
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-24-2021 10:30 AM

WesternAccelerator：Rapid Development of Microservices WesternAccelerator：Rapid Development of Microservices

Haoran Wei, The University of Western Ontario

Supervisor: Nazim H. Madhavji, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Haoran Wei 2021

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Software Engineering Commons, and the Systems Architecture Commons

Recommended Citation Recommended Citation
Wei, Haoran, "WesternAccelerator：Rapid Development of Microservices" (2021). Electronic Thesis and
Dissertation Repository. 8117.
https://ir.lib.uwo.ca/etd/8117

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F8117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ir.lib.uwo.ca%2Fetd%2F8117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8117?utm_source=ir.lib.uwo.ca%2Fetd%2F8117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

ii

Abstract

Context & Motivation/problem: In the context that cloud platforms are widely adopted,

Microservice Architecture (MSA) has quickly become the new paradigm for modern

software development due to its great modularity, scalability, and resiliency, which fits well

in the cloud environment. However, to embrace the benefits of MSA, organizations must

overcome the challenges of adopting new methodologies and processes to deal with the extra

development complexities that microservices created, e.g., establishing interface-based

communication between distributed services and managing the configurations and locations

of services. Consequently, creating a microservice-based application is relatively complex

and effortful. Research Question: How to create a tool to automate the development of

microservice-based applications? Principal Ideas: In this research, we created

WesternAccelerator, a tool to generate extensible microservice-based skeleton applications.

This tool embodies the design patterns for building an MSA and automates time-consuming

development tasks. Contribution: Currently, numerous tools are available to assist in

developing microservices, but most of them serve a particular purpose, such as configuration

management or service discovery. Our solution is an improvement by merging technologies

from different problem domains and provides the service in an automated

manner. Conclusion: By empirical validation, we conclude that the tool we have created aids

in building microservice-based applications relatively quickly and effortlessly.

Keywords

Microservice Architecture, Microservices Design Patterns, Microservices Development,

Microservices Configuration Management, Service Discovery.

iii

Summary for Lay Audience

Microservices architecture embodies elements and principles for structuring and developing

a collection of software services as cloud-based applications. Microservices allow a large

application to be divided into smaller independent parts, with each part having its own

responsibility. Microservice architecture is a recent paradigm for modern software

development. However, building microservices is challenging because it is complex to

manage many small and distributed services regarding their configurations, network

locations, and health status. This thesis proposes WesternAccelerator, a tool that simplifies

the development of microservices through its capability of generating runnable

microservice-based skeleton applications pre-fabricated with solutions for configuring,

discovering, securing, and tracing services.

iv

Acknowledgments

I am thankful to Professor Madhavji for research and technical guidance throughout my

M.Sc. degree program. Also I am grateful to Mr. Steinbacher of IBM Canada for helping me

to understand the problem context, solution opportunities, possibilities, and scenarios, and

documents from the cloud project environment. I am particularly thankful to the Dept. of

Computer Science for access to the computing facilities, and to the department, IBM Canada,

and NSERC for research support.

v

Table of Contents

Abstract ... ii

Summary for Lay Audience ... iii

Acknowledgments.. iv

Table of Contents ... v

List of Tables .. vii

List of Figures .. viii

Glossary of Abbreviations ... ix

Glossary of Terms .. x

Chapter 1 .. 1

1 Introduction .. 1

Chapter 2 .. 4

2 Related Work .. 4

2.1 Microservices Design Patterns ... 4

2.1.1 Externalized Configuration Patterns .. 4

2.1.2 Service Discovery Patterns .. 5

2.1.3 API Gateway Patterns .. 6

2.1.4 Security Patterns .. 7

2.1.5 Load Balancing Patterns .. 7

2.1.6 Distributed Tracing Patterns .. 7

2.2 Commercial and Open-source Tools .. 8

2.3 Analysis .. 11

Chapter 3 .. 13

3 Structure and Dynamics of the Generated Application .. 13

3.1 Architecture of the Generated Application... 13

vi

3.2 Run-time Dynamics of the Generated Application .. 16

Chapter 4 .. 18

4 Implementation of the Generated Application ... 18

4.1 Implementation of the Infrastructure Components... 18

4.2 Implementation of the Service.. 20

Chapter 5 .. 21

5 Design of the WesternAccelerator Tool ... 21

5.1 Use Case Description of WesternAccelerator .. 21

5.2 Architectural Design of WesternAccelerator ... 22

5.3 Run-time Dynamics of WesternAccelerator .. 23

Chapter 6 .. 26

6 Implementation of the WesternAccelerator Tool ... 26

Chapter 7 .. 31

7 Validation of WesternAccelerator .. 31

Chapter 8 .. 34

8 Discussion ... 34

8.1 Comparison of WesternAccelerator with related tools .. 34

8.2 Advantages and Limitations of WesternAccelerator .. 37

Chapter 9 .. 39

9 Conclusion and Future work .. 39

References .. 40

Curriculum Vitae ... 44

vii

List of Tables

Table 1 : Tools supporting microservices development .. 8

Table 2 : Tools integrated in the infrastructure components ... 19

Table 3 : Use case description of WesternAccelerator .. 21

Table 4 : Comparison of WesternAccelerator with IBM Accelerators, JHipster, and

MAGMA .. 36

viii

List of Figures

Figure 1 : High-level design of the generated application ... 14

Figure 2 : Component diagram of the generated application ... 15

Figure 3 : Sequence diagram of the generated application .. 17

Figure 4 : Architectural design of WesternAccelerator ... 23

Figure 5 : Activity diagram of WesternAccelerator .. 24

Figure 6 : Infrastructure Components Repository on GitHub ... 26

Figure 7 : Main class of the Service Discovery component .. 27

Figure 8 : Configuration of the Service Discovery component ... 28

Figure 9 : Configuration of the Gateway component .. 29

Figure 10 : Service Archetypes Repository on GitHub ... 29

Figure 11 : Scripts to generate a sample service from the archetype....................................... 30

Figure 12 : Feedback received from executing the WesternAccelerator 31

Figure 13 : Eureka Service Dashboard .. 32

ix

Glossary of Abbreviations

MSA Microservice Architecture

API Application Programming Interface

BFF Backends for Frontends

PEP Policy Enforcement Point

HTTP Hypertext Transfer Protocol

JWT JSON Web Tokens

CNCF Cloud Native Computing Foundation

REST Representational State Transfer

x

Glossary of Terms

Microservice

Architecture

An architectural style that structures an application as a

collection of loosely coupled, independently deployable, and

highly maintainable services

Service Discovery
Service Discovery is the process of locating microservices on

a network.

API Gateway

API gateway is a service component that sits between a client

and a collection of backend services acting as a reverse proxy

to accept all application programming interface (API) calls,

aggregate the various services required to fulfill them, and

return the appropriate result.

Authentication
Authentication is the act of recognizing the identity of a

computer system user.

Authorization
Authorization is the process of giving computer system users

rights/privileges to access a specific resource or function.

Cross-cutting Concerns

Cross cutting concerns are technical requirements that are

applicable throughout the application and it affects the entire

application.

Policy Enforcement Point
Policy Enforcement Point is the point where a policy decision

is used to grant or deny access to a protected resource.

Representational State

Transfer

Representational State Transfer is a software architectural

style that was created to guide the design and development of

the architecture for the World Wide Web

1

Chapter 1

1 Introduction

The emergence of cloud computing with its unique characteristics, such as on-demand

self-service, rapid elasticity, and broad network access, demands a change in software

architectural styles that take full advantage of the benefits provided by the cloud. The

traditional monolithic architecture, a single-tiered software application in which all

services are composed into a single code base, has become suboptimal (Leymann et al.,

2017). For example, the monolithic architecture is hard to scale and does not contain fault

isolation. In contrast, Microservice Architecture (MSA), as an architectural style that

structures an application as a collection of loosely coupled, independently deployable,

and highly maintainable services (Richardson, 2018), has emerged as a prime candidate

for boosting the return for cloud adoption (Wu, 2017).

MSA has the following advantages compared with the monolithic architecture: high

resilience, a single failure does not affect the whole system; the scaling process is more

accessible because only the services that need actual scaling are scaled, contrary to a

monolithic application requiring to be scaled as a whole unit; ease of deployment, each

service can be deployed independently without affecting other services (Al-Debagy &

Martinek, 2018). Moreover, in other research, the performance of the two types of

architecture is compared. The results revealed that microservice-based applications

outperforms monolithic applications with less response time when handling a large

number of requests (Singh & Peddoju, 2019).

Although microservices solve certain problems, it is not a panacea. The recently released

survey findings of microservices adoption among software engineers and systems

architects reveal that 77% of respondents have adopted microservices. However, 56% of

respondents cite complexity in one form or another ("Increased complexity" and

"Complexity of managing many services") as the biggest impediment to microservices

adoption (Loukides, 2020). While alleviating many of the issues inherent to monolith

2

applications, microservices also produce extra complexities, including but not limited to

the following:

1. It is challenging to manage many services regarding their configurations, network

locations, and health status.

2. Communication between the client and services is complex since services are

independent, requests traveling between different modules need to be carefully

routed.

3. Cross-cutting concerns in a distributed architecture, such as load balancing,

authentication/authorization, log aggregation, and distributed tracing.

To mitigate this situation, we have created a tool (called WesternAccelerator) to automate

the development of microservices by generating runnable and extensible

microservice-based skeleton applications. The generated application embodies

pre-fabricated infrastructure components that can be used to solve the

microservices-specific challenges, including configuring, discovering, securing, routing,

and tracing microservices. It also comprises editable microservices for application

developers to implement their business features. With these capabilities, application

developers can focus on their business logic rather than MSA design, infrastructure setup,

and microservices configuration because their starting point is a feature-packed

microservice-based application.

Research Contributions

The contribution of this thesis is the WesternAccelerator tool which, as described above,

generates microservice-based skeleton applications (Chapter 5). As an integral part of the

tool design, we analyzed a number of tools and made decisions for the best configuration

of the skeleton application generated by the tool. The WesternAccelerator is

comparatively better than the alternatives as discussed in Chapter 8.

Thesis Structure

3

The rest of the thesis is organized as follows: Chapter 2 summarizes the related works in

microservices design patterns and reviews the available tools supporting microservice

development. Chapter 3 presents the architecture design of the application generated by

WesternAccelerator. The detailed implementation of the generated application is

described in Chapter 4. We further present WesternAccelerator and explicate the design

and implementation of WesternAccelerator in Chapter 5 and Chapter 6. Chapter 7

demonstrates the usage of our tool. Chapter 8 compares WesternAccelerator with related

tools and discusses the advantages and limitations of WesternAccelerator. Finally,

chapter 9 concludes our work and elaborates on future research directions.

4

Chapter 2

2 Related Work

Before developing a microservice-based application, it is essential to identify

MSA-specific challenges and learn the common design patterns to solve them with

reusable solutions. In this chapter, we review common microservices design patterns and

available tools supporting microservices development.

2.1 Microservices Design Patterns

This section reviews the microservices design patterns, the formalized best practices to

solve microservices-specific challenges. The patterns discussed in this section are the

following: Externalized configuration patterns, the patterns for microservices

configuration management; Service discovery patterns, the patterns for locating

microservices in a network; API gateway patterns, the patterns for aggregating services

and routing client requests; Security patterns, the patterns for service endpoints and

resources protection; Load Balancing Patterns, the patterns for distributing workloads

among services; Distributed tracing patterns, the patterns for transaction monitoring.

2.1.1 Externalized Configuration Patterns

Christian (2017) discussed the importance of configuration externalization. Completely

separating the configurations from microservices and put them in a centralized repository

allows developers to modify service configurations without searching for the

configuration files from many code repositories. Moreover, with externalized

configuration, we can enable a service to run in multiple environments without a single

modification on it. A general solution is to separate the service configuration information

from the physical deployment into a few repositories. This configuration information

should be passed as environment variables to the starting service or retrieved from a

centralized repository through a REST-based service when the service starts through a

service interface by a REST-based request (Carnell, 2021).

5

2.1.2 Service Discovery Patterns

Services usually need to communicate with each other. In a monolithic application,

services invoke one another through language-level methods or procedure calls.

However, microservices typically run in containers, where the number and location of

service instances are dynamic. Consequently, we must implement a mechanism that

enables the service clients to discover a dynamically changing set of temporary service

instances.

Richardson (2018) summarized the two common ways to implement service discovery:

1. Application-level service discovery: The service instances register their network

locations with the service registry component. A service client invokes a service by

first querying the service registry to find network locations of available service

instances. It then sends a request to one of those instances.

2. Infrastructure-provided service discovery: The deployment platform gives each

service a virtual IP address, and a DNS name that resolves to the address. A service

client makes a request to the DNS name, and the deployment platform automatically

routes the request to one of the available service instances. As a result, service

registration, service discovery, and request routing are entirely handled by the

deployment platform.

One benefit of application-level service discovery is that it handles the scenario when

services are deployed on multiple platforms. For example, some of the services are

deployed on Kubernetes, and the others are running in a virtual machine.

Application-level service discovery works across both domains, whereas

Kubernetes-based service discovery only works within Kubernetes. In this research, we

focus on application-level service discovery.

Montesi and Weber (2016) reviewed the two most common design patterns for

application-level service discovery. In the client-side service discovery pattern, service

instances register their network locations with the service registry. The service client

6

invokes a service by first querying the service registry to obtain a list of service instances.

It then uses a load-balancing algorithm, such as round-robin, to select a service instance.

In the alternative server-side service discovery pattern, when the client requests a service,

the request is handled by a router that runs at a durable location. The router queries the

service registry, which might be built inside the router, and forwards the request to an

available service instance.

2.1.3 API Gateway Patterns

In MSA, the client apps usually need to call a chain of microservices. If the interaction

mode between the client and microservices is direct access, the client then needs to

manage a list of microservice endpoints. Furthermore, it is the client's responsibility to

keep pace with the evolvement of these microservices, e.g., update the list of service

endpoints immediately when there is a change.

Therefore, having an intermediate component serving as a facade (gateway) to provide an

abstraction over internal complexity and change can be convenient for the service clients.

Torre et al. (2020) described two API gateway design patterns: the single custom API

gateway pattern and the backends for front-ends (BFF) gateway pattern. In the single

custom API gateway pattern, all the client apps connect to a single API gateway exposed

as an endpoint in front of the microservices. The gateway acts as a reverse proxy, routing

requests from clients to the endpoints of the internal microservices. In such a way, the

client apps will not be affected by any Uniform Resource Identifier (URI) change when

the microservices are evolved or refactored. Another functionality the gateway can offer

is request aggregation. The client only needs to send a single request to the gateway when

it requires information from multiple microservices. The gateway will then gather

information from the target microservices, aggregate the results, and send everything

back. The essential advantage of this design is to reduce traffic load from the client app,

which is especially beneficial when the requests are made from a remote location.

7

The BFF gateway pattern describes an approach that multiple gateways are created to

serve different client types, such as one for website and one for mobile clients, to prevent

the gateway from being bloated and overloaded.

2.1.4 Security Patterns

The most commonly used design pattern to implement authentication and authorization

for microservices was introduced by Richardson (2018). In the proposed pattern, an

authentication server is created and works in coordination with the API gateway. Clients

trying to access the internal services must first log in to the system by posting its

credentials to the gateway. The gateway validates the credentials with the authentication

server and returns an access token containing the identity and role of the user in an

encrypted format. The client then provides the access token in subsequent requests.

Requests with valid access tokens will be forwarded to the target microservice by the

gateway. Eventually, the target service verifies the token's signature and extracts

information about the user, including their identity and roles. Only authenticated users

who have the proper authorization can access the service.

2.1.5 Load Balancing Patterns

Carnell (2017) discussed several approaches to enable load balancing in the API gateway

pattern. The simplest and most common way is to build a load balancer inside the service

discovery agent, making it able to load balance the service instances it discovers. Then

integrate the API gateway with the service discovery agent. Thus, the gateway can query

the service discovery to get the already load-balanced instances.

2.1.6 Distributed Tracing Patterns

Tracking and logging user actions across multiple microservices are critical in a

distributed architecture. It is challenging to implement these capabilities in each service

consistently. However, since the gateway is the sole entry of the system, we can apply

certain mechanisms to make it works as a single Policy Enforcement Point (PEP). One

approach is to insert a unique correlation id to each external request that passes through

the gateway. The correlation id will be forwarded to all services that are involved in

8

handling the request. Each service is responsible for managing the propagation of the

correlation id to outbound service calls and logging the information about the request and

operations performed when handling it (Carnell & Sánchez, 2021). A centralized

logging service is needed to aggregate logs from each service instance. Otherwise, it is

impossible for the system operator to collect this information from dozens of

microservices (Richardson 2020).

2.2 Commercial and Open-source Tools

Various open-source and commercial tools are available to assist in building

microservices, most of which serve a particular purpose such as configuration

management, service discovery, service gateway, and distributed tracing. etcd is a

light-weighted command-line driven tool for key-value management, usually used as the

data backbone for Kubernetes and other distributed platforms (IBM Cloud Education,

2019). ZooKeeper is a high-performance service for maintaining configuration

information, naming and grouping services (Apache, 2021). Consul provides a

full-featured control plane with service discovery, configuration, and segmentation

functionality (HashiCorp, n.d.). Spring Cloud Config provides server and client-side

support for externalized configuration in a distributed system (Spring, n.d.-b). Eureka

(Netflix, 2012) is a service discovery tool that offers dynamic service status refresh.

Other tools such as Spring Cloud Gateway (Spring, n.d.-b) and Zuul (Netflix, 2013) are

used for building the API gateway. NGINX Plus (NGINX, Inc., 2020) serves a similar

purpose, but it is not designed to work in conjunction with service discovery. Distributed

tracing tools, such as Zipkin (Zipkin, n.d.) and Jaeger (Uber Technologies, n.d.) are

almost identical in the features provided. They only differ in how the components are

packaged. A general summary of these tools is presented in Table 1.

Table 1: Tools supporting microservices development

Configuration Management & Service Discovery Tools

Tool Developer Description

9

etcd CNCF

Open source distributed key-value store used to hold and

manage the critical information that distributed systems need

to keep running. Used for service discovery and key-value

management.

ZooKeeper Apache

A distributed key-value store typically used for distributed

configuration management, can be used as the basis to

implement service discovery. Mostly a common-purpose

distributed key/value store used for service-discovery in

conjunction.

Consul Hashicorp
Provides a large set of features, including service discovery,

integrated health checking, and distributed configuration.

Spring Cloud

Config
Spring

Designed specifically for externalizing configuration in a

distributed system.

Eureka Netflix

A service discovery tool, the architecture is primarily

client/server, with clients mainly using embedded SDK to

register and discover services.

API Gateway Tools

Tool Developer Description

Spring Cloud

Gateway
Spring

Used for building the API Gateway on top of Spring

WebFlux, it provides cross-cutting concerns, such as

security, monitoring/metrics, and resiliency.

Zuul Netflix
An application gateway that provides capabilities for

dynamic routing, monitoring, resiliency, and security.

NGINX Plus NGINX Used to authenticates API calls, routes requests to

10

appropriate backends, applies rate limits.

Distributed Tracing Tools

Tool Developer Description

Zipkin Twitter

A distributed tracing system helps gather timing data needed

to troubleshoot latency problems in service architectures.

Features include both the collection and lookup of this data.

Jaeger Uber
A distributed tracing system used for distributed context

propagation, transaction monitoring, root cause analysis, etc.

Even though numerous tools are available to build a microservice application, it is never

easy for developers to quickly acquire proficiency in these technologies. Furthermore,

each of these tools is supposed to be used individually, serving different purposes. It is

still the developer's responsibility to determine the appropriate tool to use in different

situations and let them work in conjunction with minimum friction.

To mitigate this issue, IBM Cloud created a web-based tool called IBM Accelerators

(Harris & Ziemann, 2020) that can automatically generate the required source code

repositories in Git (Git, 2021) with scaffolded microservices, ready for deployment. The

generated microservices are restricted to be deployed on OpenShift. JHipster (Dubois et

al., 2013) is another development platform to generate, develop, and deploy microservice

architectures. JHipster provisions both frontend and backend infrastructures in an

automated manner. MAGMA (Wizenty et al., 2017) is a build management tool that

relies on Maven Archetype mechanism (van Zyl, 2009). It can create microservices

foundations based on predefined service templates.

11

2.3 Analysis

It takes a robust MSA and coordinated use of various tools to create a microservice-based

application. In the entire development process, application developers usually need to

overcome the following challenges:

1. Design an MSA that embodies solutions for the cross-cutting concerns in

microservices such as configuration management, service discovery,

authentication/authorization, etc.

2. Determine the proper tools to use to assist in the implementation of the designed

architecture.

3. Implement the architecture components, establish connections between them, and set

up the run-time configuration details for each service.

The three tools mentioned above (IBM Accelerators, JHipster, MAGMA) can automate

these development tasks to a certain extent, but they have some drawbacks. The IBM

Accelerators (Harris & Ziemann, 2020) relies on the cloud platform (OpenShift), which

means the offered microservices features are platform-provided, not pre-fabricated in the

generated application. Therefore, the generated application can only be deployed on

OpenShift to realize the offered benefits such as service discovery and service health

check.

JHipster (Dubois et al., 2013) is another tool for automating microservices development

tasks. It builds and provides the architecture components in an abstracted and

encapsulated manner. Consequently, these infrastructure components are easy to use but

are difficult to extend or modify. For example, it encapsulates both service discovery and

configuration management in a single infrastructure component and exposes the

functionalities with self-defined interfaces, which is difficult to be modified since the

underlying logic is not accessible.

MAGMA (Wizenty et al., 2017) gives the users complete control over the generated

infrastructure components, but it provides limited features. For example, there is no

12

support for configuration management and distributed tracing. Moreover, some of the

technologies used in MAGMA, such as Zuul and Ribbon (Netflix, 2014), are outdated.

In such a context, we aim to design an MSA that embodies the design solutions for all the

challenges (discussed in Section 2.1) and automate the development tasks (implementing

the architecture components, establishing connections between them, and setting up the

runtime configuration details for microservices) to generate an easily extensible

microservices skeleton application.

13

Chapter 3

3 Structure and Dynamics of the Generated Application

As discussed in Section 2.3, in order to develop a solid microservice-based application,

we first need to design an MSA that embodies solutions for service discovery,

configuration management, security, etc. The application generated by our tool should be

based on such an architecture. Therefore, in this chapter, we define the structure and the

run-time dynamics of the microservice-based application that our tool generates. The

proposed MSA is our first research result.

3.1 Architecture of the Generated Application

This section defines the architecture of the generated application by first introducing the

high-level design of the generated application and then explicating the application

components with a component diagram. Figure 1 shows the general design of the

generated application. Five infrastructure components (the red modules in Figure 1) are

provided for use by the application developer. Each component has functionalities that

are accessible to the developer through the component's interfaces. These components

can work across different deployment platforms and even development frameworks

because their functionalities are exposed through REST-based interfaces. For example, a

microservice written in Python, deployed in a virtual machine, and a microservice written

in Java, deployed in a container, can both access our components without distinction.

A number of microservices such as the SampleService (Figure 1) can also be generated

on user demand. These generated microservices are service templates for application

developers to fill in their own business logic. They are pre-configured to use the

functions offered by the infrastructure components, e.g., registered to the service

discovery and connected to the configuration service in advance. Furthermore, the

generated services are embedded with load balancers similar to the Gateway. In actual

operation, services usually need to invoke each other, which means a service can be a

client of other services. However, there's no gateway sitting in between internal services,

14

therefore an embedded load balancer is needed to distribute the outbound traffic of the

internal services.

With these capabilities, application developers no longer need to worry about the

architectural solutions for the microservices-specific concerns and can focus on their

business logic rather than infrastructure setup or application configurations because their

starting point is a feature-packed runnable application.

Figure 1: High-level design of the generated application

The structure of the generated application is illustrated in Figure 2, which describes the

application components, their interfaces, and their dependencies. The detailed design of

each infrastructure component is explicated below:

15

Figure 2: Component diagram of the generated application

Configuration Server: The configuration server utilizes the common distributed

key-value store to manage the environment-specific information and application

configuration information for each microservice. These pieces of information are

persistently saved in an external repository connected to the configuration server. The

Configuration Server provides an HTTP-based configuration interface that can be used

by the SampleService for retrieving the configuration files.

Service Discovery: Service instances register themselves to the service discovery

through the register interface (HTTP endpoint) provided by it. The service discovery

agent monitors the health of each service instance registered with it and removes any

failing service instances from its routing table by pinging these instances periodically.

The Gateway uses the discover interface provided by the service discovery to discover

the registered services.

Authentication Server: The authentication server acts as an identity provider (IdP) that

creates, maintains, and manages the clients' identity information and authenticates them

16

by checking their credentials and issuing access tokens. The access token is an encrypted

string representing the identity and role of the client that can be validated back to the

authentication server. With such a scheme, the service clients can be authenticated and

authorized by each microservice without having to present their credentials repeatedly to

each microservice processing their request. It provides an HTTP-based interface for the

client to authenticate themselves and get an access token and an authorization interface

for the internal services to verify the token and authorize client operations.

Gateway: The gateway is the sole entry point to our entire architecture that sits between

the client and the backend services. It acts as a reverse proxy to accept all client requests,

aggregate the various services required to fulfill them and return the appropriate result. A

load balancer is built into the gateway to load balance the incoming requests. It provides

a routes HTTP endpoint accepting client requests and invokes the interfaces provided by

the internal services (SampleService) to forward the requests.

Distributed Tracing Server: The distributed tracing server instruments incoming

requests with correlation IDs by adding filters and interacting with other components

such as the Gateway to let the generated correlation IDs pass through to all the service

calls. It then utilizes a data visualization tool to show the flow of a transaction across

multiple services. Every internal service (SampleService) should send the trace

information to the distributed tracing server through the trace interface provided by the

distributed tracing server.

3.2 Run-time Dynamics of the Generated Application

This section introduces how the generated application handles the run-time flows of

information and how are the client requests fulfilled. The sequence of messages passed

between the application components is shown in Figure 3.

During the startup of the services (SampleService), they fetch configuration from the

Configuration Server and register themselves to the Service Discovery. To access these

services, the service client first needs to authenticate with the Authentication Server to

get an access token. Once the token is obtained, the client makes the subsequent request

17

to the Gateway carrying the access token. The Gateway then communicates with the

service discovery to retrieve the locations of the target service instances and uses the

built-in load balancer to select an instance and redirects the request to the specific

instance. Once the request arrives at the target service, it validates the access token

against the authentication server to see if the user has permission to continue the process.

Once validated, the service processes the request and sends the results back to the client

as an HTTP response.

Figure 3: Sequence diagram of the generated application

18

Chapter 4

4 Implementation of the Generated Application

This chapter elaborates on implementing the microservice-based application in

correspondence to the design presented in Chapter 3. This implementation consists of the

decisions to select certain third-party tools to build the infrastructure components that are

provided to the application developers. Therefore, this is our second research result.

The development framework used to build such an application is Spring Boot, the most

widely used Java framework for creating Microservices (Spring, n.d.-a). How each

infrastructure component and microservice is implemented is explained in more detail in

the following sections.

4.1 Implementation of the Infrastructure Components

Third-party tools we depend on to build the infrastructure components are exhibited in

Table 2. These tools are picked from the tools we outlined in Chapter 2.2. Eureka is used

for implementing service discovery. Spring Cloud technologies including, Spring Cloud

Config, Spring Cloud Gateway, Spring Cloud Load Balancer, and Spring Cloud Security

are integrated into corresponding infrastructure components for configuration

management, service gateway, load balancing, and authentication/authorization. Zipkin

and Spring Cloud Sleuth is used for distributed tracing.

The Service Discovery is implemented by integrating Netflix Eureka in it. Netflix Eureka

is an application-level service discovery solution because it provides a REST-based

interface for microservices to register themselves with it. The main benefit of Netflix

Eureka is that it offers dynamic client update and service health check out of the box. It

monitors the microservices registered with it by periodically pinging them and refreshing

its routing table dynamically (add newly registered service instances and remove failing

service instances). All these benefits can be achieved with minimum setup costs.

The Configuration Server is implemented with the Spring Cloud Config. With Spring

Cloud Config, the configuration data of the microservices can be completely separated

19

from the application code and stored in either a remote repository or a shared filesystem

and injected into the microservices automatically at their startup. More importantly, since

the Spring Cloud Config is designed explicitly for Spring Boot projects, it is easy to set

up and use.

The Gateway is built on top of the Spring Cloud Gateway. Spring Cloud Gateway offers

built-in filters to inspect and act on the requests and responses coming through the

Gateway. It also provides built-in predicates, which allow us to check if the requests

fulfill a set of given conditions before executing or processing them. Additionally, the

Spring Cloud Load Balancer (Spring, n.d.-b) can be easily integrated into Spring Cloud

Gateway to achieve load balancing since they are both developed by Spring Cloud.

Alternative tools such as Zuul is in maintenance mode and deprecated (Gibb, 2018), and

NGINX Plus is not an application-level solution for the API gateway.

The Authentication Server is built by integrating the Spring Security OAuth2 plugin

(Spring, n.d.-c), a commonly used security solution that follows the token-based security

protocols, OAuth2 and JSON Web Tokens (JWT). Spring Security OAuth2 plugin offers

the function to register service clients with the Authentication Server and generate and

issue JWT tokens to the clients. With Spring Security OAuth2, we can also easily

integrate the services we want to protect with the Authentication Server.

The Distributed Tracing Server is implemented using Zipkin because it offers collection,

storage, and visualization of tracing information in one process, and Spring Cloud Sleuth

is used to instruments client requests with trace IDs that are used to track the transaction

flow of the requests.

Table 2: Tools integrated in the infrastructure components

Infrastructure Components Tools

Service Discovery Netflix Eureka

Configuration Server Spring Cloud Config

20

Gateway Spring Cloud Gateway + Spring Cloud Load Balancer

Authentication Server Spring Security OAuth2

Distributed Tracing Server Zipkin + Spring Cloud Sleuth

4.2 Implementation of the Service

The generated service (SampleService in Figure 1) is a REST-based web service built

using Spring Boot and Maven (Porter, n.d.) with embedded load balancers implemented

with Spring Cloud Load Balancer. It is registered with the Service Discovery, connected

to the Configuration Server, and pointed to the Authentication Server and Distributed

Tracing Server by either setting the Spring Annotations or configuring the Application

Properties (Spring n.d.-a).

21

Chapter 5

5 Design of the WesternAccelerator Tool

To generate an application described in Chapter 4 quickly and allow application

developers to modify or extend the generated application easily, we built the tool

WesternAccelerator. This is another of our research results.

5.1 Use Case Description of WesternAccelerator

We identify the use case of WesternAccelerator as generating runnable

microservice-based skeleton applications that contain all necessary infrastructure

components and editable service templates (as described in Chapter 3). Table 3 shows the

detailed use case description depicting the standard operations of the tool.

Table 3: Use case description of WesternAccelerator

Use Case Name Generate a microservice-based application

Use Case Description To generate a microservice-based skeleton application that

can further be used as the foundation to create a complex

microservice-based system.

Actors Microservice developers

Trigger User executes the command to generate an application.

Pre-conditions WesternAccelerator is available.

Git, Java, and Maven are installed.

Flow of Events 1. System generates the infrastructure components.

2. System prompts the user to enter service metadata.

3. System generates the services.

4. System returns the generated application.

22

Post-conditions The generated application saved in the user’s local

filesystem.

5.2 Architectural Design of WesternAccelerator

There are two function modules in WesternAccelerator, the Infrastructure Component

Supplier and the Service Generator as shown in Figure 4. The two modules are explained

in detail below.

The Infrastructure Component Supplier provides ready-to-use infrastructure components

(the five infrastructure components discussed in Chapter 3.1.1) to application developers.

It fetches these components from the Infrastructure Components Repository and returns

them to the application developers on their demand. As the developer and maintainer of

WesternAccelerator, we build and set up the infrastructure components in advance and

prefill them into the Infrastructure Components Repository. Thus, the application

developer can use the retrieved components directly without further configuration, and

they can easily modify these components since they get the complete code.

The Service Generator generates customizable microservices that are pre-connected to

the infrastructure components. It achieves such function by building the same kind of

services from the service archetype fetched from the Service Archetype Repository.

A service archetype is an abstraction of the same kind of services. It standardizes the

initial setups, including the configuration of common dependencies, infrastructure setup

for communication with other components, and initial security configuration for

authentication/authorization. The archetype can be instantiated into a concrete

parameterized microservice. We build such an archetype adhering to the SampleService

we defined in Section 3.1 and put it into the Service Archetypes Repository for use.

23

Figure 4: Architectural design of WesternAccelerator

5.3 Run-time Dynamics of WesternAccelerator

This sections discusses the the run-time behaviors of the tool, with a focus on the

workflows of actions performed by the system. Figure 5 shows the activity diagram of

the system.

In WesternAccelerator, a complete generation process is divided into two concurrent

processes. The infrastructure components and services are supposed to be generated

separately. The source code of the infrastructure components is fetched from the

Infrastructure Component Repository and returned to the user. All the five infrastructure

components are returned by default for the completeness of a microservice architecture.

The process for generating services requires the user to enter the service metadata, such

as the group name, project name, and version number, to build a customized

microservice. As it should be, such a process can be executed repeatedly to generate

multiple services, because a microservice-based application typically contains many

microservices.

Finally, the infrastructure components and services will be placed in the same directory

of the local file system.

24

Figure 5: Activity diagram of WesternAccelerator

25

26

Chapter 6

6 Implementation of the WesternAccelerator Tool

WesternAccelerator is command-line driven and developed with shell scripts. The tools

and technologies that each part of the WesternAccelerator relies on are introduced below.

The Infrastructure Components Repository is created with Git and hosted on GitHub. We

use GitHub to manage these repositories because it is the most advanced version control

and source code management platform (GitHub, 2007). The structure of the Infrastructure

Components Repository is shown in Figure 6. The Infrastructure Component Supplier

uses Git commands (Git, 2021), e.g., git clone, to fetch the source code of the

infrastructure components from Github. It then returns the source code to the application

developers on their demand.

Figure 6: Infrastructure Components Repository on GitHub

The returned infrastructure components can be used directly without further setup or

configuration. However, our users (application developers) get the complete code and

configuration of these components, and they can extend or modify them if needed.

These components are individually runnable servers whose capabilities are accessible

through HTTP endpoints. Figure 7 shows the main class of the generated Service

27

Discovery component (Figure 1) as an example. The "@EnableEurekaServer" annotation

denotes that the Eureka tool is integrated into the component. And thanks to the power of

the Spring Boot framework, the service discovery capabilities are automatically included

with the implementation of the HTTP endpoints abstracted out.

Figure 7: Main class of the Service Discovery component

We format the configuration data of the infrastructure components using YAML Ain't

Markup Language (YAML). Figure 8 shows the detailed configuration of the Service

Discovery component. The default listening port of the component is set to 8070. The

parameter "defaultZone" in Figure 8 provides the service URL to access the Service

Discovery component. Our users can add extra configurations to change the behavior of

the component, such as setting the time to wait before the server takes requests with the

parameter "waitTimeInMsWhenSyncEmpty".

28

Figure 8: Configuration of the Service Discovery component

According to the design of the generated application discussed in Chapter 3, the

infrastructure components and services are pre-connected to form a runnable skeleton

application. We achieve this by adding extra configurations to establish dependencies

between components. Figure 9 shows how the Gateway is connected to the Service

Discovery as an example. First, the Gateway is registered with the Service Discovery by

specifying "registerWithEureka: true", as shown in Figure 9. And "discovery. locator:

enabled: true" enables the Gateway to create routes and redirect client requests based on

services registered with the Service Discovery.

29

Figure 9: Configuration of the Gateway component

The Service Archetype Repository is also created with Git and hosted on GitHub, where

the source code of the archetype we used to generate microservices are saved, as shown

in Figure 10.

Figure 10: Service Archetypes Repository on GitHub

We build the service archetype with Maven Archetype (van Zyl, 2009). Maven

Archetype is a project templating toolkit that allows us to build archetypes and generate

concrete projects from the archetypes. It provides a variety of functions to allow us to set

the properties of a project during generation, configure which resources will be copied

into the generated project, and generate projects with multiple modules. The Service

30

Generator retrieves the archetypes from Github with Git commands and builds them into

runnable microservices with the project generating capability provided by Maven

Archetype. Figure 11 shows a key portion of the scripts to generate a sample service from

the service archetype. The "mvn archetype :generate" is the central command to create a

service project. The parameters such as DgroupId, DartifactId, and Dmicroservice-name

in Figure 11, are supposed to be replaced with the user's inputs.

Figure 11: Scripts to generate a sample service from the archetype

31

Chapter 7

7 Validation of WesternAccelerator

We validate WesternAccelerator by using it to generate an application basing on the use

case description discussed in Section 5.1 and test whether each part of the generated

application works as expected.

Figure 12 shows the feedback received from executing the WesternAccelerator to

generate an application. We can conclude that the generated application is successfully

downloaded (i.e., receiving objects: 100% in Figure 12) to the local filesystem.

Figure 12: Feedback received from executing the WesternAccelerator

We then build and run the generated application to verify that the components are

successfully configured and connected with each other. We do this by checking the

application monitor dashboard provided by Eureka. The dashboard displayed in Figure 13

reveals that the service discovery component accepted Gateway and the generated sample

service (i.e., GATEWAY-SERVER, SAMPLE-SERVICE are under the Instances

currently registered with Eureka).

32

Figure 13: Eureka Service Dashboard

Based on the above two preliminary test cases and results, we can conclude that the

WesternAccelerator tool is operational and generates the infrastructure components and

services (see Figure 1) through a simple command-line invocation of the tool.

However, our test for the Service Generator is preliminary. We have only verified that the

Gateway, the Service Discovery, and the sample service are runnable and connected.

However, a more detailed test should be conducted to check whether the generated

sample service and all the five generated infrastructure components (presented in Figure

1) are correctly configured and connected. Such a detailed test would include:

1. Create a sizable and complex end-user application from the generated skeleton

application by filling in some simulative business logic.

2. Invoke the internal service endpoints through the Gateway to validate its routing

capabilities.

33

3. Perform a set of client requests with correct and illegal user credentials to validate

the Authentication Server.

4. Update the configuration of each application component from the Configuration

Server and observe whether the components can capture such change by

re-running each component.

5. Check the Zipkin dashboard provided by the Distributed Tracing Service to

confirm that the trace information is successfully collected.

This detailed test is outside the scope of this thesis because of the lack of time.

34

Chapter 8

8 Discussion

This chapter compares WesternAccelerator with competitive tools in Section 8.1 and

discusses the advantages and limitations of WesternAccelerator in Section 8.2.

8.1 Comparison of WesternAccelerator with related tools

In this section, we compare WesternAccelerator with the IBM Accelerators, JHipster, and

MAGMA. Table 4 shows an overview of the differences between the four tools, focusing

on how the microservices features are implemented. WesternAccelerator is compared

with each of the other tools in more detail in the following paragraphs.

WesternAccelerator vs. IBM Accelerators

WesternAccelerator and IBM Accelerators are both used for generating runnable

microservice-based applications. The main difference between them is that

WesternAccelerator is an application-level solution, whereas IBM Accelerator is more of

a DevOps Solution (it automates both the development and deployment of

microservices). WesternAccelerator implements the microservices required features

within the scope of application code. Contrastingly, the MSA features offered by IBM

Accelerators depend on the cloud platform, which is OpenShift (Red Hat, 2011). Even

though the microservices generated by the IBM Accelerators can be deployed on

OpenShift automatically, such automation comes at a cost because the features offered by

IBM Accelerators, such as service discovery and service health check, can only be

realized when deployed on OpenShift. Compared with the IBM Accelerators, our tool

enables more flexibility in deployment by allowing application developers to choose their

preferred cloud platforms to deploy the generated application. Our solution should work

across different cloud platforms because we implement the microservices features as

components at the application level. These infrastructure components are

platform-independent since they communicate with each other through HTTP-based

interfaces.

35

Besides automation of deployment, IBM Accelerators as a commercial tool offers a

powerful graphical user interface where users can create microservices and establish

relations between them by dragging and connecting components on a canvas. Such

functionality is beyond the scope of our work.

WesternAccelerator vs. MAGMA

MAGMA is an application-level solution for generating pre-configured, runnable

microservices. However, it does not provide enough infrastructure components to address

several critical cross-cutting concerns in microservices, such as configuration

management, distributed tracing, and log aggregation. Moreover, compared with

WesternAccelerator, some of the technologies used in MAGMA are outdated. The Spring

Cloud Netflix tools that MAGMA relies on to build the infrastructure components,

including Zuul, Ribbon, and Hystrix (Spring. (n.d.-b)), are in maintenance mode and

deprecated. There will not be any new features added to these tools, and the Spring Cloud

team will perform only some bug fixes and fix security issues. Since MAGMA and

WesternAccelerator are both heavily dependent on the Spring Cloud, it becomes

important to use the latest Spring Cloud technologies.

WesternAccelerator vs. JHipster

JHipster is the most feature-rich tool available for developing microservices. Besides

providing application-level infrastructure components and generating runnable

microservices, it also supports the modeling of service entities through a visual web form

that can help implement business features.

However, similar to MAGMA, some tools JHipster uses to implement the infrastructure

components such as Zuul for the API gateway and Ribbon for load balancing are

deprecated. Additionally, the infrastructure components provided by JHipster are hard to

be extended or modified because it abstracts the underlying implementation of the

provisioned infrastructures. For example, it combines service discovery and configuration

management in a single component and exposes the functionalities with self-defined

interfaces. Consequently, a full-fledged application generated by JHipster might be hard

36

to extend with other non-generated components. It takes extra effort for application

developers to change the configuration or code of a non-generated component to connect

it to the generated application. In contrast, the WesternAccelerator generated components

can be easily extended or modified owing to the fact that they are developed strictly

following the standard approaches demonstrated in the Spring Cloud reference

documentation (Spring, 2020), which means any project developed with Spring Boot can

integrate with our generated application smoothly. However, a detailed test on extending

each tool's generated application and comparing the overall time and effort is yet to be

conducted.

Table 4: Comparison of WesternAccelerator with IBM Accelerators, JHipster,

and MAGMA

Features

Tools

WesternAccelerator
IBM

Accelerators
JHipster MAGMA

API Gateway
Spring Cloud

Gateway
/ Netflix Zuul Netflix Zuul

Load Balancing
Spring Cloud Load

Balancer
OpenShift Netflix Ribbon Netflix Ribbon

Authentication/

Authorization

Spring Security

OAuth2
/

JHipster UAA

Server

Spring Security

OAuth2

Service

Discovery
Netflix Eureka OpenShift Netflix Eureka Netflix Eureka

Configuration

Management
Spring Cloud Config /

Spring Cloud

Config
/

Distributed Zipkin OpenShift JHipster /

37

Tracing Console

Log

Aggregation
/ OpenShift

JHipster

Console
/

Service

Modeling

IBM

Accelerators UI
JHipster UML /

Easy to extend + - - +

Easy to use + 0 0 0

capabilities 0 - + -

Legend:

+: the tool positively supports the quality attribute.

0: the tool’s support for the quality attribute is neither weak nor strong.

-: the tool’s support for the quality attribute is weak.

/: the tool doesn’t support the feature.

8.2 Advantages and Limitations of WesternAccelerator

WesternAccelerator has several advantages over the other tools we discussed in the

previous section. First of all, compared with the related tools, WesternAccelerator is

easier to use because to generate an application with the tool, users only need to execute a

single command. The other tools either require multiple commands or multiple actions in

the graphical interface to to generate an application. And as discussed in Section 8.1, the

application generated by WesternAccelerator is easier to extend. Most of the features

offered by IBM Accelerators depend on OpenShift, whereas the other three tools provide

application-level implementations of the microservices features (we have discussed the

benefits of application-level solutions in Section 6.1.). Compared with JHipster and

MAGMA that also implement the microservices features at the application level, the

main advantage of WesternAccelerator is that it uses the latest technologies to implement

these features. JHipster and MAGMA both use Zuul for the API gateway and Ribbon for

38

load balancing. As we have mentioned in Section 6.1, these tools are deprecated by the

Spring Cloud team. WesternAccelerator uses Spring Cloud Gateway and Spring Cloud

Load Balancer, which are the successors of Zuul and Ribbon.

Despite the advantages mentioned above, our tool has some limitations. For example, it

does not support aggregating, storing, and visualizing the log data for the microservices.

Also, it lacks the capability of establishing dependencies between generated

microservices, e.g., enabling application developers to configure the hierarchy of the

microservices before generating them. Additionally, it does not help application

developers implement business features, for example, generating entity classes in the

microservices from class diagrams.

39

Chapter 9

9 Conclusion and Future work

In this thesis, we discuss the characteristics of microservices and review the common

microservices design patterns. These design patterns are the theoretical baselines for our

proposed MSA shown in Chapter 3. We further presented WesternAccelerator in Chapter

5, a tool to generate microservice-based skeleton applications comprising functional

infrastructure components and runnable service templates (see Section 3.1 for the

definitions of both these), in accordance with our proposed MSA. The generated

infrastructure components are application-level solutions for configuring, discovering,

securing, and tracing services. The service templates are user-customized microservice

starter projects where business logic can be added. The thesis has shown that with these

capabilities, application developers can focus on their business logic rather than

architecture design, infrastructure setup, application configuration, and service templates.

This benefit is derived from a generation capability of the WesternAccelerator (see

Chapter 6 for the validation of WesternAccelerator).

As future work, we first need to conduct a more thorough test on the tool, as discussed in

Chapter 7. And we plan to expand the WesternAccelerator functionalities in two

directions. First, extend the infrastructure components to support more MSA features

such as log aggregation and visualization. Second, according to Cloud Native Computing

Foundation (CNCF) (2020), the use of containers in production has increased by 300%

since 2016. Containers can further improve the scalability and availability of

microservices. So we plan to integrate support for containerizing microservices and

automating the deployment process of the container-based microservices.

40

References

Al-Debagy, O., & Martinek, P. (2018, November). A Comparative Review of

Microservices and Monolithic Architectures. 2018 IEEE 18th International

Symposium on Computational Intelligence and Informatics (CINTI).

https://doi.org/10.1109/cinti.2018.8928192

Apache. (2009, August 26). Maven – Introduction to Archetypes.

https://maven.apache.org/guides/introduction/introduction-to-archetypes.html

Apache. (2021, March 27). ZooKeeper: Because Coordinating Distributed Systems is a

Zoo. Zookeeper.Apache. https://zookeeper.apache.org/doc/r3.7.0/index.html

Carnell, J. (2017). Spring Microservices in Action (1st ed.). Manning Publications.

Carnell, J., & Sánchez, H. I. (2021). Spring Microservices in Action, Second Edition (2nd

ed.). Manning Publications.

Cloud Native Computing Foundation (CNCF). (2020). CNCF Survey 2020. CNCF.

https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pd

f

Dubois, J., Sasidharan, D., & Grimaud, P. (2013). Doing microservices with JHipster.

JHipster. https://www.jhipster.tech/microservices-architecture/

Gibb, S. (2018, December 12). Spring Cloud Greenwich.RC1 available now. Spring.

https://spring.io/blog/2018/12/12/spring-cloud-greenwich-rc1-available-now

Git (2.32.0). (2021). [Distributed version control system]. Git. https://git-scm.com

GitHub. (2007). GitHub: Where the world builds software. https://github.com/

Harris, D., & Ziemann, N. (2020, June 12). Introduction to accelerators for cloud-native

solutions. IBM Developer.

41

https://developer.ibm.com/articles/introduction-to-accelerators-for-cloud-native-s

olutions/

HashiCorp. (n.d.). Introduction to Consul. Consul.Io. Retrieved July 6, 2021, from

https://www.consul.io/docs/intro

IBM Cloud Education. (2019, December 18). etcd. IBM Cloud.

https://www.ibm.com/cloud/learn/etcd

Leymann, F., Breitenbücher, U., Wagner, S., & Wettinger, J. (2017). Native Cloud

Applications: Why Monolithic Virtualization Is Not Their Foundation. Cloud

Computing and Services Science, 16–40.

https://doi.org/10.1007/978-3-319-62594-2_2

Loukides, M. S. S. (2020, July 15). Microservices Adoption in 2020. O’Reilly Media.

https://www.oreilly.com/radar/microservices-adoption-in-2020/

Netflix. (2012, September 4). Netflix Shares Cloud Load Balancing And Failover Tool:

Eureka! Medium.

https://netflixtechblog.com/netflix-shares-cloud-load-balancing-and-failover-tool-

eureka-c10647ef95e5

Netflix. (2013, June 12). Announcing Zuul: Edge Service in the Cloud - Netflix TechBlog.

Medium.

https://netflixtechblog.com/announcing-zuul-edge-service-in-the-cloud-ab3af5be0

8ee

NGINX, Inc. (2020, November 2). Plus Feature: API Gateway. NGINX.

https://www.nginx.com/products/nginx/api-gateway/

Porter, B. (n.d.). Maven – Welcome to Apache Maven. Apache. Retrieved August 30,

2021, from https://maven.apache.org

Red Hat. (2011). Red Hat OpenShift, the open hybrid cloud platform built on Kubernetes.

OpenShift. https://www.openshift.com

42

Richardson, C. (2018). Microservices Patterns: With examples in Java (1st ed.). Manning

Publications.

Richardson, C. (2020). A pattern language for microservices. Microservices.Io.

https://microservices.io/patterns/

Singh, V., & Peddoju, S. K. (2017, May). Container-based microservice architecture for

cloud applications. 2017 International Conference on Computing,

Communication and Automation (ICCCA).

https://doi.org/10.1109/ccaa.2017.8229914

Sorgalla, J., Wizenty, P., Rademacher, F., Sachweh, S., & Zündorf, A. (2018,

September). AjiL. Proceedings of the 12th European Conference on Software

Architecture: Companion Proceedings. https://doi.org/10.1145/3241403.3241406

Spring. (n.d.-a). Spring Boot. Retrieved July 13, 2021, from

https://spring.io/projects/spring-boot

Spring. (n.d.-b). Spring Cloud. Retrieved July 13, 2021, from

https://spring.io/projects/spring-cloud

Spring. (n.d.-c). Spring Boot and OAuth2. Retrieved August 2, 2021, from

https://spring.io/guides/tutorials/spring-boot-oauth2/

Spring. (2020). Spring Cloud Reference Documentation.

https://docs.spring.io/spring-cloud/docs/current/reference/html/

Torre, C., Wagner, B., & Rousos, M. (2020). .NET Microservices: Architecture for

Containerized .NET Applications (5.0 ed.) [E-book]. Microsoft Developer

Division, .NET and Visual Studio product teams.

Uber Technologies. (n.d.). Jaeger: open source, end-to-end distributed tracing.

Jaegertracing. Retrieved July 18, 2021, from https://www.jaegertracing.io

43

van Zyl, J. (2009, August 26). Maven – Introduction to Archetypes. Maven.

https://maven.apache.org/guides/introduction/introduction-to-archetypes.html

Wizenty, P., Sorgalla, J., Rademacher, F., & Sachweh, S. (2017, September). MAGMA.

Proceedings of the 11th European Conference on Software Architecture:

Companion Proceedings. https://doi.org/10.1145/3129790.3129821

Wu, A. (2017). Taking the Cloud-Native Approach with Microservices. Cloud Google.

https://cloud.google.com/files/Cloud-native-approach-with-microservices.pdf

Zipkin. (n.d.). OpenZipkin · A distributed tracing system. Retrieved July 18, 2021, from

https://zipkin.io

44

Curriculum Vitae

Name: Haoran Wei

Post-secondary The Chinese University of Hong Kong

Education and Hong Kong, China

Degrees: 2014-2018 B.A.

The University of Western Ontario

London, Ontario, Canada

2019-2021 M.A.

Related Work Teaching Assistant

Experience The University of Western Ontario

2019-2021

	WesternAccelerator：Rapid Development of Microservices
	Recommended Citation

	tmp.1630470849.pdf.rW6zo

