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Abstract: 

The urban heat island is a phenomenon wherein urban areas experience warmer 

temperatures than their surrounding rural areas. Techniques to reduce excess heat in urban 

environments are known as heat mitigation or heat island mitigation solutions, with the 

intent that they reduce urban temperatures. This research presents an investigation on the 

impacts and effectiveness of urban heat mitigation techniques on improving the outdoor 

thermal conditions of downtown London, Ontario. The impact of increasing vegetated 

areas and applying higher albedo materials for road pavements is assessed with ENVI-Met 

software for current and future summer weather. Furthermore, investigations were 

conducted for current and future winter weather scenarios to explore the effects of these 

heat mitigation techniques on other seasons' outdoor conditions. Finally, the effects of heat 

mitigation strategies on building energy consumption were simulated by HAP Carrier 

software. Results show that increasing vegetation and trees reduce the air temperature and 

mean radiant temperature during both day and night periods. A higher air temperature 

reduction is detected for the greenery model with a higher percentage of trees relative to 

grasslands. The average air temperature at 17h is reduced up to 0.56°C and 0.66°C for 

respectively, for increasing trees and high albedo materials scenarios. Furthermore, results 

showed an increase in the mean radiant temperature value for the scenario with increasing 

albedo of the road materials. The results further demonstrated a reduction in the cooling 

load of buildings with increasing trees in the building neighborhoods. 
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Summary for lay audience: 

Urban areas are hotter than their non-developed surrounding areas. According to 

projections, the urban areas will be warmer over the 21st century due to global climate 

change and urban development. Urban heat island is an urban area with a significantly 

warmer temperature than its surrounding rural neighborhoods. The increasing urbanization 

process in cities, increasing paved areas, and decreasing green areas are the reasons for 

urban heat island generation. Extremely hot weather events are becoming more frequent 

and intense as a result of climate change. Urban heat islands, during the hot seasons, can 

lead to adverse impacts on the health of citizens and increasing energy consumption. 

Several solutions are proposed to reduce the urban heat island in cities namely, increasing 

vegetation and increasing the heat reflectance of the road or building materials. This study 

assesses the impacts of increasing green areas and increasing the reflectance of road 

materials on the air temperature for a study area in downtown London, Ontario. The heat 

reduction potential of these solutions for current and future weather conditions subjected 

to climate change is analyzed by the simulation software ENVI-Met. In addition, to better 

understanding the impacts of these heat mitigations on other seasons, further assessments 

were conducted for the cold season, winter. Finally, the building energy consumption in 

the context of these heat mitigation strategies is analyzed by simulation. Results show that 

areas with low thermal comfortable conditions correspond to large flat paved areas and 

parking spaces without shading facilities. Increasing trees and vegetated spaces on the site 

can improve the outdoor thermal condition for pedestrians. Assessment of the impact of 

high reflectance materials on air temperature indicates that while applying these materials 

reduces the surface air temperature, they can cause a negative effect on the thermal comfort 
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of the pedestrian. Adding trees in the neighborhood of buildings can reduce the energy 

consumption of building for cooling. 
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1. Chapter 1: Thesis Overview 

 

1.1. Background 

Urban Climate around the world is subjected to change as a result of increasing 

urbanization and population growth. The consequence of these changes is increasing the 

anthropogenic heat in the urbanized area (Rosheidat, 2014). Anthropogenic heat, changing 

the fabric of the cities, and reducing the natural landscape, are the primary reasons for 

experiencing higher ambient temperature during the evening and nighttime in cities rather 

than a rural area. This phenomenon is urban heat island and has investigated by several 

studies. The generation of urban heat islands is attributed to the effect of anthropogenic 

activities, change in urban surface energy balance, thermal properties of the material, 

drastic change in energy consumption(Rizwan et al., 2008; Oke, T.R., 1987; Kikegawa et 

al., 2006). 

A recent investigation that characterized the urban heat island in the London, Ontario 

(MLHU report, 2015) during a summer heat wave period showed evidence of urban heat 

islands in surface and air temperatures exist in London. According to this report, which 

applied modelled outputs from the Environment and Climate Change Canada (ECCC) 

GEM-SURF numerical model, the calculated London surface temperature UHI is highly 

variable within the city by day with a spatially averaged daily maximum of between 3°C-

6°C. At night, the spatially averaged surface temperature UHI is still positive with a 

nocturnal minimum generally between 0°C-1°C and with low intra-urban variability. 
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Furthermore, the report is indicated a low canopy layer urban heat island during the 

selected hot weather events.  

 Studies have indicated increased health risks in urban populations compared with rural or 

suburban populations in hot weather and a disproportionate impact on more vulnerable 

social groups (Heaviside et al., 2017). Increased ambient temperatures cause a significant 

impact on the cooling energy consumption, heat-related mortality, urban environmental 

quality, and thermal comfort. Furthermore, synergies between urban heat islands and heat 

waves increase urban overheating impacts (Santamouris, 2020). 

Many studies have been highlighted the impact of increasing the urban vegetation as the 

most effective strategy to accomplish UHI mitigation (McPherson et al. 1994; Akbari et al. 

1995; Taha et al. 1997; Rosheidat 2014). Akbari et al. (2001) reported that urban tree 

planting, combined with increasing the surface albedo citywide, has the potential of 

modifying the entire City’s energy balance. 

There is no comprehensive investigation on the potential of urban heat island mitigation 

strategies in London. Moreover, downtown core of London stands out as prone to high 

potential of outdoor thermal discomfort, and high UHI effects would be expected (MLHU, 

2015). This study assesses the impact of urban heat island mitigation solutions on the 

outdoor microclimate conditions and pedestrian thermal comfort. 
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1.2. Research Objectives 

The overall objective of this study is to evaluate the impacts of urban heat mitigation 

techniques on the outdoor microclimate condition of downtown London. Other objectives 

of the study are listed below: 

• Assess the local microclimate conditions and thermal comfort of the current 

conditions of the study area 

• Evaluate the impact of increasing vegetation and trees, “green scenario” on the site 

microclimate conditions for different seasons (summer and winter) and different 

time scopes (present and future climates) 

• Investigate the microclimate mitigation potential of increasing the albedo of road 

material for different time scopes (present and future climates) 

• Assess the impact of “green scenario” and green walls on the building thermal 

energy performance 

 

1.3. Research Questions 

 

The questions that will be addressed in this study: 

1- What is the most efficient urban heat mitigation strategy that could be applied to the 

existing urban canyon regarding the pedestrian’s thermal comfort?  

2- What is the impact of mitigation strategies on other seasons (winter) and future 

weather conditions? 
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3- What are potential changes in the cooling energy loads of buildings due to the addition 

of street trees? 

 

1.4. Summary of Chapters 

This thesis consists of 6 chapters. After an overview in Chapter one, the background 

literature is presented in Chapter 2. It provides a review on previous studies regarding the 

urban heat island and strategies that applied to reduce the effect of heat island and 

discomfort thermal conditions. 

Chapter 3 presents a review of the ENVI-Met software. The characteristics of ENVI-met, 

models and sub-models of software are described. Finally, previous studies that have used 

ENVI-met software to assess urban heat mitigation strategies are reviewed. 

Chapter 4 presents an investigation on the outdoor thermal condition of the study area in 

downtown London, Ontario. This chapter explains the results of an assessment of the 

microclimate cooling potential of increasing green areas and increasing albedo of road 

materials. For this purpose, mitigation scenarios using the ENVI-met model simulated, and 

the results are explained in this chapter. 

Chapter 5 presents an evaluation of the impacts of microclimate mitigation solutions on 

the thermal energy performance of buildings. Furthermore, it describes modeling with HAP 

Carrier software and represents the results of simulation with this software. 

Chapter 6 summarizes the primary findings shown in Chapters 4 and 5. It provides a 

conclusion with final remarks. 
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2. Chapter 2: Background Literature 

 

It is now well established that climate change posses serious risks to the health of 

Canadians and people around the world (Health Canada, 2011). One of the key issues 

health risks from extreme heat events is an emerging public health concern. The 2003 

extreme heat event in Europe that resulted in 70,000 deaths (Watts et al., 2017) and the 

2010 event in Russia that resulted in an estimated 55,000 deaths (Barriopedro et al., 2011) 

indicate the significant toll on health that such events can have (Schnall et al., 2017). 

Extreme heat is a health concern in Canada as well; research shows that in Toronto alone 

an average of 120 people died from extreme heat annually between 1954 and 2000. In 

2005, Toronto experienced 41 extremely hot days exceeding 30°C(86°F) during which 

health officials called a total of 26 heat alert days to warn the public of the hazardous 

conditions. In British Columbia, an extreme heat event from July 27 to August 3 in 2009 

resulted in 156 excess deaths as temperatures reached 34.4°C(93.9°F) (Health Canada, 

2011; Cheng et al, 2005; Environment Canada, 2010). More recently, Quebec experienced 

a heatwave in 2018 that contributed to 86 deaths. In late June 2021, the BC Corners Service 

(2021) reported 219 excess deaths due to a heat wave in British Columbia with additional 

deaths in other countries western Canadian provinces expected. Heat-related deaths are 

preventable, and assessments of individual and community vulnerability can help to reduce 

mortality associated with extreme heat events (Health Canada, 2011). The 

Intergovernmental Panel on Climate Change (IPCC) defines "vulnerability to climate 

change as the degree to which a system is susceptible to, and unable to cope with, adverse 

impacts of climate variability" (IPCC, 2007, P. 48). Current and future factors influencing 
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health outcomes, including potential risks and protective measures, are investigated when 

assessing heat-health vulnerability. 

 

2.1. Urban Heat Island 

Many urban and suburban areas experience higher temperatures in comparison to their 

rural surroundings This phenomenon, called the urban heat island (UHI), is one of the most 

documented phenomenon of local climate change in cities (Santamouris, 2015). The annual 

mean air temperature of a city with one million or more population can be 1 to 3°C warmer 

than its surroundings, and on a clear, calm night, this temperature difference can be as 

much as 12°C (U.S. Environmental Protection Agency, EPA 2008). There exists a 

relationship between the size of a village, town or city, and the magnitude of the urban heat 

island it produces (Oke, 1973). Even smaller cities and towns will produce heat islands, 

though the effect often decreases as city size decreases (Akbari et al,2009).  

While the temperatures of an UHI are relatively straightforward to measure, there are 

several types of UHI each of which is temporally and spatially dynamic which makes it 

methodologically complex to study. These different types exist in different scales and have 

various causative thermal process (Oke et al., 2017). 

• Subsurface urban heat island (UHISub) is the difference between temperatures in 

the ground and groundwater under the city, including urban soils and the 

subterranean built fabric, and those in the surrounding rural ground.  
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• Surface urban heat island (UHISurf) is defined by temperature differences at the 

interface of the outdoor atmosphere with the solid materials of the city and 

equivalent rural ground surface.  

• Canopy layer urban heat island (UHIUCL) is the difference between the temperature 

of the air contained in the urban canopy layer, the layer between the urban surface 

and roof level, and the corresponding height in the near-surface layer of the 

countryside. The urban canopy layer (UCL) is the layer of the air extending from 

the ground up to the mean height of the elements (buildings, trees) that make up 

the urban surface.  

• Boundary layer urban heat island (UHIUBL), the difference between the 

temperature of the air in the layer between the top of the UCL and the top of the 

urban boundary layer, and that at similar elevations in the atmospheric boundary 

layer of the surrounding rural region. 
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Figure 2-1 shows a schematic depiction of a typical UHI urban canopy layer (UCL) at night 

in calm and clear conditions in a city on relatively level terrain presented by Oke et al., 

(2017). 

Figure 2-1. Schematic depiction of a typical UHIUCL at night in calm and 

clear conditions in a city on relatively level terrain. (a) Isotherm map 

illustrating typical features of the UHI and their correspondence with the 

degree of urban development. (b) 2D cross-section of both surface and 

screen-level air temperature in a traverse along the line A–B shown in (a) 

From Oke et al. (2017). Reproduced with permission of the Licensor through 

PLSclear 
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The development of the UHI is influenced by several factors, synoptic weather conditions 

in the area, the local morphological and structural parameters of the city, the thermal 

properties of the materials used, the magnitude of the anthropogenic heat released, and the 

presence of heat sources and sinks in the cities (Santamouris et al., 2016). In 1833, Luke 

Howard hypothesized that the excess heat in cities during summer was due to greater 

absorption of solar radiation by the vertical surfaces of a city and the lack of available 

humidity for evaporation (Lima Alves, 2017).   

In the daytime, urban horizontal and vertical surfaces are exposed to solar radiation; 

variation in the climate of a surface is driven by the surface energy balance, which describes 

the net result of energy exchanges by radiation, convection and conduction between a facet, 

an element or a land surface and the atmosphere (Oke et al., 2017).  

In an extensive, homogenous and flat non-urban land surface where all heat flux densities 

are restricted to the vertical direction and essentially one-dimensional in the first 

approximation, the surface energy balance equation is : 

                                   Q* = QH + QE + QG     ( W m-2)                                     (2-1) 

where Q* is the net all wave radiation, QH is the sensible heat flux density, QE is the latent 

heat flux density, and QG is the ground heat flux density that transfers sensible heat by 

conduction to the substrate(Oke et al., 2017). 

For an urban building-soil-air control volume that includes multiple facets (roof, wall, road, 

ground),  facets are coupled via radiation, wind, and turbulence to each other and cause 
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changes in their energy balance. Therefore, the energy balance for such a control volume 

reads: 

                Q* + QF= QH + QE + ΔQs + ΔQA       ( W m-2)                    (2-2) 

where QF is the heat released inside the control volume due to the human activities 

associated with living, work and travel, often called anthropogenic heat flux density. ΔQs  

is the net heat storage change by the fabric of the city, and ΔQA is the net energy added to, 

or subtracted to the control volume by advection (Oke et al., 2017).  

Five surface properties control the surface energy equation; 1. geometric, 2. radiative, 3. 

thermal, 4. moisture, and 5. aerodynamic. Surface geometry properties include orientation 

and openness to the sun and sky. Radiative properties control the reflectance ability of a 

surface. For example, facets with high albedo reduce shortwave gain and lead to a cooler 

temperature. Thermal properties of materials consist of their thermal conductivity and heat 

capacity. Facets made of materials with low thermal conductivity and heat capacity 

concentrate heat in a thin surface layer instead of transferring heat into the substrate. This 

resistance leads to a higher temperature of these surfaces and layers near to the surface. 

Moisture properties correspond to the availability of surface and near-surface soil and plant 

water moisture to evaporate. Evaporation provides a cooler temperature and a lower diurnal 

temperature range. Finally, aerodynamic properties, especially roughness length and 

exposure to wind influence temperature. Variabilities between these properties in urban 

and rural areas generate different urban and rural temperatures as well as large intra-urban 

temperature differences (Oke et al., 2017). 
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Climate warming can affect human health by influencing the surrounding environment and 

natural and social ecosystems; it is important to describe the generation mechanism of 

climatic variations on regional to local scales. Cities contain more than half of the world’s 

population, and it is estimated that 70% of the global population will live in cities by 2050. 

Therefore, city warming and heat waves due to the UHI effect can have a significant impact 

on the lives, well-being, and human health of urban residents (Grimm et al., 2018; Patz et 

al., 2005; United Nations Population Division, 2007; Douglas, 2012; Huang and Lu, 2015). 

 

2.2. Urban Outdoor Thermal Comfort 

Thermal comfort is related to the thermal balance between heat gains due to the metabolism 

of the body and heat losses from the body to the environment (Baker, 2003). 

Human thermal comfort is a function of air temperature, and five other, less obvious 

parameters: mean radiant temperature, relative air velocity, humidity, activity level, and 

clothing thermal resistance. Most of the causes of discomfort can be explained by a long-

term imbalance of losses and metabolic gains or extreme values of one of the 

environmental parameters (Olesen, 1982). In an urban landscape, a complex radiation 

environment exists that affects urban residents' thermal comfort (Oke et al., 2017). 

It can sense different thermal sensations among people, even in the same environment. 

Even though temperature sensors render the same results regardless of the geographical 

position where a measurement is being taken, this is not the case for persons (Djongyang 

et al., 2010). The human body experiences different temperature distributions during cool 

and warm conditions. In cool conditions, the warmest temperature is confined to the head, 
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while in warm conditions, the warm core temperature is found over much of the whole 

body (Mount, 1979; Oke et al. 2017). 

The PMV (Predicted Mean Vote) index is suggested by Fanger. The index predicted the 

mean response of a large group of people according to the ASHRAE thermal sensation 

scale. Subjects exposed to climate chambers are asked to give their opinions according to 

the ASHRAE seven-point thermal sensation scale. A mean vote (MV) is derived for a given 

condition by finding the mean value of the feeling given by all the subjects for that 

condition. Fanger related PMV to the imbalance between the actual heat flow from a human 

body in a given environment and the heat flow required for optimum comfort at a specified 

activity (Lin et al., 2008; Djongyang et al., 2010; Fanger, 1967). 

In an urban setting, the total radiation is one of the most effective gain/loss factors on the 

human energy balance. Energy exchanges at the surface of the human body include direct 

shortwave radiation, diffuse shortwave radiation from the sky, diffuse longwave radiation 

that is emitted from the sky and from the ground, emitted longwave radiation which is a 

function of the surface temperature, convective heat losses by sensible and latent heat 

exchange with the ambient air that is partly a function of wind speed and conductive heat 

exchange with the ground through physical contacts (Oke et al. 2017). 

Air temperature is considered by most people as the leading indicator of comfort. The way 

that the human body feels in outdoor spaces is controlled by the interaction of various 

weather parameters. Mean radiant temperature controls outdoor thermal comfort in the 

exposed surfaces on a summer day (Höppe, 1999).  Mean radiant temperature is the 

equivalent temperature of the environment that a person is exposed which generates the 

same radiation gain to the body as longwave and net shortwave receipt from the natural 
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environment (Oke et al., 2017). Spatial variation of mean radiant temperature during the 

day is governed by shadow patterns generated by obstructing objects such as trees, 

buildings, general topography, thermal and radiative properties of surrounding surface 

materials (Lindberg and Grimmond 2011b; Lindberg et al., 2013). The mean radiant 

temperature is calculated according to the sum of all shortwave and longwave radiation 

fluxes exposed by a human body (Thorsson et al., 2007). 

There are various thermal comfort indexes, as illustrated in Figure 2-6. Thermal comfort 

indexes can be divided into two main types, rational or empirical. The rational indices 

include the PPD (percent people dissatisfied), Effective Temperature, the PMV (predicted 

mean vote), the Standard Effective Temperature (SET), and the empirical indices include 

RT (resultant temperature), HOP (humid operative temperature), OP(operative  

temperature) (Toudert, 2005). 

Figure 2-2. Ranges of the thermal indexes Predicted Mean Vote (PMV) for different grades of 

thermal perception by human beings and physiological stress on human beings (Modified 

after: Matzarakis et al., 1999 and Oke et al. 2017). 
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2.3. Urban Heat Island Mitigation 

This section presents a review of the literature related to heat mitigation methods and 

impacts on urban climate. These studies employed field observation method and numerical 

models to investigate the impacts, from the street scale to the larger (city) scale. 

Assessing the impacts of buildings and the surrounding outdoor environment on the urban 

climate and outdoor thermal comfort control, as well as mitigation of the UHI effect is a 

multidisciplinary task that involves subjects in landscaping, urban planning, architecture, 

and building materials, and many others (Berkovic et al. 2012; Makaremi et al. 2012; Taleb 

and Taleb 2014; Taleghani et al. 2015; Wang et al. 2016). Given the negative effects of 

UHI, many studies have focused on techniques to reduce UHI by modeling single 

neighbors in the last two decades (Krayenhoff et al., 2003; Bosselmann et al., 1995; 

Baklanov and Nuterman 2009; Sailor, 2014; Wang and Akbari, 2014; Wang et al., 2016). 

Preliminary findings indicate that urban design has a significant impact on the 

microclimate of outdoor areas and urban canopy layers (Ghaffarianhoseini and Berardi, 

2015; Tian et al., 2017; Yang et al., 2013; Wang et al., 2016). In addition, some detailed 

urban planning methods, such as green roofs or urban vegetation, have been indicated to 

have beneficial effects (Berardi and Ghaffarianhoseini, 2014; Wang and Zacharias, 2015; 

Wang et al., 2016). 

Asphalt and concrete constitute up to 40% of Canadian urban surface area (Williamson et 

al., 2009). Krayenhoff et al., 2003, surveyed the land covers in Toronto, they found, in 

average, asphalt area constitutes 16.2% and concrete area almost 13.7% of the total land 
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cover (Krayenhoff et al. 2003). Obviously, these average values are higher for downtown 

zones. Asphalt and concrete materials are classified as urban surface covers that contribute 

to the urban heat island formation. Low albedo materials such as asphalt and concrete 

enhance the absorption of sunlight and increase temperatures (Dyce and Voogt, 2015). As 

a strategy for mitigating the UHI, surface materials with high albedo and emissivity have 

been proposed worldwide since they remain cooler when exposed to solar radiation (Akbari 

et a., 2001; Akbari and Konopacki 2004; Synnefa et al., 2007; Pisello and Cotana 2014; 

Wang et al., 2016). 

Cool pavement and materials with high albedo absorb less sunlight and remain cooler than 

low albedo material. Due to the higher heat capacity of high albedo materials, the daytime 

maximum surface temperature occurs later; however, it contributes to a higher surface 

temperature at night. Furthermore, as a result of evaporation below porous pavements, road 

surface temperature can reduce. According to the results of Taleghani and Berardi research 

on the impact of pavement albedo on pedestrian thermal comfort, increasing the albedo of 

pavement from 0.1 to 0.3 and 0.5, can be reduced the air temperature 0.5 to 1 ̊C (Taleghani 

and Berardi, 2018). 

In urban areas, the fraction of the ground that is covered by trees and vegetation is smaller 

and contains less biomass than nonurban areas (Wang et al., 2016; Oke, 1988). Akbari 

(2009) classified the effect of trees on urban climate into two categories: direct and indirect. 

Shading and reducing wind speed have a direct impact on urban climate and modify the 

interaction between a building and its surroundings. Trees in full leaf can be highly efficient 

in blocking solar radiation and reducing cooling loads. Furthermore, with 

evapotranspiration, trees influence the surrounding urban environment. Plants release 
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moisture in the form of water vapour through evapotranspiration, which absorbs energy 

from solar radiation or heated air. When solar energy is used for evapotranspiration rather 

than directly heating the air, the daytime temperatures will be lowered (Akbari, 2009). Air 

temperature reduction due to vegetation, including green roofs and ground-level 

vegetations such as grass, varies widely between 1 °C to 10 °C (Krayenhoff et al., 2021). 

In summer, the amount of solar radiation through a tree canopy is as low as 10 – 30% of 

the available solar energy reaching the surface of the tree canopy (US EPA, 2008; Hulley, 

2012). Although winter benefits are less pronounced, they still warrant some 

considerations. For example, deciduous trees provide shade in summer and increase solar 

heating during winter (Hulley, 2012). Santamouris et al. indicated that street trees inside 

urban areas might lead to maximum air temperature reduction ranging between 0.1 °C and 

5.0 °C with a median maximum temperature drop close to 1.5 °C (Santamouris et al., 2017). 

Parking lots paved with asphalt, a low-albedo material, contribute to the urban heat island 

effect (Rosenzweig et al., 2005). In order to reduce the heat stored in the asphalt surfaces 

and in the cars parked there, it is recommended that vegetation be planted around the 

perimeter of (vegetation strips) and within (vegetation medians) parking lots (Giguere, 

2009). The objective is to create shade on paved surfaces. The shade from trees can also 

protect the pavement from significant thermal variations and extend its lifespan 

(McPherson and Muchnick, 2005). A study by McPherson et al. (2001) reported that the 

temperature of a car shaded by vegetation is approximately 7°C lower than a car parked in 

the sun, while shaded asphalt pavement will be 2°C to 4°C cooler.  
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2.4. Urban Microclimate Models, ENVI-met:  

After reviewing the beneficial aspects of urban climate numerical models, this section 

presents an exploration of the literature that used ENVI-met software for simulation of 

urban microclimate. The dynamic variability of weather conditions, complex geometry of 

urban design and different configurations of cities all over the world impose limitations on 

the empirical study of urban microclimate. Understanding and solving problems in 

complex environmental designs can be attained by simulation modelling. Numerical 

simulation is well suited to dealing with the complexities and non-linearities of the urban 

climate system; it has been widely used in urban climate study and continues to grow in 

popularity (Nik et al., 2020). Microclimate models evaluate a wide range of urban 

configurations for a specific purpose or to answer explicit urban planning and design 

questions (Roth and Lim, 2017).  

Many researchers use ENVI-met software to assess the urban heat island and evaluate its 

mitigation techniques. Huttner et al. (2008) investigated the effects of global warming on 

heat stress using ENVI-met in central European cities. They recommended that green 

spaces be considered an important factor to improve human thermal comfort. Hedquist et 

al. (2009) used ENVI-met as well as CFD modeling in a Central Business District, Phoenix, 

to interpret the local flow modifications due to the UHI diurnal cycle.  Results from this 

study explained the dynamics of the UHI within the built environment, and also suggested 

solutions to mitigate heat and increase outdoor thermal comfort in hot, arid cities. A study 

presented by Maleki and Mahdavi (2016) used ENVI-met to simulate microclimate 

conditions in a part of the city of Vienna. This study focused on investigating the effects 

of the variation of physical and geometrical properties of the urban area (cool roofs, green 
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lands, and perviousness of paving materials) on the urban micro-climate and outdoor 

thermal comfort. The results suggested that modifications within the urban canopy were 

more effective in influencing the microclimate conditions than those implemented to the 

roof levels. Increasing vegetation and permeable pavements can cool the air temperature 

down by up to 3 K. Several researchers studied cool materials’ application on urban open 

spaces and their positive effect on the human thermal comfort with ENVI-met 

(Makropoulou, 2017; Wang et al., 2017; Salata et al., 2017; Taleghani et al., 2016; Yang 

et al., 2016). In all those cited studies, the contribution of cool materials to ambient 

temperature reduction was confirmed. 

There are several investigations on the impact of street trees and vegetation on urban heat 

island mitigation with ENVI-met( Shahidan et al., 2012; Taleghani et al., 2016; Chow and 

Brazel, 2012; Alchapar and Correa, 2016; Yang and Lin, 2016; Wang et al., 2016; Skelhorn 

et al., 2014; Lee et al., 2016b). Most of the studies yielded decreased canopy layer air 

temperature on a summer afternoon by increasing the number of trees (Krayenhoff et al., 

2021). 
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3. Chapter 3: ENVI-Met Software 

There are various available computational models to simulate urban microclimates (e.g., 

RayMan, SOLWEIG, TUF-3D, ENVI-met) (Matzarakis et al. 2007; Lindberg et al., 2008; 

Krayenhoff and Voogt, 2007; Bruse, 2004). The choice of ENVI-met as a simulation tool 

in this project is motivated by the unique aspects of this software and its ability to simulate 

the impacts of vegetation, coupling the atmospheric processes with vegetation and soil 

moisture processes. In addition to the capability of ENVI-met to compute sophisticated 

study area arrangements, the software is more user-friendly and accessible for users than 

other similar models (Crank et al., 2018). 

3.1 Characteristics of ENVI-met  

ENVI-met is a three-dimensional non-hydrostatic model that simulates surface-plant-air 

interaction and analyzes small-scale interactions between building surfaces and plants. The 

Figure 3-1. Schematic of the sub models of ENVI-met (Huttner, 2012) 
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release of the first version of the ENVI-met model (version v.3.0) was officially announced 

in 1998 (Bruse and Fleer, 1998b), and the latest version (version v.4.4.1) was released in 

2019. ENVI-met simulates the dynamics of the urban microclimate using atmospheric 

physics and heat transfer principles (Bruse and Fleer, 1998). Three-dimensional wind flow 

is calculated using the incompressible, non-hydrostatic Navier-Stokes equations with the 

Bousinessq approximation of buoyancy effects. Advection-diffusion equations are used to 

calculate potential temperature and specific humidity distribution, and then distributions 

are modified by sources and sinks of heat and moisture within the model. 

Required input data for the ENVI-met model include latitude and longitude, simulation 

date and duration, horizontal wind speed, roughness length, air temperature, specific and 

relative humidity. The significant prognostic variables computed by ENVI-met are (Bruse 

and Fleer, 1998):  

• Wind speed and direction.  

• Air and soil temperature.  

• Air and soil humidity. 

• Radiative fluxes.  

• Gas and particle dispersion.  

 

3.2. ENVI-met Model and Sub-models: 

The computation of all variables needs to use several sub-models that interact with each 

other. The ENVI-met model consists of a one-dimensional boundary model that includes 

vertical profiles of different meteorological parameters up until a height of 2500 meters 
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and a three-dimensional core model that includes all atmosphere, soil, building, and 

vegetation processes. Figure 3-2 shows an overview of ENVI-met model.  

 

 

3.3. One-dimensional Boundary Model 
 

ENVI-met simulates only part of the atmosphere, and for that reason considering boundary 

conditions are required for the lateral and vertical borders of the 3D model (Bruse, 1999). 

The 1D boundary model creates one-dimensional profiles for meteorological parameters 

to provide the boundary conditions of lateral and vertical borders of 3D model (Simons, 

2016). The one-dimensional boundary model with its horizontally homogeneous vertical 

profiles is then used to provide data on the borders of the 3D model (Bruse, 1999). 

 

3.4 The three-dimensional core models 
 

3.4.1 The atmosphere model 
 

Figure 3-2. Schematic of the ENVI-met model layout 

(http://www.envi-met.com/). 
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The three-dimensional core model consists of three orthogonal orientated axes, which 

generate a three-dimensional cube. The model area contains several cells representing 

different objects such as buildings, vegetation, or atmosphere. The number of cells depends 

on the model area dimensions and its spatial resolution. Each cell is delineated by its 

physical properties; for instance, a building cell is classified by its material types, and the 

material type is classified by the specific heat capacity and other parameters.  In 

combination with databases of all the different objects, this structure allows a detailed 

reconstruction of an urban environment (Simon, 2016). In the atmosphere model the main 

processes on the urban climate are simulated: wind field, air temperature and humidity 

distribution, turbulence, gas and particle dispersion, radiation, exchange processes on 

ground and building surfaces. 

 

3.4.1.1 Wind flow equation 

 

For simplification of wind flow equations, Huttner (2012) used the Boussinesq-

approximation to eliminate the fluid density ρ from the Navier-Stokes equations, which 

can be written as: 

∂u

∂t
 + ui 

∂u 

∂𝑥𝑖 
 =     ̶ 

𝜕𝑝′

𝜕𝑥
 + Km (

𝜕2 𝑢

𝜕𝑥𝑖
2 ) + f (v-vg) - Su                              (3-1) 

∂v

∂t
 + ui 

∂v 

∂𝑥𝑖 
 =   ̶   

𝜕𝑝′

𝜕𝑦
 + Km (

𝜕2 𝑣

𝜕𝑥𝑖
2) + f (u-ug) – Sv                              (3-2) 

∂w

∂t
 + ui 

∂w 

∂𝑥𝑖 
 =   ̶   

𝜕𝑝′

𝜕𝑧
 + Km (

𝜕2 𝑤

𝜕𝑥𝑖
2 ) + g 

𝜃(𝑧)

 𝜃𝑟 𝑒 𝑓 (𝑧)
 – Sw                        (3-3) 
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Due to the low speed, air is considered as an incompressible fluid, therefore, the continuity 

equation reads as: 

∂u

∂x
+

∂v

∂y
 +

∂w

∂z
= 0                                                    (3-4) 

In the above equations, u, v and w are the wind mean velocities (m/s) in x,y, and z 

directions, p’ is 𝑝 / where 𝑝 is the mean local pressure, and Km is the local eddy viscosity. 

f is the Coriolis parameter that describes the rotation of the wind near the ground compared 

to the geostrophic wind components ug and vg . Su, Sv, and Sw are the local source or sink 

terms that model the wind drag forces from semi-permeable obstacles such as vegetation. 

In equation (3-3) 𝜃(𝑘) represents the potential temperature at height z, 𝜃𝑟 𝑒 𝑓 represents 

the average mesoscale conditions (Huttner, 2012). 

 

3.4.1.2 Temperature and humidity 

 

The distribution of the potential temperature θ is calculated from the advection-diffusion 

equation: 

∂θ

∂t
+ 𝑢𝑖

∂θ

∂𝑥𝑖
 = Kh (

∂2 θ

∂𝑥𝑖
2  ) + Qh                                        (3-5) 

where, Kh is the turbulent heat diffusivity for air and Qh is a source term. The distribution 

of relative humidity is governed by equation (3-6) 

∂q

∂t
+ 𝑢𝑖

∂q

∂𝑥𝑖
 = Kq (

∂2 q

∂𝑥𝑖
2  ) + Qq                                      (3-6) 
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Qh and Qq are source terms used to link heat and vapor exchange at the plant surface with 

the atmospheric mode (Bruse and Fleer, 1998). Qh is the term that defines the heat 

exchange between air and vegetation, Qq defines the exchange of humidity between air 

and vegetation, and Kq is the turbulent transfer coefficient for humidity. 

 

3.4.1.3 Turbulence and exchange processes 

 

As a result of shearing flow near building walls and vegetation, turbulence is produced. 

Under windy conditions, the magnitude of local turbulence production normally surpasses 

its dissipation so that the mean flow transports turbulent eddies. ENVI-met uses a 1.5 order 

turbulence closure model to simulate these processes. This model is based on the work of 

Mellor and  Yamada  (1975) and adds two additional equations for turbulent kinetic energy 

production (E) and its dissipation (𝜖):  

∂E

∂t
+ 𝑢𝑖

∂E

∂𝑥𝑖
 = KE (

∂2 E

∂𝑥𝑖
2  ) + Pr     ̶  Th  + QE     ̶   𝜖                                                    (3-7) 

∂𝜖

∂t
+ 𝑢𝑖

∂𝜖

∂𝑥𝑖
 = 𝐾𝜖  (

∂2 𝜖  

∂𝑥𝑖
2  )+ c1 

𝜖

𝐸
 Pr    ̶  c3 

𝜖

𝐸
 Th    ̶ c2 

𝜖2

𝐸
  +𝑄𝜖                                            (3-8) 

The terms Pr and Th represent the production and the dissipation of turbulent energy due 

to wind and thermal stratification. QE and Qϵ are the local source terms for turbulent kinetic 

energy  production and its dissipation. The constants c1, c2 and c3 are empirical constants 

obtained experimentally (Bruse and Fleer, 1998). 
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3.4.1.4 Radiative fluxes 

 

The absorption and emission coefficients of different atmospheric layers define the 

atmospheric radiation budget. These coefficients depend on the optical thickness of the 

atmosphere. Five reduction coefficients are defined to describe the radiation modification 

inside the model (Bruse and Fleer, 1998; Huttner, 2012): 

𝜎𝑠𝑤,𝑑𝑖𝑟(z) = exp(F.LAI*(z))                                                                                  (3-9) 

𝜎𝑠𝑤,𝑑𝑖𝑓(z) = exp(F.LAI(z , zp))                                                                (3-10) 

𝜎𝑙𝑤
↓  (z, zp) = exp(F.LAI(z , zp))                                                               (3-11) 

𝜎𝑙𝑤
↑  (z, zp) = exp(F.LAI(0 , z))                                                                (3-12)  

𝜎𝑠𝑣𝑓(z) = 1/360 ∑ 𝑐𝑜𝑠𝜆(𝜋)360
𝜋=0                                                                                     (3-13) 

LAI  is  the  one-dimensional  vertical  leaf  area  index  of the plant from level z to the 

top of the plant at zp or the ground z = 0: 

LAI( z, z + Δz) = ∫ 𝐿𝐴𝐷(𝑧′)𝑑𝑧′𝑧′+∆𝑧

𝑧′                                                               (3-15) 

In Equation (3-13) 𝜎𝑠𝑣𝑓 describes the local sky obstruction by buildings (sky view factor)  

which ranges from 1 (completely unobstructed sky) to 0 (no sky visible). 𝜆 is the maximum 

shielding angle found by the ray-tracing module in direction 𝜋 (Bruse and Fleer, 1998). 

The shortwave radiation can be calculated as: 

Qsw (z) = 𝜎𝑠𝑣𝑓,𝑑𝑖𝑟(𝑧)𝑄𝑠𝑤,𝑑𝑖𝑟
0  + 𝜎𝑠𝑤,𝑑𝑖𝑟(𝑧)𝜎𝑠𝑣𝑓(𝑧)𝑄𝑠𝑤,𝑑𝑖𝑓

0  + ( 1   ̶  𝜎𝑠𝑣𝑓(𝑧)) 𝑄𝑠𝑤,𝑑𝑖𝑟
0  .𝑎̅ 
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(3-16) 

where, 𝑄𝑠𝑤,𝑑𝑖𝑟
0  and 𝑄𝑠𝑤,𝑑𝑖𝑓

0  are the direct and diffuse shortwave radiation and 𝑎̅  represents 

the average wall albedo (Bruse and Fleer, 1998). 

The longwave radiation can be written as: 

𝑄𝑙𝑤
↓  (z) = 𝜎𝑙𝑤

↓
 (z, zp) 𝑄𝑙𝑤

↓,0 + ( 1  ̶    𝜎𝑙𝑤
↓

0, z)) 𝜖𝑓 𝜎𝐵  𝑇̅𝑓
4 + (1  ̶  𝜎𝑠𝑣𝑓(z)) 𝑄𝑙𝑤

↔                  (3-17) 

𝑄𝑙𝑤
↑  (z) = 𝜎𝑙𝑤

↑  (0, z) 𝜖𝑠 𝜎𝐵  𝑇0
4 + (1  ̶   𝜎𝑙𝑤

↑  (0, z)) 𝜖𝑓𝜎𝑓𝑇̅𝑓−
4                                           (3-18) 

where, 𝑇̅𝑓
4 and 𝑇̅𝑓−

4   are the average foliage temperature of the underlying and overlaying 

of vegetation. 𝜖𝑠 and 𝜖𝑓 describe the emissivity coefficients of the surface and foliage. T0  

is the surface temperature. 𝑄𝑙𝑤
↔  represents the horizontal longwave radiation flux from 

surrounding walls. 𝜎𝐵 is the Stefan-Boltzmann constant which is equal to 5.67 · 10−8 

Wm−2K−4 . 

 

3.4.2  Soil model 
 

The soil model calculates the temperature and humidity of the soil down to a depth of 

1.75m (Huttner, 2012). Each horizontal grid cell has a soil profile with 14 layers with 

different depths. The depth of the single layers increases from top to bottom; the top layers 

have a thickness of only 1 cm, the lowest layer has a thickness of 50 cm. In the soil model, 

only vertical fluxes of temperature and humidity are calculated (1D model) (Huttner, 

2012). The equations for calculating the soil temperature T and the volumetric water 

content η are given below: 
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∂T

∂t
 = ks 

∂2 T

∂z2                                                                                       (3-19) 

∂η

∂t
 = Dη 

∂2 η

∂z2  + 
∂𝐾η

∂z
 - Sη (z)                                      (3-20) 

The thermal diffusivity ks  (m
2/ sec) is a function of the soil moisture for natural soils. η is 

the volumetric water content of the soil (m3 m-3), Kη is the hydraulic conductivity, and Dη 

is the hydraulic diffusivity. Sη is the water absorbed by the plant root and is provided by 

the vegetation model and treated as an internal moisture sink ( Bruse and Fleer, 1988). 

 

3.4.3 Vegetation model 
 

Vegetation in ENVI-met is represented by clusters of cells having a leaf area density in the 

atmosphere model and root area density in the soil model, allowing the remodeling of the 

distribution and shape of roots and crowns of plants (Simon, 2016). The vegetation model 

is considered the effects of these cell clusters on the wind field and the radiation. 

Furthermore, the modeled plants use biological control mechanisms that regulate CO2 and 

water vapor exchange with the atmosphere. The direct heat flux Jf,h, the evaporation flux 

Jf,evap and the transpiration flux Jf,trans that define the interactions between vegetation and 

atmosphere are calculated from the following equations: 

J f,h = 1.1 ra-1  (Tf − Ta)                                                (3-21) 

Jf,evap = ra-1  ∆q δc fw +  ra-1  (1 − δc) ∆q                                              (3-22) 

Jf,trans = δc(ra + rs) −1 (1 − fw)∆q                                  (3-23) 
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where, Ta is the air temperature, Tf is the foliage temperature, q is the specific humidity of 

the air, and ∆q is the humidity difference. δc defines whether the evaporation is possible 

(δc =1) or not (δc =0). ra is a function of the leaf diameter and wind speed (Huttner , 2012). 

 

3.5. Simulation with ENVI-met: 

The simulation process in ENVI-met usually represents 24-48 hours. To ensure that the 

simulation follows the atmospheric processes, it is best to initialize the model at night or at 

sunrise. Typically, 1 hour spin up time is used for ENVI-met (Conry et al., 2015). The spin 

up time corresponds to the time taken for the model to reach a steady state to create output 

values. ENVI-met requires an input area which defines the 3D geometry of the target area: 

the buildings, vegetation, soils, and receptors. The main input information of ENVI-met 

simulation includes weather conditions, the geometry and materials properties of the urban 

area, and characteristics of vegetation.  

ENVI-met includes a grid-cell structure, with a maximum grid size of (250 x 250 x 30) 

cells. Horizontal resolution can range from 0.5 m to 10 m, which makes the model suitable 

for micro-scale to local scale analyses. There are two different types of vertical grid in 

ENVI-met (http://www.envi-met.com/):  

1. An equidistant grid, as depicted in Figure 3-3, splits the first cell closest to the 

surface into five equally spaced sub-sections with a height equivalent to 0.2∆z, 

where z is specified grid cell height. Above this, ∆z is constant for the rest of model 

height.  

http://www.envi-met.com/
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2. A telescoping grid for the vertical resolution. The grid size expands with height, 

according to a user-specified extension (or telescoping) factor. 

 

 

Figure 3-3. Schematic of equidistant vertical grid in ENVI-

met(http://www.envi-met.com/) 
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ENVI-met outputs are binary files (.EDI/.EDT). The results can be visualized by importing 

the outputs to the LEONARDO tool, a visualization tool in the ENVI-met software. Figure 

3-4 represents a flow diagram of the ENVI-met model and the model inputs and outputs 

structure. The outputs of ENVI-met are then used as inputs to a separate model BOTworld,  

to calculate the thermal heat stress indices. 

 

 

3.6. Reliability of ENVI-met Simulation Results 

ENVI-met is the most frequently used software for outdoor microclimate simulation. The 

reliability of ENVI-met software for simulating the thermal performance of outdoor spaces 

has been frequently demonstrated ( Lahme and Bruse, 2002; Johansson, 2005; Krüger et 

Figure 3-4. Flow diagram and basic data of ENVI-met (www.envi-met.com). 

 

http://www.envi-met.com/
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al., 2011; Chow and Brazel, 2012; Ghaffarianhoseini et al., 2015; Ali-Toudert, 2005; 

Srivanit and Hokao, 2013). These studies indicated an acceptable agreement between 

measured values (from field observations or collected data at local meteorological stations) 

and ENVI-met simulated data patterns. 

Lahme and Bruse (2002) compared the measured weather situation data of 25 stations in a 

park in Essen, Germany, with the results obtained from the ENVI-met model. The study 

pointed out that even for a non-calibrated model run, ENVI-met reproduces the observed 

data with sufficient accuracy. Furthermore, it proved that ENVI-met is a reliable tool to 

simulate the different urban scenarios (Lahme and Bruse, 2002). Yu and Hien (2006) 

assessed the cooling impacts of parks on their nearby built environment with the ENVI-

met model. The agreement between results of simulated air temperature with the field 

measurements endorsed the reliability of ENVI-met software. Aydin et al. 2020, evaluated 

the accuracy of ENVI-met and three other urban microclimate tools (RayMan, SOLWEIG, 

and STEVE). The assessment was based on comparing the simulated results and measured 

data for a 6-week period in Singapore. They concluded that the accuracy prediction results 

for ENVI-met are in the acceptable range of error, and the ENVI-met software is the most 

comprehensive software from capabilities point of view. Ozkeresteci et al. (2003), after an 

investigation on the impact of urban parks on microclimate conditions in Arizona, 

concluded that ENVI-met can be successfully used as an integrated part of the city's 

information system to serve for sustainable environments. 

However, ENVI-met has certain limitations and uncertainty in results. Crank et al. (2018) 

and Krayenhoff et al. (2021) note that microscale models do not account for local-scale 

advection or boundary- layer scale vertical mixing, and ENVI-met may have additional 
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limitations in terms of accuracy in simulating vertical mixing in the urban canopy layer. 

Also, Ali-Toudert and Mayer (2006) pointed out excessive nighttime temperature 

predictions of ENVI-met due to the absence of regional exchange processes. Krayenhoff 

et al. (2021) recently reviewed the urban heat mitigation modeling literature and their 

cooling effectiveness. This review shows that the cooling effectiveness values achieved 

with ENVI-met simulation for increasing the roof albedo, are lower than the lowest median 

cooling effectiveness of any mesoscale study. Tsoka et al. (2018), in a review article, 

assessed the ENVI-met model performance and accuracy of microclimate variables. 

Evaluation of the mean radiant temperature results of 15 studies showed that the model 

tends to overestimate daytime mean radiant temperature; however, the review concluded 

that the model can accurately simulate the daytime peak mean radiant temperature values. 

Despite the software shortcoming, ENVI-met remains the most comprehensive tool that 

combines many factors involved in outdoor comfort. With proper input of the initial data 

and understanding the limitations, the software does represent the pattern of temperature 

indices in a complex urban environment (Rosheidat, 2014). 
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4. Chapter 4: Microclimate Simulation of the Urban Heat 

Mitigation Scenarios 

 

4.1. Introduction: 

The main objective of this study is to assess appropriate possible configurations to the 

existing urban setting and to evaluate the spatial thermal perception that pedestrian 

experiences in the outdoor spaces in downtown London, Ontario. First, the existing urban 

conditions of the site were evaluated and simulated with ENVI-met software. After that, 

the different heat mitigation strategies were designed and tested to find the most effective 

strategy. In order to evaluate the impacts of heat mitigation scenarios on other seasons, the 

heat mitigation strategies were applied for four-time scopes; current summer conditions, 

current winter conditions, future summer conditions and, future winter conditions. The 

evaluation of scenarios was carried out through simulation by ENVI-met. The list of 

scenarios that were tested with the software and compared with the current condition of the 

site include: 

• “Base” scenario: The initial case study of downtown London. Figure 4-6 represents 

the 3D configuration simulated by ENVI-met. 

• “Green” Scenarios: Vegetation coverage was increased on the site. Specifically, on 

the two parking lots, without any shading facility and capable of creating 

uncomfortable thermal conditions for pedestrians, an area similar to a park with 

trees and grass was designed. 
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• “Cool road” scenario: Asphalt roads are replaced with concrete pavement with 

higher surface albedo and lower heat capacity. The surface albedo in the cool 

pavement model is 0.5, which is 0.3 points higher than that of asphalt road. 

4.2. Study Location 

London is a city in southwestern Ontario, Canada, along the Quebec City–Windsor 

Corridor. London is located at 42.98° N, -81.24° E summers are warm and partly cloudy, 

and winters are freezing, dry, windy, and mostly cloudy. Over the course of the year, the 

temperature typically varies from -9 °C to 26 °C and is rarely below -18 °C or above 31 

°C. Annual average relative humidity for afternoon is 64% and for morning is 85% 

(Environment Canada, 2020).  

 

 

Figure 4-1 presents the London normalized temperature and precipitation graph for 1981 

to 2010 for Canadian climate. (Environment & Climate Change Canada, 2021).  

Figure 4-1. Temperature and Precipitation Graph for 1981 to 2010 Canadian Climate 

Normals at London International airport station (Environment & Climate Change Canada, 

2021) 
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Figure 4-2. Location of London Ontario and inset 

Google Earth satellite image of the city.   
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Figure 4-3. Map of study area with inset satellite visible image (Google Earth) 

Figure 4-4. Oblique image of study area (Google Earth) 
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The present study area is located in a downtown neighbourhood of London, a high-density 

neighbourhood. High-rise residential communities are composed of densely built tall 

buildings and homing a large number of people; they have significant impacts on an urban 

climate and human health. A 500m×500m area constitutes the model domain (Figure 4-

7a), which is characterized by densely placed high-rise buildings, parking lots. The local 

climate zone (LCZ) is a system for urban surface classification developed by Stewart and 

Oke (2012). According to this classification, the four climatically relevant controls on 

urban climates (fabric, land cover, structure, and metabolism) tend to cluster together in a 

city (Oke et al., 2017) (Figure4-5). Using this classification system, the study area is 

classified as a compact high-rise area with a dense mix of tall buildings, a mean height of 

greater than 25m, few trees, and most of the land cover is paved. Construction materials 

mainly include concrete, glass, brick, and tile (Stewart and Oke, 2012). The main streets 

are Dundas and Talbot street which respectively have a NE-SE and SE-NW directions. 

Secondary streets connected to the main streets are oriented similar to the main streets. The 

study area is dominated by impervious surfaces, with buildings covering 36.6%, pavements 

43.4%, and roads 15% of the surface. Vegetation covers less than 5% of the area, where 

2.7% and 2.3% are grass and trees, respectively. 
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Figure 4-5. Classification of Local Climate Zones (LCZ) according to their perceived ability to 

modify local climate (Stewart and Oke, 2012; Oke et al., 2017; Stewart et al., 2014) 
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4.3. Modeling with ENVI-Met 

ENVI-met model inputs include a vegetation database, physical soil structure, and profile 

information. A 3D area input file (*.in) representing the modeled arrangement of built 

structures, surface characteristics, and vegetation. A configuration file (*.cf) contains 

meteorological data to initialize the model parameters for the simulation date. The model 

required data include air and soil temperature, soil moisture, wind speed and direction, and 

relative humidity. In addition, ENVI-met calculates incoming solar radiation based on 

latitude/longitude, date, time, and cloud cover (Middel et al., 2014). 

The model's user-selectable high spatial (0.5-10 m) and temporal (1-10 s) resolution make 

it useful for evaluating canopy-layer temperature and thermal comfort. The resolution can 

vary substantially over short distances and periods of time (Roth and Lim, 2017). The 

building layouts in the area input file (Figure 4-6) are based on a realistic design, and the 

GoogleEarth™ satellite image was used as a reference map while designing the study area. 

Figure 4-6. Perspective view of current condition of site 
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The grid cell size for the model environment was defined as 4m×4m×3m (W x L x H) with 

a total of 125×125×45 cells, covering a horizontal area of 500m×500m extending 125m 

above the surface. The model is run for 24 hours starting at 3 am. The "Base" scenario was 

a) b) 

Figure 4-7. ENVI-Met 2D model screenshot a) “Base” scenario (current condition 

of the site), b) “Green1” scenario c) “Green2” scenario  

c) 
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modeled without any mitigation solutions applied. The natural ground was represented 

with loamy soil, and the street cover was represented with the asphalt road. Exact location 

of  local vegetation, including trees and grass was modeled according to the "Trees" map 

from the City of London map database (City of London, 2020). 

After modeling the current condition of the site, three additional mitigation scenarios were 

simulated. The impacts of scenarios were assessed for different time scopes to first, 

evaluate the most impactful mitigation solution on the site, and assess the impact of these 

solutions on other seasons and time scopes.  

Three different building and vegetation layouts were designed according to three scenarios 

(Figure 4-7). Figure 4-7a illustrates the designed layout for the Base scenario. Figure 4-7b 

is the designed layout for the Green1 scenario with a 10% increase in vegetation fraction 

and mostly grass and low-height vegetation. Finally, Figure 4-7c presents the designed 

layout for the Green2 scenario with a 10% increase in greenery and mostly taller trees and 

vegetation. 

Base scenario Representing the current condition of the site. Table 4-1 presents the plan 

area cover types for Base scenario. The values determined according to the site's current 

condition and for the horizontal area in the plan. 

Table 4-1. Plan area cover type details for the “Base” scenario 

Coverage (%) Building Pavements Roads Vegetation 

Trees        Grass 

Base Scenario 36.6 43.4 15 2.7           2.3    
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Green scenarios include increasing the vegetation (trees and grass) coverage on the site. In 

order to compare the different combinations of trees and grass, two proposed models for 

the site are simulated. Table 4-2 shows the plan area vegetation coverage in the "Green" 

Scenarios and “Base” scenario. The detailed parameters of vegetation types designed with 

Albero tools of ENVI-met and added to the Green scenarios models are presented in Table 

4-3. 

 

Table 4-2. Plan area vegetation coverage in the "Green" Scenarios and “Base” scenario 

Coverage (%) Trees Grass Total 

Green1 6.1 8.9 15 

Green2 10.7 5.3 16 

Base 2.7 2.3 5 

 

Table 4-3.Detailed parameters for vegetation in "Green" Scenarios (Albero tools of ENVI-met) 

 Heigh(m) Width(m) Leaf Area 

Density 

(m2/m3) 

Root 

Depth(m) 

Grass 0.63 0.05 0.3 0.5 

Dense Hedge 2 1 2.5 1 

Tree 1 5 3 0.7 3 

Tree 2 15 11 0.95 5 
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Cool scenario: the solar reflectance of road materials was increased. In the “Cool” scenario 

asphalt roads are replaced with concrete pavement; The concrete pavement albedo is 0.5, 

which is 0.3 points higher than asphalt pavement albedo. Table 4-4 presents the pavement 

characteristics for the "Cool" and "Base" Scenarios. 

 

Table 4-4.Pavement characteristics for "Cool" Scenario and "Base" Scenario 

 Surface albedo Thickness(m) 

Base model 0.2 0.3 

Cool model 0.5 0.3 

 

 

4.3.1 Forcing file: 

The weather data used to initiate the simulation models were provided by Environment and 

Climate Change Canada, from historical data recorded at London International Airport 

station. A full forcing file is created with the ENVI-met forcing manager. Further required 

inputs to prepare a forcing file are direct and diffuse shortwave radiation and longwave 

radiation. Direct and diffuse radiation for 24 June 2016 forcing file is achieved from the 

measured global radiation data of green roof lab on top of Talbot College, Western 

University. Diffuse and direct radiation for the other simulation days is calculated with the 

Bird and Hulstrom model that calculates the direct and diffuse radiation on a clear sky 

(Bird and Hulstrom, 1981). The longwave radiation that is used for the forcing files is 
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calculated with the Prata model, a formula for estimating the longwave radiation from clear 

sky (Prata, 1996). 

In selecting the simulation days for summer conditions, two parameters were considered: 

Days were selected with clear sky condition only; ENVI-met cannot account for dynamic 

changes in cloud cover and rainfall. Furthermore, the impact of altered surface conditions 

is maximized under clear sky conditions. And days were chosen among the 10% of the 

days with the highest average temperature in the season. 

A similar procedure was applied for selecting the future summer forcing file. Future 

weather data for simulation were prepared from the climatedata.ca datasets, a collaboration 

between Environment and Climate Change Canada (ECCC), the Computer Research 

Institute of Montréal (CRIM), Ouranos, the Pacific Climate Impacts Consortium (PCIC), 

the Prairie Climate Centre (PCC), and HabitatSeven. In this dataset, the daily minimum 

and maximum temperatures are obtained from the ensemble of global climate models for 

three RCPs (2.6, 4.5, and 8.5). The values for each climate model were re-gridded to a 

common 1° x 1° grid. Available projection weather data based on the RCP8.5 scenario for 

a grid point closest to London was employed to collect the future forcing file. Maximum 

and minimum temperatures for future forcing files selected and averaged among a window 

of three years 2048, 2049, ad 2050. Two other forcing files for current and future winter 

conditions were created to assess the impact of mitigation scenarios on the local 

microclimate in different seasons. Overall, 13 simulations were carried out with ENVI-met 

to evaluate the microclimate condition of the base scenario and mitigation scenarios during 

the simulation days. 
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Table 4-5. List of simulation dates and summary of forcing files data 

Date Max T (̊C) Min T (̊C) Max Wind 

speed(m/s) 

Min wind 

speed(m/s) 

Relative 

humidity 

(%) 

24/06/2016 27.7 12.4 3.44 0 50 

08/06/2049 31.12 24.8 3.36 0 62 

03/03/2018 3.4 -4.7 5.25 2.7 70 

05/02/2049 10 3 4.02 2 65 

 

 

4.4. Results: 

The following sections describe the most significant calculated parameters for the base 

scenario and heat mitigation scenarios. Furthermore, the cooling effectiveness of heat 

mitigation scenarios is presented in the last section. The simulation results were extracted 

at pedestrian height, 1m and 1.5m above ground. The outputs were analyzed in terms of air 

temperature (° C), relative humidity (%), wind speed (m/s), and mean radiant temperature 

(°C). Regarding temporal variation of microclimatic conditions, plots were created based 

on the average values of all grid cells inside the domains except the building. The hourly 

average air temperatures during the simulation period were prepared for the entire domain 

and two sub-domains. Sub-domains locations and characteristics are presented in Figure 4-
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8 and Table 4-6. Furthermore, the values that correspond to the grid cells of the edge of the 

study area, which show very low values, were not considered for the calculation. Discarded 

values are those from the first five rows of grid cells of all edges, equal to the first 20m of 

each side of the site.  

 

Table 4-6.Characteristics of sub-domains selected for hourly average air temperature profile. 

Location Characteristics 

Carling Street Low-rise and dense urban area, a parking lot is located on the north 

side of the street.  

Dundas Street Medium-rise and dense urban area, densely frequented 
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4.4.1. Microclimate Simulations of the Reference Scenario: 

This section presents the results of 24h microclimate simulations of the base scenario, 

without application of any mitigation strategy, for current years summer and winter, and 

2050, future.  

Figure 4-8. Location of selected sub-domains for hourly average air temperature profile-Map from 

the London City Map gallery (City of London.ca) 
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Figure 4-9 is visualized with Leonardo tools of ENVI-met software. Figures 4-9,10, and 

11 represent the air temperature distribution map of the “base” scenario at 1.5m above 

ground and on 24 June 2016. The maps are provided for 2h, 14h, and 17h warmest hour of 

the day. Air temperature distribution at 17h (Figure 4-11) shows that the hottest zones 

correspond to less dense areas without vegetation. The maximum temperature is 31.33 °C, 

while the minimum temperature is 27.6 °C at this time and is reported in densely vegetated 

areas. The warm air plumes generated by the east-west streets are influenced by the easterly 

wind direction at this time. According to the air temperature distribution of other simulated 

dates (Figure 4-14,15,16,17) it appears that these plumes of warm air exist in those 

locations during the day and is originated from the geometry of the area. The area 

corresponding to these plums are parking lots, large flat areas without any obstacle to block 

the wind or create shading in these sections. Furthermore, the shaded areas with buildings 

and close to vegetation have a lower temperature at this time. 

Figure 4-12 shows the distribution of other microclimate parameters; wind speed and 

direction, relative humidity, and mean radiant temperature at 17h (when the air temperature 

is highest during the day). At 17h, relative humidity ranges between 36 % to 54%. 

According to the relative humidity distribution map, warmer areas have lower relative 

humidity, while the colder areas and near vegetation have higher relative humidity values.  

The mean radiant temperature ranges between 52°C to 58°C. Areas of vegetation and with 

greater shading provide zones of lower mean radiant temperature and more thermal 

comfort climates.  While areas that solar radiation directly reaches the ground have higher 

mean radian temperature. The northwest of the site corresponding to Victoria Park and 

Carling Street with trees in two rows, have the lowest mean radiant temperature and have 
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more comfortable thermal climates. At the same time, the wind speed differs from 0 m/s to 

2.3 m/s. Urban geometry has a great influence on wind distribution; near obstacles and in 

narrow areas, the wind velocity is low, whereas open spaces have greater wind velocity 

(Ambrosini et al., 2014). Figure 4-12 shows the wind speed values calculated at 17h and 

illustrates the wind direction at this time. Flat areas, parking spaces without barriers to 

block wind speed have the highest wind speed value of 2.1m/s. 

 

 

 

Figure 4-9. Summer air temperature map and distribution - 24 June 2016- 2h 
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Figure 4-11. Summer air temperature map and distribution - 24 June 2016- 14h 

Figure 4-10. Summer air temperature map and distribution - 24 June 2016- 17h 
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Figure 4-12. Spatial distribution of mean radiant temperature, wind speed , wind direction and 

relative humidity at 17h-Base Scenario- 24 June 2016 
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To better understand the temporal variation of simulated temperature by the software, the 

outdoor average air temperature at different areas of the site was calculated (Figure 4-13). 

The outdoor average air temperature ranges between 11.5°C and 30.1 °C. The average air 

temperature at Dundas street is higher than Carling street and the entire domain. This 

difference varies from 0.1°C to 0.5°C at 17h, the warmest hour of the day. This is likely 

driven by the difference in greenery coverage percentage of both domains; the Carling 

Street domain is inherently vegetated with trees in two rows. 
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Figure 4-13. Air temperature variation plots, for entire site, Carling Street and Dundas Street- at 1 m 

above ground-Base scenario on 24 June 2016 
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Figure 4-15. Winter air temperature map at 1.5m above ground- 3 March 2018- 2h 

Figure 4-14. Winter air temperature map at 1.5m above ground- 3 March 2018- 

14h 
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Figure 4-16. Future summer air temperature map and distribution at 2h and 14h- 8 June 2050 

Figure 4-17. Future winter air temperature map and distribution at at 2h and 14h- 6 February 2049 



 
 

68 
 

 

 

Figures 4-14 and 4-15 show the spatial distribution of air temperature at 2h and 14h in 

winter condition on 3 March 2018.  

Figures 4-16, 4-17 represent the spatial distribution of air temperature at 2h and 14h in 

future weather conditions, summer, and winter. For the future summer condition, the 

maximum air temperature is detected at 33.5°C and a minimum of 30°C during the site at 

14h in Figure 4-16. The maximum air temperature at 14h for the future winter condition is 

10 °C, and the minimum is 8.4 °C at the same time.  Zones with vegetation coverages have 

higher air temperatures in winter, providing a more comfortable thermal condition for the 

pedestrian.  

In conclusion, microclimate simulations for the future and current summer conditions 

indicate that the zones with higher air temperature during the day correspond to the area 

with low vegetation coverage, low building plan area (low shading), and areas paved with 

asphalt. For instance, the high air temperature values at the southwest part of the site are 

related to the parking space characterized by paved areas and without shading facilities. 

Furthermore, Microclimate simulations for winter conditions reveal that the higher mean 

radiant temperature that improves thermal comfort corresponds to the area near the 

vegetation. The simulation results of "Base" scenario guide the choice of how to construct 

the mitigation scenarios. Mitigation scenarios are concentrated in areas with high potential 

outdoor thermal discomfort and consist of, adding vegetation coverage, increasing shading, 

and increasing the albedo of pavement for these areas. 
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4.4.2. Microclimate simulation of mitigation scenarios  

The following section presents the results of 24 hours microclimate simulations of the 

different mitigation scenarios in summer and winter conditions. There are several heat 

mitigation strategies; increasing tree and vegetative coverage, installing green roofs, using 

cool pavements (high albedo material) and, installing cool roofs. In this study, according 

to the geometry of the site and a high percentage of pavement coverage, two heat mitigation 

strategies, increasing the green coverage of the study area and applying high albedo 

material, are evaluated. We first describe the impact of increasing vegetation on the outdoor 

air temperature and then present the result of increasing the albedo of road material in the 

site under study. 

 

4.4.2.1. Green scenario (increasing vegetation): 

This section presents and evaluates the impact of adding trees and increasing vegetation 

coverage on the average air temperature. Two different green scenarios were simulated. As 

mentioned in Table 4-2, in both green scenarios, the vegetation increased 10%; the 

“Green1” model focused on increasing grass and green areas, while the “Green2” model 

was concentrated on increasing trees in the study area. 

 The reduction impact is assessed for three domains, the entire site, Carling Street and 

Dundas Street. The intention of assessing the mitigation impact on the Carling and Dundas 

Street domain is that there is a parking lot on one side of each street. According to the 

results of the previous section, under the current conditions of the site, the highest outdoor 
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air temperature corresponds to parking spaces and paved areas without vegetation. These 

parking spaces are partially replaced with a designed park, grass, trees, and soil by applying 

the green scenario. The results of Dundas street domain show the impact of increasing 

vegetation on the medium-rise neighborhood. Moreover, Carling street domain results 

show the microclimate impact of trees on the average air temperature in a dense low-rise 

neighborhood. Figures 4-18, 4-19, 4-20 show the variation of hourly average air 

temperature on a summer day by increasing the vegetation coverage for the entire site, 

Carling Street and Dundas Street. The maximum reduction is observed for the entire site 

at 17h with a value of 0.36°C for the "Green1" model and 0.56°C at 16h for the "Green2" 

model. 
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Figure 4-18. Average air temperature for the entire domain at 1 m above ground, Base scenario,” 

Green1” and “Green2” scenarios- 24 June 2016 
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Figure 4-19. Average air temperature for the Dundas Street domain at 1 m above ground, Base 

scenario,” Green1” and “Green2” scenarios- 24 June 2016 

 

Figure 4-20. Average air temperature for the Carling Street domain at 1 m above ground, Base 

scenario,” Green1” and “Green2” scenarios- 24 June 2016 
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Carling Street's maximum air temperature reduction at 17h is 0.47°c and 0.51°c, 

respectively, for the "Green1" and "Green2" models. For Dundas Street, the reduction for 

"Green1" and "Green2" is 0.15°C and 0.27°C at 16h. The difference in air temperature 

reduction between Carling Street and Dundas Street is due to the fact that Carling Street is 

inherently vegetated with two rows of trees. Moreover, the area is more compact in 

comparison to Dundas Street and therefor provides more shading.  

In overall, the observed reduction that with the "Green2" model is higher than the reduction 

achieved with the "Green1" scenario in the daytime. While the vegetation fraction in the 

two models is similar, "Green2", with more trees, provides larger shaded zones. Figure 4-

21 presents the averaged air temperature reduction in the two "Green" scenarios. 
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Figure 4-21. The average hourly air temperature reduction (°C) of two green scenarios for Entire 

site– 24 June 2016 
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By applying the green scenario similar reduction trends in air temperature are detected for 

future summer, 8 June 2050. 

 

Figure 4-22. Hourly average air temperature of “Base” and “Green1” scenario for winter 

conditions- 8 March 2018- Carling Street domain and Dundas Street domain- 1 m above ground 

 

Figure 4-22 shows the average air temperature results of the "Green1" scenario simulation 

for winter conditions. In winter, a globally lower effect is detected in terms of air 

temperature variation. The "Green1" scenario shows the air temperature ranges for Carling 

Street and Dundas Street are respectively -3.70 ͦ C to 4.66 ͦ C and -2.35 ͦ C to 4.88 ͦ C.  

The average air temperature plots for Carling and Dundas Street domains show a negligible 

reduction during the simulation day. There is a maximum 0.05 ͦ C reduction detected for 

Carling Street, while Dundas Street values remain without any reduction. 
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4.4.2.2. Cool Road scenario: 

The mitigation effect of the "Cool road" scenario is reported in this section. In the "Cool 

road" scenario, the albedo of road material was increased. Therefore, more shortwave 

radiation was reflected, and less heat could be stored in the ground surface of the cool 

pavement model (Wang et al., 2016). Figure 4-23 shows the spatial distribution of air 

temperature at 17h and 1 m above ground level for summer conditions. The air temperature 

curves at the left side of the plot correspond to all the  

points from a transect along Talbot Street (x = 238 for y = 0 - 500). The maximum air 

temperature reduction detected is 1.57°C at 17h. 

 

 

Figure 4-23. Air temperature distribution, at 17h 24 June 2016, 1 m above ground 

White line = transect along Talbot Street 
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Figure 4-24 presents the comparison of hourly average air temperature of "Base" and "Cool 

road" scenarios for summer conditions. It can be seen that the application of cool materials 

with the higher albedo values generates a cooling effect during the day over the entire site. 

Increasing the albedo of road material by 0.3 points contributed to air temperature 

reduction of 0.66°C at 17h, the warmest hour of the day. During the night time "Cool road" 

scenario contributes to a negligible reduction of air temperature, as it could be expected. 
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Figure 4-24. Hourly average air temperature of “Base” and “Cool road” scenario for summer 

condition- 24 June 2016- 1 m above ground 
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Figure 4-25. Hourly reflected shortwave radiation of “Base” and “Cool road” scenario for summer 

condition- 24 June 2016- 1 m above ground 

 

The achieved temperature cooling potential in “Cool road” scenario is attributed to the 

significantly higher amounts of reflected solar radiation and the consequent lower 

absorption by high albedo material (tsoka et al., 2018). Increasing the road albedo material 

resulted an increase in the reflected shortwave radiation by 45% (133 w m-2), compared to 

the "Base" scenario (Figure 4-25). 

4.4.3. Thermal comfort evaluation of mitigation scenarios: 

After the analysis of the local microclimate in the "Base" model and mitigation scenarios 

"Green1", “Green2” and "Cool road," a thermal comfort analysis was carried out to 

investigate the outdoor environmental quality for pedestrians. The predicted mean vote 

(PMV) and mean radiant temperature (MRT) indexes were calculated for all the assessed 
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a large group of people exposed to the same thermal environment (Salata et al., 2016). 

Figure 4-27 shows the spatial distribution of PMV values at 17h for the four models. 

According to the PMV maps, the thermal condition of the site at 17h is classified as "Hot". 

Increasing the albedo of pavement materials causes a slight reduction in PMV values for 

road areas. Furthermore, the Green2 scenario, that creates more shading, was able to reduce 

PMV values for larger areas compared to the Green1 scenario. Figure 2-2 summarizes 

PMV values for different levels of thermal sensation and physiological stress in standard 

conditions. The following assumption was considered for calculation of PMV with ENVI-

met; 35 years old man, 1.75m tall, weighing 75 kg, total metabolism of 164.49 W, and with 

a clothing resistance of 0.5 clo (thermal insulation of clothing). 
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Figure 4-26. Hourly predicted mean vote values for the "Base", "Green1", “Green2” and, 

"Cool road" scenarios - 24 June2016 at 1.5 m above ground 
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According to the hourly PMV plots (Figure 4-26), the minimum PMV for all models 

occurred at 6h and the maximum PMV for all scenarios is detected at 17h. PMV values for 

all the mitigation scenarios are lower than the "Base" scenario. Green1 and Green2 had 

close PMV values, however, Green2 shows a higher reduction in PMV values.   

 

Figure 4-27. PMV distribution maps of "Base", "Green1", “Green2” and, "Cool road" 

scenarios on 24 June 2016, 1.5 m above ground at 17h 



 
 

80 
 

 

 

 

Green2 scenario has the maximum mean radiant temperature reduction. This scenario was 

based on increasing the number of trees in the study area; the trees elevated the canopy 

layer and providing shade during the hottest part of the day. Consequently, by reducing the 

solar radiation access, the pedestrian thermal comfort would improve, and the mean radiant 

temperature reduces. 
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Figure 4-28. Hourly mean radiant temperature values for the "Base", "Green1", “Green2” and, 

"Cool road" scenarios - 24 June2016 at 1.5 m above ground 
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The MRT values related to the "Cool road" scenario are higher than the base case (Figure 

4-28). The results of the outdoor thermal comfort show that the higher albedo of road 

material increases the mean radiant temperature. This increase of MRT may enhance heat 

stress despite the air temperature reduction (Taleghani et al., 2016; Karakounos et al., 

2018).  

 

4.4.4. Cooling effectiveness of heat mitigation strategies: 

This section describes the cooling effectiveness of heat mitigation strategies assessed in 

this study.  Krayenhoff et al. 2021, in an article on heat reduction strategies in cities, 

reviewed 146 studies that applied numerical modeling to assess air temperature reduction. 

For comparison purposes among studies, they introduced two metrics; the albedo cooling 

effectiveness (ACE) and the vegetation cooling effectiveness (VCE) (Krayenhoff et al., 

2021).  

The authors defined cooling effectiveness (CE) as: 

CE = ̵ 
𝛥 𝑇

𝛥𝑎
                                      (4-1) 

In the cooling effectiveness (CE) equation, T is air temperature, and a is a plan area-

averaged non-dimensional variable that quantifies the principal change associated with the 

heat mitigation implementation. Following this definition, albedo cooling effectiveness 

(ACE) is defined as 

ACE= -  
𝛥 𝑇

𝛥𝛼𝑠.𝜆𝑠
                                                  (4-2) 
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where Δαs represents the change in albedo of the modified surface, and λs is the modified 

surface area divided by the overall horizontal plan area. Albedo cooling effectiveness 

shows the cooling achieved from a neighborhood albedo increase, and it assumes 

temperature responses to albedo changes are linear (Krayenhoff et al., 2021).  The 

vegetative cooling effectiveness is defined as 

VCE= - 
𝛥 𝑇

𝜆𝑠 
                                          (4-3) 

where λs is the added surface area of vegetation divided by the associated plan area. 

The cooling effectiveness (CE) metrics for heat mitigation scenarios are calculated under 

summer conditions. Figure 4-29 represents the calculated ACE and VCE for the simulated 

scenarios; ACE values represent the cooling achieved from a 0.3 increase in road material 

albedo ("Cool road" scenario) and VCE values represent the cooling obtained by a 10% 

increase in the vegetated area of the entire domain (green scenario).  

Cooling effectiveness values were calculated for 12 hours, from 9h to 20h. ACE values 

range between 0.16°C to 5.03°C, with mean value of 2.73°C. The maximum value is 

obtained at 17h and corresponds to maximum air temperature reduction. VCE values for 

the "Green1" scenario vary from 0°C to 3.6°C, with a mean of 1.58°C. Likewise, the 

cooling effectiveness of "Green2" ranges from 0°C to 5.6°C with a mean of 3°C.  
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Figure 4-29. Albedo Cooling Effectiveness (ACE) of "Cool road' scenario and Vegetation 

Cooling Effectiveness (VCE) of green scenarios, on 24 June 2016, from 9h to 20h 
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4.5. Discussion and Conclusion 

Previous studies had indicated the impact of increasing green area and high albedo 

materials on outdoor thermal climate. However, the impacts of these heat mitigation 

strategies generally have been assessed in cities with hot and dry climates; few studies 

investigated the impacts of these strategies on cold climates.  This study evaluated the 

outdoor thermal climate of a domain in downtown London, Ontario. The impact of 

increasing vegetation on the site and increasing the albedo of road material on microclimate 

conditions of the site, for present summer and winter and future summer and winter was 

assessed.  

ENVI-met v4.4.5 software was used for simulating the study area. The software has many 

abilities and advantages, namely, it allows to simulate the ground plane and building 

materials thermal properties, the ability to simulate vegetations, trees/ plants with 

specification of all plants physical parameters (evaporation, transpiration). However, 

despite these advantages, the software has limitations. The accuracy of ENVI-met outputs 

highly relies on the input parameters. The anthropogenic heat, the heat related to 

transportation and building heating/cooling, is not taken into consideration in ENVI-met 

(Ohashi et al., 2007; Tsoka et al., 2018).  

The analysis of the results of this study has indicated that increasing trees and grassland in 

a neighborhood in downtown London can reduce the average air temperature. The average 

air temperature was reduced by 0.36 °C with the "Green1" scenario and 0.56 °C with the 

"Green2" scenario, at the warmest hour of the day in summer conditions. These results 

correlate to those found in other studies (Middel et al.,2015; Wang et al., 2016; Ziaul and 

Pal, 2020; Lee et al., 2016; Morakinyo et al., 2018; Morakinyo et al., 2020). For instance, 



 
 

85 
 

in Phoenix, Arizona, increasing the tree coverage from 10% to 25% resulted in a 2°C air 

temperature reduction at the local scale in summer (Middel et al., 2015), while in Toronto, 

the air temperature was found to be reduced by 0.6 °C at 16h after adding 10% of urban 

vegetation coverage in a middle-rise area (Wang et al., 2016). The air temperature 

reductions obtained from these studies are slightly larger in comparison to the "Green1" 

scenario, and this might be due to the existence of two parking spaces and lower building 

density in the present study. The reason is that in parking spaces the geometry is more 

open; given the high amount of impervious surfaces, the solar radiation heating these 

surfaces, and air temperature is becoming higher, especially by day. In a neighbourhood 

where buildings are taller, there would be more ground-level shade that could reduce the 

warming, through the first part of the day. "Green2" scenario with more trees compensates 

the lack of shaded zones in the study area and led to a more comfortable thermal condition. 

Similar results were detected for the green scenario on future summer conditions. However, 

the air temperature difference between the "Base" and green scenarios in winter was 

insignificant.  

The results of increasing the albedo of road material, the "Cool road" scenario, indicated 

an average air temperature reduction up to 0.66 °C at 17h and 1 m above ground. A transect 

along Talbot Street in the study domain indicated a decrease of air temperature of up to 

1.57°C at 17h and 1m above the ground (Figure 4-23). Similar air temperature reductions 

were found for the "Cool road" scenario for future summer conditions. The effect of 

increasing the albedo of road material is not significant at night in comparison to daytime. 

Taleghani et al. (2016) have simulated the impact of increasing the albedo of road materials 

by 0.3 in Los Angeles with ENVI-met software. Their results showed up to 2°C air 
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temperature reduction under hot summer conditions (Taleghani et al., 2016). Wang et al. 

assessed the impact of replacing road materials with higher albedo material by 0.2 and 21% 

lower heat capacity on the different neighborhoods in Toronto. Results indicated 7.9 °C 

reduction in surface ground temperature and up to 0.4 °C air temperature reduction at noon 

for summer conditions (Wang et al., 2016). Results of the present study are similar to the 

latter assessment, and it might be because of the similar climate conditions of Toronto and 

London city. 

Further results indicated the impact of the mitigation scenarios on pedestrian thermal 

comfort. Results of the "Cool road" scenario were shown to increase the mean radiant 

temperature during the daytime by up to 6°C at a height of 1 m above ground. This increase 

corresponds to the impact of high albedo material on the radiative balance of the ground 

surface and, consequently, the radiative exchange of the pedestrian with the surrounding 

environment will change (Tsoka et al., 2020). These results are comparable to those found 

in other studies (Taleghani and Berardi, 2018; Wang et al., 2016). For example, the results 

of Taleghani and Berardi study on increasing the pavement albedo by 0.3 in downtown 

Toronto resulted in a 10.53°C increase in mean radiant temperature at 1m height. 

Furthermore, in the present study, increasing the vegetation and grasslands ("Green1" 

scenario) reduced the mean radiant temperature at daytime by 0.52°C at 17h. The obtained 

mean radiant temperature reduction from the "Green1" is lower than the similar studies on 

the impact of urban vegetation on thermal comfort (Wang et al., 2016; Morakinyo et al., 

2018). This lower reduction in mean radiant temperature compared to the mentioned 

studies corresponds to the lower building density and the fact that grasslands and low 

height vegetations provide low shading in the present study. The influence of increasing 
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vegetation on the mean radiant temperature varies between shaded areas and open areas 

(Yang and Lin, 2016). The highest mean radiant temperature reduction is achieved with 

the "Green2" scenario, because trees with shading reduce the solar irradiance in the 

daytime. 

In a systematic review of previous works, Krayenhoff et al. (2021) defined new metrics to 

assess the cooling effectiveness of different heat mitigation scenarios. These metrics are 

practical tools for city planners and policymakers. We applied these metrics to evaluate the 

cooling effectiveness of the simulated heat mitigation scenarios in the present study. For 

the present study, by increasing the albedo from 0.2 to 0.5, the ACE values in simulation 

date range between a minimum of 0.94°C to a maximum of 5°C over the period of 9h to 

20h. The median ACE value is 3.02°C, generating 0.90°C cooling per 0.3 neighborhood-

scale albedo increase. The VCE for the Green1 scenario shows that by increasing 10% 

vegetation coverage and mostly ground-level vegetation, the mean cooling on the 

simulation date (summer) varies from 0°C to 3°C and with a median of 1.75°C with 10% 

increase in ground-level vegetation. At the same time, the median VCE value of the Green2 

scenario on the simulation date is 3.45°C with 10% increase in tree canopy cover. These 

results are compatible with the calculated ACE and VCE value of other studies with ENVI-

met in the Krayenhoff et al. article. For example, a median VCE of 3.3 °C was yielded for 

a summer afternoon for studies that evaluated the application of street-level trees with 

ENVI-met. The article reported that for a ground-level albedo variation, studied with 

ENVI-met, there is a large variation between studies, but an ACE of approximately 5.7 °C 

was derived during a summer afternoon. 
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Chapter 4 has assessed the ENVI-met modeling results for a neighbourhood in downtown 

London with respect to microclimate conditions, especially air temperature and thermal 

comfort, including MRT and PMV. Urban microclimate and large scale climate change 

also impact building energy demand, and heat mitigation scenarios modulate this demand. 

Assessment of building energy demand is considered next in Chapter 5. 
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5. Chapter 5: Impact of Urban Heat Mitigation Techniques on 

Building Energy Performance 

 

5.1. Introduction  

In Chapter 4, the effects of heat mitigation scenarios on microclimate and thermal comfort 

were assessed. The current chapter aims to evaluate, via simulation, the role of different 

heat mitigation techniques on the improvement of the energy performance of a multi-story 

building located in downtown London, Ontario. Three simulations were carried out with 

HAP Carrier software: a reference scenario representative of the current microclimate 

condition of the site, another scenario using mitigated microclimate weather files that 

corresponds to results of the Green2 scenario in Chapter4 for the present weather condition, 

and finally, a scenario of the building with green walls were simulated. Characteristics of 

the building energy simulator are described, and the results are discussed in the following 

sections. 

 

5.2. Microclimate mitigation solutions and building energy performance: 
 

More than 30% of global energy consumption can be attributed to building energy use for 

maintaining indoor comfort conditions (i.e., heating and cooling services) (Edenhofer et 

al., 2011). According to the IPCC AR5 Synthesis Report published in 2014, temperature 

will increase in all future scenarios, resulting in more frequent and longer heat 

waves (IPCC, 2014). Consequently, increasing the difference between outdoor and indoor 

temperature will cause higher energy demand for cooling purposes. Akbari et al. indicated 
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that the peak urban electric demand in six American cities rises by 2-4% for each 1 ̊ C rise 

in daily maximum temperature above a threshold of 15 to 20 ̊ C (Akbari et al., 1992). 

Analysis of fifteen studies examining the impact of ambient temperature on the total 

electricity consumption indicated that the electricity demand increased varies between 

0.5% and 8.5% per degree of the outdoor temperature increase (Santamouris et al., 2015). 

According to the results of a study on the impact of the London (UK) urban heat island on 

the building energy usage, there is a dependency between the rate of urbanization and 

building cooling and heating load (Kolokotroni et al., 2007). An investigation was carried 

out in Athens to estimate the effect of high temperature on the annual cooling energy and 

peak demand. Both were found to be significantly increased as a result of the urban heat 

island effect, highlighting the need to reduce cooling energy by natural means (Hassid et 

al, 2000; Priyadarsini, 2011). 

The heat reduction and increasing thermal comfort aspect of urban greenery on a 

neighborhood microclimate was assessed in previous chapters; additionally, this heat 

reduction technique has been proposed as an effective strategy to reduce the building 

energy demand. To date, there are a large number of studies assessing the role of street 

trees and plants on the improvement of the outdoor thermal environment under hot summer 

conditions and the consequent reduction of the buildings’ cooling energy needs, either by 

empirical or by simulation means (Ko, 2018). Akbari reported that urban shade trees can 

reduce building air conditioning, decrease air temperature, and thus improving urban air 

quality by reducing smog. Urban trees reduce energy use from air conditioning by 20% 

and save over $10 billion per year (Akbari, 2001). In terms of vegetation’s positive effect 

on the buildings’ energy needs, the results of a monitoring campaign of Parker et al. in 
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Florida (USA) has suggested that planting trees and shrubs around a building can reduce 

the daily air-conditioning electricity use by 50 % as a result of the solar radiation 

interception and the evapotranspiration effect (Parker, 1983). Recently a literature review 

by Ko (2018) summarized the results of studies that assessed the effect of trees on the 

buildings cooling energy needs. The review indicated wide variations of the reported 

energy savings, varying from 2.3 % to 90 %. The author pointed out that the magnitude of 

reductions widely depends on the climate, method of approach, data, and assumptions for 

buildings and trees. 

Green walls can be defined as climbing plants grown directly on support structures 

integrated into external building walls (Cuce, 2017). Several benefits are accrued from the 

application of green walls, such as reducing internal building temperatures, mitigating 

building energy consumption, and facilitating urban adaptation to a warming climate 

(Cuce, 2017). Results of an experimental study on thermal impacts of green walls on 

buildings in La Rochelle city (France) underlined the positive effect of green walls in 

summer and moderate reduction of heat losses in winter (Djedjiga et al., 2017). An 

experimental and numerical investigation on the impact of green walls revealed that an 

average of 2.5 °C reduction in internal wall temperature could be achieved via green walls 

with about 10 cm thick climbing vegetation (Cuce, 2017). Another experimental study on 

the impact of green walls and green facades indicated a high potential for energy savings 

during cooling season for the green wall (58.9%) and double-skin green facade (33.8%) 

compared to the reference system (Coma et al., 2017). The energy-saving potential of green 

walls and street trees strongly depends on the climate and building characteristics. Most of 

the studies that have assessed the energy-saving potential of heat mitigation techniques 
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were carried out for warm climates. Akbari and Konopacki calculated the effect of heat 

island reduction strategies on annual energy saving of the building sector for the Greater 

Toronto Area.  Results of the study indicated a significant saving potential of over $11M 

from the effect of urban heat mitigation strategies, such as adding trees for Toronto as a 

city with a cold climate. The present study aims to assess the benefits of adding trees and 

green walls on building cooling and heating load for the climate of London, Ontario 

(Latitude of 42.98° N). 

 

5.3. Methodology and HAP Carrier software 
 

The estimated load demand in this study is according to a building module simulation under 

specific weather conditions. The effect of adding trees and greenery on the street and also 

green walls on energy demand is assessed. In order to assess the thermal-energy 

performance of the case study buildings with various microclimate boundary conditions, 

Carrier (HAP 4.5) Hourly Analysis Program was applied to calculate a building's cooling, 

heating, and electrical loads. The Carrier HAP program aids in the day-to-day work of 

estimating loads, designing systems, and evaluating the energy performance of HVAC and 

non-HVAC systems used in buildings. Simulation with software includes two stages; first, 

it designs a system by estimating the building loads and then determining the energy 

consumption to calculate the energy costs. 

HAP estimates the design of cooling and heating loads for different types of buildings to 

determine the required sizes of HVAC system components. The program provides the 

necessary information for the selection and identification of equipment. Users can either 
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modify the climate and environmental data from an external resource or use the HAP 

weather and climate condition database, including nearly 500 cities around the world. 

Service Ontario building in Dundas Street is selected as a case study for simulation. The 

building is representative of other buildings in the study area in several aspects; the size, 

geometry, thermal insulation of the building's construction material, and the density of 

surrounding buildings categorized the building as an appropriate choice for simulation. A 

7-story office building was defined with a 3600 m2 area, representing the Service Ontario 

building. The required input data file for HAP includes data relevant to the characteristics 

that directly impact the thermal loads on the building. These characteristics have included 

the orientation, geometrical shape, weather data, the internal loads including sensible heat, 

HVAC system, and the construction materials of the building. 

In order to assess the impact of increasing vegetation on the building neighborhood and 

green walls on the thermal performance of the case study building, three simulations were 

carried out with HAP Carrier software. A reference scenario with the current characteristics 

of the building and local microclimate conditions were simulated with the software. 

According to the results of the previous chapter, adding trees and increasing vegetation to 

the site can reduce the air temperature up to 0.6 ̊ C in hot months of the year. The second 

set of simulations was carried out by using the output of the Green2 scenario microclimate 

simulation for current conditions. The third set of simulations was carried out by replacing 

the existing building walls with green walls. 
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5.3.1. Weather data: 
 

Weather data has a significant effect on the building heating and cooling loads (Wan et al., 

2011). HVAC systems of the building and the portions of the building exposed to the 

external environment are strongly influenced by temperature, humidity, and solar radiation. 

Also, the geographical location, soil properties, local time, clear sky index albedo are used 

under the "Weather" section in the software (Carrier Corporation, 2006).  

HAP deals with two different kinds of weather data: design weather data and simulation 

weather data. Design weather data is used to perform cooling and heating design load 

estimates. It consists of 24-hour profiles of temperature and humidity representing 

maximum conditions for summer and winter design-day conditions according to standard 

industry practices. Simulation weather data are used to perform hourly energy simulations. 

It refers to an 8760-hour sequence of actual weather data to simulate building loads. These 

results can be used to estimate annual energy use and costs (Carrier Corporation, 2006). 

The simulations with HAP carrier were carried out with two sets of weather data. These 

weather files represent the microclimate condition of the site under the following site 

configuration; current condition of the site ("Base" scenario), and "Green2" scenario for 

present years. To couple the outputs of ENVI-met simulation with HAP Carrier software, 

a similar procedure to (Castaldo et al., 2018) was adopted to generate the new weather files. 

With interpolation of available hourly values of ENVI-met microclimate simulation 

outputs, temperature, direct and diffuse solar radiation, and wind speed for a day in summer 
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and winter, the hourly values of the same parameters for an entire year were generated for 

each configuration (Castaldo et a., 2018).  

First, the hourly ratio between Base scenario parameters and two Green scenarios for 

summer and winter was calculated. A sinusoidal interpolation was assumed to obtain 

hourly ratio values of annual mitigation effect in terms of air temperature and solar 

radiation, and linear interpolation was assumed for wind speed. Same sinusoidal 

interpolation was applied to obtain the parameters values in the whole year: 

                 Pik = pi winter + (pi summer - pi winter) sin
𝜋𝑘

365
                         5-1) 

for i=1,24 (hours) and for k=1, 365(days) 

Further details on the equations can be found in the Appendices and Castaldo et al., 2018.  

Finally, by completing the input file to be imported into Meteonorm, the complete annual 

weather files for two configurations were generated. By means of Meteonorm software, 

the complete weather files (.epw format) were created for two "Base" and "Green2" 

simulated configurations. These .epw weather files were imported to HAP Carrier for 

building energy simulations. 

Meteonorm is a global climatological database. The basic input for the software is monthly 

mean values of the Linke turbidity factor and global radiation. The software outputs are 

hourly values of global radiation on inclined planes, monthly temperature, and 

precipitation. The stochastic process leads to an hourly dataset of a statistically average 

year with average mean, minimum and maximum values (Badescu,2008). 
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The weather properties and monthly values for maximum and minimum temperature are 

according to Figure 5-1, and the values of solar gain for different building directions were 

considered according to Figure 5-2. 

 

 

 

 

 

 

 

 

Figure 5-1. Weather properties input data for the Carrier HAP 

software 
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5.3.2. Building data: 
 

The building envelope is defined as the separation of the controlled indoor environment 

and the uncontrolled outdoor environment. It typically includes the foundation, floors, 

walls, fenestration (windows and doors), and roof. In order to present building energy 

simulation for the tested building, required building envelope data were collected from the 

available architectural and summarized in Table 5-1. The floor plan was a 65m by 55.4 m 

Figure 5-2. Solar gain data for the London, Ontario, according to Carrier HAP default value 
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layout with a total air-conditioned floor area of 3600 m2. The building operated from 6 a.m. 

to 10 p.m. on weekdays. 

 

Table 5-1. Building Parameters 

Total Floor Area 3600 m2 

No. of Floors 7 

Wall Construction U-Value 1.37 W/m2.k 

Roof Construction U-Value 0.557 W/m2.k 

Lighting Intensity 15 w/m2 

Indoor design temp. cooling / heating 24 °C /21 °C 

Electrical Equipment intensity 16 w/m2 

Number of Occupants 50 

 

 

5.3.3. HVAC system data:  
 

Air is typically treated in air handling units (AHUs) to control moisture content and 

temperature in centrally cooled or heated buildings. Once the air is treated, it is transported 

and distributed to various parts of the building. Air distribution systems are classified into 

single and dual duct categories as well as constant and variable volume categories. In 

variable air volume systems (VAV), thermal comfort in the conditioned space is 

maintained by having a constant temperature and varying supply air quantities. The air 

distribution system used in the simulation for this project was a dual-duct system single 

zone with constant air volume (CAV) system. 
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The heating and cooling load of the air system of the base case building model depends on 

the actual schedules of all types of functions.  

1. Occupancy activity schedule  

2. Lighting schedule  

3. Equipment schedule  

4. Fan/thermostat  

5. Ventilation 

The Carrier HAP uses two types of schedule-fractional and fan/thermostat. Fractional 

schedules are used to describe the variation of internal heat load (ie., lighting, equipment, 

control of outside ventilation in an HVAC system, and hot water in a domestic water 

heating system). Fan/thermostat schedules are used to match the hours of use of HVAC 

equipment with tenant occupancy schedules. The occupied and unoccupied thermostat set 

points are assigned to each hour in the HVAC system (Carrier, 2006). 

 

5.4. Results: 
 

This section presents the results of an assessment of the effects of increasing trees around 

the building neighborhood and green walls, on the building heating and cooling loads for 

a simulated building in downtown London, Ontario. The cooling and heating load were 

calculated for the defined building using HAP Carrier software. The local commercial 

electricity and natural gas rates were applied to the energy simulation results. Average 

commercial rates for electricity and natural gas consumption were assumed 0.17 $/kwh and 

0.115 $/m3.  
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The system design simulation outputs estimated the annual cooling and heating loads of 

the system. Values normalized per 100 m2 of area. Table 5-2 represents the annual system 

design cooling and heating load for the Base scenario and load saving for two other 

scenarios. System design simulations show that the maximum cooling load reduction 

corresponds to the increasing trees and vegetation in the building neighborhood. By 

increasing 10% trees and vegetation in the building neighborhood, the central cooling load 

is reduced (saved) by up to 11.79 kWh/100m2 this scenario caused an increase of 0.74 

kWh/100m2 in the heating load of the building. Trees with shading and reducing the 

outdoor air temperature saved the building cooling load in the hot season. In contrast, this 

reduction in air temperature and shading in cold seasons is resulted a penalty for the heating 

load. 

 

Table 5-2. System Design Annual Heating and Cooling load for Base scenario and saving loads 

for mitigated scenarios 

Scenario Central Cooling Coil Load 

(kWh/100m2) 

Central Heating Coil Load 

(kWh/100m2) 

Base 434.23 5533.1 

Green Walls -1.84                        44.54 

Increasing trees 11.79                        -0.74 

 

For the green walls scenario, the cooling load is increased by 1.84 kWh/100m2, and 

installing green walls reduced the heating load of the building system by up to 44.54 

kWh/100m2. According to the hourly analysis of the cooling/heating load, vegetation on 



 
 

103 
 

the green walls reduced the ability of the building to cool at night and increased the cooling 

load of the building at night.  

Table 5-3 shows the results of the building energy usage simulation. Building energy 

simulation is calculated for two types of energy supply for heating purpose, electricity and 

natural gas. The annual total cost of energy consumption of the building, the annual total 

cost per floor area, and the annual actual energy consumption are presented. Values 

correspond to the Base scenario and the difference (Δ) value for two mitigated scenarios 

with the Base scenario.  

Table 5-3. Building Simulation Report of Annual Cost Summary, and Annual Actual Energy 

Consumed for the Base scenario and the Δ value of the two green walls and Green2(Increasing 

trees) scenarios for two types of heating supply 

 

Scenario 

Natural Gas Heat Electric Heat 

Total 

Annual 

cost ($) 

Total 

Annual 

Cost per 

Unit Floor 

Area ($) 

Annual 

Actual 

Energy 

Consumed 

(kwh) 

Total 

Annual  

cost ($) 

Total 

Annual 

Cost per 

Unit Floor 

Area ($) 

Actual 

Energy 

Consumed 

(kwh) 

Base 16,585 4.493 812,399 57,927 15.692 714,733 

Green 

Walls 

42 0.012 4243 

 

374 0.11 4,459 

 

Increasing 

trees 

161 0.04 1588 147 0.04 1428 

 

For both mitigated scenarios, a reduction in the annual cost and consumption of energy is 

estimated. The difference between natural gas and electricity price has driven the difference 

between cost reduction of the two types of energy supply. The differences between natural 



 
 

104 
 

gas and electricity supply values are insignificant for the Green2 (increasing trees) 

scenario; the reason is that most of the reduction with this scenario is calculated for cooling 

purposes, which does not affect the heating load and heating supply demand.  

 

5.5. Discussion and Conclusions 
 

This chapter described an investigation of the impact of urban heat mitigation scenarios on 

the thermal energy performance of buildings. There is a direct connection between outdoor 

microclimate conditions and indoor cooling and heating loads. Increasing natural area and 

vegetation covers on urban areas was introduced as an effective solution to mitigate the 

impact of urban heating arising due to urban microclimate and larger scale climate change. 

In this chapter my study focused on an office building, and the impact of two different 

mitigated scenarios is assessed. 

In reviewing the results of this chapter, the following should be considered: 

1. increasing trees (Green2) reduces the summer cooling load of the building and 

increases the winter heating load. But the total annual cost savings and the annual 

energy consumption for this scenario are positive. Tree shading, 

evapotranspiration and wind shielding affect the outdoor air temperature and 

building energy consumption. In this study, by interpolation of the ENVI-Met 

simulation results for two days in summer and winter, these impacts are taken in 

to account in the weather input file of the HAP Carrier model. Future studies to 
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investigate further impact of increasing trees and more accurate weather files with 

more simulated days would improve the current estimate. 

2. Simulations in this study were performed for an office building with a rectangular 

shape in downtown London, Ontario. These results can be different for other 

building prototypes, material thermal properties, and different cooling and heating 

systems. The shape, orientation, and compactness of buildings significantly impact 

the building energy consumption in cooling and heating (Tibermacine and 

Zemmouri, 2016). 

3. This study was carried out for current weather conditions. The future weather and 

climate change will affect building energy consumption. According to the results 

of a projection on building energy consumption in 2050 and 2080 in Florida 

(USA), gas and electricity demand for heating are predicted to decrease, and 

electricity demand for cooling to increase. According to the differences in base and 

mitigation scenarios in the present, the other beneficial aspect of increasing trees 

is reducing the building cooling load for future weather. 

4. The price of energy affects the total annual energy cost of buildings and cost-

saving with different scenarios. Moreover, simulations with natural gas for heating 

supplies will be subject to an increasing carbon tax. 

 

 



 
 

106 
 

5.6. References: 

Akbari, H., & Konopacki, S. (2004). Energy effects of heat-island reduction strategies in 

Toronto, Canada. Energy, 29(2), 191-210. 

Akbari, H., & Matthews, H. D. (2012). Global cooling updates: Reflective roofs and 

pavements. Energy and Buildings, 55, 2-6. 

Badescu, V. (2014). Modeling solar radiation at the earth's surface (Vol. 1). Berlin 

Heidelberg: Springer. 

Castaldo, V. L., Pisello, A. L., Piselli, C., Fabiani, C., Cotana, F., & Santamouris, M. 

(2018). How outdoor microclimate mitigation affects building thermal-energy 

performance: A new design-stage method for energy saving in residential near-zero energy 

settlements in Italy. Renewable Energy, 127, 920-935. 

Coma, J., Pérez, G., de Gracia, A., Burés, S., Urrestarazu, M., & Cabeza, L. F. (2017). 

Vertical greenery systems for energy savings in buildings: A comparative study between 

green walls and green facades. Building and environment, 111, 228-237. 

Cuce, E. (2017). Thermal regulation impact of green walls: An experimental and numerical 

investigation. Applied Energy, 194, 247-254. 

Dahanayake, K. K. C., & Chow, C. L. (2017). Studying the potential of energy saving 

through vertical greenery systems: Using EnergyPlus simulation program. Energy and 

Buildings, 138, 47-59. 

Djedjig, R., Belarbi, R., & Bozonnet, E. (2017). Green wall impacts inside and outside 

buildings: experimental study. Energy Procedia, 139, 578-583. 

Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., ... 

& von Stechow, C. (2011). IPCC special report on renewable energy sources and climate 

change mitigation. Prepared By Working Group III of the Intergovernmental Panel on 

Climate Change, Cambridge University Press, Cambridge, UK. 



 
 

107 
 

Hassid, S., Santamouris, M. N. A. N. C., Papanikolaou, N., Linardi, A., Klitsikas, N., 

Georgakis, C., & Assimakopoulos, D. N. (2000). The effect of the Athens heat island on 

air conditioning load. Energy and Buildings, 32(2), 131-141. 

Jiang, A., Zhu, Y., Elsafty, A., & Tumeo, M. (2018). Effects of global climate change on 

building energy consumption and its implications in Florida. International Journal of 

Construction Education and Research, 14(1), 22-45. 

Ko, Y. (2018). Trees and vegetation for residential energy conservation: A critical review 

for evidence-based urban greening in North America. Urban Forestry & Urban 

Greening, 34, 318-335. 

Kolokotroni, M., Zhang, Y., & Watkins, R. (2007). The London Heat Island and building 

cooling design. Solar Energy, 81(1), 102-110. 

Parker, J. H. (1983). Landscaping to reduce the energy used in cooling buildings. Journal 

of Forestry, 81(2), 82-105. 

Priyadarsini, R. (2009). Urban heat island and its impact on building energy 

consumption. Advances in building energy research, 3(1), 261-270. 

Santamouris, M., Cartalis, C., Synnefa, A., & Kolokotsa, D. (2015). On the impact of urban 

heat island and global warming on the power demand and electricity consumption of 

buildings—A review. Energy and Buildings, 98, 119-124. 

Santamouris, M., Ding, L., Fiorito, F., Oldfield, P., Osmond, P., Paolini, R., ... & Synnefa, 

A. J. S. E. (2017). Passive and active cooling for the outdoor built environment–Analysis 

and assessment of the cooling potential of mitigation technologies using performance data 

from 220 large scale projects. Solar Energy, 154, 14-33. 

Tibermacine, I., & Zemmouri, N. (2017). Effects of building typology on energy 

consumption in hot and arid regions. Energy Procedia, 139, 664-669. 



 
 

108 
 

Wan, K. K., Li, D. H., Liu, D., & Lam, J. C. (2011). Future trends of building heating and 

cooling loads and energy consumption in different climates. Building and 

Environment, 46(1), 223-234. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

109 
 

6. Chapter 6: Concluding Remarks and Future Work 

 

The objective of this study was to evaluate heat mitigation solutions on the existing urban 

form for a study site in downtown London, Ontario. There are several heat mitigation 

strategies. Due to the geometry of the site and the high percentage of pavement coverage 

in the study area, two heat mitigation strategies, increasing the green coverage of the study 

area and applying high albedo material, were evaluated. A computational fluid dynamics 

ENVI-Met model simulated the site's existing and mitigation conditions for evaluation and 

comparison. Furthermore, the impact of heat mitigation solutions on the building energy 

performance was evaluated.  

Comparing the results of heat mitigation scenarios with the base scenario revealed that 

increasing the albedo of road material or adding vegetation coverage could decrease the 

near-ground air temperature in the study domain. The air temperature reduction is greater 

for the green scenario with a higher coverage of trees. The cool pavement scenario 

increased the mean radiant temperature at the pedestrian (1.5m) level during the daytime. 

This increase arises from the increase in reflected shortwave radiation. Increasing greenery 

showed a slight reduction in the average air temperature, mean radiant temperature, and 

PMV. Furthermore, increasing street-level trees demonstrates higher VCE and cooling 

effectiveness comparing to increasing ground-level vegetation with the same fraction. 

Calculated ACE for Cool road scenario shows 1.5°C cooling per 0.3 increase in albedo. 

Similar reduction potential on air temperature and thermal comfort was detected for 

increasing greenery and cool road scenarios for future summer conditions. Impacts of these 
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mitigation scenarios were also assessed for winter weather conditions. Results did not 

reveal a significant impact on the air temperature for both scenarios. 

The energy performance of a building in downtown London, Ontario, was simulated using 

HAP Carrier software. The impact of two different heat mitigation solutions, increasing 

greenery and green walls, on building heating/cooling load for the current climate were 

assessed. Comparing the results of the two scenarios with the base scenario indicated a 

decrease in the buildings' cooling load for the Green2(increasing trees) configuration. 

However, the simulation predicted an increase in building heating load for the 

Green2(increasing trees) model, but the net saving was positive. A significant reduction in 

the building heating load was calculated for the green walls model. It was found that the 

capability of the software to simulate the insulation effect of green walls was more refined 

than simulating the cooling effect of vegetation on walls. 

Urban climate simulations, coupled with detailed thermal energy performance of a building 

in the studied domain in downtown London, Ontario, revealed that the above-mentioned 

mitigation solutions contribute to energy saving. 

The following section highlights suggestions for policy makers in the City of London to 

consider: 

• The results of this study indicated that there is a correlation between unshaded and 

paved areas with thermal comfort. The more uncomfortable thermal areas 

correspond to the areas without shading facility and with the paved ground. 

Increasing shading on the flat areas and replacing part of these flat areas and parking 

spaces with grass and vegetations are options to improve thermal comfort and 
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reduce air temperature. For future research identifying other sensitive domains with 

high heat risks is suggested for practical shading with trees and live plants. 

• Reducing the maximum size for parking spaces in downtown London and replacing 

parts of these areas with green areas or trees can be beneficial in several aspects; 

increase shading, reduce pollutants in the downtown district with high traffic, and 

improve pedestrian thermal comfort. 

• It is proven with previous studies that increasing vegetation improves thermal 

comfort. This study indicates a correlation between the percentage of trees and 

temperature reduction and pedestrian thermal comfort. Adding more trees instead 

of low-height vegetation with the same vegetation fraction revealed more 

temperature reduction. Therefore, increasing taller trees is another suggestion to 

improve the pedestrian thermal experience on the streets of downtown. 

It should be recalled however, that this study has some limitations related to the ENVI-met 

software. For instance, the software does not represent the internal structure of walls, and 

the simulation does not consider heat emission from the building. In hot summer conditions 

these emissions contribute a positive feedback to outdoor air temperature that is maximized 

under conditions of most concern to human thermal comfort. Furthermore, the software 

does not consider the impacts of heat emission from transportation. High traffic volume in 

the downtown area can strongly affect the amount of heat emission from vehicles. 

This study investigated the thermal comfort improvements and energy-saving potentials of 

adopted heat mitigation strategies. Results of the study demonstrated the increasing trees 

in the downtown district improves the thermal comfort of pedestrians in hot summer 

conditions. Furthermore, microclimate simulation results of this scenario coupled with a 
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single building energy analysis showed a reduction in building energy demand in the 

downtown area. 
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7. Appendices 

Appendices 1: ENVI-Met Weather Forcing Files 
 

Table 7-1. ENVI-Met Weather Forcing File- Current summer Condition 

 

 

 

 

 

 

 

 

Date Time SW DIR / low clouds SW DIF / med clouds LW / high clouds Abs. Temperature[K] Rel. Humidity Windspeed WindDir Percipitation

24.06.2016 3:00:00 0 0 303.5350883 285.65 82.1 0.214 30.36 0

24.06.2016 3:30:00 0 0 301.8202604 285 80.7 0 0 0

24.06.2016 4:00:00 0 0 302.5367985 284.75 83.1 0 0 0

24.06.2016 4:30:00 0 0 298.3137707 284.75 80 0 0 0

24.06.2016 5:00:00 0 0 298.4289766 284.55 79 0 0 0

24.06.2016 5:30:00 0 0 296.8887197 285.5 81 0.125 74 0

24.06.2016 6:00:00 0 0 297.3528906 286.55 83 0.484 63.07 0

24.06.2016 6:30:00 0 0 296.4337671 288 77 0.544 43.77 0

24.06.2016 7:00:00 0.26 3.29 307.8542577 290.45 67.68 2.68224 45 0

24.06.2016 7:30:00 11.39 41.85 311.6250224 292.45 60.6 2.3356 74.8 0

24.06.2016 8:00:00 47.63 80.95 321.5200362 294.35 56.09 2.2352 63.07 0

24.06.2016 8:30:00 103.08 108.81 336.1362724 295 52.79 3.3678 43.77 0

24.06.2016 9:00:00 169.87 128.8 353.910893 296.05 47.79 4.02336 54.74 0

24.06.2016 9:30:00 242.51 143.74 370.82345 296.55 40.83 3.4432 65.11 0

24.06.2016 10:00:00 317.11 155.32 382.6747242 297.15 36.69 2.68224 50 0

24.06.2016 10:30:00 390.65 164.5 394.6898366 297.8 35.58 3.0065 16.03 0

24.06.2016 11:00:00 460.7 171.89 412.6579954 298.25 34.75 3.12928 71.99 0

24.06.2016 11:30:00 525.24 177.85 419.1432768 298.8 34.12 2.5692 99.4 0

24.06.2016 12:00:00 582.55 182.61 418.3880927 299.25 31.29 2.2352 74.57 0

24.06.2016 12:30:00 631.2 186.35 431.599271 299.35 29.65 1.8542 68.22 0

24.06.2016 13:00:00 670.02 189.15 420.065492 299.55 29.72 1.34112 110 0

24.06.2016 13:30:00 698.1 191.09 453.183673 300 29.68 1.05442 130 0

24.06.2016 14:00:00 714.82 192.22 446.1933467 300.45 27.09 0.89408 150 0

24.06.2016 14:30:00 719.79 192.55 437.0175265 300.35 27.78 1.78922 190 0

24.06.2016 15:00:00 712.89 192.09 431.2637716 300.25 27.9 2.68224 200 0

24.06.2016 15:30:00 694.29 190.83 436.7512688 300.55 27.74 2.35002 240 0

24.06.2016 16:00:00 664.41 188.75 437.3623349 300.85 26.53 2.2352 280 0

24.06.2016 16:30:00 623.92 185.8 421.5203779 300.8 27.56 2.2352 300 0

24.06.2016 17:00:00 573.77 181.91 420.1842971 300.75 25.76 2.2352 336.9 0

24.06.2016 17:30:00 515.18 176.96 413.6220647 300.55 25.26 1.7645 300 0

24.06.2016 18:00:00 449.61 170.79 396.9376288 300.35 28.78 0.89408 11.08 0

24.06.2016 18:30:00 378.83 163.14 376.0043734 299.35 33.52 2.2325 316 0

24.06.2016 19:00:00 304.94 153.61 365.7293494 298.85 34.02 3.12928 322.7 0

24.06.2016 19:30:00 230.43 141.56 356.8582784 298 35.5 3.12928 348 0

24.06.2016 20:00:00 158.43 125.93 351.0642575 297.05 36.85 3.12928 350 0

24.06.2016 20:30:00 93.06 104.89 349.8503754 296 38.46 2.95823 360 0

24.06.2016 21:00:00 40.14 75.37 343.7792494 295.25 41.61 2.68224 14 0

24.06.2016 21:30:00 7.87 34.51 339.4902265 295 44.82 2.3532 10 0

24.06.2016 22:00:00 0 0 337.3023111 294.85 47.75 2.2352 11 0

24.06.2016 22:30:00 0 0 334.7048949 293.25 50.65 2.45711 65 0

24.06.2016 23:00:00 0 0 333.5869153 292.25 60.02 2.68224 70 0

24.06.2016 23:30:00 0 0 332.9890212 291.25 58.96 2.3572 65 0

25.06.2016 0:00:00 0 0 330.6696939 290.65 62.8 2.2352 40 0

25.06.2016 0:30:00 0 0 329.3279939 290 68.88 1.6548 5 0

25.06.2016 1:00:00 0 0 327.6381281 289.75 71.39 0.89408 330 0

25.06.2016 1:30:00 0 0 326.5607012 289 73.7 1.65782 345 0

25.06.2016 2:00:00 0 0 324.7326042 288.85 74.56 2.2352 360 0

25.06.2016 2:30:00 0 0 323.6493295 288.45 81.3 1.6528 15 0

25.06.2016 3:00:00 0 0 321.783503 288.05 81.2 0.89408 30 0
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Date Time SW DIR / low clouds SW DIF / med clouds LW / high clouds Abs. Temperature Rel. Humidity Windspeed WindDir Percipitation

03.03.2018 03:00:00 0 0 216.7693301 269.85 80 2.68224 335 0

03.03.2018 03:30:00 0 0 216.437729 269.85 78 2.7 335 0

03.03.2018 04:00:00 0 0 214.6321674 269.45 77 3.12928 335 0

03.03.2018 04:30:00 0 0 214.3063354 269.45 75 3.129 335 0

03.03.2018 05:00:00 0 0 212.9340229 269.15 74 3.12928 325 0

03.03.2018 05:30:00 0 0 212.9340229 269.15 74 3.129 325 0

03.03.2018 06:00:00 0 0 211.8030343 268.75 77 3.12928 325 0

03.03.2018 06:30:00 0 0 211.8030343 268.75 77 3 325 0

03.03.2018 07:00:00 0 0 211.9575705 268.75 78 2.68224 320 0

03.03.2018 07:30:00 0 0 212.2041914 268.85 77 3 320 0

03.03.2018 08:00:00 0 0 212.4491637 268.95 76 4.02336 325 0

03.03.2018 08:30:00 0 0 211.9744809 268.95 73 4.023 325 0

03.03.2018 09:00:00 0 0 216.479048 270.15 71 4.02336 320 0

03.03.2018 09:30:00 7.550995692 34.5361916 215.6021609 270.15 66 4.023 320 0

03.03.2018 10:00:00 43.21778826 80.03823193 220.7170455 271.45 65 4.4704 325 0

03.03.2018 10:30:00 98.48408802 110.5331317 220.3275407 271.45 63 4.5 325 0

03.03.2018 11:00:00 161.4674918 131.0564591 224.067165 272.45 61 5.7056 330 0

03.03.2018 11:30:00 225.0515439 145.5429307 223.002179 272.45 56 5.7 330 0

03.03.2018 12:00:00 284.7957137 156.0971682 228.1947821 273.75 55 5.25856 330 0

03.03.2018 12:30:00 337.6805243 163.8660575 227.4824573 273.75 52 5.25 330 0

03.03.2018 13:00:00 381.5446822 169.5048341 232.474237 275.05 50 5.7056 340 0

03.03.2018 13:30:00 414.827245 173.4000927 231.1418431 275.05 45 5.7 345 0

03.03.2018 14:00:00 436.4444672 175.7796463 235.5150103 276.15 44 5.25856 350 0

03.03.2018 14:30:00 445.7297214 176.7681885 235.2223881 276.15 43 5.25 350 0

03.03.2018 15:00:00 442.4052284 176.4145878 234.3340721 276.15 40 6.59968 350 0

03.03.2018 15:30:00 426.5719465 174.7019307 236.3267716 276.55 41 5.79 345 0

03.03.2018 16:00:00 398.7129309 171.5440845 235.3522528 276.25 42 5.7056 335 0

03.03.2018 16:30:00 359.7117416 166.7675123 238.6334028 276.15 55 5.36448 325 0

03.03.2018 17:00:00 310.8946244 160.0712792 234.4506313 274.75 63 4.4704 325 0

03.03.2018 17:30:00 254.1175803 150.9479048 232.2624225 274.15 65 4.47 315 0

03.03.2018 18:00:00 191.9461483 138.5254574 227.0197023 272.75 69 4.4704 305 0

03.03.2018 18:30:00 128.0396281 121.2410071 225.436486 272.15 74 4.47 315 0

03.03.2018 19:00:00 68.00562301 96.17085306 222.1960212 271.35 75 4.4704 315 0

03.03.2018 19:30:00 21.19962483 58.23077972 221.3476586 271.15 75 4.47 315 0

03.03.2018 20:00:00 0.953974257 9.506613386 220.7425904 271.05 74 4.4704 315 0

03.03.2018 20:30:00 0 0 220.3223096 270.95 74 4.47 315 0

03.03.2018 21:00:00 0 0 218.6517042 270.55 74 4.4704 325 0

03.03.2018 21:30:00 0 0 217.1694608 270.15 75 4.47 325 0

03.03.2018 22:00:00 0 0 217.1694608 270.15 75 4.02336 325 0

03.03.2018 22:30:00 0 0 215.2847157 269.65 76 3.7 325 0

03.03.2018 23:00:00 0 0 214.87661 269.55 76 3.12928 325 0

03.03.2018 23:30:00 0 0 213.254302 269.15 76 3.12 325 0

04.03.2018 00:00:00 0 0 213.4136493 269.15 77 3.12928 325 0

04.3.2018 00:30:00 0 0 211.4028688 268.65 77 3.12 330 0

04.03.2018 01:00:00 0 0 210.7568807 268.45 78 2.2352 335 0

04.3.2018 01:30:00 0 0 210.7568807 268.45 78 2.23 340 0

04.03.2018 02:00:00 0 0 211.0036911 268.55 77 2.2352 345 0

04.3.2018 02:30:00 0 0 211.0036911 268.55 77 3 350 0

04.03.2018 03:00:00 0 0 212.6063437 268.95 77 3.57632 355 0

Table 7-2. ENVI-Met Weather Forcing File- Current winter Condition 
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Table 7-3. ENVI-Met Weather Forcing File- Future Summer Condition 

 

 

 

 

 

 

 

 

 

Date Time SW DIR / low clouds SW DIF / med clouds LW / high clouds Abs. Temperature Rel. Humidity Windspeed WindDir Percipitation

08-06-2049 3:00:00 0 0 394.4637177 299.45 73.57 0.214 30.36 0

08-06-2049 3:30:00 0 0 392.0317586 299.15 73.57 0 0 0

08-06-2049 4:00:00 0 0 392.3610567 299.01 75.71 0 0 0

08-06-2049 4:30:00 0 0 389.4535635 298.65 75.71 0 0 0

08-06-2049 5:00:00 0 0 390.2278382 298.57 77.86 0 0 0

08-06-2049 5:30:00 0 0 386.8486668 298.15 77.86 0.125 74 0

08-06-2049 6:00:00 0 0 388.0537562 298.13 80 0.484 63.07 0

08-06-2049 6:30:00 0 0 389.8254735 298.35 80 0.544 60 0

08-06-2049 7:00:00 0.32 4 391.036954 298.74 77 2.68224 62 0

08-06-2049 7:30:00 12.4 43.76 394.3589256 299.15 77 2.3356 74.8 0

08-06-2049 8:00:00 49.97 82.69 394.0314471 299.36 74 2.2352 63.07 0

08-06-2049 8:30:00 106.53 110.29 396.3903929 299.65 74 3.3678 60 0

08-06-2049 9:00:00 174.15 130.08 396.8668093 299.97 71 4.02336 54.74 0

08-06-2049 9:30:00 247.36 144.88 398.3363445 300.15 71 3.4432 65.11 0

08-06-2049 10:00:00 322.28 156.35 399.6962585 300.59 68 2.68224 50 0

08-06-2049 10:30:00 395.91 165.45 404.3000687 301.15 68 3.0065 45 0

08-06-2049 11:00:00 465.82 172.75 402.3456808 301.2 65 3.12928 50 0

08-06-2049 11:30:00 530.01 178.64 406.0570007 301.65 65 2.5692 60 0

08-06-2049 12:00:00 586.76 183.34 404.8845696 301.81 62 2.2352 65 0

08-06-2049 12:30:00 634.66 187 407.6967459 302.15 62 1.8542 68.22 0

08-06-2049 13:00:00 672.57 189.74 407.382051 302.43 59 1.34112 70 0

08-06-2049 13:30:00 699.59 191.6 409.2063744 302.65 59 1.05442 80 0

08-06-2049 14:00:00 715.13 192.65 409.6572588 303.04 56 0.89408 90 0

08-06-2049 14:30:00 718.82 192.9 412.2369813 303.35 56 1.78922 100 0

08-06-2049 15:00:00 710.58 192.34 411.8582101 303.66 53 2.68224 100 0

08-06-2049 15:30:00 690.6 190.99 415.951681 304.15 53 2.35002 80 0

08-06-2049 16:00:00 659.34 188.79 413.7983091 304.27 50 2.2352 70 0

08-06-2049 16:30:00 617.5 185.71 412.7987182 304.15 50 2.2352 50 0

08-06-2049 17:00:00 566.09 181.67 412.3929864 303.83 52.14 2.2352 40 0

08-06-2049 17:30:00 506.34 176.54 410.3981088 303.59 52.14 1.7645 40 0

08-06-2049 18:00:00 439.77 170.15 410.9040221 303.39 54.29 0.89408 30 0

08-06-2049 18:30:00 368.21 162.21 408.9121664 303.15 54.29 2.2325 30 0

08-06-2049 19:00:00 293.82 152.3 409.319072 302.95 56.43 3.12928 30 0

08-06-2049 19:30:00 219.2 139.72 406.8349096 302.65 56.43 3.12928 20 0

08-06-2049 20:00:00 147.63 123.28 407.7383931 302.52 58.57 3.12928 10 0

08-06-2049 20:30:00 83.48 100.97 404.6820593 302.15 58.57 2.95823 0 0

08-06-2049 21:00:00 33.07 69.45 406.0025981 302.08 60.71 2.68224 14 0

08-06-2049 21:30:00 4.96 26.8 402.4603153 301.65 60.71 2.3532 10 0

08-06-2049 22:00:00 0 0 404.2089371 301.64 62.86 2.2352 11 0

08-06-2049 22:30:00 0 0 402.6448548 301.45 62.86 2.45711 20 0

08-06-2049 23:00:00 0 0 402.3456808 301.2 65 2.68224 25 0

08-06-2049 23:30:00 0 0 400.2940454 300.95 65 2.3572 30 0

09-06-2049 0:00:00 0 0 400.4264312 300.76 67.14 2.2352 30 0

09-06-2049 0:30:00 0 0 398.7074182 300.55 67.14 1.6548 20 0

09-06-2049 1:00:00 0 0 398.4631342 300.32 69.29 0.89408 10 0

09-06-2049 1:30:00 0 0 397.0752524 300.15 69.29 1.65782 0 0

09-06-2049 2:00:00 0 0 396.444649 299.88 71.43 2.2352 360 0

09-06-2049 2:30:00 0 0 393.7618686 299.55 71.43 1.6528 10 0

09-06-2049 3:00:00 0 0 389.4980468 299.15 70 0.89408 15 0
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Date Time SW DIR / low clouds SW DIF / med clouds LW / high clouds Abs. Temperature Rel. Humidity Windspeed WindDir Percipitation

05-02-2049 3:00:00 0 0 250.8961502 277.65 73.57 0.98224 335 0

05-02-2049 3:30:00 0 0 250.8961502 277.65 73.57 1 335 0

05-02-2049 4:00:00 0 0 248.9991445 277.15 75.71 1.42928 335 0

05-02-2049 4:30:00 0 0 248.9991445 277.15 75.71 1.429 335 0

05-02-2049 5:00:00 0 0 247.0971296 276.65 77.86 1.42928 325 0

05-02-2049 5:30:00 0 0 247.0971296 276.65 77.86 1.429 325 0

05-02-2049 6:00:00 0 0 245.1862425 276.15 80 1.42928 325 0

05-02-2049 6:30:00 0 0 245.1862425 276.15 80 1.3 325 0

05-02-2049 7:00:00 0 0 247.8587793 276.85 77 0.98224 320 0

05-02-2049 7:30:00 0 0 247.8587793 276.85 77 1.3 320 0

05-02-2049 8:00:00 0 0 250.5179869 277.55 74 2.32336 325 0

05-02-2049 8:30:00 0 0 250.5179869 277.55 74 2.323 325 0

05-02-2049 9:00:00 0 0 253.1597752 278.25 71 2.32336 320 0

05-02-2049 9:30:00 0 0 253.1597752 278.25 71 2.323 320 0

05-02-2049 10:00:00 2.84 19.73 255.7796845 278.95 68 2.7704 325 0

05-02-2049 10:30:00 26.8 65.3 256.7941273 279.15 68 2.8 325 0

05-02-2049 11:00:00 70.36 98.11 258.3728468 279.65 65 4.0056 330 0

05-02-2049 11:30:00 121.83 120.04 260.9362502 280.15 65 4 330 0

05-02-2049 12:00:00 173.68 135.19 260.9339408 280.35 62 3.55856 330 0

05-02-2049 12:30:00 221.33 145.9 262.4774173 280.65 62 3.55 330 0

05-02-2049 13:00:00 261.8 153.47 263.457141 281.05 59 4.0056 340 0

05-02-2049 13:30:00 293.08 158.62 263.9731188 281.15 59 4 345 0

05-02-2049 14:00:00 313.85 161.77 265.9360577 281.75 56 3.55856 350 0

05-02-2049 14:30:00 323.27 163.13 268.0177955 282.15 56 3.55 350 0

05-02-2049 15:00:00 321.01 162.81 268.3636678 282.45 53 4.89968 350 0

05-02-2049 15:30:00 307.15 160.77 270.979412 282.95 53 4.09 345 0

05-02-2049 16:00:00 282.21 156.88 270.732233 283.15 50 4.0056 335 0

05-02-2049 16:30:00 247.19 150.86 269.6919852 282.95 50 3.66448 325 0

05-02-2049 17:00:00 203.68 142.19 268.9867562 282.65 52 2.7704 325 0

05-02-2049 17:30:00 154 129.97 267.4327527 282.35 52 2.77 315 0

05-02-2049 18:00:00 101.65 112.58 267.2147958 282.15 54 2.7704 305 0

05-02-2049 18:30:00 52.12 87.06 266.1808225 281.95 54 2.77 315 0

05-02-2049 19:00:00 14.58 48.85 265.4189503 281.65 56 2.7704 315 0

05-02-2049 19:30:00 0.42 5.06 264.9031662 281.55 56 2.77 315 0

05-02-2049 20:00:00 0 0 263.601648 281.15 58 2.7704 315 0

05-02-2049 20:30:00 0 0 262.5754804 280.95 58 2.77 315 0

05-02-2049 21:00:00 0 0 261.7651607 280.65 60 2.7704 325 0

05-02-2049 21:30:00 0 0 260.2345048 280.35 60 2.77 325 0

05-02-2049 22:00:00 0 0 259.9116159 280.15 62 2.32336 325 0

05-02-2049 22:30:00 0 0 258.8945833 279.95 62 2 325 0

05-02-2049 23:00:00 0 0 258.3728468 279.65 65 1.42928 325 0

05-02-2049 23:30:00 0 0 257.3568231 279.45 65 1.42 325 0

06-02-2049 0:00:00 0 0 256.5226375 279.15 67.14 1.42928 325 0

06-02-2049 0:30:00 0 0 255.5114924 278.95 67.14 1.42 330 0

06-02-2049 1:00:00 0 0 254.6611504 278.65 69.29 0.5352 335 0

06-02-2049 1:30:00 0 0 253.1540978 278.35 69.29 0.53 340 0

06-02-2049 2:00:00 0 0 252.7840256 278.15 71.43 0.5352 345 0

06-02-2049 2:30:00 0 0 251.7834253 277.95 71.43 1.3 350 0

06-02-2049 3:00:00 0 0 249.2483575 277.35 73 1.87632 355 0

Table 7-4. ENVI-Met Weather Forcing File- Future winter Condition 
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Appendices 2: Generation Weather File for Mitigated Weather Scenario 
 

Steps that followed to create the new weather file from mitigation scenarios (Castaldo et 

al., 2018): 

 

1. Sinusoidal interpolation for temperature, direct and diffuse solar radiation parameters: 

Pik = pi, winter + (pi, summer - pi, winter) sin
πk

365
         for i= (1,24) hours and k= (1, 365) days 

 

2. Linear interpolation for wind speed parameter: 

 

 

Vik = vi,winter (
k− ksummer

kwinter – ksummer
) - vi,summer (

k− kwinter

kwinter – ksummer
)  for i=1÷24 hours and , k= 

1÷200 days 

 

Vik = vi,summer (
k− kwinter

ksummer – kwinter
) - vi,winter (

k− ksummer

ksummer – kwinter
)  for i=1÷24 hours and , k= 

201÷365 days 

 

Figure 7.1 shows the calculated temperature for the Base and Green2 scenarios for the 

entire year. 
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Figure 7-1. Generated air temperature for the entire year 
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