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13 Summary 
 

 

14 1.   Local adaptation determines responses to climate change, but is not well-explored for 
 

15 terrestrial animals, particularly in the context of winter. 
 

16 2.   The physiological and ecological impact of the thermal environment across life-stages 
 

17 can result in tradeoffs that determine fitness and population dynamics. Understanding 
 

18 mechanisms and consequences of local adaptation for any organism that overwinters 
 

19 requires taking a cross-seasonal perspective. 
 

20 3.   We used a trait-based approach to distinguish variation among ecotypes in ecological and 
 

21 physiological responses to overwintering conditions.  We used fall webworms 
 

22 (Hyphantria cunea; Lepidoptera: Arctiidae) from Ottawa, Ontario and Columbus Ohio, 
 

23 representing the centre and periphery of the native range. 
 

24 4.   We hypothesized that populations would be locally adapted to their overwintering 
 

25 environments, with fitness maximised under natal overwintering conditions. We 
 

26 predicted that this local adaptation would result from modulation of rates of energy use, 
 

27 growth and development. 
 

28 5.   The Ohio ecotype was larger at pupation, and entered dormancy two weeks earlier than 
 

29 the Ontario ecotype. 
 

30 6.   Each ecotype had higher overwinter survival in their natal compared to non-natal winter 
 

31 environment, and this was associated with larger pupal mass, size and carbohydrate 
 

32 reserves at the end of winter.  This suggests that the ecotypes are locally adapted to 
 

33 winter conditions. Larger adults laid more eggs, but there was no effect of ecotype or 
 

34 environment on fecundity. 
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35 7.   Pupae that overwintered at warm, energetically demanding southern temperatures 
 

36 facultatively suppressed their metabolism in autumn, and developed more quickly in the 
 

37 spring, compensating for the increased energetic demands of warmer winters. Northern 
 

38 ecotypes had lower thermal sensitivity of metabolism, leading to higher metabolic rates at 
 

39 cool temperatures and faster post-winter development. 
 

40 8.   This local adaptation to winter conditions suggests it is simplistic to expect performance 
 

41 of peripheral populations to be enhanced by warming winters, and that predicted 
 

42 decoupling of winter and growing season temperatures may have negative fitness 
 

43 consequences for ectotherms. 
 

 

44 Key-words: 
 

 

45 bioenergetics, climate change, energy drain, fitness, insect, Lepidoptera, metabolic rate, 
 

46 overwintering, temperature compensation, tradeoff 

 

 

47 

 
48 
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49 Introduction 
 

 

50 Temperature regulates the performance and evolution of ectotherms through 
 

51 thermodynamic effects on biochemical processes (Clarke & Fraser 2004).  Global climate 
 

52 change is altering operative temperatures for ectotherms (Dillon, Wang & Huey 2010), and is 
 

53 also decoupling the relationship between growing season and winter temperatures (Bonsal & 
 

54 Kochtubjada 2009). Ectotherms can compensate physiologically for changes in temperature, 
 

55 facilitating the colonisation of diverse thermal environments (Hochachka & Somero 2002; 
 

56 Clarke 2003).  However, the role of among-population variation in temperature responses is 
 

57 underexplored, particularly for terrestrial ectotherms, despite its importance in determining 
 

58 species’ responses to climate change (Sinclair, Williams & Terblanche 2012). 
 
 

59 Local adaptation (higher fitness of a population at its native site compared to other 
 

60 populations) will determine a population’s response to climate change by determining a species’ 
 

61 ability to respond to conditions that change across the geographic range. If responses to the 
 

62 environment are invariant across a species’ range, then central populations will be better adapted 
 

63 to their environment than peripheral populations (assuming that range limits are set by 
 

64 environmental factors). If climate change makes environmental conditions at the periphery more 
 

65 like central conditions (e.g. poleward range limits in a warming climate), then peripheral 
 

66 populations will be enhanced. Conversely, if all populations are adapted to their current 
 

67 environment (e.g. peripheral populations have enhanced environmental tolerance compared to 
 

68 central populations), climate change may cause global fitness declines as all populations are 
 

69 disturbed from local fitness optima (Hellmann, Prior & Pelini 2012). 
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70 The response of a population to environmental conditions can be described by reaction 
 

71 norms that relate a phenotype expressed by a genotype to the environment in which that 
 

72 phenotype is expressed (Stearns 1992). The slope of a reaction norm estimates the environmental 
 

73 sensitivity (phenotypic plasticity) of the phenotype. Steep reaction norms that are parallel among 
 

74 genotypes indicate that a species responds to environmentally-heterogeneous environments 
 

75 primarily through phenotypic plasticity. Conversely, divergent reaction norm slopes indicate that 
 

76 the degree or direction of plasticity has evolved (a genotype-by-environment interaction). This 
 

77 evolution of plasticity may lead to local adaptation if fitness is higher for genotypes in their natal 
 

78 environment, relative to non-adapted genotypes (Kawecki & Ebert 2004). To detect local 
 

79 adaptation, multiple populations must thus be assessed under more than one environmental 
 

80 condition, and a reaction norm constructed for each population  (Kawecki & Ebert 2004). 
 
 

81 Our ability to predict the impacts of climate change is thus impeded by lack of 
 

82 information on local adaptation to temperature in terrestrial animals. Of 74 field studies of local 
 

83 adaptation, Hereford (2009) identified only four on terrestrial animals, of which only one 
 

84 assessed local adaptation to temperature (Qualls 1997). Local adaptation was present in 71% of 
 

85 remaining local adaptation studies, with substantial fitness advantages, so the dearth of 
 

86 knowledge on terrestrial animals is troubling. Inclusion of laboratory  studies (e.g. simulated 
 

87 reciprocal transplants, or common garden experiments with more than one acclimation 
 

88 treatment), and studies using fitness proxies such as size or growth and development ratesreveals 
 

89 several convincing demonstrations of  local adaptation to temperature in terrestrial animals 
 

90 including butterfly larvae, frog tadpoles, and adult flies (e.g. Ayres & Scriber 1994; Berrigan & 
 

91 Partridge 1997; Laugen et al. 2003; Rotvit & Jacobsen 2014).  Thus, that local adaptation to 
 

92 temperature may be common in terrestrial animals. 
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93 Insects in temperate regions can spend more than half of their lives dormant (Koštál 
 

94 2006), subsisting on metabolic reserves which must also fuel pre-feeding development and 
 

95 reproduction in spring (Hahn & Denlinger 2007). Metabolic rates during diapause are suppressed 
 

96 but still temperature-sensitive: an increase in temperature elicits an increase in metabolic rate and 
 

97 can hasten energy depletion (e.g. Bosch & Kemp 2004; Williams, Hellmann & Sinclair 2012), 
 

98 imposing selection for strategies that enhance energy conservation (e.g. Williams, Shorthouse & 
 

99 Lee 2003; Williams, Hellmann & Sinclair 2012; Williams et al. 2012). Local adaptation to 
 

100 winter conditions has been described for traits related to dormancy (e.g. Bradshaw & Holzapfel 
 

101 2001), and thermal tolerance (e.g. Kukal, Ayres & Scriber 1991; Lyytinen, Mappes & Lindström 
 

102 2012). However, few studies have examined local adaptation in overwintering energetics of 
 

103 terrestrial ectotherms (but see Pelini et al. 2009; Williams et al. 2012), and none have taken a 
 

104 cross-seasonal perspective (Williams, Henry & Sinclair in press). 
 
 

105 Higher order traits such as fecundity or viability are determined by nutrient allocation 
 

106 strategies at the physiological level (Zera & Harshman 2001). Thus, studying physiological traits 
 

107 can advance a mechanistic understanding of local adaptation (Woods & Harrison 2002; Schulte, 
 

108 Healy & Fangue 2011).  Because the consequences of season-specific physiological performance 
 

109 are integrated across the lifecycle, a cross-seasonal perspective is essential to realise the full 
 

110 fitness consequences of variation in physiological traits (Potter & Woods 2012). For example, 
 

111 caterpillars with high metabolic rates and thermal sensitivity benefit from faster growth and 
 

112 development during the summer growing season (Ayres & Scriber 1994), but individuals with 
 

113 high metabolic rates consume more energy reserves during winter (Pelini et al. 2009; Williams et 
 

114 al. 2012).  Since winter temperatures are predicted to change more than summer temperatures 
 

115 (Bonsal & Kochtubjada 2009), it is important to understand whether alterations to metabolism 



Functional Ecology Page 6 of 46 
 

7 
 

 

116 are induced by winter or are a carryover from growing season conditions, and whether this 
 

117 relationship is modulated by local adaptation. 
 
 

118 Here, we experimentally decouple growing season and winter temperatures in the 
 

119 laboratory to separate the effects of growing season temperatures from those of overwintering 
 

120 temperatures.  We construct thermal reaction norms for multiple physiological and life-history 
 

121 traits related to energy metabolism, testing for signatures of local adaptation and plasticity in 
 

122 overwintering energetics. We use Fall webworms (Hyphantria cunea Drury; Lepidoptera: 
 

123 Arctiidae; Fig. 1), a widespread moth species, from populations at the northern edge and centre 
 

124 of their native North American range. This system is ideal for several reasons: 1) Fall webworms 
 

125 inhabit thermal environments from sub-tropical to cool temperate, implying they are masters of 
 

126 temperature compensation; 2) adults do not feed post-winter, thus, reproductive capacity depends 
 

127 solely on juvenile-derived nutrients making them vulnerable to negative fitness consequences of 
 

128 energy depletion (Gomi 2000) and 3) larvae live communally in nests, each of which is the entire 
 

129 reproductive output of a singly-inseminated female (Jaenike & Selander 1980), facilitating a 
 

130 split-brood design. Hyphantria cunea species has traits which promote genetically-based local 
 

131 adaptation: moderate dispersal (Yamanaka, Tatsuki & Shimada 2001), genetic structure across 
 

132 their native range (Gomi, Muraji & Takeda 2004), and high genetic diversity (Tao et al. 2009). 
 

133 Local adaptation of development time, critical photoperiod for diapause induction, and number 
 

134 of larval instars has been detected in H. cunea populations in Japan (Gomi & Takeda 1996; 
 

135 Gomi, Inudo & Yamada 2003; Gomi 2007; Gomi et al. 2007). 
 
 

136 We thus hypothesise that H. cunea populations will be locally adapted to their 
 

137 overwintering thermal environment, generating non-parallel reaction norms for fitness-related 
 

138 life-history traits, such that fitness is maximised in natal overwintering conditions. We predict 
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139 that this local adaptation will stem from divergence of overwintering metabolism between 
 

140 populations, which will alter reaction norms for energy use, growth and post-winter 
 

141 development. 
 

 

142 Materials and methods 
 

 

143 OVERVIEW OF STUDY DESIGN 
 
 

144 We employ a reciprocal common-garden design, using populations of H. cunea from the 
 

145 northern edge and centre of their native range, wild-collected at the end of the larval growing 
 

146 season, and housed in the laboratory at temperatures approximating the northern range edge and 
 

147 range centre. Since the majority of development occurred in the field prior to collection, 
 

148 population effects are due not only to the genetic background, but are also a result of 
 

149 developmental effects prior to collection, as well as maternal effects (Nijhout & Davidowitz 
 

150 2009). We will refer to the source populations as “ecotypes”, to emphasise the joint impacts of 
 

151 genotype and environment in determining the phenotypes of each population. 
 
 

152 MICROCLIMATE DATA 
 
 

153 We collected microclimate temperatures (±0.5°C) at hourly intervals from October 2008 
 

154 to May 2009 using iButton thermochron data loggers (Model DS1922L, Maxim-Dallas 
 

155 Semiconductor; Sunnyvale, CA, USA) (Sinclair et al. 2013). We placed the data loggers in 10 
 

156 mL plastic containers filled with silica gel to protect them from moisture damage, and deployed 
 

157 three loggers on the ground beneath the leaf litter in one woodlot near Ottawa, Ontario 
 

158 (dominated by black walnut [Juglans nigra], ash [Fraxinus spp.], and cherry [Prunus spp.]), and 
 

159 one near Athens, Ohio (black walnut).  H. cunea were present in these woodlots, and 
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160 overwintered beneath the leaf litter similar to the logger placement. We calculated bi-weekly 
 

161 mean daily maxima and minima for each location from the microclimate data, and used these to 
 

162 determine the temperature regimes used in the laboratory experiments. We also summed the total 
 

163 degrees above a threshold of -10°C for each logger over the whole period of recording (Oct – 
 

164 May) to give an index of the amount of heat accumulated at each site (and compared these 
 

165 accumulated heat units between sites using a t-test). We inferred snow cover when microclimate 
 

166 temperatures remained close to 0°C with little daily variation. 
 
 

167 STUDY SPECIES AND REARING 
 
 

168 The native range of Hyphantria cunea extends from Mexico to northern Canada across 
 

169 the breadth of North America (Wagner 2005), with an invasive range encompassing much of 
 

170 Asia (Gomi et al. 2007). Larvae are polyphagous, feeding on >400 species of woody plants 
 

171 (Wagner 2005). The H. cunea larvae used in this study were black-headed, although there is a 
 

172 sympatric sibling sub-species of red-headed larvae with markedly different ecology (Takeda 
 

173 2005). Fall webworms overwinter in pupal diapause in the leaf litter, and adults emerge in early 
 

174 summer (Takeda 2005) (Fig. 1). We collected late-instar larvae in August 2009 by removing 20 
 

175 entire nests per site from walnut trees in Columbus, Ohio, USA (40.06°N, 82.57°W) and Ottawa, 
 

176 Ontario, Canada (45.23°N, 75.43°W). We transported the larvae to the Biotron Experimental 
 

177 Climate Change Facility at the University of Western Ontario, where we counted them and 
 

178 reared them to pupation on ad libitum freshly cut local black walnut leaves in 3.7 L plastic 
 

179 containers (one nest per container) in temperature-controlled chambers (EGC-TC2, 
 

180 Environmental Growth Chambers, Chagrin Falls, Ohio, USA) under short daylength (12L:12D), 
 

181 20:12°C 80 % RH. 
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182 We checked the larvae daily for pupation, and upon pupation broods were split between 
 

183 warm (Ohio-like) or cool (Ontario-like) overwintering treatment giving four treatment groups 
 

184 (Ecotype/winter environment): Ohio /warm, Ontario/warm, Ohio /cool, and Ontario/cool. 
 

185 Remaining larvae were discarded in late October when the host plant leaves began to senesce. 
 

186 All larvae that successfully pupated were considered to have survived the larval period, while 
 

187 larvae that did not pupate before 28 October were included in larval mortality estimates. 
 

188 Although pupae from each family were allocated evenly between overwinter environments, some 
 

189 families were underrepresented in some treatments by the end of winter due to mortality. 
 
 

190 The pupae were kept in the dark in 6-well cell culture plates with a moist paper towel on 
 

191 the lid to maintain high humidity, in MIR-153 incubators (Sanyo Scientific, Bensenville, IL, 
 

192 USA) at temperatures fluctuating between the mean daily maximum and minimum microclimate 
 

193 temperatures for Ontario and Ohio calculated from hourly microclimate data (Fig. 2). The 
 

194 incubators were reset every two weeks to track seasonal changes in microclimate temperatures. 
 

195 We weighed the pupae in November and April (MX5 microbalance, Mettler-Toledo, Columbus, 
 

196 OH, USA; d=0.1 µg) and measured their length (± 0.5 mm) using digital calipers (Mastercraft, 
 

197 Toronto, Ontario, Canada). In November and April, 20 pupae from each treatment group were 
 

198 flash-frozen in liquid nitrogen and stored at -80°C for body composition analysis.  At the 
 

199 beginning of April, all pupae were placed on moist vermiculite, and transferred to EGC-TC2 
 

200 chambers on a long day photoperiod (16L:8D) under a 25°C:15°C thermocycle, at 80% relative 
 

201 humidity. Emergence was checked daily, and, when adult moths emerged, time taken to emerge 
 

202 following transfer to 25°C was recorded, the moths were killed at -20°C, and the length of the 
 

203 right forewing was measured from the proximal wing attachment point to the apex. 
 
 

204 ENERGY RESERVE ASSAYS 
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205 To determine the effects of source population and overwintering environment on energy 
 

206 reserves, we measured storage lipids, total carbohydrates, and protein in overwintering pupae at 
 

207 the beginning (November) and end (April) of winter. We determined the sex of each pupa by the 
 

208 presence (female) or absence (male) of a line intersecting the first abdominal sternite. We 
 

209 validated this method of sexing pupae by sexing 77 pupae that were subsequently allowed to 
 

210 develop into adults, and sexed by the presence (males) or absence (females) of claspers and 
 

211 feathered antennae (Resh & Cardé 2009), with a success rate of 95%. We assayed triglycerides, 
 

212 carbohydrates and protein as previously described (Williams et al. 2011; Williams, Hellmann & 
 

213 Sinclair 2012). We expressed triglycerides, carbohydrate and protein concentrations in µg·mg 
 

214 DM
-1

, then scaled them up to whole-animal values by multiplying by total DM. We subtracted 
 

215 whole-animal TAG and carbohydrate from DM to give lipid- (and carbohydrate-) free DM. 
 
 

216 RESPIROMETRY 
 
 

217 To assess plasticity and local adaptation in the temperature-metabolic rate relationship, 
 

218 we measured the CO2 emission of six pupae from each treatment group over a range of 
 

219 temperatures in November (beginning of winter) and April (end of winter). We measured each 
 

220 individual pupa five times: at 5, 10, 15, 20 and 25°C.  The order of temperature and time of day 
 

221 of measurement (between 8am and 8pm) were randomized, and there was no less than 48 hours 
 

222 between measurements on any individual. Pupae were weighed before each measurement. 
 
 

223 We measured CO2 emission as a proxy for metabolic rate using a Sable Systems flow- 
 

224 through respirometry system (Sable Systems International [SSI], Las Vegas, Nevada) with a 
 

225 Li7000 infrared CO2 analyser (LiCor; Lincoln, NE, USA) as previously described (Williams et 

226 al. 2010). The flow rate was 50 mL·min
-1 

through a 4 cm
3 

chamber. We controlled the 
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227 temperatures (± 0.1°C) using a PELT-5 temperature-controlled cabinet (SSI) in which all 
 

228 chambers were contained. Data were acquired at 1s frequency with a UI2 interface (SSI). 
 

229 Resulting data were converted into energy used per unit time (Supporting information). 
 
 

230 DATA ANALYSIS 
 
 

231 All statistical analyses were performed in R v2.15.1. Preliminary data analysis was 
 

232 performed using a standardised data exploration protocol (Zuur, Ieno & Elphick 2010), and our 
 

233 general modelling approach was to start with the saturated model and drop non-significant terms 
 

234 sequentially (confirming the improved fit by ANOVA) until the minimal adequate model was 
 

235 reached (Crawley 2007).  The fit of each model was then assessed by plotting residuals against 
 

236 fitted values to check for mean residual deviation of zero and constant variance. Where non- 
 

237 significant terms are retained in a final model, the distribution of residual variance was strongly 
 

238 preferable in the model presented compared to the simplified model. 
 
 

239 We calculated larval and pupal survival for each family as the proportion surviving to 
 

240 pupation and adulthood respectively. We compared larval survival among ecotypes using a 
 

241 binomial regression, pupal survival using a generalised linear mixed model (nlme package) 
 

242 (Pinheiro et al. 2013) with binomial errors; for all other variables we used general linear mixed 
 

243 models (lme4 package) (Bates, Maechler & Bolker 2011) with Gaussian errors using maximum 
 

244 likelihood parameter estimation. We used family as a random factor in all cases apart from larval 
 

245 survival (for which each family was represented by only one value [proportion  survival] since 
 

246 the broods had not yet been split), with the fixed factors ecotype (larval and pupal survival), 
 

247 ecotype and sex (date of diapause) or ecotype, environment, and sex (all other univariate 
 

248 analyses). Fecundity analysis was performed only on females so sex was omitted as a factor and 
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249 pupal mass added as a covariate due to an observed strong correlation between pupal mass and 
 

250 fecundity. For metabolite analyses, lipid-free dry mass (calculated by subtracting estimated lipid 
 

251 mass from dry mass) was used as a covariate to control for body size. 
 
 

252 To examine direct correlations among life-history traits, we used data all females that 
 

253 survived to adulthood and constructed network graphs based on partial correlation matrices 
 

254 (pairwise Pearson’s correlations conditioned on all other life-history variables) using the qgraph 
 

255 package (Epskamp et al. 2012), where two traits were connected by an edge if they had a 
 

256 significant partial correlations (FDR < 0.05) (Benjamini & Hochberg 1995). 
 

 

257 Results 
 

 

258 MICROCLIMATE DIFFERENCES AMONG SITES 
 
 

259 Mean microclimate temperatures in Ohio were warmer and accumulated more heat units 
 

260 over winter than those in Ontario (t1=18.3, p=0.035; Table S1; Fig. 2). In Ohio, the data loggers 
 

261 were covered by snow for only a few weeks in January, while in Ontario there was some snow in 
 

262 late November,  and continuous cover (leading to low thermal variability) from mid-December to 
 

263 late March (Fig. 2A, Table S1). In months without snow cover, thermal variability of 
 

264 microclimates at the two sites was similar (Table S1).  Incubator temperature regimes calculated 
 

265 from these data reflected what we regard as the salient features of the thermal environment at 
 

266 each site: specifically, the longer period of low and stable temperatures in Ontario, and the 
 

267 greater thermal variability and accumulation of heat in Ohio (Fig. 2C). 
 
 

268 LIFE HISTORY MEASUREMENTS 
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269 The Ontario ecotype had significantly higher larval survival rates than the Ohio ecotype 
 

270 (Ontario: 26.8 % of 2418 larvae from 15 nests survived; Ohio: 17.5 % of 3637 larvae from 20 
 

271 nests survived; z = 7.64, p < 0.0001). The Ohio ecotype had higher mass than the Ontario 
 

272 ecotype at pupation (Fig. 3A, Table S2, Table S3). By the end of winter, pupae from the two 
 

273 ecotypes were more similar in mass, but the responses to the environment differed among 
 

274 ecotypes: each ecotype lost more mass over the winter in the non-natal compared to natal 
 

275 environment, such that Ontario ecotypes were larger than Ohio ecotypes in the cool environment, 
 

276 while Ohio ecotypes were larger than Ontario ecotypes in warm environments (Fig. 3B, Table 
 

277 S2, Table S3). Reaction norms for pupal length in April revealed a similar interaction between 
 

278 ecotype and environment, except that in this case the pupal size was similar in cool 
 

279 environments, while Ohio pupae were considerably larger than Ontario pupae in the warm 
 

280 environment (Fig. 3C, Table S2, Table S3). By adulthood, Ohio ecotypes were larger and there 
 

281 were no effects of overwintering environment (Fig. 3D, Table S2, Table S3). Females were 
 

282 larger in all size and mass measurements (Table S2, Table S3). 
 
 

283 Ohio ecotypes entered dormancy on average two weeks earlier than Ontario ecotypes 
 

284 (Ohio: 14 Sep ± 12 days; Ontario: 29 Sep ± 16 days; Table S2, Fig. 4A). Emergence from 
 

285 dormancy was governed by both ecotype and environment: Ontario ecotypes and individuals in 
 

286 warm environments emerged a few days earlier than Ohio ecotypes and those in cool 
 

287 environments respectively (Fig. 4B, Table S2). Fecundity was positively related to mass, and 
 

288 thus larger Ohio ecotypes tended to lay more eggs than did Ontario ecotypes (Fig. 4C, Table S2). 
 

289 However, there was no effect of ecotype or environment on fecundity once size was controlled 
 

290 for (Table S2). Each ecotype survived to adulthood better under their natal overwintering 
 

291 conditions than did the non-natal ecotype (ecotype × environment z = 1.966, p = 0.049; Fig. 4D). 
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292 There were significant partial correlations among size measurements within each life stage, but 
 

293 no direct significant correlations across life-stages in size measurements (Fig. 5). However, we 
 

294 did detect correlations between pupal size measurements and fecundity (estimated by egg 
 

295 number), and a negative partial correlation between egg number and egg size (Fig. 5). 
 
 

296 PHYSIOLOGICAL MEASUREMENTS 
 
 

297 Water content at the beginning of winter was higher in females and Ohio ecotypes (Fig. 
 

298 6A, Table S4). By the end of winter, water content had decreased considerably and did not differ 
 

299 by ecotype or environment, although females had a higher water content than did males (Fig. 6B, 
 

300 Table S4). Triglycerides at the beginning of winter were higher in females (Fig. 6C), and the 
 

301 warm environment showed a trend toward reducing triglyceride stores in October (Fig. 6C, Table 
 

302 S4). Triglycerides at the end of winter were natural-log-transformed to improve normality. Ohio 
 

303 ecotypes in both environments and Ontario ecotypes in the warm environment had similar 
 

304 (relatively high) triglyceride levels, but Ontario ecotypes in the cool environment had very low 
 

305 triglyceride levels (Fig. 6D, Table S4). Carbohydrates at the beginning and end of winter were 
 

306 square-root-transformed to improve normality. For females at the beginning of winter, 
 

307 carbohydrate concentrations were higher for natal compared to non-natal ecotypes (t1,7=2.33, 
 

308 p=0.044). At the end of winter, carbohydrate content was positively related to lipid-free dry mass 
 

309 (females: t1,7=2.57, p=0.037; males: t1,9=6.18, p<0.001) and Ontario ecotype females had higher 
 

310 carbohydrate content at the end of winter (Table S5), while for males there was no effect of 
 

311 ecotype or environment on carbohydrate content at the end of winter. Soluble protein was higher 
 

312 in females at both the beginning and end of winter (Table S4, Table S5). Lipid-free dry mass was 
 

313 higher for females than for males, but did not differ by ecotype or environment at either the 
 

314 beginning or the end of winter (Table S4, Table S5). 
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315 All pupae respired continuously (i.e. did not exhibit discontinuous or cyclic gas 
 

316 exchange) at all measurement temperatures (Fig. S1). Metabolic rate was log10-transformed prior 
 

317 to analysis to meet assumptions of normality. There were no effects of measurement order on 
 

318 metabolic rate at either time point (beginning of winter: F1,118=0.261, p=0.610; end of winter: 
 

319 F1,117=0.1147, p=0.735). At the end of winter, the 15°C measurement for one individual from the 
 

320 Ontario ecotype in the cool environment was lost due to equipment malfunction. We interpolated 
 

321 to this value using a linear regression of measurement temperature on log10 metabolic rate for 
 

322 that individual. At the beginning of winter, metabolic rate was positively correlated with 
 

323 measurement temperature and negatively correlated with mass, and was lower in pupae that were 
 

324 overwintering in the warm environment (Table S4, Fig. 7A). At the end of winter, metabolic rate 
 

325 remained positively temperature-dependent and was subject to a significant measurement 
 

326 temperature × ecotype interaction, such that the thermal sensitivity of metabolic rate was lower 
 

327 in individuals from Ontario (Fig. 7B). 
 

 

328 Discussion 
 

 

329 Metabolic responses to changes in winter conditions have diverged between populations 
 

330 of Hyphantria cunea, and these altered responses at the physiological level give rise to 
 

331 differences in fitness-relevant traits that suggest adaptation to local winter thermal conditions. 
 

332 This local adaptation appears to be driven by among-population variation in rates of energy use, 
 

333 growth and development and increases survival to adulthood in the natal overwintering 
 

334 environment for each population. 
 
 

335 EVIDENCE FOR LOCAL ADAPTATION – A CROSS-SEASONAL PERSPECTIVE 
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336 Increased performance of natal compared to non-natal ecotypes within each environment 
 

337 is a characteristic signature of local adaptation (Kawecki & Ebert 2004). We found this signature 
 

338 of local adaptation in overwinter survival: mortality of each ecotype was lowest in their natal 
 

339 environment. We note that this pattern may also be generated by developmental or maternal 
 

340 effects, so we use the term local adaptation as an hypothesis requiring further experiments to test. 
 

341 Looking to the physiological level to explain the mechanisms for this local adaptation, we found 
 

342 similar ecotype-by-environment interactions in fitness-relevant traits including pupal mass, size 
 

343 and storage lipid and carbohydrate reserves at the end of winter, thermal sensitivity of 
 

344 metabolism in the spring, and mortality.  For all of these traits (except storage lipids), 
 

345 performance was higher for each ecotype at “home” compared to “away”. Thus, it appears that 
 

346 the higher survival of each ecotype in their natal winter conditions is mediated by alterations to 
 

347 intermediary metabolism that allow them to retain larger size and greater energy reserves 
 

348 throughout winter. This suggests that if winter temperatures become decoupled from growing 
 

349 season temperatures, negative fitness consequences could result for both ecotypes. 
 
 

350 Local adaptation to temperature in terrestrial animals has been shown in life-history traits 
 

351 including body size and growth and development rates (Conover, Duffy & Hice 2009), but few 
 

352 studies have measured traits at both the physiological and life-history level, across multiple life- 
 

353 stages and seasons. In particular, we have shown that local adaptation is mediated across seasons 
 

354 – energetic responses to the overwintering environment influence performance and fitness the 
 

355 following spring, emphasising the importance of taking a cross-seasonal perspective to 
 

356 understanding the impacts of climate change on terrestrial organisms (Williams, Henry & 
 

357 Sinclair in press). Many of these impacts will be mediated through the effects of energetics on 
 

358 seasonal timing. 
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359 The timing of entry into and exit from dormancy will interact with energetics to 
 

360 determine performance and fitness. All else being equal, a longer overwintering period relative 
 

361 to growing season will reduce fitness due to increased energetic costs of winter, or reduced 
 

362 opportunity for resource accumulation. We found that Ohio ecotypes enter dormancy on average 
 

363 two weeks earlier than Ontario ecotypes, likely due to a combination of earlier spring emergence 
 

364 and faster rates of larval growth and development due to warmer temperatures (Morris & Fulton 
 

365 1970a). The threshold temperature for pupal development in H. cunea is 11°C (Morris & Fulton 
 

366 1970a; Gomi, Inudo & Yamada 2003) - our microclimate data show that mean temperatures 
 

367 would cross this threshold in March in the range centre, but not until April at the northern range 
 

368 edge (Fig. 2A). This suggests that adult emergence would occur earlier in Ohio than in Ontario, 
 

369 and indeed spring phenology is generally correlated with latitude, with more southerly 
 

370 populations having earlier spring phenology (Hodgson et al. 2011).  Earlier entry into dormancy 
 

371 in autumn can have negative fitness consequences, since it increases the length of dormancy and 
 

372 leads to energy drain in this species (Gomi 2000), and other insects (Bosch & Kemp 2004). 
 

373 However, the Ohio ecotype also accumulated greater lipid, protein and carbohydrate reserves and 
 

374 attained larger pupal mass and length, which appeared to offset any energetic costs of longer 
 

375 dormancy, since fecundity and adult size were higher in the Ohio ecotype. 
 
 

376 Shorter growing seasons at high latitudes limits the time available for foraging and 
 

377 growth, and thus final size that can be obtained, resulting in body size clines towards smaller size 
 

378 at high latitudes (converse Bergmann clines), particularly in ectotherms with long generation 
 

379 times relative to season length  (Blanckenhorn & Demont 2004). Our data are consistent with a 
 

380 converse Bergmann cline in this species, which at the latitudes we collected from have 1-2 
 

381 generations per year (Wagner 2005). Seasonal time constraints at high latitudes drive differential 



Functional Ecology Page 18 of 46 
 

19 
 

 

382 selection on growing season energetics which can lead to countergradient variation in growth 
 

383 and development rates (Blanckenhorn & Demont 2004). Consistent with this hypothesis, we 
 

384 observed faster development in the Ontario ecotype. Hyphantria cunea populations have been 
 

385 previously shown to differ in their heat requirement for post-winter pupal development post- 
 

386 winter, with populations from relatively cool continental environments in Canada having lower 
 

387 pupal heat requirements post-winter than do coastal populations, enabling early emergence in 
 

388 cool environments (Morris & Fulton 1970a).  Post-winter pupal development in this species is 
 

389 highly heritable and influences fitness (Morris & Fulton 1970b). Frog tadpoles, dragonfly larvae 
 

390 and butterfly larvae from poleward populations also develop faster at a common temperature 
 

391 than do more central populations (Ayres & Scriber 1994; Laugen et al. 2003; Śniegula, 
 

392 Johansson & Nilsson-Örtman 2012; Muir et al. 2014). 
 
 

393 We propose that increased low-temperature anabolism at the end of winter could underlie 
 

394 early development in these and other ectotherms adapted to high temperate latitudes: since it is 
 

395 likely that development had resumed by May when the end-of-winter measurements were taken, 
 

396 the metabolism we measured likely included costs of synthesising adult tissue, and the increased 
 

397 metabolic rate in Ontario ecotypes at low temperatures may reflect an increase in anabolic 
 

398 processes  - consistent with selection for early emergence in short, cool growing seasons. Global 
 

399 patterns in the relationship between thermal sensitivity of growth, development and metabolism 
 

400 have been mixed, with various studies finding either negative (MacKay 1982; Addo-Bediako, 
 

401 Chown & Gaston 2002; Terblanche et al. 2009), positive (Rao & Bullock 1954), or no 
 

402 relationship (Scholander et al. 1953) between thermal sensitivity and environmental 
 

403 temperatures. Some authors have suggested that these idiosyncrasies may relate to microclimate 
 

404 temperatures available to the organism, whereby cold-adapted organisms that have access to 



Page 19 of 46 Functional Ecology 
 

20 
 

 

405 more frequent hot, sunny periods might be expected to have higher thermal sensitivity relative to 
 

406 warm-adapted organisms, while those in permanently cool and cloudy environments might have 
 

407 reduced thermal sensitivity (Addo-Bediako, Chown & Gaston 2002). Our study species 
 

408 overwinters on the ground beneath the leaf litter in wooded areas, and microclimate temperatures 
 

409 in Ontario remain below 10°C until late April. Thus, reduced thermal sensitivity that prevents 
 

410 large reductions in metabolic and development rates at low temperatures may be most beneficial 
 

411 (and are supported by our data). By measuring both metabolism and development rates, the 
 

412 present study provides evidence linking the physiological mechanism (increased metabolic rate) 
 

413 to the life-history consequence (faster post-winter development) under laboratory conditions. 
 
 

414 Local adaptation will determine species’ responses to climate change: if poleward 
 

415 populations are metabolically adapted to local climate conditions, then warming may 
 

416 disproportionately impact these populations by increasing overwinter mortality.  This, in turn, 
 

417 could lead to range contraction, or the failure to colonise newly suitable poleward climates. It 
 

418 remains to be seen how widespread such metabolic local adaptation to winter climate may be 
 

419 among ectotherms or hibernators. If such local adaptation to winter conditions is common, it may 
 

420 require us to rethink the paradigm of peripheral enhancement for poleward populations under 
 

421 climate warming scenarios. 
 
 

422 EFFECTS OF THE OVERWINTERING ENVIRONMENT 
 
 

423 The warm overwintering environment induced a plastic metabolic suppression in pupae 
 

424 from both ecotypes at the beginning of winter. Plastic changes to phenotypes may be adaptive, 
 

425 maladaptive, or neutral, depending on their fitness consequences (Ghalambor et al. 2007). The 
 

426 plastic metabolic response to warm winters may be an example of adaptive phenotypic plasticity 



Functional Ecology Page 20 of 46 
 

21 
 

 

427 (DeWitt & Scheiner 2004), since it was in the predicted direction, expressed similarly by two 
 

428 separate populations, and prevented pupae from experiencing energy drain from warmer winters. 
 

429 Adaptive phenotypic plasticity can facilitate adaptation to novel environments, by reducing 
 

430 directional selection and allowing time for organisms to respond to environmental change 
 

431 (Ghalambor et al. 2007).  Global climate change is modifying winter conditions rapidly, and the 
 

432 capacity for adaptive phenotypic plasticity to buffer some of the negative effects will be an 
 

433 important predictor of species responses to climate change (Williams, Henry & Sinclair in press). 
 

434 The presence of substantial phenotypic plasticity in energy use will decrease the vulnerability of 
 

435 H. cunea to energy drain as a result of winter warming. Hyphantria cunea pupae also show 
 

436 pronounced metabolic suppression and no detectable decline in energy reserves over the course 
 

437 of a winter in the field (Li et al. 2001). However, many dormant ectotherms do experience 
 

438 energy drain as a result of winter warming (Williams, Shorthouse & Lee 2003; Williams, 
 

439 Hellmann & Sinclair 2012; Muir et al. 2013), suggesting that metabolic plasticity is not universal 
 

440 and may be a useful predictor of vulnerability to climate change. 
 
 

441 Since broods experienced identical conditions up until the point of transfer into 
 

442 overwintering treatments, we can definitively say that the metabolic suppression resulted from 
 

443 thermal conditions experienced during the dormant, overwintering stage.  Metabolic suppression 
 

444 is a common component of winter dormancy both in insects (Koštál 2006) and in other 
 

445 hibernating or torpid animals (Storey & Storey 2004), but here we illustrate that the depth of 
 

446 suppression can be modulated by conditions experienced after the onset of dormancy. The depth 
 

447 of metabolic suppression in an overwintering insect can also be increased by increasing thermal 
 

448 variability (Williams et al. 2012). 
 
 

449 CONCLUSIONS 
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450 We detected a signature of local adaptation to the overwintering environment such that 
 

451 survival was maximised in natal environments by both ecotypes, as a result of alterations to 
 

452 intermediary metabolism. These alterations to overwintering metabolism impacted not only 
 

453 survival but also performance in spring. This suggests that any changes to overwintering 
 

454 conditions could have negative impacts on populations across the range of H. cunea, rather than 
 

455 enhancing poleward populations. Since the data available suggest that local adaptation may be 
 

456 common in terrestrial animals, and winter conditions are changing rapidly, more research effort 
 

457 should be expended to assessing cross-seasonal consequences of local adaptation to thermal 
 

458 conditions in terrestrial animals. Current evidence for local adaptation to thermal conditions in 
 

459 terrestrial animals is sufficient to suggest that the population is the appropriate unit for 
 

460 conservation. 
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654 Figure captions 
 

 

655 Figure 1 – Life cycle of temperate univoltine populations of Hyphantria cunea. Adults lay 
 

656 eggs in late spring, which hatch and feed communally in nests during the summer until they 
 

657 reach the final (6th) instar (larval developmental stage) in the autumn. They then disperse into 
 

658 the leaf litter and pupate, overwintering in cocoons beneath the leaf litter. Photos provided by Dr. 
 

659 Andrei Sourakov, McGuire Center for Lepidoptera and Biodiversity, Gainesville FL. 
 
 

660 Figure 2 - Microclimate temperatures for sites near Ottawa, Ontario (ON) and Columbus, 
 

661 Ohio (OH), and incubator temperatures derived from those data (A) Representative traces 
 

662 of microclimate temperatures from under the leaf litter in woodlots where Hyphantria cunea 
 

663 occur in ON or OH from October 2008 to May 2009; measured by paired iButton data loggers. 
 

664 Horizontal lines below indicate the period of continuous snow cover at each site, determined by 
 

665 continuous zero temperatures and low thermal variability. (B) Accumulated degrees above -10°C 
 

666 (close to the close to the minimum temperature experienced at either site) between October and 
 

667 May in Ohio and Ontario.  Data are mean ± SEM of two loggers at each site. (C) Temperatures 
 

668 of incubators used to house H. cunea under conditions approximating OH (warm) or ON (cool). 
 

669 Incubator temperatures were derived from fortnightly mean daily minima and maxima for Oct 
 

670 2008 - May 2009, calculated from microclimate temperatures from two iButtons per site. 
 
 

671 Figure 3 - Size measurements of Hyphantria cunea from Ohio or Ontario, overwintered at 
 

672 warm or cool temperatures in the lab in a simulated reciprocal transplant. Pupal mass at the 
 

673 beginning (A) and end (B) of winter; pupal length at the end of winter (C); and adult mass in the 
 

674 spring (D). Values (± SEM) are predicted from models provided in Table S2, thus taking into 
 

675 account the effects of family and any significant covariates. See Table S3 for raw data. 
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676 Figure 4 – Life history reaction norms of Hyphantria cunea from Ohio or Ontario, 
 

677 overwintered at warm or cool temperatures in the lab in a simulated reciprocal transplant. 
 

678 (A) Date of entering diapause in the fall; (B) days at 25°C prior to adult emergence in the spring; 
 

679 (C) number of eggs per female and (D) percent survival. Values (± SEM) are predicted from 
 

680 models provided in Table S2, thus taking into account the effects of family and any significant 
 

681 covariates. 
 
 

682 Figure 5 – Partial correlations among life-history traits across life-stages of Hyphantria 
 

683 cunea. Beg = beginning of winter, End = end of winter. We found consistent direct correlations 
 

684 within life stages, but few among-stage correlations. Notably, we did not demonstrate any 
 

685 relationship between adult size and fecundity. 
 
 

686 Figure 6 – Body composition measurements of Hyphantria cunea from Ohio or Ontario, 
 

687 overwintered at warm or cool temperatures in the lab in a simulated reciprocal transplant. 
 

688 Water at the beginning (A) and end (B) of winter; and triglycerides at the beginning (C) and end 
 

689 (D) of winter. Values (± SEM) are predicted from models provided in Table S2, thus taking into 
 

690 account the effects of family and any significant covariates. See Table S5 for raw data. 
 
 

691 Figure 7 - Metabolic rates of diapausing Hyphantria cunea pupae from Ohio or Ontario, 
 

692 overwintered at warm or cool temperatures in the lab in a simulated reciprocal transplant. 
 

693 Metabolic rate was measured in (A) October (beginning of winter) or (B) April (end of winter) 
 

694 using flow-through respirometry. The trend lines indicate the predictions of linear models (Table 
 

695 S2). Pupae kept under warm winter conditions had decreased metabolic rates at the beginning of 
 

696 winter, while at the end of winter pupae from Ontario had less temperature-sensitive metabolism. 

697 
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Supporting information 
 

SUPPORTING METHODS 
 
 

Respirometry data processing 

 
 

We drift-corrected water and CO2 measurements to the baseline chamber, then converted 

into CO2 production using the following equation (Lighton 2008): 

 

VCO2 = FRi(FeCO2-FiCO2) × FR (1) 

 

Where VCO2 is the rate of CO2 production in mL·min
-1

; FRi is the incurrent flow rate in mL·min
- 

1
, and FeCO2 and FiCO2 are the fractional concentrations of excurrent and incurrent CO2 

respectively. 

 

We measured VCO2 of each pupa over a 40 min period after a minimum of 1 h 

acclimation and calculated mean VCO2 emission over the final 30 minutes of recording to allow 

accumulated gases to wash through the system. We converted VCO2 to VO2 (rate of O2 

consumption) assuming a respiratory exchange ratio (RER) of 0.8: 

 

VO2 = VCO2 / RER (2) 

 

and then converted VO2 into metabolic rate in Watts (J·sec
-1

) using the oxyjoule equivalent 

(Lighton 2008): 

 

oxyjoule equivalent = 16 + (5 × RER) (3) 

 
 

Metabolic rate = (VO2  × oxyjoule equivalent) / 60 (4) 
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As RERs of non-assimilating organisms vary from 0.7 - 1 depending on the metabolic substrate, 

some error (-3 to +5%) will be introduced by an incorrect assumption of RER in equation 2 

(Lighton 2008). However, as the value of the oxyjoule equivalent also depends on RER 

(equation 3), and the error introduced at this step is in the opposite direction, the assumption of 

an RER of 0.8 throughout will cause less than 0.6 % error in metabolic rate estimates over the 

entire physiological range of RER (Lighton 2008). 

 

SUPPORTING REFERENCES 
 
 

Lighton, J.R.B. (2008) Measuring metabolic rates: A manual for scientists. Oxford University 

Press Inc., New York,NY. 
 

SUPPORTING FIGURES 
 
 

Figure S1 - Representative CO2 emission traces from 6 female overwintering Hyphantria cunea 

pupae, weighing 0.057, 0.089, 0.065, 0.057, 0.0069, and 0.043g (left to right) and measured at 

20°C. ‘b’ indicates baseline measurements from an empty cuvette, conducted at the beginning 

and end of each run. 
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SUPPORTING TABLES 
 
 

Table S1 - Microclimate temperatures from H. cunea habitat in Ottawa, Ontario or Athens, Ohio. Data are soil surface 

temperatures in°C (monthly mean ± SEM) for the 2008 – 2009 winter, from iButton data loggers in the leaf litter. N= number of 

loggers per site; Snow = days of snow cover. 

 

 

 
 

 

Location 

N 

Ontario 

45.2°N, 75.4°W 

2 

Ohio 

39.2°N, 82.0°W 

2 

 Minimum Mean Maximum Snow Minimum Mean Maximum Snow 
October 0.4  ± 2.2 6.0 ± 3.5 18.7 ± 4.2 0 2.3 ± 3.5 11.3 ± 4.2 20.0 ± 2.7 0 

November -5.2 ± 3.3 2.9 ± 4.3 18.5 ± 5.8 0 -0.5 ± 2.2 6.9 ± 3.9 16.3 ± 2.2 0 

December -4.4 ± 1.5 0.0 ± 1.0 2.1 ± 0.6 18 -7.2 ± 5.2 3.3 ± 6.3 18.8 ± 5.4 0 

January -0.4 ± 0.2 0.0 ± 0.2 0.4 ± 0.2 31 -5.0 ± 2.1 1.6 ± 3.3 14.8 ± 4.3 28 

February 0.1 ± 0.1 0.3 ± 0.2 0.6 ± 0.2 28 -6.1 ± 2.5 2.8 ± 4.3 19.8 ± 4.4 6 

March -4.7 ± 1.5 1.7 ± 3.9 23.7 ± 5.4 25 -5.8 ± 2.5 4.0 ± 5.5 25.8 ± 8.9 5 

April -2.4 ± 3.0 8.7 ± 7.5 39.2 ± 8.1 0 2.8 ± 2.8 12.7 ± 5.5 33.5 ± 7.7 0 

May 3.9 ± 2.6 13.7 ± 5.7 33.7 ± 7.2 0 9.3 ± 2.2 17.2 ± 4.1 33.7 ± 5.5 0 

Absolute min -5.4 -9.1 
Absolute max 42.1 34.8 

Length of snow cover 14.5 weeks 5.5 weeks 
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Table S2 – Influences on life-history of overwintering Hyphantria cunea. General linear mixed effects models of the effects of 

ecotype, overwintering environment, and sex on Fall webworms from Columbus, Ohio (OH) or Ottawa, Ontario (ON) overwintered in 

the laboratory at warm or cool microclimate temperatures in a simulated reciprocal transplant. Mass = pupal mass, Development = 

days to emerge after transfer to 25°C. The factor level associated with higher values of the response variable is indicated in 

parentheses unless interactions were detected, and the direction of the slope for significant covariates is indicated in parentheses. Q- 

values were calculated using a table-wide FDR-correction (Benjamini & Hochberg 1995). 

Variable Parameter df T 

statistic 

P 

value 

Q 

value 

MassNov Sex (F) 511 8.65 <0.001 <0.001 
 Ecotype (OH) 29 2.48 0.019 0.021 

MassApr Sex (F) 144 4.11 <0.001 <0.001 

 Ecotype × Environment 144 2.09 0.038 0.038 

Pupal lengthApr Sex (F) 141 4.28 <0.001 <0.001 

 Ecotype × Environment 141 3.22 0.002 0.003 

Adult mass Sex (F) 59 8.58 <0.001 <0.001 
 Ecotype (OH) 19 5.11 <0.001 <0.001 

Wing length Sex (F) 55 4.78 <0.001 <0.001 

Diapause date Ecotype (ON) 30 3.2 0.003 0.004 

Development Ecotype (ON) 16 3.89 0.001 0.001 
 Environment (Cool) 48 4.76 <0.001 <0.001 

Fecundity Mass (+) 10 4.97 <0.001 0.001 
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Table S3 - Size of Fall webworms originating from Ohio or Ontario and overwintered at 

warm (shaded) or cool temperatures in a simulated reciprocal transplant experiment. 

Values are mean ± SEM, sample sizes are in parentheses. 

 
   

Pupal measurements 
Adult 

measurements 
 

Ecotype 

 

Environment 

 

Sex 
Autumn 

mass (mg) 

Spring 

mass 

(mg) 

Length 

(mm) 

Mass 

(mg) 

Wing 

length 

(mm) 

 

 
 

Ohio 

 
warm 

M 
88.2 ± 3.0 

(73) 

74.8 ± 6.8 

(22) 

11.6 ± 0.2 

(22) 

51.1 ± 5.8 

(10) 

12.7 ± 0.5 

(8) 

F 
102.3 ± 3.4 

(61) 
92.2 ± 4.6 

(21) 
11.9 ± 0.1 

(21) 
79.7 ± 2.8 

(13) 
14.4 ± 0.7 

(13) 

 
cool 

M 

F 

84.1 ± 2.5 

(71) 

108.6 ± 2.9 

79.5 ± 3.9 

(21) 

89.3 ± 4.8 

11 ± 0.2 (21) 

11.8 ± 0.2 

45.4 ± 5.1 

(12) 

78.9 ± 4.4 

12.2 ± 0.4 

(10) 

13.4 ± 0.7 

 (73) (27) (27) (10) (10) 

 

 
 

Ontario 

 
warm 

M 
76.9 ± 2.7 

(57) 

69.8 ± 4.6 

(16) 

10.5 ± 0.2 

(16) 

31.7 ± 4.7 

(5) 

11.8 ± 0.5 

(4) 

F 
91.1 ± 2.9 

(74) 

79.7 ± 4.4 

(21) 

10.9 ± 0.2 

(21) 

61.5 ± 7.3 

(6) 

13.5 ± 0.7 

(6) 

cool M 

F 

81.3 ± 1.8 

(74) 

70.9 ± 2.7 

(22) 

10.8 ± 0.1 

(21) 

35.3 ± 4.2 

(9) 

11.3 ± 0.6 

(9) 

 91.4 ± 2.5 

(60) 

90.3 ± 4.7 

(16) 

11.2 ± 0.2 

(14) 
57 ± 4.0 (16) 

13.7 ± 0.3 

(16) 
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Table S4 – Influences on physiology of overwintering Hyphantria cunea. General linear 

mixed effects models of the effects of ecotype, overwintering environment, and sex on Fall 

webworms from Columbus, Ohio (OH) or Ottawa, Ontario (ON) overwintered in the laboratory 

at warm or cool microclimate temperatures in a simulated reciprocal transplant. Mass = pupal 

mass, LFDM = lipid-free dry mass, Met. rate = metabolic rate, Temp. = measurement 

temperature for metabolic thermal performance curves. The factor level associated with higher 

values of the response variable is indicated in parentheses unless interactions were detected, and 

the direction of the slope for significant covariates is indicated in parentheses. Q-values were 

calculated using a table-wide FDR-correction (Benjamini & Hochberg 1995). 

 
Variable Parameter df T 

statistic 

P 

value 

Q 

value 

WaterNov Sex (F) 21 2.25 0.035 0.049 
 Ecotype (OH) 15 4.59 <0.001 0.001 
 Environment (Cool) 21 2.15 0.044 0.057 

WaterApr Sex (F) 20 2.76 0.012 0.023 

TriglyceridesNov Sex (F) 21 2.32 0.030 0.045 

 Ecotype (OH) 15 2.14 0.049 0.057 
 Environment (Cool) 21 1.74 0.096 0.096 

TriglyceridesApr Sex (F) 18 3.90 0.001 0.003 

 Ecotype × Environment 18 2.49 0.023 0.037 

CarbohydratesNov Sex × Ecotype × 

Environment 

18 2.04 0.057 0.060 

CarbohydratesApr Sex × Ecotype × 

Environment 

17 2.06 0.055 0.060 

ProteinNov Sex (F) 24 4.45 <0.001 <0.001 

ProteinApr Sex (F) 23 4.61 <0.001 <0.001 

 Ecotype (OH) 23 2.10 0.046 0.057 

LFDMNov Sex (F) 22 5.40 <0.001 <0.001 

LFDMApr Sex (F) 20 3.50 0.002 0.006 

Met. rateNov Temp. (+) 94 10.45 <0.001 <0.001 

 Mass (-) 94 2.64 0.010 0.021 
 Incubator (Cool) 22 2.99 0.007 0.016 

Met. rateApr Temp. (+) 94 13.77 <0.001 <0.001 

 Temp. × Ecotype 94 2.47 0.015 0.026 
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Table S5 – Body composition of Fall webworms originating from Ohio or Ontario and overwintered at warm (shaded) or cool 

temperatures in a simulated reciprocal transplant experiment. Values are mean ± SEM, sample sizes are in parentheses. TAG = 

triglycerides, Carb = carbohydrates, LFDM = lipid- and carbohydrate-free dry mass. 

   Autumn measurements (November) Spring measurements (April) 

Ecotype Environment Sex 
Water 

(mg) 

TAG 

(mg) 
Carb 

(mg) 

Protein 

(mg) 

LFDM 

(mg) 
Water 

(mg) 

TAG 

(mg) 
Carb 

(mg) 

Protein 

(mg) 

LFDM 

(mg) 

 

 
 

Ohio 

 
warm 

M 
77.3 ± 

4.5 (5) 

10.9 ± 

1.4 (5) 

0.074 ± 

0.044 (5) 
13.7 ± 

0.8 (3) 

22.0 ± 

2.5 (5) 

30.7 ± 

10 (4) 

10.9 ± 

1.4 (5) 

0.062 ± 

0.034 (3) 
14.6 ± 

2.3 (5) 

19.9 ± 

1.7 (4) 

F 
80.3 ± 

5.1 (4) 

12.3 ± 

2.4 (4) 

0.257 ± 

0.042 (6) 
8.1 ± 

0.4 (6) 

28.3 ± 

2.8 (4) 

50 ± 

7.1 (7) 
12.3 ± 

2.4 (4) 

0.033 ± 

0.020 (6) 
7.2 ± 

0.6 (6) 

27.5 ± 

3.1 (7) 

 
cool 

M 

F 

76.2 ± 

2.8 (6) 

96.4 ± 

3.5 (5) 

11.2 ± 

0.9 (6) 

16.5 ± 

2.5 (5) 

0.253 ± 

0.067 (4) 

0.221 ± 

0.040 (5) 

12.6 ± 

1.1 (7) 

10.4 ± 

1.7 (4) 

19.1 ± 

1.7 (6) 

28.1 ± 

1.7 (5) 

39 ± 

11.2 (6) 

51.2 ± 

8.5 (3) 

11.2 ± 

0.9 (6) 

16.5 ± 

2.5 (5) 

0.122 ± 

0.052 (7) 

0.095 ± 

0.014 (4) 

11.7 ± 

1.3 (4) 

8.5 ± 

0.9 (5) 

21.2 ± 

2.7 (6) 

26.8 ± 

1.5 (3) 

 

 
 

Ontario 

 
warm 

M 
54.4 ± 

8.4 (6) 

6.7 ± 

1.6 (6) 

0.273 ± 

0.097 (5) 
10.6 ± 

0.6 (5) 

17.2 ± 

1.2 (6) 

34 ± 

2.8 (5) 
6.7 ± 

1.6 (6) 

0.159 ± 

0.014 (5) 
11.6 ± 

0.9 (5) 

21.6 ± 

2.5 (5) 

F 
63 ± 

8.9 (4) 
9.7 ± 

4.1 (4) 

0.179 ± 

0.081 (5) 
7.2 ± 

0.9 (5) 

22.6 ± 

2.3 (4) 

66.8 ± 

7.2 (4) 

9.7 ± 

4.1 (4) 

0.146 ± 

0.055 (5) 
8.4 ± 

1.4 (5) 

25.8 ± 

2.6 (4) 

cool M 

F 

68.2 ± 

4 (5) 

70.4 ± 

5.3 (5) 

10.4 ± 

1.2 (5) 

11.6 ± 

1.4 (5) 

0.124 ± 

0.066 (4) 

0.134 ± 

0.048 (6) 

10.9 ± 

1.2 (4) 

9.2 ± 

0.8 (5) 

17.9 ± 

0.9 (5) 

28.8 ± 

3.2 (5) 

49.8 ± 

2.3 (5) 

49.9 ± 

9.6 (5) 

10.4 ± 

1.2 (5) 

11.6 ± 

1.4 (5) 

0.306 ± 

0.087 (4) 

0.081 ± 

0.028 (5) 

10.1 ± 

1.5 (4) 

7.7 ± 

1.3 (6) 

15.9 ± 

1.6 (5) 

24.2 ± 

1.3 (5) 
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