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Abstract

Memory for music can be preserved in the presence of neurodegenerative disorders even

when other memories are forgotten. However, understanding how the brain remembers music

has proven di�cult despite decades of research. The central goal of this thesis was to elucidate

the neural correlates of musical memory by exploring how the presence of language and music

information a↵ect the way young and older adults remember music. To that end, I 1) used a

controlled training paradigm to familiarize participants with novel stimuli that manipulated the

presence of language and music, and 2) collected functional magnetic resonance imaging data

to compare brain activity in response to stimuli that were identical except for their level of fa-

miliarity. First, I compared di↵erences in neural activation based on familiarity in young adults

using general linear model (GLM) and multivariate pattern analyses (Chapter 2). Contrary to

the results of previous studies, there were no di↵erences in the areas involved in processing

novel and familiar music. Next, I used an intersubject synchrony analysis to assess the e↵ect

of familiarity on neural synchrony (Chapters 3 and 5). Synchrony is a new technique in the

musical memory literature that correlates neural activation timecourses to a stimulus across

individuals. Familiarity reduced synchrony in both young and older adults. Synchrony reduc-

tion is associated with increased idiosyncratic processing across participants. This reduction

occurred after a single listen suggesting that each participant had a unique experience of the

stimuli after only a single exposure. Finally, I used GLM and synchrony analyses together to

characterize how musical stimuli with and without language are processed by healthy young

and older adults (Chapter 4). Brain areas involved in processing music and language stimuli

di↵ered based on age group and stimuli, but in both groups language information induced more

synchrony than stimuli without language. Altogether, these results suggest that 1) similarities

in stimulus processing across individuals are directly related to the presence of language, and

2) the lack of clearly defined neural correlates of musical memory across previous studies may

stem from the idiosyncrasies in processing that arise as individuals become familiar with mu-

sical stimuli.

Keywords: Musical memory, language, aging, fMRI, intersubject synchrony
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Summary for the Lay Audience

Memory for music is unique in that it may be preserved in the presence of disorders such as

dementia even when other memories are forgotten. However, the processes involved in musical

memory are not completely understood. In this thesis, I aimed to gain a deeper understanding

of how the brain stores musical memories. Specifically, I was interested in how the presence of

language a↵ects the way the brain remembers music and whether the mechanisms are similar

in young and older adults. To that end, novel musical stimuli with and without language were

used in these studies. Participants repeatedly listened to the novel stimuli to become familiar

with the music. I used functional magnetic resonance imaging to collect brain activity data

while young and older adults listened to the novel and familiar music. I then compared how

brain activity changed when listening to identical pieces of music that di↵ered only in their

level of familiarity. A variety of analyses were used to investigate the brain areas involved

in processing the novel and familiar music as well as the patterns of the fluctuations of the

neural activation within those brain areas. Specifically, I characterized the similarity in the

patterns of activation in response to the music across participants. The primary findings of

this thesis were: 1) in contrast with previous studies, there were no di↵erences in the brain

areas involved in processing novel and familiar stimuli in young adults, 2) novel stimuli were

processed more similarly than were familiar stimuli by both young and older adults, and 3)

music with language was processed more similarly than music without language by participants

in both age groups. Overall, the findings of this thesis contribute to the literature on musical

memory by expanding existing knowledge on how young and older adults process novel and

familiar music. Understanding how the brain processes music has potential implications for

the development of therapeutic and clinical interventions that could improve the quality of life

for individuals living with dementia.
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Introduction 

 

Have you ever been driving when a song comes on the radio that you have not heard in 

20 years and, much to your surprise, you can sing along with every lyric? Do you still know all 

the words to your favourite song from high school? These are just some examples of the robust 

nature of musical memory. Memory for music is also unique in that it seems to be preserved in 

some aging patients with dementia even when other semantic memories have been forgotten 

(Baird & Samson, 2009; Jacobsen et al., 2015). However, characterizing the neural substrates of 

musical memory has yielded mixed results despite numerous studies on the topic. Across 10 

studies, 37 different brain areas in frontal, temporal and subcortical regions have been identified 

as involved in musical memory with, at most, four studies identifying the same region (see Table 

1; Freitas et al., 2018). The recognition of familiar music may rely on a fronto-temporal network 

(Agustus et al., 2018; Groussard et al., 2009; Halpern & Zatorre, 1999; Herholz et al., 2012; 

Jacobsen et al., 2015; Plailly et al., 2007; Sikka et al., 2015; Slattery et al., 2019) along with 

supplementary motor areas (Agustus et al., 2018; Herholz et al., 2012; Pereira et al., 2011; Peretz 

et al., 2009; Slattery et al., 2019) and basal ganglia structures (Agustus et al., 2018; Pereira et al., 

2011; Sikka et al., 2015). Musical memory researchers have employed a variety of experimental 

paradigms and musical stimuli in their attempts to identify these networks. As a result of the 

inconsistencies in experimental design across studies, there is little agreement about the network 

of areas necessary for musical memory. 

In this thesis I aim to elucidate the neural correlates of musical memory. In the 

introduction I will identify and discuss how aspects of the experimental design of previous 

musical memory studies lack consistency. I will explain why consistency across musical memory 

studies is important and the clinical implications for the results from more highly controlled 

studies. I will describe important factors for building a solid understanding of the neural 

processes involved in musical memory for healthy adult participants before clinical applications 
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can be pursued. Previous studies have used traditional fMRI general linear model (GLM) 

approaches to identify musical networks. I will present why the use of intersubject synchrony 

analyses approaches the question of musical memory function in a novel way that capitalizes on 

the use of naturalistic stimuli like music. Finally, I will describe how this thesis aims to address 

the identified gaps and the expected results given the overview of the supporting literature.   

Inconsistencies in existing research on musical memory 

The inconsistencies in the brain areas identified as being involved in musical memory 

may be shaped by variable definitions of what constitutes familiarity with music. In some 

studies, musical memory is investigated by comparing unknown music to well-known music 

drawn from multiple genres, like folksongs (e.g., Alonso et al., 2016; Herholz et al., 2012; Saito 

et al., 2012; Schaal et al., 2015), popular music from the radio (e.g., Jacobsen et al., 2015; 

Pereira et al., 2011), or classical music excerpts (e.g., Agustus et al., 2018; Groussard et al., 

2010). Participants are asked to rate their familiarity with the stimuli, but generally only one 

genre of well-known stimuli is used (i.e., folksongs or popular music). The difficulty in relying 

on only one genre of familiar music is that the stimulus genre may be confounded with the level 

of familiarity. For instance, a folksong learned in childhood may be much more familiar than a 

popular song released in the last year. Without direct comparisons between different types of 

familiar music it is difficult to know whether individuals are equally familiar with the stimuli 

used across different studies. In studies where brain activity is not compared between novel and 

familiar music, training and retrieval paradigms are used (Altenmüller et al., 2014; Klostermann 

et al., 2009; Nan et al., 2008). Participants learn short stimuli (musical excerpts or a series of 

computer-generated tones) during a training phase and perform an old versus new task to identify 

which stimuli were previously heard. However, long-term musical memory acquired over years 

of knowing a song is different from the short-term memory acquired within a single lab session 

(Ménard & Belleville, 2009). For example, short term memory for music has a much smaller 

capacity (approximately 10 notes long) than long-term memory (entire songs; Berz, 1995). These 

two memory systems may rely on different neural networks (Izquierdo et al., 1999) and studies 

investigating musical memory that do not differentiate between these two types of memory may 

be contributing to the inconsistencies in the literature. A consistent operational definition of 

familiarity is needed for clearer identification of the neural correlates of musical memory across 

studies.   
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Table 1. From Freitas et al, 2018: This table describes the identified anatomical regions and their activation 
likelihood estimate (ALE) for contrasts comparing familiar minus unfamiliar music across 10 studies investigating 
musical memory. 

 

 

Although musical memory is the topic of interest here, the presence or absence of lyrics 

(the words associated with music) may play a role in the discrepancies in the identified neural 

correlates of musical memory described above. Over the past twenty years, researchers have 

used computer generated music (e.g., Agustus et al., 2018; Slattery et al., 2019), unmodified pop- 

or rock-song excerpts with complex instrumentation and lyrics (e.g., El Haj et al., 2012; 

Jacobsen et al., 2015; Pereira et al., 2011), instrumental music excerpts with multiple instruments 

but without lyrics (e.g, Halpern & Zatorre, 1999; Sikka et al., 2015), and simple tonal melodies 
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played by a single instrument or single sung voice (e.g., Platel, 2005; Schaal et al., 2015). The 

reliance on musical stimuli with and without language makes it difficult to determine the role 

that language plays in musical memory. Although music and language are closely related, there 

is discussion in the literature regarding whether they rely on overlapping or distinct neural 

networks (Patel, 2011; Peretz & Coltheart, 2003). For example, Broca’s area, the superior 

temporal sulcus, the superior temporal gyrus, the insula, and the frontal pole are known to be part 

of the language network and are also active in music processing (Fadiga et al., 2009; Hymers et 

al., 2015; Koelsch et al., 2002; Merrill et al., 2012; Schön et al., 2010; but see Chen et al., 2021). 

Evidence for distinct music and language networks is largely driven by clinical case studies of 

patients with a deficit in either music or language abilities that leaves the other ability intact. For 

example, individuals with acquired or congenital amusia recognize spoken words and lyrics but 

are unable to recognize tunes and melodies (Ayotte et al., 2002; Griffiths, 1997; Peretz et al., 

1994; Piccirilli et al., 2000). In contrast, other individuals show evidence of verbal agnosia (word 

deafness) and are unable to recognize spoken words but are able to recognize nonverbal sounds, 

including music (Metz-Lutz & Dahl, 1984; Takahashi et al., 1992; Yaqub et al., 1988). There is 

also compelling evidence for a musical memory system that is distinct from that for language. 

Two patients with medial and lateral temporal lobe damage demonstrated severe deficits in 

visual and verbal memory, but intact musical memory (Esfahani-Bayerl et al., 2019; Finke et al., 

2012) while a third patient experienced the opposite deficit: intact verbal memory with a severe, 

music specific memory deficit (Peretz, 1996). In the music familiarity literature, the presence of 

language has been manipulated in only one study on musical memory to characterize the neural 

networks involved in the recognition of musical stimuli with and without language (e.g., a sung 

folksong vs. the hummed melody of that same folksong; Saito et al., 2012). However, there was 

no language control condition that did not include music. Without controlling the presence of 

language in musical memory studies, it is not possible to differentiate which networks are 

responsible for processing musical, linguistic, or a combination of both aspects of the music 

stimuli.  

The range of instrumentation present in the stimuli that are used in musical memory 

studies may also contribute to the inconsistencies in the literature. In some studies the stimuli 

consist of a simple computer-generated series of tones while in others the stimuli are excerpts 

taken from orchestral music and include multiple instruments (Halpern & Zatorre, 1999; Platel, 

Chapter 1. Introduction 4



2005). There is also behavioural evidence to suggest that simple melodies involving a single 

stream of information are remembered better than more complex, polyphonic music that contains 

multiple streams of information (Demorest et al., 2016). These different stimuli may be 

processed by different networks of brain areas (Janata et al., 2002) but stimulus instrumentation 

has not been systematically manipulated in studies investigating musical memory. The difficulty 

in defining familiarity and the differences in stimulus features, like the presence of language or 

type of instrumentation, has made it difficult to compare findings across studies and limits the 

utility of these results in clinical settings outside of academic research. 

Controlled musical memory research has clinical implications 

Results from musical memory studies that carefully controlled familiarity and stimulus 

contents would have implications for using music for diagnostic or therapeutic purposes in 

patients with dementia. For instance, music can be used in clinical settings to reduce levels of 

agitation, increase social and emotional well-being, and enhance language skills (Wall & Duffy, 

2010). However, the efficacy of musical interventions likely depends on how each type of 

dementia manifests in the brain. For example, Alzheimer’s disease (AD) is characterized by 

levels of biomarkers like beta-amyloid and tau proteins as well as hippocampal atrophy (Earlier 

Diagnosis, 2021), frontotemporal dementia is characterized by focal frontal and temporal lobe 

atrophy (Omar, 2019), and semantic dementia is characterized by asymmetrical atrophy of the 

anterior temporal pole and anterior fusiform gyrus (Landin-Romero et al., 2016). These varying 

clinical profiles have distinct effects on how the brain processes music (Baird & Samson, 2015). 

Individuals with semantic dementia show greater deficits in recognizing musical emotions 

(Hsieh et al., 2012) and in recognizing famous melodies (Hsieh et al., 2011) than do patients with 

AD. Patients with AD readily report that a piece of music evokes autobiographical memories 

(Belfi et al., 2015), but patients with frontotemporal dementia require repeated exposure to a 

musical stimulus to trigger autobiographical memories (Baird et al., 2020). If clearly defined 

neural correlates from well-controlled musical memory studies are found, then musical stimuli 

could be tailored to an individual’s disease type and progression to capitalize on spared areas of 

competence. Commonly used musical therapies in dementia include active singing interventions, 

passive listening in a group or individual setting, and playing musical instruments (Moreno-

Morales et al., 2020), but depending on a patient’s dementia diagnosis some of these therapies 

may be more effective than others. For example, a patient with semantic dementia who has 
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atrophy in language related networks may not receive the same benefit from music that includes 

language as a patient with AD with a different pattern of atrophy. As described above, it is 

unclear which areas of the brain are involved in musical memory due to the inconsistences across 

studies. Therefore, it is currently not possible to capitalize on the cortical areas spared by an 

individual’s disease progression using music. Characterizing how familiarity and stimulus 

features affect the way the brain processes music may aid in the development of individualized 

therapies.  

Effects of healthy aging on processing music 

A thorough understanding of the changes in music processing that occur in dementia 

first requires knowledge of how music processing changes in healthy aging. Auditory processing 

in general is affected by aging both in the brain areas involved and in the intensity of the blood-

oxygen level dependent (BOLD) activation within those areas. For example, aging is related to 

increased activation in occipital cortex during auditory word processing tasks (Kuchinsky et al., 

2012) and in inferior frontal gyrus during sentence comprehension tasks (Peelle et al., 2010; 

Tyler et al., 2010). The differences in activity levels and activated brain areas are thought to 

reflect the recruitment of additional cognitive resources to make up for age-related losses in 

processing efficiency in the task-related regions seen in young adults (Peelle, 2019). In 

behavioural studies on music processing, older adults less accurately judge the length of musical 

rhythmic patterns (Ragot et al., 2002) and are slower to recognize familiar tunes than young 

adults (Dowling et al., 2008). Despite age-related differences in auditory and music processing, 

the neural correlates of musical memory have been almost exclusively explored in healthy young 

adults. A direct comparison of musical memory in young and older adults can be found in only 

one study (Sikka et al., 2015). Using excerpts from familiar and unfamiliar tunes that were 

recorded on computerized notation software, the researchers found that familiar melodies elicited 

more activity than unfamiliar melodies in the left superior temporal gyrus for young adults, and 

more activity in bilateral superior parietal gyri, left angular gyrus and the left superior frontal 

gyrus for older adults. Like previous studies exploring musical memory in young adults, the 

stimuli did not include any language and the instrumentation was a simple tonal melody, which 

is arguably not reflective of music listened to and remembered over a lifetime. Although this 

work sheds some light on age-related changes in the neural correlates of musical memory, 
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further research is needed that more tightly controls the definition of familiarity and the presence 

of language within the stimuli. 

The previous work using fMRI to investigate musical processing in older adults used 

traditional general linear model (GLM) analyses to identify the brain regions that are active in 

responses to familiar and unfamiliar music. However, intersubject synchrony may be an 

additional useful method of identifying age-related changes in the temporal patterns of brain 

activity to musical stimuli. Intersubject synchrony is an analysis method that identifies similar 

temporal activation patterns across individuals by calculating voxel-wise correlations over time 

between two individuals, or between an individual and the average of a group of individuals 

(Hasson et al., 2004; Regev et al., 2019). Therefore, unlike GLM analyses, synchrony is well 

suited to using naturalistic stimuli, like music, that unfold over time. Highly synchronized brain 

activity is interpreted as the stimulus being experienced in a similar way across people, whereas 

low levels of synchrony indicate differences in stimulus processing. The only two studies of 

aging and intersubject synchrony found an age-related reduction in synchrony, indicating that 

older adults were more idiosyncratic in their brain activity than young adults. The authors 

concluded that older adults experienced a movie stimulus in more individualized ways than the 

young adults. Synchrony differences were found across broad frontal regions (inferior frontal 

gyrus, middle frontal gyrus and medial prefrontal gyrus) and auditory and visual networks 

identified using an independent component analysis (Campbell et al., 2015; Geerligs et al., 

2018). The same audio-visual movie stimulus was used in both studies. As the prevalence of the 

intersubject synchrony technique grows and is used in more studies of aging and clinical 

populations (Anderson et al., 2013; Hasson et al., 2009; Huntley et al., In preparation; Lyons et 

al., 2020) it is important to take into account that patients in these groups are likely to have 

impaired vision. Inducing intersubject synchrony using audio-only stimuli such as music may be 

essential, but the characteristics of the synchrony induced by audio-only stimuli in healthy older 

adults or clinical populations are largely unknown. Characterizing age-related changes of 

intersubject synchrony using audio-only stimuli provides a novel approach to investigating the 

neural correlates of musical memory, however, the effects of familiarity and stimulus 

characteristics on synchrony have not yet been clearly defined. 
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Effects of familiarity and stimulus characteristics on intersubject synchrony 

Two studies have shown that intersubject synchrony is affected by a participant’s level 

of familiarity with a stimulus, but both studies used audio-visual movie clips rather than music. 

Intersubject synchrony in the posterior medial network, measured using fMRI, was shown to 

decrease from the first to the sixth consecutive viewing of 90 second movie clips (Aly et al., 

2017, 2018). In a similar study using EEG, participants were presented with three short films that 

were each viewed twice (Dmochowski et al., 2012). EEG synchrony decreased between the first 

and second viewings. Neither of these studies fully characterized the timecourse of the 

synchrony decrease and since both studies used movie stimuli it is not known whether a similar 

decrease in synchrony would be found with other types of stimuli like music. If fully 

characterized, the reduction in synchrony reported in these two studies could follow one of two 

patterns: synchrony could either steadily decrease over multiple viewings or be steeply reduced 

after a single repetition followed by a plateau. If synchrony steadily decreases with multiple 

exposures, then this may introduce confounds into synchrony studies that use familiar stimuli. 

For example, if the level of familiarity of a stimulus differs systematically with the experimental 

manipulation, then it will not be possible to say whether any differences in synchrony are a result 

of the manipulation or a result of previous stimulus exposure. For example, the Child Mind 

Institute Healthy Brain Network databank includes fMRI data from hundreds of children in the 

New York area watching a 10-minute clip from the children’s movie ‘Despicable Me’ but does 

not include information on whether participants had seen the movie prior to the experiment 

(Alexander et al., 2017). Researchers that then use these data to measure intersubject synchrony 

are unable to control for the possible familiarity confound which could influence the conclusions 

they are able to draw from their results. On the other hand, if synchrony levels reach a plateau 

after a certain number of exposures, then researchers can remove the confound of familiarity by 

exposing all participants to the stimulus before the study begins. Until the pattern of synchrony 

reduction with familiarity and the types of stimuli that induce the reduction are fully 

characterized, it is important for researchers to use novel stimuli to avoid a familiarity confound. 

Intersubject synchrony is sensitive to the contents of the stimuli that participants 

experience. Movie stimuli result in highly synchronized activity over large areas of the occipital 

and temporal lobes (Hasson et al., 2004), audio-only movie (Naci et al., 2017) and audiobook 

excerpts (Regev et al., 2019; Simony et al., 2016) induce synchrony in large fronto-temporal and 
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auditory networks, and instrumental music excerpts induce synchrony in primary auditory cortex 

as well as bilateral thalamus, and motor planning regions (Abrams et al., 2013; Naci et al., 2017). 

As movies include both visual and auditory information it is not surprising that visual and 

auditory brain areas were highly synchronized while auditory regions were synchronized during 

audio-only stimuli. Intersubject synchrony to different types of stimuli have been compared in 

only one study (Naci et al., 2017). The researchers found that there was more synchrony in 

stimuli with language after comparing synchrony induced by audio-visual movie clips, audio-

only movie excerpts, and popular tv-show theme-songs without language. However, the presence 

of music and language was not systematically varied across the stimuli and no other studies have 

characterized synchrony changes across different types of stimuli. Intersubject synchrony is also 

related to how well stimuli are learned (Meshulam et al., 2021) with better learning associated 

with higher synchrony. If, for example, characterizing synchrony differences across stimulus 

types reveals that more synchrony is induced by stimuli containing both music and lyrics than by 

stimuli that contain only language, this may be an indication of differences in how the stimuli are 

remembered. Pursuing the mechanisms behind the differences in synchrony across stimulus 

types may present an opportunity to understand why there is preservation of memory for 

melodies and lyrics in some patients with dementia when memory for words is lost (Vanstone et 

al., 2009).  

Research goals and hypotheses 

There were three research goals of this thesis that attempted to address the gaps in the 

literature described in the previous sections. First, I aimed to identify the neural correlates of 

musical memory by directly monitoring participants’ stimulus exposure and manipulating the 

presence of language and memory across stimuli. Using a controlled training paradigm, I defined 

familiarity as the number of times participants listened to each stimulus rather than asking them 

to subjectively rate their level of familiarity with previously known stimuli. To manipulate music 

and language content, eight novel stimuli were created that contained either music, language, or 

both (instrumental music only; spoken word only; sung lyrics without instrumental music; sung 

lyrics with instrumental music). By controlling familiarity and the presence of music and 

language in stimuli within the same study, I aimed to bring clarity to whether the discrepancies 

in the musical memory literature are due to differences in the definition of familiarity and the 

contents of stimuli used across studies.  
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To address the first research goal, young adult participants were asked to learn the novel 

musical and language stimuli over a training period of 3 weeks and participated in a fMRI 

scanning session before and after the training period. During the training period, young adult 

participants listened to half of the stimuli using an online music player that tracked the number of 

times they listened to each stimulus (details regarding the training implementation can be found 

in the methods section of Chapter 2). When participants returned to the lab for the second 

scanning session, they were presented with the same stimuli they had listened to in the first 

scanning session. The only difference between the two scanning sessions was participants’ level 

of familiarity with half of the stimuli. A traditional fMRI general linear model (GLM) approach 

was used to identify brain areas where BOLD activity differed as a result of increased familiarity 

and the presence of music and language.   

The second research goal aimed to understand whether the degree of intersubject 

synchrony across a group of individuals changes based on memory for music and language 

stimuli. To address this goal, a second set of eight stimuli were created that manipulated the 

presence of music and language in the same way as the first set and participants also trained on 

half of these stimuli during the controlled training paradigm. The same set of stimuli could not 

be used to address both the first and second research goals because intersubject synchrony 

requires participants to listen to stimuli that are longer, and therefore more representative of 

naturalistic listening scenarios, than those generally used in GLM analyses. Details summarizing 

which stimuli were used in which experimental chapters can be found in Appendix C.  

I hypothesized that the inclusion of more information within a stimulus (music and 

language together) would induce stronger levels of synchrony than either music or language on 

their own in the same way that audio-visual movie stimuli were shown to induce more synchrony 

than audio-only theme-songs (Naci et al., 2017). By asking participants to train on novel stimuli I 

could characterize whether synchrony was affected by repeated exposure to music and language 

stimuli over an extended period of time. Using the data from the second scanning session, 

synchrony to stimuli that were heard multiple times (trained stimuli) and stimuli that were heard 

once before (not trained stimuli) could be compared. If intersubject synchrony gradually 

decreases with increased exposure I would expect to see differences between the trained and 

untrained stimuli in the second session. If intersubject synchrony reduces after a single listen, 
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followed by a plateau, I would not expect to see differences between the trained and untrained 

stimuli in the second session.  

The third research goal was to understand whether the effects of familiarity, music, and 

language seen in young adult participants were consistent across the lifespan. By including a 

group of older adult participants, I explored whether the brain areas involved in processing 

familiar music and language stimuli (as identified by the controlled training paradigm in young 

adults) were consistent with age. I was also interested in understanding whether an age-related 

reduction in synchrony (Campbell et al., 2015; Geerligs et al., 2018) would be apparent when 

older adult participants were presented with audio-only music and language stimuli. To reduce 

the burden of participation and to reduce the length and the number of scanning sessions (one 

session rather than two) older adult participants did not train to become familiar with novel 

stimuli and one of the four stimulus categories was removed (stimuli composed of sung lyrics 

without background instrumentation were excluded). During a single scanning session, older 

adults were presented with the same novel stimuli presented to young adults alongside highly 

familiar stimuli they had known for more than 50 years (detailed in Chapter 5). The familiar 

stimuli also manipulated the presence of language and music. Although the familiar and 

unfamiliar stimuli were not identical (as in the young adult familiarity manipulation), I tried to 

equate the stimuli on characteristics like lead singer voice, instrumentation, and musical style. 

Presenting older adults with the same stimuli as the young adults allowed for an investigation 

into the similarities between the way older and young adults experience identical music and 

language. By comparing highly familiar stimuli in older adults to recently learned stimuli in 

young adults and to novel stimuli in both groups I could further characterize how intersubject 

synchrony changes as a result of repeated exposure over short (3 weeks) and long (50 years) 

periods of time.  

Division of data across chapters 

Across all chapters, the presented data were collected from a single group of 26 young 

adult participants and a single group of 15 older adult participants. Details regarding which 

stimuli were used in each chapter can be found in Appendix C.  

In Chapter 2, I used univariate GLM analyses and multivariate analyses to examine 

neural responses to musical familiarity across young adult participants only. The data collected 
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while young adults listened to short 10-sec clips of stimuli in both scanning sessions were used 

for these analyses. 

In Chapter 3, I used intersubject synchrony measures to investigate how repeated 

exposure to a stimulus changes the degree of synchrony across a group of young adult 

participants only. The data collected while young adults listened to 5-minute-long stimuli in both 

scanning sessions were used in the intersubject synchrony analyses. 

In Chapter 4, I investigated age-related differences in how stimuli with music and 

language are processed in a second GLM analysis. I combined a subset of the young adult data 

from the first scanning session used in the GLM analysis described in Chapter 2 with the data 

collected while older adults listened to the same short 10-sec clips of stimuli. I also investigated 

how intersubject synchrony differed based on the presence of music and language and whether 

those differences were consistent across young and older adults. I combined a subset of the 

young adult data from the first scanning session used in the intersubject synchrony analysis 

described in Chapter 3 with the data collected while older adults listened to the same 5-minute-

long stimuli.  

Finally, in Chapter 5, I investigated whether the effects of long-term familiarity with a 

stimulus (more than 50 years) on synchrony in older adults were similar to the effects of shorter-

term familiarity (3 weeks) on synchrony in young adults. I combined the data collected while 

older adult participants listened to the highly familiar stimuli with a subset of the data collected 

while older adults listened to the novel 5-minute-long stimuli used in Chapter 4. The results were 

compared to what was found in young adults in Chapter 3, but the young and older adult 

familiarity data were not combined into a single analysis. 
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Introduction 

Music and language abilities are closely related. At the sensory level, both music and 

language involve acoustic stimuli arranged in structurally meaningful ways. For example, both 

involve small units (music notes or words) that are combined using specific rules to create larger 

units (melodies/songs and sentences/stories). Cognitively, the comprehension of both music and 

language involves creating expectations about what comes next in a series of sounds (Patel, 

2008), using learned rules (e.g. syntax) to interpret the input (Jackendoff, 2009; Jackendoff & 

Lerdahl, 2006), and requires the use of memory (Daneman & Merikle, 1996; Zatorre & Gandour, 

2008). Although they rely on similar processes, there is evidence to suggest that both 

overlapping and distinct networks are involved in music and language. 

Perceiving music and language activates overlapping brain networks. EEG data shows 

that words and music are closely related in the early stages of cognitive processing (within the 

first 300-500ms following the perception of the sound; Gordon et al., 2010) and fMRI studies 

provide evidence for anatomically similar networks. For example, Broca’s area, the superior 

temporal sulcus, the superior temporal gyrus, the insula, and the frontal pole are known to be 

involved in the language network, and these areas are also active in music processing (Fadiga et 

al., 2009; Hymers et al., 2015; Koelsch et al., 2002; Merrill et al., 2012; Schön et al., 2010). One 

cognitive ability common to both music and language is memory. In the short term, language and 

music unfold over time and therefore require the initial inputs to be held in mind for subsequent 

inputs to be understood (Peretz & Zatorre, 2005). For example, to understand the end of this 

sentence you need to be able to remember what the beginning of the sentence was about 

(Daneman & Merikle, 1996). In music, individual or groups of notes need to be remembered to 

make sense of a melody. Long-term memory of music and language is responsible for our ability 
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to sing along with a song or recite a poem from memory. Similar to a ‘word lexicon’ that stores 

all of the words that we know (Mohanan, 1982), there is evidence for a ‘musical lexicon’ (Peretz 

& Coltheart, 2003) that contains representations of the music that we know. Long-term memory 

results from mapping a perceived sound, whether it is a melody or a sentence, onto a stored 

representation and making a decision about whether the sound is new or not. Therefore, both 

music and memory rely on short-term auditory memory to make sense of the components of a 

sound sequence, and on long-term stored representations to judge whether an incoming sequence 

is novel.  

Evidence for distinct music and language networks is largely driven by clinical case 

studies of patients with a deficit in either music or language abilities that leaves the other ability 

intact. For example, individuals with acquired or congenital amusia recognize spoken words and 

lyrics but are unable to recognize tunes and melodies (Ayotte et al., 2002; Griffiths, 1997; Peretz 

et al., 1994; Piccirilli et al., 2000). The opposite deficit also exists. Some individuals with brain 

damage may have verbal agnosia (word deafness) and are unable to recognize spoken words but 

are able to recognize nonverbal sounds, including music (Metz-Lutz & Dahl, 1984; Takahashi et 

al., 1992; Yaqub et al., 1988). Further evidence for distinct networks for music and language 

comes from the speech-song illusion, in which the repetition of a spoken phrase creates the 

perception of a song (Deutsch et al., 2011). One study found that distinct areas in the fronto-

temporal cortices are active when the repeated phrases are perceived as song but not when the 

same phrases are perceived as speech (Tierney et al., 2013) indicating that the neural difference 

is based on the perception of the phrase as language or music. Most recently, 

electrocorticography (ECoG) measured from the temporal cortex of individuals listening to a 

variety of sounds (e.g. birds chirping, individuals speaking, and music) found groups of neurons 

that responded specifically to songs and were distinct from those neurons that responded to 

language (Norman-Haignere et al., 2019). 

There is also compelling evidence for a musical memory system that is distinct from 

that for language, despite the similar role that memory plays in these two abilities. Two patients 

with medial and lateral temporal lobe damage demonstrated severe deficits in visual and verbal 

memory, but intact musical memory (Esfahani-Bayerl et al., 2019; Finke et al., 2012) while a 

third patient experienced the opposite deficit: intact verbal memory with a severe, music specific 
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agnosia (Peretz, 1996). Musical memory is also spared in some individuals with 

neurodegenerative disorders such as Alzheimer’s disease, even in the context of deteriorating 

semantic memories (Baird & Samson, 2009; Cuddy et al., 2012; Cuddy & Duffin, 2005; 

Jacobsen et al., 2015; Slattery et al., 2019; Vanstone & Cuddy, 2010). For example, patients with 

the expected grey matter atrophy profile associated with Alzheimer’s Disease had impairments in 

semantic memory but intact musical memory, which was supported by a network that included 

bilateral supplementary motor cortex and left anterior superior temporal cortex (Slattery et al., 

2019). The patterns of atrophy (whether from acute damage or a degenerative disorder) that 

selectively affect some memory systems more than others lends support to the idea that there are 

separate networks for musical and verbal memory.  

 Although there is general agreement that musical memories are spared in 

neurodegenerative disorders, a recent meta-analysis found little consistency in the brain areas 

involved in memory for music (Freitas et al., 2018). Generally, the recognition of familiar music 

appears to rely on a fronto-temporal network (Agustus et al., 2018; Groussard et al., 2009; 

Halpern & Zatorre, 1999; Herholz et al., 2012; Jacobsen et al., 2015; Plailly et al., 2007; Sikka et 

al., 2015; Slattery et al., 2019) along with supplementary motor areas (Agustus et al., 2018; 

Herholz et al., 2012; Pereira et al., 2011; Peretz et al., 2009; Slattery et al., 2019) and basal 

ganglia structures (Agustus et al., 2018; Pereira et al., 2011; Sikka et al., 2015). However, no two 

studies are in agreement about the brain areas necessary for musical memory.  

In this study, we investigated which neural networks are responsible for the processing 

of music and language and how they are affected by memory for the stimuli. To our knowledge, 

only one other study has investigated how memory for music and memory for language interact 

(Saito et al., 2012). In that study, participants listened to familiar and unfamiliar children’s songs 

(recreated on voice-synthesizing software) while undergoing an O15 PET activation scan. The 

analysis uncovered separate networks for the retrieval of familiar music and language. Familiar 

music stimuli recruited the right middle temporal sulcus and bilateral temporo-occipital cortices, 

and familiar language stimuli recruited the left fusiform gyrus and the left inferior occipital 

gyrus, adding to the disagreement in the literature regarding which areas are involved in musical 

memory.  
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To expand on previous work, the stimuli in the current study were designed to be as 

similar to what is heard ‘in the real world’ as possible and to manipulate the presence or absence 

of music and language. Previous experiments have differed in the type of stimuli used to probe 

musical memory with some stimuli containing music with language (e.g. songs with lyrics) and 

others containing music without language (e.g. classical musical excerpts), but it is unknown 

how the presence or absence of language influences memory for music. To understand how 

music and language interact during learning and memory formation, four stimulus conditions 

were created: (1) whole music (music and words together), (2) instrumental music without 

words, (3) a capella (sung words, no instruments), and (4) spoken words. This allowed for an 

assessment of whether the effect of memory differed based on music or language content and 

whether stimuli with more information (i.e. music AND language, rather than each 

independently) would be remembered differently. 

Participants completed a strict training paradigm to control for their knowledge of the 

stimuli. This training process is in contrast to studies that compare novel music to music made 

familiar over a lifetime. Relying on lifetime exposure to a piece of music makes it impossible to 

control familiarity across participants and, therefore, to untangle the differences between 

memory for the music and the autobiographical memories linked to the music. Additionally, 

learning music shortly before a retrieval phase (e.g. Alonso et al., 2016; Esfahani-Bayerl et al., 

2019) may not accurately produce the level of familiarity that occurs ‘naturally’ with repeated 

exposure over longer time periods. Therefore, the training paradigm in this study was designed to 

mimic exposure to music over time while carefully monitoring the amount of exposure. 

Participants listened to the music through a specialized music player that tracked the number of 

times a participant heard each stimulus. The training process created an objective measure of 

familiarity with the stimuli and allowed for comparisons between stimuli that differed only in the 

participant’s degree of familiarity. By carefully manipulating the presence of language and the 

degree of familiarity, this study’s aim was to bring some clarity to the disagreement in the field 

and to better understand the relationship between the neural networks responsible for music and 

language and how they interact with memory abilities. 
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Methods 

Ethics 

Ethics approval for this project was granted by the Health Sciences Research Ethics 

Board at The University of Western Ontario (#100606, #114263). 

Participants 

Twenty-six neurologically healthy, English-speaking participants (14 female) aged 18-

39 (mean=24 years) were recruited at The University of Western Ontario. All participants had 

completed at least some post-secondary education and nine participants had completed some 

post-graduate education. Using the Goldsmith’s Musical Sophistication Index (Müllensiefen et 

al., 2014), 17 participants reported having formal musical training (1-10yrs, mean=4.5yrs), but at 

the time of testing only 9 of them played instruments regularly. Seven participants were fluent in 

a second language. All participants reported listening to music regularly (average 1.5 hours per 

day) via a phone, computer, or car radio. No further data on the diversity of the participants’ 

backgrounds were collected and therefore, no comment can be made on whether the results from 

the current sample of participants is generalizable to a more diverse sample.  

Two individuals withdrew from the study following the first scan session and data from 

four individuals were not included in the analysis because the average scores on the behavioural 

memory tests (lyric modification and melody memory test – details below) were lower than 70% 

correct. FMRI data from 20 individuals were included in the analysis. 

Stimuli 

Stimuli were similar to those regularly encountered in the real world, and the presence 

of language and music were manipulated. Stimuli were created from the lyrics and music of eight 

different songs written and recorded by one of the authors (A.M.O) between 1997 and 2006 for 

an amateur rock band based in Cambridge, UK. Thus, all stimuli were completely novel to the 

Canadian participants. The original songs were all written in a similar style and instrumentation 

included a lead singer, bass, drums, guitar, string instruments, and backing vocals, each recorded 

on separate tracks. Stimuli from the band’s original repertoire were selected based on having 

male vocals only (over some that included female vocals). All stimuli were recorded using the 

exact same equipment directly to digital hard drive using the Sonar software (by Cakewalk) and 
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a ShureSM58 microphone. Where the same instruments appear across stimuli (violin, cello, 

drums, guitar, etc.) the same physical instruments were used. 

Four conditions were created by modifying the original eight songs to include only 

certain tracks: (1) whole music (music and words together in a fully intact version of each song), 

(2) instrumental music without words (all vocal parts were removed, leaving just the non-vocal 

instrumentation), (3) a capella (all non-vocal instrumentation was removed leaving just the lead 

and backing vocals), and (4) spoken words (the lyrics of each song were rerecorded in spoken 

form by the original lead singer to have a similar length, tempo, and emotional intonation as their 

original song counterparts). There were two different stimuli for each condition, and none of the 

original songs were used for more than one condition.  

The stimuli varied in length from 3:00 - 4:03 minutes. However, during the fMRI scan 

sessions, participants heard only 10-s clips taken from the stimuli. Equal numbers of clips were 

taken from the beginning, middle, and end of the stimuli. Clips were taken from both verses and 

chorus and were chosen such that musical phrases were not interrupted within the clip. Each of 

the 10-s clips were normalized to equate their perceived loudness using the Audacity software 

(Audacity Team, 2020). Further details regarding the acoustic characteristics were determined 

using the Praat software (Boersma & Weenink, 2018) and can be found in Table 1. During the 

training period, participants listened to half of the stimuli (4 stimuli, 1 per condition) via an 

online audio player. The full stimuli, as well as the 10-s clips, can be found in the supplementary 

information.  

 

Table 1. A summary of the average acoustic characteristics (as determined by Praat software) for the 10-s stimulus 

clips used in this experiment 

 
average pitch 

(Hz) 

average pitch range 

(Hz) 

average harmonicity 

(dB) 

average tempo 

(bpm) 

a capella music 229.79 398.14 11.82 135 

instrumental music 146.71 524.86 4.36 162 

spoken word  105.97 528.55 8.62 - 

whole music 138.27 622.37 3.92 156 
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There were a total of four learning categories of stimuli: ‘to be learned’ refers to the 

novel stimuli heard in the first scanning session that the participant subsequently listened to over 

the training period; ‘not to be learned’ refers to the novel stimuli heard in the first scanning 

session that the participant did not listen to over the training period; ‘learned’ refers to the stimuli 

heard in the second scanning session that the participant listened to over the training period; and 

‘not learned’ refers to the stimuli in the second scanning session that the participant did not listen 

to over the training period. The ‘to be learned’ and ‘learned’ stimuli were identical for each 

participant, as were the ‘not to be learned’ and ‘not learned’ stimuli. The sets of stimuli that were 

learned were counterbalanced across participants: half the participants familiarized with one half 

of the stimuli; the other half of the participants familiarized with the other half of the stimuli 

(Groups A and B; see Table 2). 

Procedure 

Participants completed two functional MRI scans that were separated by a stimulus 

training period (14-29 days; mean = 20 days). During both scans, participants passively listened 

to the stimuli. During the training period, participants listened to the stimuli via an online audio 

player (designed in-lab) that tracked the number of times each stimulus was played. Participants 

were asked to listen to the stimuli at least 5 times per week. To ensure participants were engaged 

while listening, the player presented a simple question about the stimulus (e.g. “Were there lyrics 

present in the previous song?”) at random between stimuli. A response was required to move to 

the next stimulus. Participants were encouraged to incorporate the music into their everyday lives 

(i.e. to listen while cooking or driving). 

Behavioural familiarity tasks 

Participants came to the lab every few days to complete a total of four behavioural 

testing sessions between their two scans. In each session, participants listened to the stimuli and 

completed a series of behavioural tasks. Each session lasted less than one hour, and the 

behavioural tasks described below were distributed across sessions.  

We created two tests to track participants’ familiarity with the stimuli. The first was a 

lyric modification task that visually presented participants with two sentences. One sentence was 
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a lyric taken directly from the participant’s training stimuli group and the other sentence was a 

modified version of the same lyric. Participants indicated which of the sentences was correct. 

The correct and incorrect lyric pairs were tested for validity prior to the study to ensure that 

modified lyrics were chosen at least equally as often as original lyrics in naïve listeners. Two 

versions of the task were created to probe learning of the lyrics in the stimuli learned by groups 

A and B (see Table 2). Due to there being a larger number of word repetitions in the group A 

stimuli, more lyric pairs were included in the lyric modification task for group B to account for 

the larger number of unique words in the group B stimuli. 

Before the first scan session, participants were tested on the full set of lyric pairs, but as 

they were not yet familiar with any of the stimuli, they were asked to indicate which lyric they 

believed was most likely to come from a real song. During the behavioural sessions, participants 

were presented with a randomly generated subset of 10 lyric pairs to track learning progress. 

Participants were tested on the full set of lyric pairs again after the second scan session. Only 

conditions that contained words (whole music, a capella, and spoken) were tested (see Table 2). 

The second test of familiarity was a melody recognition task. After the second scan 

only, participants listened to 23 pairs of 2 sec clips taken from the stimuli. Three-four clips were 

taken from each stimulus and none of the clips contained any lyrics. Melodic information was 

extracted from the a capella stimuli using the Praat program (Boersma & Weenink, 2018). 

During the task, participants were presented with one clip taken from a stimulus the participant 

trained on and a second clip from a stimulus the participant did not train on (in a randomized 

order). Participants indicated which of the two clips was most familiar to them. Only conditions 

that contained melodies (whole music, a capella, and instrumental) were tested (see Table 2). 

To ensure the familiar stimuli were truly familiar, any participant who scored an 

average of 70% correct or less across the two tasks was excluded from further analyses. 

Preference ratings 

In each lab session and after the second scan, participants rated from 1-5 how much they 

liked the stimuli, allowing us to track changes in preference with increased familiarity. 
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Table 2. Description of how the stimuli were counterbalanced across participants and how the behavioural tasks 

were designed to probe learning of both music and language.  

Eight different stimuli 1 2 3 4 5 6 7 8 

Conditions 
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Group A participants 
(N=11) Learned Not learned 

Group B participants 
(N=9) Not learned Learned 

Lyric modification task 

x  x x x  x x 
Group A task 

21 lyric pairs 

(probing learning in stimuli with 

language) 

Group B task 
29 lyric pairs 

(probing learning in stimuli with 

language) 

Melody recognition task 

x x  x x x  x 
Group A task 

(probing learning in stimuli with 

music) 

Group B task 
(probing learning in stimuli with 

music) 

 

Online Task Verification 

A separate cohort of 32 participants completed an online version of the same lyric 

modification task described previously without training on the stimuli. The online study was used 

to determine whether an increase in scores from the first to last sessions could be attributed to 

training with the stimuli or simply due to exposure to the lyric modification task. The task was 

completed via online surveys that were emailed to participants at time intervals that mimicked 

the original study. Participants were asked to complete the surveys within 24 hours of receiving 

the email.  

During the first session participants completed the full set of lyric pairs and then 

listened to all eight stimuli once. Participants were randomly assigned to one of two groups to 

match the counterbalanced training groups from the original study. In each of the subsequent 

four sessions, participants completed a short survey of 10 lyric pairs from the stimuli in their 

‘learning’ group. In the final session, participants listened to all eight stimuli for a second time 

and completed the full set of lyric pairs mimicking the order of events from the original study. 

Participants only listened to the stimuli in the first and last online sessions and did not have 
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access to the stimuli in the interim period. No fMRI data was collected from participants 

completing the online study.  

fMRI acquisition and analyses 

Imaging was conducted at the Robarts Research Institute on a Siemens Magnetom 7 

Tesla scanner with a 32-channel head coil. Functional scans were acquired with 54 slices per 

volume (TR = 1.25 s; TE = 20 ms; flip angle = 35°; FOV = 220 x 220 mm; voxel size = 2.5 

mm3). The two scan sessions (before and after the training period) were identical and included 

two 12-minute functional runs. Participants heard ten 10-second clips from each of the 8 stimuli 

(80 clips total) that were randomized across the two runs (40 clips in each run). Half of these 

clips were ‘to be learned’ in the first session, and ‘learned’ in the second session, while the other 

half were ‘not to be learned’ in the first session and ‘not learned’ in the second session. Between 

functional runs in the first session only, a whole-head anatomical scan was acquired (TR = 6s; 

TE = 2.69 ms; FOV = 240 x 240 mm; voxel size = 0.75 mm3; 208 slices). 

Data were processed using SPM12. Data were corrected for motion and coregistered to 

the participant’s structural image. Images were normalized to MNI space and smoothing was 

done with a Gaussian kernel of 8 mm FWHM. Subject-specific first-level models combined data 

from all four runs (two from the first session and two from the second session) and included 

epochs representing each of the 10-second stimulus clips convolved by the canonical 

hemodynamic response function. Covariates of no interest, representing six motion parameters 

(x, y, z, translation and rotation) were also included. Serial correlations were accounted for using 

an autoregressive model and low-frequency noise was removed with a high-pass filter of 128s. 

Contrast images from single-participant models were created for each of the eight stimuli vs rest 

in each session for a total of 16 contrast images per subject. The 16 contrasts were then entered 

into a second-level full-factorial model for group level analysis. The second-level model factors 

were session (8 stimuli in the first session, 8 stimuli in the second), stimulus type (2 stimuli for 

each of the 4 types in each session), and learning condition (4 session one stimuli – to be learned, 

4 session one stimuli – not to be learned, 4 session two stimuli – learned, 4 session two stimuli – 

not learned).  

Contrasts probing differences in stimulus type, learning condition, and session were 

generated at the group level. To probe differences in memory, a 2(session) x 2(learning) 
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ANOVA was conducted within each of the four stimulus types. For each stimulus type, the main 

effect of session was calculated by comparing session 1 and session 2(e.g. [a capella not to be 

learned + a capella to be learned] vs.[ a capella not learned + a capella learned]). These t-

contrasts were calculated in both directions (session 1 > session 2; session 2 > session 1). The 

main effect of learning in each stimulus type was calculated both across sessions and within 

session 2. Learning across session compared session 1 to be learned with session 2 learned (e.g. a 

capella to be learned vs. a capella learned) and learning within session compared session 2 

learned with session 2 not learned (e.g. a capella learned vs. a capella not learned). These t-

contrasts were generated in both directions. Finally, interaction contrasts were generated within 

each stimulus type: ([to be learned – not to be learned] – [learned – not learned]). To probe 

differences in language, pairwise contrasts were created between each of the four stimulus 

categories (a capella vs. instrumental, a capella vs. spoken, a capella vs. whole, instrumental vs. 

spoken, instrumental vs. whole, and spoken vs. whole). These t-contrasts were generated 

separately in each session. Bayesian statistics were implemented using built-in SPM12 functions. 

To test for more subtle changes in the patterns of brain activation between conditions we used a 

multivariate representational similarity analysis (RSA). The RSA was implemented using The 

RSAToolbox (Diedrichsen et al., 2016) in 12 bilateral Harvard-Oxford defined regions of 

interest (ROIS; atlas distributed with the FSL software package http://fsl.fmrib.ox.ac.uk/fsl/). 

The ROIs were selected on the basis of a meta-analysis that identified these areas as being 

involved in memory for music (Freitas et al., 2018) (see Table 3). 
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Table 3. Areas identified by more than one study in the meta-analysis by Freitas, et al (2018) as being involved in 

memory for music. ROI templates from the Harvard-Oxford atlas were used.  

Area Name Harvard-
Oxford division 

Insular cortex 2 

Superior frontal gyrus 3 

Middle frontal gyrus 4 

Inferior frontal gyrus (triangularis) 5 

Inferior frontal gyrus (opercularis) 6 

Precentral gyrus 7 

Superior temporal lobe (anterior) 9 

Superior temporal lobe (posterior) 10 

Middle temporal gyrus (anterior) 11 

Middle temporal gyrus (posterior) 12 

Cingulate gyrus (anterior) 29 

Cingulate gyrus (posterior) 30 

 

 

Results 

Participant Training 

Participants listened to the stimuli an average of 13 times (from 6-20 listens) over an 

average of 20 days (from 14-29 days).  

Behavioural familiarity tasks  

Participants significantly improved on the lyric modification task over the training 

period (see Figure 1). During the first session participants scored an average of 36% correct, 

which was significantly lower than the average 82% correct score during the final session (t(34)= 

-12.3, p<0.011, d=2.62; with 3 participants scoring over 90%). The below-chance performance 

of individuals during the first session is due to how the lyric modification pairs were created. The 

lyric pairs were designed such that the modified lyrics were chosen at least as often as the 

original lyrics in naïve listeners. Often, to make the meaning of the new lyric seem plausible, we 

made choices that made the lyric seem more likely than the original (when songwriters write 

lyrics, word choices are often not made based on plausibility, but on intended meaning whether 

Chapter 2. Effect of familiarity on neural representations 31



plausible or not). Thus, as a result of finetuning our lyric pairs there were a number of modified 

lyrics that were initially chosen more often than the original.  

There was no difference in average scores between the two learning groups in the final 

session (A: 80% vs. B: 85%; t(15)= -0.66, p=0.52, d=0.3). Scores from the first behavioural 

testing session 69% correct, t(32)= -3.2, p=0.003, d=0.86), the second behavioural testing 

session (71% correct, t(30)= -2.5, p=0.02, d=0.83), and the third behavioural testing session 

(70% correct, t(30)= -2.6, p=0.02, d=0.71) were also significantly lower than the scores recorded 

during the final testing session. The scores recorded in the fourth behavioural testing session did 

not significantly differ from the scores recorded during the final session (79% correct, t(30)=-0.7, 

p=0.49, d=0.18). Scores on the lyric modification task did not differ between the three conditions 

tested (spoken, whole, a capella). 

 

Figure 1. Scores on the lyric modification task across all sessions averaged across the two learning groups. Boxplots 

show the average, minimum, and maximum correct scores within each session. The average score in each session is 

listed within each box. The average number of times participants listened to the stimuli between each session is 

listed above the figure. Significant differences in scores between sessions are shown (* = p<0.05) 
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In the online task verification study, there was a significant increase from the first 

session (average 35%) to the last session (average 50%) (t(121) = -6.30, p<0.001, d=0.84; see 

Figure 2). However, when comparing the ‘not learned’ stimuli (i.e. Group A doing the group B 

task and Group B doing the group A task – outlined in red), and the ‘learned’ stimuli (i.e. Group 

A doing the group A task and Group B doing the group B task – outlined in blue), there was no 

interaction between learning and session. 

 

 

 

A 2x2 mixed measures ANOVA with session (first, last) and experiment (fMRI, online) 

was performed to compare learning in the fMRI and online experiments. There was a main effect 

of experiment, with participants performing better in the fMRI experiment (F(1,164) = 45.5, 

Figure 2. Thirty-two participants completed an online version of the lyric modification task without training 

on the stimuli to determine whether the increase in scores seen in the original experiment was due to 

exposure to the task itself rather than learning of the stimuli. Error bars represent plus/minus one standard 

deviation. Red and blue boxes highlight scores representing the ‘not learned’ or ‘learned’ stimuli 

respectively. Average scores are listed on the ‘before scan 1’ and ‘after scan 2’ bars directly. 
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p<0.001, η²=0.12) and a main effect of session, with participants performing better in the final 

session (F(1,164) = 124.7, p<0.001, η²=0.33). However, these must be interpreted in light of a 

statistically significant interaction between session and experiment (F(1,164) = 46.2, p<0.001, 

η²=0.12, Figure 3).  

 

 

Figure 3. Lyric modification scores from the first and last sessions of the fMRI and online experiments. 

 

Examination of mean scores in Figure 3 clearly shows that, while both groups of 

participants began at similar levels, the group who actively trained on the stimuli improved 

significantly more over time than the group who were merely tested repeatedly over the same 

timeframe. Thus, for the first session, scores from the online study did not differ from the fMRI 

study (36% vs 36%, t(28)=0.04, p=0.97, d=0.01), while, for the final session, scores from the 

online study were significantly lower than the fMRI study (50% vs. 82%, t(47)= -11.2, p<0.001, 

d=2.34; Figure 2). These results indicate that although exposure to the task alone did increase 

scores, it was not enough to explain the substantial improvement in the experimental group who 

trained on the stimuli over the same time period.  
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Participants scored an average of 92% (SD=6.4) on the melody memory task completed 

during the second session, indicating that they were near ceiling at recognizing the melodies of 

the stimuli they heard during the training period.  

Before the training period, participants’ preference ratings across all stimuli were an 

average of 2.9/5. After the training period there was no change in participants’ preference ratings 

of the stimuli (t(38)=-0.17, p=0.87, d=0.07). This was true for all types of stimuli. Average 

preference ratings for each stimulus type over all testing sessions can be found in Table 4. There 

was a significant difference in preference based on the type of stimulus (F(3,796)=93.82, 

p<0.001, η²=0.26). On average, the participants liked the whole stimuli significantly more than 

the a capella (t(398)=9.19, p<0.001, d=1.02) or the spoken stimuli (t(398)=13.29, p<0.001, 

d=1.04). Preferences for the instrumental stimuli did not differ from the whole stimuli 

(t(396)=0.77, p=0.44, d=0.08). Participants also preferred the instrumental stimuli over the a 

capella (t(396)=9.64, p<0.001, d=0.97) and spoken stimuli (t(398)=13.61, p<0.001, d=0.95). 

Participants preferred the a capella stimuli over the spoken stimuli (t(398)=4.32, p<0.001, 

d=0.33). 

Table 4. Preference ratings for the stimuli averaged over all testing sessions 

Stimulus type Average preference rating 

Whole 3.55 ± 1.07 

Instrumental 3.64 ± 1.14 

A capella 2.57 ± 1.06 

Spoken 2.10 ± 1.11 

 

fMRI Results 

Memory 

For each subject, all first-level contrasts for the 16 stimuli (8 different stimuli across 2 

sessions) were entered into a second-level full-factorial model using SPM12. For each of the four 

stimulus types (whole, instrumental, a capella, and spoken) a 2x2 ANOVA was performed to test 

for significant effects of learning and session. Eight contrasts (two for each stimulus type) were 

created probing average stimulus differences in session 1 vs. session 2 (session 1 > session 2; 

session 2 > session 1). Eight contrasts (two for each stimulus type) were created probing learning 
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across session (session 1 to be learned > session 2 learned; session 2 learned > session 1 to be 

learned). Eight contrasts (two for each stimulus type) were created probing learning within 

session 2 (session 2 learned > session 2 not learned; session 2 not learned > session 2 learned). 

Four interaction contrasts (one for each stimulus type) were created probing the interaction 

between session and learning ([to be learned – not to be learned] – [learned – not learned]). 

There were no significant main effects or interactions between learning and session for any of 

the four stimulus types in any of the contrasts listed above (all: t<3.7, p>0.6).  

We further investigated the pairwise comparisons’ null results using the built-in 

Bayesian statistics toolbox in SPM12 (default Cohen’s d = 1.0). The toolbox reports evidence in 

support of the alternative hypothesis (i.e. evidence in support of a significant difference between 

conditions). However, we were interested in the opposite evidence in support of the null 

hypothesis (i.e. evidence in support of no difference between conditions). Therefore, a custom 

script was created to extract areas which supported the null hypothesis at a Bayes Factor level of 

1/50 (very strong evidence for the null; Stefan et al., 2019). Applying Bayesian statistics to the 

two pairwise contrasts described above showed that activity levels in several brain areas were 

very likely not to significantly differ between conditions. Thus, the areas highlighted in Figure 4 

are statistically 50x more likely to not differ (i.e. in support of the null) than they are to differ.  
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Figure 4. Bayesian statistical results for two contrasts at BF = 1/50. Left panel:  session 2 learned stimuli > session 1 

to be learned stimuli (identical stimuli differing in familiarity only). Right panel: session 2 learned stimuli > session 

2 not learned stimuli (different stimuli). Bayesian statistics were only applied to areas of the brain in which data was 

acquired in all 20 participants (shown in blue). Thus, for example, the lack of statistics in the area of the basal 

ganglia reflects the fact that not all 20 participants contributed data in that area. Crosshairs are at x = 35, y = -18, z = 

9. 

 

Finally, a representational similarity analysis (RSA) probed for differences in voxel 

activity patterns generated by the learned and not learned stimulus conditions across the two 12-

min functional runs in the second session. Within the 12 regions of interest, ß-weights for each 

individual and each stimulus type were extracted and spatially pre-whitened using an estimate of 

the overall noise-covariance matrix (Walther et al., 2016) resulting in the remaining noise in each 

voxel being approximately uncorrelated with the noise in other voxels (Diedrichsen et al., 2016; 

Diedrichsen & Kriegeskorte, 2017). We then quantified the difference between the pre-whitened 

patterns of activity using a “crossnobis estimator” (an unbiased method of determining the 

distance between patterns, as the estimator’s average will be zero if two patterns differ only by 

noise). The resulting distances between the two patterns were plotted as a representational 

dissimilarity matrix (see Figure 5). We compared the four ‘learned’ and the four ‘not learned’ 

stimuli. Negative distances can be interpreted as zero distance, or no evidence of dissimilarity 

between stimulus categories. Mathematically, the negative distance is derived from whether or 

not the distance between the two conditions was consistent across the runs. In this case, there 

Chapter 2. Effect of familiarity on neural representations 37



were two runs included in the analysis and the negative distance is likely a result of the distance 

vectors between the conditions of interest (‘learned’ and ‘not learned’) being in slightly different 

space. When the inner product of the vectors from the two runs is taken, the resultant vector 

length is less than zero. There were no systematic RSA differences between the ‘learned’ and the 

‘not learned’ stimuli across the 12 ROIs. There were RSA differences between the different 

stimulus categories in temporal auditory areas: bilateral anterior and posterior middle temporal 

gyrus and superior temporal gyrus. 
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Figure 5. Distances between the patterns for the ‘learned’ (in red letters) and ‘not learned’ (in black letters) stimuli 

(from the second session), in 12 ROIs. The matrices in the left columns indicate the distance between patterns 

generated by each pair of stimuli. The matrices in the right columns are the corresponding p-values (Bonferroni 

corrected) from a 1-tailed t-test of those distances across all 20 participants. A yellow colour square in the right 

matrix indicates that the t-test on the corresponding square in the left matrix is not significant at a corrected p≥0.05 

level. Any dark blue squares in the right matrices indicate significance at a level of p≤0.01. The diagonal of the 

lower left 4x4 corner of each matrix contains the direct comparisons between the learned and not learned conditions 

(i.e., a cappella learned vs. a capella not learned, instrumental learned vs. instrumental not learned, spoken learned 

vs spoken not learned, and whole learned vs. whole not learned). 
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Language 

Given the lack of main effects or interactions resulting from familiarity with the stimuli, 

and the fact that the stimuli presented in the two scanning sessions were identical, the second 

session was treated as a replication of the first to investigate the reliability of the stimulus type 

differences between sessions. Using the same full-factorial model as described previously that 

contained all 16 first-level contrasts from each participant (8 different songs across 2 sessions), 

pairwise contrasts between each of the four stimulus categories (a capella, instrumental, spoken, 

whole) were calculated within each session. Brain areas with significant activity differences 

between stimulus types are listed in Table 5. Results from the two sessions are shown side-by-

side to show the consistency between the two independently collected sessions. The statistical 

contrasts were only calculated in brain areas that contained data from all 20 participants (shown 

in blue in Figure 4) 

A capella stimuli generated significantly more activity than other stimulus categories in 

auditory areas (posterior superior and middle temporal gyri, planum polare) and left motor areas 

(precentral gyrus) in both sessions (see Figure 6).  

 

 

Figure 6. The left panel shows results from the first scan and the right panel shows results from the second scan. 

Three contrasts are shown: a capella > instrumental music (red), a capella > spoken words (blue), a capella > whole 

songs (green). Crosshairs are placed at x= -51, y= -30, z= 3. 
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Instrumental stimuli generated significantly more activity than spoken stimuli in 

bilateral auditory cortices (planum polare) in both sessions and in the left angular gyrus in the 

second session only (see Figure 7). Instrumental stimuli did not result in more activity than the a 

capella or whole stimuli in either session.  

 

 

Figure 7. The left panel shows results from the first scan and the right panel shows results from the second scan. One 

contrast is shown: instrumental music > spoken words. Crosshairs are placed at x= -53, y= -8, z= 2. 
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Spoken stimuli generated significantly more activity than instrumental and whole 

stimuli in auditory cortices (posterior superior and middle gyri) in both sessions. Spoken stimuli 

also resulted in significantly more activity than instrumental in the left inferior frontal area (pars 

triangularis) in the first session and in the temporal pole in the second session (see Figure 8). 

 

 

Figure 8. The left panel shows results from the first scan and the right panel shows results from the second scan. 

Two contrasts are shown: spoken words > whole music (red), spoken words > instrumental music (blue). Crosshairs 

are placed at x= -50, y= -18, z= 1. 

 

Whole stimuli resulted in significantly more activity than instrumental and spoken 

stimuli in bilateral auditory cortices areas (posterior superior and middle temporal gyri, planum 

polare) in both sessions. Whole stimuli did not produce more activity than a capella stimuli in 

either session. 
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Table 5. Results from binary contrasts between all stimulus categories in both sessions. Significant clusters at FDR 

correction <0.05 are listed. Missing results indicate no significant clusters were found. 

  Session 1 Session 2 

Contrast Region 
p 

FDR <0.05 

Coordinates 
(x, y, z) 

p 
FDR <0.05 

Coordinates 
(x, y, z) 

A capella > 
instrumental 

L posterior temporal  
(superior gyrus) 

<0.001 -52, -38, 2 <0.001 -54, -36, 2  

 R posterior temporal 
(superior and middle gyri) 

<0.001 58, -16, -6 <0.001 60, -26, -2 

 L precentral gyrus  0.068 -52, -2, 46 0.006 -50, -2, 46 

A capella > spoken L planum polare <0.001 -48, -2, -4 <0.001 -48, -4 ,-4 

 R planum polare <0.001 52, -2, 0 <0.001 50, -4, 0 

A capella > whole R posterior temporal 
(superior and middle gyri) 

0.003 60, -18, -4 0.005 56, -28, -2 

Instrumental > a 
capella  

- -  -  -  -  

Instrumental > spoken L planum polare 0.001 -46, -6, -4 <0.001 -46, -4, -6 

 R planum polare <0.001 48, 2, -6 <0.001 48, 2, - 8 

 R planum temporale 0.003 62, -26, 16 - - 

 L angular gyrus - - 0.048 -58, -56, 38 

Instrumental > whole - - - - - 

Spoken > a capella  - - - - - 

Spoken > instrumental L posterior temporal  
(superior gyrus) 

<0.001 -52, -38, 2 <0.001 -54, -36, 2 

 R posterior temporal  
(middle gyrus) 

<0.001 48, -26, -4 <0.001 54, -30, -2 

 L inferior frontal 
(pars triangularis) 

0.014 -52, 22, 16 - - 

 Temporal pole - - 0.018 -50, 14, -16 

Spoken > whole L posterior temporal  
(middle gyrus) 

<0.001 -54, -34, -2 - - 

 R posterior temporal  
(middle gyrus) 

<0.001 52, -22, -6 <0.001 52, -30, -2 

Whole > a capella - - - - - 

Whole > instrumental  L posterior temporal 
(superior and middle gyri) 

<0.001 -52, -38, 2 <0.001 -54, -36, 2 

 R anterior temporal 
(superior gyrus) 

0.006 60, -4, -8 - - 

Whole > spoken  L planum polare <0.001 -46, -6, -4 <0.001 -46, -2, -4 

 R planum polare <0.001 50, -2, 0 <0.001 48, 2, -8 
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Discussion 

In the current study, we set out to understand the relationship between the neural 

networks responsible for music and language abilities and how they are influenced by memory. 

The four stimulus conditions allowed us to compare four combinations of music and language, 

namely, whole music, instrumental music, a capella, and spoken word. Using a novel 

methodological approach consisting of a strictly controlled training paradigm, we isolated natural 

exposure to music while controlling for autobiographical memory confounds. We monitored the 

number of times each stimulus was heard by participants, creating an objective measure of 

familiarity. 

To track familiarity with the language component of the stimuli, participants identified 

correct lyrics in a forced choice paradigm. Scores on the lyric modification task improved during 

the training period (i.e. between the two fMRI scans), providing objective verification that the 

stimuli had, in fact, become more familiar over time. Moreover, the online follow-up study 

confirmed that performance improvement was the result of training exposure, rather than simply 

repeated exposure to the task itself. To track learning of the melodic component of the stimuli, 

participants identified familiar melodies in a forced choice task. This task was completed after 

the second fMRI scan session. Performance was near ceiling. The results from these two tests 

indicate that the participants became familiar with both the language and the musical 

components of the stimuli over the training period.  

FMRI responses to the four stimulus types differed. This result can be seen in the 

representational similarity analysis in the anterior and posterior middle and superior temporal 

gyri as well as in the GLM contrast analyses. Because familiarity did not significantly affect 

activation to the stimuli, we treated the two scanning sessions separately in the GLM contrast 

analysis, replicating the comparisons between different stimulus types in each session. The three 

conditions that contained music (a capella, instrumental, and whole music) activated the bilateral 

planum polare more than the spoken condition did. The planum polare activity did not differ 

between the three musical conditions. The planum polare, along with the inferior frontal gyrus 

(IFG), has been shown to play a role in processing language and musical syntax, with increasing 

stimulus complexity resulting in more activation (Bookheimer, 2002; Brown et al., 2006; 

Constable et al., 2004; Griffiths et al., 1998; Merrill et al., 2012). It may be that the lack of 
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planum polare activation differences between the three music conditions is due to the highly 

controlled nature of the stimuli. The stimuli that contained music were written by the same 

individual and likely did not differ in musical complexity however, as these stimuli contained 

more musical information than the spoken condition, planum polare activation may have been 

greater as a result.  

The left IFG was significantly more active in the spoken than in the instrumental 

condition. Despite the IFG’s known involvement in musical and language syntax processing 

(Brown et al., 2006; Kunert et al., 2015; Merrill et al., 2012), the significant difference in 

activation was only seen in the one comparison (i.e. not seen in the a capella-instrumental or 

whole-instrumental comparisons). The activation difference between the spoken and 

instrumental conditions was in the opposite direction to that seen in the planum polare (where 

more activity to instrumental music than to spoken stimuli was found). A similar activation 

pattern was reported in another passive listening task that also directly compared music and 

language stimuli: greater activation in planum polare to stimuli with melodic pitch information 

than stimuli without pitch information, and greater activation in IFG to stimuli with language 

information over stimuli without language information (Merrill et al., 2012). In the current study, 

the need to process language syntax information was higher for the spoken stimuli than for the 

instrumental stimuli and is likely the reason for the difference in IFG activation. However, this 

reasoning does not explain why no differences were seen between either the a capella or the 

whole stimuli, which also contained language information, over the instrumental stimuli. It is 

possible that this pattern of results can be explained by an interaction between language and 

musical syntax processing. For example, Kunert et al. (2015) found that IFG activation only 

occurs when both the music and language components of the stimuli are syntactically 

challenging. In the current study, the two stimuli that were most different from each other in 

terms of both musical and language syntax were those in the spoken and instrumental conditions 

leading to the statistically significant difference in IFG activation. 

All three conditions that contained language (a capella, spoken, whole) significantly 

activated bilateral posterior superior and middle temporal gyri more than the instrumental 

condition. These areas have been previously identified in passive listening tasks involving 

speech and non-speech stimuli (Tie et al., 2014; Tremblay et al., 2013) and are ‘voice-selective’ 
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(Belin et al., 2000; Fecteau et al., 2004). During passive listening to vocal (words, phrases, 

sentences, etc.) and non-vocal sounds (machine noises, nature sounds etc.), areas along the 

superior and middle temporal gyri are more active for stimuli with vocalizations than without 

vocalizations (Belin et al., 2000; Fecteau et al., 2004). In a direct comparison between speech 

and musical instruments, the posterior portions of the superior and middle temporal gyri were 

more active to human voice than to non-vocal sounds (Bethmann & Brechmann, 2014). In the 

current study, activity did not differ across the three different conditions involving the voice, 

confirming that these areas are generally active in response to the human voice.  

The current experiment did not include a vocal no-language condition (e.g. humming), 

nor a language non-vocal condition (e.g. computerized language) to dissociate the presence of 

language from the presences of vocal sounds. Although the differences in the bilateral posterior 

superior and middle temporal gyri may be attributable to the presence of vocalizations, rather 

than language, the IFG and the planum polare are not known to be ‘voice-selective’ (Belin et al., 

2000). Therefore, the activation differences in the IFG and planum polare are likely due to 

differences in language and syntax processing between stimulus categories (Merrill et al., 2012).  

It is possible that the differences in acoustic characteristics across stimuli may have 

influenced the results. To mitigate any stimulus-specific effects, two stimuli were included in 

each of the four stimulus conditions, and the stimuli were counterbalanced across learning 

groups such that all stimuli were included in each of the four learning groups (to be learned, not 

to be learned, learned, not learned). Therefore, it is unlikely that a single stimulus could drive the 

differences between conditions, but we cannot definitively state that condition differences were 

completely uninfluenced by acoustic differences between conditions. 

Although the behavioural task results confirmed that participants were more familiar 

with the stimuli during the second fMRI scan than the first, there were no corresponding neural 

changes associated with this behavioural improvement. The Bayesian statistics support this result 

at a Bayes Factor level of 1/50 (i.e. very strong evidence to support no difference between the 

‘learned’ and ‘not learned’ conditions). A representational similarity analysis (a multivariate 

approach that takes into account the subtle pattern variations in brain activation to different 

stimuli) also showed no difference between the ‘learned’ and ‘not learned’ stimuli. One issue to 

consider is that the imaging data were collected at a 7-Tesla magnetic field strength. In high-
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strength magnets, there can be signal loss in some brain areas. Here, signal dropout occurred in 

anterior temporal areas and basal ganglia across the majority of participants. However, primary 

auditory area activity was preserved. Effects of familiarity may be observed at lower field 

strengths in the areas where signal was lost in the current study. It is also possible that the null 

results found in the brain areas with consistent data across all participants were due to undetected 

true effects and an increase in stimulus trials or sample size could increase power. 

The lack of difference between novel and familiar music is in contrast with the results 

of other studies (e.g. Freitas et al., 2018; Halpern & Zatorre, 1999; Herholz et al., 2012) and is 

likely related to procedural differences. In most previous studies, participants listened to stimuli 

that they already knew, such as children’s songs or folksongs (e.g. Alonso et al., 2016; Herholz 

et al., 2012; Saito et al., 2012; Schaal et al., 2015), popular music from the radio charts (e.g. 

Jacobsen et al., 2015; Pereira et al., 2011), or music supplied by the participants (e.g. El Haj et 

al., 2012), and rated their familiarity with the stimuli. Using well-known music does not control 

for the amount of exposure to the stimuli but it does reflect the way individuals generally learn 

and become familiar with music ‘in the real world’. In contrast, in the current study, participants 

learned novel stimuli by listening both in a ‘sterile’ lab environment, as well as out of the lab via 

an online music player and the number of exposures to the stimuli gave an objective measure of 

familiarity. Although participants were encouraged to incorporate the music into their everyday 

lives (i.e. to listen while cooking or driving), few participants reported having done so. 

Participants listened to the stimuli an average of 13 times over the course of the study, which is 

likely fewer times than a well-known song is heard over a lifetime. For example, the number one 

pop song in Canada is played over 5600 times per week across all Canadian radio stations 

(World Airplay Radio Monitor: Real-Time Radio Tracking, 2012). A person may encounter that 

song hundreds of times over the course of their life. Therefore, although the participants learned 

the current stimuli, they did not learn them to the same level as songs ‘in the real world’.  

In addition, the behavioural tests to probe music familiarity may have inflated measures 

of how well participants learned the stimuli because they relied on recognition rather than 

recollection memory. Recognition memory requires a more ‘shallow’ encoding of the stimuli 

being remembered than does recollection (Mandler, 2008). Although participants performed well 

on the recognition tests, we expect that if participants had been asked to sing the stimuli, their 
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recollection would be worse than if they sang a well-known song like, for example, a Christmas 

carol. However, assessing recall of musical information in participants, especially those who are 

not musicians, is difficult to do accurately as it requires the separation of deficits in recall from 

deficits in musical ability. For example, poor singing of a song could be caused by poor song 

recollection or poor singing ability. The reliance on recognition memory tests in the current 

study may have led us to believe that the differences in memory between the novel and familiar 

stimuli were more profound than in actuality.  

When people listen to music in the real world, that listening is often connected with 

many other aspects of life (i.e. people, places, or experiences) making it difficult to separate the 

specific musical memory response in the brain from the neural response to the autobiographical 

memories evoked by that music. One study examined the overlap between musical and 

autobiographical memories evoked by music (Janata, 2009) and identified areas in which 

activation correlated with the degree of autobiographical salience above and beyond the degree 

of familiarity. These areas were located in prefrontal cortex in bilateral superior frontal gyrus 

(Brodmann areas 8 & 9) and in left inferior frontal gyrus (BA 45). These same regions have been 

identified as involved in musical memory in studies that presented individuals with well-known 

music (Groussard et al., 2009; Klostermann et al., 2009; Plailly et al., 2007). It is possible that 

the areas previously attributed to musical memory are in fact activated because of the 

autobiographical memories triggered by the music, rather than by memory for the music itself. In 

this study, the carefully controlled way in which participants learned the stimuli did not allow 

participants to create the autobiographical memories they would have if the music was learned 

‘naturally’. Without such memories, the differences between the brain activity patterns for the 

‘learned’ and ‘not learned’ stimuli are presumably reduced, limiting the ability to detect 

differences based on familiarity with the music alone.  

Participant’s lack of preference for the stimuli, exacerbated by the way the stimuli were 

created, likely also contributed to the lack of familiarity results in the fMRI data. To create the 

different stimulus categories while controlling for as many features as possible, we deconstructed 

whole songs into their component parts. Although spoken word, instrumental music, and a 

capella music are all genres of their own, the way they were created in this study was not 

representative of these genres. For example, to create the instrumental and a capella music 
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stimuli we extracted only the specific lines of interest (instrumental or sung voice) from original 

whole songs. This process resulted in music that was not representative of instrumental and a 

capella music because each line was musically simpler and less interesting to listen to on its own, 

as originally, they were intended to be listened to as part of a larger whole. Similarly, the spoken 

word stimuli were created by recording song lyrics as spoken words. Although similar to poetry, 

the lyrics were not written to be experienced without music and participants informally reported 

that the repetitive nature of the lyrics was not pleasant to listen to as prose. In comparison, the 

whole stimuli were not modified. Participants’ preferences mirrored the amount each stimulus 

was modified: participants preferred the stimuli that were modified the least over those modified 

the most. This pattern was not related to participants’ memory for the stimuli as measured by the 

behavioural tasks. Interestingly, participants’ enjoyment of the stimuli did not increase with 

exposure, as would be expected by the mere exposure effect (an increase in preference as a result 

of repeated exposure; Zajonc, 2001). Although there were no directly negative events associated 

with listening to the stimuli, the requirement to listen to the stimuli daily and the association with 

the lab environment may have been enough to override any mild positive reactions a participant 

may have had from the repeated stimulus exposure, resulting in no change in their preference 

ratings. Using stimuli intended to be experienced as poetry, a capella, or instrumental music 

(rather than deconstructing whole stimuli) may have increased participants’ preference and 

memory for the stimuli, as preferred music is better remembered than non-preferred music 

(Eschrich et al., 2008; Samson et al., 2009; Stalinski & Schellenberg, 2013). However, using 

such existing stimuli would not have allowed control of similarity across the stimulus types (all 

stimuli were written by the same individual, with similar instrumentation, the same voice across 

all stimuli, and from a similar rock genre).  

The present study isolated memory for music from the confounding factor of 

autobiographical memory by asking participants to train on highly controlled novel stimuli. As a 

result, we have come to understand a number of key components that are necessary for musical 

memory. The way individuals engage with music is important for creating a memory for that 

music. The degree of engagement during the learning of music, driven by preference or 

autobiographical memories associated with the music, may speak to why there is such a 

disagreement in the literature about the areas involved in musical memory as it is difficult to 

control for participants’ engagement while maintaining a natural learning process. Further 
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investigations into how musical memory, emotional engagement, and language processing are 

related may be key to understanding what makes memory for music so unique and robust in the 

presence of neurodegenerative disorders such as Alzheimer’s disease.  

Supplementary Information 

The full stimuli and the 10-s clips used during this experiment can be found at the following url: 
https://owenlab.uwo.ca/research/research_tools.html 
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The effect of repetition on intersubject synchrony 
 
 

Introduction 

There is a growing trend in neuroscience to study the human brain using stimuli that 

contain naturalistic complexity rather than artificially constructed laboratory stimuli. Stimuli 

such as movies, audiobooks, or music enhance the ecological validity of studies examining brain 

function. These naturalistic stimuli unfold over time, and therefore require an analysis technique 

that is sensitive to temporal structure. This sensitivity can be gained with neuroimaging analyses 

(EEG, fMRI, or fNIRS) that use intersubject synchrony to detect common stimulus-driven brain 

activity across individuals over time. Intersubject synchrony was first introduced by Hasson et al. 

(2004) to study visual perception during movie viewing using fMRI. Brain areas with similar 

patterns of activity across participants were identified by calculating voxel-wise correlations 

between pairs of participants. They found that activity in large areas of the occipital and temporal 

lobes was correlated across participants over the course of the movie. Since this seminal paper, 

intersubject synchrony has been used to study attention (Ki et al., 2016), memory (Furman et al., 

2007; Hasson et al., 2008), emotion (Trost et al., 2015), speech processing (Wilson et al., 2008), 

music perception (Abrams et al., 2013), consciousness (Naci et al., 2014), and brain function in 

clinical populations (Anderson et al., 2013; Hasson et al., 2009; Lyons et al., 2020). Intersubject 

synchrony analyses of naturalistic stimuli provide novel insight into how the brain functions in 

the world outside of the laboratory, but the way stimulus characteristics affect synchrony have 

not been fully characterized. 

The contents of a stimulus, like the presence of language, affects intersubject 

synchrony. Audio-only movie (Naci et al., 2017) or audiobook excerpts (Regev et al., 2019; 

Simony et al., 2016) have successfully induced intersubject synchrony in fronto-temporal 

networks related to the cognitive processing of the stimulus. In contrast, instrumental music (e.g. 

theme songs from movies) produced synchrony in primary auditory cortex as well as bilateral 
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thalamus, and motor planning regions (Abrams et al., 2013; Naci et al., 2017). Thus, different 

stimuli (e.g., music, stories, movies) elicit intersubject synchrony in different brain areas, but 

only one study has included a direct comparison of the effects of different stimulus types on 

synchrony (Naci et al., 2017). In this study, the researchers found that there was more synchrony 

to stimuli with language than to stimuli without language when comparing synchrony to audio-

visual movie clips, audio-only movie excerpts, and tv-show theme songs. However, the presence 

of language and other stimulus characteristics (like visual information or music) were not 

systematically varied and the data were not collected from the same group of participants. 

Further evidence for the role of language in inducing intersubject synchrony was found when 

participants watched two different audio-visual stimuli and greater synchrony was observed to 

the Alfred Hitchcock movie ‘Bang! You’re dead’ (a highly suspenseful film with a coherent 

narrative) than to a real-life video of people walking through Washington Square Park (Hasson et 

al., 2010). The reproducible effect of the presence of language on intersubject synchrony suggest 

that stimulus characteristics are important for inducing synchrony and reveals the lack of existing 

research that systematically characterizes how synchrony measures react under different 

conditions.  

The number of times an individual has experienced a stimulus may be an important 

aspect of stimuli that should be accounted for in synchrony studies. Synchrony strength is 

interpreted as being a marker of how similarly individuals experience a stimulus (Hasson et al., 

2004) and that experience may be influenced by the number of exposures to the stimulus. For 

example, an individual’s first experience of a song is likely very different from their hundredth 

experience of that song when they can sing along with all of the words. In support of the idea 

that experience of a stimulus changes with exposure, there is a small amount of evidence to show 

that intersubject synchrony is reduced with increased exposure. Synchrony, measured using 

fMRI data, in the posterior medial network decreased from the first to the sixth consecutive 

viewing of 90 second movie clips (Aly et al., 2017, 2018). In a similar study using EEG, 

participants were presented with three short films that were each viewed twice (Dmochowski et 

al., 2012) and synchrony decreased between the first and second viewings. However, neither of 

these studies fully characterized the timecourse of the synchrony decrease; for example, whether 

synchrony steadily decreased over multiple viewings or was steeply reduced after a single 

repetition followed by a plateau. If synchrony steadily decreases with increased exposure and 
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exposure differs systematically with an experimental manipulation, then researchers using 

intersubject synchrony analyses need to take stimulus exposure into account to reduce the 

possibility of confounds in their results. On the other hand, if synchrony is reduced after a single 

viewing followed by a plateau then researchers can avoid confounds by exposing all participants 

to the stimuli before starting the study. Characterizing how synchrony is affected by prior 

exposure is important for understanding how best to design studies that minimize the confound 

of exposure differences across participants. 

The goal of this study was to systematically examine how exposure to audio-only 

stimuli influences intersubject synchrony. In this experiment, a training paradigm was used to 

objectively define prior experience with a series of auditory stimuli. Participants were presented 

with stimuli in two scanning sessions: before and after a training period. During training, 

participants listened to 50% of the stimuli heard during the first scanning session through an 

online audio player that tracked the number of times each stimulus was played. When they 

returned for the second scanning session participants were very familiar with 50% of the stimuli. 

The stimuli presented in the second scanning session were otherwise identical to those presented 

in the first scanning session. Based on the previous research described above, we expected to see 

a decrease in synchrony based on stimulus exposure. If synchrony steadily decreases with 

repeated exposure, we expect there to be less synchrony to the 50% of the stimuli in the second 

session that were trained on when compared to the 50% of the stimuli that were not trained on. 

If, instead, synchrony is reduced after a single viewing followed by a plateau, we should see a 

reduction in synchrony between the first and second session, but no differences in synchrony 

between the 50% of the stimuli that were trained on and the 50% of the stimuli that were heard 

once in the first session. Characterizing how synchrony changes as a result of exposure may 

affect the types of stimuli chosen by researchers in future studies measuring intersubject 

synchrony to naturalistic stimuli. 

Methods 

Ethics 

Ethics approval for this project was granted by the Health Sciences Research Ethics 

Board at The University of Western Ontario (#100606, #114263). 
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Participants 

Twenty-six neurologically normal, English-speaking participants (14 female) aged 18-

39 (mean=24 years) were recruited at The University of Western Ontario. All participants had 

completed at least some post-secondary education and nine participants had completed some 

post-graduate education. According to the Goldsmith’s Musical Sophistication Index 

(Müllensiefen et al., 2014), 17 participants reported having formal musical training (1-10yrs, 

mean=4.5yrs), but at the time of testing only nine of them played instruments regularly. Seven 

participants were fluent in a second language. All participants reported listening to music 

regularly in their daily lives (average 1.5 hours per day) via a phone, computer, or car radio. 

Stimuli 

Eight stimuli were created from the lyrics and music of eight different songs written and 

recorded by a member of the research team between 1997 and 2006 for an amateur rock band 

based in Cambridge, UK. Thus, all stimuli were completely novel to the Canadian participants. 

The original songs were written in a similar style and instrumentation included a lead singer, 

bass, drums, guitar, string instruments, and backing vocals, each recorded on separate tracks. All 

stimuli were recorded using the same equipment directly to digital hard drive using the Sonar 

software (by Cakewalk) and a Shure SM58 microphone.  

Four conditions were created by modifying the original songs to include or exclude 

certain tracks: (1) whole music (all tracks, with music and sung lyrics), (2) instrumental music 

without words (all vocal tracks removed, leaving only non-vocal instrument tracks), (3) a capella 

(all non-vocal instrument tracks removed, leaving only lead and backing vocals) and (4) spoken 

words (lyrics of each song rerecorded in spoken form by the original lead singer to have a similar 

length, tempo, and emotional intonation as their original song counterparts). There were two 

different stimuli for each condition, and none of the original songs were used for more than one 

condition. Although the design of the current experiment, directly mirrors the design of the 

experiment described in Chapter 2, the eight stimuli used here were different from the eight 

stimuli used in Chapter 2. Please see Appendix C for a detailed description of which stimuli were 

used in each experiment. 

The stimuli were modified (e.g., lengthened by adding additional repetitions of the 

chorus) to each be five minutes long. During the fMRI scan sessions, participants heard the 
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entire 5-minute stimulus. Each stimulus was normalized to equate perceived loudness using the 

Audacity software (Audacity Team, 2020). During the training period, participants listened to 

half of the stimuli (4 stimuli, 1 per condition) via an online audio player.  

There were four learning conditions: ‘to be learned’ refers to the novel stimuli heard in 

the first scanning session that the participant subsequently listened to over the training period; 

‘not to be learned’ refers to the novel stimuli heard in the first scanning session that the 

participant did not listen to over the training period; ‘learned’ refers to the stimuli heard in the 

second scanning session that the participant listened to over the training period; and ‘not learned’ 

refers to the stimuli in the second scanning session that the participant did not listen to over the 

training period. The ‘to be learned’ and ‘learned’ stimuli were identical for each participant, as 

were the ‘not to be learned’ and ‘not learned’ stimuli. The sets of stimuli that were learned were 

counterbalanced across participants: half the participants familiarized with one half of the 

stimuli; the other half of the participants familiarized with the other half of the stimuli (Groups A 

and B; see Chapter 2, Table 2).  

Procedure 

Participants completed two functional MRI scans that were separated by a stimulus 

training period (14-29 days; mean = 20 days). During both scans, participants passively listened 

to the stimuli. During the training period, participants listened to the stimuli via an online player 

(designed in-lab) that tracked the number of times each stimulus was played. Participants were 

asked to listen to the stimuli at least 5 times per week. To ensure participants were engaged while 

listening, the player presented a simple question about the stimulus (e.g. “Were there lyrics 

present in the previous song?”) at random between stimuli. A response was required to move to 

the next stimulus. Participants were encouraged to incorporate the music into their everyday lives 

(i.e. to listen while cooking or driving). 

Behavioural Familiarity Tasks  

Please see Chapter 2, Methods for a full description of the behavioural familiarity tasks 

used. 
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fMRI acquisition and analyses 

Imaging was conducted at the Robarts Research Institute on a Siemens Magnetom 7 

Tesla scanner with a 32-channel head coil. Functional scans were acquired with 54 slices per 

volume (TR = 1.25 s; TE = 20 ms; flip angle = 35°; FOV = 220 x 220 mm; voxel size = 2.5 

mm3). The two scan sessions (before and after the training period) were identical and included 

eight 5-minute functional runs. During each of the runs, participants passively listened to the 

stimuli in their entirety. Stimulus order was randomized for each participant and in each scan 

session. Half of the 5-minute stimuli were ‘to be learned’ in the first session, and ‘learned’ in the 

second session, while the other half were ‘not to be learned’ in the first session and ‘not learned’ 

in the second session. Between functional runs in the first session only, a whole-head anatomical 

scan was acquired (TR = 6s; TE = 2.69 ms; FOV = 240 x 240 mm; voxel size = 0.75 mm3; 208 

slices). 

Data from the 5 minute runs were processed using automatic analysis (version 4.1; Aly 

et al., 2017, 2018; Cusack et al., 2015; Dmochowski et al., 2012): a MATLAB based processing 

and analysis pipeline that integrates with Statistical Parametric mapping (SPM12). Three 

‘dummy’ scans were excluded from the beginning of every run to allow stabilization of the 

signal. Images were realigned to the first image in the first run using six motion parameters 

(x,y,z, translation and rotation). Data were normalized to MNI space and smoothing was done 

with a Gaussian kernel of 10mm FWHM. Low-frequency noise (e.g., drift) was removed with a 

high-pass filter of 128s. Data were denoised using cerebrospinal fluid, white matter signals, 

motion parameters, their lag-3 2nd-order Volterra expansion (Friston et al., 2000), and “spikes” 

(>3 standard deviations based on mean signal variance across volumes) as nuisance regressors. 

The data were then further cleaned by running a group ICA (Calhoun et al., 2001) within each 

stimulus and removing 1-2 components that spatially correlated with a mask of the ventricles to 

remove non-brain related activity. 

Intersubject synchrony 

Whole brain analysis 

Intersubject synchrony across the whole brain was calculated separately in each session 

and for each stimulus using a leave-one-out approach. Synchrony was only ever calculated 

between identical stimuli. For each stimulus in session one, the timecourse of every voxel in 
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each participant was correlated (Pearson and then Fisher z-transformed) with the mean 

timecourse of every corresponding voxel from the rest of the participants’ session 1 data, minus 

that participant (N-1). This process created an r-value for each voxel, for each participant, that 

described the correlation between that participant’s voxel and the same voxel in all other 

participants, for that stimulus in session 1. To look for differences in synchrony across sessions, 

these ‘within session 1’ synchrony values for each stimulus were then compared to synchrony 

values for the same stimulus in session 2.  

The second session synchrony values were calculated ‘within session 2’ in the same 

way that synchrony was calculated in session 1. That is, for each stimulus in session 2, the 

timecourse of every voxel in each participant was correlated (Pearson and then Fisher z-

transformed) with the mean timecourse of every corresponding voxel from the rest of the 

participants’ session 2 data, minus that participant (N-1). This process created an r-value for each 

voxel, for each participant, that described the correlation between that participant’s voxel and the 

same voxel in all other participants, for that stimulus in session 2. Because different stimuli were 

‘learned’ by Group A and Group B, synchrony was calculated separately within Group A and 

Group B to obtain synchrony values for the four stimulus types while maintaining the integrity of 

the ‘learned’ and ‘not learned’ conditions in the second session. For example, stimulus 1 was 

learned by Group A but not Group B (see Chapter 2, Table 2). Calculating synchrony for 

stimulus 1 by combining data from Group A and B would average across learning conditions. 

Therefore, during the session 2 leave-one-out procedure, an individual’s data was only correlated 

with data from the rest of the participants (N-1) in their group.  

Before comparing synchrony values across sessions, we investigated whether there were 

initial synchrony differences between the stimuli that were assigned to be learned in Group A 

and the stimuli assigned to be learned in Group B. The individual correlation values from the 

first session, calculated as described above, were entered into a second-level flexible factorial 

model using SPM12 (see Supplementary Figure 1 for a visual depiction of the model). This 

model labeled learning group (Group A and B) and took subject effects into account. Two t-

contrasts were run in SPM to determine whether session 1 synchrony differed between the four 

Group A and four Group B stimuli (Group A > Group B; Group B > Group A). The two stimulus 

groups were designed to be similar, and indeed, the analysis confirmed that no significant 

clusters survived correction. In subsequent analyses the synchrony values from all participants 
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(in Group A and Group B) were labeled based on learning condition, not based on which 

physical stimulus was heard (i.e. stimulus 1 synchrony values were ‘learned’ for Group A and 

‘not learned’ for Group B, and stimulus 5 synchrony values were ‘learned’ for Group B and ‘not 

learned’ for Group A, see Chapter 2, Table 2). 

Individual correlation values for the eight stimuli in session 1 (using the ‘within session 

1 values’) and eight stimuli in session 2 (using the ‘within session 2’ values) were entered into a 

second-level flexible-factorial model using SPM12 to probe how learning affected synchrony 

across the entire group of participants. This model labeled learning condition (4 to be learned 

stimuli in session 1, 4 not to be learned stimuli in session 1, 4 learned stimuli in session 2, 4 not 

learned stimuli in session 2), and took subject effects into account (see Supplementary Figure 2 

for a visual depiction of the model). As a result of the counterbalanced design, all eight stimuli 

were present within each of the four learning conditions across participants.  

To probe changes in synchrony due to learning across the two sessions, a 2(session 

1/session 2) x 2(trained/not trained stimuli) ANOVA was conducted using the ‘within session 1’ 

and ‘within session 2’ synchrony values. The ‘to be learned’ stimuli in session 1 and the 

‘learned’ stimuli in session 2 were labeled as part of the ‘trained’ category. The ‘not to be 

learned’ stimuli in session 1 and the ‘not learned’ stimuli in session 2 were labeled as part of the 

‘not trained’ category. F-contrasts were run in SPM to investigate main effects of stimulus 

training set, session, and the stimulus training set by session interaction. T-contrasts were then 

conducted to further investigate the significant main effect of session: session 1 > session 2; 

session 2 > session 1. For each contrast, the cluster-forming threshold was specified at FWE 

p=.0001 uncorrected (Roiser et al., 2016) to determine the extent threshold. Clusters were 

defined using the extent threshold and peak coordinates are reported at a corrected cluster level 

FWE p<.05. 

Region of interest analysis 

Within the 2(session 1/session 2) x 2(trained/not trained stimuli) ANOVA, half of the 

stimuli included in the trained category were in fact not yet trained (the ‘to be learned’ stimuli) 

and a significant difference between the trained and not trained stimuli may have been 

compromised by this mixing of stimuli from different levels of training. Therefore, the six 

clusters identified by the significant main effect of session in the 2(session1/session 2) x 
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2(trained/not trained stimuli) ANOVA described above were extracted and used as regions of 

interest. The ‘within session 1’ and the ‘within session 2’ synchrony values, averaged across 

each region’s voxels, were extracted using MarsBAR (Brett et al., 2002) and further analyses 

were conducted in R (R Core Team, 2013) to probe changes in synchrony without combining 

stimuli from different levels of training. 

The synchrony values from the session 1 to be learned and session 1 not to be learned 

stimuli were combined to create an ‘all session 1 stimuli’ category that consisted of synchrony 

values to all of the novel stimuli. We conducted a one-way ANOVA in R (R Core Team, 2013) 

to investigate synchrony differences between the three learning conditions across sessions (all 

session 1/session 2 not learned/session 2 learned). This ANOVA was conducted within each of 

the six ROIs defined by the main effect of session from the 2(session1/session 2) x 2(trained/not 

trained stimuli) ANOVA described above. Post-hoc tests between the three learning conditions 

were conducted in ROIs when a significant effect of training was found.  

If there were significant results that could be attributed to general differences between 

sessions, rather than related to learning, it is possible that these differences may have been a 

result of familiarization with the scanner environment and therefore may have emerged over the 

course of session 1. If this were the case, we would expect to see less synchrony to the stimuli 

heard in the second half of the scanning session than to those heard in the first half. Therefore, to 

understand whether any significant learning effects seen across the sessions were due to the 

amount of time participants spent in the scanner, we conducted a one-way ANOVA to 

investigate synchrony differences between the two halves of session 1 (session 1 first 

half/session 1 second half).  

Synchrony changes within an individual 

The analysis described above used synchrony values that compared the degree of 

synchrony between an individual and the rest of the participants to probe whether there were 

group level changes in synchrony as a result of repeated exposure to the stimuli. However, it was 

also possible to investigate whether there were changes in synchrony at the individual level. An 

additional set of synchrony values were calculated for each stimulus within each participant. The 

‘individual changes’ synchrony values were defined by calculating the voxel-wise correlations 

between session 2 and session 1 for each individual’s data within each of the six defined regions. 
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That is, for each stimulus in session 2, the voxel timecourse in each region of interest in every 

participant was correlated (Pearson and then Fisher z-transformed) with the timecourse of every 

corresponding voxel of that same participant’s session 1 data. This process created an r-value for 

each voxel, for each participant, that described the degree to which that participant’s voxel 

during session 2 was correlated with their own data while listening to the same stimulus in 

session 1. The ‘individual changes’ synchrony values allowed us to probe how each individual’s 

brain activity changed with learning in the second session as compared to their own data in the 

first session. The ‘individual changes’ synchrony values, averaged across each region’s voxels, 

were also extracted from the same six ROIs described in the previous section using MarsBAR 

(Brett et al., 2002) for further analyses using R (R Core Team, 2013). To investigate the 

individual changes in synchrony between sessions, we conducted a one-way ANOVA to 

investigate synchrony differences between the session 2 learned and session 2 not learned stimuli 

using the ‘individual changes’ synchrony values. 

Finally, to determine whether synchrony to the learned stimuli was related to 

behavioural scores on the memory tasks, both sets of second session synchrony values (‘within 

session 2’ and ‘individual changes’ synchrony values) for all of the learned stimuli in session 2 

in each ROI were correlated with each individual’s average score on the lyric modification and 

melody memory tasks.  

Results 

Participants 

Two individuals withdrew from the study following the first scan session and data from 

four individuals were not included in the analysis because their average scores on the two 

behavioural memory tests were lower than 70% correct. FMRI data from 20 individuals were 

included in the analysis. 

Participants listened to each stimuli an average of 13 times (from 6-20 listens) over an 

average of 20 days (from 14-29 days).  

Behavioural familiarity tasks  

Please see Chapter 2, Results (page 31) for a full description of the results from the 

behavioural familiarity tasks. 
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Intersubject synchrony 

Whole brain analysis 

The 2(session 1/session 2) x 2(trained/not trained stimuli) ANOVA using the ‘within 

session 1’ and the ‘within session 2’ synchrony values revealed a significant main effect of 

session in six clusters within bilateral temporal areas, frontal, occipital, and precentral gyrus (see 

Table 1 and Figure 1). The threshold was set to the FWEc value (=43) and clusters were defined 

at p<.05 FWE corrected. The two post-hoc t-contrasts conducted to determine how synchrony 

differed across the two sessions showed that there was significantly more synchrony within the 

first session than in the second session in largely the same regions identified by the F-contrast 

describing the main effect of session (see Table 1). There were no brain areas with more 

synchrony in the second session than the first. There was no significant difference between the 

set of stimuli that were trained and the set of stimuli that were not trained and no session by 

stimulus training set interaction. 
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Table 1. Cluster locations in which synchrony significantly differed between sessions as identified using a 2(session) 

x 2(stimulus training set) ANOVA. Reported peaks within each cluster are >4mm apart. The extent threshold was 

set for each contrast separately. All p-values <.001 unless otherwise specified (FWE corrected). 

** denotes the six clusters extracted and used as regions of interest in further analyses 

 

Harvard-Oxford Atlas labels 
(x,y,z) 

coordinates 

Main effect of session 

extent = 43 

F-value 

Session 1 > Session 2 

extent = 53 

t-value 

** Planum temporale 

Planum temporale 

Posterior STG 

Posterior STG 

Posterior STG 

 

** Planum temporale 

Planum temporale 

Planum temporale 

Posterior STG 

Posterior STG 

Heschl’s gyrus 

Temporal pole 

Anterior STG 

 

** Frontal orbital cortex 

Frontal orbital cortex 

Parahippocampal gyrus (anterior div.) 
Frontal orbital cortex 

Subcallosal cortex 

Parahippocampal gyrus (anterior div.) 
 

** Precentral gyrus 

 

** Occipital pole 

Lateral occipital cortex (inferior div.) 
Lateral occipital cortex (inferior div.) 
Lateral occipital cortex (inferior div.) 
Lateral occipital cortex (inferior div.) 

 

** Occipital pole 

Occipital pole  

 

Parahippocampal gyrus (anterior div.)  
Frontal orbital cortex 

Frontal orbital cortex 

Frontal orbital cortex 

-52,-20, 0 

-62, -34, 8 

-58, -36, 10 

-56, -34, 8 

-68, -22, 2 

 

56, -20, 6 

60, -18, 6 

60, -16, 4 

68, -28, 6 

66, -24, 8 

38, -26, 10 

62, 8, -10 

62, 4, -8 

 

-12, 6, -22 

-12, 14, -20 

-14, 0, -26 

-16, 12, -24 

-12, 22, -18 

-14, -4, -28 

 

58, 4, 46 

 

40, -90, 24 

46, -84, 18 

54, -72, 10 

56, -74, 6 

52, -72, 4 

 

34, -92, 4 

32, -96, 6 

 

16, -14, -22 

14, 8, -14 

16, 12, -14 

14, 10, -24 

105.35 

73.43 

74.56 

- 

52.05 

 

78.00 

77.63 

- 

76.58 

72.69 

47.11 

38.90 

38.74 

 

30.33 

25.16 

23.70 

22.95 

20.31 

16.82 

 

27.06 

 

23.73 

17.75 

- 

- 

- 

 

23.67 

22.25 

 

- 

- 

- 

- 

14.51 

12.07 

- 

12.18 

10.16 

 

12.49 

- 

12.45 

12.31 

12.02 

9.63 

8.76 

8.74 

 

7.78 

7.09 

6.84 

6.77 

6.08 

5.79 p=.002 

 

7.27 

 

6.87 

5.95 p=.001 

5.75 p=.002 

5.45 p=.009 

5.37 p=.013 

 

- 

- 

 

6.25 

6.01 p=.001 
5.82 p=.002 

5.78 p=.002 
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Figure 1. Brain regions in which intersubject synchrony differed between session 1 and session 2. These areas were 

identified using an F-contrast describing a main effect of session from a 2(session) x 2(stimulus training set) 

ANOVA. The six regions depicted (and described in Table 1) were extracted for use as regions of interest in further 

analyses. Extent threshold = 43. Displayed slices are at x=53, y=5, z=0. 

 

Region of interest analysis 

The one-way ANOVA investigating synchrony differences between the three learning 

conditions across sessions (all session 1/session 2 not learned/session 2 learned) performed in 

each ROI found a significant effect of learning on synchrony across all six clusters (see Figure 2 

and Table 2, row 1 for full statistics).  

A Tukey post-hoc test was done in each cluster to uncover where the differences 

between the three learning conditions existed (see Table 2, rows 2-4). There were no differences 

in synchrony between the session 2 not learned and the session 2 learned stimuli (p>.05 in all 

clusters). There were differences in synchrony between the session 1 stimuli and the session 2 

learned stimuli (p<.001 in all clusters), however there were also differences in synchrony 

between the session 1 stimuli and the session 2 not learned stimuli (p<.001 in all clusters). These 

results suggest that any differences between learned and not learned stimuli were due to a 

general effect of session rather than a specific effect of learning, especially as there was no 

difference between session 2 learned and session 2 not learned stimuli.  
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Figure 2. Synchrony values plotted for each of the six clusters for each of the learning conditions. The ‘within 

session 1’ and ‘within session 2’ synchrony values are shown here. Boxplots show the median value and contain 

values from the 25
th

 to 75
th

 percentile within each box. Whiskers represent 95% confidence intervals with outliers 

depicted as individual points.  

 

The one-way ANOVA probing whether there were differences in synchrony between 

the first and second half of the first session showed a significant main effect of ‘half’ in the left 

and right temporal regions. There was significantly more intersubject synchrony in the second 

half of session 1 than in the first half (see Figure 3 and Table 2, row 5 for full statistics). This 

effect of session ‘half’ occured in the opposite direction as the differences between sessions from 

the 2(session 1/session 2) x 2(trained/not trained stimuli) ANOVA, where there was more 

synchrony to session 1 than to session 2.  

Finally, the ‘within session 2’ synchrony values for all learned stimuli in each cluster 

were correlated with each individual’s average score on the lyric modification and melody 
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memory tasks. The p-values were FWE corrected across all clusters. There were no significant 

correlations between the synchrony values and the behavioural scores. 

 

Table 2. All statistical tests performed on the ‘within session 1’ and the ‘within session 2’ synchrony values. 

*p<.001 

Statistical tests  
Frontal 
orbital 
cortex 

Precentral Left 
Temporal 

Right 
Temporal 

Occipital 
(40, -90, 24) 

Occipital 
(34, -92,4) 

one-way ANOVA 
(all session 1 / session 
2 not learned / session 

2 learned) 

main effect 
learning 
F(2,317) 

25.52* 
η²=.14 

24.84* 
η²=.14 

45.91* 
η²=.22 

40.53* 
η²=.20 

24.79* 
η²=.14 

21.66* 
η²=0.12 

Tukey post-hoc tests 

session 2 
not learned / 

session 2 
learned  

- - - - - - 

session 1 / 
session 2 
learned 

* * * * * * 

session 1 / 
session 2 

not learned 
* * * * * * 

one-way ANOVA 
(session 1 first half / 
session 1 second half 

main effect 
session 1 

half 

F(1,158) 

- - 
6.04 
p=.01 
η²=.04 

11.07 
p=.001 
η²=.07  

- - 
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Figure 3. Synchrony values (‘within session 1’) from the first and second halves of the first scanning session plotted 

for each of the six clusters. Boxplots show the median value and contain values from the 25
th

 to 75
th

 percentile 

within each box. Whiskers represent 95% confidence intervals with outliers depicted as individual points.  

* indicates a significant difference in synchrony between the two halves of session 1 (Table 2): 2
nd

 half > 1
st
 half. 

 

Individual changes in synchrony 

The one-way ANOVA using the ‘individual changes’ synchrony data to investigate 

synchrony differences between the session 2 learned and the session 2 not learned stimuli found 

no significant differences in synchrony in any of the clusters. This further indicates that the 

stimuli in the second session were processed in a similar way regardless of whether they had 

been trained on or not.  

The ‘individual changes’ synchrony values were correlated with each individual’s 

average score on the lyric modification and melody memory tasks. The p-values were FWE 

corrected across all clusters. There were no significant correlations between the synchrony 

values from the familiar stimuli and the behavioural scores. 
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Discussion 

In the current study, we investigated whether intersubject synchrony to auditory stimuli 

was affected by previous exposure to the stimulus by asking participants to train on novel stimuli 

using a controlled training paradigm. Scores on the lyric modification task and the melodic 

memory task improved during the training period between the two fMRI scans, confirming that 

participants had, in fact, learned the stimuli over time. Moreover, an online follow-up study 

verified that the improvement required training and was not a result of repeated exposure to the 

task itself (Chapter 2; Sternin et al, 2021). The results from the two behavioural tasks indicated 

that the participants learned both the language and the musical components of the stimuli over 

the training period. The intersubject synchrony results indicated that there was an effect of 

exposure on synchrony, but this exposure effect was not related to training. 

Contrary to our hypothesis, there was a decrease in synchrony between the two sessions 

regardless of whether the stimuli had been learned or not. When the ‘within session 1’ and the 

‘within session 2’ values were compared across the whole brain, six clusters were identified as 

showing more synchrony in session 1 than in session 2 across bilateral temporal lobes, precentral 

gyrus, occipital areas, and frontal areas. This result suggests that even in the absence of 

behavioural evidence of learning (the online study detailed in Chapter 2 indicates that 

participants did not learn the stimuli they did not train on) there are persistent neural changes that 

occur as a result of stimulus exposure; even after not having heard the stimuli for three weeks 

participants showed a difference in synchrony. Some evidence of prolonged neural changes after 

exposure to auditory stimuli exists in the electroencephalography (EEG) and 

magnetoencephalography (MEG) literature. Early evoked responses, specifically the P200 event-

related potential, have been used to study neural changes to auditory stimuli. The P200 is a 

positive deflection in neural activity approximately 200ms after the onset of a stimulus. The 

P200 has been shown to increase in amplitude with repeated exposure to auditory stimuli and 

this increase is thought to reflect enhanced auditory representations of the stimuli (Tremblay et 

al., 2001, 2009). When participants heard a stimulus four times (baseline, 24 hours later, one 

week later, up to one year later) the enhanced P200 (measured using EEG at the Cz electrode) 

persisted across the four sessions even when participants had not heard the stimuli for many 

months (Tremblay et al., 2010). The increased P200 amplitudes occurred as a result of repeated 

exposure, regardless of behavioural evidence of learning (Tremblay et al., 2014). Temporal lobe 
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areas, like those identified in the current study as showing synchrony differences between 

session, have been implicated as being the cortical sources of the increased P200 amplitude. 

Although these previous studies were performed using EEG and MEG rather than fMRI, the 

results suggest that persistent neural changes can be induced in similar bilateral temporal areas 

that showed differences in synchrony across sessions without behavioural evidence of learning in 

the current study. It is worth noting, however, that changes in ERP amplitudes are not directly 

related to synchrony measures. In fact, changes in the amplitude of neural activity that do not 

affect the pattern of fluctuations will have almost no effect on synchrony across individuals. 

However, intersubject synchrony is a fairly new analysis technique and not nearly as much 

research has been done to characterize synchrony changes as has been done to characterize 

changes to the strength of neural activation with auditory stimulation. Therefore, these results are 

presented here as evidence that neural changes in the absence of behavioural changes have been 

previously noted and support the idea that a single exposure to a stimulus may be enough to 

cause neural changes that are reflected in synchrony analyses even in the absence of learning. 

Our results suggest that intersubject synchrony decreases following a single exposure to 

a stimulus followed by a plateau in the level of synchrony. Although we did not scan participants 

after each stimulus exposure, if synchrony steadily decreased in relation to the number of 

exposures to a stimulus, then we would have seen synchrony differences between the learned 

(heard many times) and not learned stimuli (heard once before) in the second session. We did not 

find any differences between the learned and not learned stimuli in session 2, indicating that the 

differences across the sessions were unlikely to be related to the number of times participants 

had heard the stimuli and suggesting that a significant reduction in synchrony occurred after a 

single exposure. This is in contrast to the research presented above regarding EEG and MEG 

measures of neural changes induced by repeated exposure to auditory stimuli that show 

progressive increases in P200 amplitudes with increased stimulus exposure. However, the P200 

amplitudes are a very fast neural response to auditory stimuli and may be a more sensitive 

measure of identifying neural changes as a result of stimulus exposure than intersubject 

synchrony. The goal of the current experiment was to understand the effects of repetition on 

intersubject synchrony and our results suggest that there is a significant reduction in synchrony 

after a single exposure.  
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Strong intersubject synchrony is driven by similar neural responses across a group of 

individuals; higher similarity results in stronger synchrony. As individuals deviate from the 

group average and become less similar, the strength of the correlations is reduced. If participants 

each learned the stimuli to a different level of expertise or developed personal associations when 

listening to the stimuli over time, then they may have developed idiosyncratic responses to each 

learned stimulus. Such idiosyncrasies could have reduced the degree of synchrony across 

participants in the second session. For example, in the first session all stimuli were equally 

unfamiliar and synchrony was likely driven by the experience of hearing the stimulus for the first 

time. In the second session, each participant’s experience of the learned stimuli will have been 

slightly different. For example, one participant may have learned 100% of the lyrics after just a 

few exposures while another may only have known 75% of the lyrics by the end of training. 

Although we did not collect data regarding the percentage of the lyrics each participant learned, 

there is literature that speaks to differences in how individuals memorize music. This research 

suggests that the ease with which music is memorized depends greatly on participants’ preferred 

learning style, learning strategies, and musical abilities (Korenman & Peynircioglu, 2007; 

Mishra, 2011). Although it is possible that individual differences in level of knowledge 

contributed to the idiosyncrasies in the second scanning session, there was a lack of correlation 

between the behavioural memory scores and the second session synchrony scores. This null 

result indicates either that the reduction in synchrony was unrelated to differing levels of 

knowledge with the stimuli, or that our behavioural tasks were not sensitive enough to detect the 

subtle differences in familiarity across participants. The participants may also have listened to 

the songs while doing different activities, developing different associations that were recalled 

during scanning. Data regarding personal associations participants may have made with each of 

the stimuli by the end of the training period were not collected and therefore we can not speak to 

whether this was indeed a factor at play within this dataset. The differing levels of knowledge 

and personal associations created unique listening experiences in the second session for each 

participant and likely contributed to the reduction in synchrony across sessions.  

It is possible that attentional differences between sessions reduced synchrony in the 

second session. Synchrony is affected by attention (Regev et al., 2019) with synchrony 

decreasing as participants are distracted. Therefore, the session effects could be a reflection of 

the participants’ overall ability to pay attention. For example, if participants attended more to the 
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novel stimuli, this may have resulted in more synchrony within the first session. However, it is 

unlikely that the decreased second session synchrony is due solely to less attention to the stimuli 

themselves, as synchrony decreased similarly to both the ‘learned’ and ‘not learned’ stimuli. 

Considering that participants did not train on the ‘not learned’ stimuli, and some participants 

reported not recognizing the ‘not learned’ stimuli in the second session, these stimuli may 

reasonably be considered as novel as they were in the first session. This result disputes the idea 

that the differences in synchrony across sessions were due to participants paying more attention 

to novel stimuli. Changes in attention could also have resulted from familiarization with the 

scanner environment. To investigate this possibility, we compared synchrony in the first and 

second halves of session 1 (using the ‘within session 1’ synchrony values). If the reduction in 

synchrony across sessions was related to the time spent in the scanner, then there should have 

been less synchrony in the second than the first half of the session. However, only the left and 

right temporal clusters showed an effect of ‘half’ and in both clusters this difference was in the 

opposite direction: more synchrony in the second than the first half. Therefore, the synchrony 

reduction across sessions does not appear to be related to familiarity with the scanner 

environment. Additionally, the reduction in synchrony across sessions was not due to any 

systematic changes in the testing environments between the two sessions as the data were 

collected serially over a 12-month period; many participants completed both of their scanning 

sessions before others had completed their first session. Given that attention was likely not 

different as a result of familiarity with the stimuli or familiarity with the scanner environment, 

we can rule out attention differences as the driving force behind the decrease in synchrony across 

the two scanning sessions.  

If all participants processed the stimuli equally differently in the second session in 

comparison to the first, it would be possible for synchrony, calculated ‘within session 2’, to not 

differ from the synchrony calculated ‘within session 1’ while the synchrony calculated by 

comparing an individual’s second session data with their own first session data would be 

reduced. In other words, all participants could deviate from their first session ‘baseline’ 

synchrony by the same amount in the same direction resulting in individual changes across 

sessions but similar levels of synchrony within session 1 and session 2. Therefore, to capture 

individual changes in synchrony, we calculated the ‘individual changes’ synchrony values to 

determine whether there were changes in how an individual processed the stimuli that may have 
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been missed when synchrony was calculated using the average participant data within session 2. 

Comparing the synchrony values for the learned and not learned stimuli using the ‘individual 

changes’ synchrony values indicated that there was no difference in synchrony based on learning 

at the individual level; participants processed the stimuli in the second session differently than 

the way those same stimuli were processed in the first session regardless of whether the stimuli 

were learned or not. The lack of difference between the second session stimuli further confirms 

our conclusion that, at both the individual and group level, a single exposure to a stimulus caused 

a reduction in synchrony. 

The present study aimed to examine how exposure to a stimulus influenced intersubject 

synchrony by asking participants to train on highly controlled novel stimuli. We expected that 

synchrony would decrease as exposure to the stimuli increased. However, rather than an effect of 

stimulus training, we found a ‘single-listen’ effect where there was reduced synchrony in the 

second session compared to the first regardless of whether the stimuli had been learned or not. 

This reduction may be related to an increase in idiosyncratic responses after exposure to a 

stimulus but does not seem to be related to how well the stimuli are learned or differences in 

attention. To further characterize how synchrony changes with repeated exposure, this result 

should be replicated in future studies using different types of stimuli (e.g. movies and stories) 

and measures of attention, engagement, and personal associations should be collected. The 

consistent reduction in synchrony after a single exposure has implications for studies using 

intersubject synchrony measures. If, for example, participants’ degree of exposure to a stimulus 

systematically varies with the experimental conditions, this could complicate interpretation of the 

results. It will be important to further investigate this ‘single-listen’ effect by collecting 

synchrony data after each stimulus exposure to characterize the reduction and subsequent plateau 

in synchrony. Until the effects of repeated exposure on synchrony are fully understood, future 

studies using intersubject synchrony, where the novelty of the stimuli can not be guaranteed, may 

consider exposing all of their participants to the stimuli once before data are collected to mitigate 

the effects of any systematic differences in stimulus exposure.  
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Supplementary Figure 1 

The SPM12 second-level flexible factorial model of the synchrony data for session 1 (calculated 
‘within session 1’) used to look for differences between the stimuli learned by participants in 
Group A and Group B.  

No differences between the Group A and Group B stimuli were found. 
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Supplementary Figure 2 

The SPM12 second-level flexible factorial model of the synchrony data for session 1 and session 
2 (calculated ‘within session 1’ and ‘within session 2’. This model labeled stimulus type (two 
stimuli for each of the four types), learning condition (4 to be learned stimuli in session 1, 4 not 
to be learned stimuli in session 1, 4 learned stimuli in session 2, 4 not learned stimuli in session 
2), and took subject effects into account  

A = a capella, I = instrumental, S = spoken, W = whole 

TBL = to be learned (session 1), NTBL = not to be learned (session 1) 

L = learned (session 2), NL = not learned (session 2) 
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The effects of language and age on intersubject synchrony 

 

 

Introduction 

As discussed in the introduction to Chapter 3, the use of naturalistic stimuli to 

understand how the brain functions in the ‘real world’ is increasing. As the prevalence of the 

intersubject synchrony technique grows and is used to study both functional and dysfunctional 

brain activity, it is important to understand how stimulus characteristics (such as the presence of 

music and language) and participant characteristics (such as familiarity with the stimulus and 

age) affect intersubject synchrony. Synchrony is induced in different brain areas by different 

types of stimuli, although these differences have not been systematically investigated. For 

example, audio-only movie sequences (Naci et al., 2017) or audiobook excerpts (Regev et al., 

2019; Simony et al., 2016) have successfully induced intersubject synchrony in fronto-temporal 

networks, while instrumental music (e.g. theme-songs from movies) has produced intersubject 

synchrony in auditory processing areas (Naci et al., 2017). To our knowledge, only two studies 

have compared synchrony across age groups (Campbell et al., 2015; Geerligs et al., 2018). These 

data showed that when older and younger adults watched the same movie while being scanned, 

the brains of the young adults were more synchronized in their responses than the older adults, 

who were more individualized in their responses. No studies have explored how aging affects 

synchrony across different types of stimuli. Given the evidence that memory for music is 

preserved in some neurodegenerative disorders associated with aging (Baird & Samson, 2009; 

Jacobsen et al., 2015), musical stimuli may be processed differently in the aging brain than 

stimuli without music.  

The current study aimed to characterize how synchrony is affected by music and 

language stimuli and also to characterize how synchrony to music and language stimuli is 

affected by healthy aging. To address the first aim, we created stimuli that varied in music and 
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language content. Three conditions were generated from existing songs: (1) whole music (music 

and words together in a fully intact version of a song), (2) instrumental music without words (all 

vocal parts were removed, leaving just the non-vocal instrumentation), and (3) spoken words (the 

lyrics of each song were rerecorded in spoken form by the original lead singer to have a similar 

length, tempo, and emotional intonation as their original song counterparts). Unlike previous 

chapters, the a capella stimuli (sung leading and backing vocals without instrumental music) 

were not included. This stimulus condition was removed from the experiments involving older 

adults to reduce the burden on participants by shortening the scanning session. A detailed 

description of which stimuli were included in each experiment can be found in Appendix C. As 

shown in Chapter 3, repeated presentation of a stimulus reduces synchrony. To avoid any effects 

of repetition across stimulus conditions, each stimulus was created from a different original song. 

To address the second aim, we recruited two groups of participants: young and older adults. All 

participants were exposed to identical stimuli allowing us to investigate whether there is an age-

related reduction in synchrony to music and language stimuli.  

We calculated intersubject synchrony in two ways to answer two distinct questions. 

First, we calculated synchrony within the young and older adult groups separately. By 

correlating an individual’s data with the average of their age-matched peers we can investigate 

how similarly individuals process stimuli to their peers across the lifespan. However, these 

synchrony values do not tell us anything about how similar older and young adults are to each 

other. For example, young and older adults could be equally highly synchronized within their age 

groups and we would see no group differences when statistically comparing these synchrony 

values but, the timecourse of the data within each of the age groups could look very different. 

Therefore, to compare how the stimuli were processed across age groups we used a second 

method of synchrony calculation. We correlated individual older adult data with the average of 

the young adult participants. If older adults were processing the stimuli differently than the 

young adults, we would expect weak correlations with the average young adult group and 

therefore, group differences when these weak correlations were statistically compared to the 

young adult synchrony values (calculated within young adults only). In contrast, if older adults 

were processing the stimuli in the same way as the young adults, we would expect equivalent 

synchrony values across the two groups of participants and, therefore, no group differences. 

Combining the results from both synchrony calculation methods tells us whether any differences 
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in synchrony across age groups are a result of age-related changes across all older adults, or 

idiosyncrasies within individuals. 

We also used GLM analyses to examine BOLD responses to short stimulus clips to 

understand how the different stimuli recruited different brain areas across the two groups of 

participants. We were interested in comparing the brain areas identified by the GLM analysis to 

those identified by the synchrony analysis to understand whether the areas involved in 

processing different stimuli follow similar activation patterns across age groups. If similar areas 

are identified by both the GLM and synchrony analyses as differentiating between age groups, 

this may suggest that similar mechanisms of change (e.g. grey matter atrophy or increased 

functional connectivity) affect both age-related changes in the levels of BOLD activation across 

individuals and the timecourse of that activation.  

When comparing synchrony values across music and language stimuli, we expected 

more synchrony to the whole stimuli (music and lyrics together) than to either the instrumental 

or spoken stimuli alone, as there were more aspects of the complex stimulus with which brain 

responses could synchronize. We also expected that the spoken stimuli would induce more 

synchrony than the instrumental stimuli (Sinai, 2015). Based on previous work (Campbell et al., 

2015) we expected less synchrony in older adults than young adults both when synchrony was 

calculated within each age group separately (more idiosyncrasies in older adults) and when 

calculated by comparing the older adult data to the average young adult data (different activation 

time courses in older adults). 

 

Methods 

Ethics 

Ethics approval for this project was granted by the Health Sciences Research Ethics 

Board at The University of Western Ontario (#100606). 
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Participants 

Young adults 

Twenty-six neurologically healthy, English-speaking participants (14 female) aged 18-

39 (mean=24 years) were recruited at The University of Western Ontario. All participants had 

completed at least some post-secondary education and nine participants had completed some 

post-graduate education. According to the Goldsmith’s Musical Sophistication Index 

(Müllensiefen et al., 2014), 17 participants reported having formal musical training (1-10yrs, 

mean=4.5yrs), but at the time of testing only nine of them played instruments regularly. Seven 

participants were fluent in a second language. All participants reported listening to music 

regularly in their daily lives (average 1.5 hours per day) via a phone, computer, or car radio. 

Older adults 

Fifteen neurologically normal, English-speaking participants (9 female) aged 64-74 

(mean=70 years) were recruited in London, Ontario. All participants had completed at least some 

post-secondary education and four participants had completed some post-graduate education. 

Using the Goldsmith’s Musical Sophistication Index (Müllensiefen et al., 2014), 11 participants 

reported having formal musical training (1-61yrs, mean=20.8yrs), but at the time of testing only 

three of them played instruments regularly. Five participants were familiar with a second 

language but did not rate themselves as fluent in those languages.  

Stimuli 

Twelve stimuli were created from the lyrics and music of different songs written and 

recorded by a member of the research team between 1997 and 2006 for an amateur rock band 

based in Cambridge, UK. Thus, all stimuli were completely novel to the Canadian participants. 

The original songs were all written in a similar style and instrumentation included a lead singer, 

bass, drums, guitar, string instruments, and backing vocals, each recorded on separate tracks. All 

stimuli were recorded using the exact same equipment directly to digital hard drive using the 

Sonar software (by Cakewalk) and a ShureSM58 microphone.  

Three conditions were created by modifying the original twelve songs to include or 

exclude only certain tracks: (1) whole music (music and words together in a fully intact version 
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of each song), (2) instrumental music without words (all vocal parts were removed, leaving just 

the non-vocal instrumentation), and (3) spoken words (the lyrics of each song were rerecorded in 

spoken form by the original lead singer to have a similar length, tempo, and emotional intonation 

as their original song counterparts). There were four different stimuli for each condition, and 

none of the original songs were used for more than one condition (see Table 1).  

Six of the stimuli (two per condition) were used in the GLM experiment. These six 

stimuli varied in length from 3:00-4:03 minutes, but during the fMRI experiment participants 

heard ten-second non-overlapping clips taken from each stimulus (see fMRI acquisition and 

analysis for details). The other six stimuli were used for the intersubject synchrony experiment. 

The stimuli were modified (e.g., lengthened by adding additional repetitions of the chorus) to 

each be five minutes long. During the synchrony portion of the fMRI scan sessions, participants 

heard each stimulus in its entirety (see fMRI acquisition and analysis for details). All stimuli 

were normalized to equate their perceived loudness using the Audacity software (Audacity Team, 

2020). All stimuli are available in the supplementary materials (Appendix C).  

Table 1. Visual representation of how the 12 different stimuli were divided between three conditions and two fMRI 
experiments. The numbers 1-4 refer to the individual stimuli in each condition. 

Stimulus conditions Whole music Instrumental 
music Spoken words 

GLM experiment 
10-s excerpts of 3-4min stimuli 

Whole 1 

Whole 2 

Instrumental 1 

Instrumental 2  

Spoken 1 

Spoken 2 

Intersubject synchrony experiment 
5-min stimuli 

Whole 3 

Whole 4 

Instrumental 3 

Instrumental 4  

Spoken 3 

Spoken 4 

 

fMRI acquisition and analyses 

Imaging was conducted at the Robarts Research Institute on a Siemens Magnetom 7 

Tesla scanner with a 32-channel head coil. Functional scans were acquired with 54 slices per 

volume (TR = 1.25 s; TE = 20 ms; flip angle = 35°; FOV = 220 x 220 mm; voxel size = 2.5 

mm3). The scan session included two 12-minute functional runs for the GLM experiment and six 

5-minute functional runs for the intersubject synchrony experiment. During the 12-minute runs, 

participants heard ten 10-second clips from each of the 6 stimuli (60 clips total) that were 

randomized across the two runs (30 clips in each run). During each of the six 5-minute runs, 

participants passively listened to one stimulus in its entirety. Stimulus order was randomized for 
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each participant. Between functional runs, a whole-head anatomical scan was acquired (TR = 6s; 

TE = 2.69 ms; FOV = 240 x 240 mm; voxel size = .75 mm3; 208 slices). Both young and older 

adults underwent the same scanning procedures. 

GLM experiment 

BOLD data collected during the 12-minute runs were processed using SPM12. Three 

‘dummy’ scans were excluded from the beginning of every run to allow stabilization of the 

signal. Images were realigned to the first image in the first run using six motion parameters (x, y, 

z, translation and rotation). Data were normalized to MNI space and smoothing was done with a 

Gaussian kernel of 8 mm FWHM. Subject-specific first-level models combined data from the 

two 12-minute runs and included epochs representing each of the 10-second stimulus clips (six 

regressors) convolved by the canonical hemodynamic response function. Six motion parameters 

(x, y, z, translation and rotation) were included as covariates of no interest. Serial correlations 

were accounted for using a first-order autoregressive model and low-frequency noise was 

removed with a high-pass filter of 128s. Contrast images estimated from single-participant 

models were created for each of the six stimuli vs rest resulting in a total of six contrast images 

per subject. The six contrasts were then entered into a second-level flexible-factorial model for 

group-level analysis. This model labeled stimulus type (two stimuli for each of the three types), 

group (young and older adults), and took subject effects into account. The cluster-forming 

threshold was specified at FWE p<.0001 uncorrected (Roiser et al., 2016). All data from within 

the clusters are reported at a corrected FWE p<.05. A 2(young/older adults) x 3(stimulus type) 

ANOVA was run to investigate where brain activity differed as a result of stimulus type and age 

group. Post-hoc tests included two t-contrasts to compare brain activity in the young and older 

adults, collapsing across stimulus type (young > older adults; older > young adults).  

To replicate the pattern of stimulus differences seen in the young adult data in Chapter 2 

(Sternin et al., 2021), a one-way ANOVA was run in the older adult participants alone to 

determine areas where brain activity differed as a result of the three stimulus types. As no studies 

have investigated how older adult brains respond to different musical stimuli, this analysis 

allowed us to fully characterize BOLD activation levels to different stimulus types in older 

adults. Post-hoc tests included six t-contrasts to investigate all pairwise comparisons between the 

three stimulus types.  
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Intersubject synchrony 

Data from the six 5-minute runs were processed using automatic analysis (version 4.1 

(Cusack et al., 2015): a MATLAB based processing and analysis pipeline that integrates with 

Statistical Parametric Mapping (SPM12). Three ‘dummy’ scans were excluded from the 

beginning of every data run to allow stabilization of the signal. Images were realigned to the first 

image in the first run using six motion parameters (x,y,z, translation and rotation). Data were 

normalized to MNI space and smoothing was done with a Gaussian kernel of 10mm FWHM. 

Low-frequency noise (e.g., drift) was removed with a high-pass filter of 128s. Data were 

denoised using cerebrospinal fluid, white matter signals, motion parameters, their lag-3 2nd-

order Volterra expansion (Friston et al., 2000), and “spikes” (>3 standard deviations based on 

mean signal variance across volumes) as nuisance regressors. The data were then further cleaned 

by running a group ICA (Calhoun et al., 2001) within each stimulus and removing 1-2 

components that spatially correlated with a mask of the ventricles to remove non-brain related 

activity. 

The degree of intersubject synchrony across the whole brain was calculated separately 

within each of the groups of young and older adult participants. These data allow us to 

investigate whether individuals were similarly synchronized to age-matched peers across the 

lifespan, or if they become more idiosyncratic with age. Within each age group, synchrony was 

calculated separately for each stimulus using a leave-one-out approach. Synchrony was only ever 

calculated between identical stimuli. For each stimulus, the timecourse of every voxel in each 

participant was correlated (Pearson and then Fisher z-transformed) with the mean timecourse of 

every corresponding voxel from the rest of the participants’ age group, minus that participant (N-

1). This process created an r-value for each voxel, for each participant, that described the 

correlation between that participant’s voxel and the same voxel in the other participants within 

their age group. 

Each individual’s correlation values for the six stimuli were entered into a group level 

flexible-factorial model using SPM12. This model labeled stimulus type (two stimuli for each of 

the three types), group (young and older adults), and took subject effects into account. A 2(age 

group) x 3(stimulus type) ANOVA was run to examine the main effects of age, stimulus type, 

and the age by stimulus type interaction. Post-hoc tests included two t-contrasts to compare brain 
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activity in the young and older adults, collapsing across stimulus type (young > older adults; 

older > young adults). Post-hoc tests following a significant main effect of stimulus type were 

conducted using an ROI approach. The cluster-forming threshold was specified at FWE p<.0001 

uncorrected (Roiser et al., 2016) and clusters identified by the main effect of stimulus type were 

specified at a corrected FWE p<.05. Synchrony data, averaged across all voxels within each of 

the significant clusters identified by the ANOVA, were extracted using MarsBAR (Brett et al., 

2002) and pairwise comparisons between the stimulus types were run using R (R Core Team, 

2013). 

Intersubject synchrony between age groups 

The synchrony analysis described above provides insight into whether young and older 

adults process stimuli similarly to their age-matched peers but does not provide information 

about how similarly young and older adults process stimuli to each other. Therefore, to 

understand whether older and young adults processed the stimuli in a similar way, we compared 

the timecourse of the activation produced by stimulus processing in older and younger adults by 

calculating a second set of synchrony values for the older adults. These synchrony values were 

calculated within each of the clusters defined by a main effect of age group in the 2(age group) x 

3(stimulus type) ANOVA above. The cluster-forming threshold was specified at FWE p<.0001 

uncorrected (Roiser et al., 2016) and clusters identified by the main effect of age group were 

specified at a corrected FWE p<.05.  

Within each cluster, for each stimulus, the timecourse of every voxel in each older adult 

participant was correlated (Pearson and then Fisher z-transformed) with the mean timecourse of 

every corresponding voxel from the young adult participants. This process created an r-value for 

each voxel, for each older adult participant, that described the correlation between that 

participant’s voxel and the same voxel in the young adults. Synchrony data, averaged across all 

voxels within each of the regions of interest, were extracted using MarsBAR (Brett et al., 2002). 

This second set of synchrony values for the older adult participants could be statistically 

compared to the synchrony values calculated within the young adult participants (calculated 

within the young adult group as described in the previous section). Two t-tests comparing 

synchrony values in young and older adults were run using R (R Core Team, 2013): young > 

older adults; older > young adults. If older adults were processing the stimuli differently than the 
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young adults, we would expect weak correlations with the average young adult group and 

therefore, group differences when these weak correlations were statistically compared to the 

young adult synchrony values. In contrast, if older adults were processing the stimuli similarly to 

the young adults, we would expect equivalent synchrony values across the two groups of 

participants and, therefore, no group differences.   

Results 

Participants 

Young adults 

 Two individuals withdrew from the study following the scan session and one 

individual’s data from one of the 12-minute runs was lost. Therefore, fMRI data from 23 

individuals were included in the analysis. 

Older adults 

The data from one individual was removed because of excessive movement in the 

scanner (>2mm displacement in z) and one participant withdrew from the study. Therefore, 

fMRI data from 13 older adults were included in the analysis.  

FMRI results 

GLM experiment  

The 2(young/older adults) x 3(stimulus conditions) ANOVA revealed a significant main 

effect of age group in large clusters across the brain (see Table 2 and Figure 1). There was no 

significant main effect of stimulus type and no significant interaction between age group and 

stimulus type.  
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Figure 1. Brain regions where a significant main effect of age group was found in the 2(age group) x 3(stimulus 
conditions) ANOVA. The extent threshold was set to the FWEc value (=47). Hotter colours represent larger levels 
of activation. Displayed slices are at x= 50, y=-31, z=2. 
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Table 2. Peak voxels for cluster locations (depicted in Figure 1) from the GLM experiment F-contrast describing the 
main effect of age group. The extent threshold was set to the FWEc value (=47). p<.05 FWE. Reported peaks are 
>8.0mm apart. *All reported F-values are significant at p<.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The two post-hoc t-tests exploring the differences in activation levels based on age 

group revealed that young adults produced more activity in large, bilateral temporal areas than 

older adults, while older adults produced more activity in subcortical regions than did younger 

adults (see Figure 2 and Table 3).  

extent = 47 
peaks >8.0mm apart 

F-value * 

Planum temporale 
Parietal operculum 
Planum polare 

Planum temporale 
Planum polare 
Central opercular cortex 

Temporal occipital fusiform cortex 
Precuneous cortex 
Thalamus 

Central opercular cortex 
Central opercular cortex 
Parietal operculum cortex 

Precentral gyrus 
Supramarginal gyrus (posterior div.) 
Insular cortex 

Putamen 
Central opercular cortex 

Left ventricle 
Right ventricle 
Cerebral white matter 

IFG – pars opercularis 
MTG – temporooccipital  

MTG – temporooccipital  
Paracingulate gyrus 
Precentral gyrus 
Putamen 

Putamen 
Insular cortex 

Lateral occipital cortex (inferior div.) 
Angular gyrus 
Lateral occipital cortex (inferior div.) 

Precentral gyrus 
Precentral gyrus 

-42, -30, 8 
-50, -26, 12 
-48, -8, 2 
58, -26, 8 
44, -14, -2 
46, -2, -2 
36, -54, -20 
18, -48, 18 
0, -26, 2 
54, -16, 12 
54, -12, 20 
62, -20, 18 
50, -4, 44 
54, -38, 18 
32, -26, 18 
32, -12, 10 
36, -14, 20 
-2, 6, 16 
8, 8, 16 
20, -4, 18 
42, 16, 22 
-58, -52, 0 
-46, -48, 4 
-10, 26, 38 
-58, 0, 18 
-32, -8, 2 
-30, -6, -10 
-30, 6, -14 
-42, -64, 2 
-46, -60, 16 
-42, -70, 8 
-42, -14, 42 
-54, -12, 48 

414.61 
381.62 
232.51 
174.31 
162.25 
159.90 
115.68 
104.55 
103.78 
95.64 
52.95 
33.42 
89.87 
89.79 
86.27 
77.15 
54.80 
65.74 
59.31 
45.25 
60.17 
58.83 
25.70 
54.01 
48.24 
45.88 
44.91 
34.66 
38.94 
36.56 
31.80 
38.66 
36.63 
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Figure 2. Left: Areas in which young adults showed more activation than older adults. Displayed slices are at x=48, 
y=-25, z=11, FWEc=95. Right: Areas in which older adults showed more activation than young adults. Displayed 
slices are at x=-9, y=-53, z=23, FWEc=52. Hotter colours represent larger levels of activation. 
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Table 3. Cluster coordinates from the GLM experiment for two t-contrasts comparing BOLD activation across age 
groups: young > older adults and older > young adults. The extent threshold was set to the FWEc value separately 
for each contrast and clusters were defined at p<.05 FWE. *All reported t-values are significant at p<.001. 

 

  

Young > Older Adults 
extent = 95 

peaks >4.0mm apart 
t-value* 

Older > Young Adults 
extent = 52 

peaks >8.0mm apart 
t-value* 

Planum temporale 
Planum temporale 
Parietal operculum 
Planum polare 
Temporal pole 
Insular cortex 
Heschl’s gyrus 
MTG – temporooccipital 
MTG – temporooccipital 

Planum temporale 
Planum polare 
Insular cortex 
Heschl’s gyrus 
Planum temporale 
Temporal pole 
Central opercular cortex 
Inferior frontal gyrus (operc.) 
Heschl’s gyrus 
Heschl’s gyrus 
MTG – posterior 
MTG – posterior 
MTG – posterior 
MTG – temporooccipital 
MTG – temporooccipital 
MTG – posterior 

Left ventricle 
Caudate 
Caudate 
Caudate 
Caudate 
Caudate 
Caudate 
Caudate 

-42, -30, 8 
-48, -28, 10 
-54, -30, 14 
-48, -8, 2 
-46, 6, -10 
-44, -10, -2 
-52, -18, 2 
-58, -52, 0 
-46, -48, 4 
58, -26, 8 
44, -14, -2 
46, -2, -2 
54, -10, 0 
50, -26, 8 
46, 8, -12 
62, 2, 6 
58, 10, 4 
42, -20, 4, 
42, -24, 6 
60, -32, -4 
66, -36, 0 
66, -32, -2 
64, -40, 0 
50, -46, 4 
50, -38, -6 
-2, 6, 16 
8, 8, 16 
20, -4, 18 
18, 6, 16 
14, 10, 20 
18, 14, 16 
18, 20, 12 
16, -2, 26 

20.36 
19.66 
19.44 
15.25 
15.17 
14.40 
14.23 
7.67 
5.07 
13.20 
12.74 
12.64 
12.60 
10.92 
10.62 
10.25 
9.81 
9.13 
8.88 
7.66 
7.44 
7.43 
7.28 
6.72 
6.55 
8.11 
7.70 
6.73 
6.64 
6.15 
6.11 
5.66 
5.39 

Temporal occipital fusiform 
Precuneous cortex 
Thalamus 

Central opercular cortex 
Central opercular cortex 
Parietal operculum cortex 

Precentral Gyrus 
Supramarginal gyrus (posterior div.) 
Insular cortex 

Putamen 
Central opercular cortex 

IFG – pars opercularis 
Precentral gyrus 
Putamen 

Putamen 
Insular cortex 

Insular cortex 
Insular cortex 

Cerebral cortex 
Caudate 

Lateral occipital cortex (inferior div.) 
Angular gyrus 
Lateral occipital cortex (inferior div.) 

Precentral gyrus 
Postcentral gyrus 
Postcentral gyrus 

 

36, -54, -20 
18, -48, 18 
0, -26, 2 
54, -16, 12 
54, -12, 20 
62, -20, 18 
50, -4, 44 
54, -38, 18 
32, -26, 18 
32, -12, 10 
36, -14, 20 
42, 16, 22 
-58, 0, 18 
-32, -8, 2 
-30, -6, -10 
-30, 6, -14 
-26, 16, -6 
-30, 20, 0 
2, 6, 2 
-8, 0, 10 
-42, -64, 2 
-46, -60, 16 
-42, -70, 8 
-42, -14, 42 
-54, -12, 48 
-42, -24, 38 

10.76 
10.22 
10.19 
9.78 
7.28 
5.78 
9.48 
9.48 
9.29 
8.78 
7.40 
7.76 
6.95 
6.77 
6.70 
5.89 
6.52 
4.90 
6.35 
5.50 
6.234 
6.05 
5.40 
6.22 
6.05 
4.83 
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A one-way ANOVA investigating differences in activation based on the three stimulus 

types in the older adult participants alone revealed a main effect of stimulus type in the older 

adults in right temporal areas (extent = 167; see Figure 3 and Table 4). Pairwise comparisons 

between all stimulus types showed that there was significantly more activity to spoken stimuli 

than to either the whole or instrumental stimuli and significantly more activity to whole stimuli 

than to instrumental stimuli replicating the results seen in the young adult data in Chapter 2. No 

other pairwise comparisons showed significant differences between stimulus types (see Table 5). 

 

Figure 3. Areas in which BOLD activation differed across the three stimulus types in older adult participants only. 
FWEc = 167. Displayed slices are at x=60, y=-21, z=2. 

 

Table 4. Cluster coordinates from the GLM experiment where activation differed based on the three stimulus types 
in older adults. The extent threshold was set to the FWEc value =167. Clusters were defined at p<.05 FWE.  

extent = 167 
peaks >4.0mm apart F-value p-value 

FWE corr. 

Posterior STG 
Posterior STG 
Posterior STG 
Posterior STG 
Planum temporale 

56, -22, 2 
60, -18, 0 
62, -14, 0 
52, -32, 6 
64, -8, 6 

49.29 
44.02 
43.48 
32.90 
48.51 

.001 

.001 

.001 

.002 

.002 
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Table 5. Significant clusters from binary contrasts between all stimulus categories in the older adults only. Missing 
results indicate no significant clusters were found. Coordinates for the peaks within each cluster and the 
corresponding t-values are listed. Reported peaks are >4.0mm apart. 

Contrast region extent 
p 

FWE 
corrected 

Coordinates 

(x, y, z) 
t-value 

Instrumental > spoken - - - - - 

Instrumental > whole - - - - - 

Spoken > instrumental 

Posterior STG 

Posterior STG 

Posterior STG 

Posterior STG 

Central opercular cortex 

Posterior MTG 

79 

<.001 

<.001 

<.001 

<.001 

<.001 

<.001 

52, -22, -4 

58, -4, -6 

66, -28, 2 

60, -12, -2 

52, -34, 6 

-58, -32, 0 

10.69 

8.88 

6.73 

6.52 

10.46 

7.84 

Spoken > whole 
MTG – temporooccipital part 

Posterior STG 
84 

.001 

.001 

50, -36, 4 

48, -26, -4 

6.46 

6.45 

Whole > instrumental 

Posterior STG 

Planum temporale 

Anterior STG 

Posterior STG 

Posterior STG 

Posterior STG 

212 

<.001 

<.001 

<.001 

.001 

.001 

.028 

56, -22, -2 

64, -8, 6 

60, -6, -4 

60, -18, 0 

62, -14, 0 

52, -32, 6 

7.02 

6.96 

6.78 

6.63 

6.59 

5.74 

Whole > spoken - - - - - 

 

Intersubject synchrony experiment 

A 2(young/older adult) x 3(stimulus type) ANOVA (using young and older adult 

synchrony values calculated separately within each age group) identified 10 significant clusters 

in bilateral temporal, frontal, and occipital regions where synchrony differed based on age group, 

and five significant clusters in bilateral temporal lobes, precentral gyrus and occipital regions 

where synchrony differed based on stimulus category (see Table 6). There were no areas where a 

significant age by stimulus type interaction was identified. The 15 clusters can be seen in Figure 

4. 
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Table 6. Cluster coordinates from two main effect F-contrasts from a 2(age group) x 3(stimulus type) ANOVA 
probing areas where synchrony differed based on age group and stimulus type. The extent threshold was set to the 
FWEc value for each contrast separately and clusters were defined at p<.05 FWE corrected. Three local maxima 
more than 8mm apart in each cluster are listed. * p<.001 (FWE corr) 

 

 

 

ME of age group 
extent = 42 

(x,y,z) 
coordinates F value ME of stimulus type 

extent = 49 
(x,y,z) 

coordinates F value 

IFG triangularis 
IFG triangularis 
Frontal pole 

Middle frontal gyrus 
Middle frontal gyrus 
Middle frontal gyrus 

MTG temporooccipital part 
MTG temporooccipital part 
Posterior MTG 

Frontal orbital cortex 
Frontal orbital cortex 
Subcallosal cortex 

Anterior cingulate gyrus 
Anterior cingulate gyrus 

Posterior parahippocampal gyrus 
Fusiform cortex 

Frontal orbital cortex 
Postcentral gyrus 

Postcentral gyrus 
Central opercular cortex 

Temporal pole 
Lateral occipital cortex  
(inferior div.) 

-42, 26, 10 
-28, 34, 10 
-38, 42, 16 
-44, 4, 54 
-30, 6, 58 
-32, -14, 58 
-50, -50, 6 
-66, -44, -2 
-60, -38, -6 
-16, 14, -22 
-24, 20, -28 
-10, 8, -18 
-4, -16, 32 
-10, -10, 34 
36, -32, -6 
38, -38, -12 
14, 10, -20 
-64, -18, 16 
-64, -8, 10 
-56, -16, 20 
-44, 26, -22 
-44, -74, 2 

48.58* 
43.20* 
31.78* 
46.77* 
22.49* 

19.86 p=.001 
34.13* 
27.03* 

18.72 p=.003 
22.55* 

16.22 p=.024 
16.14 p=.026 

22.00* 
15.96 p=.030 

21.17* 
15.77 p=.036 
20.38 p=.001 
19.84 p=.001 
19.29 p=.002 
18.15 p=.005 
16.80 p=.015 
16.71 p=.016 

Anterior STG 
Posterior STG 
Posterior STG 

Posterior STG 
Posterior STG 
Insular cortex 

Precentral gyrus 
Occipital fusiform 
Lateral occipital cortex 
(inferior div.) 
 

-60, -12, 0 
-66, -30, 6 
-66, -22, 2 
62, -14, -2 
72, -24, 6 
30, -24, 14 
-48, 0, 52 
-28, -78, -16 
-48, -76, 4 
 

136.54* 
136.51* 
135.37* 
107.96* 
53.53* 
21.04* 

26.43 p=.002 
23.17 p=.020 
24.13 p=.012 
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Figure 4. The 15 clusters identified by the main effects from a 2(age group) x 3(stimulus types) ANOVA are shown 
here. The 10 clusters where a main effect of age group was found are shown in green. The 5 clusters where a main 
effect of stimulus type was found are shown in purple. The two right-sided clusters identified by the main effect of 
age can not be seen in in the slices displayed here. Displayed slices are at: x= -48, y= -76, z= 2. 

 

Two t-contrasts were performed to identify areas where synchrony differed based on 

age group. Young adults had more synchrony than older adults in three areas on the left: middle 

temporal lobe, temporal pole, and frontal orbital cortex (see Figure 5 and Table 7). Older adults 

had more synchrony than young adults in three areas on the left and one areas on the right: left 

IFG, left precentral gyrus, left central opercular cortex, and right parahippocampal gyrus (see 

Figure 5 and Table 7). 
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Figure 5. Left: Areas in which young adults showed more synchrony than older adults. Displayed slices are at x=-
46, y=-51, z=-22, FWEc=95. Right: Areas in which older adults showed more synchrony than young adults. 
Displayed slices are at x=-48, y=35, z=-7, FWEc=52. Hotter colours represent larger levels of synchrony. 

 

Table 7. Cluster coordinates for two t-contrasts comparing synchrony across age groups: young > older adults and 
older > young adults. The extent threshold was set to the FWEc value separately for each contrast and clusters were 
defined at p<.05 FWE. * p<.001 (FWE corr.). 

Young > Older Adults 
extent = 71 

local maxima >8.0mm apart 
t-value 

Older > Young Adults 
extent = 63 

local maxima >8.0mm apart 
t-value 

MTG temporooccipital part 
MTG temporooccipital 
MTG posterior 

Temporal pole 
Frontal orbital cortex 

Frontal orbital cortex 

-50, -50, 6 
-68, -44, 0 
-60, -38, -6, 
-44, 26, -22 
-14, 10, -22 
-24, 22, -30 

9.01* 
8.38* 
7.32* 
7.00* 
6.36* 

5.93 p=.001 

IFG pars triangularis 
IFG pars triangularis 
Frontal pole 

Precentral gyrus 
Precentral gyrus 
Middle frontal gyrus 

Central opercular cortex 
Postcentral gyrus 
Central opercular cortex 

Parahippocampal gyrus (posterior div.) 
Fusiform cortex 
Parahippocampal gyrus (posterior div.) 

-42, 26, 10 
-28, 34, 10 
-38, 42, 16 
-44, -4, 54 
-32, -14, 58 
-30, 6, 58 
-64, -18, 14 
-64, -8, 10 
-50, -6, 16 
34, -34, -6 
38, -38, -12 
34, -26, -12 

12.07* 
10.88* 
9.75* 
11.63* 
7.60* 
6.78* 
7.65* 
7.20* 
6.80* 
7.09* 
6.64* 

5.62 p=.005 
 

Pairwise comparisons between stimulus conditions on the synchrony values extracted 

from the five clusters identified by the main effect of stimulus type showed that in all five 

regions, as expected, spoken stimuli induced more synchrony than the instrumental stimuli (see 

Figure 6 and Table 8) and whole stimuli induced more synchrony than instrumental stimuli in 

three areas: bilateral STG and precentral gyrus. However, contrary to our hypotheses, spoken 

stimuli induced more synchrony than whole stimuli in three areas: left posterior STG, occipital 
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fusiform, and lateral occipital cortex (inferior division). No other pairwise comparisons showed 

significant differences in any of the five regions. 

 

Table 8. Pairwise comparisons between stimulus types performed in the five ROIs identified by a main effect of 
stimulus type. All reported p-values are FWE corrected within each region. Missing results indicate no significant 
results were found. Superscripts denote the labels used in Figure 6. *p < .001.  

 Spoken  > 
Instrumentala 

Whole > 
instrumentalb 

Spoken 
> wholec 

R anterior STG * * - 

L posterior STG * * p=.01 

Precentral gyrus * * - 

Occipital fusiform p=.005 - * 

Lateral occipital 
Inferior division 

p=.009 - * 

 

 

Figure 6. Synchrony values plotted for each of the 5 regions identified by a main effect of stimulus type in a 2(age 
group) x 3(stimulus type) ANOVA for each condition and for each group. Boxplots show the median value and 
contain values from the 25th to 75th percentile within each box. Whiskers represent 95% confidence intervals with 
outliers depicted as individual points. The following superscripts denote the significant pairwise comparisons listed 
in Table 7: a = spoken > instrumental, b = whole > instrumental, c= spoken > whole, 
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Intersubject synchrony between age groups 

Two t-contrasts comparing synchrony in the young adults (calculated within the group 

of young adults) to synchrony in the older adults (calculated by comparing each individual older 

adult to the average young adult data) were run in each of the 10 clusters identified by a main 

effect of age group (see Table 6 and Figure 4). These t-contrasts identified four areas where 

synchrony differed between the two age groups. Young adults were significantly more 

synchronized than older adults (p<.01) in three areas: the middle temporal gyrus 

(temporooccipital part), anterior cingulate gyrus, and the temporal pole indicating that individual 

young adults were more synchronized to the rest of the group of young adults than any of the 

individual older adults. This can be interpreted as the timecourse of the activation in older adults 

following a different pattern than that of the young adults and is likely reflective of age-related 

changes in temporal cortex. In contrast, older adults were significantly more synchronized than 

young adults (p=.007) in only the posterior parahippocampal gyrus indicating that individual 

older adults were more synchronized to the group of young adults than any of the individual 

young adults. There were no differences between the two age groups in the six other areas: the 

IFG, middle frontal gyrus, left and right frontal orbital cortex, postcentral gyrus, and lateral 

occipital cortex (inferior division). In these six areas, individual older adults were just as 

synchronized to the average of the young adult group as the individual young adults indicating 

no age-related changes in stimulus processing.  

 

Discussion 

In the current study, we investigated neural activation differences based on stimulus 

contents and participant age using a traditional fMRI GLM analysis and an intersubject 

synchrony analysis. We were interested in comparing the brain areas identified by the GLM 

analysis to those identified by the synchrony analysis to understand whether the areas involved in 

processing different stimuli follow similar activation patterns across age groups. We were also 

interested in whether stimuli that include both music and language induce more synchrony than 

stimuli that include either component on its own.  
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GLM experiment 

First, we examined age differences in the brain areas involved in the processing of 

music and language. The GLM experiment results indicated that there were differences in how 

the stimuli were processed based on participants’ age and follow-up tests showed that young 

adults had more activation in auditory processing areas in the temporal cortex than the older 

adults, while older adults had more activation in subcortical and occipital regions. This pattern of 

results is in keeping with a frequent observation in fMRI studies of aging that young adults show 

greater activation in task-related areas (auditory regions in the current experiment), while older 

adults show increased activity in regions not activated in the younger population (the subcortical 

and occipital regions; Grady, 2000; Sikka et al., 2015). In addition, the areas identified as 

showing differences in activation between the two age groups are in keeping with previous 

literature that showed less activity in cortical regions in older adults compared to young adults 

(Cardin, 2016). This is true in both passive listening tasks (Cliff et al., 2013) and tasks that 

require participant responses (Kuchinsky et al., 2012; Peelle et al., 2010; Tyler et al., 2010). The 

differences in recruitment of areas between the young and older adults may be related to the 

compensatory mechanisms that develop to support auditory processing with age (Peelle, 2019; 

Wingfield & Grossman, 2006). For example, both increasing age and decreasing intelligibility 

were related to increased activation in occipital cortex during an auditory word recognition task 

(Kuchinsky et al., 2012). These activation changes were seen in occipital areas similar to those 

identified in the current study as being more active in older than young adults (inferior lateral 

occipital cortex and angular gyrus; Table 3). Similarly, older adults showed additional 

recruitment of frontal areas like the inferior frontal gyrus during sentence comprehension tasks 

(Peelle et al., 2010; Tyler et al., 2010). This same frontal area also showed more activity in older 

than young adults in the current experiment (Table 3). In a passive listening task, like the task in 

the current experiment, young adults showed significantly more activation within bilateral 

superior and middle temporal gyri than in older adults (Cliff et al., 2013). The current results 

showed more activation in young adults than older adults in similar temporal areas. 

As no studies have investigated how older adult brains respond to different musical 

stimuli, we performed pairwise comparisons between all stimulus types in the older adult data to 

fully characterize BOLD activation levels to different stimulus types in older adults. By 
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comparing the older adult results to those seen in young adults in Chapter 2, we could investigate 

whether the pattern of stimulus processing was maintained across the lifespan. We found that, 

like in the young adults, spoken stimuli resulted in more activity than either whole or 

instrumental stimuli and whole stimuli resulted in more activity than the instrumental stimuli. No 

other comparisons resulted in significant differences. When comparing the significant pairwise 

comparison results in older adults to those found in the young adults, we saw that there were 

some contrasts that elicited activation in young adults that did not have the same effect in the 

older adults (e.g., young adult brains activated more to whole than spoken stimuli in bilateral 

planum polare, but in older adults, activity to whole and spoken stimuli was similar).  

There are a number of possible explanations for why the older adults showed fewer 

activation differences between stimulus types than did younger adults. First, 20 young adults 

were included in the analyses in Chapter 2 while only 13 older adults were included here (older 

adult data collection was put on hold due to the COVID-19 pandemic resulting in sample size 

discrepancies). In Chapter 2, young adults showed more activation to instrumental and whole 

stimuli than to spoken stimuli in bilateral auditory areas (Chapter 2, Table 5). In the current 

experiment, there were no significant differences between these stimuli in older adults. However, 

when the statistical thresholds in these two pairwise comparisons in older adults (instrumental > 

spoken; whole > spoken) were lowered to p<.001 without familywise error correction, similar 

bilateral auditory areas as seen in the young adults were identified. It is possible that with a 

larger group of older adults we may have seen activation differences similar to those seen in 

young adults between more pairs of stimuli. 

The differences in BOLD activation to different stimuli in young and older adults may 

also be related to how language processing changes with age. When older adults hear language 

embedded in noise their brains show different patterns of activation than young adults and, 

specifically, decreasing activation in temporal auditory areas with decreasing language 

intelligibility (Eckert et al., 2008; Peelle, 2019). The older adult results in this experiment 

showed more activity to stimuli that included language than to the instrumental stimuli that did 

not (spoken > instrumental; whole > instrumental). Spoken stimuli also resulted in more activity 

than whole stimuli and, although both stimuli contained language information, the spoken stimuli 

contained only language while the whole stimuli contained both language and music. If the 
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language in the whole stimuli was processed similarly to how language is processed in a noisy 

environment, this could explain the pattern of results seen here; the most activation was seen to 

the most intelligible stimuli (spoken), the least activation was seen to the least intelligible stimuli 

(instrumental), with activation to the whole stimuli falling in between. Although we did not 

collect any measures of lyric comprehension in older adults, the participants did not report any 

issues in understanding the words that were present in the stimuli. To further understand whether 

the BOLD activation differences seen here in older adults are related to language comprehension, 

future studies should aim to collect information regarding lyric comprehension in musical 

stimuli.  

Intersubject synchrony differences to language and music 

We expected more synchrony to the whole stimuli (music and lyrics together) than to 

either the instrumental or spoken stimuli alone, as there was more information within the whole 

stimuli with which brain responses could synchronize. In line with our hypothesis, we found that 

whole stimuli induced more synchrony than instrumental stimuli in three regions (bilateral STG 

and precentral gyrus). However, contrary to our hypothesis we found that spoken stimuli resulted 

in significantly more synchrony than the whole stimuli in three ROIs (left posterior STG and the 

two occipital areas). None of the five regions of interest showed more synchrony to whole than 

to spoken stimuli; more information within a stimulus did not necessarily increase synchrony.  

When comparing the spoken and the instrumental stimuli we found that spoken stimuli 

induced more synchrony than instrumental stimuli across all five regions. There were no regions 

where the instrumental stimuli induced more synchrony than the other two stimulus categories 

that contained language information. This result supports findings from previous work that 

suggest that language is a key component to driving synchrony across a group of listeners (Naci 

et al., 2017; Regev et al., 2019; Simony et al., 2016).  However, differences in synchrony 

between the spoken stimuli and the other two conditions may be because of the physical 

characteristics of the stimuli themselves. Specifically, the spoken stimuli contained more silent 

periods (pauses between words and phrases) and therefore more onsets of sound from silence 

compared to the whole and instrumental stimuli, where the music was more continuous with few 

to no silent periods. The more frequent contrasts between sound and silence in the spoken stimuli 

could drive greater fluctuations in the BOLD signal, resulting in stronger synchrony across 
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participants. However, if the synchrony differences were driven solely by sound onsets, we 

would expect there to be no difference in synchrony between the more continuous whole and 

instrumental stimuli. Our results do not support this explanation as we do see synchrony 

differences between the whole and instrumental stimuli. Therefore, the differences in the number 

of sound onsets can not fully explain why we see stronger synchrony to the spoken stimuli. 

When the synchrony results across stimulus types were compared to the results seen 

from the GLM experiments, the pattern of results was similar. In the GLM experiments, young 

and older adults showed more activation to stimuli that included language over stimuli that did 

not (spoken > instrumental; whole > instrumental) and showed more activation to spoken stimuli 

than to whole stimuli. This same pattern was seen in the synchrony results. In the GLM 

experiment, the differences in activation were discussed in the context of existing literature on 

how language is processed in the presence of noise. However, the differences in synchrony may 

be related to how the presence of language and music affect what aspects of the stimuli 

participants pay attention to.  

Synchrony is affected by attention (Regev et al., 2019) with the degree of synchrony (as 

measured with fMRI) decreasing as participants are distracted. Synchrony also decreases when 

the stimulus does not include a coherent narrative for participants to attend to, compared to when 

the stimulus contains an intact storyline (Ki et al., 2016). Here, when participants heard the 

spoken stimuli, they processed a single language stream. Even if participants were not actively 

focusing on the words, there is an element of automatic processing that occurs for language 

(Fodor, 1983; Hartsuiker & Moors, 2016; Levelt, 1993). The consistency of the language 

processing likely resulted in strong synchrony. In contrast, when hearing instrumental stimuli, 

participants may have focused on different instruments, or mind-wandered and made personal 

associations with the music. These individual differences would have caused a less consistent 

neural response to the instrumental stimuli across the group. When stimuli contain multiple 

tracks, such as the whole stimuli that contained both music and language, the synchrony appears 

to fall between the levels induced by the spoken and instrumental stimuli. With whole stimuli, 

there is likely some directed synchrony, from the automatic processing of the clearly intelligible 

language, but the multiple instrumental tracks may cause inconsistencies across participants and 

reduce synchrony. Therefore, it is likely that a stimulus with music and language will be most 
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effective at inducing synchrony if there is an obvious portion to which all participants’ attention 

is drawn (e.g. an audio story being told over background music). Multiple tracks in the whole 

stimuli may have caused each participant to attend to a different component (the music, rhythm, 

or lyrics) and reduced synchrony across the group. 

Intersubject synchrony differences with age 

To investigate whether music and language stimuli had the same effects on synchrony 

across different age groups, we compared intersubject synchrony between older and young 

adults. To our knowledge, only two previous studies have directly compared synchrony across 

age groups. These studies found that when watching a movie, older adults were less 

synchronized than younger adults (Campbell et al., 2015; Geerligs et al., 2018). However, if all 

of the older adults were processing the stimuli similarly to each other but differently than the 

young adults, it would be possible for the older adults to be highly synchronized with each other 

but have low synchrony with the young adults. In the current study, we calculated older adult 

synchrony in two ways. First, by comparing synchrony values calculated within age groups we 

investigated whether individuals maintain the same level of synchrony with their age-matched 

peers across the lifespan or whether they become more idiosyncratic with age. Second, by 

calculating synchrony in the older adults by correlating the individual older adult data with the 

average young adult data we investigated whether older adults process music and language 

stimuli in a similar way to young adults or whether there are age-related differences in the way 

music and language stimuli are processed. 

The first method correlated individual older adult data with the average of the rest of the 

older adult data. When comparing these synchrony values to the young adult synchrony values 

(calculated within the young adult group) we found that young adults showed more synchrony 

than older adults in left temporal and frontal orbital clusters. Previous studies have shown that 

the reduction in synchrony in these frontal areas is correlated with reductions in cognitive 

functioning with age (Geerligs et al., 2018). We did not collect information on participants’ 

cognitive function, and therefore are unable to say whether the reduction in synchrony with age 

seen in these regions is related to cognitive function.  

Interestingly, in four clusters we did not see age-related decreases (in left inferior frontal 

gyrus, pre- and post-central gyrus, parahippocampal gyrus) and instead saw more synchrony 
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within older adults than young adults. The discrepancy in results between the previous study and 

the current results may have to do with how language processing changes with age. Many of the 

regions associated with language processing (e.g., inferior frontal gyrus, precentral gyrus; 

Borowsky et al., 2007; Pulvermuller et al., 2006) seemed resistant to age-related synchrony 

decreases (Geerligs et al., 2018). Older adults may recruit additional resources as a compensatory 

mechanism to make up for lost neural efficiency when processing language stimuli (Peelle, 2019; 

Wingfield & Grossman, 2006). Therefore, it is possible that, in our study, older adults were more 

synchronized than young adults within regions associated with language processing because they 

relied more heavily on these regions to process the music and language stimuli than did the 

young adults. In support of the idea that older adults may have relied more heavily on these 

language networks, the results from the GLM experiment show that in some of the same areas 

where we saw more synchrony in older adults, we also saw more BOLD activation to older than 

young adults (central opercular cortex, IFG, pre- and post-central gyrus; see Table 3 and Table 

7). In addition, language regions have shown to be generally resilient against the effects of age, 

especially during passive listening tasks (Campbell et al., 2016; Davis et al., 2014). If young 

adults were not relying on these networks as heavily as the older adults, and older adults do not 

generally show age-related decline in these regions, it may be reasonable to expect more 

synchrony in older adults than younger adults within these networks.  

Our investigation into whether individuals maintain synchronization with age-matched 

peers across the lifespan has shown that synchrony changes as a result of age, but a reduction in 

synchrony across all brain areas is not seen. The differences in synchrony across age groups may 

have to do with the contents of the stimuli and the way those contents interact with aging. The 

stimuli that were used in the previous two studies where synchrony was compared across age 

groups (Campbell et al., 2015; Geerligs et al., 2018) differed from the types of stimuli that were 

used in the current study. We used stimuli designed to manipulate the presence of language, 

while the previous studies used a movie stimulus that may not have required as much processing 

of language (i.e. parts of the story may have been conveyed visually instead of through words). If 

the movie stimulus did not recruit these language networks, older adults may not have relied on 

them as heavily, may not have been as synchronized and therefore, showed an age-related 

reduction in synchrony. Further characterization of age-related changes in synchrony should 

Chapter 4. Effect of language and age on synchrony 107



 
 

consider comparing synchrony across different types of stimuli (e.g., language, music, movies, 

tactile stimuli, etc.).  

The second method used to calculate synchrony in older adults correlated individual 

older adult data with the average of the young adult data within each of the 10 regions identified 

by a main effect of age group (see Table 6 and Figure 4). This method allowed us to assess 

whether older and young adults were processing a stimulus similarly. If older adults were 

processing the stimuli differently than the young adults, we would expect weak correlations 

between the older adult and the average young adult group and therefore, group differences when 

these weak correlations were compared to the within-group young adult synchrony values. In 

contrast, if older adults were consistently processing the stimuli similarly to the young adults, we 

would expect to see equivalent synchrony values across the two groups of participants and 

therefore, no group differences. In this analysis we found that, in most areas (6 out of 10), there 

were no group differences. This result indicates that in these areas of the brain there are no age-

related differences in how music and language stimuli are processed; the BOLD fluctuations in 

response to the stimuli followed a similar pattern in both older and young adults.  

Using the second method of synchrony calculation, we found that in the posterior 

parahippocampal gyrus the individual older adults were more synchronized to the average of the 

young adult groups than were the individual young adults. This is an interesting result because 

atrophy in parahippocampal gyrus is known to be involved in age-related memory decline 

(Burgmans et al., 2011; Thangavel et al., 2008). The older adult participants in this study did not 

report memory difficulties, therefore, if synchrony in older adults is related to the way young 

adults process a stimulus, perhaps studies aiming to characterize synchrony changes in clinical 

populations with degenerative memory disorders should include the parahippocampal gyrus in 

their analyses. Increasingly idiosyncratic responses in this region as a result of disease 

progression may provide insight into the neural mechanisms behind such disorders.  

We found that young adult within-group synchrony was greater than the older adult 

synchrony (calculated by comparing older to young adults) in three regions. Individual young 

adults were more synchronized to the young adult group average than were the older adults in the 

middle temporal gyrus (temporooccipital part), the anterior cingulate gyrus, and the temporal 

pole. All three of these areas are known to undergo age-related increases in functional 
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connectivity (Cao et al., 2014; Hafkemeijer et al., 2013; Peelle et al., 2010) and reductions in 

grey matter volume (Mann et al., 2011; Pacheco et al., 2015; Saenger et al., 2012). Age-related 

structural and functional changes within these regions may have reorganized how stimuli are 

processed, requiring the older adults to process the stimuli differently than the young adults.  

When the results from the two methods of investigating intersubject synchrony across 

age groups are combined, we can conclude that synchrony changes with age but, it is not always 

the case that there is a generalized synchrony reduction with age. In fact, in the posterior 

parahippocampal gyrus it seems that idiosyncrasies in older adults decrease (causing an increase 

in synchrony). Structural changes that occur with age like grey-matter atrophy (e.g., Giorgio et 

al., 2010; Walhovd et al., 2005) may be responsible for the regional differences in synchrony. 

Relating differences in grey-matter volume between the groups of young and older adults may be 

one way to investigate whether structural differences are responsible for synchrony differences. 

However, there is a significant age-related decline in grey matter volume in regions associated 

with language processing (Campbell et al., 2016; Giorgio et al., 2010) and our results showed 

that synchrony was not reduced in these areas. Although we might expect a reduction in grey 

matter to lead to a reduction in synchrony, this is an empirical question that should be tested in 

future studies.  

Conclusions 

The results of the current experiment indicate that both the areas recruited to process 

auditory stimuli and the degree of synchrony to these stimuli differ based on the presence of 

music and language. Stimuli that are simple and have a salient component that attracts the 

listener’s attention appear the most reliable for inducing synchrony across a group. This may be 

why audiobook stories, or movies with a clear plot, are successfully used in studies probing 

intersubject synchrony. It is likely that movies with abstract visuals or less clear story lines 

would allow for greater variation in synchrony across a group of participants. Stimuli that allow 

for mind wandering or have different aspects to focus on will also reduce synchrony within the 

group. Future intersubject synchrony studies should take into consideration the contents of their 

stimuli to obtain greatest synchrony. A simple stimulus with a clear focal point will be the most 

effective at inducing synchrony across different age groups.  
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Finally, our results show that young and older adults recruit different brain areas to 

process the same music and language stimuli and that the degree of synchrony to these stimuli 

changes with age. We found that although some areas showed an age-related decrease other 

areas were more synchronized in older adults than in young adults. Future studies characterizing 

the effects of age on synchrony should compare different types of stimuli and correlate 

synchrony values with other factors such as cognitive measures or grey-matter volume to 

understand the factors driving age-related changes in synchrony.   
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The effects of long-term knowledge on intersubject synchrony  
in older adults 

 
 

Introduction 

The degree of intersubject synchrony across individuals is affected by stimulus 

familiarity (learned vs. not learned stimuli – Chapter 3), stimulus contents (presence of music 

and/or language – Chapter 4), and the age of the participants (young vs. older adults – Chapter 

4). In the previous studies, training young adult participants on novel stimuli allowed for careful 

control of acoustic factors (identical stimuli before and after training) and an objective 

measurement of the degree of familiarity (tracking the number of stimulus presentations during 

training). Although this training paradigm was successful in making participants familiar with 

the stimuli (see Chapter 2 – Results – Behavioural familiarity tasks), it did not replicate the way 

participants become familiar with music or language in the real world. Studies that use music or 

language to investigate memory in neurodegenerative disorders generally use stimuli that 

participants have learned over their lifetimes (Jacobsen et al., 2015; Sikka et al., 2015). With the 

increasing use of intersubject synchrony in studies of clinical populations it is important to 

understand the effects of long-term familiarity on synchrony. In this final study, we aimed to 

understand how synchrony is affected by long-term familiarity with a stimulus learned over the 

course of an individual’s lifetime.  

The synchrony data collected in young adults before and after the training paradigm 

(Chapter 3) largely replicated the pattern seen in the small number of previous studies that have 

explored the effect of repetition on intersubject synchrony. As in our study, previous 

investigations have shown that synchrony decreases with repeated exposure to a stimulus. For 

example, after six consecutive viewings of 90-second movie clips, synchrony (measured using 

fMRI) in the posterior medial network decreased from the first to the sixth viewing (Aly et al., 
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2017, 2018). A similar study involved participants being presented with three short films that 

were each viewed twice (Dmochowski et al., 2012). The researchers found that synchrony (using 

EEG) decreased between the first and second viewings. In all of these studies, stimulus repetition 

occurred over a short time period. Similarly, in Chapter 3 we investigated how synchrony to 

music and language stimuli was affected by repeated exposure over a 3-week period which is a 

fairly short period relative to the longer time frames (years or decades) over which some music is 

remembered. No studies to our knowledge have investigated changes in synchrony related to 

long-term knowledge of a stimulus.  

To probe the effects of long-term knowledge on intersubject synchrony, we presented 

older adults with two stimuli that they had known for more than 50 years. Although each 

participant may have heard these stimuli a different number of times over their lifetime, 

presenting participants with well-known stimuli from their past is a method used regularly in 

studies investigating the neural correlates of musical memory. Previous studies have used 

familiar music like widely known movie or tv theme songs, folksongs, children’s songs, or 

popular songs chosen from the period of time when the participants were young (e.g., Agustus et 

al., 2018; Jacobsen et al., 2015; Sikka et al., 2015). Therefore, we presented participants with a 

familiar whole music song (Hey Jude by The Beatles) and a familiar spoken word poem (‘Twas 

the night before Christmas by Clement Clarke Moore; see Methods – Long-known stimuli for 

details on participants’ familiarity with the stimuli). For novel stimuli, the same spoken and 

whole novel stimuli used in the investigation of musical memory in young adults (Chapter 3) 

were used here. Unlike previous chapters, the a capella stimuli (sung leading and backing vocals 

without instrumental music) and the instrumental stimuli (instrumental music without lyrics) 

were not included. All of the older adult data presented in this thesis were collected during a 

single scanning session. The a capella and instrumental stimulus conditions were removed in our 

long-known stimulus comparisons to reduce the burden on participants by keeping the entire 

fMRI scanning session to less than two hours. A detailed description of which stimuli were 

included in each experiment can be found in Appendix C. 

To our knowledge there are no studies that have investigated how stimulus 

characteristics, such as familiarity, affect synchrony within older adults specifically. As more 

studies use synchrony to investigate clinical populations with progressive diseases that appear 
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later in life (e.g. Alzheimer’s disease; Huntley et al., In preparation), understanding how 

intersubject synchrony changes during healthy aging is important to create an age-matched 

baseline level of synchrony against which clinical populations can be compared. Therefore, the 

aim of this last study was to complement the previous intersubject synchrony results by 

providing a full picture of how synchrony is affected by listener age and previous knowledge of 

the stimulus using a more ecologically valid approach. In line with our previous results, we 

expect to find less intersubject synchrony to the long-known stimuli than to the novel stimuli.  

Methods 

Ethics 

Ethics approval for this project was granted by the Health Sciences Research Ethics 

Board at The University of Western Ontario (#100606). 

Participants 

Fifteen neurologically normal, English-speaking participants (nine female) aged 64-74 

(mean=70 years) were recruited in London, Ontario. All participants had completed at least some 

post-secondary education and four participants had completed some post-graduate education. 

Using the Goldsmith’s Musical Sophistication Index (Müllensiefen et al., 2014), 11 participants 

reported having formal musical training (1-61yrs, mean=20.8yrs), but at the time of testing only 

three of them played instruments regularly. Five participants were familiar with a second 

language but did not rate themselves as fluent in those languages. 

Long-known stimuli 

Two well-known stimuli were selected: one whole stimulus and one spoken word 

stimulus. As the target age group was those over the age of 65, we chose ‘Hey Jude’ by The 

Beatles as our long-known whole stimulus. This song was popular when the group of 

participants would have been in their 20s (late 1960s-mid 1970s); ‘Hey Jude’ was the highest-

ranking song on the Canadian billboard charts in 1968 (“The RPM 100 - Top Singles of 1968,” 

1969). It also maintained similar instrumentation to the novel stimuli (guitar, drums, voice), as 
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well as the accent of the lead singer. The long-known whole stimulus had a length of 3:33. The 

long-known spoken word stimulus was created in lab by asking the same lead singer of the novel 

stimuli to record the poem ‘Twas the night before Christmas. The long-known spoken stimulus 

had a length of 3:46. All participants reported being very familiar with both stimuli (see Results 

– Stimulus Familiarity).  

Novel stimuli 

The same four spoken and whole novel stimuli used in the investigation of musical 

memory in young adults (Chapter 3) were used here (see Appendix C for details on the exact 

stimuli used). The four stimuli were created from the lyrics and music of different songs written 

and recorded by a member of the research team between 1997 and 2006 for an amateur rock 

band based in Cambridge, UK. Thus, all stimuli were completely novel to the Canadian 

participants. The original songs were all written in a similar style and instrumentation included a 

lead singer, bass, drums, guitar, string instruments, and backing vocals, each recorded on 

separate tracks. All stimuli were recorded using the exact same equipment directly to digital hard 

drive using Sonar software (by Cakewalk) and a Shure SM58 microphone.  

Two conditions were created by modifying the original four songs to include or exclude 

only certain tracks: (1) whole music (music and words together in a fully intact version of each 

song), and (2) spoken words (the lyrics of each song were rerecorded in spoken form by the 

original lead singer to have a similar length, tempo, and emotional intonation as their original 

song counterparts). There were two different stimuli for each condition, and none of the original 

songs were used for more than one condition. The stimuli were modified (e.g., lengthened by 

adding additional repetitions of the chorus) to each be five minutes long. During the fMRI scan 

session, participants heard the entire 5-minute stimuli. Each stimuli was normalized to equate 

perceived loudness using the Audacity software (Audacity Team, 2020). All stimuli are available 

in Appendix C.  

fMRI acquisition and analyses 

Imaging was conducted at the Robarts Research Institute on a Siemens Magnetom 7 

Tesla scanner with a 32-channel head coil. Functional scans were acquired with 54 slices per 
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volume (TR = 1.25 s; TE = 20 ms; flip angle = 35°; FOV = 220 x 220 mm; voxel size = 2.5 

mm3). The scan session included six functional runs: 2 runs for each of the long-known stimuli 

(each less than 4-minutes) and four 5-minute runs for each of the novel stimuli. During each of 

the runs, participants passively listened to each of the stimuli in their entirety. Stimulus order 

was randomized for each participant. Between functional runs, a whole-head anatomical scan 

was acquired (TR = 6s; TE = 2.69 ms; FOV = 240 x 240 mm; voxel size = 0.75 mm3; 208 

slices). 

Data from each of the functional runs were processed using automatic analysis (version 

4.1; Aly et al., 2017, 2018; Cusack et al., 2015; Dmochowski et al., 2012): a MATLAB based 

processing and analysis pipeline that integrates with Statistical Parametric mapping (SPM12). 

Three ‘dummy’ scans were excluded from the beginning of every run to allow stabilization of 

the signal. Images were realigned to the first image in the first run using six motion parameters 

(x,y,z, translation and rotation). Data were normalized to MNI space and smoothing was done 

with a Gaussian kernel of 10mm FWHM. Low-frequency noise (e.g., drift) was removed with a 

high-pass filter of 128s. Data were denoised using cerebrospinal fluid, white matter signals, 

motion parameters, their lag-3 2nd-order Volterra expansion (Friston et al., 2000), and “spikes” 

(>3 standard deviations based on mean signal variance across volumes) as nuisance regressors. 

The data were then further cleaned by running a group ICA (Calhoun et al., 2001) within each 

stimulus and removing 1-2 components that spatially correlated with a mask of the ventricles to 

remove non-brain related activity. 

Intersubject synchrony 

The degree of intersubject synchrony across the whole brain during each of the six 

stimuli (2 long-known and 4 novel stimuli) was calculated using a leave-one-out approach. That 

is, for each stimulus, the time course of every voxel in each participant was correlated (Pearson 

and then Fisher z-transformed) with the mean time course of every corresponding voxel from the 

rest of the participants, minus that participant (N-1). This process created an r-value for each 

voxel, for each participant, that described the degree to which that participant’s voxel was 

correlated with the rest of the participants while listening to that particular stimulus.  
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Each individual’s synchrony values for the six stimuli were entered into a second-level 

flexible-factorial model using SPM12. This model labeled stimulus type (three stimuli each for 

spoken and whole music stimuli), familiarity (four novel and two long-known stimuli), and took 

subject effects into account. Two t-contrasts were conducted to investigate familiarity: novel > 

long-known; long-known > novel. Two t-contrasts were conducted to investigate whether the 

differences between the long-known spoken and the long-known whole stimuli were similar to 

the differences between the novel spoken and novel whole stimuli described in Chapter 4: long-

known spoken > long-known whole; long-known whole > long-known spoken.  Two interaction 

contrasts were also run to determine where synchrony differed based on familiarity and stimulus 

type ([novel spoken – novel whole] – [long-known spoken – long-known whole]; ([novel whole 

– novel spoken] – [long-known whole – long-known spoken]). The cluster-forming threshold in 

each contrast was specified at FWE p=.0001 uncorrected (Roiser et al., 2016). All cluster peaks 

are reported at a corrected FWE p=.05.  

Behavioural tasks 

Participants were asked to return to the lab for a behavioural testing session within a 

week of their fMRI scan session. During the behavioural testing session, participants completed 

demographic questionnaires, the Goldsmith’s Musical Sophistication Index (Müllensiefen et al., 

2014), and familiarity questionnaires that asked participants to listen to the stimuli they heard in 

the scanner and rate their level of familiarity on a scale of 1 (not familiar – I had never heard this 

stimulus before my scan session) – 5 (extremely familiar – I have heard it more than 10 times).  

Results 

Participants  

One participant did not complete the scan session due to technical difficulties and data 

from the long-known stimuli were not collected. A second participant withdrew from the study. 

A third participant was excluded because of excessive movement in the scanner (>2mm 

displacement in z). Therefore, fMRI data from 12 individuals were included in the analysis. 
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Stimulus familiarity  

Participants reported being much more familiar with the familiar stimuli than the novel 

stimuli (p<.001). The average familiarity score for the two long-known stimuli was 4.9 (SD=.06) 

and the average familiarity score for the four novel stimuli was 1.3 (SD=.13). Participants also 

reported having heard the long-known whole stimulus (Hey Jude by The Beatles) for the first 

time when they were an average age of 18.5 years (SD=2.9) and having heard the long-known 

spoken stimulus (‘Twas the Night Before Christmas) for the first time when they were an average 

age of 6 years (SD=2.2). Therefore, all participants had known each of the long-known stimuli 

for more than 50 years.  

FMRI results 

The two t-contrasts investigating the differences in synchrony induced by the novel and 

long-known stimuli showed that there was significantly more synchrony to novel than long-

known stimuli in bilateral temporal areas (clusters at FWE p<.05; see Figure 1). There were no 

regions with more synchrony to long-known than novel stimuli. Figure 1 presents the overlap in 

the brain areas where synchrony differed based on familiarity that were identified by the t-

contrast in the older adult data (novel > long-known) and by the main effect of session F-contrast 

in young adults from Chapter 3, Figure 1. The peak values from the older adult clusters can be 

found in Table 1 alongside the peak values from the young adult clusters reprinted from Chapter 

3, Table 1.  
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Figure 1. Overlap between the brain regions in which intersubject synchrony differed based on familiarity in the 
older and young adult data. All clusters were defined at p<.05 FWE. Green: Older adult novel > long-known t-
contrast. The extent threshold was set to the FWEc value = 64. Magenta: The main effect of session F-contrast from 
the 2(session) x 2(training) ANOVA conducted in young adults (reprinted from Chapter 3, Figure 1). The extent 
threshold was set to the FWEc value = 40. Displayed slices are at x=47, y=-26, z=-2. 
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Table 1. The left column contains the coordinates of peak values from the significant clusters identified in the Older 
Adult novel > long-known t-contrast. The right column reprints the Young Adult cluster peak values from Chapter 
3, Table 1 for comparison.  The extent threshold FWEc values for each contrast are listed. The clusters were defined 
at p<0.05 FWE. Peak values > 4mm apart are listed. 

Older Adults 
novel > long-known 

t-contrast 
extent = 64 

Young Adults* 
Main effect of session 

F-contrast 
extent = 43 

Posterior STG 
Posterior STG 
Anterior STG 

 
Posterior MTG 

Planum polare 
Planum polare 
Planum polare 
Planum polare 
Planum polare 
Heschl’s gyrus 
Anterior STG 
Posterior STG 
Posterior STG 
Posterior STG 
Posterior STG 
Posterior MTG 
Posterior MTG 

-66, -18, 8 
-60, -22, 2 
-66, -8, 0 
 
44, -26, -4 
54, -4, -6 
42, -22, -4 
40, -18, -8 
44, -14, -8 
48, -14, -6 
40, -28, 0 
64, -4, 0 
56, -22, -4 
50, -22, -4 
60, -20, -2 
56, -16, -4 
42, -32, -2 
46, -22, -6 
 

Planum temporale 
Planum temporale 
Posterior STG 
Posterior STG 

 
Planum temporale 

Planum temporale 
Posterior STG 
Posterior STG 
Heschl’s gyrus 
Temporal pole 
Anterior STG 

 
Frontal orbital cortex 

Frontal orbital cortex 
Parahippocampal gyrus (anterior div.) 
Frontal orbital cortex 
Subcallosal cortex 
Parahippocampal gyrus (anterior div.) 

 
Precentral gyrus 
 
Occipital pole 

Lateral occipital cortex (inferior div.) 
 
Occipital pole 

Occipital pole 

-52,-20, 0 
-62, -34, 8 
-58, -36, 10 
-68, -22, 2 
 
56, -20, 6 
60, -18, 6 
68, -28, 6 
66, -24, 8 
38, -26, 10 
62, 8, -10 
62, 4, -8 
 
-12, 6, -22 
-12, 14, -20 
-14, 0, -26 
-16, 12, -24 
-12, 22, -18 
-14, -4, -28 
 
58, 4, 46 
 
40, -90, 24 
46, -84, 18 
 
34, -92, 4 
32, -96, 6 

 * reprinted from Chapter 3, Table 1 

 

The two t-contrasts showed that there were no significant differences between the long-

known spoken and the long-known whole stimuli in either contrast. This is contrary to the results 

from the novel stimuli in Chapter 4 that showed more synchrony to the novel spoken stimuli than 

to the novel whole stimuli in right temporal areas in older adults. The two familiarity by stimulus 

type interaction t-contrasts also found no significant differences in synchrony in any areas of the 

brain. 
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Discussion 

In the current study, we set out to understand how intersubject synchrony is affected by 

long-term knowledge of a stimulus. We found a similar effect of familiarity on synchrony as was 

seen in the young adults (Chapter 3): greater synchrony to novel than to long-known stimuli. In 

older adults, these differences were present in bilateral temporal regions. Although the regions in 

the older adults were spatially smaller than the areas that differed between learned and not 

learned stimuli in young adults, there was overlap in the posterior STG on the left and Heschl’s 

gyrus and posterior STG on the right. As was the case in young adults, the older adults did not 

synchronize more to the familiar than the novel stimuli in any brain regions. The results from 

both the older and young adult studies investigating the effects of familiarity on synchrony 

indicate that novel stimuli induce greater intersubject synchrony than stimuli that have been 

known for either short (3 weeks) or very long (50 years) periods of time.  

Despite the small areas of overlap (see Figure 1), both young and older adults showed a 

decrease in synchrony as a result of familiarity in primary and secondary auditory areas. BOLD 

activity is known to increase after training on auditory tasks in Heschl’s gyrus (Bermudez et al., 

2009; Gaab et al., 2006; Schneider et al., 2002), posterior STG, planum polare, and planum 

temporale (Brown & Penhune, 2018). The connection between increased BOLD activity and 

neural synchrony has been previously investigated in dorsolateral prefrontal cortex (dlPFC) 

using a voluntary forgetting task while recording simultaneous EEG and fMRI (Hanslmayr et al., 

2012). It was found that increased BOLD activity in dlPFC was correlated with a decrease in 

neural phase synchrony measured using EEG. Although the task used was not an auditory task, 

this research may relate to the synchrony reduction seen in the current experiment. It is possible 

that increased BOLD activity in temporal areas to the long-known stimuli in older adults is 

responsible for the reduction of synchrony within these areas (Heschl’s gyrus and posterior 

STG). Unfortunately, our fMRI paradigm used in older adults was not designed to investigate 

similarities between BOLD and synchrony activity to long-known stimuli. However, the young 

adult data discussed in previous chapters may provide some insight. If decreased synchrony is 

driven by increased BOLD activity, then we should have seen BOLD activity differences as a 

result of training in the same areas where we saw synchrony differences. In Chapter 2 we saw no 

differences in BOLD activity as a result of repeated exposure to the stimuli, but in Chapter 3 we 
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did see a synchrony reduction. This synchrony reduction occurred regardless of whether stimuli 

had been heard once or heard multiple times before and was likely not related to how well the 

stimuli were learned. Therefore, it is possible that the discrepancy between BOLD and 

synchrony activity in young adults may indicate that although there were behavioural changes in 

learning in young adults (recognition of words and melodies), the stimuli were not learned 

enough to cause neural changes that affected the level of BOLD activity. The behavioural tasks 

used to measure learning in the young adults asked participants to recognize the correct lyric or 

melodies. Although scores on the behavioural tasks were not at ceiling (average 79% correct on 

the lyric task; see Chapter 2 – Results), we may have seen even lower levels of learning if we 

had used more difficult tasks that required participants to freely recall the words or melodies of 

the stimuli. Therefore, it is possible that participants did not learn the stimuli well enough and the 

synchrony reduction was due to other factors like the amount of attention paid to the stimuli 

(synchrony is known to decrease with decreased attention; Regev et al., 2019). A follow-up 

study should compare long-known stimuli (rather than stimuli learned over 3 weeks) to novel 

stimuli to see if the synchrony reduction to long-known stimuli seen in older adults is related to 

increased BOLD activity in similar brain areas. Such an experiment would help to tease apart 

whether synchrony reduction is due to knowledge of a stimulus (as indexed by increased BOLD 

activity) or whether the synchrony reduction as a result of repeated exposure should be 

investigated by focusing on other factors like attention.   

In contrast to the results of Chapter 4 where the novel spoken stimuli induced more 

synchrony than the novel whole stimuli, we found no differences in synchrony between the long-

known spoken and long-known whole stimuli. This lack of difference could be due to a number 

of reasons. First, this comparison was between only two stimuli, rather than four stimuli as in the 

comparisons of the novel stimuli. It is possible that using only one stimulus per category was not 

enough to see differences between the spoken and whole stimulus categories. When the pairwise 

comparisons between the two long-known stimuli were investigated with a lower statistical 

threshold (p<.001 uncorrected) there were some large areas that showed differences between the 

stimulus types but they were not obviously similar to the areas identified when comparing the 

novel stimuli. Therefore, the lack of difference between the stimulus types may not be due to a 

lack of power and may be a result of other factors. For example, unlike the novel spoken stimuli, 
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‘Twas the night before Christmas was written to be experienced as a poem and was not a 

modified set of lyrics taken from a whole song. In Chapter 2, we hypothesized that one of the 

reasons there were differences in BOLD activation based on stimulus contents in the group of 

young adults was a result of differences in attention across stimulus types because of the way the 

stimuli were designed (modified whole songs rather than stimuli chosen from the particular 

genre categories). It is possible that because both the long-known stimuli were heard as they 

were meant to be experienced, they engaged participants similarly and therefore induced similar 

amounts of synchrony within the group of older adults. Finally, both stimuli were very familiar 

to the participants. As was shown in Chapter 3 with the young adult data and in the older adult 

data presented here, synchrony decreases with familiarity. Therefore, it is possible that the 

synchrony induced by both of the highly familiar stimuli was equally low resulting in no 

stimulus differences between the two long-known stimuli.  

When a group of individuals is repeatedly exposed to a stimulus (whether it is a musical 

stimulus, an audio book excerpt, or a movie), their experiences of the stimulus will be the most 

similar the first time they are exposed to it. With every repeated exposure each individual may 

have a slightly different experience of the stimulus as they learn the words to the song or know 

what to expect in the next scene of the movie. Additionally, each exposure to the stimulus may 

create a slightly different memory, unique to that individual. These idiosyncratic experiences 

may diversify individuals’ neural responses, reducing synchrony across the group. If synchrony 

steadily decreased in relation to the number of exposures to a stimulus, then we would have seen 

synchrony differences in the young adult data between the learned and not learned stimuli in the 

second session (Chapter 3). We do not see such differences and concluded from that experiment 

that a single listen may be enough to cause a persistent reduction in synchrony. In the current 

experiment, we did not ask older adults to train on novel stimuli to reduce the burden of 

participation on the older adults and therefore could not directly compare the degree of 

synchrony between short-term (3 weeks) and long-term (50 years) knowledge of a stimulus 

without introducing the confound of age differences. However, an EEG study into the effects of 

repeated exposure to auditory stimuli on event-related potentials (ERP) showed that ERP 

amplitudes increased with stimulus repetition and this increase persisted over long-periods of 

time even if the participants had not heard the stimuli for many months (Tremblay et al., 2010). 
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Therefore, it is possible that the reduction in synchrony as a result of repeated exposure to our 

musical and language stimuli is maintained over long periods of time and that the synchrony 

differences seen between novel and familiar stimuli at 3 weeks would persist. A future 

longitudinal study during which participants are asked to train on novel stimuli and measures 

intersubject synchrony over short and long periods of time (e.g., at baseline, after 1 month, and 

again after 1 year) would better be able to characterize how synchrony changes as a result of 

long-term familiarity with a stimulus. 

The final set of results presented here complete our investigations into how 

intersubject synchrony is affected by a listener’s age and previous knowledge of the stimulus. 

We found that older adults, like young adults, show a reduction in synchrony to familiar stimuli. 

However, given the design of the experiment we can not say whether the reduction to long-

known stimuli seen in older adults is greater than the reduction in stimuli in recently learned 

stimuli in young adults. Until the effects of repeated stimulus exposure are more clearly 

characterized, future studies that wish to maximize intersubject synchrony measures across 

participants should use novel stimuli. 
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General Discussion 

 

In the preceding four chapters I have identified and addressed discrepancies in the 

literature regarding the neural networks associated with musical memory. I used a training 

paradigm that included musical and language stimuli to compare stimulus conditions that were 

identical except for the subject’s level of familiarity. The highly controlled nature of this 

paradigm fills a crucial gap in decades of musical memory research where inconsistencies in 

stimulus type and the definition of familiar music are widespread. The results from this 

experimental manipulation revealed that the areas previously identified as responsible for 

musical memory may in fact be related to autobiographical memories or emotional involvement 

with the stimuli rather than memory for the music itself. Intersubject synchrony analyses further 

revealed that neural activity becomes more idiosyncratic across individuals after a single 

exposure to a stimulus and does not significantly change with further stimulus exposures. This 

unexpected finding has significant implications for the design of future studies that use 

intersubject synchrony; without controlling for stimulus familiarity across conditions, researchers 

run the risk of confounding their results with a stimulus exposure effect. For example, a study 

using data from the Child Mind Institute Healthy Brain Network databank that includes fMRI 

data from hundreds of children in the New York area watching a 10-minute clip from the 

children’s movie ‘Despicable Me’ but does not include information on whether participants had 

seen the movie prior to the experiment (Alexander et al., 2017), may find synchrony differences 

between children from different neighbourhoods. The researchers may claim that these 

differences are related to factors that are available within the databank (such as socioeconomic 

status or parental education) when in fact the differences may be related to the children’s access 

to the film. Finally, by exploring how intersubject synchrony changes with age, I identified areas 

that do not show age-related synchrony reductions and instead show increased synchrony in 

older adult participants. Follow-up research that characterizes what is driving the fluctuations in 

synchrony within these areas may shed light on why memories for music are better preserved 
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than other types of memories in the presence of neurodegenerative disorders. In the discussion 

that follows, I will consider the results and limitations of each of the experimental chapters in 

more detail. I will also discuss how the results from these experiments could affect the use of 

intersubject synchrony in future studies. Lastly, I will summarize the conclusions that can be 

drawn from the presented studies and their implications on future musical memory research.  

Neural correlates of music familiarity  

The GLM experiment investigating the neural markers of music and language memory 

in young adults (Chapter 2) found no differences in the neural networks responsible for 

processing the learned and not learned stimuli using univariate or multivariate analyses. The null 

result sheds some light on the inconsistencies that exist across the musical memory literature. 

Previous studies that have investigated how the brain processes familiar music have used stimuli 

such as folksongs (e.g., Alonso et al., 2016; Herholz et al., 2012; Saito et al., 2012; Schaal et al., 

2015), popular music from the radio charts (e.g., Jacobsen et al., 2015; Pereira et al., 2011), or 

classical music excerpts (e.g., Agustus et al., 2018; Groussard et al., 2010). These types of 

stimuli are learned over a person’s lifetime and, as a result, the level of familiarity likely varies 

across people. The inconsistencies that exist in the literature regarding the neural correlates of 

musical memory (e.g. Freitas et al., 2018; Halpern & Zatorre, 1999; Herholz et al., 2012) may be 

related to these differences in familiarity as using well-known music does not control for the 

amount of exposure or the personal associations participants may have with the stimuli. The lack 

of activation differences between the learned and not learned stimuli when stimulus exposure 

was tightly controlled suggests that the neural correlates of musical memory are affected by 

factors other than exposure alone such as autobiographical memories and the degree of 

emotional engagement. 

As noted in Chapter 2, the areas that are associated with musical memory overlap with 

those areas associated with autobiographical memories (Groussard et al., 2009; Janata, 2009; 

Klostermann et al., 2009; Plailly et al., 2007). A meta-analysis found that the left superior frontal 

gyrus (SFG), the ventral lateral nucleus of the left thalamus and the left inferior frontal gyrus 

(IFG) were the three areas most likely to be activated by familiar music across 10 studies (Freitas 

et al., 2018). Autobiographical memories evoked using non-musical stimuli (e.g. photos, 

sentences containing episodic information) have been found to activate a wide-spread left 
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lateralized network of regions that include the SFG and IFG as well as temporal areas (medial 

temporal lobe, temporal pole, insula, superior and inferior lateral temporal lobe), prefrontal 

cortex, the hippocampus, the amygdala, and occipital areas (Cabeza & St Jacques, 2007; Fink et 

al., 1996; for a review see: Svoboda et al., 2006). These same SFG and IFG regions were 

positively correlated with the degree of autobiographical salience of a memory evoked by a piece 

of music in a study specifically investigating the overlap between familiar music and 

autobiographical memories (Janata, 2009). Music is known to evoke vivid autobiographical 

memories (Belfi et al., 2015) and approximately 30% of excerpts from popular music were 

shown to evoke such memories (Janata et al., 2007). It is possible that the lack of a consistent 

musical memory network in the literature has to do with musical memories being confounded 

with autobiographical memories. Rather than identifying neural correlates of musical memory, 

previous studies may have reported areas that were activated as a result of autobiographical 

memories.  

To my knowledge, no studies investigating musical memory using well-known music 

have taken into account whether autobiographical memories are triggered by the stimuli. For 

example, 5 of the 10 studies included in the Freitas, et al. (2018) meta-analysis investigating the 

neural correlates of musical memory used well-known stimuli from participants’ past. None of 

these studies controlled for autobiographical memory (Groussard et al., 2010; Jacobsen et al., 

2015; Pereira et al., 2011; Plailly et al., 2007; Sikka et al., 2015). The other five studies were 

either specifically interested in the relationship between musical familiarity and autobiographical 

memory (Janata, 2009), or used a training and retrieval paradigm with short novel musical 

phrases (Altenmüller et al., 2014; Klostermann et al., 2009; Nan et al., 2008; Watanabe et al., 

2008). Other studies (not included in the meta-analysis) chose their well-known stimuli by 

excluding music the researchers decided were likely to evoke autobiographical memories (e.g. 

“Wedding March”) but details regarding how they decided which stimuli would evoke such 

memories and which would not are lacking (Platel, 2005; Slattery et al., 2019). In contrast to 

previous studies, the experiments presented in this thesis used a controlled training paradigm that 

asked participants to learn novel stimuli. Although participants could have incorporated the 

stimuli into their daily lives (e.g., listening while cooking or driving), few participants reported 

having done so. Instead, participants reported listening to the stimuli while sitting in front of 

their computers which likely lowered the number of autobiographical memories associated with 

Chapter 6. Discussion 131



the stimuli. This lack of autobiographical memory may be the reason there were no differences in 

the activated brain areas between the novel and the learned stimuli. However, the interpretation 

of whether the lack of neural differences between the learned and not learned stimuli was related 

to a lack of autobiographical memories is limited. Participants were not asked to share whether, 

at the end of training, the learned stimuli reminded them of more memories from the previous 

three weeks than the not learned stimuli. Had there been no difference in the number of 

recollected memories between the learned and not learned stimuli alongside no neural 

differences, the role of autobiographical memories in driving the neural differences seen in 

previous studies investigating musical memory would have been more definitively characterized.  

If previous investigations into the neural correlates of musical memory that use well-

known stimuli are confounded by autobiographical memories, then perhaps the studies that use 

training/retrieval paradigms with novel stimuli more ‘purely’ identify musical memory 

correlates. However, there are discrepancies in the design of these studies as well. For example, 

one study compared culturally familiar to culturally unfamiliar music (Western vs. Chinese 

music; Nan et al., 2008), while three others asked participants to listen to unfamiliar instrumental 

excerpts and then complete an old vs. new task. However, the definition of an ‘unfamiliar’ piece 

of music differed across the three studies: one used excerpts from little-known film scores 

(Altenmüller et al., 2014), the second used excerpts from novel compositions that did not adhere 

to traditional rules of musical structure (Klostermann et al., 2009), and the third used short tonal 

compositions that were created in lab (Watanabe et al., 2008). The range in types of stimuli 

should be taken into account when comparing results across these studies as there is behavioural 

evidence to suggest that simple melodies involving a single stream of information (e.g. tonal 

compositions) are remembered better than more complex, polyphonic music that contains 

multiple streams of information (Demorest et al., 2016). In addition, the brain areas identified as 

being activated by the learned stimuli within these studies may be responsible for processing 

learned auditory information, but there may be different mechanisms involved when learning a 

novel stimulus to perform well on an old vs new task within a single lab session and when 

remembering a piece of music over a lifetime. 

Besides a probable lack of autobiographical memories associated with the stimuli, 

participants indicated via their preference ratings that they did not like listening to the stimuli. If 

the lack of preference for the stimuli is interpreted as an absence of emotional involvement, then 
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this may be another reason for the lack of difference between the neural networks involved in 

processing the familiar and unfamiliar stimuli in young adults. Besides evoking autobiographical 

memories (Janata et al., 2007), music also can evoke strong emotions (Juslin & Sloboda, 2010) 

and it is well established that emotional memories are better remembered than neutral events 

(Dolcos et al., 2004). The lack of emotional engagement in the current experiments may have 

reduced participants’ memory for the stimuli and resulted in no neural differences between the 

learned and not learned stimuli.  

The connections between musical memory and emotional engagement may be key to 

understanding what makes memory for music so unique and robust in the presence of 

neurodegenerative disorders such as Alzheimer’s disease. Emotional networks are largely found 

within the limbic system (Catani et al., 2013) and some dementias like Alzheimer’s disease 

specifically affect the limbic system (Hopper & Vogel, 1976; Li et al., 2016). However, there is 

evidence that emotional arousal can enhance the formation of long-term declarative memories in 

patients with dementia (Hamann et al., 2000; Satler et al., 2007) and can enhance the recollection 

of personal autobiographical memories (El Haj et al., 2012). When investigating the effects of 

music on memory in patients with dementia, researchers may want to take into account 

participants’ preferences and the level of engagement that participants have with a stimulus.  

Intersubject synchrony to familiar stimuli 

Across the experiments presented in this thesis, there was no effect of familiarity on 

intersubject synchrony. Instead, regardless of whether a stimulus was heard once or multiple 

times, the degree of synchrony across individuals was reduced after a single exposure (Chapter 

3). Although individuals were not scanned after each stimulus exposure, had synchrony been 

directly related to the number of exposures there would have been a difference in the second 

session between the learned (heard multiple times) and not learned stimuli (heard once before in 

the first session) in the young adult intersubject synchrony experiment. Given that there was no 

such difference it is likely that training on stimuli had no effect on synchrony beyond a ‘single-

listen’ effect. However, because all stimuli in the second session showed reduced synchrony, it is 

possible that session specific differences other than stimulus exposure drove the reduction. To 

investigate whether the reduction in synchrony related to familiarity with the scanning 

environment, I compared synchrony between the first four and the last four stimuli in session 
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one. If synchrony reduction was related to participants becoming more comfortable in or familiar 

with the scanner, synchrony might have differed between these two sets of stimuli. There were 

no differences between the first four and last four stimuli in session one. Therefore, either 

familiarity with the scanner environment was not entirely responsible for the synchrony 

reduction, or it may take longer than a half hour for the novelty to wear off. To further support 

the conclusion that familiarity with the scanning environment was not driving the synchrony 

reduction, there was lower synchrony to long-known stimuli than novel stimuli in older adults 

(Chapter 5). The long-known stimuli were presented to older adults in the same scanning session 

as the novel stimuli. The results from both of these experiments suggest that synchrony reduction 

is related to previous stimulus exposure rather than familiarity with the scanner environment.  

Interpretation of the synchrony reduction seen between the novel and long-known 

stimuli in older adults is limited because older adult participants did not train on novel stimuli. I 

chose not to implement a training paradigm with the older adult participants to keep their burden 

of participation low. As a result, I could not directly compare the degree of synchrony to stimuli 

known for 3 weeks to stimuli known over 50 years. Ideally, a future study will ask participants to 

train on novel stimuli to compare intersubject synchrony between novel stimuli, stimuli known 

for a short period of time, and stimuli known for a long period of time within the same group of 

participants. Understanding how intersubject synchrony changes as a function of familiarity with 

a stimulus is important for the design of future intersubject synchrony studies. If the level of 

familiarity of a stimulus differs systematically with the experimental manipulation within a 

study, then the interpretation of the results could be influenced by a familiarity confound. 

Without fully understanding how familiarity affects synchrony, researchers run the risk of 

confounding their results with a familiarity induced reduction.  

To understand the cause behind the single exposure effect on synchrony reduction, we 

can turn to the auditory memory literature where mere exposure to sounds has been shown to 

improve performance on subsequent recognition tasks (Clarke & Garrett, 2004; Szpunar et al., 

2004). For example, when participants were asked to listen to 12 30s-long novel melodies and 

then identify them in an old vs. new recognition task a week later, they were easily able to 

identify which melodies had been previously heard (Schellenberg & Habashi, 2015). This result 

indicates that after a single listen participants had incorporated a representation of the auditory 

information into their musical lexicon (Peretz et al., 2009). The musical lexicon refers to the 
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perceptual representation system for melodies against which incoming acoustic signals are 

compared to make judgements about whether the sounds have been heard before or not. Key for 

this discussion on intersubject synchrony is the fact that the musical lexicon does not exist in 

isolation, but rather interacts with a number of different processing systems including the 

phonological lexicon, association memories, emotional expression analysis, and motor planning 

networks. If music can be incorporated into the musical lexicon after a single exposure, and 

interacts with these other processing systems, it may be no surprise that synchrony to musical 

stimuli reduces after a single exposure. Each individual’s stored representation of the initially 

novel stimulus will be unique because of the associations created with their specific memories 

and emotions. The triggering of this unique representation of the stimulus with subsequent 

exposures results in idiosyncratic neural responses to the stimulus and therefore a reduction in 

intersubject synchrony. Each individual’s unique experience of the stimulus likely only further 

diversifies with repeated exposure as additional associations are made. However, once the level 

of synchrony reaches a floor there will be no more reduction. The results shown in Chapter 3, 

Figure 2 suggest that after a single listen to the stimulus participants became very diverse in their 

processing of the stimulus and had very low levels of synchrony. Therefore, repeated exposure 

had no further effects on reducing synchrony. On one hand, future studies using intersubject 

synchrony where the novelty of the stimuli can not be guaranteed could consider exposing all of 

their participants to the stimuli once before data collection to mitigate the effects of any 

systematic differences in stimulus exposure that could affect subsequent interpretation of their 

results. However, this may greatly reduce the degree of synchrony and impact the ability to see 

any differences in synchrony across their experimental manipulations. Therefore, using novel 

stimuli may be the most effective way of maximizing intersubject synchrony within a group of 

participants. 

The effects of music and language on neural activation across age groups 

In the GLM experiments in Chapters 2 and 4, there were higher levels of BOLD 

activation to stimuli with language than without. However, some brain areas differed based on 

stimulus type in young adults but not in older adults. For example, in bilateral planum polare, 

young adult brains showed more activation to whole, instrumental, and a capella stimuli than to 

spoken stimuli, but planum polare activity in the older adults did not differ between stimulus 

types. The planum polare plays a role in processing language and musical syntax, with increasing 
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stimulus complexity resulting in more activation (Bookheimer, 2002; Brown et al., 2006; 

Constable et al., 2004; Griffiths et al., 1998; Merrill et al., 2012). In addition, the planum polare 

responds more to stimuli with melodic pitch information than without pitch information (Merrill 

et al., 2012). These previous results are in line with the current study’s young adult activation 

differences, but the differences between the two age groups may be related to language 

processing changes with age. When older adults hear language in the presence of noise, their 

brains show lower temporal auditory activation than young adult brains as language intelligibility 

reduces (Eckert et al., 2008; Peelle, 2019). In the current study, the lower planum polare activity 

in older adults may be related to how older adults process stimuli in noise. If the language in the 

whole stimuli was processed similarly to language in noisy environments, then the most 

intelligible stimuli (spoken) would result in the most temporal activation, the least intelligible 

stimuli (instrumental) would result in the least activation, with activation levels to the whole 

stimuli falling in between. Despite differences in the brain areas that were activated in the young 

and older adults, the presence of language was key to increased BOLD activation levels across 

both groups. 

The intersubject synchrony experiment in Chapter 4 investigated whether more 

synchrony was induced to stimuli that contained music and language together than to either 

stimulus type on its own in young and older adults. Across both age groups synchrony was 

affected by stimulus contents in five significant clusters: bilateral temporal cortex, precentral 

gyrus, occipital fusiform cortex, and the lateral occipital cortex. The occipital fusiform and the 

lateral occipital cortex have been previously identified as involved in processing musical stimuli 

that contain language information (Saito et al., 2012) and the temporal cortices and precentral 

gyrus are known to be involved in both language and music processing (e.g., Schön et al., 2010). 

I expected to see more synchrony to complex whole stimuli (containing both music and 

language) than to either the spoken or instrumental stimuli. Contrary to this hypothesis, more 

information within a stimulus did not increase synchrony. However, I did find that the whole 

stimuli induced more synchrony than the instrumental stimuli in bilateral temporal cortex and 

precentral gyrus, but in no areas did the whole stimuli induce more synchrony than the spoken 

stimuli. Spoken stimuli induced significantly more synchrony than the instrumental stimuli in all 

five clusters and induced more synchrony than the whole stimuli in three of those clusters (left 

posterior STG, occipital fusiform cortex and the lateral occipital cortex). These results are 
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contrary to those reported by Naci et al (2017) where complex movie stimuli induced more 

synchrony than popular tv-show theme songs. The discrepancy in the results likely has to do with 

the type of stimuli used. The stimuli in the current study were audio-only, while the previous 

study compared levels of synchrony between audio-visual stimuli (movies) and audio-only 

stimuli (theme songs) suggesting that more synchrony is induced when more senses are involved 

(sight and hearing vs hearing along). Areas processing visual information are involved during 

audio-visual stimuli that are not involved when processing audio-only information. Participants 

may also have enjoyed the audio-visual stimuli in Naci et al. (2017) more than the current audio-

only stimuli. Although the hypothesis about whole stimuli inducing the most synchrony was 

incorrect, I did find that the contents of the audio-only stimuli affected the level of intersubject 

synchrony. 

Similar to the results from the GLM experiments, the presence of language was integral 

to inducing intersubject synchrony. Stimuli containing language induced more synchrony than 

stimuli without language, and this result supports findings from previous work that suggest that 

language is a key component to driving synchrony across a group of listeners (Laforge et al., 

2020; Naci et al., 2017; Regev et al., 2019; Simony et al., 2016). When the stimuli had a single, 

attention-grabbing component that could not be ignored (the language in the spoken stimuli), 

these stimuli induced the strongest amount of synchrony within the group compared to stimuli 

that included other options for participants to pay attention to (like the instrumental tracks in the 

whole music). This was true regardless of age. Previous research has shown that synchrony is 

affected by attention (Regev et al., 2019) and synchrony decreases as participants are distracted. 

There is also less synchrony across a group when the presented stimulus does not include a 

coherent narrative for participants to attend to compared to when the stimulus contains an intact 

storyline (Ki et al., 2016). It is possible, then, that when participants listened to stimuli that 

contained ‘too much’ information, like the whole music stimuli, each participant focused on a 

different component of the stimulus (the music, rhythm, or lyrics) which reduced synchrony 

across the group. Although stimuli that rely on multiple senses may induce higher levels of 

intersubject synchrony, when choosing stimuli for synchrony studies in clinical populations that 

may have impaired vision, audio stimuli with language should be used to induce the strongest 

synchronization results.  
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The stimuli containing language resulted in both higher levels of BOLD activation and 

stronger synchrony than stimuli that did not contain language. These results could have 

implications for the design of future studies in which aspects of auditory stimulus processing 

(e.g., attention, memory, etc.) are manipulated and the effects of those manipulations are 

investigated using GLM or synchrony analyses. For example, understanding how differences in 

attention affect intersubject synchrony to musical stimuli may provide insight into whether the 

differences seen in previous studies of attention on synchrony to short stories (Regev et al., 

2019) also exist with musical stimuli. However, using musical stimuli that contain language may 

increase the ability of researchers to see subtle changes in synchrony. By maximizing baseline 

activation levels, any effects of manipulations of other factors will be easier to detect than if 

baseline levels are at a floor. It is important to note that the level of BOLD activation and the 

degree of synchrony are not directly related to one another. In the current experiments 

participants could have been equally idiosyncratic in the timecourse of their activation across 

stimulus types while showing differences in the amplitudes of that activation. This would have 

resulted in no differences in synchrony across stimulus types but significant differences in 

BOLD activation. Given that both the GLM and the synchrony analyses showed differences in 

neural activation as a result of the presence of language, researchers should use stimuli 

containing language if they wish to maximize BOLD responses and synchrony in future studies.  

The effect of age on intersubject synchrony  

In Chapter 4 I investigated how synchrony to identical music and language stimuli 

differed between groups of young and older adults. Age-related differences in synchrony have 

been described in only two other studies (Campbell et al., 2015; Geerligs et al., 2018). The 

researchers found that when older and young adults watched the same movie there were brain 

areas that showed an age-related reduction in synchrony, while in other areas there was 

preservation of synchrony with age. In the current experiments, there was an age-related 

reduction in synchrony in the middle temporal gyrus (temporooccipital part), frontal orbital 

cortex, and the temporal pole (more synchrony within the group of younger adults than within 

the group of older adults). Interestingly, none of these areas were previously identified as 

showing an age-related reduction in synchrony to the movie stimuli. In fact, the left and right 

middle temporal gyrus were previously identified as showing preservation of synchrony with age 

(Geerligs et al., 2018) contrary to the effect found in the current experiments. I also investigated 
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age-related synchrony reductions in older adults by comparing the individual older adult data 

with the average of the young adult group. Older adults were less synchronized to the young 

adult group in the middle temporal gyrus (temporooccipital part), anterior cingulate gyrus, and 

the temporal pole. This can be interpreted as an age-related reduction in synchrony; older adults 

were not as similar to the young adults as the individual young adults were to each other. This 

result is again in contrast to the previous study as these areas were previously identified as 

showing preservation of synchrony with age to the movie stimuli (Geerligs et al., 2018). The 

older adults were also significantly more synchronized than young adults in the posterior 

parahippocampal gyrus. This is in contrast to results from the previous study (Geerligs et al., 

2018) as the parahippocampal gyrus was specifically identified as showing an age-related 

reduction; the opposite effect was found in the current experiments. The plot of the audio-visual 

movie stimulus used by Geerligs et al. (2018) is largely driven by visual information while the 

stimuli in the current experiments were audio only and participants had to rely on the language or 

music information. The discrepancy in results between the previous study (Geerligs et al., 2018) 

and the current results may also have to do with the role of language in the stimuli and how 

language is processed with age. 

Many of the regions where there was no age-related decline are known to be involved in 

language processing (e.g., inferior frontal gyrus, precentral gyrus, lateral occipital cortex; 

Borowsky et al., 2007; Pulvermuller et al., 2006). Language regions have been shown to be 

generally resilient against the effects of age, especially during passive listening tasks (Campbell 

et al., 2016; Davis et al., 2014) and also may be resistant to age-related synchrony decline 

(Geerligs et al., 2018). In addition, older adults may recruit additional resources as a 

compensatory mechanism to make up for lost neural efficiency when processing language 

stimuli (Peelle, 2019; Wingfield & Grossman, 2006). For example, increasing age was related to 

increased activation in occipital cortex during an auditory word recognition task (Kuchinsky et 

al., 2012) and additional recruitment of frontal areas like the inferior frontal gyrus during 

sentence comprehension tasks (Peelle et al., 2010; Tyler et al., 2010). This same frontal area was 

more synchronized within the group of older adults than within the group of younger adults in 

the current experiments. Therefore, it is possible that in the current study older adults were more 

synchronized than young adults within regions associated with language processing because they 

relied more heavily on these regions to process the music and language stimuli than did the 
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young adults. If young adults were not relying on these networks as heavily as the older adults, 

and older adults do not generally show age-related decline in these regions, it may be reasonable 

to expect more synchrony in older adults than younger adults within these networks.  

Age-related structural changes like grey- and white-matter atrophy that occur with 

healthy aging (Giorgio et al., 2010; Walhovd et al., 2005), may be related to the synchrony 

differences seen here across age groups. Future studies should investigate whether differences in 

synchrony are related to changes in brain structure. The relationship between synchrony and 

structural changes was not investigated within the current set of experiments as the primary goal 

of this thesis was to elucidate the neural correlates of musical memory. However, focusing future 

synchrony studies specifically on areas with and without age- or disorder-related structural 

changes may provide further insight into whether areas that have undergone structural changes 

process stimuli in a similar way to corresponding areas in brains without such structural changes. 

Intersubject synchrony may provide a further avenue for asking questions about functional 

changes in the brain across the lifespan and may help to understand how aging brains 

compensate for various structural changes and how those changes affect musical memory.  

Considerations for the future use of intersubject synchrony measures 

As the popularity of the intersubject synchrony technique has grown, it has been used to 

study attention (Ki et al., 2016), memory (Furman et al., 2007; Hasson et al., 2008), emotion 

(Trost et al., 2015), speech processing (Wilson et al., 2008), music perception (Abrams et al., 

2013), and brain function in clinical populations (Anderson et al., 2013; Hasson et al., 2009; 

Lyons et al., 2020). Synchrony has also been used to study consciousness by interpreting the 

level of synchrony in fronto-parietal networks as a proxy for the shared experience of a stimulus. 

For example, when the brain activity of a patient diagnosed as being in a vegetative state was 

highly synchronized with the brain activity of a group of healthy controls, that result was 

interpreted as suggesting that the patient experienced the stimulus similarly to the controls (Naci 

et al., 2014). Given the way that intersubject synchrony is calculated there are some limitations 

to the types of conclusions that can be drawn from intersubject synchrony results.   

Intersubject synchrony captures the shared experience between two individuals (or an 

individual and a group) rather than the idiosyncrasies that make up each individual’s unique 

experience of the world. Synchrony is calculated as a correlation between two sets of data and 
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the calculated values provide information about how similar the two datasets are. To use 

intersubject synchrony to characterize the conscious experience of individuals such as, for 

example, patients with dementia (Huntley et al., In preparation), it is important to recognize that 

additional tools are required to understand what might be driving differences in synchrony across 

experimental groups. For example, collecting data from a sustained attention response task 

(SART; Naci et al., 2014), galvanic skin response (GSR; Sinai, 2015) or heart rate while a 

participant is exposed to a stimulus can provide additional information about the meaning of the 

brain’s fluctuations in response to that stimulus. If synchrony decreases during a period of 

increased performance on a SART and increases during a period of decreased performance on a 

SART the claim could be made that the fluctuations in synchrony are related to how much 

attention is being paid to the stimulus (Naci et al., 2014). Alternatively, if synchrony fluctuations 

are related to changes in skin conductivity as measured using GSR or changes in heart rate, then 

the claim could be made that synchrony is related to the emotional state of the individual 

(Sharma et al., 2016). Combining techniques allows researchers to not only understand how 

individuals from clinical groups of interest compare to controls in the way they process stimuli 

but will also shed some light on what the causes of the similarities or differences might be.  

An important limitation to consider when using synchrony measures to assess patient 

populations lies in the comparison group. When calculating synchrony in clinical populations, it 

is not obvious who should make up the comparison group. Patients with Alzheimer’s disease 

have altered emotional perception (Lavenu & Pasquier, 2005), visuospatial perception (Mandal 

et al., 2012), and attention (Parasuraman & Greenwood, 1998). Therefore, correlating the brain 

activity from a patient with severe Alzheimer’s with a group of healthy controls will likely show 

low levels of synchrony. Such a result will only indicate that the experience of a patient is 

different from that of the controls. A similar approach was taken in Chapter 4 when individual 

older adult data was correlated with the average young adult data to understand whether there 

were age related changes in synchrony to the different stimulus types. In most areas where 

synchrony differentiated between age groups, young and older adults did not differ statistically in 

how synchronized they were (older adults were processing the stimuli within these regions in a 

similar way to the young adults). However, the areas where they did differ (middle temporal 

gyrus, anterior cingulate gyrus temporal pole, parahippocampal gyrus) are known to undergo 

age-related changes in functional connectivity and grey matter volume (Giorgio et al., 2010; 
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Walhovd et al., 2005) and may be of interest in future investigations of whether age-related 

structural differences are responsible for age-related differences in synchrony. Another option for 

calculating synchrony is to correlate the brain data from a single patient with that of a group of 

patients. However, each patient’s disease progresses differently and differences in synchrony 

across patients will only indicate that individual disease progression results in individualized 

experiences of the environment. However, corroboration with other tools (e.g., SART or GSR as 

mentioned above) could be used to further understand a patient’s individual experience. A third 

option is to correlate a patient’s brain activity with their own activity at a different point in time 

(similar to what was done in Chapter 3 when an individual’s data after the training period was 

correlated with their own data before the training period). A reduction in synchrony over time 

might be indicative of disease progression. Regardless of how the comparison group is chosen, it 

will be important for researchers to address their choice to ensure that the way synchrony is 

calculated is consistent with the research question and the conclusions drawn. 

Conclusions 

The series of experiments presented in this thesis have uncovered a number of important 

results. First, contrary to the musical memory literature I did not see a specific neural network for 

musical memory when using a highly controlled training paradigm. This was true regardless of 

whether the stimuli contained language information or not. Therefore, the discrepancies in the 

neural networks identified in the previous literature may stem from differences in the paradigms 

used across studies that result in differences in the type of previous experiences participants have 

had with the stimuli. Specifically, considering the autobiographical memories or emotional 

engagement that individuals have with the musical stimuli may be key to understanding what 

makes memory for music so unique in the presence of neurodegenerative disorders such as 

Alzheimer’s disease. Second, I showed that previous exposure to a stimulus reduces the degree 

of intersubject synchrony. This was true in young adults when comparing synchrony between 

stimuli that had been heard once and those heard multiple times, and in older adults when 

comparing synchrony between novel stimuli and stimuli with lifelong familiarity. However, this 

reduction effect seems to be a result of a ‘single listen’ rather than a result of learning. To further 

characterize how synchrony changes as a function of repetition it will be important to collect 

data at more time points to solidify whether the synchrony decrease after a single-listen changes 

over longer periods of time or more stimulus repetitions. Third, I found that intersubject 
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synchrony was stronger to stimuli that contain language information than those that do not, and 

strongest to the language stimuli without additional musical features. This was true in both 

young and older adults despite differences in synchrony across the age groups. These results 

have implications for how researchers design future intersubject synchrony studies as stimuli that 

contain language may maximize synchrony. Finally, I also found that some areas showed an age-

related decline in synchrony while other areas showed the opposite (more synchrony in older 

adults than young adults). Further characterizing the brain regions that do not show age-related 

reductions in synchrony, and understanding what is driving synchrony within those regions, 

could provide an additional avenue for investigating why musical memories are more resilient 

than other types of memories in the presence of neurodegenerative disorders.  
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Below is a table describing the distribution of novel stimuli across the experiments detailed in 
Chapters 2-5. 
 
All stimuli were created using the lyrics and music of songs written and recorded by Adrian M. 
Owen between 1997 and 2006 for an amateur rock band based in Cambridge, UK. The stimuli 
were therefore unknown to the Canadian participants in our studies. 
 
The a capella stimuli used only the vocal tracks from the original songs. The instrumental stimuli 
used only the instrumental tracks from the original songs. The spoken stimuli were re-recorded 
by A.M.O. in spoken form to have a similar length, tempo, and emotional intonation as their 
original song counterparts. The whole stimuli were presented as intact versions of the original 
songs. 
 
All stimuli can be found at https://owenlab.uwo.ca/research/research_tools.html 
 
 

Analysis Original Song Titles Training 
Group Category 

Chapter Participants 
2 3 4 5 young older 

10-s clips 
for GLM 

Big in the City A a capella x    x  
Stones in Your Pocket B a capella x    x  
Tonopah A instrumental x    x x 
Killing Time B instrumental x    x x 
Take Off Not Landing A spoken x    x x 
Yeah Yeah B spoken x    x x 
People Like You A whole x    x x 
Superman B whole x    x x 

Intersubject 
synchrony 

Lost in Notting Hill A a capella  x   x  
Waving Not Drowning B a capella  x   x  
Half Life A instrumental  x x  x x 
Fun Loving Angels B instrumental  x x  x x 
Sold A spoken  x x x x x 
Thinking About You B spoken  x x x x x 
20th Century A whole  x x x x x 
Americans B whole  x x x x x 
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