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Abstract and Keywords

Valuing American options is a central problem in option pricing since the early- exercise fea-

ture is very common among financial or insurance derivatives products. For high-dimensional

American options, Monte Carlo simulation is generally regarded as the only viable approach to

price them, and this is the focus of our work. We propose a new regression-based Monte Carlo

algorithm for pricing American options. This method typically generates an upper bound of

the option value. It is computationally efficient and generates accurate price estimates.

To improve the convergence rate, we apply a bias reduction technique to the least-squares

Monte Carlo estimators of American option value. It works by subtracting a bias approximation

from the original option value estimators at each exercise opportunity. The bias approximation

is derived using large sample properties of the least-squares regression estimators. The result-

ing expression is easy to evaluate, and is applicable to any payoff structures and underlying

processes. Numerical results show that this technique can significantly reduce the bias. How-

ever, it introduces non-negligible computational costs, thus careful treatment is required when

it is adopted in practice.

Finally, we extend the least-squares Monte Carlo algorithm to estimate the counterparty

exposures of American options. The new algorithm is termed optimized least-squares Monte

Carlo (OLSM), which is combined with variance reduction techniques, initial state dispersion

and multiple bucketing to enhance its performance. The biggest advantage of OLSM is that

it avoids nested simulations, allowing for the computation of risk measures on various time
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horizons under a reasonable computational budget.

Keywords: American options, multidimensional, Monte Carlo simulation, regression, bias

reduction, counterparty exposure.
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1

Chapter 1

Introduction

We begin the introduction with an overview of the major contributions. All the work in this

thesis is centered around American options. In this thesis, we

∙ develop a new, efficient regression-based Monte Carlo algorithm which typically gener-

ates an upper bound for the true value of an American option;

∙ provide the proofs for the properties of the option value estimator generated by the new

algorithm;

∙ extend a recently developed bias reduction technique to the least-squares Monte Carlo

(LSM) estimators;

∙ use numerical results to show that the bias reduction method works effectively for the

low-biased LSM estimator, but not so well for the high-biased LSM estimator;

∙ design an optimized least-squares Monte Carlo (OLSM) method that avoids the use of

nested simulations for estimating counterparty exposures of American options;

∙ demonstrate that OLSM can generate reasonably accurate exposure estimates.

An American option is a contract that allows the holder to exercise at any time before and

on the maturity date. This early-exercise feature makes it difficult to derive a fair price for
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the American options. As of today, no analytical closed-form solution exists for an American

option written on just one underlying asset, although several analytical approximations have

been developed. As a result, people often resort to numerical methods, such as finite difference

methods, transform methods, and variational inequalities, etc. Unfortunately, all these meth-

ods break down for high-dimensional problems, which leaves us no choice but Monte Carlo

simulation, since its convergence rate is independent of the dimension.

There is a long history about pricing American options by simulations in the literature. It

started with Tilley [16] which dispelled the belief that simulations could not be used for valuing

American options. A great deal of subsequent work was inspired by Tilley’s pioneering paper.

Representative works include Broadie and Glasserman’s random tree method [2] and stochastic

mesh method [3], the regression-based methods in Carrière [4], Longstaff and Schwartz [13]

and Tsitsiklis and Van Roy [17], and the duality approach in Andersen and Broadie [1], Haugh

and Kogan [6] and Rogers [15]. In particular, the regression-based methods are the heart of

this thesis. It is reasonable that the regression-based methods are at the forefront of research

since they are the most efficient among the aforementioned approaches, simple to implement

and applicable to many payoff structures and underlying processes.

The value of an American option is determined by the optimal exercise strategy. Owing to

this nature, it is relatively easy to generate a lower bound for the option value. One standard

approach is to estimate the exercise strategy by cross-sectional regression and approximate dy-

namic programming on the first set of simulated paths, then simulate the second (independent)

set of paths on which exercise decisions are made based on the estimated exercise strategy.

Since the estimated exercise strategy can never beat the optimal exercise strategy by definition,

it leads to a lower bound for the option value.

On the contrary, the establishment of an upper bound for the option value is much more

challenging for the regression-based methods. High-biased estimators can be constructed in

the context of random tree or stochastic mesh by using the same continuation value estimator

to make exercise decisions and propagate backward. However, the same approach does not
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work as well for the regression-based methods as the sign of the regression model error, and

hence the direction of bias of the option value estimator, is unknown. As a consequence, there

is no theoretical guarantee that the option value estimator generates an upper bound. Nonethe-

less, we note that it typically generates an upper bound in numerical experiments such as those

appear in Glasserman [5]. Independent works in Haugh and Kogan [6] and Rogers [15] over-

come the deficiency of the above approach by constructing a true upper bound using a duality

approach. By that it means the upper bound is valid no matter what the sign of the regression

model error is. The major drawback of the duality approach is that it is computationally de-

manding to generate a dual upper bound, thus it may not serve well in those situations where

speed is critical.

The first goal of this thesis is to develop a computationally efficient algorithm which gen-

erates a price estimate that helps evaluate the tightness of the lower bound. Ideally, this price

estimate forms a true upper bound so that a valid confidence interval can be constructed for the

true option value, but a tight upper bound relative to the true approximation value for a given

finite set of basis functions is also informative — the smaller the gap between the upper bound

and the lower bound, the more accurately the selected set of basis functions approximates the

true continuation value function. We attain the goal by proposing a new regression-based al-

gorithm that is similar to the one in Tsitsiklis and Van Roy [17], but it is mixed with some

important elements in the Longstaff-Schwartz algorithm. More explicitly, in the new algo-

rithm, continuation values on the out-of-the-money paths are estimated by the discounted cash

flows, while those on the in-the-money (ITM) paths are given by a regression fit that makes

use of the ITM paths only. Numerical results demonstrate that these slight modifications can

significantly improve the accuracy of the price estimates compared to the Tsitsiklis-Van Roy

algorithm. The new algorithm typically generates high-biased estimates that can be used to

evaluate the tightness of the lower bound. Furthermore, the new algorithm has a competitive

advantage over the duality approach in terms of computational efficiencies. Intuitively, a fast

and reasonably accurate algorithm is more sound than a slow but very accurate algorithm in
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practical situations. Therefore, the new algorithm is a valuable addition to the literature.

We move on to look at the American option pricing problem from the efficiency point of

view. Given a regression-based Monte Carlo estimator, we would like to design a method

that makes it converge faster to the true option value. A standard approach for this purpose

is to apply variance reduction methods. Interested readers may refer to Juneja and Kalra [7],

Lemieux and La [12] and Moreni [14], to name a few. Variance reduction is not the focus

of our work, though. Noting that all Monte Carlo estimators of American option value are

consistent but biased, we are presented with an opportunity to accelerate the convergence of

the estimators by reducing estimator bias.

Whitehead [18] has recently developed a general bias reduction technique in the context

of a stochastic tree estimator. We extend his work to the popular LSM estimators. Incorrect

exercise decisions lead to bias expressions that cannot be evaluated analytically. To get around

this problem, we make use of the large sample properties of the least-squares estimators of

the regression coefficients to derive an approximation to the bias. Particularly, a normal distri-

bution is used to approximate the distribution of the estimators of the regression coefficients.

The resulting expression is easy to evaluate, and works for virtually any payoff function and

underlying process. By recursively subtracting the bias approximation from the uncorrected

option value estimator, we obtain a bias-reduced estimator at time zero. We apply the bias

reduction method to both high- and low-biased LSM estimators. Numerical results show that

the bias-corrected estimators outperform their uncorrected counterpart across all combinations

of number of exercise opportunities, option moneyness, and sample size. Although the method

can significantly reduce the relative error of either estimator, it does not benefit the high-biased

estimator as far as computational speed is concerned. The reason is that it doubles the com-

puting time while it reduces the relative error of the high-biased estimator by a factor less than

two in some cases. On the contrary, the relative error reduction factor for the low-biased es-

timator is much greater than two. Thus, the benefits of the bias reduction method outweigh

the costs. Significant computational efficiency increases can be realized through trivial parallel
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implementations using the corrected estimator.

Besides valuing American options, we are also interested in measuring the counterparty

credit exposure of these contracts. The counterparty risk is the risk that a party to an over-the-

counter (OTC) derivative contract (traded directly between two parties) may fail to perform

on its contractual obligations, causing losses to the other party. Losses are often quantified in

terms of the replacement cost of the defaulted derivatives. Counterparty exposure is the larger

of zero and the market value of a derivative that would be lost if the counterparty were to default

and there were zero recovery. We exclusively focus on the Monte Carlo approach because this

is generally applicable to various types of products and risk factor processes. In order to find

the quantile of the exposures at a future time point, we need to estimate the market value of

the option at every simulated state at that specific time point. Since the valuation of American

options is done by simulation, a straightforward implementation of the Monte Carlo approach

for estimating counterparty exposures requires nested simulations, which is computationally

formidable, especially when the risk horizon is long.

We contribute to the area of counterparty exposure estimation by proposing a regression-

based method that avoids the time-consuming nested simulations. This method, which we term

OLSM, is actually inherited from Longstaff and Schwartz’s LSM method. The exposure at a

future time point on a particular path can be estimated by the maximum of the options’s in-

trinsic value and the estimated continuation value, where the latter is a by-product of the LSM

method. By that we mean the regression coefficients are estimated using LSM, then the expo-

sure is obtained by using these estimated regression coefficients together with the risk factors

simulated under the real-world measure. It is seen that the biggest underlying task here is to

estimate the regression coefficients, or the continuation value function, accurately. This task is

of utmost importance for estimating the exposure of American options since an inaccurate con-

tinuation value estimate may cause an option to be exercised early, in which case the exposure

is underestimated because exposures at all the future dates would be set to zero after exer-

cise. We find that initial state dispersion and multiple- bucketing (piecewise-linear regression)
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are two useful techniques for improving the regression fit. Initial state dispersion widens the

support for regression, whereas multiple-bucketing address the fact that the continuation value

function, in general, cannot be well approximated by a single polynomial model throughout the

whole space. Furthermore, variance reduction techniques can be applied to reduce the standard

error of the exposure estimates. Numerical results reveal that OLSM can dramatically reduce

the number of incorrect exercise decisions, leading to a major enhancement of the accuracy

of the exposure estimates. The efficiency and effectiveness of OLSM render it an excellent

candidate for practitioners who are involved in measuring counterparty exposures.

Throughout the thesis, our work is based on three types of existing regression-based es-

timators for valuing American options, including the interleaving estimator in Longstaff and

Schwartz [13], the high-biased estimator in Tsitsiklis and Van Roy [17] and its associated low-

biased standard path estimator. Owing to the fact that the estimator proposed by Tsitsiklis and

Van Roy often produces severely high-biased estimates (see, for example, the numerical results

in Chapter 8 of Glasserman [5]), while the magnitude of bias for the low-biased estimates is

relatively small, we are interested in developing a high-biased estimator that results in a smaller

magnitude of bias. This work is done in Chapter 2. In Chapter 3, we consider applying a bias

reduction technique to the high- and low-biased estimators, but not the interleaving estimator

because the dependence of the sample paths that are used to make exercise decisions and prop-

agate backward renders difficulties in deriving a bias approximation. Lastly, the interleaving

estimator remains the best one to date. It is the best since it is economical, uses one set of

sample paths only and guarantees to generate a low-biased estimator for a large sample size.

On the other hand, the high-biased estimator does not always generate a valid upper bound, no

matter how large the sample size is. Therefore, we decide to adopt the interleaving estimator

in estimating counterparty exposures in Chapter 4.

This introductory chapter closes with a short outline of the rest of the thesis. Chapter 2

develops a new regression-based algorithm that typically generates an upper bound for the

American option value. Theoretical properties of the resulting estimator are studied in this
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chapter. The materials in this chapter appear in Kan and Reesor [9]. Chapter 3 extends a

bias reduction technique to the context of the least-squares Monte Carlo estimators for valuing

American options. The content of this chapter is based on Kan and Reesor [10] and Kan et

al. [11]. Chapter 4 considers the problem of measuring counterparty exposures of American

options. A version of this chapter is published in Kan et al. [8]. Finally, Chapter 5 summarizes

the main results of the thesis and recommends future directions for research related to this

work.
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Chapter 2

An alternative regression-based method

for American option valuation

2.1 Introduction

Pricing American options is challenging as the option holder has the right to exercise the op-

tion before the maturity date. The problem becomes more difficult under a high-dimensional

setting, for which lattice and finite difference methods are often impractical due to the curse

of dimensionality. Monte Carlo simulation is the only viable means to price high-dimensional

American options since its convergence rate is independent of the number of dimensions. Many

simulation-based algorithms have been proposed for pricing American options in the last two

decades, beginning with Tilley [12] that first dispelled the belief that simulation could not be

used for American option valuation.

Regression-based methods for pricing American options were proposed in Carrière [4],

Tsitsiklis and Van Roy [13], and Longstaff and Schwartz [8]. The algorithms proposed in

Tsitsiklis and Van Roy [13] and Carrière [4] typically generate an upper bound, whereas the

method in Longstaff and Schwartz [8] generates a lower bound. Clèment et al. [5] and Stentoft

1A version of this chapter has been submitted for publication [7].
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[11] analyzed the convergence of Longstaff and Schwartz’s least-squares method. Tsitsiklis

and Van Roy [13] also gave convergence results for their proposed algorithm.

True upper bounds based on a duality approach were independently proposed in Rogers

[10] and Haugh and Kogan [6]. Andersen and Broadie [1] developed a practical duality-based

algorithm which uses only the approximation to the optimal exercise strategy to generate an

upper bound. The drawback of the Andersen-Broadie algorithm is that it requires nested simu-

lation, which means it is very computationally demanding. To remedy this drawback, Broadie

and Cao [3] designed variance reduction techniques to improve the efficiency of computing the

dual upper bound. Furthermore, Belomestny et al. [2] proposed a method that computes the

dual upper bound without nested simulation. This method entails a regression estimator that

preserves the martingale property.

The regression-based algorithm we propose in this chapter is similar to the one that appears

in Tsitsiklis and Van Roy [13]. We suggest that on the in-the-money (ITM) paths continuation

values are obtained by regression, whereas on the non-ITM paths the continuation values are

the discounted approximate option values from the next time point along that sample path. This

differs from the Tsitsiklis and Van Roy approach which uses regression to estimate continuation

values on all the paths. Somewhat surprisingly, these slight modifications help generate much

more accurate price estimates. The effects of these modifications are twofold:

∙ regression only on the ITM paths gives better fit, hence more accurate continuation value

estimates;

∙ discounting the approximate option values on the non-ITM paths prevents the introduc-

tion of additional approximation error in regression.

By way of construction, we expect that the new method works better for out-of-the-money

(OTM) options than ITM options. Numerical results, however, show that it is effective across

option moneyness.

The rest of this chapter is organized as follows. Section 2.2 describes the American option
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pricing problem. Section 2.3 introduces and discusses the properties of the new regression-

based Monte Carlo estimator for American option value. Numerical results in Section 2.4

demonstrate the performance of the new estimator. We conclude the chapter in Section 2.5.

2.2 The Pricing Problem

In this section we set up the notation for the Bermudan option pricing problem. Bermudan

options are the discrete-time version of American options, i.e., options where the holder has

the right to exercise at a finite number of dates prior to the option maturity. Most simulation

algorithms, including the one presented here, for pricing American options effectively price

Bermudan options. In this chapter, we refer to Bermudan options as American options.

Suppose the option has n underlying assets represented by St = (S1
t , . . . ,S

n
t ), which is a

vector-valued Markov process on ℝn with fixed initial state S0. All processes are defined on

a risk-neutral filtered probability space, (Ω,F ,{Ft},ℙ), satisfying the usual conditions. In

particular, the filtration {Ft} is generated by {St}. Let ht be the payoff upon exercise at time

t. The payoff ht depends on the current state and may, in general, depend on the entire history

of the underlying process until time t. The option holder has d exercise opportunities at times

0 < t1 < t2 < .. . < td = T , with T the option maturity. For ease of notation, we write i for ti.

Without loss of generality and with a gain in clarity, we suppress the discount factor throughout

the chapter. The option value is

Q0(S0) = sup
τ∈T

E0[hτ(Sτ)], (2.1)

where τ is a stopping time taking values in the finite set T = {1,2, . . . ,d}. The notation

Et [⋅] is short for the expectation conditional on the information available up to time t, i.e.,

Et [⋅] = E[⋅∣Ft ].

Valuing an American option is a discrete optimal stopping time problem that can be de-
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composed, for i = 1, . . . ,d −1, into the recursive equations

Ci(Si) = Ei [Qi+1(Si+1)] and (2.2)

Qi(Si) = max(Ci(Si),hi(Si)), (2.3)

where Ci is the value of continuing after some time i ∈ T , and Qi represents the option value

at time i (i.e., the greater of the value of exercising or continuing). The terminal condition is

Cd = 0 since there is no value in holding the option past expiry. This translates to the terminal

condition on the option value, Qd = hd .

In parallel to (2.2), we define

Ci(Si, j) = Ei
[
Qi+1(Si+1, j)

]
, (2.4)

where Si, j denotes the state along the jth sample path at time i. {Si, j} represents N independent

sample paths, each conditional on a fixed value of S0. This will play a role in the proof of

Theorem 2.1 in Section 2.3.2.

2.3 Regression-based Estimators

In the literature of Monte Carlo pricing of American options, regression-based estimators are

prevalent because of their simplicity and efficiency. In this section, we first review a regression-

based estimator described in Tsitsiklis and Van Roy [13]. Then, we will introduce a new

regression-based estimator, which is a slight modification of the former. Since they both typi-

cally generate an upper bound, we call them ‘old high’ and ‘new high’ estimators, respectively.

Before we proceed, we provide an explicit expression for the continuation value estimator.

Regression of the option value Qi+1(Si+1) on the current state Si implies an expression for the
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continuation value of the form 2

E [Qi+1 (Si+1) ∣Si = x ] =
M

∑
k=1

βikψk(x), (2.5)

for an arbitrary point x ∈ ℝn, some basis functions ψk : ℝn → ℝ and some constants βik for

time i, and k = 1, . . . ,M. We can equivalently write (2.5) as

Ci(x) = β T
i ψ(x), (2.6)

where

β T
i = (βi1, . . . ,βiM) and ψ(x) = (ψ1(x), . . . ,ψM(x))T .

For simplicity, we assume that the same basis functions are used at different exercise dates,

thus ψ does not depend on i. Assuming (2.5) holds, the vector βi is given by

βi =
(
E
[
ψ(Si)ψ(Si)

T])−1
E [ψ(Si)Qi+1(Si+1)] . (2.7)

The (unbiased) least-squares estimator of βi is given by

β̃i =

Ã
1
N

N

∑
j=1

ψ(Si, j)ψ(Si, j)
T

)−1
1
N

N

∑
j=1

ψ(Si, j)Qi+1(Si+1, j), (2.8)

where N is the number of sample paths. As the option values Qi+1 are unknown, they are in

practice replaced by their estimators Q̂i+1, which leads to another estimator of βi,

β̂i =

Ã
1
N

N

∑
j=1

ψ(Si, j)ψ(Si, j)
T

)−1
1
N

N

∑
j=1

ψ(Si, j)Q̂i+1(Si+1, j). (2.9)

2More generally, the expectation can be conditioned on the history of the state variables up to time i.
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The estimator β̂i then defines a continuation value estimator through

Ĉi(x) = β̂ T
i ψ(x), (2.10)

which will be used to construct the ‘old high’ and ‘new high’ estimators in the next sections.

2.3.1 Old high estimator

The old high estimator follows the approach of Tsitsiklis and Van Roy [13]. The algorithm is

given below:

∙ For i = d,

Q̂oh
d (Sd, j) = hd(Sd, j), j = 1, . . . ,N.

∙ For i = d −1, . . . ,1,

Ĉoh
i (Si, j) = β̂ T

i ψ(Si, j) and

Q̂oh
i (Si, j) = max(Ĉoh

i (Si, j),hi(Si, j)), j = 1, . . . ,N,

with β̂i as in (2.9).

∙ At time 0,

Q̂oh
0 = 1

N ∑N
j=1 Q̂oh

1 (S1, j).

Note that for this estimator (a) all paths are used in estimating regression coefficients; and (b)

the continuation value estimator on all paths is provided by the regression fit.

2.3.2 New high estimator

We propose a new high estimator which differs from the old high estimator in two aspects: (a)

only ITM paths are used in estimating regression coefficients; (b) on the non-ITM paths, the

time-i continuation value estimators are set to the discounted time-(i+1) option value estima-

tors. Modification (a) aims at improving the regression fit, while modification (b) prevents the

introduction of additional error in approximating the continuation value by regression.
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Define JN
i =

∪N
j=1 Ji j and Ji j = {hi(Si, j) > 0} for i = 1, . . . ,d − 1. The set, Ji j, and its

complement, Jc
i j, represents that path j is ITM and non-ITM at time i, respectively. Let

{Si,1′ ,Si,2′, . . . ,Si,∣JN
i ∣′} be the states along the paths in JN

i , with ∣JN
i ∣ the number of elements

in the set JN
i , and let 11A be the indicator function of the set A, taking the value of 1 on A and 0

otherwise. The algorithm for the new high estimator is presented as follows:

∙ For i = d,

Q̂nh
d (Sd, j) = hd(Sd, j), j = 1, . . . ,N.

∙ For i = d −1, . . . ,1,

Ĉnh
i (Si, j) = (β̂ ′

i )
Tψ(Si, j) and

Q̂nh
i (Si, j) = Q̂nh

i+1(Si+1, j) ⋅11Jc
i j
+max(Ĉnh

i (Si, j),hi(Si, j)) ⋅11Ji j ,

with

β̂ ′
i =

⎛
⎝ 1
∣JN

i ∣
∣JN

i ∣′

∑
j=1′

ψ(Si, j)ψ(Si, j)
T

⎞
⎠

−1
1

∣JN
i ∣

∣JN
i ∣′

∑
j=1′

ψ(Si, j)Q̂nh
i+1(Si+1, j). (2.11)

∙ At time 0,

Q̂nh
0 = 1

N ∑N
j=1 Q̂nh

1 (S1, j).

In what follows, we will discuss the properties of the new high estimator. We assume the

following conditions are satisfied for the rest of this section.

A1: For every i and every k, ψk(Si) is non-negative.

A2: For every i and every k, ψk(Si) and hi(Si) are in L2.

A3: For every i and a fixed M > 1, if ∑M
k=1 βikψk(Si) = 0 almost surely, then βik = 0 for

k = 1, . . . ,M.

Theorem 2.1 shows that for all sample sizes, the new high estimator is an upper bound on

the true price given that the representation (2.5) holds. That is, the new high estimator has

positive bias under this condition.
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Theorem 2.1. (Bias) If a relation of the form (2.5) is valid at all i = 1, . . . ,d −1, then the new

high estimator is biased high, i.e., for all N,

E0

[
Q̂nh

0 (S0)
]
≥ Q0(S0).

Proof: We prove this theorem by induction. At maturity we have Q̂nh
d (Sd, j) = hd(Sd, j) =

Qd(Sd, j) for all j. Take as the induction hypothesis that Ei+1[Q̂nh
i+1(Si+1, j)] ≥ Qi+1(Si+1, j)

for all j. Now we have

Ei

[
Q̂nh

i (Si, j)
]

= Ei

[
Q̂nh

i+1(Si+1, j)11Jc
i j
+max

(
Ĉnh

i (Si, j),hi(Si, j)
)

11Ji j

]

= Ei

[
Ei+1

[
Q̂nh

i+1(Si+1, j)
]]

11Jc
i j
+Ei

[
max

(
Ĉnh

i (Si, j),hi(Si, j)
)]

11Ji j

≥ Ei
[
Qi+1(Si+1, j)

]
11Jc

i j
+max

(
Ei

[
Ĉnh

i (Si, j)
]
,hi(Si, j)

)
11Ji j

≥ max(Ci(Si, j),0)11Jc
i j
+max

(
Ci(Si, j),hi(Si, j)

)
11Ji j

= Qi(Si, j)11Jc
i j
+Qi(Si, j)11Ji j

= Qi(Si, j).

The first step follows from the definition of Q̂nh
i (Si, j). The second uses the tower property of

conditional expectation and the fact that the events Ji j and Jc
i j are known given Si, j. The third

uses the induction hypothesis and Jensen’s inequality. In the fourth step, the first term follows

from the definition of Ci(Si, j) and the fact that hi(Si, j) = 0 on the set Jc
i j, whereas the second

term uses the inequality Ei[Ĉnh
i (Si, j)] ≥ Ci(Si, j), which is due to the induction hypothesis and

A1, the unbiasedness of β̃ ′
i (analogously defined as β̂ ′

i ) and the representation (2.5). That is,

Ei[Ĉnh
i (Si, j)] = Ei[(β̂ ′

i )
Tψ(Si, j)] ≥ Ei[(β̃ ′

i )
Tψ(Si, j)] = β T

i ψ(Si, j) = Ci(Si, j). The fifth follows

from the definition of Qi(Si, j). The last step combines the two disjoint sets.
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Finally, at time 0,

E0

[
Q̂nh

0 (S0)
]
= E0

[
1
N

N

∑
j=1

Q̂nh
1 (S1, j)

]
= E0

[
Q̂nh

1 (S1)
]
= E0

[
E1

[
Q̂nh

1 (S1)
]]

≥ E0 [Q1(S1)] = Q0(S0).

The second equality uses the fact that the state variables at time 1 are identically distributed.

Before proceeding to state the convergence result for the new high estimator, we give some

additional notation. For i = 1, . . . ,d −1 and j = 1, . . . ,N, define

Q̃nh
i (Si, j) = Q̃nh

i+1(Si+1, j) ⋅11Jc
i j
+max

(
Ci(Si, j),hi(Si, j)

) ⋅11Ji j ,

with Q̃nh
d (Sd, j) = hd(Sd, j). Note that Ei[Q̃nh

i (Si, j)] = Qi(Si, j). Moreover, we denote by ∥x∥ the

Euclidean norm of a vector x. Convergence of the new high estimator is given by Theorem 2.2.

Theorem 2.2. (Convergence) If the representation (2.5) holds at all i = 1, . . . ,d − 1, then the

new high estimator Q̂nh
0 (S0) converges almost surely to the true value Q0(S0) as N approaches

infinity.

The proof is based on the following lemmas.

Lemma 2.3. For i = 1, . . . ,d −1, we have:

∣Q̂nh
i (Si, j)− Q̃nh

i (Si, j)∣ ≤ ∥β̂ ′
i −βi∥ ⋅∥ψ(Si, j)∥ ⋅11Ji j +

d−1

∑
k=i+1

∥β̂ ′
k −βk∥ ⋅∥ψ(Sk, j)∥ ⋅11Jc

i j...J
c
(k−1) jJk j .
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Proof:

∣Q̂nh
i (Si, j)− Q̃nh

i (Si, j)∣

= ∣max(Ĉnh
i (Si, j),hi(Si, j))11Ji j +

d−1

∑
k=i+1

max(Ĉnh
k (Sk, j),hk(Sk, j))11Jc

i j...J
c
(k−1) jJk j +hd11Jc

i j...J
c
(d−1) j

−max
(
Ci(Si, j),hi(Si, j)

)
11Ji j −

d−1

∑
k=i+1

max
(
Ck(Sk, j),hk(Sk, j)

)
11Jc

i j...J
c
(k−1) jJk j −hd11Jc

i j...J
c
(d−1) j

∣

≤ ∣Ĉnh
i (Si, j)−Ci(Si, j)∣ ⋅11Ji j +

d−1

∑
k=i+1

∣Ĉnh
k (Sk, j)−Ck(Sk, j)∣ ⋅11Jc

i j...J
c
(k−1) jJk j

≤ ∥β̂ ′
i −βi∥ ⋅ ∥ψ(Si, j)∥ ⋅11Ji j +

d−1

∑
k=i+1

∥β̂ ′
k −βk∥ ⋅ ∥ψ(Sk, j)∥ ⋅11Jc

i j...J
c
(k−1) jJk j .

The second step uses the triangle inequality and the inequality ∣max(a,c)−max(b,c)∣ ≤ ∣a−b∣.
The last step is a result of repeated applications of the Cauchy-Schwartz inequality.

Lemma 2.4. Assume that for i = 1, . . . ,d−1, the representation (2.5) holds, then β̂ ′
i converges

almost surely to βi.

Proof: We proceed by induction on i. For i = d − 1, the result is a direct consequence of the

strong law of large numbers, since ∣JN
d−1∣ tends to infinity as N approaches infinity. Assuming

that the result is true for i = l, . . . ,d −1, we want to prove that it is true for i = l −1. We have

β̂ ′
l−1 =

⎛
⎝ 1
∣JN

l−1∣
∣JN

l−1∣′

∑
j=1′

ψ(Sl−1, j)ψ(Sl−1, j)
T

⎞
⎠

−1
1

∣JN
l−1∣

∣JN
l−1∣′

∑
j=1′

ψ(Sl−1, j)Q̂nh
l (Sl, j).

We know 1
∣JN

l−1∣
∑
∣JN

l−1∣′
j=1′ ψ(Sl−1, j)ψ(Sl−1, j)

T converges almost surely to E[ψ(Sl−1)ψ(Sl−1)
T] by

the strong law of large numbers, thus it remains to show that 1
∣JN

l−1∣
∑
∣JN

l−1∣′
j=1′ ψ(Sl−1, j)Q̂nh

l (Sl, j)

converges almost surely to E[ψ(Sl−1)Ql(Sl)]. Note that E[ψ(Sl−1)ψ(Sl−1)
T] is finite by A2,

and its inverse exists by A3. The strong law of large numbers implies the almost sure con-

vergence of 1
∣JN

l−1∣
∑
∣JN

l−1∣′
j=1′ ψ(Sl−1, j)Q̃nh

l (Sl, j) to E[ψ(Sl−1)Ql(Sl)] since E[ψ(Sl−1)Q̃nh
l (Sl)] =
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E[ψ(Sl−1)Ql(Sl)]. Therefore, it suffices to prove that

lim
N→∞

1
∣JN

l−1∣
∣JN

l−1∣′

∑
j=1′

(
ψ(Sl−1, j)Q̂nh

l (Sl, j)−ψ(Sl−1, j)Q̃nh
l (Sl, j)

)
= 0.

Denote GN = 1
∣JN

l−1∣
∑
∣JN

l−1∣′
j=1′

(
ψ(Sl−1, j)Q̂nh

l (Sl, j)−ψ(Sl−1, j)Q̃nh
l (Sl, j)

)
. Using Lemma 2.3, we

obtain

∥GN∥

≤ 1
∣JN

l−1∣
∣JN

l−1∣′

∑
j=1′

∥ψ(Sl−1, j)∥ ⋅ ∣Q̂nh
l (Sl, j)− Q̃nh

l (Sl, j)∣

≤ 1
∣JN

l−1∣
∣JN

l−1∣′

∑
j=1′

∥ψ(Sl−1, j)∥
(
∥β̂ ′

l −βl∥ ⋅ ∥ψ(Sl, j)∥11Jl j

+
d−1

∑
k=l+1

∥β̂ ′
k −βk∥ ⋅ ∥ψ(Sk, j)∥11Jc

l j...J
c
(k−1) jJk j

)
.

Since the induction hypothesis says that for i = l, . . . ,d − 1, β̂ ′
i converges almost surely to βi,

we have for each ε > 0

limsup
N→∞

∥GN∥

≤ limsup
N→∞

1
∣JN

l−1∣
∣JN

l−1∣′

∑
j=1′

∥ψ(Sl−1, j)∥
Ã

ε ⋅ ∥ψ(Sl, j)∥11Jl j +
d−1

∑
k=l+1

ε ⋅ ∥ψ(Sk, j)∥11Jc
l j...J

c
(k−1) jJk j

)

= ε ⋅E
[
∥ψ(Sl−1, j)∥

Ã
∥ψ(Sl)∥11J̃l

+
d−1

∑
k=l+1

∥ψ(Sk)∥11J̃c
l ,...,J̃

c
k−1,J̃k

)]
,

where J̃i = {hi(Si) > 0} and J̃c
i = {hi(Si) = 0}, and the last equality follows from the strong

law of large numbers. Letting ε go to 0, we obtain the convergence to 0.
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Proof of Theorem 2.2: For each ε > 0, We have

limsup
N→∞

∣∣Q̂0(S0)−Q0(S0)
∣∣

≤ limsup
N→∞

Ã
1
N

N

∑
j=1

∣∣∣Q̂nh
1 (S1, j)− Q̃nh

1 (S1, j)
∣∣∣+

∣∣∣∣∣
1
N

N

∑
j=1

Q̃nh
1 (S1, j)−Q0(S0)

∣∣∣∣∣

)

≤ limsup
N→∞

Ã
1
N

N

∑
j=1

ε
2
+

∣∣∣∣∣
1
N

N

∑
j=1

Q̃nh
1 (S1, j)−Q0(S0)

∣∣∣∣∣

)

=
ε
2
+ limsup

N→∞

Ã∣∣∣∣∣
1
N

N

∑
j=1

Q̃nh
1 (S1, j)−E0

[
Q̃nh

1 (S1)
]∣∣∣∣∣

)

≤ ε
2
+

ε
2

= ε

The first step subtracts and adds 1
N ∑N

j=1 Q̃nh
1 (S1, j), and uses the triangle inequality. In the

second step, the first term follows from Lemmas 2.3 and 2.4, which implies that Q̂nh
1 (S1, j)

converges to Q̃nh
1 (S1, j) almost surely. The third step uses the fact that E0

[
Q̃nh

1 (S1)
]
= Q0(S0).

The fourth is a direct consequence of the strong law of large numbers. Letting ε go to 0, we

obtain the convergence to 0.

2.4 Numerical Study

In this section we test the new estimator on a well-studied example in the literature — an

American max-call option. We suppose that the risk-neutral dynamics of the n underlying

assets follow correlated geometric Brownian motion processes, i.e.,

dSi
t

Si
t
= (r−δ )dt +σdW i

t , (2.12)

where W i
t , i = 1, . . . ,n, are standard Brownian motion processes and the instantaneous correla-

tion of W i and W j is ρ for all i, j = 1, . . . ,n and i ∕= j. The interest rate, r, the dividend yield,
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δ , and the volatility, σ , are also assumed to be constant. Exercise opportunities are equally

spaced at times with a time interval T/d. The payoff of the max-call option upon exercise at

time t is

ht(St) = (max(S1
t , ...,S

n
t )−K)+, (2.13)

where the notation x+ means max(x,0).

In the regressions, we use a set of ten basis functions. Let S(i),t be the i-th highest asset

price at time t. The basis functions include the polynomials up to the third order, and are

c ,S(1),t ,S(2),t ,S
2
(1),t ,S

2
(2),t ,S(1),tS(2),t ,S

3
(1),t ,S

3
(2),t ,S

2
(1),tS(2),t ,S(1),tS

2
(2),t .

Note that the constant c is counted as one of the basis functions. Andersen and Broadie [1] used

these ten basis functions, and polynomials in a European max-call option on S(1),t and S(2),t up

to the third order. Their choice of 13 basis functions should give a better approximation (and,

perhaps, smaller standard errors) to the continuation value function. Our opinion is that the

computation of the European max-call option takes too much time in practice, thus we omit

those three additional basis functions in our numerical experiments.

To approximate the optimal exercise strategy more efficiently, we disperse the initial states

for regression, an idea first proposed in Rasmussen [9]. Initial state dispersion (ISD) is partic-

ularly helpful for estimating the continuation value function at the early stage of the option’s

life since it generates a wider support for regression. Rasmussen [9] suggested simulating the

state variables from a distribution of initial states instead of from S0 at time 0 given by

S0 exp
(
−1

2
σ2(T/2)+σ

√
T/2ε

)
, ε ∼ N (0,1). (2.14)

We propose a slightly different ISD scheme for the ‘new high’ estimator. Specifically, we put

20% of the initial states equally spaced on the interval
[
S0 exp(−σ

√
T/α),S0 exp(σ

√
T/α)

]
,

where α controls the width of the interval and is specified below; the rest of the initial states
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are S0. We can then get a high-biased estimate by averaging the option value estimates on

the paths that are simulated from S0. It remains to specify the value of α to make the ISD

scheme effective. From our extensive numerical experiments, we find that α = 9 works well in

most situations, although some other values of α also give reasonably good estimates. Thus,

we take α = 9 for pricing various max-call options. The same ISD scheme is also applied to

obtain the ‘old high’ estimates. We note, to the best of our knowledge, that there does not exist

a systematic method in the literature to derive the value of a dispersion parameter, such as α in

our ISD scheme.

After the exercise rule has been determined by the ‘new high’ estimator, we can simulate

independent paths from S0 to obtain a low-biased estimate.

Numerical results for n= 2,3, and 5 assets are given in Table 2.1. For comparison purposes,

we also obtain Longstaff and Schwartz estimates by simulation, but quote the binomial point

estimates, and the point estimates and standard errors for the duality-based estimators from

Andersen and Broadie [1]. It is clear that the ‘old high’ estimates are way off the true value

(approximated by the binomial estimate). The ‘new high’ estimates are significantly more ac-

curate than the ‘old high’ estimates and comparable to the Longstaff and Schwartz estimates

in all cases. However, the ‘new high’ estimates occasionally drop below the true value, indi-

cating that the new algorithm does not always generate an upper bound for the true value. It is

worth noting that, for n = 2, the ‘new high’ and ‘new low’ estimates are all within sampling

error of one another. This could happen when the selected set of basis functions is a good

approximation of the true continuation value. This result is not surprising given our choice

of basis functions. Therefore, it offers a means of choosing basis functions. In general, the

closer the high- and low-biased estimates, the better the basis functions. As a rule of thumb,

we recommend accepting a set of basis functions when the corresponding high- and low-biased

estimates are within sampling error of one another.

The results reported in Table 2.1 are remarkable given the simplicity and efficiency of the

method, the absence of any variance reduction techniques, and the exclusion of European op-



24

tion values as basis functions. Despite the positive numerical results, conservatively speaking,

the ‘new high’ estimator cannot replace the dual upper bound. This is because the representa-

tion 2.5 does not hold exactly in practice, so Theorem 2.1, which assumes this representation,

cannot guarantee an upper bound. It is, however, a nice complement to the dual upper bound.

We suggest substituting the ‘new high’ estimator for the Longstaff and Schwartz estimator in

determining the exercise strategy in the Andersen and Broadie algorithm. We can then use the

‘new high’ and ‘new low’ estimates to judge whether the selected set of basis functions is good

enough before committing additional time to compute the dual upper bound. Having said that,

the ‘new high’ and ‘new low’ estimates can give us a concrete idea where the true value lies

with significantly less computational effort than the duality method. This may be more useful

in practical situations.

2.5 Conclusions

In this chapter, we developed a regression-based method for pricing American options. Nu-

merical results show that this method often generates an upper bound, and it is as accurate

and computationally efficient as the Longstaff and Schwartz approach. The new estimator can

also be used to determine whether the selected set of basis functions is good enough before

spending more effort to compute the dual upper bound.
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S0 LS OL OH NL NH ABL ABH BIN
n = 2 assets:

90 8.063 8.040 8.588 8.060 8.068 8.065 8.069 8.075
0.010 0.009 0.003 0.009 0.005 0.006 0.007
4.747 3.391 9.254 3.416 4.647

100 13.861 13.877 14.368 13.905 13.867 13.907 13.915 13.902
0.012 0.011 0.005 0.011 0.006 0.008 0.010
6.391 4.160 8.532 4.185 6.213

110 21.333 21.286 21.850 21.329 21.323 21.333 21.340 21.345
0.014 0.013 0.006 0.013 0.006 0.009 0.010
7.792 4.984 8.452 4.977 7.670

n = 3 assets:
90 11.256 11.244 11.680 11.251 11.291 11.279 11.290 11.290

0.011 0.010 0.003 0.010 0.005 0.007 0.009
6.322 4.557 9.750 4.480 6.385

100 18.671 18.668 19.137 18.686 18.700 18.678 18.703 18.690
0.014 0.012 0.005 0.012 0.005 0.009 0.013
8.185 5.466 9.157 5.406 8.098

110 27.531 27.488 27.983 27.529 27.544 27.531 27.627 27.580
0.016 0.014 0.006 0.014 0.006 0.010 0.019
8.935 5.737 8.669 5.710 8.678

n = 5 assets:
90 16.624 16.612 17.009 16.619 16.714

0.013 0.012 0.003 0.012 0.005
8.349 5.989 10.225 6.012 8.142

100 26.106 26.092 26.490 26.114 26.176
0.016 0.014 0.004 0.014 0.004

10.353 7.156 10.166 7.181 10.188
110 36.720 36.644 36.971 36.677 36.759

0.018 0.016 0.005 0.016 0.005
11.738 7.994 10.625 7.981 11.333

Table 2.1: Bermudan max-call option in multiasset Black-Scholes models. For each panel,
the top, middle, and bottom row represent the point estimates, standard errors, and comput-
ing times (if available) for 8 estimators, namely Longstaff & Schwartz (LS), old low (OL),
old high (OH), new low (NL), new high (NH), Andersen & Broadie’s low (ABL) and high
(ABH), and binomial (BIN). The values in the columns of ABH, ABL and BIN are quoted
from Andersen and Broadie [1] for comparison. The option parameters are K = 100,r =
5%,δ = 10%,ρ = 0,T = 3, and σ = 20%. Exercise opportunities are equally spaced at times
ti = iT/d, i = 1, . . . ,d, with d = 9. N = 200,000 paths were used to obtain the LS, OH and
NH estimates; NL = 2,000,000 paths were used to obtain the OL and NL estimates. All the
experiments were done using MATLAB with a CPU at 1.60GHz.
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Chapter 3

Bias reduction for pricing American

options by least-squares Monte Carlo

3.1 Introduction

There is a rich history of pricing American options by simulation in the literature, beginning

with Tilley [21] that first dispelled the belief that simulation could not be used for their valua-

tion. Much subsequent work was inspired by this paper. Many methods estimate the continua-

tion value of the contingent claim to solve the optimal-stopping-time problem arising from this

application. These include Broadie and Glasserman’s stochastic tree [5] and stochastic mesh

[6], and the least-squares Monte Carlo (LSM) method in Longstaff and Schwartz [16]. The

LSM method is very popular in practice since it is easy to implement and represents nothing

more than a cross-sectional regression to estimate the continuation value is required. Earlier

variants appeared in Carrière [7] and Tsitsiklis and Van Roy [22]. The regression-based ap-

proach is the focus of this chapter and we collectively refer to the various forms of regression

estimators as LSM estimators.

3With kind permission of Springer Science+Business Media, partial results published in [14] are reproduced
in this chapter. Most results of this chapter appear in an independent paper that has been submitted for publication
[13].
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Monte Carlo simulation is generally regarded as a method to overcome the curse of dimen-

sionality because its convergence rate is typically independent of the number of state variables.

Moreover, it is flexible enough to handle different types of models and payoff structures. How-

ever, its convergence rate can be slow. The convergence rate of a biased and consistent Monte

Carlo estimator such as an LSM estimator can be enhanced in two directions, variance reduc-

tion or bias reduction. Although variance reduction for pricing American options by simulation

has been widely studied (see for example [2, 6, 12, 15, 17]), little work has been done on reduc-

ing the bias in the estimators of American option values. Older bias-correction techniques in

the literature are the ones that result in significantly increased estimator variance and/or com-

putational time (see Broadie and Glasserman [4], and Carrière [7]). An exception is the one

suggested by Avramidis and Hyden [2], which recursively averages the stochastic mesh high-

and low-biased estimator at each exercise opportunity.

Recent works by Whitehead et al. [24, 25, 26] have made a remarkable contribution to

bias reduction for Monte Carlo pricing of early-exercise options. They introduce a general

bias-reduction technique, based on large sample theory, that corrects stochastic tree estima-

tors. This technique corrects the bias due to making incorrect exercise decisions, which is the

major source of bias in the estimators. In [25], numerical results from a well-studied multi-

variate pricing problem demonstrate that this technique significantly reduces estimator bias,

hence increasing the convergence rate. A rigorous proof justifying the bias-reduction method

for the high-biased stochastic tree estimator is given in [24, 26]. Motivated by these results,

bias-reduced stochastic mesh estimators are given in Kan et al. [14] and Whitehead [24].

Though not yet rigorously justified, exploratory numerical results in [14, 24] clearly show the

effectiveness of the technique in removing the bias from the mesh estimators.

This motivates the extension of the bias-reduction technique to LSM estimators. At each

exercise opportunity we derive an approximation to estimator bias using a well-known dis-

tributional approximation for least-squares regression estimators. The bias approximation is

subtracted from the LSM estimator at each exercise opportunity resulting in a corrected esti-
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mator. This is done for each of the high- and low-biased LSM estimators. The bias-corrected

LSM estimators are tested on a well-studied multivariate pricing problem used in Broadie and

Glasserman [6], specifically an American call option on the maximum of five underlying as-

sets. Numerical results show that the bias-correction technique significantly reduces the bias

of these two types of LSM estimators.

In [14] the bias approximation and the corrected version of the high-biased LSM estimator

is presented and partial numerical results show the effectiveness of the corrected high- and

low-biased estimators. In this chapter, we derive the bias approximation for the low-biased

LSM estimator (not given in MCQMC [14] due to space constraints) and provide extensive

numerical results supporting this approach to bias correction. To be complete, we also include

the derivation of the bias approximation for the high-biased estimator in this chapter. While

our numerical results show that bias correction is not particularly useful for the high-biased

estimator, it is very effective for the low-biased estimator. By that we mean the reduction in

relative error of the high-biased estimator is not large enough to be useful in improving the

computational efficiency since the additional computing time for the bias approximation is not

negligible. Therefore, Item 4 on the following list is valid for the low-biased estimator, but not

for the high-biased estimator; all the other points hold for both estimators.

1. The bias reduction method

∙ is independent of the dimension;

∙ holds for very general asset-price process and payoff structures;

∙ is simple to implement by modifying a few lines of code in existing algorithms;

∙ has little impact on estimator variance; and

∙ results in a consistent corrected estimator under fairly general conditions (Corollary

3.2).

2. The numerical results displayed in Section 3.5 show that the corrected estimators are

always better (as measured by price, relative error and root mean square error) than the
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uncorrected versions across all combinations of option moneyness, number of exercise

opportunities and sample size.

3. The relative superiority of the corrected to uncorrected estimators decreases with sample

size due to estimator consistency — there is less bias to correct for large sample sizes.

4. By allowing for a better tradeoff between decreasing sample size M in exchange for an

increased number of repeated valuations, the technique permits increased computational

efficiencies over trivial parallel implementations of existing algorithms. The scale of this

benefit is constrained mainly by the number of processors available. Nowadays, it is not

uncommon for financial institutions to have thousands of processors available for pricing

purposes (see Staum [19]).

It is worth mentioning that the bias-reduction method is designed to correct the LSM esti-

mators to the true approximation value given by a set of basis functions used in the regression.

In other words, the corrected LSM estimators suffer from the same problem as the uncorrected

LSM estimators — they do not converge to the true option value with a finite number of basis

functions. This is a separate problem that is beyond the scope of this chapter. We note, how-

ever, that for a given set of basis functions the corrected estimators perform better than their

uncorrected counterparts.

The remainder of this chapter is organized as follows. Section 3.2 presents the valuation

framework underlying the American option pricing problem. Section 3.3 discusses how to

construct high- and low-biased estimators using the least-squares Monte Carlo method. Section

3.4 decomposes the error and derives the bias approximations for the LSM estimators. A

proof of convergence is also given for the corrected low-biased estimator. Section 3.5 provides

numerical results showing the effectiveness of this technique. Section 3.6 concludes the chapter

and outlines future work.
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3.2 The Valuation Framework

Assume an underlying complete filtered probability space (Ω,F ,ℚ) and finite time horizon

[0,T ], where the state space Ω is the set of all possible realizations of the stochastic economy

between time 0 and T , F is the sigma-field of distinguishable events at time T , and ℚ is a

risk-neutral measure defined on (Ω,F ). We assume that FT = F .

We are interested in valuing an American-style contingent claim which matures at T . Sup-

pose this claim has a multi-dimensional underlying asset-price process, {St}, and its time-t

payoff, Pt , is a functional of the path, {Sτ ∣0 ≤ τ ≤ t}, for any t ∈ [0,T ]. The option owner

can exercise at any time in the interval [0,T ] and the option value is determined by the value-

maximizing exercise strategy. The exercise strategy is described by stopping times. Hence,

given that the option has not yet been exercised at time t, its time-t value must be

Bt = sup
t≤τ≤T

E[e−r(τ−t)Pτ ∣Ft ], (3.1)

where the supremum is taken over all possible stopping times with values in the interval [t,T ],

and r is the risk-free interest rate which is assumed to be constant.

Most Monte Carlo techniques are developed to solve a discrete-time version of equation

(3.1), and there is no exception in this chapter. As such, a discrete-time version of the filtered

probability space described above is used without any adjustment to the notation. We restrict

our attention to the case in which the American option can only be exercised at N equally-

spaced discrete times, {k∆T ∣k = 1, ...,N}, where ∆T = T/N. This type of discrete American-

style exercise feature is also sometimes termed a Bermudan-style exercise feature. By taking

N to be sufficiently large, the value of a Bermudan option can be used to approximate the value

of a corresponding American option. We continue to use the term American option instead

of Bermudan option in this chapter. Let k∆T be denoted by time k. The time-k value of the
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American option, assuming it has yet to be exercised, is

Bk = max
τ∈[k,...,N]

E[e−r(τ−k)Pτ ∣Fk]. (3.2)

This is a discrete optimal-stopping-time problem in stochastic control. It can be decomposed,

via Bellman’s principle of optimality, into two recursive equations

Hk = E[e−r∆T Bk+1∣Fk] and (3.3)

Bk = max(Hk,Pk), (3.4)

where Hk is the value of holding the option until at least the next exercise opportunity, Bk

is the current value of the option (i.e., the greater of the value of holding or exercising), for

k = 1, ...,N −1, and HN = 0 since there is no value in holding the option past expiry. The bulk

of the work of many MC valuation algorithms is in estimating the continuation value.

3.3 LSM Estimators

In this section, we introduce two LSM estimators — a high-biased (high) and a low-biased

(low) estimator. By construction, these estimators differ in how exercise decisions are made

and option value estimators are propagated along the paths. An estimator used to make the

exercise/hold decision is called a determiner while a propagator is an option value estima-

tor passed on to the preceding exercise opportunity. High and low estimators use different

determiners and propagators, the details of which we discuss in Sections 3.3.2 – 3.3.3.

In the following subsection some standard linear regression results are presented in the

context of least-squares Monte Carlo pricing of American options. These results will be useful

in constructing the LSM estimators and deriving the bias approximations in Section 3.4. No

insight is lost in omitting, as we do, the discount factor for the rest of the chapter.
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3.3.1 Linear Regression

The conditional expectation defining the continuation value is approximated by the fitted val-

ues of a regression, where the regression coefficients are estimated by the least-squares method

(hence the name least-squares Monte Carlo). Specifically, discounted approximate option val-

ues at time (k+1) are regressed on a set of basis functions evaluated at time k. These functions

should be related to the underlying processes and the payoff function. Consider the linear

regression

B̃i
k+1 = (xi

k)
′βk + ε i

k, i = 1,2, ...,n, (3.5)

where xi
k is a (p× 1) vector of basis functions evaluated at time k for path i, βk is a (p× 1)

vector of regression coefficients, ε i
k is the time-k, path-i error term, B̃i

k+1 is the time-(k+ 1),

path-i option value estimator, n is the number of sample paths and p is the number of basis

functions, and ′ denotes transpose. In matrix form this becomes

B̃k+1 = Xkβk + εk, (3.6)

where B̃k+1 = (B̃1
k+1, . . . , B̃

n
k+1)

′, Xk = (x1
k , . . . ,x

n
k)

′, and εk = (ε1
k , . . . ,ε

n
k )

′.

We use standard assumptions on the errors, namely that E[εk∣Fk] = 0 and E[εkε ′k∣Fk] =

diag(σ2
k,1, . . . ,σ

2
k,n)≡Wk, where 0 is the column vector of zeros, diag(a1, . . . ,an) is the diagonal

matrix with entries (a1, . . . ,an) and σk,i’s are constants which could be different for different

values of i.

The ordinary least-squares regression estimators are

β̃k =
(
X ′

kXk
)−1 X ′

kB̃k+1. (3.7)
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With the above assumptions on the errors it is seen that

E
[

β̃k

∣∣∣Fk

]
= βk and (3.8)

Var
[

β̃k

∣∣∣Fk

]
=
(
X ′

kXk
)−1 X ′

kWkXk
(
X ′

kXk
)−1 ≡ V̄ β

k
n
. (3.9)

Under general conditions, standard regression theory dictates a multivariate normal approx-

imation to the Fk-conditional distribution of β̃k ([23]). Specifically,

β̃k∣Fk ∼ MV N

Ã
βk,

V̄ β
k
n

)
, (3.10)

where MV N (µ̃,Σ) denotes a multivariate normal random vector with mean vector µ̃ and

variance-covariance matrix Σ. An application of the Cramer-Wold device yields the approxi-

mate Fk-conditional distribution of the time-k, path-i continuation value estimator

H̃ i
k = (xi

k)
′β̃k∣Fk ∼ N

(
(xi

k)
′βk,

V̄ i
k

n

)
, (3.11)

where V̄ i
k/n = (xi

k)
′V̄ β

k xi
k/n and N (µ,σ2) denotes a normal random variable with mean µ and

variance σ2.

A natural estimator for the time-k, path-i variance, V̄ i
k/n, is the time-k, path-i sample

variance Ṽ i
k/n = (xi

k)
′ (X ′

kXk
)−1 X ′

kW̃kXk
(
X ′

kXk
)−1 xi

k, where W̃k = diag(ε̃2
k,1, . . . , ε̃

2
k,n) and ε̃2

k,i =

(B̃i
k+1− (xi

k)
′β̃k)

2 for i = 1, . . . ,n. This is a consistent estimator for the assumed error variance.

However, the assumption of uncorrelated errors might not hold precisely for the high and low

estimators since H̃ i
k in which is a weighted average of dependent random variables and their

overall covariance might be nonzero. Thus, the variance estimator could be biased and incon-

sistent with respect to the true variance. Nevertheless, we use these estimators and in Section

3.5 show that the corrected estimators computed using the above sample variance estimators

are significantly better than their uncorrected counterparts.
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3.3.2 High Estimator

A high-biased LSM estimator is obtained by using the same estimator as both determiner and

propagator. Specifically, the time-k, path-i continuation value estimator is the fitted value of

the regression (3.5). The time-k, path-i option value estimator is simply the maximum of the

immediate exercise value and the continuation value estimator. Thus, the recursive equations

(3.3)and (3.4) become

H̃ i
k = (xi

k)
′β̃k and (3.12)

B̃i
k = max(H̃ i

k,P
i
k), (3.13)

where H̃ i
k is the time-k, path-i continuation value estimator, Pi

k is the time-k, path-i exercise

value, and the terminal condition is given by H̃ i
N = 0 for all i = 1, . . . ,n.

The final price estimator is

B̃0 =
1
n

n

∑
i=1

B̃i
1. (3.14)

These estimators are easily shown to be biased high relative to the true approximation value

given by the set of basis functions. They are also consistent for the true approximation value.

3.3.3 Low Estimator

A standard method of constructing a low-biased estimator is to use independent random vari-

ables for determiners and propagators, i.e., to use independent sets of information for exercise

decisions and value propagation. For LSM estimators, this is done by using one set of n/2

simulated paths to construct the determiners used in approximating optimal stopping times

for another independent set of n/2 paths, on which the propagators are the discounted cash

flows. Along a given path, this results in a sub-optimal exercise strategy, hence resulting in a
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low-biased estimator. The low estimators are

H̃ i
k = (xi

k)
′β̃k (determiner), (3.15)

Ĥ i
k = B̃i

k+1 (propagator) and (3.16)

B̃i
k =

⎧
⎨
⎩

Ĥ i
k if H̃ i

k > Pi
k

Pi
k if H̃ i

k ≤ Pi
k

, (3.17)

where xi
k is a (p × 1) vector of basis functions evaluated at time k for path i from the set

of propagator paths, β̃k is the time-k regression estimator computed from the set of determiner

paths, H̃ i
k (determiner) and Ĥ i

k (propagator) are the time-k, path-i continuation value estimators,

and the terminal conditions are given by H̃ i
N = Ĥ i

N = 0 for all i = 1, . . . ,n/2.

The final price estimator is

B̃0 =
1

n/2

n/2

∑
i=1

B̃i
1. (3.18)

3.4 Bias Correction

There are two sources of bias in LSM estimators of American option values:

1. Source 1 — incorrect exercise decisions due to simulation error; and

2. Source 2 — the choice of a finite set of basis functions.

Generally, any kind of function can be represented by summing an infinite number of prop-

erly chosen basis functions. In theory, therefore, the bias from Source 2 can be reduced by

increasing the number of basis functions to produce a better regression approximation to the

conditional expectation function. In practice, however, it is undesirable to use too many basis

functions in regression, as this would raise the computational effort substantially. We refer the

readers to [10] for an analysis of the tradeoffs between the number of paths and the number of

basis functions. The bias from Source 2 remains an open problem and we do not deal with it in
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this chapter though it is evident in our numerical results. We will instead focus on correcting

the bias caused by the simulation error. In other words, we correct option value estimators to

the true approximations given a finite set of basis functions, but not to the true option value. It

is obvious that the success of both uncorrected and corrected LSM estimators largely relies on

a good choice of basis functions.

Given a finite set of basis functions, LSM estimators of American option value are biased

and consistent estimators for the true approximation value. Thus, we attempt to modify the

bias reduction technique in [24] to accelerate the convergence of LSM estimators to the true

approximation values. A rigorous proof of this technique for the high-biased stochastic tree es-

timator is provided in [24] and [26]. A rigorous proof justifying the bias-reduction method for

stochastic mesh and LSM estimators is the subject of current research. Nonetheless, we apply

the bias-reduction technique to LSM estimators and identify steps in the derivations that require

further analysis to make them rigorous. In the following for each of the high and low estima-

tors, the time-k, path-i estimator bias is decomposed into two terms (local bias and global bias)

and a heuristic derivation for an approximation to the bias caused by simulation error is given.

This derivation relies on the normal approximation to the distribution of the regression-based

estimator. We argue that subtracting the bias approximation from the uncorrected estimators at

each exercise opportunity results in an estimator having significantly reduced bias.

3.4.1 High Estimator

To begin, let H̄ i
k =Ek[H̃ i

k] =Ek[B̃i
k+1], whereEk[⋅] denotes an Fk-conditional expectation. Here

we assume there is no model error in the regression to simplify the derivation of an approximate

bias expression. With H i
k being the true time-k, path-i continuation value, the time-k, path-i bias

is defined as

H̄ i
k −H i

k = Ek[B̃i
k+1 −Bi

k+1]. (3.19)
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An estimator is high-biased if H̄ i
k −H i

k > 0 and is low-biased if H̄ i
k −H i

k < 0. Expanding the

inner terms of Ek[B̃i
k+1 −Bi

k+1] using the definition of a high estimator (equation(3.13)) gives

Ek
[
max(H̃k+1,Pk+1)−max(H i

k+1,P
i
k+1)

]
. (3.20)

Adding and subtracting Ek[max(H̄ i
k+1,P

i
k+1)] decomposes the estimator bias into local (3.21)

and global (3.22) components,

Ek
[
max(H̃ i

k+1,P
i
k+1)−max(H̄ i

k+1,P
i
k+1)

]
(3.21)

+Ek
[
max(H̄ i

k+1,P
i
k+1)−max(H i

k+1,P
i
k+1)

]
. (3.22)

We focus on the local bias first and will return to the global bias at the end of this section.

Let 11R be an indicator function that is equal to one on the set R and is zero otherwise. The

Fk+1-conditional expectation (and, by nested expectation, the Fk-conditional expectation) of

11H̄ i
k+1>Pi

k+1
(H̃ i

k+1 − H̄ i
k+1) is zero as 11H̄ i

k+1>Pi
k+1

is Fk+1-measurable and Ek+1[H̃ i
k+1] = H̄ i

k+1.

Therefore, this term can be subtracted inside the Fk-conditional expectation without altering

the expected value. Doing this, and expressing the max function with indicator functions, gives

Ek

[
11H̄ i

k+1>Pi
k+1

11H̃ i
k+1≤Pi

k+1
(Pi

k+1 − H̃ i
k+1)

+ 11H̄ i
k+1≤Pi

k+1
11H̃ i

k+1>Pi
k+1

(H̃ i
k+1 −Pi

k+1)
]

(3.23)

as an equivalent local bias expression. Rewritten using Ỹ i
k+1 = H̃ i

k+1−Pi
k+1 and Ȳ i

k+1 = H̄ i
k+1−

Pi
k+1, this is

Ek

[
11Ȳ i

k+1>011Ỹ i
k+1≤0(−Ỹ i

k+1)+11Ȳ i
k+1≤011Ỹ i

k+1>0(Ỹ
i
k+1)

]
. (3.24)

Table 3.1 summarizes (3.24). It is evident that the local bias is solely due to exercising

incorrectly (i.e., choosing between holding and exercising incorrectly). Note the the local bias
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is non-negative in all cases.

Held:
Ỹ i

k+1 > 0
Stopped:
Ỹ i

k+1 ≤ 0

Should Hold:
Ȳ i

k+1 > 0 0 −Ỹ i
k+1

Should Stop:
Ȳ i

k+1 ≤ 0 Ỹ i
k+1 0

Table 3.1: The local bias in the time-k, path-i high-biased continuation value estimator.

Equivalently, the local bias given by (3.24) can be simplified to

Ek

[
11(Ȳ i

k+1,Ỹ
i
k+1)∈R∣Ỹ i

k+1∣
]
, (3.25)

where R = (−∞,0)× (0,∞)∪ (0,∞)× (−∞,0). By (3.11), for a large sample size n, we have

the Fk-conditional distributional approximation

Ỹ i
k+1∣Fk ∼ N

Ã
Ȳ i

k+1,
V̄ i

k+1

n

)
. (3.26)

With the normal distributional approximation, the local bias (3.25) can be written in integral

form as ∫ ∞

0

∫ ∫

R
∣ỹ∣ 1√

v̄/n
φ
(

ỹ− ȳ√
v̄/n

)
fȲ i

k+1,V̄
i
k+1∣Fk

(ȳ, v̄) dỹ dȳ dv̄, (3.27)

where φ(⋅) is the standard normal density function, and fȲ i
k+1,V̄

i
k+1∣Fk

(⋅, ⋅) is the Fk-conditional

joint density function of Ȳ i
k+1 and V̄ i

k+1. Substituting z̄ = ȳ
√

n and z̃ = ỹ
√

n gives

1
n

∫ ∞

0

∫ ∫

R
∣z̃∣ 1√

v̄
φ
(

z̃− z̄√
v̄

)
fȲ i

k+1,V̄
i
k+1∣Fk

(
z̄√
n
, v̄
)

dz̃ dz̄ dv̄. (3.28)

We see the time-k local bias is expected to be O(1/n) due to the combined (O(1/
√

n)) effects of

a decreasing probability of making incorrect stopping decisions and an increasing probability
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of those that are made being less significant.4

Since Ỹ i
k+1 is a consistent estimator for Ȳ i

k+1, we assume both fȲ i
k+1,V̄

i
k+1∣Fk

(z̄/
√

n, v̄) and

fỸ i
k+1,V̄

i
k+1∣Fk

(z̃/
√

n, v̄) converge to fȲ i
k+1,V̄

i
k+1∣Fk

(0, v̄) as n gets large. Assuming limn commutes

with the integration, (3.28) then becomes asymptotically equivalent to

1
n

∫ ∞

0

∫ ∫

R
∣z̃∣ 1√

v̄
φ
(

z̃− z̄√
v̄

)
fỸ i

k+1,V̄
i
k+1∣Fk

(
z̃√
n
, v̄
)

dz̃ dz̄ dv̄. (3.29)

Undoing the z̄ and z̃ substitutions gives

∫ ∞

0

∫ ∫

R
∣ỹ∣ 1√

v̄/n
φ

Ã
ỹ− ȳ√

v̄/n

)
fỸ i

k+1,V̄
i
k+1∣Fk

(ỹ, v̄) dỹ dȳ dv̄. (3.30)

This expression is special because the integral with respect to ȳ can be performed. This yields

∫ ∞

0

∫ ∞

−∞
∣ỹ∣ Φ

Ã
−∣ỹ∣√

v̄/n

)
fỸ i

k+1,V̄
i
k+1∣Fk

(ỹ, v̄) dỹ dv̄, (3.31)

where Φ(⋅) is the N (0,1) cumulative distribution function. In expectation form and using the

original random variables an approximation to the local bias is

Ek

⎡
⎣∣H̃ i

k+1 −Pi
k+1∣ Φ

⎛
⎝−∣H̃ i

k+1 −Pi
k+1∣√

V̄ i
k+1/n

⎞
⎠
⎤
⎦ . (3.32)

In order to utilize (3.32), it is necessary to estimate the theoretical variance V̄ i
k+1 by the

sample variance Ṽ i
k+1 specified in Section 3.3.1, which yields

Ek

⎡
⎣∣H̃ i

k+1 −Pi
k+1∣ Φ

⎛
⎝−∣H̃ i

k+1 −Pi
k+1∣√

Ṽ i
k+1/n

⎞
⎠
⎤
⎦ . (3.33)

4The statement Xn is O( f (n)) or o( f (n)) means, respectively, limsupn∣Xn/ f (n)∣ <1 ∞ or limn∣Xn/ f (n)∣ =1 0
(the subscript ones indicating an almost everywhere [a.e.] sense for random variables).
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Subtracting (3.33) from the bias gives

Ek[H̃ i
k]−H i

k −Ek

[
∣H̃ i

k+1 −Pi
k+1∣ Φ

Ã
−∣H̃ i

k+1 −Pi
k+1∣√

Ṽk+1/n

)]
(3.34)

=Ek
[
max(H̃ i

k+1,P
i
k+1)−max(H̄ i

k+1,P
i
k+1)

]
(3.35)

+Ek
[
max(H̄ i

k+1,P
i
k+1)−max(H i

k+1,P
i
k+1)

]
(3.36)

−Ek

[
∣H̃ i

k+1 −Pi
k+1∣ Φ

Ã
−∣H̃ i

k+1 −Pi
k+1∣√

Ṽk+1/n

)]
, (3.37)

where (3.35), (3.36), and (3.37) are the time-k, path-i, local and global bias, and correction

components, respectively.

The local bias and correction components cancel as the distributional approximation for

the continuation value estimator becomes sharper, leaving just the global bias component. Ap-

plying Jensen’s inequality to move the absolute value inside the conditional expectation and

applying the inequality ∣max(x,y)−max(u,v)∣ ≤ ∣x− u∣+ ∣y− v∣ to the absolute value of the

conditional expectation in the global bias component gives

∣∣Ek
[
max(H̄ i

k+1,P
i
k+1)−max(H i

k+1,P
i
k+1)

]∣∣ (3.38)

≤ Ek
[∣∣H̄ i

k+1 −H i
k+1

∣∣]= Ek
[∣∣Ek+1

[
H̃ i

k+1
]−H i

k+1
∣∣] , (3.39)

which shows it to be bound by the time-(k+1), path-i bias. Similarly the time-(k+1) global

bias is bound by the time-(k + 2) bias. Continue in this fashion through to the next-to-last

exercise opportunity (k = N −1). Thus, the propagation of error across exercise opportunities

is at most of the same order as the difference between the local bias and correction components.

As a result, we propose a corrected option value estimator that is obtained by subtracting the

local bias approximation from the original high estimator in (3.13), namely

B̃i
k = max(H̃ i

k,P
i
k)−∣H̃ i

k −Pi
k∣ Φ

Ã
−∣H̃ i

k −Pi
k∣√

Ṽ i
k/n

)
, (3.40)
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for k = 1, . . . ,N −1, and

B̃c
0 =

1
n

n

∑
i=1

B̃i
1. (3.41)

3.4.2 Low Estimator

Given the uncorrected determiner H̃ i
k, we study the possibilities to reduce the bias of the prop-

agator, Ĥ i
k, of a low estimator (refer to (3.15)–(3.17)). The time-k, path-i bias is defined as

H̄ i
k −H i

k = Ek
[
Ĥ i

k
]−H i

k (3.42)

= Ek
[
B̃i

k+1 −Bi
k+1

]
. (3.43)

Expanding the inner terms of Ek
[
B̃i

k+1 −Bi
k+1

]
using the definition of a low estimator gives

Ek

[
Ĥ i

k+111H̃ i
k+1>Pi

k+1
+Pi

k+111H̃ i
k+1≤Pi

k+1
−max(H i

k+1,P
i
k+1)

]
. (3.44)

We add and subtract Ek
[
max(H̄ i

k+1,P
i
k+1)

]
to split this expression into a local bias (3.45) and

a global bias (3.46),

Ek

[
Ĥ i

k+111H̃ i
k+1>Pi

k+1
+Pi

k+111H̃ i
k+1≤Pi

k+1
−max(H̄ i

k+1,P
i
k+1)

]
(3.45)

+Ek
[
max(H̄ i

k+1,P
i
k+1)−max(H i

k+1,P
i
k+1)

]
. (3.46)

As with the high estimator, we will return to the global bias at the end of this section and

work on the local bias for now. The Fk+1-conditional expectation (and, by nested expectation,

the Fk-conditional expectation) of 11H̄ i
k+1>Pi

k+1
(Ĥ i

k+1 − H̄ i
k+1) is zero as 11H̄ i

k+1>Pi
k+1

is Fk+1-

measurable and Ek+1[Ĥ i
k+1] = H̄ i

k+1. Therefore, this term can be subtracted inside the local
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Held:
Ỹ i

k+1 > 0
Stopped:
Ỹ i

k+1 ≤ 0

Should Hold:
Ȳ i

k+1 > 0 0 −Ȳ i
k+1

Should Stop:
Ȳ i

k+1 ≤ 0 Ȳ i
k+1 0

Table 3.2: The local bias in the time-k, path-i low-biased continuation value estimator.

bias without altering the Fk-conditional expected value. Doing this gives

Ek

[
11H̄ i

k+1>Pi
k+1

11H̃ i
k+1≤Pi

k+1
(Pi

k+1 − Ĥ i
k+1)

+ 11H̄ i
k+1≤Pi

k+1
11H̃ i

k+1>Pi
k+1

(Ĥ i
k+1 −Pi

k+1)
]

(3.47)

as an equivalent local bias expression. Furthermore, since H̃ i
k+1 and Ĥ i

k+1 are independent

conditional on Fk+1, and Ek+1[Ĥ i
k+1] = H̄ i

k+1, taking an Fk+1-conditional expectation inside

the Fk-conditional expectation reduces (3.47) to

Ek

[
11H̄ i

k+1>Pi
k+1

11H̃ i
k+1≤Pi

k+1
(Pi

k+1 − H̄ i
k+1)

+ 11H̄ i
k+1≤Pi

k+1
11H̃ i

k+1>Pi
k+1

(H̄ i
k+1 −Pi

k+1)
]
. (3.48)

Rewritten using Ỹ i
k+1 = H̃ i

k+1 −Pi
k+1 and Ȳ i

k+1 = H̄ i
k+1 −Pi

k+1, this is

Ek

[
11Ȳ i

k+1>011Ỹ i
k+1≤0(−Ȳ i

k+1)+11Ȳ i
k+1≤011Ỹ i

k+1>0(Ȳ
i
k+1)

]
. (3.49)

Table 3.2 summarizes (3.49). It is clear that the sign of the local bias is non-positive in all

cases.

Applying the same arguments used to derive an approximation for the local bias of the high
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estimator, we derive an approximation to (3.49).

Ek

[
11Ȳ i

k+1>011Ỹ i
k+1≤0

(−Ȳ i
k+1

)
+11Ȳ i

k+1≤011Ỹ i
k+1>0

(
Ȳ i

k+1
)]

(3.50)

≈
∫ ∞

0

∫ ∫

R
−∣ȳ∣ 1√

v̄/(n/2)
φ
(

ỹ− ȳ√
v̄/(n/2)

)
fȲ i

k+1,V̄
i
k+1∣Fk

(ȳ, v̄) dỹ dȳ dv̄ (3.51)

≈
∫ ∞

0

∫ ∫

R
−∣ȳ∣ 1√

v̄/(n/2)
φ
(

ỹ− ȳ√
v̄/(n/2)

)
fỸ i

k+1,V̄
i
k+1∣Fk

(ỹ, v̄) dỹ dȳ dv̄ (3.52)

= Ek

⎡
⎣∣Ỹ i

k+1∣Φ
⎛
⎝ −∣Ỹ i

k+1∣√
V̄ i

k+1/(n/2)

⎞
⎠−

√
V̄ i

k+1/(n/2)φ

⎛
⎝ Ỹ i

k+1√
V̄ i

k+1/(n/2)

⎞
⎠
⎤
⎦ . (3.53)

The two approximations are the normal distributional approximation for the continuation value

estimator and the approximation of the Fk-conditional joint density function of (Ȳ i
k+1,V̄

i
k+1)

by the Fk-conditional joint density function of (Ỹ i
k+1,V̄

i
k+1). Equality follows by integrating

out the unknown variable ȳ.

Using the original random variables and the sample variance estimator yields

Ek

⎡
⎣∣H̃ i

k+1 −Pi
k+1∣Φ

⎛
⎝−∣H̃ i

k+1 −Pi
k+1∣√

Ṽ i
k+1/(n/2)

⎞
⎠−

√
Ṽ i

k+1/(n/2)φ

⎛
⎝ H̃ i

k+1 −Pi
k+1√

Ṽ i
k+1/(n/2)

⎞
⎠
⎤
⎦ . (3.54)

This variance estimator is the same as that for the high estimator, except that the xi
k’s correspond

to the propagator paths.

Subtracting (3.54) from the bias gives

Ek

[
Ĥ i

k+111H̃ i
k+1>Pi

k+1
+Pi

k+111H̃ i
k+1≤Pi

k+1
−max(H̄ i

k+1,P
i
k+1)

]
(3.55)

+Ek
[
max(H̄ i

k+1,P
i
k+1)−max(H i

k+1,P
i
k+1)

]
. (3.56)

−Ek

⎡
⎣∣H̃ i

k+1 −Pi
k+1∣Φ

⎛
⎝−∣H̃ i

k+1 −Pi
k+1∣√

Ṽ i
k+1/(n/2)

⎞
⎠−

√
Ṽ i

k+1/(n/2)φ

⎛
⎝ H̃ i

k+1 −Pi
k+1√

Ṽ i
k+1/(n/2)

⎞
⎠
⎤
⎦ ,

(3.57)

where (3.55), (3.56) and (3.57) are the local bias, global bias and correction components, re-
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spectively. As with the high estimator, the local bias and correction components cancel as

the distributional approximation for the continuation value estimator becomes sharper, leaving

only the global bias.

As for the global bias, applying Jensen’s inequality and then the inequality ∣max(x,y)−
max(u,v)∣ ≤ ∣x−u∣+ ∣y− v∣ gives

∣∣Ek
[
max(H̄ i

k+1,P
i
k+1)−max(H i

k+1,P
i
k+1)

]∣∣ (3.58)

≤ Ek
[∣∣H̄ i

k+1 −H i
k+1

∣∣]= Ek
[∣∣Ek+1

[
Ĥ i

k+1
]−H i

k+1
∣∣] , (3.59)

which shows it to be bound by the time-(k+1), path-i bias. Using similar arguments as those

used for the high estimator, we see that the propagation of error across exercise opportunities is

at most of the same order as the difference between the local bias and the correction component.

The corrected option value estimator is obtained by subtracting the approximate local bias

(3.54) from the original low estimator in (3.17), namely

B̃i
k =

⎧
⎨
⎩

Ĥ i
k if H̃ i

k > Pi
k,

Pi
k if H̃ i

k ≤ Pi
k,

−∣H̃ i
k −Pi

k∣Φ
⎛
⎝ −∣H̃ i

k −Pi
k∣√

Ṽ i
k/(n/2)

⎞
⎠+

√
Ṽ i

k/(n/2)φ

⎛
⎝ H̃ i

k −Pi
k√

Ṽ i
k/(n/2)

⎞
⎠ , (3.60)

for k = 1, . . . ,N −1, and

B̃c
0 =

1
n/2

n/2

∑
i=1

B̃i
1. (3.61)

3.4.3 Comments

The derivations of the bias-correction terms are based on distributional approximations for the

continuation value estimators (propagators and determiners). For example, in the high estima-

tor case, a distributional approximation is used to approximate (3.24) with (3.27) and a second

distributional approximation is made to approximate (3.27) with (3.29). Similar approxima-
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tions are made in the low estimator case. These distributional approximations introduce an

error of order o(1/n). The local and global bias components are of order O(1/n). Thus the

distributional approximation error is negligible compared with the local and global bias compo-

nents. Furthermore, recursively subtracting the approximate local bias from the original LSM

estimator reduces the local and global bias order from O(1/n) to o(1/n).

Since the uncorrected estimators are consistent for the true approximation value, the ap-

proximations for the local bias tend to zero as the sample size increases. Therefore, although

the arguments presented here in deriving the local bias approximations rely on large sample

theory, there is less bias to correct as the sample size increases. Thus we expect and, in Section

3.5, numerically show for small values of n the corrected estimators to be significantly better

than the uncorrected estimators, with this relative superiority decreasing with n. This is evident

in Figures 3.2–3.3 which show that the corrected estimators converge for a smaller n than is

required for the convergence of the uncorrected estimators. A rigorous analysis of the rela-

tive rates of convergence of the corrected and uncorrected estimators is a subject of ongoing

research.

3.4.4 Convergence

In the following, we prove that the bias approximation for the LSM low estimator converges

to zero in probability. This theorem implies that the bias-corrected LSM low estimator is

consistent. The reason is that [8] shows the uncorrected LSM interleaving estimator converges

almost surely, and this result is directly applicable to the uncorrected LSM low estimator. Since

almost-sure convergence implies convergence in probability, the corrected LSM low estimator

is consistent. The proof of convergence for the corrected high-biased estimator is very similar,

so is omitted.

Theorem 3.1. Consider B̃i
k+1 = (xi

k)
′βk + ε i

k for i = 1, . . . ,n/2,k = 1, . . . ,N − 1. Assume that

for all i and k,
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1. E
[
(Pi

k)
2]< ∞, E

[
(xi

k)
′xi

k

]
< ∞;

2. E
[
xi

k(x
i
k)

′] is non-singular;

3. E
[

ε i
k

∣∣Fk
]
= 0, E

[
(ε i

k)
2
∣∣Fk

]
= σ2

k,i;

4. E
[
(ε i

k)
4]< ∞, E

[(
xi j

k xil
k

)2
]
< ∞, for all j, l (= 1, . . . , p);

5. ℙ
(
(xi

k)
′βk = Pi

k

)
= 0.

Then, the approximation to the local bias, ∣H̃ i
k −Pi

k∣Φ
(

−∣H̃ i
k−Pi

k∣√
Ṽ i

k/(n/2)

)
−
√

Ṽ i
k

n/2 φ
(

H̃ i
k−Pi

k√
Ṽ i

k/(n/2)

)
,

converges to zero in probability.

Proof: By Lemma 3.2 of [8], β̃k converges to βk almost surely for k = 1, . . . ,N − 1. Then,

H̃ i
k = (xi

k)
′β̃k converges to H̄ i

k = (xi
k)

′βk in probability since (xi
k)

′ does not vary with the sample

size n/2 and almost sure convergence implies convergence in probability. Note that there is an

abuse of notation as (xi
k)

′ is evaluated on the second set of n/2 paths. Also, standard regression

theory in [23] states that Ṽ i
k converges in probability to V̄ i

k under conditions 1 - 4. In particular,

condition 4 guarantees the finiteness of V̄ i
k .

Ṽ i
k/(n/2) converges in probability to zero since Ṽ i

k converges in probability to V̄ i
k which is

finite. H̃ i
k −Pi

k converges in probability to H̄ i
k −Pi

k which is bounded by condition 1. Moreover,

H̄ i
k −Pi

k is not equal to zero almost surely by condition 5. Therefore, by Slutzky’s theorem and

the continuous mapping theorem, −∣H̃ i
k −Pi

k∣/
√

Ṽ i
k/(n/2) converges in probability to −∞ and

(H̃ i
k −Pi

k)/
√

Ṽ i
k/(n/2) to −∞/+∞ depending on the sign of H̄ i

k −Pi
k, respectively. Further-

more, Φ(⋅) and φ(⋅) are continuous functions. Another application of the continuous mapping

theorem results in the bias approximation converging to zero in probability.

Corollary 3.2. Under the conditions of Theorem 3.1, the bias-corrected LSM low estimator

(3.61) is consistent.
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Proof: Let nd and np be the number of sample paths that are used to estimate the regression

coefficients and the discounted cash flows (propagators), respectively. (In this chapter, nd =

np = n/2.)

Letting nd go to infinity, for k = 1, . . . ,N −1, by Theorem 3.1, B̃i
k converges in probability

to

B̂i
k =

⎧
⎨
⎩

Ĥ i
k if H̄ i

k > Pi
k

Pi
k if H̄ i

k ≤ Pi
k

,

and B̃c
0 converges in probability to

B̂0 =
1
np

np

∑
i=1

B̂i
1. (3.62)

Moreover, B̂i
1 are independent, identically distributed random variables. Therefore, by law of

large numbers, B̂0 converges in probability to the expectation of B̂i
1, which is

E
[
E1

[
B̂i

1
]]

= E
[
E1

[
Ĥ i

1
]

11H̄ i
1>Pi

1
+Pi

111H̄ i
1≤Pi

1

]
(3.63)

= E
[
H̄ i

111H̄ i
1>Pi

1
+Pi

111H̄ i
1≤Pi

1

]
(3.64)

= B0, (3.65)

where the first equality holds because H̄ i
1 and Pi

1 belong to the filtration F1, the second equality

holds by condition 3 in Theorem 3.1, and the third equality holds by definition of the option

value. Hence, the bias-corrected LSM low estimator is consistent.

3.5 Numerical Results

The bias-corrected LSM high and low estimators are tested on a well-studied example from [6]

— an American-style max-call option with five underlying assets and a maturity of three years.
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The value of such an option at time t is

sup
t≤τ≤T

E
[
e−r(τ−t)(max(S1

τ , ...,S
5
τ)−K)+∣Ft

]
, (3.66)

where K is the strike price and S1
t , ...,S

5
t are the underlying asset-prices for t ∈ [0,T ]. These

processes are modeled with independent geometric Brownian motions, pay a continuous div-

idend of 10% and have a volatility of 20%. The strike price of the option is $100 and the

risk-free interest rate is 5%. We consider cases in which the initial stock prices S0 are all set to

the same value either of $90, $100 or $110 – encompassing a range of moneyness. The number

of exercise opportunities N is one of 3, 6, 9, 12, 15 or 18. In addition to moneyness and number

of exercise opportunities, we investigate how the sample size n affects the performance of the

corrected estimators.

The implementation of the LSM method can be divided into two parts; (i) simulation of the

underlying sample paths; and (ii) dynamic programming. To avoid unnecessary variations due

to random number generation, the same sets of sample paths for all combinations of S0 and N

are used to compute price estimators. Thus, there are 18 sets of (1,280,000× 5) independent

sample paths in total, where 1,280,000 is the product of the number of repeated valuations (m)

and the sample size (n), and 5 is the dimension of the underlying. Note that we use the total

number of sample paths as the budget constraint for all test cases.

To focus attention on estimator bias, independent repeated valuations are performed to

control estimator variance. Specifically, on each set of n sample paths we compute LSM esti-

mators. This is repeated using m independent sets of n sample paths, resulting in m independent

values of the estimators. These m values are averaged to give the price estimator. The standard

error of the price estimator is the standard deviation of the estimators divided by the square

root of m. Increasing the number of repeated valuations only affects the estimator standard

error and has no effect on the bias.

In the cross-sectional regressions, seven basis functions are used, consisting of a constant,
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Figure 3.1: Average relative errors (%) of the high estimators versus sample size (n) for N = 18
exercise opportunities. Left and right panels correspond to initial stock price S0 = $90 and
S0 = $110, respectively.

the first three monomials in the maximum of the values of the five assets, the first two mono-

mials in the second largest value, and the third largest value. This set of basis functions might

not be best, but it suffices for demonstration purposes. Computational experiments were done

using MATLAB with a CPU at 1.60GHz. All numerical results for the LSM estimators, in-

cluding the (N, S0, m, n) combinations used, are provided in Tables 3.3, 3.4, 3.5 and 3.6. In

this section, we provide figures for illustrative purposes that are produced using a subset of the

results in Tables 3.3 and 3.4.

3.5.1 Discussions

It is useful to evaluate estimators using average relative error (ARE) as this metric focuses

solely on estimator bias. The relative error of a high or low estimator is given by (B̃0 −
Btrue

0 )/Btrue
0 or (Btrue

0 − B̃0)/Btrue
0 , where Btrue

0 denotes the true approximation value which is

taken to be the uncorrected option value estimate with the largest sample size n = 12800. Av-

eraging the relative errors across m replications gives the ARE. A true approximation value
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Figure 3.2: Average relative errors (%) of the low estimators versus sample size (n) for N = 18
exercise opportunities. Left and right panels correspond to initial stock price S0 = $90 and
S0 = $110, respectively.

instead of a true option value is used in the ARE calculations since our bias reduction method

does not close the gap between the true approximation value and the true option value, which

is due to approximation errors in the basis functions.

First, we fix N = 18 and investigate the effect of moneyness and sample size on the esti-

mators. Figure 3.1 plots the AREs of the high estimators and their corresponding 95% con-

fidence intervals against sample size, where the left and right panels correspond to S0 = $90

and S0 = $110, respectively. Clearly, the corrected estimators outperform their uncorrected

counterparts regardless of option moneyness. The slight over-correction for S0 = $90 may not

be a bad thing provided that the true approximation value for the high estimator is typically

an upper bound for the true option value. Nonetheless, the bias reduction method is not very

useful here as it reduces the ARE by a factor of about two for the small sample sizes, while

the computing time for the corrected high estimator is doubled compared to the uncorrected

version. The benefit of the application of the bias reduction method is essentially wiped out by

the additional computational costs for evaluating the bias approximation.
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Figure 3.3: Root mean square errors of the low estimators against sample size (n) for N = 18
exercise opportunities. Left and right panels correspond to initial stock price S0 = $90 and
S0 = $110, respectively.

In what follows, we will solely focus on the discussion of the numerical results for the low

estimator, which does not bear the same drawback as the high estimator when applying the bias

reduction method.

In Figure 3.2, we plot the AREs of the low estimators and their corresponding 95% con-

fidence intervals against sample size, where the left and right panels correspond to S0 = $90

and S0 = $110, respectively. It appears that the bias reduction method works well regardless of

option moneyness — the ARE of the corrected estimator is close to zero for both in-the-money

(ITM) and out-of-the-money (OTM) options. On the other hand, sample size has an unobvious

impact on the corrected estimator for the ITM option, but a larger sample size reduces the ARE

of the corrected estimator for the OTM option so that the corrected estimator becomes essen-

tially unbiased. The bias-corrected estimator is much better than its uncorrected counterpart at

smaller sample sizes. This superiority decreases with sample size, as the uncorrected estimator

is consistent. This effect is evident across all metrics (i.e., average relative error and root mean

square error) used here to evaluate estimators (Figures 3.2 – 3.3).
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Figure 3.4: Average relative errors (%) of the low estimators versus number of exercise oppor-
tunities (N) for initial stock price S0 = $100 and sample size n = 100.

The root mean square error (RMSE) is another useful metric for evaluating estimators. The

mean square error (MSE) of an estimator B̃0 is

MSE(B̃0) = Var(B̃0)+ [bias(B̃0)]
2,

where bias(B̃0) = E[B̃0]−B0. The RMSE is a metric that is sensitive to contributions from

both estimator variance and bias. Here, we estimate the bias of an estimator by multiplying the

ARE by m, the number of repeated valuations. The estimate of variance is simply the square

of the estimator standard error.

In Figure 3.3, we fix N = 18 and plot the RMSEs of the price estimators against sample

size, where the left and right panels correspond to S0 = $90 and S0 = $110, respectively. For

both ITM and OTM options, the corrected estimator has a smaller RMSE compared with the

uncorrected estimator. The same thing generally holds for all sample sizes, although statistical

errors make the RMSEs of the two estimators indistinguishable at large sample sizes. This is

due to the fact that the correction terms significantly reduce the bias with little impact on the
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Figure 3.5: A histogram of m = 12800 estimates of the low estimators for N = 9 exercise
opportunities, initial stock price S0 = $100, and sample size n = 100.

estimator variance.

Figure 3.4 plots the AREs of the price estimators and their corresponding 95% confidence

intervals against number of exercise opportunities for an initial stock price of $100 and a sample

size of 100. It shows that the bias of both corrected and uncorrected estimators is unaffected by

N. In particular, the corrected estimator is close to unbiased across N. This is a very attractive

feature of the bias reduction method as a Bermudan option with more exercise opportunities

approximates an American option better.

We plot a histogram of the price estimators in Figure 3.5 to illustrate the effects of the bias

reduction method on the estimators. Specifically, there are m = 12800 estimates for each of

the corrected and uncorrected estimators, and they correspond to an option with N = 9 exercise

opportunities and an initial stock price S0 = $100. The sample size used to generate each

estimate is n = 100. From Figure 3.5, it is clear that the distribution of the estimates of the

corrected estimator is shifted toward the right hand side (the larger values) while the dispersion

of them is apparently preserved compared to the uncorrected estimator. This is consistent with

the above findings of reduced bias and unchanged variance for the corrected estimator.
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3.5.2 Parallel Computing

The reduction in bias is not totally free. The cost comes from the additional effort required

to compute the correction term. The bias-correction algorithm was implemented using Matlab

on one processor (i.e., serial computing). We found that the computing time for the corrected

estimator was roughly twice that of the uncorrected one for a fixed sample size. However, the

ARE of the corrected estimator falls well within 1% for a sample size as small as 100, whereas

the uncorrected estimator needs at least 3200 sample paths to achieve a comparable ARE (c.f.

Figure 3.2). This presents an opportunity to take advantage of parallel computing to improve

computational efficiencies.

To illustrate, denote the number of repeated valuations, the sample size for the corrected

and uncorrected estimators, and the number of processors available by mc, mu, nc, nu, and Np,

respectively. The notation ⌈x⌉ represents the least integer that is greater than or equal to a real

number x. Then, the efficiency ratio is

⌈mu/Np⌉∗nu

⌈mc/Np⌉∗nc ∗2
, (3.67)

where 2 is the penalty factor for the additional computational time for the bias-correction term

(see Tables 3.5 and 3.6). To attain a similar ARE for the corrected and uncorrected estimators,

we take mc = 12800, mu = 400, nc = 100, nu = 3200. When Np = 3200, the efficiency ratio

is 4. In other words, implementing four repeated valuations with sample size 100 on each of

the 3200 processors for the corrected estimator reduces the computational time by a factor of

four compared to one valuation with sample size 3200 on each of the 400 processors for the

uncorrected estimator. In the best case when Np ≥ 12800, the efficiency ratio becomes 16.

Note that we assume only the outer loops (the independent, repeated valuations) are par-

allelized. A parallel implementation of a single valuation requires a break-down of the cross-

sectional regressions into several pieces. This would force different processors to communicate

with each other during each valuation, which is very time-consuming and difficult to imple-
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ment efficiently. Furthermore, the communication costs increase linearly with the number of

exercise opportunities. These issues can offset the benefits of parallelizing.

3.6 Conclusions

We developed a bias-reduction technique for the high- and low-biased least-squares Monte

Carlo estimators of American option values. This method is applicable to virtually all underly-

ing processes and payoff functions in practice. Our numerical results show that this technique

is effective in reducing estimator bias across all combinations of sample size, moneyness and

number of exercise opportunities. However, it only has significant improvement for the low-

biased estimator when computing time is taken into account.

In addition to the directions of further study discussed above, we are currently working on

a rigorous justification of the bias-corrected LSM estimators. Furthermore, we will explore the

applicability of this technique to optimal-switching time problems, multiple-exercise options

and estimating sensitivities for American-style options.
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Table 3.3: (High-biased Estimators) Original and corrected
estimates and their respective standard errors (below the es-
timates). S0 is the initial stock price, N is the number of ex-
ercise opportunities, m is the number of repeated valuations,
and n is the sample size. The other parameters are strike
price K(= $100), risk-free interest rate r(= 5%), volatility
σ(= 20%), dividend yield δ (= 10%) and maturity T (= 3
years).

S0 = $90 S0 = $100 S0 = $110
N m n Original Corrected Original Corrected Original Corrected
3 12800 100 16.755 16.337 26.193 25.667 36.707 36.080

0.009 0.009 0.012 0.011 0.013 0.013
6400 200 16.396 16.128 25.741 25.404 36.176 35.777

0.009 0.009 0.011 0.011 0.013 0.013
3200 400 16.197 16.034 25.495 25.292 35.878 35.640

0.008 0.008 0.011 0.011 0.013 0.012
1600 800 16.095 16.002 25.361 25.246 35.725 35.592

0.008 0.008 0.011 0.010 0.012 0.012
800 1600 16.040 15.990 25.294 25.232 35.644 35.573

0.008 0.008 0.010 0.010 0.012 0.012
400 3200 16.013 15.986 25.261 25.229 35.606 35.568

0.008 0.008 0.010 0.010 0.012 0.012
200 6400 16.001 15.987 25.245 25.228 35.585 35.565

0.008 0.008 0.010 0.010 0.012 0.012
100 12800 15.996 15.989 25.239 25.230 35.574 35.564

0.008 0.008 0.010 0.010 0.012 0.012
6 12800 100 17.648 17.120 27.300 26.650 37.974 37.205

0.006 0.006 0.007 0.007 0.009 0.008
6400 200 17.180 16.844 26.721 26.311 37.290 36.804

0.005 0.005 0.007 0.007 0.008 0.008
3200 400 16.920 16.716 26.405 26.158 36.905 36.613

0.005 0.005 0.007 0.007 0.008 0.008
1600 800 16.790 16.672 26.242 26.099 36.698 36.531

0.005 0.005 0.006 0.006 0.008 0.008
800 1600 16.729 16.663 26.162 26.083 36.594 36.502

0.005 0.005 0.006 0.006 0.008 0.007
400 3200 16.705 16.669 26.125 26.083 36.542 36.493

0.005 0.005 0.006 0.006 0.007 0.007
200 6400 16.698 16.679 26.110 26.088 36.515 36.489

0.005 0.005 0.006 0.006 0.007 0.007
100 12800 16.700 16.690 26.106 26.094 36.504 36.490

0.005 0.005 0.006 0.006 0.007 0.007
Continued on next page . . .
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S0 = $90 S0 = $100 S0 = $110
N m n Original Corrected Original Corrected Original Corrected
9 12800 100 18.051 17.497 27.785 27.107 38.583 37.782

0.005 0.004 0.006 0.006 0.007 0.007
6400 200 17.544 17.196 27.168 26.742 37.837 37.335

0.004 0.004 0.005 0.005 0.006 0.006
3200 400 17.270 17.060 26.835 26.580 37.424 37.122

0.004 0.004 0.005 0.005 0.006 0.006
1600 800 17.135 17.013 26.662 26.515 37.204 37.030

0.004 0.004 0.005 0.005 0.006 0.006
800 1600 17.077 17.010 26.580 26.498 37.091 36.994

0.004 0.004 0.005 0.005 0.006 0.006
400 3200 17.053 17.016 26.545 26.501 37.035 36.983

0.004 0.004 0.005 0.005 0.006 0.006
200 6400 17.046 17.027 26.530 26.506 37.009 36.981

0.004 0.004 0.005 0.005 0.006 0.006
100 12800 17.053 17.042 26.526 26.514 36.997 36.983

0.004 0.004 0.005 0.005 0.006 0.006
12 12800 100 18.309 17.749 28.095 27.416 38.958 38.155

0.004 0.004 0.005 0.005 0.006 0.005
6400 200 17.782 17.431 27.454 27.030 38.197 37.695

0.003 0.003 0.004 0.004 0.005 0.005
3200 400 17.500 17.289 27.114 26.860 37.764 37.463

0.003 0.003 0.004 0.004 0.005 0.005
1600 800 17.364 17.243 26.944 26.798 37.540 37.366

0.003 0.003 0.004 0.004 0.005 0.005
800 1600 17.310 17.242 26.863 26.781 37.424 37.326

0.003 0.003 0.004 0.004 0.005 0.005
400 3200 17.292 17.255 26.829 26.785 37.370 37.317

0.003 0.003 0.004 0.004 0.005 0.005
200 6400 17.297 17.277 26.819 26.796 37.343 37.315

0.003 0.003 0.004 0.004 0.005 0.005
100 12800 17.309 17.298 26.821 26.809 37.331 37.316

0.003 0.003 0.004 0.004 0.005 0.005
Continued on next page . . .
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S0 = $90 S0 = $100 S0 = $110
N m n Original Corrected Original Corrected Original Corrected
15 12800 100 18.510 17.950 28.335 27.658 39.160 38.362

0.003 0.003 0.004 0.004 0.005 0.005
6400 200 17.971 17.622 27.688 27.269 38.377 37.880

0.003 0.003 0.004 0.004 0.004 0.004
3200 400 17.688 17.480 27.343 27.093 37.936 37.638

0.003 0.003 0.004 0.004 0.004 0.004
1600 800 17.555 17.436 27.172 27.028 37.709 37.536

0.003 0.003 0.004 0.003 0.004 0.004
800 1600 17.507 17.441 27.092 27.013 37.592 37.494

0.003 0.003 0.003 0.003 0.004 0.004
400 3200 17.497 17.461 27.063 27.020 37.535 37.482

0.003 0.003 0.003 0.003 0.004 0.004
200 6400 17.504 17.485 27.056 27.033 37.508 37.480

0.003 0.003 0.003 0.003 0.004 0.004
100 12800 17.522 17.511 27.059 27.047 37.498 37.482

0.003 0.003 0.003 0.003 0.004 0.004
18 12800 100 18.657 18.105 28.552 27.884 39.376 38.589

0.003 0.003 0.004 0.004 0.004 0.004
6400 200 18.112 17.769 27.898 27.484 38.587 38.097

0.003 0.003 0.003 0.003 0.004 0.004
3200 400 17.827 17.623 27.553 27.308 38.151 37.858

0.003 0.003 0.003 0.003 0.004 0.004
1600 800 17.696 17.579 27.386 27.245 37.921 37.751

0.002 0.002 0.003 0.003 0.004 0.004
800 1600 17.649 17.584 27.316 27.238 37.807 37.711

0.002 0.002 0.003 0.003 0.004 0.004
400 3200 17.640 17.606 27.290 27.248 37.752 37.699

0.002 0.002 0.003 0.003 0.004 0.004
200 6400 17.653 17.635 27.289 27.267 37.725 37.697

0.002 0.002 0.003 0.003 0.004 0.004
100 12800 17.671 17.661 27.295 27.283 37.715 37.700

0.002 0.002 0.003 0.003 0.004 0.004
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Table 3.4: (Low-biased Estimators) Original and corrected
estimates and their respective standard errors (below the es-
timates). S0 is the initial stock price, N is the number of ex-
ercise opportunities, m is the number of repeated valuations,
and n is the sample size. The other parameters are strike
price K(= $100), risk-free interest rate r(= 5%), volatility
σ(= 20%), dividend yield δ (= 10%) and maturity T (= 3
years).

S0 = $90 S0 = $100 S0 = $110
N m n Original Corrected Original Corrected Original Corrected
3 12800 100 15.003 15.861 24.006 25.100 34.168 35.491

0.021 0.022 0.026 0.027 0.029 0.030
6400 200 15.339 15.871 24.390 25.065 34.698 35.503

0.021 0.022 0.026 0.026 0.029 0.030
3200 400 15.581 15.899 24.719 25.122 35.028 35.505

0.022 0.022 0.026 0.026 0.029 0.030
1600 800 15.699 15.883 24.925 25.154 35.285 35.552

0.022 0.022 0.026 0.026 0.029 0.030
800 1600 15.864 15.965 25.075 25.197 35.412 35.556

0.022 0.022 0.026 0.026 0.029 0.030
400 3200 15.883 15.937 25.124 25.189 35.526 35.602

0.022 0.022 0.026 0.026 0.029 0.030
200 6400 15.912 15.941 25.128 25.162 35.566 35.605

0.022 0.022 0.026 0.026 0.030 0.030
100 12800 15.931 15.945 25.180 25.197 35.598 35.618

0.022 0.022 0.026 0.026 0.030 0.030
6 12800 100 15.287 16.328 24.424 25.724 34.706 36.246

0.021 0.021 0.025 0.026 0.028 0.029
6400 200 15.704 16.354 24.890 25.684 35.250 36.197

0.021 0.021 0.025 0.026 0.029 0.029
3200 400 15.954 16.347 25.251 25.733 35.643 36.211

0.021 0.021 0.025 0.026 0.029 0.029
1600 800 16.154 16.383 25.494 25.771 35.916 36.243

0.021 0.021 0.025 0.025 0.029 0.029
800 1600 16.301 16.429 25.647 25.802 36.081 36.260

0.021 0.021 0.025 0.025 0.029 0.029
400 3200 16.307 16.377 25.698 25.780 36.221 36.318

0.021 0.021 0.025 0.025 0.029 0.029
200 6400 16.381 16.419 25.767 25.810 36.298 36.348

0.021 0.021 0.025 0.025 0.029 0.029
100 12800 16.406 16.426 25.755 25.777 36.298 36.324

0.021 0.021 0.025 0.025 0.029 0.029
Continued on next page . . .
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S0 = $90 S0 = $100 S0 = $110
N m n Original Corrected Original Corrected Original Corrected
9 12800 100 15.422 16.493 24.571 25.895 34.932 36.490

0.020 0.021 0.025 0.025 0.028 0.029
6400 200 15.824 16.479 25.103 25.920 35.497 36.455

0.021 0.021 0.025 0.025 0.028 0.029
3200 400 16.111 16.514 25.438 25.930 35.923 36.502

0.021 0.021 0.025 0.025 0.028 0.029
1600 800 16.312 16.549 25.638 25.925 36.204 36.542

0.021 0.021 0.025 0.025 0.028 0.029
800 1600 16.417 16.551 25.803 25.964 36.334 36.523

0.021 0.021 0.025 0.025 0.029 0.029
400 3200 16.484 16.557 25.873 25.961 36.455 36.557

0.021 0.021 0.025 0.025 0.029 0.029
200 6400 16.498 16.537 25.940 25.986 36.518 36.572

0.021 0.021 0.025 0.025 0.029 0.029
100 12800 16.522 16.542 25.966 25.990 36.548 36.576

0.021 0.021 0.025 0.025 0.029 0.029
12 12800 100 15.514 16.573 24.691 25.992 35.090 36.621

0.020 0.021 0.024 0.025 0.028 0.029
6400 200 15.885 16.538 25.157 25.951 35.634 36.570

0.020 0.021 0.025 0.025 0.028 0.029
3200 400 16.169 16.568 25.495 25.978 36.025 36.595

0.021 0.021 0.025 0.025 0.028 0.029
1600 800 16.369 16.607 25.742 26.024 36.305 36.642

0.021 0.021 0.025 0.025 0.029 0.029
800 1600 16.449 16.585 25.871 26.030 36.439 36.629

0.021 0.021 0.025 0.025 0.029 0.029
400 3200 16.526 16.600 25.922 26.010 36.534 36.639

0.021 0.021 0.025 0.025 0.029 0.029
200 6400 16.538 16.577 25.990 26.036 36.623 36.679

0.021 0.021 0.025 0.025 0.029 0.029
100 12800 16.590 16.611 26.008 26.032 36.650 36.679

0.021 0.021 0.025 0.025 0.029 0.029
Continued on next page . . .
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S0 = $90 S0 = $100 S0 = $110
N m n Original Corrected Original Corrected Original Corrected
15 12800 100 15.553 16.591 24.759 26.030 35.122 36.613

0.020 0.021 0.024 0.025 0.028 0.029
6400 200 15.970 16.609 25.226 26.008 35.638 36.551

0.021 0.021 0.025 0.025 0.028 0.029
3200 400 16.235 16.628 25.577 26.051 36.004 36.563

0.021 0.021 0.025 0.025 0.028 0.029
1600 800 16.389 16.623 25.754 26.033 36.255 36.586

0.021 0.021 0.025 0.025 0.029 0.029
800 1600 16.506 16.640 25.881 26.041 36.409 36.600

0.021 0.021 0.025 0.025 0.029 0.029
400 3200 16.556 16.631 25.966 26.053 36.548 36.653

0.021 0.021 0.025 0.025 0.029 0.029
200 6400 16.603 16.643 25.990 26.036 36.619 36.676

0.021 0.021 0.025 0.025 0.029 0.029
100 12800 16.578 16.599 25.977 26.001 36.608 36.637

0.021 0.021 0.025 0.025 0.029 0.029
18 12800 100 15.581 16.592 24.850 26.094 35.160 36.611

0.020 0.021 0.024 0.025 0.028 0.029
6400 200 15.975 16.597 25.345 26.105 35.693 36.584

0.020 0.021 0.025 0.025 0.028 0.029
3200 400 16.256 16.638 25.652 26.117 36.091 36.635

0.021 0.021 0.025 0.025 0.028 0.029
1600 800 16.445 16.672 25.812 26.088 36.331 36.656

0.021 0.021 0.025 0.025 0.029 0.029
800 1600 16.518 16.649 25.964 26.120 36.434 36.621

0.021 0.021 0.025 0.025 0.029 0.029
400 3200 16.576 16.648 26.029 26.115 36.572 36.676

0.021 0.021 0.025 0.025 0.029 0.029
200 6400 16.580 16.619 26.082 26.128 36.548 36.604

0.021 0.021 0.025 0.025 0.029 0.029
100 12800 16.640 16.661 26.066 26.090 36.598 36.627

0.021 0.021 0.025 0.025 0.029 0.029
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Table 3.5: (High-biased Estimators) Computing time.

S0 = $90 S0 = $100 S0 = $110
N m n Original Corrected Original Corrected Original Corrected
3 12800 100 20.428 41.312 22.991 46.399 19.536 39.254

6400 200 19.483 39.804 19.524 39.615 19.419 39.559
3200 400 19.593 39.889 19.918 40.323 19.500 39.457
1600 800 19.745 39.326 19.545 39.917 19.551 39.095
800 1600 19.482 39.626 19.410 39.440 19.198 39.036
400 3200 19.890 39.745 19.197 39.205 19.182 39.451
200 6400 19.374 39.605 19.597 39.489 19.677 39.796
100 12800 19.314 39.467 19.641 39.336 19.380 39.675

6 12800 100 38.088 88.626 38.087 89.392 44.360 104.110
6400 200 37.950 89.103 39.045 89.369 38.468 89.589
3200 400 38.356 88.875 38.026 89.463 39.652 90.119
1600 800 38.298 88.970 38.672 89.033 38.483 90.858
800 1600 38.424 89.860 38.370 90.003 39.605 90.486
400 3200 37.841 89.742 38.816 89.822 39.084 89.259
200 6400 38.278 89.346 38.510 89.571 38.501 89.612
100 12800 43.938 105.450 39.011 88.888 38.082 88.770

9 12800 100 61.438 151.074 58.462 144.659 59.396 144.208
6400 200 59.809 144.662 58.859 144.270 59.001 144.672
3200 400 59.433 143.875 59.103 144.975 58.750 143.329
1600 800 66.340 157.374 59.484 144.642 59.427 143.854
800 1600 62.923 154.803 58.298 143.955 58.563 143.974
400 3200 59.468 143.688 65.325 161.229 58.730 145.174
200 6400 61.440 149.609 58.706 142.814 59.746 145.012
100 12800 59.667 146.078 59.053 143.993 60.196 143.408

Continued on next page . . .
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S0 = $90 S0 = $100 S0 = $110
N m n Original Corrected Original Corrected Original Corrected
12 12800 100 79.358 196.081 78.616 195.841 84.347 207.965

6400 200 78.249 195.787 78.682 196.201 81.939 203.675
3200 400 78.202 196.049 78.955 195.338 80.010 195.623
1600 800 78.671 196.338 78.556 197.296 79.493 197.765
800 1600 86.698 212.317 78.368 195.956 77.957 195.556
400 3200 79.024 195.126 85.092 210.836 77.875 194.479
200 6400 79.461 197.742 79.693 196.949 78.674 195.867
100 12800 78.906 195.076 82.403 203.230 85.131 213.160

15 12800 100 98.843 251.510 99.894 248.997 99.848 248.906
6400 200 97.938 245.586 98.534 248.210 99.067 250.462
3200 400 100.199 260.430 96.596 248.522 96.989 248.659
1600 800 105.705 264.325 97.770 245.596 98.076 249.995
800 1600 100.889 245.963 105.426 262.567 96.827 245.489
400 3200 99.206 251.388 97.769 245.360 108.590 268.902
200 6400 101.437 252.542 99.020 252.274 96.757 247.403
100 12800 101.819 250.222 98.750 251.696 101.798 258.553

18 12800 100 124.146 319.230 118.117 297.996 115.732 299.456
6400 200 118.279 300.921 120.130 307.678 117.071 299.649
3200 400 116.867 302.079 121.913 310.373 116.243 300.470
1600 800 117.251 298.664 120.649 306.439 124.897 313.566
800 1600 116.784 299.768 116.470 300.003 117.324 301.786
400 3200 125.721 313.665 118.728 300.000 117.811 297.906
200 6400 120.486 306.003 119.138 309.168 116.603 300.992
100 12800 119.601 303.720 122.759 309.822 120.939 299.882
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Table 3.6: (Low-biased Estimators) Computing time.

S0 = $90 S0 = $100 S0 = $110
N m n Original Corrected Original Corrected Original Corrected
3 12800 100 37.967 64.143 42.948 72.857 36.722 63.208

6400 200 37.069 62.765 36.671 62.524 37.093 62.575
3200 400 37.003 62.492 37.080 63.400 37.224 62.887
1600 800 36.461 62.352 36.807 62.592 36.590 62.986
800 1600 36.467 62.547 36.283 62.289 36.783 62.465
400 3200 36.264 62.248 36.972 63.211 36.685 63.015
200 6400 36.804 62.648 37.128 62.554 37.120 62.939
100 12800 37.247 62.213 36.732 61.970 36.583 62.527

6 12800 100 75.476 142.840 75.410 142.460 91.051 170.828
6400 200 76.282 142.091 75.570 142.653 76.139 142.003
3200 400 75.703 143.828 76.389 142.055 76.372 146.169
1600 800 75.226 141.622 76.178 141.107 78.052 145.337
800 1600 75.660 142.186 75.700 141.005 76.486 144.850
400 3200 76.140 142.787 75.404 141.471 75.837 142.814
200 6400 75.703 142.020 75.371 142.182 75.990 142.125
100 12800 89.829 165.839 76.050 140.709 74.316 144.005

9 12800 100 124.198 237.381 117.263 230.360 118.663 230.224
6400 200 119.065 231.423 119.182 231.135 118.637 230.347
3200 400 118.978 231.244 119.511 230.203 118.534 230.455
1600 800 133.672 263.208 117.642 230.150 119.608 231.271
800 1600 125.725 242.707 118.362 230.352 118.416 231.559
400 3200 118.902 231.658 131.761 253.789 118.922 229.694
200 6400 124.273 240.614 118.859 231.250 118.609 231.310
100 12800 120.550 236.395 119.332 230.291 117.266 230.894

Continued on next page . . .
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S0 = $90 S0 = $100 S0 = $110
N m n Original Corrected Original Corrected Original Corrected
12 12800 100 159.736 312.427 159.759 313.859 173.696 339.196

6400 200 160.803 314.053 158.246 314.264 166.038 324.236
3200 400 157.984 314.062 159.102 312.107 158.673 312.721
1600 800 158.371 312.697 158.223 311.523 161.787 318.510
800 1600 175.717 341.104 158.242 312.825 158.978 312.574
400 3200 158.858 321.361 172.151 341.307 157.948 313.049
200 6400 161.429 315.243 160.595 314.001 159.883 315.331
100 12800 158.461 313.959 167.717 328.052 168.754 334.826

15 12800 100 196.761 397.130 199.890 398.409 203.155 398.300
6400 200 200.030 399.722 200.987 395.702 202.045 396.765
3200 400 211.877 411.753 200.404 394.858 196.090 399.365
1600 800 211.551 420.633 201.021 396.307 199.465 405.413
800 1600 195.952 398.082 211.700 425.664 204.477 394.845
400 3200 202.723 401.004 202.658 394.681 211.772 417.592
200 6400 197.450 389.254 201.648 399.017 201.495 396.147
100 12800 197.046 392.004 199.300 395.488 205.832 407.409

18 12800 100 252.205 508.979 238.559 478.312 238.365 480.117
6400 200 239.852 480.265 245.378 494.471 236.854 480.096
3200 400 239.117 478.623 250.533 496.318 240.435 479.509
1600 800 240.046 479.235 245.973 487.578 250.740 505.154
800 1600 239.203 478.819 237.515 478.930 241.316 478.071
400 3200 252.761 506.816 238.358 480.883 238.945 476.829
200 6400 247.719 494.894 244.741 492.721 238.743 478.983
100 12800 242.489 484.816 246.952 494.995 238.537 479.420
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Chapter 4

Optimized least-squares Monte Carlo for

measuring counterparty credit exposure

of American-style options

4.1 Introduction

In this chapter, we would like to consider the risk management aspects of American options,

as opposed to valuation of these contracts in the previous two chapters. Particularly, we inves-

tigate the counterparty risk evolved in trading OTC derivatives, which is carried out directly

between two parties without going through an exchange or other intermediaries. Counterparty

risk is the risk that a party to an OTC derivatives contract may fail to perform on its obligations,

causing losses to the other party. This chapter focuses on the methodology for estimating the

counterparty exposure of American options. The counterparty exposure here means the poten-

tial loss to the buyer of an American option resulting from a naked position in the option. To

be more precise, it is the larger of zero and the market value of the option if the counterparty

were to default and there were zero recovery.

5A version of this chapter has been accepted for publication [3].
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Because our goal is to develop an efficient algorithm that is applicable to most financial in-

struments, including those that have many underlying risk factors, we concentrate exclusively

on the Monte Carlo approach as it can overcome the curse of dimensionality. In order to find

the quantile of the exposures at a future time point, we need to estimate the market value of

the option at every simulated state at that specific time point. Since the valuation of American

options is done by simulation, a straightforward implementation of the Monte Carlo approach

for estimating counterparty exposures requires nested simulations, which is computationally

formidable, especially when the risk horizon is long. Thus, a more efficient simulation algo-

rithm for estimating counterparty exposures is in demand.

There is a rich literature in pricing American options by simulation. In particular, Longstaff

and Schwartz [6] propose the least-squares Monte Carlo (LSM) method which is very popular

in practice since it is very easy to implement and readily applicable to various options that

contain an early-exercise feature. Thus, LSM serves as a natural starting point to measure the

counterparty exposure of American options.

There are two main components in calculating the credit exposure of an American option:

continuation value function (CVF) estimation and exposure valuation. Suppose we are in-

terested in calculating the credit exposures at each of the possible exercise times. Then, we

need to know the risk-neutral option values across a wide range of states of the underlying

risk factors at each possible exercise time. Putting this into the LSM framework, we obtain

the risk-neutral values of the option by estimating the CVFs through a cross-sectional linear

regression at each possible exercise time. The sample paths for this estimation purpose are

generated using evolution models of the underlying risk factors under the risk-neutral measure.

For valuing credit exposure, however, we simulate the sample paths under the physical mea-

sure, since our concern is on the potential future market value of the option. The continuation

value is estimated by inserting the realized values of the risk factors into the estimated CVF.

The exposure is given by the maximum of the continuation value and the immediate exercise

value. The future exposures are set to zero once the option is exercised. We term this version
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of LSM that is tailored to calculate credit exposure the optimized least-squares Monte Carlo

(OLSM) method.

While LSM usually yields a reasonably accurate estimate for the option price today (using a

moderate sample size, say 10000), the estimated CVFs at future exercise opportunities are gen-

erally less accurate, resulting in possible incorrect exercise decisions, which in turn produces

misleading credit exposures. For instance, the future exposures are set to be zero once the

option is determined to be exercised by the LSM algorithm. If the option actually should not

be exercised, that implies its exposure is grossly underestimated. To minimize such error, we

apply variance reduction techniques, initial state dispersion and multiple bucketing (piecewise

linear regression) to OLSM.

We test the OLSM method on a simple American call option as there exists an analytical

approximation for it in Ju and Zhong [2]. It is assumed that the underlying stock does not

distribute dividends. By no arbitrage theory, it is never optimal to exercise this kind of option

early. Thus, its exposure is very sensitive to incorrect exercise decisions as a result of simula-

tion error or regression model error in the stopping time estimators. We do not address the im-

portant issue of suboptimal exercise decisions due to other factors such as pricing model error

or investor behaviour. Exposure estimates due to these other factors can be above or below the

actual exposure. The main reason for this choice is that the exposures are often underestimated

in case the option is mistakenly exercised early, which means that the average exposures likely

fall under the graph of the analytical option prices. This allows for easy observation of the bias

in exposures. On the contrary, for other American options whose optimal stopping times are

before maturity, incorrect exercise decisions could lead to over- or under-estimations, causing

the average exposures to appear above or below the analytical option prices. Moreover, the

positive and negative biases due to incorrect exercise decisions could offset each other. These

make it hard to observe the significance of the bias. Therefore, we pick the simple American

call option as a benchmark instrument to evaluate the accuracy of the continuation value func-

tion approximations. Numerical results show that OLSM works well for the call option even
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when the underlying’s volatility is as high as 80%, but further research on multiple bucketing

is required in order to generalize this method to handle various financial instruments.

The rest of this chapter is organized as follows. The next section sets up the OLSM frame-

work for calculating credit exposures, entailing the two main components aforementioned.

Section 4.3 is the heart of this chapter, which develops several techniques to improve the per-

formance of OLSM. We provide numerical results for an American call option to demonstrate

the effectiveness of OLSM in Section 4.4. Section 4.5 concludes and suggests future research

directions.

4.2 OLSM Framework

OLSM consists of two phases. Phase one estimates the CVF at each exercise opportunity,

whereas phase two makes use of the estimated CVFs to calculate credit exposure to the coun-

terparty. Assume that we are working under the constraint that the sample paths are generated

externally, and all the sample paths are used to maximize the performance of OLSM. Specifi-

cally, M1 = 10000 paths are simulated under the risk-neutral measure and M2 = 10000 paths are

simulated under the physical measure. This fixed sample size will affect our selection of tech-

niques that accelerate the convergence of the continuation value estimators. The risk-neutral

prices and physical prices are used to estimate the CVFs and the credit exposures, respectively.

In this chapter, we assume the lognormal model for the underlying physical prices

S(t) = S0 exp
[
(µ − 1

2
σ2)t +σW (t)

]
(4.1)

and the underlying risk-neutral prices

S(t) = S0 exp
[
(r− 1

2
σ2)t +σW ∗(t)

]
(4.2)

where W (t) is a standard Brownian motion under the physical measure, W ∗(t) is a standard
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Brownian motion under the risk-neutral measure, S0 is the initial stock price, µ is the drift, r

is the risk-free interest rate, and σ is the volatility. Note that the S0 in (4.1) could be different

from that in (4.2) as we disperse the initial states in Section 4.3.2. The ideas developed in this

chapter are applicable to more general price process models (e.g., stochastic volatility, jump

diffusions).

4.2.1 CVF Estimation

In [6], Longstaff and Schwartz develop an LSM interleaving estimator, where the determiner

(the estimator used to make the exercise/hold decision) and the propagator (option value passed

on to preceding exercise opportunity) are dependent through one overlapping path. This over-

lap causes the estimator to be biased high for a relatively small sample size, since (a) there

exists a Jensen’s inequality effect, and (b) it makes use of future information to make exercise

decisions, violating the definition of a stopping time. However, it converges to a lower bound

for the true option value as the sample size gets large in which case the determiner tends to a

constant and defines a valid stopping time.

American option pricing is an optimal stopping time problem. Transforming it into a dy-

namic programming problem and running it on the M1 risk-neutral price paths, the recursive

equations for the interleaving estimator are

H̃ i
k = xi

kβ̃k (4.3)

Ĥ i
k = e−r∆T B̃i

k+1 (4.4)

and

B̃i
k =

⎧
⎨
⎩

Ĥ i
k if H̃ i

k > Pi
k,

Pi
k if H̃ i

k ≤ Pi
k,

(4.5)

where xi
k is a (1× p) vector of basis functions evaluated at time k for path i, β̃k is a (p×1) vector

of least-squares regression coefficients, p is the number of basis functions, H̃ i
k(determiner) and
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Ĥ i
k(propagator) are the time-k, path-i continuation value estimators, B̃i

k is the time-k, path-i

option value estimator, Pi
k is the time-k, path-i exercise value, ∆T = T/N is the time interval, T

is the maturity, k ∈ {1, . . . ,N} is shorthand for k∆T which is a possible exercise time, and the

terminal conditions are given by H̃ i
N = Ĥ i

N = 0 for all i ∈ {1, . . . ,M1}.

The basis functions that we will use are monomials up to the 3rd degree, that is, x =
[
1,S,S2,S3]. The only results from dynamic programming that we need to calculate the ex-

posures are β̃k, which are equal to (Xk
′Xk)

−1 Xk
′Ĥk, where Xk = ((x1

k)
′, . . . ,(xM1

k )′)′, Ĥk =

(Ĥ1
k , . . . , Ĥ

M1
k )′, −1 denotes the matrix inverse and ′ denotes the matrix transpose.

4.2.2 Exposure Valuation

The exposures are measured based on the simulated physical prices. At each time on each

path, we can calculate the immediate exercise value and the value of all the basis functions us-

ing the physical prices, where the product of the latter and the previously estimated regression

coefficients gives the continuation value. The exposure is equal to the maximum of the imme-

diate exercise value and the continuation value. Once the option is exercised, the exposures

at the later time points are all set to be zero. In practice, however, the exposure should only

be set to zero after an appropriate close-out period. Therefore, the actual exposure is slightly

underestimated by our algorithm.

There are some subtle issues that are not considered in our exposure estimation approach.

For instance, when a firm buys an option with no margining, this can bring about additional

exposure due to suboptimal decisions by the firm, possibly resulting in higher amounts of expo-

sures for unexercised options. However, where there is a margining agreement, an unexercised

sold option can produce additional counterparty (the writer of the option) exposure arising

from unreturned margin. It could lead to an increase in bilateral exposures if the derivative is

something like a swaption that can generate profit and loss of either sign after exercise.
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4.3 Beyond LSM

We would like to highlight the fact that incorrect exercise decisions will result in misleading

exposures due to the practice of setting the exposures at the later points to be zero after exercise.

Thus, it is highly important to estimate the continuation value functions (characterized by βk)

corresponding to the physical prices accurately. However, the original LSM method does not

produce CVFs that are accurate for a wide range of underlying prices due to extrapolation of

the fitted regression beyond the data values used to estimate βk. This might result in incorrect

exercise decisions especially at future times in which real-world values of the underlying price

are likely to be outside of the range of risk-neutral prices used to estimate βk. To remedy this

problem, several techniques are proposed in this section.

4.3.1 Faster Convergence to the Approximation

Given that the set of basis functions have been fixed, we would like to accelerate the conver-

gence of the continuation value estimators to the true approximation provided by this set of

basis functions. In other words, our aim is to reduce the simulation error. This can be achieved

by bias and/or variance reduction.

Bias Reduction

The probabilistic nature of simulation makes incorrect exercise decisions (w.r.t. the true ap-

proximation) possible, giving rise to estimator bias. Kan et al. [5] develop a bias correction

technique for Monte Carlo pricing of early-exercise options. Some numerical results for the

LSM high- and low-biased estimators are given in Chapter 3. Kan et al. [4] conduct a detailed

analysis of the bias of the LSM estimators and provides comprehensive numerical results on

these estimators and their bias-corrected versions. Although all the numerical results show that

the bias correction technique is effective in reducing the bias of the LSM estimators, we do not

apply this technique to calculate the exposures because we work with a sample size of 10000,
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where there is, in general, little simulation bias to be corrected. This is evident in the numerical

results for the pricing of a five-dimensional American max-call option [4].

Variance Reduction

Since bias is not a big issue for a sample size of 10000, we focus on increasing the speed of

convergence by reducing the variance. We consider two common variance reduction techniques

in the following.

(a) Antithetic variates

Antithetic variates can be applied to the sample paths generated under the physical measure.

Specifically, here 5000 antithetic pairs of negatively correlated paths are simulated, and expo-

sures for each path are estimated. At each possible exercise time, the average exposure for each

antithetic pair is computed, resulting in 5000 values that form an empirical distribution of the

exposures. We can then estimate the expected exposure or the value-at-risk (VaR) using this

distribution. This method works well when the function to be estimated is monotonic.

(b) Inner control variates

Since we would like to reduce the variance of the continuation value estimators at the interme-

diate time steps rather than at time zero, we apply control variates to the response variables in

the cross-sectional regressions. This kind of control variates was termed inner control variates

in Broadie and Glasserman [1]. To simplify notations, we suppress the subscript k. Rewriting

the determiner in (4.3) as a weighted average of the propagators gives

H̃ i = xiβ̃ =
M

∑
j=1

ω(i, j)Ĥ j, (4.6)
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where ω(i, j) denotes the weight connecting path i at time k to path j at time k + 1. With

control variates , (4.6) becomes

H̃ i(α) =
M

∑
j=1

ω(i, j)Ĥ j −α

Ã
M

∑
j=1

ω(i, j)Y j −
M

∑
j=1

ω(i, j)E
[
Y j]

)
(4.7)

=
M

∑
j=1

ω(i, j)
(
Ĥ j −α

(
Y j −E[Y j])) , (4.8)

where α = cov(Y j, Ĥ j)/var(Y j). As a result, we adjust the propagators with the control vari-

ates before running a cross-sectional regression to obtain the variance-reduced determiners.

In our numerical study, we will use three martingale control variates, namely e−r(τ−k∆T )Sτ ,

e−(2r+σ2)(τ−k∆T )S2
τ and e−(3r+3σ2)(τ−k∆T )S3

τ , which are sampled at the estimated exercise times

to make them have a higher correlation to the propagators. The higher the correlation the more

significant the amount of variance reduction.

4.3.2 Improving the Approximation

The methods in Section 4.3.1 can only reduce the number of sample paths required to attain

the same accuracy for the crude Monte Carlo estimators. They help the estimators converge

faster to the true approximation for a given set of basis functions, but they do not produce a

better approximation to the true value. In fact, not much work has been done to address the

approximation error associated with using a finite set of basis functions in the literature. We

provide part of a solution to this problem in the following.

In OLSM, the CVF is estimated by a simulated regression. Initial state dispersion deals with

the simulation part, generating a wider support for regression and hence reducing extrapolation

error when computing credit exposures. Multiple bucketing improves the fit of the regression

model.
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Initial State Dispersion

Determining the exercise strategy of an American option does not require the risk-neutral sam-

ple paths to have the same initial price. Thus, we disperse the initial state so as to improve the

stability of the regressions. Now, the question is how to disperse the initial state.

Rasmussen [7] suggests simulation of the state variables from a fictitious initial time point

prior to time zero and the original initial state using the discounted underlying asset prices, a

martingale under the risk-neutral measure. The distribution at time 0 will reflect the volatility

of the underlying assets while being centered at the original initial state. The problem with

this method is that it is difficult to determine the fictitious initial time point. Preliminary nu-

merical results showed that Rasmussen’s method is not very stable for the purpose of exposure

calculation.

Since our goal is to measure the exposure, we have to estimate the risk-neutral value of the

option at the physical prices. The drift of the model for the physical prices is usually greater

than that for the risk-neutral prices. This implies a demand for an accuracy of the CVF for

a wide support of underlying asset prices. Instead of drawing initial states from a sampling

distribution, we avoid introducing one more dimension of variation by deterministically allo-

cating the initial states. This is to help ensure that there exist initial states in the target region

from which the risk-neutral prices are simulated to cover a wide range of the physical prices

at future times. On the contrary, drawing from a sampling distribution might result in initial

states concentrated on a small region, which is not a desirable property because that does not

make the support wide enough at future times for accurate estimation of the CVF.

We divide the initial states into three regions, [10, 80], [80, 280] and [280, 510]. 4000, 2000

and 4000 initial states are allocated to the three regions, respectively. Within each region, the

initial states are chosen uniformly. The ratios 4:2:4 are chosen since we want a very accurate

estimated CVF at the beginning and more simulated data points are necessary to capture the

shape of the CVF for the widely distributed physical prices near the maturity. The region

boundaries are determined by matching the mean of the risk-neutral prices with the mean plus
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six standard deviations of the physical prices at T/N, T/2 and T , i.e,

SQ
0 erk∆T = S0eµk∆T +6S0eµk∆T

√
eσ2k∆T −1, (4.9)

where SQ
0 is an initial state for the risk-neutral prices, k is equal to 1, 20 and 40, respectively.

With the parameter values in our numerical study, the SQ
0 ’s are rounded off to 80, 280 and 510,

respectively.

There are several remarks on our proposed method of initial state dispersion:

∙ There is no need to determine a fictitious initial time point.

∙ The way to choose the initial state regions is not very rigorous, but it yields satisfactory

results.

∙ The ratios 4:2:4 are more like guidelines than rules.

∙ This method is independent of the financial instrument type. All the dispersion parameter

values remain the same if various financial instruments share the same risk factors.

Multiple Bucketing

After generating a wide range of values of the regressors, our next target is to improve the

fit of the regression model. This could be achieved by multiple bucketing, which is an alias

for piecewise linear regression. For instance, the state values are divided into two regions

(buckets) so that an independent regression can be run on each bucket. This is on contrary to

using a single regression for all the state values. This approach is especially effective when it

comes close to the maturity date because the true CVF is not like a polynomial there. On the

other hand, the CVF is pretty smooth at the beginning. It is expected that a single regression

model would provide a good fit of the simulated data points. Following these principles, the

bucket boundaries for an American call option with strike price 40 are chosen as follows:
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∙ In the first quarter of the maturity, the bucket boundary for the underlying stock prices is

chosen to be 100 (rounded-off), which is calculated using the sum of the expected value

and four times the standard deviation of the underlying stock prices,

S0erk∆T +4S0er∆T
√

eσ2k∆T −1, (4.10)

where k = 5. The interval (0, 100) would cover most simulated stock prices, thus we

essentially run a single bucket regression in the first quarter, although technically speak-

ing, that is a two-bucket regression since another regression is performed over the interval

(100, ∞).

∙ After T/4, we use in-the-money (ITM) and out-of-the-money (OTM) buckets. In other

words, the bucket boundary is the strike price.

Different from the initial state dispersion, the selection of the bucket boundaries is sensitive to

the type of the financial instrument. While formula (4.10) still applies in general, it is hard to

justify why the bucket boundary should be at the strike price after T/4 for instruments other

than the simple American call option. One possible solution to this problem is to choose the

“best” boundary out of several candidates according to a certain criterion. This is left for future

research.

4.4 Numerical Results

The OLSM method is tested on a simple American call option where the underlying stock does

not pay dividends. By no arbitrage theory, it can be shown that it is optimal not to exercise

this option early. Thus, the estimated exposures of this option are very sensitive to incorrect

exercise decisions. If they closely resemble the exposures calculated using the approximate

formula given in Ju and Zhong [2], that indicates the estimated exposures are accurate. We

consider a call option that has a maturity of two years, and a strike price of 40. The maturity
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Figure 4.1: 20 average Monte Carlo and 20 average analytic exposures versus time-to-maturity.
Volatility = 40%.

is divided into 40 time steps, so the time interval is 0.05 year. The risk-free interest rate is 6%.

The initial underlying stock price is 36. The stock prices are governed by geometric Brownian

motion with a drift of 20% and volatility of 40% for Figures 4.1-4.8. Figures 4.9-4.11 use a

drift of 20% and volatility of 80%. Note that we used the volatility of 80% to derive the initial

states regions and the bucket boundaries in Section 4.3.2. Nonetheless, the same results are

applied to estimate the exposures for the option with the underlying’s volatility equal to 40%.

All figures plot 20 average Monte Carlo (MC) exposures and 20 average analytical expo-

sures, where the average is taken over 10000 paths. Figure 4.1 plots the original LSM expo-

sures. It shows that the original LSM exposures are quite accurate at the beginning, but fall

apart from the analytical exposures after half of the maturity. Figures 4.2-4.4 plot the Monte

Carlo exposures with the use of antithetic variates, inner control variates, and the combination

of both, respectively. It appears that either antithetic variates or inner control variates can re-

duce the variance of the exposures, but using them together gives the best result. However, the

MC exposures still fall off after half of the maturity.

In Figure 4.5, we use two buckets for regressions instead of one bucket, where the bucket
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Figure 4.2: 20 average Monte Carlo and 20 average analytic exposures versus time-to-maturity.
Antithetic variates are used on the “exposure” paths. Volatility = 40%.
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Figure 4.3: 20 average Monte Carlo and 20 average analytic exposures versus time-to-maturity.
Inner control variates are used in estimating continuation value functions. Volatility = 40%.
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Figure 4.4: 20 average Monte Carlo and 20 average analytic exposures versus time-to-maturity.
Both antithetic and inner control variates are used. Volatility = 40%.
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Figure 4.5: 20 average Monte Carlo and 20 average analytic exposures versus time-to-maturity.
Both antithetic and inner control variates are used. Two buckets are used in the regression,
where the bucket boundary is the strike price. Volatility = 40%.
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Figure 4.6: 20 average Monte Carlo and 20 average analytic exposures versus time-to-maturity.
Both antithetic and inner control variates are used. Two buckets are used in the regression,
where the bucket boundary is the strike price. Initial states are dispersed based on the ratio
4:2:4 to (10, 80), (80, 280) and (280, 510). Volatility = 40%.
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Figure 4.7: 20 average Monte Carlo and 20 average analytic exposures versus time-to-maturity.
Both antithetic and inner control variates are used. Two buckets are used in the regression,
where the bucket boundary is 100 for the first quarter of the maturity, and the strike price
thereafter. Initial states are dispersed based on the ratio 4:2:4 to (10, 80), (80, 280) and (280,
510). Volatility = 40%.
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Figure 4.8: 20 97.5% quantile Monte Carlo and 20 97.5% quantile analytic exposures versus
time-to-maturity. Both antithetic and inner control variates are used. Two buckets are used in
the regression, where the bucket boundary is 100 for the first quarter of the maturity, and the
strike price thereafter. Initial states are dispersed based on the ratio 4:2:4 to (10, 80), (80, 280)
and (280, 510). Volatility = 40%.

boundary is the strike price. It shows that the accuracy of the exposures has been significantly

improved — the MC exposures are “exact” in the first half and fall apart in the last quarter

of the maturity. We incorporate the initial state dispersion in Figure 4.6. Amazingly, the MC

exposures no longer fall apart from the analytical exposures, which indicates that very few or

no incorrect exercise decisions have been made. However, this comes with the cost that the

errors of the MC exposures at the beginning become significant. To get around this problem,

the bucket boundary in the first quarter is changed to 100. Figure 4.7 shows that the MC

exposures are very accurate after the change. Figure 4.8 demonstrates that the OLSM method

works even better for the 97.5% quantiles than the average of the MC exposures.

We also plot the estimated exposures corresponding to the volatility of 80% in Figures

4.9-4.11. The results are similar to those with the volatility equal to 40%, qualitatively. The

variance of the MC exposures is bigger as expected.

It is worth mentioning that although the initial states regions and the bucket boundaries

were not designed for the case where volatility equals 40%, its results are excellent. This
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Figure 4.9: 20 average Monte Carlo and 20 average analytic exposures versus time-to-maturity.
Both antithetic and inner control variates are used. Two buckets are used in the regression,
where the bucket boundary is the strike price. Initial states are dispersed based on the ratio
4:2:4 to (10, 80), (80, 280) and (280, 510). Volatility = 80%.
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Figure 4.10: 20 average Monte Carlo and 20 average analytic exposures versus time-to-
maturity. Both antithetic and inner control variates are used. Two buckets are used in the
regression, where the bucket boundary is 100 for the first quarter of the maturity, and the strike
price thereafter. Initial states are dispersed based on the ratio 4:2:4 to (10, 80), (80, 280) and
(280, 510). Volatility = 80%.
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Figure 4.11: 20 97.5% quantile Monte Carlo and 20 97.5% quantile analytic exposures versus
time-to-maturity. Both antithetic and inner control variates are used. Two buckets are used in
the regression, where the bucket boundary is 100 for the first quarter of the maturity, and the
strike price thereafter. Initial states are dispersed based on the ratio 4:2:4 to (10, 80), (80, 280)
and (280, 510). Volatility = 80%.

implies that the estimation of the CVF is not very sensitive to the initial states regions and the

bucket boundaries when the volatility of the underlying is low. Hence, we should use a high

volatility to test the robustness of a new method to measure the exposures.

4.5 Conclusions and Future Work

The popular LSM method is extended for the purpose of measuring counterparty credit ex-

posure of American-style options. We optimized the LSM method using variance reduction

techniques, initial state dispersion and multiple bucketing, hence the name OLSM. Numerical

results for a simple American call option indicate that OLSM can reduce the absolute relative

error of the average or the 97.5% quantile of the exposures to less than 10%. All of the above

techniques can be applied to other American options. In particular, the same initial states can

be recycled for multiple options as long as they have some common risk factors. However,

the way to determine the bucket boundaries is not very general. Thus, one direction of future
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work is to develop a systematic approach to pick the bucket boundaries. Furthermore, we are

interested in investigating the performance of the OLSM algorithm when the underlying of the

option is governed by a volatility model, which allows for time-varying and state-dependent

volatilities, including implied volatilities. This can result in additional exposure, or changes in

early exercise decisions.
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Chapter 5

Conclusions

5.1 Summary

We constructed a new regression-based Monte Carlo estimator for valuing American options.

Our numerical results show that the estimates are typically high-biased and have small relative

error. A bias reduction method was developed for the high- and low-biased LSM estimators

of American option value. We used a numerical example to demonstrate that this method is

effective for the low-biased estimator with the use of parallel implementations. There is not

much computational gain for the high-biased estimator, though. Finally, we introduced the

OLSM method to estimate the counterparty exposures of American options. We found that

OLSM yields reasonably accurate exposure estimates while using substantially less computing

time than nested simulations.

5.2 Future Directions

When implementing the alternative regression-based algorithm for American options valua-

tion, we adopted an ad-hoc initial state dispersion scheme. It may be worthwhile conducting

a deeper study in this aspect and finding a systematic method to determine the value of the

dispersion parameter.
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We had some success at the application of a bias reduction method to the LSM estimators.

However, the LSM estimators are already quite efficient, leaving little room for improvement

with the bias reduction method. It is much more promising to apply this method to the relatively

less efficient stochastic mesh estimators, which have an advantage over the LSM estimators in

that they are consistent to the true option value, while the LSM estimators converge to an

approximation value given a finite set of basis functions. Hence, I would suggest that future

theoretical and empirical work of the bias reduction method should be done in the context of

the stochastic mesh estimators.

In the OLSM chapter, we focused on one numerical example: an American call option on

an non-dividend paying stock. Extensive numerical studies are necessary to test the robustness

of OLSM. A benchmark value is required for comparison with the exposure estimate, yet an

analytical solution does not exist for most American options. One way around this problem is

to test OLSM on a set of European options that can be priced analytically or with a fast nu-

merical scheme. This is because our main concern with OLSM is the accuracy of the function

approximations for the continuation values. We conjecture that an effective function approx-

imation for a European option would be effective for the corresponding American option as

well.
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