemical state, and electronic state of the elements in a mate-

rial [130]. When a material is bombarded with X-rays, core electrons are ejected

from the atoms that make up the material. These electrons are known as X-ray

photoelectrons, and their kinetic energy can be analyzed and plotted. X-ray photo-

electrons have short mean free paths (1-10 nm), making XPS a very surface-sensitive

technique [130].

While the kinetic energy of the X-ray photoelectron is measured, the binding

energy of the electron provides more useful information. The binding energy is char-
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acteristic of each specific atom and is sensitive to the local chemical environment.

The kinetic energy of an electron can be used to calculate the binding energy using

the following equation:

EK = hν − EB − φ (2.4)

where EK is the photoelectron kinetic energy, hν is the energy of the incoming X-ray,

and EB is the photoelectron binding energy and φ the spectrometer work function.

The elemental composition of the ODTMS treated PDMS was analyzed by XPS

using a Kratos Axis Ultra spectrometer (Kratos Analytical). The XPS spectrometer

employed a Al Kα X-ray source (1486.6 eV) operated at a source energy of 210 W,

using a charge neutralizer system with a filament current of 1.6 A and a charge balance

of 2.4 V. XPS survey and high-resolution spectra of the C 1s, O 1s, and Si 2p binding

energy regions were collected at pass energies of 160 and 20 eV, respectively. XPS

spectra were fit and the signal area was calculated using CasaXPS software. The

binding energy scale was calibrated using the C 1s peak at 284.8 eV

2.2.4.3 Water Localization Test

To visualize the hydrophobic/hydrophilic patterning, patterned PDMS was dipped

into deionized water and pulled out at a 60o angle to the water surface. The water

droplets were imaged immediately after removal.

2.2.5 Cell Culture and Patterning

COS-7 fibroblast cells and C2C12 myoblast cells, were cultured on the PDMS sub-

strates. DMEM supplemented with 2 mM L-glutamine, 1% penicillin-streptomycin
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(Invitrogen) and 10% FBS was used for all experiments. Cell cultures were incubated

at 37oC , 5% CO2 and 100% humidity.

Samples of patterned PDMS were sterilized by rinsing with 70% ethanol. Prior

to plating, cultured cells were washed with trypsin/EDTA to promote cell detachment

from the culture flasks. The cells were mixed into media for transfer. 0.5 mL of the

solution was plated onto modified PDMS samples, inside a 3 cm petri dish. An

additional 2 mL of fresh media was added to each dish, the cells were then incubated

for 24-36 hrs.

Prior to imaging, cells were rinsed 3 times with PBS at pH 7.4 and fixed using

a solution of 4.4% paraformaldehyde in PBS for 10 min. Cells were then rinsed 3

times in PBS and water. Fixatives stabilize the structural details of cell and tissues

for examination by microscopy [131]. Fixing a biological tissues preserves the sample

in a state as close to its natural state as possible. Aldehyde fixation is one of the

most common fixation techniques. It creates covalent chemical bonds between lysine

residues found in proteins, creating a cross-linked network inside of the cell (Figure

2.7). Paraformaldehyde breaks down into formaldehyde units in the presence of heat

and OH− (Figure 2.7).

2.2.5.1 Imaging

All optical images were captured using a Zeiss Axioskop2 Mat Microscope with a

QImaging Retiga 1300 CCD digital camera or using a Zeiss Axiovert 200M inverted

microscope with a Zeiss AxioCam HRM CCD digital Camera.

2.2.5.2 Live Cell Imaging

C2C12 cells were plated onto stencil masked patterned PDMS samples at a concen-

tration of 8.3 × 103 cells/cm2. Cells were incubated at 37oC , 5% CO2 and 100%
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Figure 2.7: The reaction mechanism of formaldehyde fixation. Paraformaldehyde is
separated into formaldehyde monomers when exposed to heat under basic

conditions. Formaldehyde forms a methylene bridge between the nitrogen atom
found on lysine side chains and the nitrogen atom of a peptide linkage
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humidity using a Zeiss stage-Top Incubation system on a Zeiss Axiovert 200 inverted

microscope. Images were recorded using a Zeiss AxioCam HRM every 15 min for a

24 hr period.

2.3 Results and Discussion

2.3.1 Stencil Mask Patterning of PDMS

Our group has previously reported a method that increased the wettability of PDMS

through magnetron-sputter deposition of aluminum and subsequent etching of alu-

minum. These PDMS-Al surfaces had a lower contact angle and showed increase

cell attachment compared to PDMS [120]. The decrease of the contact angle has

been attributed to the formation of hydroxyl groups on the surface, which replace the

hydrophobic CH3 groups found in native PDMS when the surface is exposed to an

argon plasma during aluminum deposition.

The first method used to pattern hydrophobic and hydrophilic regions on PDMS

took advantage of the native structure of PDMS. Unmodified PDMS is naturally cy-

tophobic due to its hydrophobicity and methoxy surface chemistry. To protect PDMS

during aluminum deposition a stencil mask was used. The mesh, shown in Figure 2.8,

had circular holes with diameters of 180 and 260 µm. The related patterned aluminum

deposition (Figure 2.9) appeared to be in good agreement with the size and shape of

the holes found in the steel mesh. After etching, the stencil mask patterned surfaces

were dipped in water. The water droplets formed only in the modified regions, while

avoiding the hydrophobic PDMS (Figure 2.10). The selective water droplet formation

indicates successful hydrophobic/hydrophilic patterning.
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Figure 2.8: Optical images of stainless steel screens used as stencil masks composed
of (a-c) a hexagonal array 260 µm diameter circles with a centre-to-centre spacing of
360 µm, and (d-f) a square array of 180 µm diameter circles with a centre-to-centre

spacing of 230 µm
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Figure 2.9: Bright field reflection-mode optical images of aluminum arrays patterned
on PDMS by magnetron sputtering through a stencil mask. (a-c) hexagonal array
260 µm diameter circles with a centre-to-centre spacing of 360 µm, and (d-f) a

square array of 180 µm diameter circles with a centre-to-centre spacing of 230 µm
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Figure 2.10: Bright field reflection-mode optical images of water droplets localized
on stencil masked patterned PDMS after aluminum etching

After aluminum etching, mouse myoblast (C2C12) and African green monkey

kidney (COS-7) cells were incubated on the surfaces, they appear to only grow in

the areas exposed to aluminum (Figure 2.11). Outside of the modified region, few

cells are observed, but long membrane protrusions span the gaps between dots. HeLa

cells grown on an island of ECM proteins showed similar protrusions [132]. It was

suggested that these membrane protrusions may indicate cell-to-cell communications

or the secretion of ECM proteins to enhance adhesion of the cells to the non-patterned

substrate. In the case of the HeLa cells, they eventually grew outside of the modified

regions. It was suggested that the loss of patterned cell growth was caused by one of

two effects: the cells were secreting ECM proteins so they could adhere to unmodified

substrate; or the cells were degrading the non-adhesive surface. By contrast, we saw

no cell growth outside of the modified regions, rather the cells preferred to grow on top

of one-another. To further understand the cell behavior on our patterned substrates,

live cell imaging was performed.

2.3.1.1 Live Cell Imaging

Live cell imaging indicated that cells were able to freely move around the modified

dots. Generally, once a cell approached the edge of the dots, they would change
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Figure 2.11: Bright field reflection-mode optical images of (a-c) COS-7 fibroblast
cells, (d-f)C2C12 myoblast cells after 24 hrs incubation on stencil mask patterned

PDMS
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direction and remain inside the dot. On occasion a cell was observed leaving a dot.

When this occurred, the cell immediately balled up, indicating that the cell was no

longer able to form attachments to the surface of the polymer. These cells would float

around until either they reentered the same dot or another modified region where they

were able to adhere and spread out. Figure 2.12 shows a cell approaching the edge of

the dot. The cell, indicated by the arrow, eventually leaves the modified region and

balls up (Figure 2.12 c). After remaining over the hydrophobic area for some time the

cell eventually finds the modified dot and begins to spread again (Figure 2.12 g-h).

The stencil mask patterning method has proven effective in patterning hy-

drophilic modified PDMS that is surrounded by hydrophobic native PDMS. Cells

grew only in the modified dots, as expected. While cells are able to leave the dots

and move around the surface, they do not adhere to the unmodified surface.

2.3.2 Patterning of Hydrophobically Recovered PDMS by

Photolithography

Stencil mask patterning has proven successful at spatially controlling cell attachment

and growth. This technique is simple and stencil masks can be used multiple times.

However, all stencil mask patterning has a significant drawback. Stencil masks are

limited in both their feature size and geometry. To overcome these limitations, we

looked to photolithography. The resolution of contact photolithography can easily

reach 4 to 6 µm feature sizes, and have been used to mass produce feature down

to 1 µm [56]. Acetate photomasks are available inexpensively and with relatively

high resolution; feature sizes down to 6 µm can be obtained. Figure 2.13 shows

acetate photomasks obtained from the PhotoPlotStore. Chrome-on-glass photomasks

are more durable and give better resolution; however they are significantly more
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Figure 2.12: Transmission-mode optical images of live C2C12 myoblasts cells on
stencil mask patterned PDMS taken after (a) 645, (b) 660, (c) 675, (d) 690, (e) 705,

(f) 720, (g) 735, (h) 750 min after initial plating
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Figure 2.13: Bright field reflection-mode optical images of photomasks used to
photolithographically pattern aluminum on PDMS. a) 250 µm dots with 10 µm

interconecting lines, b) 100 µm dots, c) 260 µm squares

expensive. Photolithography directly on PDMS is not possible, as photoresists are

unable to spread evenly over the polymer surface. Previously, our group has used an

aluminum mediating layer to overcome this problem [104]. The magnetron deposition

of aluminum caused the entire polymer surface to be oxidized and thus patterned cell

growth was not possible.

In order to create patterned surfaces by photolithography, the contact angle

of modified PDMS has to be increased, such that it is closer to native PDMS. One

method to increase the contact angle of modified PDMS is to allow the surface to

undergo hydrophobic recovery (PDMS-R). PDMS-Al surfaces that have undergone

hydrophobic recovery do so in a relatively short period of time. Recovery occurs

through the migration of uncross-linked PDMS oligomers found under the silica-like

layer. The hydrophobic oligomers work their way to the surface through cracks in

the modified layer. Recovery takes place within hours of exposure to air, with the

maximum contact angle occurring within 24 hrs. Hydrophobic recovery is slowed by

immersion in a polar liquid such as water or methanol. The polar solvent makes

migration no longer energy efficient as the solvent would prefer to interact with the

hydroxyl groups found on the modified surface. After 72 hrs in air, micrometer-thick
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films of treated PDMS had a contact angle of 77 ± 2o, while bulk PDMS reached

96 ± 2o. The micrometer-thick PDMS does not recover to the same degree as bulk

PDMS. This difference can be attributed to the curing processes. While both bulk

and thin PDMS are cured in the same manner, the thin PDMS will allow heat to be

absorbed more evenly through the material, effectively allowing a larger percentage of

the PDMS to be crossed linked. Previously, it has been reported that PDMS which

has been thermally aged before plasma treatment, will maintain its hydrophilicity

longer and once recovered, it will have a lower contact angle than PDMS that has

not undergone thermal aging [133].

A new photolithographic patterning method that takes advantage of PDMS’s

ability to undergo hydrophobic recovery has been developed. Figure 2.4 shows the

fabrication scheme. In short, the entire PDMS surface was coated with aluminum in

a magnetron sputter deposition system. Photolithography and wet chemical etching

was used to generate a pattern of aluminum; exposing select areas of the polymer

surface. The exposed regions were allowed at least 72 hrs to undergo hydrophobic

recovery. A final etch, exposed the aluminum protected surfaces, which remained

hydrophilic. These hydrophilic regions were surrounded by hydrophobically recovered

PDMS. Figure 2.14 shows aluminum that has been patterned on the PDMS surface.

The aluminum pattern matched closely with the photomask used. To show the success

of patterning hydrophilic dots, the substrates were dipped into water and removed

at a 60o angle after the final etch. As with the stencil mask samples, water droplets

formed only in the hydrophilic dots while avoiding the recovered surroundings (Figure

2.15).

To test the ability of the photolithographic patterned samples to control cell at-

tachment and growth, the patterned surfaces were incubated with C2C12 cells. After

24 hrs, no patterned formation is observed (Figure 2.16 a-b). As there is a low con-
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Figure 2.14: Bright field reflection mode optical images of a-c) photomasks d-f) and
the corresponding aluminum patterned surfaces

Figure 2.15: Bright field reflection-mode optical images of water droplets localized
on treated PDMS surfaces patterned with hydrophobically recovered areas by

photolithography
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Figure 2.16: Bright field reflection-mode optical images of C2C12 myoblast cells
after (a,b) 24 hrs and (c,d) 72 hrs incubated on modified PDMS surfaces patterned

with hydrophobically recovered areas by photolithography
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centration of cells, it is possible that they are only growing in the modified regions but

patterning is not distinguishable. After 72 hrs, the cells have grown to confluency and

have spread across the entire surface. It is clear, that while patterning hydrophobically

recovered areas created domains of hydrophilic dots with hydrophobic surroundings,

this method was not successful at spatially controlling cellular attachment.

Recovered PDMS only reaches a contact angle of 77o, making it significantly

lower that that of native PDMS and is considered technically hydrophilic. Also, the

two surfaces differ in their chemistry. The oligomers that coat the recovered PDMS

only create a thin layer, under which the hydroxy groups caused by the plasma mod-

ification still exist. These hydroxy groups might still affect how the cells and serum

proteins interact with the surface beyond simply its wettability. It is also possible that

once in an aqueous environment, the oligomers that caused the hydrophobic recovery

are either removed by the solution or move back into the bulk polymer. Aqueous

solutions are used to slow or prevent hydrophobic recovery of plasma treated PDMS.

This occurs because the entropic drive to coat the surface is removed, thus lowering

the interaction between the air and the polymer surface. We hypothesize that not

only is the contact angle of recovered PDMS lower than that of PDMS, but also that

in aqueous solution, the interaction between the water molecules and the hydrophobic

oligomers would cause the oligomers to move back into the bulk polymer. This would

further lower the contact angle, making the recovered surface no different than that

of a freshly etched surface.

The effects of immersion in water on the static contact angle were tested on

PDMS, PDMS-Al and PDMS-R surfaces of micrometer thickness and displayed in

Figure 2.17. PDMS showed little change over a seven day period of time, with the

static contact angle remaining above 109o. The static angle for PDMS-Al also re-

mained fairly consistent staying below 30o; indicating, that immersion in water was
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Figure 2.17: Static contact angle of µm thick PDMS, PDMS-R and PDMS-Al
samples after immersion in water

preventing hydrophobic recovery. However, PDMS-R surfaces showed a decrease of

32o over seven days. After only 24 hrs, the contact angle had dipped below 60o; this

indicates that within 24 hrs the wettability of the surface is now favourable for cell

attachment.

Advancing and receding contact angles can reveal important information on the

properties of a surface [130]. The receding angle reflects the surface’s ability to retain

contact with the liquid, and thus the strength of the surface liquid interactions. In

an ideal system, the liquid would not interact with the surface and all three con-

tact angles would be the same. In real systems, a contact angle hysteresis normally

occurs. Many factors have been reported to affect contact angle hysteresis includ-

ing surface roughness, surface heterogeneity, molecular mobility and packing of the

surface, surface swelling, liquid absorption and liquid retention [134, 135].

The advancing contact angle followed closely with the static contact angle and
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Figure 2.18: Advancing contact angle of µm thick PDMS, PDMS-R and PDMS-Al
samples after immersion in water

can be seen in Figure 2.18. The receding angle for PDMS-Al surface approached 0o

for all immersion times and is not shown. The receding angle for PDMS-R surfaces

also followed a similar trend as the advancing and static angles (Figure 2.19) and

maintained a stable contact angle hysteresis. Unmodified PDMS shows a steady

decrease in its receding angle as immersion times increase. This differs significantly

from the trends seen for both static and advancing angles and leads to an increase

in contact angle hysteresis (Figure 2.20). As PDMS is homogenous, and has a low

surface roughness [120] the hysteresis is most likely caused by either liquid absorption

or molecular mobility and packing of the surface.

Photolithography has been used to create hydrophilic magnetron modified PDMS

regions surrounded by hydrophobically recovered PDMS. This method was success-

ful in creating hydrophilic islands with more hydrophobic surroundings. While these

surfaces were able to direct water droplet formation, cells were able to adhere to
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Figure 2.19: Receding contact angle of µm thick PDMS, and PDMS-R samples after
immersion in water

0 1 2 3 4 5 6 7
10

20

30

40

50

60

70

C
on

ta
ct

 A
ng

le
 H

ys
te

re
si

s

Time (Days)

 PDMS-R
 PDMS

Figure 2.20: The contact angle hysteresis of µm thick PDMS, and PDMS-R samples
after immersion in water
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both surface types and showed no preference. Thus, cell patterning did not occur.

Upon further examination the contact angle of the hydrophobically recovered regions

showed a decrease once immersed in an aqueous environment.

2.3.3 Patterning of ODTMS on Modified PDMS by

Photolithography

It appears that hydrophobically recovered PDMS does not retain its hydrophobic

nature once in an aqueous environment. To overcome this, we modified the pho-

tolithographic patterning method. Instead of allowing modified PDMS to undergo

hydrophobic recovery, we further modified the surface using silane chemistry (Figure

2.5). This modification would present functional groups which would provide similar

surface chemistry as the native PDMS, while eliminating the reversible behavior of

recovered PDMS.

Our group has developed a method to modify PDMS-Al surfaces with amino-

terminated and mercapto-terminated silanes to provide amine and thio functionality

to the surface [106]. Aminopropyltrimethoxy silane (3-APTMS) and 3-mercaptopropyl-

trimethoxy silane (3-MPTMS) were able to form bonds with the hydroxy groups on

the PDMS-Al surface. In order to obtain a hydrophobic surface with similar chemistry

as PDMS, ODTMS, a methoxy-terminated silane, was used (Figure 2.2). After treat-

ment, the contact angle of micrometer- and nanometer-thick PDMS surfaces were 101

± 3o and 102 ± 2o respectively. Similarly, glass coverslips were treated with ODTMS

and found to have a contact angle of 98 ± 2o indicating that the coverage of ODTMS

on PDMS-Al was similar to that of ODTMS on glass.

The XPS of the ODTMS treated PDMS (PDMS-ODTMS) surface showed an

increase in carbon content over the PDMS-Al surface, with a corresponding decrease
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Table 2.2: Contact angles of PDMS, modified PDMS, glass and modified glass

Material Thickness Contact Angle (o)

PDMS micrometer 113 ± 2

PDMS bulk 112 ± 1

PDMS-Al micrometer 17 ± 5

PDMS-Al bulk 37 ± 3

PDMS-R micrometer 77 ± 2

PDMS-R bulk 96 ± 2

Glass n/a 53 ± 3

Glass-ODTMS n/a 98 ± 2

PDMS-ODTMS micrometer 101 ± 3

PDMS-ODTMS nanometer 102 ± 2

in oxygen and silicon content. The survey spectrum of PDMS-ODTMS is shown in

Figure 2.21, and the atomic composition summarized in Table 2.3. Other elements,

sodium, nitrogen and calcium make up less than 1% of the total atomic composition,

and are most likely impurities from the ODTMS. A high resolution carbon 1s scan

was also performed. Figure 2.22 shows the carbon spectrum and peak fitting for (a)

PDMS and (b) PDMS-ODTMS. PDMS shows a single carbon peak with a binding

energy of 285.0 eV, whereas PDMS-ODTMS shows two carbon peaks, one with a

binding energy of 285.0 eV and the second with a binding energy of 286.2 eV. The

285.0 eV peak represents the carbon atoms found in the bulk PDMS, while the second

peak at 286.2 eV represents the alkyl chain from the ODTMS molecule. ODTMS only

forms a thin layer on SiO2 surfaces of approximately 2.2 nm [136, 137]. Since XPS

probes the first 10 nm of the surface, the chemical composition of the ODTMS layer,

as well the modified PDMS layer, is determined. The increase in carbon content, as

well as, the appearance of the second carbon 1s peak indicates that the surface has

in fact been modified by ODTMS.
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Figure 2.21: XPS survey spectrum of ODTMS modified PDMS

Table 2.3: XPS atomic composition analysis of ODTMS modified PDMS

Peak Binding Energy (eV) Atomic Composition (%)

C 1s 283.2 48.4

O 1s 528.0 32.6

Si 2p 100.2 18.3
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Figure 2.22: C1s XPS spectrum of a) PDMS, and b) ODTMS modified PDMS

Figure 2.23: Bright field reflection-mode optical images of water droplets localized
on treated PDMS surfaces patterned with ODTMS by photolithography
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Figure 2.24: Bright field reflection-mode optical images of C2C12 myoblast cells
after 24 hrs incubated on ODTMS patterned surfaces

Figure 2.23, shows water droplets that formed on the patterned surface, indi-

cating that we have successfully patterned hydrophobicity on the hydrophilic surface.

The ability of the surface to pattern cell attachment was tested using C2C12 cells.

Cells preferred the hydrophilic dots over the ODTMS treated surrounded areas as

seen in Figure 2.24. Unlike the stencil mask patterned surfaces, the cells were able to

migrate out of the dots.

There are several differences between the ODTMS-PDMS surface and native

PDMS. The contact angle of the ODTMS surface is slightly lower than that of PDMS,

although the surface is very hydrophobic and similar in surface chemistry to other

cytophobic surfaces [30, 39]. Aside from the contact angle, other surface properties

need to be considered, such as whether the initial aluminum treatment created a

rougher and stiffer surface than PDMS [120]. Thus, the physical properties of the
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underlying SiOx layer may affect how cells interact with the surface. These differences

may explain why the stencil mask patterning was more successful than either of the

photolithographic methods.

The ODTMS method used photolithography to protect areas of magnetron

treated PDMS, while exposed regions reacted with the ODTMS molecule to create

hydrophobic barrier. The reaction between ODTMS and PDMS-Al was confirmed by

contact angle and XPS. This method was successful at directing cell adhesion into the

hydrophilic dots, but was not as robust as the stencil mask method. Cells were able

to leave the hydrophilic dots and appeared spread out when growing on the ODTMS

surface.

2.4 Conclusions

Three different methods of patterning PDMS were explored. We patterned hy-

drophilic dots and surrounded them with hydrophobic regions in order to pattern

cell attachment and growth. While all methods were able to create a hydropho-

bic/hydrophilic pattern, the stencil mask patterning method was the most effective

at patterning cells. The stencil mask patterned surface used native PDMS as the cell

repellent hydrophobic surface, which was the most hydrophobic of all four surfaces.

Also, the photolithographic methods relied on initial magnetron aluminum treatment

of the surface. The magnetron treatment produced a surface similar to that produced

through plasma treatments. Plasma treatment of PDMS is known to affect the stiff-

ness and roughness of the surface [116,138–140] and both properties have been shown

to increase cell attachment and growth [15,18,141]. The chemistry of the hydrophobic

surfaces in the photolithographic patterned surfaces was not exactly the same as that

of native PDMS and may interact differently with mediating proteins. We have also
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shown that hydrophobically recovered PDMS can regain some of its hydrophilicity

in a aqueous environment, which may explain why no patterning was seen on the

surfaces that used recovered PDMS as the hydrophobic background.
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Chapter 3

Cell and Protein Interactions with PDMS

and Surface Modified PDMS

3.1 Introduction

The ability of a cell to attach to a surface depends on the physical and chemical prop-

erties of the surface. Surface wettability, functional groups, roughness and stiffness

each play an essential role in cell adhesion [15, 18, 141]. Cells adhere to the surface

through mediating proteins from the ECM. When a surface comes into a contact with

culture media, before cells reach that surface, these proteins immediately adsorb and

interact with the surface. When proteins adsorb to a surface, they take the most

energetically favourable configuration, and this configuration depends on the wetta-

bility and chemistry of the surface [16,141]. These conformational changes can affect

the protein activity by either exposing or hiding different functionalities such as the

RGD binding sequence. For cells to adhere to these surface binding sites must be

accessible.

Fn has been shown to play an essential role in cellular adhesion [26, 28]. The

availability of the central RGD binding sites between the 9th and 10th type II repeats

on Fn can determine whether cells which express Fn binding integrin receptors, such

as the α5β1 and the αvβ3 integrins, will adhere to the underlying substrate the protein

has adsorbed to. The ability to detect protein conformation on a surface has become
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a challenge undertaken by a variety of scientists. Methods to determine Fn conforma-

tion include AFM [142], ATR-FTIR [143,144], confocal microscopy [145], quartz crys-

tal microbalance (QCM) [146], fluorescence resonance energy transfer (FRET) [147],

and enzyme-linked immunosorbent assays (ELISA) [25, 26, 28]. On hydrophobic sur-

faces, Fn is in a spherical conformation [142], demonstrates a decrease in its secondary

structure, and the RGD adhesion binding site is considerably less accessible [25,26,28]

than on hydrophilic surfaces.

To further investigate the efficiency of the patterning methods developed in

Chapter 2, the interaction between cells and proteins with PDMS and modified PDMS

were explored. First, the ability of C2C12 cells to attach and proliferate on theses

surfaces, as well as their viability was determined. Secondly, the relative protein

adsorption and conformation on different surface and binding site availability was

observed though adsorption of proteins onto patterned substrates.

3.2 Materials and Methods

3.2.1 Reagents

PDMS Sylgard 184A and B were purchased from Dow Corning. The materials used

for photolithography, Microposit SC1827 positive photoresist and Microposit MF-319

developer were purchased from Rohm & Haas Electronic Materials. The C2C12 cell

line was purchased from ATCC. DMEM, L-glutamine, penicillin streptomycin, FBS,

Trypsin/EDTA, PBS, 4’,6-diamidino-2-phenylindole (DAPI), Alexa Fluor 488 con-

jugated Fibrinogen (Fb-488), and fluorescein iosthiocyanate (FITC) conjugated goat

anti-mouse immunoglobulin G (IgG) were all purchased from Invitrogen. Mouse mon-

oclonal antibody HFN7.1 was obtained from the Developmental Studies Hybridoma
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Bank. All other chemicals were purchased from Sigma-Aldrich and used as received.

3.2.2 Preparation of PDMS and modified PDMS surfaces

Micrometer thick PDMS surfaces were used and prepared through spincoating onto

a glass coverslip as described in 2.2.2.2. Magnetron modified surfaces, PDMS-Al,

were prepared though the deposition of aluminum in a magnetron sputtering system,

followed by etching in orthophosphoric acid as described in 2.2.2.3. PDMS-Al surfaces

were allowed to undergo hydrophobic recovery for at least 72 hrs to create the PDMS-

R surfaces as described in 2.2.2.4. PDMS-Al was modified with ODTMS as described

in 2.2.2.5,.

3.2.3 Preparation of Patterned PDMS Surfaces

The creation of patterned PDMS surfaces was performed as described in 2.2.3.1,

2.2.3.2, and 2.2.3.3. In short, stencil masked patterned samples were created by

aluminum deposition through a commercially available steel mesh. PDMS-R was

patterned on PDMS-Al surfaces though photolithography. Exposed aluminum was

etched away and the underlying modified surface allowed to undergo hydrophobic

recovery for at least 72 hrs. PDMS-ODTMS was also patterned over PDMS-Al by

photolithography. The exposed PDMS-Al surface reacted with ODTMS molecules.

All patterned substrates were etched with orthophosphoric acid and rinsed in water

before use.

3.2.4 Cell Proliferation and Viability Testing

The concentration of cells in a suspension can be determined using a hemocytometer.

A hemocytometer consists of a surface that has a laser inscribed grid on it, as seen
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Table 3.1: The size of squares found on a hemocytometer and their corresponding
surface area and volume

Size (mm) Surface Area (mm2) Volume (nL)

1.00 x 1.00 1.00 100

0.25 x 0.25 0.0625 6.25

0.20 x 0.25 0.050 5.0

0.20 x 0.20 0.040 4.0

0.05 x 0.05 0.0025 0.25

in Figure 3.1. The surfaces of the hemocytometer consist of several 1 x 1 mm (1

mm2) squares. Each square is further divided into 0.25 x 0.25 mm (0.0625 mm2),

0.25 x 0.20 mm (0.05 mm2) and 0.20 x 0.20 mm (0.04 mm2) sections, with the central

square further divided into 0.05 x 0.05 mm (0.0025 mm2) squares. A cover slip is

held 0.1 mm over the surface giving each square a defined volume as listed in Table

3.1. By counting the number of cells in the squares the concentration of cells can be

determined.

To determine cell viability, a dye exclusion technique was used. Viable cells

have an intact membrane that will prevent certain dyes from entering the cell, whereas

dead or dying cells have membranes that are not fully functional and will allow for

dye penetration. Trypan blue (Figure 3.2) is one such dye that is commonly used to

distinguish between viable and non viable cells [148]. Viable cells appear clear while

non viable cells are dark blue in colour under a microscope.

Samples of PDMS, PDMS-Al, PDMS-R, and PDMS-ODTMS, were sterilized

by rinsing with 70% ethanol. Prior to plating, cultured cells were washed with

trypsin/EDTA to promote cell detachment from the culture flasks. The cells were

mixed into media for transfer and brought to a concentration of 2.5 × 104 cells/mL.

3 mL of the cell solution was added to a 3 cm tissue culture dish (Falcon) contain-
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Figure 3.1: The grid structure found on a typical hemocytometer

Figure 3.2: The molecular Structure of Trypan Blue, a dye used to stain non viable
cells
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ing a polymer sample. The cells were then incubated at 37oC , 5% CO2, and 100%

humidity for 24 and 48 hrs.

To determine the degree of cell attachment, the samples were transferred to

a fresh 3 cm tissue culture dish. Each sample was rinsed with trypsin/EDTA to

promote cell detachment. The samples were then washed with 1 mL of cell media

to remove the detached cells. The solution was then centrifuged at 1500 rpm for 10

min and the cell media removed. The cells were re-suspended in 100 µL of PBS, and

15 µL of that solution was mixed with 15 µL of trypan blue for 3 min to determine

cell viability. The total concentration of cells and non viable cells were found using

a hemocytometer with a total cell count of at least 200. For each surface, data were

collected at each time point on three samples.

3.2.5 Cell Imaging

Wide field fluorescent imaging is common technique used to localize fluorescent mole-

cules on a sample [149–151]. For biological purposes, the sample is labeled with a

fluorescent molecule called a fluorophore. Commonly, a wide field fluorescent micro-

scope uses a mercury or xenon arc-discharge lamp, which emits a broad range of light.

The desired excitation wavelength is selected through the use of an emission filter.

The fluorophore will absorb the light and emit light of a longer wavelength. The emit-

ted light is separated from the excitation light by a beam splitter and an emission

filter. Figure 3.3, shows the typical set up for a wide field fluorescence microscope.

Optical images of cell on the surfaces were obtained using the bright field re-

flective mode on a Zeiss Axioskop2 Mat Microscope with a QImaging Retiga 1300

CCD digital camera. Fluorescent images of the cell nuclei were obtained using a

Zeiss Axiovert 200M Microscope with a Zeiss AxioCam HRM CCD digital Camera
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Figure 3.3: Schematic representation of the typical set up for a wide field fluorescent
microscope

in wide field fluorescent mode. Before optical imaging, cells were washed 3 times in

PBS and fixed in a 4% paraformaldehyde solution in PBS for 10 min. Cells were then

rinsed 3 times in PBS and 3 times in water. Before fluorescent imaging cells were

washed 3 times in PBS and fixed in a 4% paraformaldehyde solution in PBS for 10

min and washed 3 times in PBS. The cellular membrane was then permeabilized by

immersion in acetone for 3 min at 20oC . The cell nuclei were fluorescently labeled us-

ing DAPI (Figure 3.4), which binds strongly to DNA (deoxyribonucleic acid). DAPI

has a adsorption maximum at 358 nm and an emission maximum at 451 nm, when

bound to DNA. UV light was used to excite DAPI and a blue filter used to obtain

the fluorescent image.
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Figure 3.4: The molecular Structure of 4’,6-diamidino-2-phenylindol (DAPI), a dye
used to stain the DNA in the nuclei of a cell

3.2.6 Fibronectin Conjugated with Oregon Green Dye

In order, to visualize the adsorption of Fn on the surface of patterned PDMS, fluores-

cently labeled protein was required. As labeled Fn is not commercially available, an

Oregon Green 488 (OG) dye was conjugated to the protein using a dialysis technique.

OG can react with amine groups found on lysine residues of the protein, through its

isothiocyanate functional group. This type of modification is known not to interfere

with Fn’s biological activity [152–154].

5 mg of human plasma fibronectin was dissolved in 5 mL PBS for a concentration

of 1 mg/mL. The solution was dialyzed against 450 mL of 0.1 M sodium borate buffer,

pH 9.0 for 24 hrs at 4oC , the buffer solution was changed after 12 hrs. 5 mg of OG was

dissolved in 500 µL dimethyl sulfoxide (DMSO). 250 µL of the OG DMSO solution

was added to 100 mL of 0.1 M sodium borate buffer solution, pH 9.0. The Fn solution

was then dialyzed against the OG solution for 8 hrs at 4oC . To remove unreacted

OG dye, the Fn solution was dialyzed against PBS (pH 7.4) for 72 hrs at 4oC with a

buffer change every 12 hrs . 3.2 cm standard cellulose dialysis tubing (Spectra/Por)

with a cut off molecular weight of 12 to 14 kD was used for all steps.
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3.2.7 Fibronectin and Fibrinogen Adsorption Studies

Each patterned PDMS sample was etched in 1.8 M orthophosphoric acid for 30 min

and rinsed 3 times in water immediately before adsorption studies. Fibronectin la-

beled with Oregon Green (Fn-OG) was diluted to a concentration of 0.1 mg/mL or 50

µg/mL in PBS. Fibrinogen labeled with Alexa Fluor 488 was diluted to 0.1 mg/mL

in PBS (Fg-488). To look at the effect of protein co-adsorption on Fn, Fn was mixed

with BSA. Fn-OG was diluted to a concentration of 0.1 mg/mL in PBS and mixed

at a 1:1 ratio with 4 mg/mL BSA in PBS. 1 to 2 mL of solution was poured over a

patterned PDMS sample in a 30 mm tissue culture dish and allowed to adsorb for 30

min at room temperature while protected from light. Each sample was then rinsed 3

times in PBS and then 3 times in water.

3.2.8 Fibronectin Conformation Study

Immunofluorescent labeling is a technique that allows the location and relative amou-

nts of an antigen to be determined [155]. Direct immunofluorescent labeling uses a

fluorescently labeled antibody. The antibody will bind only to the desired antigen

and can be visualized using either fluorescence microscopy or confocal microscopy.

An indirect technique is used when labeling the required antibody is difficult or will

adversely affect function. An indirect technique uses a primary antibody to detect

the desired antigen and a secondary antibody which is fluorescently labeled and can

bind to the primary antibody for detection. Direct and indirect immunofluorescent

labeling are illustrated in Figure 3.5

Patterned PDMS samples were etched in 1.8 M orthophosphoric acid and rinsed

3 times in water to remove the protective aluminum coating. Immediately after etch-

ing, Fn was adsorbed to the surface for 30 min at room temperature at a concentration
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Figure 3.5: An illustration of a) direct and b) indirect immunofluorescent labeling
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Figure 3.6: A schematic representation of a confocal microscope, the green line
represents the incoming light at the excitation wavelength; the red solid line, the

in-plane fluorescent light; and the red dashed line, the out of plane fluorescent light.

of 0.1 mg/mL or 50 µg/mL. To look at the effect of BSA, 0.1 mg/mL of Fn was also

mixed with 4 mg/mL BSA at a 1:1 ratio before absorption. After rinsing 3 times in

PBS, the samples were immersed in blocking buffer (0.25% BSA in PBS) for 1 hr at

room temperature, to eliminate unspecific binding. The samples were then incubated

with a monoclonal antibody HFN7.1 at 0.240 µg/mL for 1 hr in blocking buffer at

37oC . After rinsing 3 times in blocking buffer, the samples were then incubated with

0.25 µg/mL FITC goat anti-mouse IgG for 1 hr at 37oC before rinsing 3 times in

PBS and water. To ensure that the fluorescent signal was due to interactions be-

tween HFN7.1 and Fn and not unspecific binding of FITC goat anti-mouse IgG, each

experiment was performed in the absence of the primary antibody, HFN7.1.
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3.2.9 Confocal Imaging

Confocal microscopy is a laser scanning method used to image fluorescent molecules

[151, 156]. A laser is scanned over a sample, and at each point the fluorescent signal

is collected and its intensity mapped to an image. One major advantage of confo-

cal microscopy over widefield fluorescence is that confocal uses a pinhole to remove

light generated out of the focal plane. This allows for higher resolution, as well as

3D imaging. Figure 3.6 shows the set-up for a standard confocal microscope. The

incoming light is focused using an objective lens to the focal plane. The fluorescent

light passes back through the objective lens, and is reflected by a beam splitter to-

wards the photo detector. The pinhole only allows light which originated in the focal

plane to reach the detector. Before reaching the pinhole, light is passed through an

optical filter to prevent any reflective and unwanted fluorescent light from reaching

the detector. Normally a high-pass filter is used to remove light less than a specific

wavelength, or a band-pass filter, which removes light outside of a specified range. To

obtain an image, an x,y scanner moves the sample and intensity data are collected

for each point.

Confocal images were acquired using a Zeiss 510 LSM confocal (Zeiss, Thorn-

wood, NY) with an excitation wavelength of 488 nm corresponding to the λmax for

OG, FITC and Alexa Fluor 488.

3.3 Results and Discussion

3.3.1 Cell Proliferation and Viability Studies

Studies in Chapter 2 demonstrated that cells are able to grow on hydrophobically

recovered PDMS and ODTMS treated PDMS when patterning the surface with pho-
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Figure 3.7: The number of cells per cm2 on PMDS, PDMS-Al, PDMS-R,
PDMS-ODTMS

tolithography. Thus, patterning wettability does not necessarily lead to spatial control

over cell adhesion. To better understand the interactions between cells and each sur-

face type, we looked at the number of cells that had attached to the surface and their

viability over a 48 hr period.

Figure 3.7 shows the concentration of cells attached to PDMS, PDMS-Al,

PDMS-R and PDMS-ODTMS after 24 and 48 hrs. While some cells were able to

attach to the PDMS surface, the number of cells was significantly lower than that ob-

served for both PDMS-Al and PDMS-R. Since PDMS has previously been reported as

cytophobic, due to its hydrophobicity and CH3 chemistry, we did not see cells growing

on PDMS when we performed the stencil mask patterning, as expected. Even after
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48 hrs, the number of cells attached to PDMS remained low.

The number of cells attached to PDMS-R surface did not significantly vary

from the number of cells found on PDMS-Al. It appears that hydrophobic recovery

has little effect on the number of cell that can attach and proliferate on the polymer

surface in comparison to freshly etched magnetron treated surface. Figure 3.8 shows

cells grown on both PDMS-Al and PDMS-R after 24 and 48 hrs that have been stained

with DAPI. The bright spots represent the cell nuclei. We originally hypothesized

that on PDMS-R patterned surfaces, cells may have begun to form patterns but were

able to spread out once the hydrophobic recovered surface regained its hydrophilicity.

After only 24 hrs the number of cells on both surfaces was nearly identical, indicating

that the cells had no difficulty attaching to the recovered surface, thus patterning

most likely never occurred. After 48 hrs the cell became confluent on both surfaces

as seen in Figure 3.8 and Figure 3.9.

The ODTMS treated surface showed lower cell attachment after 24, and 48 hrs

than either PDMS-Al or PDMS-R. Despite having similar surface chemistry and hy-

drophobicity as native PDMS, there were more cells attached to the PDMS-ODTMS

surface. These results indicate that while cells would prefer the PDMS-Al surface,

they are able to attach and proliferate on the PDMS-ODTMS surface. Once the cells

became crowded on the PDMS-Al dots they could then simply move out from the

dots, and grow on the ODTMS treated areas. This reflects what occurred on the

ODTMS patterned substrates, creating merely a temporary pattern.

The percentage of viable cells was calculated from the total number of viable

cells and the total number of cells, and summarized in Table 3.2. After 24 and 48 hrs

all surfaces showed reasonable cell viability for the cells that had attached to their

surface.

Cell growth is significantly increased on magnetron treated PDMS surfaces over
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Figure 3.8: Wide field fluorescent images of DAPI stained C2C12 cells grown on
PDMS-Al (a,b) and PDMS-R (c-d) for 24 hrs (a,c) and 48 hrs (b,d)

Figure 3.9: Bright field reflection mode optical images of C2C12 cells grown on (a)
PDMS-Al and (b) PDMS-R for 48 hrs.
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Table 3.2: Cell viability after 24, and 48 hrs on PDMS and modified PDMS

Material 24 hrs 48 hrs

PDMS-Al 90 ± 5 % 99 ± 1 %

PDMS-R 83 ± 7 % 95 ± 4 %

PDMS 67 ± 5 % 81 ± 6 %

PDMS-ODTMS 92 ± 2 % 77 ± 17 % %

native PDMS. Hydrophobic recovery appears to have little effect over cell attachment,

proliferation or viability. This indicates that cells respond to the hydrophobic recov-

ered surface the same as they respond to freshly etched magnetron treated PDMS.

The ODTMS treated surface fell between PDMS and magnetron treated PDMS in

terms of cell attachment. Despite having a similar surface chemistry and wettabil-

ity as PDMS, cells were able to adhere to and proliferate on the ODTMS surface.

These results directly explain both the success and failure of the patterning methods

explored in Chapter 2.

The modified PDMS surfaces have been plasma treated during the magnetron

deposition of aluminum. Plasma treatment increases the oxygen content, roughness

and stiffness of the surface [98, 110, 116, 117, 138]. Increasing these properties can

lead to increased cell adhesion and proliferation. To reduce cell adhesion, the sur-

face chemistry and the wettability of the magnetron treated surface, the surface was

further modified. Hydrophobic recovery increases the contact angle by coating the

surface with uncrossed-linked PDMS oligomers [110,138]. In Chapter 2, we saw that

hydrophobic recovery did not fully return to that of PDMS, and immersion in an

aqueous environment further reduced the contact angle. Cells are able to adhere to

the recovered surface to the same extent as the non recovered surface. Thus, it is

possible that cells are still able to interact with the oxygen rich layer.
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The ODTMS treatment was successful at creating a CH3 rich hydrophobic layer

over the magnetron treated surface. Despite having similar chemistry and wettability

as native PDMS, cells adhered significantly more to the ODTMS surface than to

native PDMS. The increased surface roughness and stiffness caused by the initial

magnetron treatment may have played a role. It is also possible that the ODTMS

layer is not uniform, and contains exposed regions of the underlying oxygen rich layer.

If this is the case, cells would be able to adhere to these exposed regions.

3.3.2 Protein Adsorption on Patterned PDMS

Since the interaction between serum proteins and a surface directly affects the ability

for cells to adhere, the adsorption of two different serum proteins on patterned PDMS

substrates were considered. The first protein, fibrinogen (Fg), is found in blood serum

and its adsorption is important in mediating platelet adhesion [157]. The second

protein, Fn, is found in media serum used for cell culture and is directly involved

with cell adhesion in cultures [15, 16].

3.3.3 Fibrinogen Adsorption on Patterned PDMS

In order to probe the adsorption of Fg on the surface of patterned PDMS substrates,

a fluorescently labeled protein was used. Figure 3.10 shows the adsorption onto the

stencil mask patterned surface. The bright areas in the image relate to an increased

concentration of the protein compared to the darker areas. While it is apparent that

some Fg-488 has adsorbed to hydrophobic regions, the majority of the Fg-488 is found

in the hydrophilic dots.

The adsorption of Fg-488 on patterned PDMS-R surfaces was also studied (Fig-

ure 3.11). If the adsorption of Fg is related to cell growth, the Fg-488 would be
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Figure 3.10: Confocal images of Alexa Fluor 488 conjugated fibrinogen adsorbed
onto stencil masked patterned samples for 30 min at a concentration of 0.1 mg/mL

expected to be found evenly across the sample, as cells adhere to both surfaces. This,

however, was not that case. Rather bright areas, corresponding to Fg-488 adsorption,

are seen in the hydrophobic background. This is the first indication that the PDMS-R

surfaces interact with biological materials differently than their non-recovered coun-

terparts.

For patterned PDMS-ODTMS surfaces, Fg was once again seen in the hy-

drophobic regions. The contrast in the images between the hydrophilic and hydropho-

bic regions was much less pronounced than that observed for the hydrophobic recov-

ered samples. While Fg has been linked to an increase in platelet and cell adhesion

and its adsorption is important for cells grown in vivo [157,158], FBS, the serum used

for our cell cultures has had Fg removed. Thus, Fg is not directly involved in cell

adhesion on these patterned surfaces.
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Figure 3.11: Confocal images of Alexa Fluor 488 fibrinogen adsorbed onto patterned
hydrophobic recovered PDMS samples for 30 min at a concentration of 0.1 mg/mL

Figure 3.12: Confocal images of Alexa Fluor 488 fibrinogen adsorbed onto ODTMS
patterned samples for 30 min at a concentration of 0.1 mg/mL
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Figure 3.13: Confocal fluorescent images of Fn-OG adsorbed onto stencil masked
patterned samples for 30 min at a concentration of 0.1 mg/mL

3.3.3.1 Fibronectin Adsorption

Fg is not involved in cell culture in vitro, and its absorption pattern does not reflect

the observed cell growth. Thus, the absorption of another major adhesion promoting

protein, Fn, which is present during cell culture [15, 16], was explored. In order to

visualize Fn upon adsorption, Fn was conjugated with an Oregon Green dye though a

dialysis technique. Figure 3.13 shows Fn-OG adsorbed to an stencil mask patterned

PDMS surface. The bright areas indicate an increased concentration of Fn. Fn pre-

ferred to adsorb on the outside hydrophobic regions. It had been previously reported

that Fn does adsorb more to hydrophobic surface than to hydrophilic surfaces but in

a conformation not ideal for cell growth [16].

Based strictly on hydrophobic/hydrophilic effects, Fn would be expected to

adsorb more on the hydrophobically recovered background on the PDMS-R patterned

surface. Fn did not show a significant preference for either the hydrophilic dots or

the hydrophobic recovered surroundings, as seen in Figure 3.14. This may explain

the lack of patterning on the photolithographically patterned surfaces, assuming that



Chapter 3: Cell and Protein Interactions with PDMS and Surface Modified PDMS 84

Figure 3.14: Confocal fluorescent images of Fn-OG adsorbed onto patterned
hydrophobic recovered PDMS samples for 30 min at a concentration of 0.1 mg/mL

the conformation of Fn is the same across the sample. Finally the adsorption of Fn

on the ODTMS surfaces was studied. Fn adsorbed more to the hydrophilic dots than

the ODTMS surface (Figure 3.15. In all three cases Fn does appear to be adsorbed to

both the hydrophilic and the hydrophobic regions, however the relative concentration

of Fn cannot be correlated directly to cell adhesion.

Figure 3.16, shows Fn adsorption on a stencil masked patterned surface with a

concentration of (a) 50 µg/mL, and (b) 50 µg/mL with 2 mg/mL of BSA. Lowering

the concentration of Fn does not appear to affect the relative amounts of Fn found

on the PDMS-Al and PDMS, with larger amounts of Fn outside of the dot on PDMS.

The inclusion of a competitive protein, BSA, does affect the adsorption of Fn. Fn-OG

is seen to adsorb only in the dot regions in the presence of BSA. This indicates that

BSA was blocking the adsorption of Fn on the hydrophobic surface. The intensity

of the fluorescence in the dot regions appear similar both with and without BSA

indicating that BSA did not compete with Fn-OG for adsorption onto the PDMS-Al

surface.
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Figure 3.15: Confocal fluorescent images of Fn-OG adsorbed onto stencil ODTMS
patterned samples for 30 min at a concentration of 0.1 mg/mL

Figure 3.16: Confocal fluorescent images of Fn-OG adsorbed onto stencil masked
patterned samples: a) 50 µg/mL Fn-OG, b) 50 µg/mL Fn-OG and 2 mg/mL BSA



Chapter 3: Cell and Protein Interactions with PDMS and Surface Modified PDMS 86

Figure 3.17: Confocal fluorescent images of Fn-OG absorbed onto patterned
hydrophobic recovered PDMS samples: a) 50 µg/mL Fn-OG, b) 50 µg/mL Fn-OG

and 2 mg/mL BSA

Fn was found in the recovered regions when Fn-OG was adsorbed onto a PDMS-

R patterned sample at the lower concentration of 50 µg/mL. This indicated that

lowering the concentration had no affect on the relative amount of Fn absorbed onto

PDMS-Al and PDMS-R. The effect of BSA on the adsorption of Fn-OG on PDMS-R

patterned surfaces was also explored. Similar to the stencil masked patterned sam-

ples, the BSA competed for adsorption on the more hydrophobic regions, effectively

reducing the Fn-OG adsorption (Figure 3.17). In this case, the intensity of the flo-

rescence seen in the hydrophilic dots was greater with BSA than without, thus BSA

appears to force Fn onto the PDMS-Al surface.

Figure 3.18 a shows the adsorption of Fn at a lower concentration on a PDMS-

ODTMS patterned surface. Lowering the concentration of Fn has caused the ad-

sorption of Fn to be reversed, now resembling the stencil mask patterned samples

with more adsorption outside of the patterned dots. Figure 3.18b shows increased

absorption of Fn in the hydrophilic dots over the ODTMS treated surroundings when
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Figure 3.18: Confocal fluorescent images of Fn-OG adsorbed onto ODTMS
patterned PDMS: a) 50 µg/mL Fn-OG, b) 50 µg/mL Fn-OG and 2 mg/mL BSA

BSA is added to the system. Once again, BSA is able to block Fn adsorption on the

hydrophobic surface.

Since the concentration of Fn can affect its adsorption, Fn was also adsorbed

at 15 µg/mL; however, no fluorescence was detected using confocal microscopy. This

does not indicate that no Fn was adsorbed, but that the amounts were too low to

detect with the use of the conjugated protein.

The adsorption of two adhesion proteins has been explored. Since the PDMS-Al

surface was present on all substrates it can be used to determine the relative trends

of adsorption.

For Fg at 0.1 mg/mL: PDMS-R > PDMS-ODTMS > PDMS-Al > PDMS

For Fn at 0.1 mg/mL: PDMS > PDMS-R ≈ PDMS-Al > PDMS-ODTMS

Both proteins showed different trends for their adsorption onto PDMS and

modified PDMS. Thus, both proteins interact with the surface in very different ways.

Changing the concentration also affects how the protein interacts with the surface.

At a lower concentration of 50 µg/mL, PDMS-Al showed the least adsorption on all
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patterned substrates. This trend is closer to what would be expected of Fn, as it

has been shown to adsorb more to CH3 terminated SAMs than to OH terminated

SAMs [26]. This is a result of interactions between hydrophobic side chains of the

protein with the surface.

BSA has also been observed to affect the adsorption of Fn. Albumin, which

is present in cell culture media at higher concentrations than Fn, will compete for

positions on the surface, reducing the adsorption of Fn by up to 90% [159]. BSA

appears to block Fn adsorption on the hydrophobic surfaces, while not competing

for adsorption on the hydrophilic PDMS-Al surface. Thus Fn was found at higher

concentrations in the hydrophilic dots for all patterned surfaces.

3.3.4 Conformational Studies of Adsorbed Fibronectin on

Patterned PDMS

Fn is known to adsorb more to hydrophobic surfaces, but in an undesirable confor-

mation for cell adhesion. The use of ELISA techniques to look at Fn conformation

has found that while Fn adsorbs more to hydrophobic surfaces, it does so in an non-

functional conformation. In this conformation, the RGD peptide sequence, which

can be vital for cell attachment, is no longer accessible. Monoclonal antibodies which

bind to different RGD receptors on Fn, particulary the binding sites between the 9th

and 10th type II repeats, have been used to determine the availability of these sites

for cell adhesion. Hydrophilic surfaces show more accessability for the monoclonal

antibodies to attach [25, 26, 28].

To fully understand the selective cell patterning seen on stencil mask and

PDMS-ODTMS patterned surfaces and the lack of patterning on a PDMS-R pat-

terned surface, it was necessary to determine the conformation of Fn on each surface
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type. A monoclonal antibody known to attach Fn at the RGD peptide between the

9th and 10th type II repeats, was utilized. In order to visualize the availability of

binding sites on the patterned substrates, a goat anti-mouse IgG FITC conjugate was

used as a secondary antibody.

Figure 3.19, shows the adsorbed Fn fluorescently labeled for RGD sequence on

the patterned surfaces. Bright regions indicate that Fn is in an optimal conforma-

tion that exposes the RGD peptide sequence and thus promotes cell adhesion. For

the stencil mask surfaces, fluorescence is seen in the hydrophilic dots and not the

hydrophobic surroundings (Figure 3.19a). This corresponds nicely to the known cell

growth pattern on these surfaces.

As there is no discernable cell patterning on PDMS-R patterned surfaces, one

would expect that protein conformation would be uniform across the surface. How-

ever, Figure 3.19b shows more fluorescence in the recovered regions of the pattern.

The ODTMS surfaces also shows increased fluorescence on the hydrophobic surround-

ings (Figure 3.19c). To insure that the fluorescence was not caused by non-specific

binding, blanks for each sample were imaged. The blanks underwent Fn adsorption

and immunofluorescent labeling with the HNF7.1 step removed. Thus the fluores-

cently labeled secondary antibody could only attach to the surface through nonspecific

binding. Figure 3.19d, shows a typical blank image. No fluorescence was detected,

thus the fluorescent signal is due to the interactions between the goat anti-mouse IgG

and the HNF7.1 monoclonal antibody and not non-specific binding.

The effects of lowering the concentration of Fn and the addition of BSA on the

conformation of Fn were also explored. Stencil mask patterned surfaces still show

increased fluorescence inside of the modified dots, even after lowering the concentra-

tion of Fn (Figure 3.20a) and adding BSA (Figure 3.20b). There was no discernable

difference between the PDMS-Al dots and the PDMS-R surroundings, when the con-
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Figure 3.19: Confocal images Fibronectin adsorbed to a) stencil masked, b)
photolithographically patterned sample c) ODTMS patterned samples at a

concentration of 0.1 mg/mL and labeled for confirmation. d) Confocal image of
Fibronectin adsorbed to a ODTMS patterned sample at a concentration of 0.1

mg/mL and labeled for conformation with the removal of HFN7.1 step.
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Figure 3.20: Confocal fluorescent images of absorbed onto stencil masked patterned
samples and labeled for configuration: a) 50 µg/mL Fn, b) 50 µg/mL Fn and 2

mg/mL BSA

centration of Fn was lowered to 50 µg/mL, and when BSA was added on the PDMS-R

patterned surfaces (data not shown). The lower concentration of Fn had little affect

on the conformation on the PDMS-ODTMS patterned surfaces. Figure 3.21b, shows

an increase in fluorescence in the hydrophilic dots over the ODTMS surroundings

when BSA was added as a competitive protein.

The conformation of Fn adsorbed on the surface was not only dependent on

surface type, but also on the Fn concentration and the presence of a competitive

protein, BSA. At higher concentrations (0.1 mg/mL) the relative amount of Fn found

in the correct conformation followed the following trend:

PDMS-R > PDMS-ODTMS > PDMS-Al > PDMS.

When the concentration was lowered to 50 µg/mL, the trend changed, such

that, PDMS-R and PDMS-Al were equal:

PDMS-ODTMS > PDMS-R = PDMS-Al > PDMS.

The ability of Fn to bind the primary HFN7.1 antibody has previously been
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Figure 3.21: Confocal fluorescent images of Fn adsorbed onto stencil masked
patterned samples and labeled for configuration: a) 50 µg/mL Fn-OG, b) 50 µg/mL

Fn-OG and 2 mg/mL BSA

shown to be greater on OH terminated SAMs than CH3 terminated SAMs [26]. Thus

PDMS-Al would be expected to show more fluorescence than PDMS and PDMS-

ODTMS. As the PDMS-ODTMS patterned surface does not follow this trend, other

surface properties may therefore be affecting protein adsorption.

Finally in the presence of BSA, the trend resembles that seen for cell adhesion:

PDMS-Al = PDMS-R > ODTMS > PDMS

The BSA/Fn system is the closest environment to that used for cell culturing.

These results show the importance of not only adhesion proteins, but also the entire

environment, on cell surface interactions.

ECM protein adsorption and conformation were visualized on patterned sur-

faces. Determining protein adsorption and conformation on the surface gives insight

into the interactions between the surface and cells. The effects of protein concen-

tration and the addition of a competitive protein on the relative adsorption and

conformation of Fn were explored. BSA plays an important role in determining the
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Table 3.3: Summary of cell patterning, protein adsorption, and protein
concentration on patterned PDMS. (+) indicates an increase inside of the dots, (-)
indicates an increase outside of the dots, and (=) indicates uniformity across the

surface.

Surroundings Proteins Protein Cell Protein Protein

Concentration Adhesion Adsorption Conformation

PDMS Fg 0.1 mg/mL + + N/A

PDMS-R Fg 0.1 mg/mL = - N/A

PDMS-ODTMS Fg 0.1 mg/mL + - N/A

PDMS Fn 0.1 mg/mL + + +

PDMS-R Fn 0.1 mg/mL = = -

PDMS-ODTMS Fn 0.1 mg/mL + + =

PDMS Fn 0.05 mg/mL + - +

PDMS-R Fn 0.05 mg/mL = - =

PDMS-ODTMS Fn 0.05 mg/mL + - -

PDMS Fn:BSA 0.05 :2 mg/mL + + +

PDMS-R Fn:BSA 0.05 :2 mg/mL = + =

PDMS-ODTMS Fn:BSA 0.05 :2 mg/mL + + +

adsorption and conformation of Fn, and thus the ability of cells to attach to the sur-

face. Table 3.3 provides a summary of cell adhesion, protein adsorption and protein

conformation on the patterned PDMS surfaces.

3.4 Conclusions

The effects of modifying the surface of PDMS on cell attachment and protein adsorp-

tion was examined in this chapter. The cell studies showed good agreement between

cell adhesion and the observed patterning from Chapter 2. The adsorption of adhe-

sion proteins Fg and Fn, was visualized on the surface through confocal microscopy

by conjugating the protein with fluorescent molecules. Adsorption did not directly

correlate to cell attachment and was observed to be surface, protein and concentration

dependent. The conformation of Fn was also visualized on the surface through the
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use of a monoclonal antibody specific for the RGD peptide on Fn. A fluorescently

labeled secondary antibody was used to create the fluorescent image. The conforma-

tion pattern correlated to cell attachment when Fn was adsorbed in the presence of

BSA, which is an excellent model system for a cell culturing environment.
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Chapter 4

Atomic Force Studies of PDMS and

Surface Modified PDMS

4.1 Introduction

The wettability and chemistry of a surface plays a large role in determining whether

cells are capable of adhesion [15, 18, 141]. The hydrophobicity and CH3 terminated

chemistry of PDMS prevents the attachment and growth of cells. In order to increase

bioactivity of the polymer, PDMS has been modified by a magnetron sputter deposi-

tion of aluminum. After the aluminum layer was etched away, the surface showed an

increase in oxygen by XPS similar to PDMS that has been plasma treated. Modifying

the surface also significantly decreased the contact angle.

In order to pattern cell attachment by photolithography, the surface chemistry

and wettability must become closer to native PDMS. Both hydrophobic recovery of

the modified polymer and a silane reaction with ODTMS have been used. The hy-

drophobic recovered surface did not fully recover and was still considered hydrophilic,

it also showed similar cell attachment to the non-recovered modified surface. The

treatment with ODTMS did increase the carbon content of the surface as seen by

XPS and the contact angle was close to that of PDMS. The increased contact angle

and carbon content did appear to reduce the number of cells adhered to the surface,

in comparison to the magnetron modified polymer. The number of cells that adhered
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to the surface was still significantly greater than that of native PDMS, despite the

similar wettability and chemistry.

Aside from wettability and surface chemistry, other properties such as rough-

ness and stiffness (i.e. elastic modulus), of the surface have been shown to affect cell

adhesion [15,18,141]. Surface roughness is a measure of the surface texture found by

vertical surface deviations [160]. The so called Ra is the most common value used to

describe the surface roughness and is calculated as in (4.1), where z is the deviation

from the average surface height and n is the number of measurements. Rougher sur-

faces tend to have increased cellular adhesion and proliferation compared to smooth

surfaces [40–43]. The preferred roughness is cell dependent; however roughnesses

in the order of a few micrometers is often required to observe an increase in cell

attachment.

Ra =
1

n

n
∑

i=1

|zi| (4.1)

A material’s stiffness is the resistance of the material to deformation, and is

described in (4.2). The Young’s modulus of a material, also known as the tensile

modulus, is a measure of tensile stress over tensile strain. The Young’s modulus

can be determined by recording the change in an object’s length due to an applied

force and using (4.3) where E is the Young’s modulus, F is the applied force, Ao is

the cross sectional area, Lo is the original length and ∆L is the change in length of

the material. For many cell types, stiffer material tends to show an increase in cell

adhesion over similar materials with lower moduli [51–55]. Materials with moduli

lower than 16 to 30 kPa often are unable to support cell adhesion [53–55]. These

effects are a generalizations and can vary with different cell types.
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k =
F

δ
(4.2)

E =
stress

strain
=

FLo

Ao∆L
(4.3)

Since both surface roughness and stiffness may change how cells interact with a

surface, it is important to understand what the effect modifying PDMS has on both

of these surface properties. PDMS that has been plasma treated has shown both

increased surface roughness and stiffness [116,138–140]. As the magnetron deposition

of aluminum involves exposing PDMS to an argon plasma, the surface roughness and

stiffness should be affected by the plasma. In this chapter, AFM has been used to

assess the surface topography and roughness of PDMS and modified PDMS, force

curves were collected and used to determine the Young’s modulus of PDMS and

magnetron treated PDMS, and the interactions between cells and modified PDMS

were further analyzed using AFM.

4.2 Materials and Methods

4.2.1 Reagents

PDMS Sylgard 184A and B were purchased from Dow Corning. The materials used

for photolithography, Microposit SC1827 positive photoresist and Microposit MF-

319 developer, were purchased from Rohm & Haas Electronic Materials. C2C12

and COS-7 cell line were purchased from ATCC. DMEM, L-glutamine, penicillin

streptomycin, FBS, Trypsin/EDTA, and PBS, were all purchased from Invitrogen.

All other chemicals were purchased from Sigma-Aldrich and used as received.
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4.2.2 Preparation of PDMS and Modified PDMS surfaces

Micrometer thick PDMS surfaces were used and prepared through spincoating onto

a glass coverslip as described in 2.2.2.2. Modified PDMS-Al surfaces were prepared

though the deposition of aluminum in a magnetron sputtering system, followed by

etching in orthophosphoric acid as described in 2.2.2.3. PDMS-Al was modified with

ODTMS to create PDMS-ODTMS surfaces as described in 2.2.2.5.

4.2.3 Preparation of Patterned PDMS Surfaces

Stencil masked patterned samples were created by aluminum deposition through a

commercially available steel mesh as described in 2.2.3.1. Aluminum was also pat-

terned on PDMS using photolithography as described in 2.2.3.2.

4.2.4 Cell Culture and Patterning

COS-7 fibroblast cells and C2C12 myoblast cells, were cultured on the PDMS sub-

strates. DMEM supplemented with 2 mM L-glutamine, 1% penicillin-streptomycin

(Invitrogen) and 10 % FBS was used for all experiments. Cell cultures were incubated

at 37 oC , 5 % CO2 and 100 % humidity.

Samples of patterned PDMS were etched with orthophosphoric acid for 30 min

and rinsed 3 times in water prior to sterilization by rinsing with 70% ethanol. Prior to

plating, cultured cells were washed with trypsin/EDTA to promote cell detachment

from the culture flasks. The cells were mixed into media for transfer. 0.5 mL of

the solution was plated onto modified PDMS samples, inside a 3 cm petri dish. An

additional 2 mL of fresh media was added to each dish, the cells were then incubated

for 24-36 hrs.
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Prior to imaging, cells were rinsed 3 times with PBS at pH 7.4 and fixed using

a solution of 4.4 % paraformaldehyde in PBS for 10 min. Cells were then rinsed 3

times in PBS and water.

4.2.4.1 Optical Imaging

All optical images were captured using a Zeiss Axioskop2 Mat Microscope with a

QImaging Retiga 1300 CCD digital camera or using a Zeiss Axiovert 200M inverted

microscope with a Zeiss AxioCam HRM CCD digital Camera.

4.2.5 Atomic Force Microscopy

AFM is a scanning probe technique that characterizes a surface based on the inter-

action between a tip and the surface. The tip is mounted on a cantilever, and the

cantilever’s deflection is detected through the use of laser and photodiode detector.

Figure 4.1 shows a common AFM setup, the sample is scanned in the x,y and z direc-

tion through a piezoelectric translator, while the tip position is held constant. Newer

instruments designed for biological applications, such as the Bioscope II (Veeco In-

struments Inc) are mounted onto an inverted microscope and are unable to move the

sample. Instead, the tip holder is attached to the piezeo and is moved while the sam-

ple position is fixed. The surface characteristics can be measured in several different

modes, contact and intermittent tapping being the most typical.

In contact mode, the tip is in contact with the surface. As the tip move across

the surface, the cantilever deflects and the z piezo moves the sample up or down to

maintain a constant deflection set point. The change in z position is recorded and

mapped against the xy position, creating a topographical image of the surface.
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Figure 4.1: Typical setup for an atomic force microscope
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In tapping mode, the tip is oscillated at its resonance frequency, typically at

least 100 kHz. As the tip makes contact with the surface the oscillation amplitude

is reduced. By adjusting the distance between the tip and the sample, a constant

amplitude can be maintained. Once again the change in height can be recorded and

produces a topographical image. Since the tip taps the surface of the sample rather

then drags across it, tapping mode is less destructive than contact mode.

AFM images were collected on a Bioscope II (Veeco Instruments Inc). The

AFM was operated at a constant deflection set point 1-2.0 V in contact mode using

a NP-S20 gold coated silicon nitride V shaped cantilever. The cantilever was 200 µm

in length with a spring constant of 0.06 N/m (Veeco Instruments Inc). Scan rates

between 0.1 to 0.5 Hz were used for samples in water. Parameters including feature

height and surface roughness were evaluated using Nanoscope Analysis 1.2 software

(Veeco Instruments Inc) after first-order flattening of the raw data.

4.2.6 Force Distance Curves

An AFM instrument can also be used to monitor forces during indentation of a

surface. The change in deflection of the cantilever versus the change in height can be

recorded as the a tip approaches and indents into a surface. If the spring constant of

the cantilever is known, the deflection of the cantilever can be used to determine the

amount of force being applied by the tip.

The information collected by the AFM is the voltage applied to the piezo and

voltage change due to the movement of the laser on the photodiode [161, 162]. The

AFM software can convert the voltage applied to the piezo into a change in the height

of the cantilever. In order to determine the force applied to the surface the spring

constant of the cantilever must be known. The force applied to a surface is determined
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by Hooke’s Laws (4.4), where F is the force, k is the spring constant of the cantilever

and h is the vertical displacement of the free end of the cantilever.

F = −k × h (4.4)

Many methods can be used to determine the spring constant of a cantilever,

however the thermal tune method is one of the simplest and is automated on most

commercial AFMs [162]. This method involves measuring the deflection signal of the

cantilever with no driving oscillations, while the cantilever is in thermal equilibrium

and suspended away from the surface [161, 162]. A Fourier transformation is applied

to the resulting function and the power spectral density (PSD) is determined in the

frequency domain. By finding the area under the PSD, the power P , of the thermal

cantilever fluctuations can be determined. Using (4.5), where kB is Boltzmann’s

constant, and T is the temperature, the spring constant can be determined. It is

important to independently determine the spring constant for each cantilever as even

the same type of cantilever from the same manufacturer will have slightly different

spring constants.

k =
kBT

P
(4.5)

Once the spring constant is known, the deflection sensitivity of the cantilever

must be determined. The deflection sensitivity must be redetermined every time the

laser beam path is changed. This is done by collecting a force curve against a hard

surface and calibrating the instrument.

Figure 4.2 shows a typical force curve. As a tip approaches a sample there

should be no force or deflection of the cantilever until contact; however soft cantilevers

may show some detectable attractive forces (A). When the tip is close enough to the
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Figure 4.2: Typical force curves and corresponding tip-sample interactions

surface, attractive forces between the tip and the surface will dominate the curve (B).

As the tip continues to push into the surface, an increase in force is seen (C). While

the tip is being retracted, the curve would be expected to follow the approach curve;

this only occurs on perfectly elastic materials. More often a hysteresis is seen between

the two curves due to deformation of the material. Due to attractive forces between

the tip and the surface, the tip will maintain contact (D). Upon further retraction

the tip returns to the no contact position (E). Features in the force-distance curve

can be used to determine the Young’s modulus of the material.

Force-distance curves were collected on a Bioscope II with a NP-S20 gold coated

silicon nitride V shaped cantilever. To convert the cantilever deflection to a force

measurement a force curve was taken against a hard glass surface and the spring
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constant was determined to be 0.1119 N/m, by measuring the intensity of thermal

noise. The force distance curves were analyzed using the Nanoscope Analysis 1.2

software (Veeco Instruments Inc).

4.2.7 Interactions Between a Tip-less Cantilever and

Modified PDMS

A tip-less cantilever (NSC12, MIKROMASCH) with a spring constant of 14 N/m

was brought into the contact with the surface of PDMS and modified PDMS using

a Bioscope II microscope. Images of the surface were taken using the Zeiss Axiovert

200M inverted microscope with a Zeiss AxioCam HRM CCD digital Camera which

the Bioscope II was mounted on top of. The cantilever was moved up, down, to the

right and left, as well us forward and backward, to observe the effects on the surface.

To determine if the cantilever had come into contact with the surface the deflection

of the cantilever was monitored. Glass beads of 5 µm to 50 µm were suspended in

water and transferred to the polymer surfaces. Once the water evaporated, the glass

beads were present on the surface. A tip-less cantilever was aligned over the glass

bead and pressed into the surface to observe the effect of an applied forces created

using a controlled geometry.

4.3 Results and Discussion

4.3.1 Topographical Analysis of PDMS and Modified

PDMS

Cell attachment to a surface is not only affected by the surface wettability and chem-

istry but also the surface roughness and stiffness. Plasma modification and metal
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deposition on PDMS have been shown to affect the polymer’s surface topography.

AFM was used to assess the surface topography of PDMS, PDMS after aluminum

deposition through magnetron sputtering, and after aluminum etching. Figure 4.3

shows randomly oriented sinusoidal shaped ripples across the metal coated surface.

These ripples had a wavelength of 2.7 ± 0.4 µm and an amplitude of 146 ± 8 nm. The

surface roughness (Ra) of the aluminum coated polymer was 40 ± 4 nm, significantly

larger then that seen for native PDMS (4.9 ± 0.4 nm).

These randomly oriented sinusoidal ripples resemble those observed during

thermal deposition of metals onto PDMS [163], and during plasma treatment of

PDMS [139, 140], and are commonly referred to as Whiteside patterns. During ther-

mal metal deposition, PDMS heats up and expands [163]. The coefficient of thermal

expansion of PDMS is approximately twenty times that of the metal. These differ-

ences cause the metal layer to buckle in order to redistribute the compressive stresses

during cooling. During plasma treatment the formation of a silica-like layer can also

cause the creation of sinusoidal ripples [139, 140]. The silica-like layer is expected

to have a lower coefficient of thermal expansion than the bulk polymer [139]. Dur-

ing plasma treatment the polymer is expected to increase in temperature, thus upon

cooling the silica-like layer buckles [140].

During magnetron deposition, the bulk argon gas temperature remains between

40 and 70oC , and thus causes some expansion of the bulk polymer. During the first

stage the shutter is closed preventing aluminum deposition but allowing interactions

between the polymer and the plasma, creating a silica-like layer. After the shutter is

opened a thin aluminum layer is deposited onto the surface. Once removed from the

plasma the polymer will cool; the combination of the silica and aluminum layers are

expected to undergo compressive stress which causes buckling of the aluminum and

silica layers.
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Figure 4.3: AFM contact mode height images of a-d)aluminum coated PDMS, and
e) a sectional analysis corresponding to the white line in (b)
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If the polymer was unmodified during plasma exposure, it would be expected to

relax and return to a flat surface after aluminum etching, as the stress from the metal

layer would be removed. If a silica-like layer caused by the plasma modification during

deposition did in fact form, it would remain after etching, thus the ripples should still

be present. The ripples on the modified PDMS did in fact remain after etching;

this gives additional proof that a thin stiff silica-like layer has been formed. The

ripples maintained a similar wavelength (λ = 2.3 ± 0.2 µm) but showed a reduction

in amplitude (A = 69 ± 9 nm) in comparison to the aluminum coated surface (Figure

4.4. While the surface roughness has been reduced to 21 ± 3 nm, it is still greater

than that of native PDMS. The removal of the aluminum layer may relieve some of

the compressive stresses which cause buckling leading to the observed reduction in

amplitude.

After further modification with ODTMS, the waves are still present with a wave-

length of 2.6 ± 0.6 µm, and a reduction in amplitude to 35 ± 3 nm, when compared

to the aluminum coated polymer both before and after aluminum etching (Figure

4.5). The ODTMS treatment involved heating the polymer to 100oC . The ripples

have been shown to disappear during heating, but reform with the same wavelength

and amplitude [163]. During the initial cooling phase after metal deposition, both

the aluminum and silica-like layer plays a role in the formation of the ripples. During

the ODTMS modification, the aluminum layer has been removed and thus only the

silica layer would be responsible for the reformation of the ripples, which may explain

the significant decrease in amplitude.

Stencil masked patterned PDMS was also imaged. Figure 4.6, shows aluminum

dots on PDMS. The aluminum coated dots show the sinusoidal ripples. These ripples

end as soon as they reach the edge of the aluminum dots. The ripples have the same

wavelength seen on completely coated PDMS but a slightly reduced amplitude (λ =
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Figure 4.4: AFM contact mode height images of a, b) aluminum treated PDMS
surface after aluminum etching and c) a sectional analysis corresponding to the

white line in (b)
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Figure 4.5: AFM contact mode height images of a,b) ODMTS functionalized
PDMS-Al and c) a sectional analysis corresponding to the white line in (b)
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Table 4.1: Surface topography of PDMS and modified PDMS

Surface Ra (nm) A (nm) λ (µm)

PDMS 4.9 ± 0.4 N/A N/A

Al on PDMS 40 ± 4 146 ± 8 2.7 ± 0.4

Etched PDMS 21 ± 3 69 ± 9 2.3 ± 0.2

Al dots on PDMS 20 ± 1 123 ± 7 2.7 ± 0.4

Etched dots on PDMS 13 ± 1 56 ± 8 2.3 ± 0.4

ODTMS modified PDMS 8.6 ± 0.9 35 ± 3 2.6 ± 0.6

2.7 ± 0.4 µm, A = 123 ± 7 nm). After etching, the waves were still located only in

the modified dots. Once again a reduction in amplitude occurred (A = 56 ± 8 nm)

while the wavelength was maintained (λ = 2.4 ± 0.4 µm). In both cases, the dots

were rougher than the surrounding PDMS with Ra values of 20 ± 1 and 13 ± 1 nm,

for aluminum coated and etched dots respectively. During stencil mask patterning,

the aluminum layer was confined to a small region. Upon cooling, the aluminum

coated areas are under compressive stresses which causes buckling. Previously, the

size and shape of the polymer has been shown to affect the orientation and size of the

ripples formed during thermal metal deposition and plasma modification [139, 140,

163]. Similar effects maybe responsible for the decrease in amplitude during stencil

mask patterning.

The effects of aluminum treatment, etching and ODTMS treatment are summa-

rized in Table 4.1. All modified surfaces showed an increase in roughness over native

PDMS. It is possible that the increase in roughness is responsible for the increase in

cell attachment; however, the roughness of all the modified surfaces is on the order

of tens of nanometers. Roughened surfaces that have been shown to increase cell

attachment are generally on the order of several micrometers. Thus, the increase in

roughness would not be expected to significantly affect cell attachment.
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Figure 4.6: AFM contact mode height images of a,b) aluminum deposited through a
stencil mask on PDMS, c) a sectional analysis corresponding to the white line in (b)
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Figure 4.7: AFM contact mode height images of a,b) stencil masked patterned
PDMS after etching, c) a sectional analysis corresponding to the white line in (b)
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Figure 4.8: Force curves for a) PDMS and b) PDMS-Al

4.3.2 Surface Stiffness of PDMS and Magnetron Modified

PDMS

From the contact regime of a force-displacement curve it is possible to draw informa-

tion about the elastic-plastic behavior of the material. On an ideal elastic material,

the tip deforms the sample by a depth of δ, and the loading and unloading curves

overlap. Many materials undergo plastic deformation and do not regain their shape

during the unloading curve. Thus, the loading and unloading curves do not overlap

and a hysteresis occurs. Figure 4.8 shows both the loading and unloading curves for

PDMS (a) and PDMS-Al (b). Since PDMS is elastic, the hysteresis is quite small.

PDMS-Al shows a larger hysteresis which implies there is more deformation. Thus

PDMS-Al does not maintain the same elastic behaviour as PDMS.

Force distance curves can give both qualitative and quantitative data about a

material’s stiffness. The stiffer a material, the steeper the force distance curve will

appear. To obtain quantitative data about the surface, contact mechanics models can

be used to fit the curve. The Hertz model describes a system where two spheres of

different radii come into contact. Indentation measurements normally occurs between

a spherical tip and a flat plane, thus the plane is treated as a sphere with an infinite
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radius. The Hertz model describes the relationship between the indentation distance

and the force as (4.6), where a is the contact radius, δ is the sample deformation,

R is the tip radius, F is the force exerted by the tip on the surface, and Etot is the

reduced Young’s modulus. The reduced Young’s modulus is described as (4.7), where

Es and Et are the Young’s moduli of the surface and the tip, and νs and νt are the

Poisson’s ratio of the surface and the tip respectively.

δ =
a2

R
=

(

F 2

RE2
tot

)1/3

(4.6)

1

Etot
=

3

4

(

1− ν2s
Es

+
1− ν2t
Et

)

(4.7)

Since the Young’s modulus of the tip will be significantly larger than that of the

surface and the Poisson’s ratio is always less then 0.5, Etot = Es. The force curves

for both PDMS and PDMS-Al were fitted using the Hertz model by the nanoscope

analysis software. From the fit, the Young’s moduli were calculated to be 2.2 MPa

and 6.8 MPa for PDMS and PDMS-Al, respectively. Typical values for the Young’s

modulus of PDMS are between 360 kPa and 4 MPa [164–166], and the Young’s

modulus of plasma treated PDMS has been found to be 8 MPa [116]. The Young’s

modulus of PDMS may change, depending on the degree of crosslinking and base-

cure ratio. Using nanoindentation and a 10:1 base-cure ratio, the Young’s modulus

for PDMS has been found to be 2.39 MPa when fitted using the Hertz model [165].

The Young’s modulus has also been reported to be up to 4 MPa for PDMS formed

using a 10:1 base cure ratio and extended bake time [166]. Thus the conditions

used to crosslink PDMS can have an effect on the polymer’s Young’s modulus. Both

polymer samples were from the same PDMS mixture and baked at the same time to

eliminate experimental errors. Thus the difference in the Young’s modulus can only
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be attributed to the surface treatment.

The Young’s modulus for the magnetron treated PDMS after etching is more

than three time’s that of native PDMS; thus, all the modified polymer surfaces are

stiffer than native PDMS. This is not surprising due to the increased oxidation after

magnetron treatment as seen through XPS. As many cells typically prefer to grow

on stiffer more ridged surfaces this could explain why cells are able to attach to

the ODTMS surface even though it has similar surface chemistry and wettability as

PDMS.

4.4 Interactions of Cells and a Tip-less Cantilever

with Magnetron Modified PDMS

To better assess the morphology of cells grown on stencil masked patterned PDMS,

cells located on the modified dots were imaged using AFM. Figure 4.9 a and b show

C2C12 mouse muscle cells on the modified dot. Wrinkles in the polymer surface

appear to extend from the cluster of cells on the modified dot. Whiteside patterns seen

on our modified surfaces have always been disordered; however, these wrinkles appear

to radiate outward from the cells located on the modified surface. These wrinkles

greatly resemble those seen by Burton et. al. when they grew goldfish keratocytes

and Swiss 3T3 fibroblast cells on a silicone rubber substrate [167]. They used the

wrinkles to determine the forces generated by cells with nanoNewton precision and

submicrometer spatial resolution. Other information, including the direction of the

cell motion and the mechanism by which the cell moves can be obtained by looking

at the change in these wrinkles over time. In this case, a thin crosslinked silicone

layer rested above an uncrosslinked silicone fluid. The PDMS-Al surface consists of a
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Figure 4.9: AFM contact mode height images of a-b) C2C12 c-d) COS-7 cells grown
on stencil masked patterned PDMS

thin silica-like layer over a solid silicone polymer, however, it has been reported that

a thin fluid like layer exists between the bulk polymer and the silica-like layer [110].

Thus it is possible that the surface wrinkles are caused by tractional forces from the

cells.

Surface wrinkles do not form when COS-7 kidney cells are grown on modified

polymer (Figure 4.9 c and d). The lack of wrinkles does not mean that the cell is

not exhibiting a force, only that the force is not great enough to wrinkle the polymer

surface. COS-7 cells are expected to exhibit less force than C2C12 cells, and thus

may not be able to exert enough force to cause wrinkling.
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Figure 4.10: a) Bright field optical image and b-c) AFM contact mode height
images of C2C12 cells on stencil masked patterned PDMS

Figure 4.10 shows cells located near and beyond the edge of a modified dot.

The surface wrinkles appear as blurry edges by optical microscopy (Figure 4.10 a).

The cell located outside of the modified dot, does not have a normal morphology for

a C2C12 cell, rather it appears to be unhealthy (Figure 4.10 b). No surface wrinkles

are associated with the outlying cell, indicating that either the PDMS surface cannot

display wrinkles or that the cell is not exhibiting enough force. Since the PDMS

surface does not have the same layer structure as the modified polymer or as the

thin silicon layer above a fluid, it would not be expected to show wrinkles. The

wrinkles created by the cells inside the dot abruptly end once they reach the edge of

the modified region (Figure 4.10 c), also indicating that the bulk polymer is unable

to propagate the wrinkles.

In some cases the C2C12 cells appear to be tearing the silica-like layer. Figure

4.11 a show a single cell inside of a modified region which appears to be tearing the



Chapter 4: Atomic Force Studies of PDMS and Surface Modified PDMS 118

Figure 4.11: AFM contact mode height images of C2C12 cells on stencil masked
patterned PDMS

surface of the polymer. Wrinkles once again are radiating outward from the cell, while

the tear is perpendicular to the wrinkles. This indicates the the force exerted by the

cell is directed towards the cell. Figure 4.11 b shows cells that appear to have ripped

the polymer surface between them. Again the surface wrinkles are perpendicular to

the rip, indicating that the cells are exhibiting forces on the material in opposite

directions and towards themselves.

If the changes in surface wrinkles can be monitored during live cell movement,

then the aluminum modified surface could be used to assess cell propagation and

forces. However, it was observed that the surface wrinkles were not visible by optical

microscopy when the substrate was wet. Since the refractive indices of PDMS and

water are much closer than that of PDMS and air, the wrinkles may still be present,

but not detectable. Since AFM on live cells can be difficult and time consuming,

AFM was performed on fixed cells in an aqueous environment to determine if the

wrinkles were still present.

Figure 4.12 show the AFM image of the same cell in air (a) and in water (b).
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Figure 4.12: AFM contact mode height images of C2C12 cells on stencil masked
patterned PDMS taken in a) air and b) water

In water the surface wrinkles are no longer easily visible in the image. However,

cross sectional analysis shown in the right hand side of Figure 4.13, detects residual

wrinkling with the same periodicity but greatly reduced amplitude.

The surface wrinkles may be caused by the dehydration of the fixed cell, or due

to the dehydration of the polymer. The wrinkles are only visible due to the difference

in the stiffness of the silica-like layer and the intermediate fluid like layer. If the

polymer is hydrated, it is possible that the mechanical properties of the polymer

change and prevent wrinkle formation. It is also possible that when the fixed cell is

dehydrated it contracts, which would put force onto the silica-like layer and thus the

wrinkles would be caused by dehydration of the cell and not tractile forces. Figure

4.14 shows the sectional analysis across the cell in air and in water. When dry, the

cell appears to have have decreased in height indicating that it has in fact shrunk

during dehydration and potentially contracted. The dehydration of the cell would

also explain why the wrinkles always radiate outward from the cell.

To better understand how the polymer surface responds to forces, a tip-less

cantilever was used to apply forces to polymer surface. When the cantilever was
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Figure 4.13: Topographical cross-sectional analysis of surface wrinkles from AFM
images of C2C12 cells on wet and dry stencil masked patterned PDMS

Figure 4.14: Cross-sectional analysis of C2C12 cells from AFM images taken in air
and water
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pushed into the polymer surface, wrinkles formed parallel to the edges of the cantilever

(Figure 4.15 a). When the cantilever was pulled away from the surface, the wrinkles

changed direction, extending radially outward from the cantilever (Figure 4.15 b).

Once the cantilever was in contact with the surface, it was moved to the left and

right (Figure 4.15 c, d). The wrinkles that formed in the direction of cantilever

movement formed parallel to the edge of the cantilever. On the other side of the

cantilever the wrinkles appeared perpendicular to the cantilever edge. Thus when

the polymer surface is compressed, circular wrinkles form, and when the polymer

surface is stretched, radial wrinkles form. This suggests that the cells are either

pulling up on the surface, inwards towards the center of the cell or both. If the force

is in fact caused by contraction of the cell due to dehydration, it would be expected

to produce the observed radial wrinkles. The tip-less cantilever was also pressed into

a native PDMS sample and imaged (not shown). Even after moving the cantilever to

the left and right during contact, no wrinkles were formed on the PDMS.

To determine whether the modified surface can still show surface wrinkles in

an aqueous environment, a cantilever was pressed against a surface to form wrinkles

in air (Figure 4.16 a). The same surface was then placed in water and the cantilever

again pressed into the surface. After several attempts, no surface wrinkles are visible

by optical microscopy, as demonstrated in Figure 4.16 b. As the surface was unable

to produce wrinkles in a aqueous environment, it is possible that the wrinkles are

caused by cell forces; however, this is not definitive.

So far, the tip-less cantilever has produced qualitative information on the in-

teraction between the polymer surfaces and the force applied by the cantilever. To

obtain quantitative data a more controlled geometry is required. Glass beads were

placed on the modified surface by suspending them in water and allowing the water to

evaporate off the surface. Once a bead was located by optical microscopy, the tip-less
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Figure 4.15: Imaging of a tip-less cantilever interacting with PDMS. The cantilever
is a) pushed into the surface, b) pulled up from the surface, c) pushed to the left

and d) right while in contact with the surface)
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Figure 4.16: A tip-less cantilever pushing into modified PDMS in a) air and b) after
immersion in water

cantilever was aligned over the bead and brought towards the surface. Figure 4.17

shows a 40 µm bead being pressed in the PDMS-Al surface. After applying the max-

imum force allowed by our AFM system and the tip-less cantilever, the wrinkles only

begin to become visible on the side of the bead. Similar effects were seen with beads

of different sizes, from 5 µm to 50 µm. The wrinkles are most likely forming under

the sphere and extending outward; however, they are being covered by the portion

of the bead that is not in contact with the surface. In order to obtain quantitative

information a different tip geometry is required.

Fixed cells are able to produce surface wrinkles on the magnetron modified

polymer surface that form radially from the centre of the cell or group of cells under

dry conditions. These surface wrinkles are not present when the cell is in a aqueous

environment and only appear once the cell and surface has dried. Fixed cells appear

to dehydrate and shrink when dried, and thus the surface wrinkles may be due to the

contractile forces this shrinking produces. The modified surface can exhibit wrinkles

when forces are applied by a tip-less cantilever in air. Wrinkles do not occur when
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Figure 4.17: A tip-less cantilever pushing pushing on a 40 µm glass bead into
modified PDMS

forces are applied in an aqueous environment, implying that some physical change

maybe occurring to the surface upon hydration, or that wrinkles are not visible in

an aqueous environment. No surface wrinkles were seen on PDMS when forces were

applied by a tip-less cantilever, most likely due to the lack of a layered structure.

4.5 Conclusions

Magnetron aluminum deposition onto PDMS exposed the polymer to an argon plasma

before deposition. The plasma modifies the polymers surface creating a oxygen rich

stiff silica-like layer that is revealed upon aluminum etching. The plasma heats and

expands the polymer during deposition, and when the polymer cools, it contracts,

creating compression forces on the silica-like layer and the aluminum layer. These

layers buckle and form surface ripples as observed by AFM. Even after the aluminum

is etched away the silica-like layer maintain the ripples. These ripples increase the

roughness of the polymer surface.
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The stiffness of the both PDMS and magnetron treated PDMS after aluminum

etching was determined by analyzing force curves for both materials. PDMS-Al was

found to have a Young’s modulus three times greater than that of PDMS. This in-

crease in modulus is attributed to the silica-like layer.

Both stiffness and roughness have been correlated to increased cell adhesion

such that, stiffer and rougher surfaces often show an increase in cell attachment.

All modified PDMS surfaces used for cell patterning have the underlying silica layer

structure and thus are rougher and stiffer than native PDMS. The roughness increase

is on the order of a few nanometers, this is much smoother than surfaces whose

roughness has been previously reported to increase cell adhesion. Thus, the surface

roughness of modified PDMS is not likely to play an important role in increasing cell

adhesion.

Previously, a transition point near the cell modulus has been reported, where

cells are able to spread on surfaces stiffer then this transition point, and remained

unattached on surfaces with lower moduli [53–55]. PDMS has a stiffness large enough

to maintain cell attachment, as it is stiffer then this transition point. The previous

studies have all been performed on surfaces with chemistries and wettabilities that

are ideal for cell adhesion. PDMS and the PDMS-ODTMS surface both present

methyl-terminated hydrophobic surfaces. Aside from the slight increase in roughness

the main difference between the two surfaces is the increase in the Young’s modulus.

Although, this increase in stiffness does not cross the conventional transition point, it

is possible that it is responsible for the increase in cell attachment, as neither surface

present reasonable surface chemistry for cell adhesion.

AFM was used to look at the interactions between cells and the stencil masked

patterned surfaces. New surface wrinkles appeared to radiate outward from cells fixed

on the polymer surface. These wrinkles only occur in air and were not observed when
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imaged in an aqueous environment. The fixed cells shrink when dehydrated, which

may be responsible for the wrinkles. The formation of the wrinkles supports a layer

like structure for plasma treated PDMS. Also no observable wrinkles were formed

when the polymer was pressed with a tip-less cantilever in a aqueous environment

using similar force that produced wrinkles in air. This indicates that either the wrin-

kles are not visible by optical imaging methods or a change in the physical properties

of the modified layers has occurred.
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Chapter 5

Fabrication of Patterned Microfluidic

Channels

5.1 Introduction

One goal of our research group is to create a microfluidic device that uses cells as

biosensors. Cell based biosensors offer advantages over conventional biomolecular-

based sensors as they are not specific to certain compounds but are able to respond to

a wide variety of biologically active compounds [2]. Cell based biosensors have been

used for high throughput drug discovery, clinical diagnostics, and to detect toxic

agents. This device must be capable of controlling cells’ environments, and must

allow for the integration of analytical techniques in order to monitor cell responses.

Microfluidic channels patterned for cell adhesion can allow cells to be located in a

particular environment and to be positioned over sensors used to detect changes in

the cell. It can also allow for easier alignment for off chip detection methods. By

controlling the size of the patterned regions the number of cells being studied can be

controlled. Smaller regions can allow for single cell studies while larger regions allow

for the study of small cell clusters.

Microfluidic devices contain micron-scale channels that control the flow of minute

amounts of liquids. For biological purposes, microfluidic devices demonstrate great

promise, because they allow for the control over the cells’ environment in a fashion
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Figure 5.1: Section of a microfluidic channel

not obtainable by standard cell culturing methods [2, 119, 168]. Their small size and

the ability to perform multiple processes on a single chip, give them a great advantage

over standard lab techniques, including reduced consumption of reagents and faster

analysis and response times [2, 118, 119].

Microfluidic devices typically contain a network of channels, valves, and pumps.

Figure 5.1 shows a section of a microfluidic channel. The channels have heights (h)

and widths (w) between 1 and 1000 µm, and lengths (l) many millimeters. The

geometry of the channels allows for a low Reynolds number (Re) [118]. The Reynolds

number can be expressed as a function of density ρ, velocity U , characteristic length

L and dynamic viscosity µ:

Re =
ρUL

µ
(5.1)

For a typical microfluidic channel the Reynolds number is much less than thresh-

old conditions for turbulent versus laminar flow. Thus the fluid in a microchannel is

under laminar flow, meaning that fluids flowing side by side only mix by diffusion,

creating more uniform and controllable reaction conditions and environments [118].
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For biological applications, PDMS microfluidic devices are becoming the stan-

dard. PDMS is inexpensive, easily molded to form micron scale shapes, optically

transparent at wavelengths greater than 280 nm, is produced by low temperature

polymerization, is nontoxic, and can be readily sealed to many other materials by

making molecular (van der Waals) contact with the surface [90, 92]. Often the seal

formed through molecular contact is not robust and thus irreversible bonding is pre-

ferred. PDMS can be irreversibly bonded to itself, glass, silicon, silicon oxide, and

oxidized polystyrene by plasma treating both surfaces and immediately bringing them

into contact [90, 92, 118, 119].

Early chapters in this thesis have demonstrated different cell patterning meth-

ods. The most promising method involved the deposition of aluminum through a

stencil mask. This present chapter demonstrates the fabrication of both reversibly

and irreversibly bonded patterned microfluidic channels using the stencil mask pat-

terning technique. The reversibly bonded channels take advantage of the seal that

forms when two pieces of PDMS are brought into contact. When creating irreversibly

bonded channels, the use of the typical plasma bonding method would undo the sten-

cil mask patterning. Also the two polymer surfaces must come into contact within

1 min of plasma exposure, not allowing enough time to align the channel over the

patterned surface. To overcome this, a new PDMS bonding method, exploiting the

chemical changes that occur during aluminum deposition, was developed. In order

to create an irreversibly patterned channel new custom stencil masks were fabricated

and chromium was used as a protective layer during the bonding process.
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5.2 Materials and Methods

5.2.1 Reagents

PDMS Sylgard 184A and B were purchased from Dow Corning. Microposit SC1827

positive photoresist and Microposit MF-319 developer were purchased from Rohm

& Haas Electronic Materials. SU-8 2010 and SU-8 developer were purchased from

MicroChem. Epoxy 907 was purchased from Miller-Stephenson Chemical. Octafluo-

rocyclobutane gas was purchased from BOC Edwards. Crystalbond 509 from Aremco

Products Inc. Cr etchant 1020 was purchased from Transene Company Inc. Nanos-

trip was purchased from Cyantek Corporation. C2C12 cell line was purchased from

ATCC. DMEM, L-glutamine, penicillin streptomycin, FBS, trypsin/EDTA and PBS

were all purchased from Invitrogen. All other chemicals were purchased from Sigma-

Aldrich and used as received.

5.2.2 Preparation of PDMS Substrates

5.2.2.1 Bulk PDMS

To allow for easy removal of PDMS, silica wafers were exposed to HMDS vapor in

a vacuum oven (YES-3TA HMDS Oven) at 150oC and 1 torr for 5 min. To remove

water vapor and oxygen from the sample and the chamber, the chamber was purged

3 times with nitrogen gas by evacuating the chamber to 10 torr and refilling the

chamber with nitrogen gas to 600 torr. PDMS precursors, Sylgard 184A and B (Dow

Corning), were combined in a 10:1 mass ratio, poured onto a silica wafer to a thickness

of 3 to 5 mm. The prepolymer was then degassed under vacuum for 60 min and cured

for 60 min at 70oC . After curing the PDMS was peeled from the wafer.
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5.2.2.2 Molded PDMS by Soft Lithography

The application of soft lithography to form PDMS microfluidic devices was first intro-

duced in 1998 by Whitesides et al. [90]. Soft lithography has revolutionized microflu-

idics, reducing the need for a clean room environment, putting microfluidics within

the reach of biology-focused laboratories [168].

Microfluidic channels were created using a soft lithography technique. In order

to form the channels, molds were created on glass microscope slides or silicon wafers,

through photolithography. Figure 5.2 illustrates the fabrication method used to create

PDMS microfluidic channels by soft lithography. A negative photoresist (SU-8) was

cast onto either glass microscope slides or silicon wafers at 500 rpm for 5 s and 1000

rpm for 30 s. Before coating the glass slides, they were cleaned in isopropanol for 60

min and the silicon wafer HMDS vapor primed in a vacuum oven (YES-3TA HMDS

Oven) at 150oC and 1 torr for 5 min. A final thickness of 20 µm was obtained

(determined using a Dektak profilometer, Veeco Instruments Inc). The substrate was

baked to remove excess solvent at 65oC for 1 min, and then 90oC for 3 min. The

photoresist was exposed through a photomask using 12.5 mW/cm2 of 365 nm light

produced by a 350 W Hg Arc lamp on a Karl Suss MJB3 Mask Aligner for 17.5 s.

The photomask was designed in L-edit (Tanner EDA) and printed onto an acetate file

using a high resolution commercial printer (PhotoplotStore). A post exposure bake

at 65oC for 1 min and 90oC for 3 min, was carried out immediately after exposure

and before developing in SU-8 developer for 2.5 min. After rinsing with isopropanol

and then water, the substrates were dried with a stream of air and hard baked for 10

min at 200oC .

PDMS precursors, Sylgard 184A and B (Dow Corning), were combined in a 10:1

mass ratio, and poured onto the master. The prepolymer was then degassed under
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Figure 5.2: Fabrication of microfluidic channels in PDMS by soft lithography. a) a
thin layer of SU8 is exposed to UV-light through a photomask. b) the unexposed
SU8 is removed by the developer. c) uncrossed linked PDMS is mixed and poured

over the mold d) PDMS is cured and removed from the mold.
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vacuum for 60 min and cured for 60 min at 70oC . After curing, the PDMS replica

was peeled from the master and ports punched into the ends of the channels to allow

for the addition of liquids.

5.2.2.3 Preparation of Thin PDMS Films

PDMS precursors, Sylgard 184A and B (Dow Corning), were combined in a 10:1 mass

ratio. Thin PDMS samples were generated by casting the PDMS mixture onto glass

microscope slides at 500 rpm for 5 s then 2000 rpm for 30 s with a Solitec 850 spin

coater (Solitec Wafer Processing). The thickness of the PDMS layer was 33 ± 3 µm,

determined using a Dektak profilometer.

5.2.2.4 Magnetron Surface Modification of PDMS

Aluminum was sputtered onto the PDMS substrates to a thickness of 44 ± 3 nm using

an Edwards Auto 500 Magnetron Sputtering System. The thickness was determined

using a Dektak profilometer (Veeco Instruments Inc). The sputtering system was

operated at 300 W, 4.8 mTorr, with argon gas flowing at a rate of 15 sccm. The

plasma was generated using a RF power supply with an operation frequency of 13.56

MHz. Prior to metal deposition, the samples were kept in the chamber with the

plasma struck and the source shutter closed for 4 min.

5.2.3 PDMS Bonding

5.2.3.1 PDMS-Glass Bonding

The aluminum layer was etched from bulk PDMS and molded PDMS by 1.8 M or-

thophosphoric acid for 30 min. The polymer was then rinsed 3 times in water and

dried by a stream of air. After 3 min the samples were quickly immersed in water and



Chapter 5: Fabrication of Patterned Microfluidic Channels 134

immediately the treated side was brought into contact with a glass microscope slide.

The system was heated to 85oC for 10 min and light pressure applied to the top of

the polymer. Before bonding, the glass slide was cleaned with 20% (v/v) hydrochloric

acid for 60 min and rinsed with deionized water.

5.2.3.2 PDMS-PDMS Bonding

The aluminum layer was etched from bulk or molded PDMS, and thin PDMS by 1.8

M orthophosphoric acid for 30 min. The polymer was then rinsed 3 times in water.

The bulk or molded PDMS was dried under a stream of air while the thin substrate

remained wet. The treated side of the bulk or molded PDMS was brought into contact

with the treated side of the thin PDMS and heated at 110oC for 10 min with light

pressure.

5.2.3.3 Tensile Testing

Bulk PDMS samples were punched in 20 mm diameter circles for tensile testing.

Bonding was performed both 24 hrs and 7 days after initial modification. Measure-

ments were taken for 4 samples for each PDMS-PDMS and PDMS-glass bonding at

each time point. To asses the pull-off strength, a pneumatic adhesion tensile testing

instrument (PATTI 110, F2 Piston; SEMicro Inc) was used. In order to fix the pull-

stub to the PDMS, both sides of the bulk PDMS were treated with aluminum. After

bonding, the top aluminium layer was etched away using 1.8 M orthophosphoric acid

for 30 min, and the polymer was then rinsed in water and dried under a steam of air.

Once the modified top layer was exposed, an epoxy was used to affix a clean pull stub

to the polymer. A light pressure was maintained on the stub until complete curing,

approximately 24 hrs. A load was applied to the pull-stub by the instrument, until

bond failure. Figure 5.4 shows the experimental set-up of the tensile bonding test.
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Figure 5.3: Schematic illustration of the bonding procedures of PDMS-glass and
PDMS-PDMS. a) Aluminum is deposited over PDMS; b) aluminum is etched away,
revealing modified PDMS; c) the surfaces to be bonded are brought into contact

and heated.
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Figure 5.4: Experimental set-up of the tensile bonding pull-off test, showing the
fully assembled PATTI tensile testing apparatus

5.2.3.4 Leakage Testing

Blue coloured dye was pumped through sealed PDMS-glass and PDMS-PDMS chan-

nels using a syringe pump (Harvard Apparatus). These channels were formed by

bonding molded PDMS to either a glass slide or thin PDMS. The channel had a

length of 25 mm, a width of 300 µm and a height of 20 µm. The fluid ports had

a diameter of 2.5 mm. Capillary tubing was used to connect the syringe pump to

the fluid ports. The tubing was connected to the needle of the syringe through a

needle-capillary connector. The dye was pumped through the channel at an initial

flow rate of 0.025 mL/min and increased by 0.025 mL/min every 30 s until failure

occurred.
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5.2.4 Stencil Mask Fabrication

Reactive ion etching (RIE) is one of the most common methods used to etch high

ratio features into a silicon substrate [118, 169]. SF6 is used to create a reactive

plasma, forming fluorine radicals (F•), positive ions (SF+5 ) and negative ions (F−).

The reactive fluorine species will adsorb onto the Si surface and will produce SiF4

and SiFx (where x < 4); since these species are volatile they will desorb from the

surface. To prevent the species from dissociating and redepositing onto the surface,

they must be removed from the system. To create straight edges an inhibiting layer is

needed. Typically, a carbon fluorine gas is used to create a plasma which then deposits

a fluorocarbon polymer onto the silicon surface, including the sidewalls. Since the

walls are not directly bombarded with ions, the polymer will remain on the wall and

protect it from etching. Thus the RIE process involves alternating steps between

etching and deposition of an inhibiting layer. This alternation also allows for the

evacuation of the system to remove SiFx (x ≤ 4) species.

To create custom stencil masks, 100 µm thick silicon wafers were patterned

using photolithography and etched using a RIE system. Figure 5.5 illustrates the

fabrication procedures used to form stencil masks. 100 µm silicon wafers were at-

tached to oxidized Silicon carrier wafers using the mounting medium, CrystalBond.

CrystalBond was dissolved in acetone and a small amount spin coated onto the carrier

wafer at 500 rpm for 5 s and 2500 rpm for 45 s. The wafer was heated to 110oC to

melt the media and the 100 µm wafer aligned carefully over the carrier wafer. Af-

ter alignment, both wafers were removed form the heat source and allowed to cool

to room temperature. During cooling, the CrystalBond solidifies and seals the two

wafers together.

A positive photoresist, Microposit S1827, was spin coated on to the mounted
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Figure 5.5: Fabrication procedure used to form stencil masks: a) a 100 µm Si wafer
is glued to a SiO2 carrier wafer using CrystalBond; b) a photoresist is spin coated
over the wafer and exposed to UV-light through a photomask; c) after development,
the exposed photoresist is removed; d) RIE of the 100 µm Si wafter; e) the wafer is

then immersed in acetone overnight and the patterned Si wafer removed
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silicon wafer using a Solitec 5110 spin coater, at 500 rpm for 5 s and 2000 rpm for 45

s to obtain a thickness of 4.0 µm. The sample was soft baked at 115oC for 4 min to

remove solvent, care was taken to maintain alignment between the two wafers during

heating. The photoresist was then exposed to 405 nm UV light through an acetate

photomask for 22 s using a Karl Suss MJB3 optical lithography system (Suss Mi-

croTec) at a power of 18 mW/cm2. The photoresist was developed using Microposit

MF-319 developer for 75 s, dissolving the exposed photoresist. The exposed silicon

was etched using an Alcatel 601E Deep Silicon Etching system (Alcatel MicroMachin-

ing Systems). The system was operated with an inductively coupled plasma (ICP)

RF source of 1800 W and a substrate power of 120 W. Each cycle contained two

steps, first an etch using SF6 gas with a flow rate of 300 sccm for 8 s, the second a

passivating step using C2F8 gas with a flow rate of 150 sccm for 3 s. The two steps

were cycled continuously for a total process time of 30 min.

Both wafers were immersed in acetone overnight to dissolve the remaining pho-

toresist and CrystalBond. Once the CrystalBond was dissolved, the individual stencil

masks were carefully removed and rinsed with fresh acetone and water. To remove

any excess CrystalBond the masks were cleaned with Nanostrip for 5 min, followed

by thorough washing with deionized water and dried with a stream of air.

5.2.5 Fabrication and Testing of Patterned Microfluidic

Channels

5.2.5.1 Reversible Bonded Patterned Channels

To create a single row of aluminum dots, a commercial steel mesh was taped off using

electrical tape, only exposing a single row of 180 µm diameter circular holes. The

mesh was aligned over a PDMS coated glass coverslip such that the exposed holes were
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near the center of the coverslip. Aluminum was deposited onto the polymer through

the mesh using an Edwards Auto 500 Magnetron Sputtering System as described

above. A piece of molded PDMS containing a single channel were aligned over the

row of aluminum dots using a Leica MZ12.5 Stereozoom microscope. The channels

dimensions were: length = 10 mm, width = 250 µm, height = 20 µm, and the fluid

ports diameter = 2.5 mm.

5.2.5.2 Chromium Protection of Aluminum Coated PDMS

Aluminum was sputtered onto PDMS substrates and PDMS substrates covered by a

steel mesh, using an Edwards Auto 500 Magnetron Sputtering System as described

above. To prevent etching of aluminum in selected areas during an orthophosphoric

acid etch, chromium was deposited over the the aluminum through a steel mesh using

an Edwards Auto 500 Magnetron Sputtering System. When aluminum had previously

been deposited through a steel mesh, the mesh remained in place until after chromium

deposition. The sputtering system was operated at 300 W, 4.8 mTorr, with an argon

gas flow rate of 15 sccm. The shutter was immediately opened and deposition occurred

for 1 min 15 s, giving a chromium thickness of 30 ± 4 µm, as determined using a

Dektak profilometer. To test the efficiency of chromium as a capping layer, the

substrates were immersed in 1.8 M orthophosphoric acid for 30 min and examined.

The substrates were immersed in Cr etchant 1020 for 1 min 10 s to remove the

chromium layer, rinsed 3 times with water and examined. After the chromium etch,

the substrates were further etched with 1.8 M orthophosphoric acid to expose the

modified PDMS surface. To insure that the biocompatibility of the modified surface

was not affected by the chromium layer, C2C12 cells were plated onto the substrates.

First the etched substrates were sterilized by rinsing with 70% ethanol. Prior to

plating, cultured cells were washed with trypsin/EDTA to promote cell detachment
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from the culture flasks. The cells were mixed into 10 mL media for transfer. 0.5 mL

of the solution was plated onto modified PDMS samples, in a 3 cm petri dish. An

additional 2 mL of fresh media was added to each dish, the cells were then incubated

for 24-36 hrs. Prior to imaging, cells were rinsed 3 times with PBS (pH 7.4) and fixed

using a solution of 4.4% paraformaldehyde in PBS for 10 min. Cells were then rinsed

3 times in PBS and water.

5.2.5.3 Irreversible Bonded Channels

To create an irreversible bonded patterned channel, the pattern must be protected

from the plasma treatment needed to form an irreversible seal. Ideally, a stencil mask

in the shape of the channel with selected regions removed would be used. Since the

channel is only a few hundred micrometers wide this mask would be very fragile and

difficult to work with. To overcome this problem, two custom stencil masks were

created. The first, the half channel mask, creates a shadow of half of a channel

(Figure 5.6 a). The second, was a square mask the same size as a coverslip (22 x 22

mm), with 100 µm circular holes down the center of the mask (Figure 5.6 b). Both

masks were fabricated as described earlier.

The half channel mask was aligned with the edges of a glass coverslip coated

with a thin PDMS layer. Aluminum was deposited onto the exposed PDMS, while the

polymer surface under the mask remained protected. The half channel mask was then

flipped over and aligned with the other edge of the coverslip, and aluminum deposited

once again onto the substrate. A stencil mask consisting of etched circles in a row

down the center, was aligned such that the row of dots was above the non-aluminum-

coated polymer. Aluminum was deposited through the holes onto the PDMS surface.

Chromium was then deposited over the aluminum dots. The stencil mask was not
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Figure 5.6: Stencil masked used to pattern microfluidic channels: a) the half
channel mask, b) a mask used to create a single row of dots

moved between aluminum and chromium depositions. The fabrication steps used to

create the patterned surface are illustrated in Figure 5.7.

The substrate was immersed in 1.8 M orthophosphoric acid for 30 min to etch

away the non-chromium coated aluminum. A microfluidic channel was also aluminum

treated and etched with orthophosphoric acid. Both the coverslip and the microfluidic

channel were rinsed 3 times in water and dried with a stream of air. The channel was

then aligned over the aluminum-chromium dots using a Leica MZ12.5 Stereozoom

microscope and brought into contact with the surface. Once contact was made the

system was heated to 110oC for 10 min with light pressure holding the two substrates

together, forming an irreversible bond. The channels dimensions were: length = 10

mm, width = 250 µm, height = 20 µm, and the fluid ports diameter = 2.5 mm. To

reveal the patterned channel the chromium and aluminum are etched away using Cr

etchant 1020 for 2 min with a flow rate of 5 µL/min. Figure 5.8 shows the finial

fabrication steps used to form the irreversibly bonded patterned microfluidic channel.
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Figure 5.7: Fabrication procedure used to create the patterned bottom of the
microfluidic device: a-b) the half channel mask is aligned with the cover slip and
aluminum is deposited onto the exposed polymer; c-e) the half channel mask is

flipped over and aligned with the other edge of the cover slip; aluminum is deposited
onto the exposed surface; f-i) aluminum and chromium are deposited through

another stencil mask aligned over the non-treated polymer
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Figure 5.8: Fabrication procedure used to create irreversibly bonded patterned
microfluidic channels: a) The bottom is patterned using stencil masks and the

channel is treated with aluminum; b) aluminum is etched from both the top and the
bottom; c) the channel is aligned over the patterned bottom and the two are bonded

together; d) the chromium and the aluminum are etched away to reveal the
patterned channel

5.2.5.4 Fibrinogen Patterned Microfluidic Channels

To obtain protein patterned microfluidic channels, Alexa Fluor 488 conjugated fib-

rinogen (Fg-488) was adsorbed to modified PDMS dots inside of both the reversibly

bonded and irreversibly bonded patterned microfludidic channels. For the reversibly

bonded channels, orthophosphoric acid was flowed through the channel using a sy-

ringe pump for 10 min. The channel was then rinsed with water for 1 hr. A 1 mg/mL

solution of Fn-488 was then flowed through the channel for 15 min and then washed

with water for 2 hrs. For the irreversibly bonded channels, the chromium and alu-

minum were etched by rinsing with Cr etchant 1020 for 2 min. The channel was then

washed with water for 1 hr, followed by 1 mg/mL Fn-488 for 15 min. The channel

was rinsed with water for 2 hrs before imaging. Each step was performed with a flow

rate of 5 µL/min. To connect the syringe pump to the channel a blunt tip needle was

used as an interconnect. The blunt tip needle was connected to the syringe pump
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through Luer-lock connectors and tubing.

5.2.6 Imaging

All optical microscope images were captured using a Zeiss Axioskop2 Mat Microscope

with a QImaging Retiga 1300 CCD digital camera. Confocal images were acquired

using a Zeiss 510 LSM confocal (Zeiss, Thornwood, NY) with an excitation wavelength

of 488 nm corresponding to the λmax for FITC.

5.3 Results and Discussion

5.3.1 Reversibly Bonded Patterned Channels

The simplest method to create patterned microfluidic channels is to simply align

a molded PDMS channel over a patterned surface. The seal that forms between

PDMS and PDMS through van der Waals forces is sufficient to allow for the flow of

liquid. Figure 5.9 a, shows aluminum dots inside of a PDMS channel. The dots were

deposited in a row onto a thin layer of PDMS. In order to create the single row of

aluminum dots, the steel mesh was taped, only exposing a single row of holes.

The PDMS channel was aligned over the patterned surface using an optical

microscope. In order to remove the aluminum layer, orthophosphoric acid was flowed

through the channel with a low flow rate. The continuous flow of etchant reduced

the etching time from 30 min to 10 min. To visualize the bioactive regions a solution

of Fg-488 was then flowed into the channel. In Chapter 3, Fg-488 only adsorbed

to the aluminum treated surface on stencil masked patterned substrates, thus the

bright areas in a fluorescent image, indicate the modified regions. Figure 5.9 b and

c, show the microfluidic channel after Fg-488 adsorption. The dots in the centre of
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Figure 5.9: Bright field reflection mode optical images a) aluminum dots inside of a
PDMS reversibly bonded microfluidic channel. Confocal fluorescent images of b,c)

Fn-488 absorbed in a reversibly bonded patterned microfluidic channel

the channel are bright while the surrounding areas are dark. The channel edge is also

visible indicating that Fn has adsorbed to edge between channel wall and patterned

surface.

Channel leakage is a common problem with all microfluidic systems. Channels

created through reversible bonding between PDMS and PDMS or PDMS and glass

are more prone to this problem, as the seal is not as strong as an irreversible bond.

Leaks become more common with increased flow rate and when forces are applied

to the interconnects which connect the channel to a pump. The interconnects in

this system were blunt tips needles which connected a syringe pump to the channel.

Each time there was a solution change the needle was removed and replaced with

new needle to reduce contamination of the bulk solution. Cell culture inside of a

microfluidic device involves several solution changes, thus reversible bonding is not

robust enough for cell culture
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5.3.2 Irreveribly Bonded Patterned Channels

5.3.2.1 PDMS-PDMS and PDMS-Glass bonding

When PDMS is exposed to a gaseous plasma, the surface is bombarded with high en-

ergy ions and electrons. These oxidize the polymer, resulting in a hydroxyl-terminated

surface. When two of these surfaces come into contact, they can form an irreversible

seal at their interface through the formation of bridging Si-O-Si bonds [90,92,118,119].

This type of irreversible bond is typically used to seal PDMS to PDMS, and to glass.

If the bond is successful the bulk polymer will tear before the bond fails. Due to

hydrophobic recovery of PDMS the bond must be formed less than one minute after

plasma treatment to be successful. The speed required to successfully form a bond

makes aligning the polymer channel over a patterned surface difficult. Also, both

PDMS surfaces must be plasma treated, which would increase the bioactivity of the

surface and undo any patterning.

A new bonding method for PDMS-PDMS and PDMS-glass has been devel-

oped. This method activates the PDMS surface through magnetron sputtering of a

thin aluminum film. The polymer is exposed to an argon plasma before and during

film deposition. The aluminum film acts as a capping layer, preventing hydrophobic

recovery as long as it remains intact. After etching away the aluminum layer, the

hydroxy-rich surface is exposed and able to form an irreversible bond.

To create a PDMS-glass bond, the polymer is aluminum treated while the glass

is cleaned with hydrochloric acid. Once the aluminum layer is etched away, the treated

polymer surface is brought into contact with the glass surface and the two are slightly

heated. Similarly to form a PDMS-PDMS bond, both polymer surfaces are aluminum

treated. After etching both surfaces, the two are bought into contact and heated. A
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Table 5.1: Bonding efficiency, pull-off strength, maximum flow rate and channel
pressure for PDMS-glass and PDMS-PDMS sealed devices

Bonding property Materials 24 hrs 7 days

Bonding Success rate (%) PDMS-glass 92 83

PDMS-PDMS 85 79

Pull-off Strength (MPa) PDMS-glass 5.7 ± 0.4 3.5 ± 0.2

PDMS-PDMS 1.9 ± 0.2 1.3 ± 0.3

Max. Flow Rate (mL/min) PDMS-glass 1.1 ± 0.7 0.6 ± 0.3

PDMS-PDMS 0.24 ± 0.09 0.17 ± 0.06

Max. Channel Pressure (MPa) PDMS-glass 2 ± 1 1.2 ± 0.6

PDMS-PDMS 0.5 ± 0.2 0.3 ± 0.1

few minutes can elapse between etching and contact, allowing for time to align the

channel over a patterned substrate.

To test the efficiency of bond formation, tensile testing and leakage testing

were performed. The tensile test involved pulling up on the thick polymer layer with

controlled force until failure occurred in the bond using a pneumatic tensile testing

instrument. The results of the tensile tests are compiled in Table 5.1. Bonding oc-

curred 24 hrs and 7 days after aluminum treatment. After 24 hrs, the pull-off strength

was 5.7 ± 0.4 and 1.9 ± 0.2 MPa for PDMS-glass and PDMS-PDMS respectively.

After 7 days of storage, the pull-off strength decreased to 3.5 ± 0.2 and 1.3 ± 0.3

MPa for PDMS-glass and PDMS-PDMS respectively. Typical values for PDMS-glass

and PDMS-PDMS pull off strengths have been reported to be on the order of 0.5

MPa [170]. Even after 7 days of storage, the pull-off strength are larger than those

perviously reported.

A leakage test was used to assess the integrity of the bond under flow conditions.

A blue aqueous dye was pumped through a straight channel with an increasing flow

rate until leakage occurred inside of the channel or the fluid ports (Figure 5.10). The
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Figure 5.10: Straight channel used for leakage test

maximum flow rates for PDMS-glass and PDMS-PDMS bonded 24 hrs after aluminum

deposition were 1.1 ± 0.7 and 0.24 ± 0.09 mL/min respectively, before failure. The

maximum flow rate decreased when bonding occurred 7 days after aluminum deposi-

tion, to 0.6 ± 0.3 and 0.17 ± 0.06 mL/min. During typical microfluidic applications,

flow rates of only a few microliters per minute are used, thus the seals established by

this bonding technique greatly exceed the required flow rates. Table 5.1 compiles the

maximum flow rate as well as the maximum channel pressure. The maximum channel

pressure was calculated using the observed maximum flow rates and the equation for

laminar flow in conduits with rectangular transverse cross-sections [171].

5.3.2.2 Physical Mask Fabrication

The stencil masks used in previous chapters were commercially available steel mesh.

This mesh was only available in limited geometry and sizes. In order to obtain the ge-

ometry necessary to create patterned microfluidic devices and increase the versatility

of the stencil mask patterning method, customized stencil masks were required. The

masks were formed from 100 µm silicon wafer. A thin substrate was used to minimize

shadowing during the aluminum deposition. Silicon was chosen as it can be etched
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Figure 5.11: Bright field reflection mode optical images of a, b) custom stencil
masks made from 100 µm silicon wafers, c, d) Aluminum deposited on PDMS

through custom stencil masks

with straight walls using the RIE system available at the Western Nanofabrication

facility.

Figure 5.11 a and b, shows a top view of custom stencil masks with 120 µm

circular holes etched through them. Figure 5.11 c and d, show aluminum deposited

through the same stencil masks onto PDMS. As the aluminum dots maintain the

size and shape of the etched holes, little shadowing occurs. PDMS is able to form

a seal with silicon allowing for complete contact between the mask and PDMS. As

the stencil mask is 100 µm thick the resolution of the stencil mask technique will be

limited. While the stencil masks could be reused many times, they are very fragile,

limiting their lifetime.
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5.3.2.3 Chromium Masking

To determine if chromium would act as an effective protective layer for aluminum,

the effects of aluminum etching on chromium were tested. Aluminum was deposited

through a metal mesh onto the PDMS surface and capped with chromium without

moving the metal mesh (Figure 5.12 a). Aluminum was also deposited over the en-

tire PDMS surface and chromium patterned over the surface through a metal mesh

(Figure 5.12 b). These surfaces were then etched with orthophosphoric acid to re-

move aluminum. On both surface the chromium layer remained intact and did not

delaminate, indicating that the aluminum layer remained intact underneath (Figure

5.12 c and d).

To ensure that the additional chromium layer and chromium etch would not

affect the bioactivity of the modified and unmodified regions on the polymer surface,

cells were grown over the new substrates. Figure 5.13 shows cells grown on PDMS

surface that have been patterned by depositing aluminum and then chromium through

a stencil mask. The metals were removed to exposed the modified polymer surface

by first etching away chromium and then aluminum. Cells appear to grow only in the

regions that were originally coated with metal, thus the patterning does not appear

to be affected by the addition chromium layer or etch.

5.3.2.4 Channel Fabrication

The first step in fabricated irreversible bonded patterned channels, is to create a

patterned surface. The surface needs to have a non-modified channel shaped fea-

ture which is surrounded by aluminum deposited through a magnetron sputtering

system. The aluminum can be etched away and the modified surface used to create

the irreversible bond. The channel shaped feature also needs to be patterned and
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Figure 5.12: Bright field reflection mode optical images of a) chromium dots
deposited directly over aluminum dots, b)chromium dots deposited over a

non-patterned aluminum layer, c) chromium dots deposited directly over aluminum
dots which underwent aluminum etching after chromium deposition d) chromium
dots deposited over a non-patterned aluminum layer, which underwent aluminum

etching after chromium deposition
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Figure 5.13: Bright field reflection mode optical images a-c) chromium coated
aluminum dots on PDMS and d-f) C2C12 cells grown the patterned surface after

metal etching
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Figure 5.14: Photographs of a) the half channel mask, b) the half channel mask on
PDMS after aluminum deposition c) aluminum deposited onto PDMS through two
subsequent depositions of aluminum forming a unmodified channel shape region

that pattern protected against aluminum etching. The half channel mask was used

to create the channel shaped feature (Figure 5.14). Aluminum and chromium were

then deposited through a second mask into the centre of the channel shaped feature

(Figure 5.15 a).

Once a patterned surface is created, the second step in the fabrication of ir-

reversibly bonded patterned channels is to bond a molded PDMS channel to the

patterned surface. Figure 5.15 b, shows a PDMS channel aligned over the patterned

surface. The metal dots are slightly to the side of the channel. This is due to the

short alignment time and shifting of the channel when the device was moved from

the microscope to the hot plate.

Chromium etchant was then flowed through the channel to remove the chromium

layer; after only 30 sec, both the chromium and aluminum layers were removed. This

allows for the elimination of one step when preparing the devices. To visualize the

patterned channel, Fg-488 was absorbed to the channel surfaces (Figure 5.15 c). Fn-

488 absorbed not only in the dots as expected, but also to a band on the left hand

side of the channel. This additional band is part of the polymer surface which was

meant to be placed under the PDMS and not inside of the channel. Since the dots
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Figure 5.15: Straight channel used for leakage test

were misaligned slightly to the right, this modified area was moved into the channel.

This fabrication method has seven major steps: the two aluminum depositions

over the half channel, the aluminum deposition to create dots, the chromium deposi-

tion, the first aluminum etch, the bonding of the channel and the final metal etch. The

first fours steps involve alignment, which needs to be accurate within a few microme-

ters. This fabrication process is very time consuming and suffers from low yields. The

use of a photolithographic patterned method would simplify the fabrication process

by reducing the need for three aluminum deposition and one chromium deposition

to only one aluminum deposition. Also instead of aligning the stencil mask and the

channel, only channel alignment would be required. Since neither photolithographic

cell patterning method provides complete control over cell adhesion, a more effective

photolithographic based patterning method is needed.

5.4 Conclusion

Both reversibly and irreversibly sealed patterned PDMS microfluidic channels were

fabricated. The reversibly sealed devices were simple to fabricate but were not robust

enough for cell culture or transport. The fabrication of irreversibly sealed devices was

more complex, but once created they were more robust.
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A new PDMS-PDMS and PDMS-glass bonding technique was established. This

technique utilized the chemical changes that occurred during aluminum treatment to

form Si-O-Si links between the two surfaces. The aluminum layer allowed bonding to

occur several days after initial treatment. Once etched, a few minutes could elapse

between etching and bonding, allowing more time for alignment then provided by

conventional bonding methods.

New custom stencil masks were created from 100 µm thick silicon wafers using

photolithography and RIE. These masks allowed for a variety of geometries and sizes,

but were significantly more fragile than commercially available steel mesh.

Chromium was shown to be an effective protecting layer for aluminum during

aluminum etching. This allowed aluminum dots to remain intact during bonding of

the irreversibly sealed devices.

The irreversibly sealed devices were time consuming to fabricate due to the

significant number of steps. Their fabrication also suffered from a low yield due to

alignment issues. The use of a photolithographic patterning method could greatly

reduce the fabrication time and increase the fabrication yield.
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Chapter 6

Thesis Summary and Future Work

Micropatterning cellular adhesion is important in many research applications, in-

cluding fundamental studies of cell interactions, cellular microarrays and cell based

biosensors. Controlling cell positions in order to align them with microdetectors is

necessary for cell based biosensors, which are often integrated into microfluidic envi-

ronments. Thus the ability to not only pattern cells on flat substrates, but also inside

microfluidic channels, is important for cell based biosensor advancement.

There are many surface properties which affect the ability of cells to adhere:

chemistry, wettability, charge, roughness and material stiffness. Patterning these

properties allows for spatial control over cell attachment. Of these properties, wetta-

bility is often considered the most important as it directly affects the conformation

of mediating proteins on the surface.

This thesis reported three methods of patterning surface wettability on an im-

portant biomaterial, PDMS. PDMS is naturally hydrophobic and limits cell adhesion

due to closely packed methyl groups at its surface. A modified plasma technique

was used to oxidize the surface, creating a silica-like hydrophilic layer. This tech-

nique involved the deposition of aluminum by a magnetron sputtering system. The

aluminum layer prevented hydrophobic recovery of the polymer surface while it re-

mained intact. Once the aluminum layer was etched away the silica-like layer was

exposed. The silica-like layer showed an increase in oxygen and decrease in carbon
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content by XPS, and was found to be three times stiffer then native PDMS. The

modification also increased the surface roughness due to the formation of random

sinusoidal ripples as seen by AFM.

To pattern this aluminum surface treatment, aluminum was deposited onto the

surface through a stencil mask. The mask prevented the covered PDMS regions from

undergoing oxidation, allowing them to remain hydrophobic. After aluminum etch-

ing, the surface contained hydrophilic silica-like regions surrounded by hydrophobic

PDMS. Water droplets formed only in the modified regions when the surface was

dipped in water. These pattern surface showed good cell patterning, with cells only

being able to adhere to the modified regions.

While the stencil mask technique proved successful, it was limited in its geom-

etry and feature size. To overcome these deficiencies, two patterning methods were

developed, which allowed for photolithography patterning of the surfaces wettability.

As PDMS is not compatible with most conventional photoresists, photolithography

could not be performed directly on the polymer. Instead, the entire polymer was

coated with aluminum. Under the aluminum, the polymer was modified and formed

a hydrophilic silica-like layer. Photolithography was used to enable the removal of

selected portions of the aluminum layer. The exposed portions were made hydropho-

bic by one of two methods: i) allowing them to recover their hydrophobicity; and ii)

reacting with a methyl terminated alkyl silane. After the exposed surface was made

hydrophobic, the remaining aluminum layer was etched away to reveal hydrophilic

silica-like regions. Both methods proved successful at patterning surfaces wettability

and only formed water droplets in the freshly exposed polymer regions when dipped

in water. However, only the second method, i.e. reacting the surface with a methyl

terminated alkyl silane, proved effective at controlling cell adhesion. Even so, this

method was not as successful at controlling cell adhesion as the stencil mask approach,
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as cells were able to adhere and spread on the hydrophobic surface.

The hydrophobically recovered surface did not fully recover and remained slightly

hydrophilic even after several days in air. Once placed in an aqueous environment,

it became even more hydrophilic, and thus cells could interact with a slightly hy-

drophilic, not a hydrophobic surface. The alkyl silane modified surface was hy-

drophobic with a contact angle only slightly less then that of native PDMS. Even

so, it maintained the surface topography and stiffness of the silica-like layer.

The number of cells attached to each surface was determined. PDMS showed

the smallest number of cells attached, followed by the methyl terminated alkyl silane

surface. The aluminum treated surface and its hydrophobically recovered counterpart,

showed very similar cell interactions, showing the greatest number of cells.

To further understand the interaction of cells with the patterned surface, the

relative amount of protein adsorption was visualized on the patterned surfaces. Pro-

tein adsorption did not correlate with cellular adhesion, for either protein studied, Fn

and Fg. The adsorption was found to be surface, protein and concentration depen-

dent. Fn was tested for conformation using a monoclonal antibody specific for the

RGD peptide sequence found on Fn binding sites. Using immunofluorescent labeling,

the relative amount of Fn in an appropriate binding configuration was determined

for each patterned surface. The conformation pattern correlated to cell attachment

when Fn was adsorbed in the presence of BSA, which is an reasonable model system

for a cell culturing environment.

As the stencil mask patterning technique was the most successful, it was used

to pattern microfluidic channels. Using reversibly sealed devices, formed when two

pieces of PDMS are bought into contact, simple patterned channels were developed.

These channels were not able to maintain high flow rates, and often failed during

fluid changes. To prevent this, an irreversible seal was desired. As conventional
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plasma methods would destroy any sample patterning and did not provide enough

time to align the channel over the patterned surface, a new bonding technique was

developed which allowed the two surface to bond using the magnetron deposition of

aluminum. This technique allowed for patterning the bonding areas and thus did

not interfere with the patterns designed for cell adhesion. To do this, custom stencil

masks were fabricated from 100 µm thick silicon wafers, and chromium was used to

protect the regions meant for cell patterning during bonding. Irreversibly bonded

patterned microfluidic channels were thereby fabricated. This fabrication took many

steps and suffered from alignment issues. The use of photolithgraphic patterning

could substantially reduce the number of steps required for fabrication.

While stencil mask patterning was more effective at controlling cell attachment,

photolithographic methods are desirable. Not only do photolithographic methods pro-

vide better resolution, and can form any two dimensional shape, they can reduce the

number of fabrication steps required to form irreversibly bonded patterned microflu-

idic channels. To improve our current photolithographic methods the bioactivities

of the surrounding regions must be further reduced. This can be accomplished by

further increasing the surfaces’ hydrophobicity or incorporating chemistries known to

significantly reduce bioactivity, such as PEG.

In addition to the use of PDMS for the production of patterned bioactivity,

PDMS is optically transparent it is an ideal material when optical detection tech-

niques are used for cell based biosensors. Further, PDMS is commonly used in the

creation of microfluidic devices, which are important in controlling the chemical en-

vironment of cells. PDMS will continue to play a important role in the medical

and bio-device industries, making the ability to control the surface chemistry and

bioactivity important for future development.
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