
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-13-2021 10:00 AM 

Uncertainties in internal pressure of oil pipelines and implications Uncertainties in internal pressure of oil pipelines and implications 

for the reliability analysis for the reliability analysis 

Yue Liu, The University of Western Ontario 

Supervisor: Zhou, Wenxing, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering 

Science degree in Civil and Environmental Engineering 

© Yue Liu 2021 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Civil Engineering Commons, and the Risk Analysis Commons 

Recommended Citation Recommended Citation 
Liu, Yue, "Uncertainties in internal pressure of oil pipelines and implications for the reliability analysis" 
(2021). Electronic Thesis and Dissertation Repository. 7968. 
https://ir.lib.uwo.ca/etd/7968 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7968&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=ir.lib.uwo.ca%2Fetd%2F7968&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1199?utm_source=ir.lib.uwo.ca%2Fetd%2F7968&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7968?utm_source=ir.lib.uwo.ca%2Fetd%2F7968&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


ii 
 

 Abstract 

The internal pressure is the most important operational load for oil and gas pipelines.  The 

maximum operating pressure (MOP) is the maximum pressure the pipeline is qualified to be 

operated according to a given standard.  In deterministic fitness-for-service (FFS) assessment of 

in-service pipelines containing flaws such as corrosion defects and cracks, the remaining pressure 

containment capacity of the pipeline is evaluated and compared with MOP multiplied by a factor 

of safety to determine if immediate rehabilitation actions for the pipeline are necessary.  However, 

the actual internal pressure of an in-service pipeline is however uncertain and fluctuates with time.  

Due to the significant difference in the compressibility of liquid and gas, the pressure fluctuation 

in liquid pipelines.  This thesis characterizes the statistics for the internal pressure of oil pipeline 

and assesses the reliability performance based on the pressure variables. 

In this study it is characterized the internal pressure (discharge and suction) probabilistic properties 

of a major crude oil transmission pipeline including its distribution of arbitrary-point-in-time and 

maxima pressure, auto-correlation, power spectral density and pressure range from rain flow 

counting.  The conclusions provide information for reliability analysis considered the pressure to 

be a stationary stochastic process and it gives suggestions for fatigue analysis. 

It is also investigated the reliability performance for corroding pipelines considering the pressure 

statistics obtained in the first study and compared with different pressure assumptions.  This study 

provides a method to consider the internal pressure to be a stochastic process and gives evidence 

that a certain level of conservativeness is observed if the internal pressure is considered as a 

stochastic process instead of a random variable suggested in present literature.   

Key word:  Pipeline, internal pressure, statistics, reliability, simulation, stochastic process 
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 Summary for Lay Audience 

Pipeline system often faces with many kinds of threats.  Therefore, a mitigate procedure to reduce 

the incident rate is the fitness-for-service assessment. Within this assessment, the internal pressure 

is a major aspect of the assessment.  This assessment considers uncertainties of all the aspects that 

influence the failure of pipeline.  Therefore, the uncertainty of the pressure is one of the key 

interests in this assessment.  The statistical characterization of the internal pressure is often 

assumed to follow certain distribution in papers and code, however, the internal pressure for oil 

pipelines is much less sourced.  The present study has collected internal pressure data from one 

pump station of an in-service oil pipeline and characterized basic features including not only the 

distribution, mean and standard deviation but also time-dependent features such as the correlation 

between pressures with different time lags.  The statistics provide the researchers more options to 

incorporate internal pressure for oil pipeline specifically into future studies, for instance as time-

independent or time-dependent in the reliability analyses, or fatigue crack failure assessment.  The 

present study further investigates how different assumptions about the uncertainty in the internal 

affect the reliability analysis results for corroding pipelines.   
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1 Introduction 

1.1 Background 

Pipeline system is one of the most efficient and safest transportation method that conveys crude 

oil and natural gas from the production sites to the next users comparing with other means of 

transporting method, for example, tanker trucks, rails (Green and Jackson, 2015).  As the major 

operational load for the oil and gas pipeline, the internal pressure is generally qualified to be 

operated under the form of maximum operating pressure (MOP) and controlled based on a given 

standard, such as, the Canadian pipeline standard CSA Z662-19 (CSA 2019).  Typically in fitness-

for-service (FFS) assessment, MOP is chosen to compare with the remaining pressure containment 

capacity, i.e. burst capacity, of the pipeline after the in-service pipeline experienced flaws such as 

the corrosion defects and cracks.  The actual internal pressure of an operating pipeline is, on the 

other hand, varying all the time, as a result, it should be viewed as a stochastic process instead of 

a deterministic value.  The pressure fluctuation for crude oil pipeline is generally much higher than 

that in natural gas pipeline as the matter of significant difference in the compressibility of liquid 

and gas. (Zhang and Zhou 2015, Zhao 2016). 

The reliability-based integrity management program offers a general framework to accounts for 

various uncertainties involved in the FFS assessment including the pipe material properties, defect 

sizes and internal pressure.  According to the Pipeline and Hazardous Material Safety 

Administration (PHMSA) of the US Department of Transportation, corrosion is one of the most 

common causes of the pipeline incidents. (Lam and Zhou 2016).  Reliability-based corrosion 

management program is being increasingly used to pipeline operators to assess the uncertainties 

associated with the pipe material properties, corrosion growth and the internal pressure 
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(Kariyawasam and Peterson 2010).  High-resolution inline inspections (ILI) of the pipeline are 

carried out in a timely manner to capture the defect sizes of the corrosion on the pipeline.  Then, 

the corrosion growth model is characterized based on the ILI data and corresponding reliability 

analyses is conducted to evaluate the failure probability of the pipeline. Finally, mitigation actions 

is taken according to the failure probability obtained in the previous step to make sure the program 

is under sound maintenance budget and manpower. (Gong and Zhou 2018).  Different probabilistic 

properties of the internal pressure are chosen considering different threat or limit state in the 

reliability-based FFS assessment.  A wide range of assumptions are given in the previous studies 

(Keshtegar et al.2019, Teixeira et al 2008, Ahammed and Melchers 1996).  However, it is not clear 

if the statistics are obtained from actual pipeline since the sources are mostly not mentioned. Most 

of the studies also haven’t state clearly if the pipeline is used for oil or gas transportation which 

we learn from above that the difference between make have a major impact on the pressure 

performance. 

1.2 Objective and research significance 

The objectives of this thesis include: 1) Characterize the statistics of the pressure record of a 

particular oil pipeline and investigate the probabilistic characteristics of the internal pressure. 2) 

Investigate the implications of probabilistic characteristics of the internal pressure reported in the 

internal pressure characteristics summarized for the reliability analysis of corroding pipelines. 

1.3 Scope of the study 

This thesis consists of two main topics which are presented in Chapters 2 and 3. 

In Chapter 2, A Canadian pipeline company provided the present study with minute-by-minute 

pressure records collected over durations of at least one year from the discharge and suction ends 

of one pump station on a crude oil transmission pipeline owned and operated by the company.  
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Statistical analyses of these pressure records are carried out in the present study to investigate the 

probabilistic characteristics of the internal pressure.  The analysis results shed light on how the 

internal pressure of crude oil transmission pipelines can be appropriately characterized in the 

reliability-based FFS assessment. 

In Chapter 3, it is investigated the implications of probabilistic characteristics of the internal 

pressure reported in Chapter 2 for the reliability analysis of corroding pipelines.  Two hypothetical 

crude oil pipeline examples are considered in the analysis.  Both examples are assumed to have 

the same MOP as the real pipeline from which the pressure records are obtained.  The probabilities 

of failure of representative corrosion defects are then evaluated based on ILI-reported defect sizes 

and corrosion growth rates that are commonly assumed in the literature (Zhou 2010).  The pipeline 

internal pressure is considered as a random variable or stochastic process in the reliability analysis.  

The probabilistic characteristics of the internal pressure from this research as well as in the 

literature are considered in the reliability analysis, and the corresponding failure probabilities are 

compared to shed light on the impact of the internal pressure on the evaluated failure probability.  

The first-order and second-order reliability method (FORM and SORM) and simple Monte Carlo 

simulation (MCS) are employed to evaluate the failure probabilities of the corroding pipelines as 

a function of time. 

1.4 Thesis format 

This thesis is prepared in an Integrated-Article Format as specified by the School of Graduate and 

Postdoctoral Studies at Western University, London, Ontario, Canada. Seven chapters are included 

in the thesis. Chapter 1 presents the introduction of the thesis which includes the research 

background, objective and research significance, scope of the study and thesis format. Chapters 2 

through 3 are the main body of the thesis, of which each chapter solves an individual topic. The 
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main conclusions and recommendations for future research regarding the topics in the thesis are 

provided in Chapter 4. 
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2 Probabilistic characterization of internal pressure of crude oil 

transmission pipelines based on pressure records  

2.1 Introduction 

The internal pressure is the most important operational load for oil and gas pipelines.  The 

maximum operating pressure (MOP) is the maximum pressure the pipeline is qualified to be 

operated according to a given standard, e.g. the Canadian pipeline standard CSA Z662-19 (CSA 

2019).  In deterministic fitness-for-service (FFS) assessment of in-service pipelines containing 

flaws such as corrosion defects and cracks, the remaining pressure containment capacity, i.e. burst 

capacity, of the pipeline is evaluated and compared with MOP multiplied by a factor of safety to 

determine if immediate rehabilitation actions for the pipeline are necessary (Kiefner and Vieth 

1986).  The actual internal pressure of an in-service pipeline is however uncertain and fluctuates 

with time; therefore, it is a stochastic process.  Due to the significant difference in the 

compressibility of liquid and gas, the pressure fluctuation in liquid pipelines, e.g. crude oil 

pipelines, is generally much higher than that in gas pipelines (Zhang and Zhou 2015).   

The reliability-based pipeline integrity management program (Nessim et al. 2004; Kariyawasam 

and Huyse 2012) is being increasingly adopted by the pipeline industry as it provides a consistent 

framework to accounts for various uncertainties involved in the FFS assessment, e.g. pipe 

geometric and material properties, sizes of flaws and the internal pressure. The probabilistic 

characteristics of the internal pressure considered in the reliability-based FFS assessment depend 

on the nature of the integrity threat (i.e. limit state).  For example, probabilistic characteristics of 

the arbitrary-point-in-time internal pressure are relevant to the immediate failure (burst) of a dent-

gouge caused by an excavating equipment accidentally impacting the pipeline (Nessim and Zhou 

2005).  This is because equipment impact on pipelines generally happens randomly in time.  A 
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dent-gouge that does not fail immediately at the time of impact may fail later (i.e. delayed failure) 

(Kiefner et al. 2001; Nessim and Zhou 2005) as a result of the internal pressure reaching a peak 

value and/or growth of the gouge due to fatigue.  In this case, probabilistic characteristics of the 

maximum internal pressure over a reference period of time are relevant to the delayed dent-gouge 

failure.  The same characteristics are also relevant to the burst limit state of a pipeline at a corrosion 

or stress corrosion cracking (SCC) defect.  This is because corrosion and SCC generally grow 

slowly over time; therefore, the remaining burst capacity of the pipeline containing the corrosion 

or SCC defect deteriorates slowly.  It follows that burst failure at a corrosion or SCC defect is more 

likely to occur when the internal pressure of the pipeline is at peak values over a reference time 

period.  Pipelines containing such flaws as seam weld cracks and dents may fail by fatigue due to 

the cyclic nature of the internal pressure (Nessim and Zhou 2005; Alexander and Kiefner 1999).  

In this case, probabilistic characteristics of the pressure range obtained from a suitable cycle 

counting method (e.g. the rainflow counting) are relevant to the corresponding fatigue limit states.   

Probabilistic characteristics of the pipeline internal pressure have been suggested in the literature 

and pipeline standards.  For natural gas pipelines operating at capacity, the Canadian pipeline 

standard, CSA Z662-19 suggests that the ratio between the annual maximum internal pressure (pae) 

and MOP can be characterized by a beta distribution with a mean of 0.993, a coefficient of 

variation (COV) of 3.4%, a lower bound of 80% and an upper bound of 110% based on the pressure 

record from one pipeline operator, and a beta distribution with a mean of 0.865, a COV of 8.4%, 

and lower and upper bounds equal to 60% and 110%, respectively, is suggested for the ratio 

between the arbitrary-point-in-time pressure and MOP.  Jiao et al. (1995) suggested that pae/MOP 

follow a Gumbel distribution a mean between 1.03 and 1.07 and a COV between 1 and 2%.  

Statistics of the internal pressure in oil pipelines or other types of liquid pipelines are however not 
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provided in CSA Z662-19.  The internal pressure is typically assumed to be a random variable (as 

opposed to a stochastic process) in reliability analyses of corroded pipelines reported in the 

literature.  For example, Ahammed and Melchers (1996) assumed the internal pressure to follow 

a normal distribution with a COV of 5%; Teixeira et al. (2008) assumed the internal pressure to 

follow a Gumbel distribution with a mean equal to 0.97MOP and a COV of 7%, and Keshtegar et 

al. (2019) assumed the internal pressure to follow a normal distribution with a COV of 10%.  The 

bases for the above-indicated statistics are not provided; furthermore, it is unclear if the statistics 

apply to the internal pressure of gas or liquid pipelines.  Zhang and Tian (2020) assumed a Gumbel 

distribution with a COV of 8% for the internal pressure without providing the basis for the 

assumption.  Zhou (2010) considered the internal pressure as a stochastic process in the reliability 

analysis of corroding pipelines and simplified the pressure as a discrete Ferry-Borges process 

consisting of a sequence of independent and identically distributed (IID) random variables, each 

representing the annual maximum internal pressure.  Zhang and Zhou (2013) characterized the 

internal pressure as a Poisson square wave process in the reliability analysis of corroding pipelines.  

However, both the Ferry-Borges and Poisson square wave processes are assumed primarily to 

facilitate the reliability analysis; the validity of these assumptions has yet to be confirmed based 

on internal pressure records collected from actual in-service pipelines.   

A Canadian pipeline company provided the present study with minute-by-minute pressure records 

collected over durations of at least one year from the discharge and suction ends of one pump 

station on a crude oil transmission pipeline owned and operated by the company.  Statistical 

analyses of these pressure records are carried out in the present study to investigate the 

probabilistic characteristics of the internal pressure.  The analysis results shed light on how the 

internal pressure of crude oil transmission pipelines can be appropriately characterized in the 
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reliability-based FFS assessment.  The rest of this paper is organized as follows.  Section 2 presents 

details of the pressure records and the basic information of the pipeline from which the pressure 

records were collected.  Section 3 describes statistics of the arbitrary-point-in-time pressure as well 

as weekly, monthly and annual maximum pressures obtained from the pressure records.  Key 

characteristics of the internal pressure as a stochastic process such as the correlation length and 

power spectral density (PSD) function are also evaluated from the pressure records and presented 

in Section 3.  Section 4 describes the statistics of the pressure ranges obtained from the rainflow 

counting of the pressure records, followed by conclusions in Section 5.    

2.2 Details of Pressure Records 

Pump stations are typically built at strategically selected locations along the route of a long 

transmission pipeline to ensure the proper pressurization of the pipeline and consistent flow of the 

hydrocarbon product being transported.  The product is compressed to the desired pressure level 

in the pump station before being released at the discharge end of the station.  As the product is 

transported along the pipeline, the pressure gradually drops until the product reaches the suction 

end of the next pump station for compression again.  It follows that the characteristics of pressures 

at the discharge and suction ends of the pump station are different.  The crude oil transmission 

pipeline for which the pressure records were provided to the present study has an MOP of 9.9 MPa 

with a design factor (FS) of 0.80.  The nominal pipe wall thickness (tn) and outside diameter (Dn), 

specified minimum yield strength (SMYS) of the pipe steel, and MOP are related through the well-

known Barlow equation as follows (CSA 2019): 

𝑡𝑛 =
𝐷𝑛∙𝑀𝑂𝑃

2∙𝐹𝑆∙𝑆𝑀𝑌𝑆
 (2.1) 
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For confidentiality reasons, the values of Dn, tn and SMYS of the pipeline are not disclosed in this 

study.  The minute-by-minute pressure records at the discharge and suction ends of a pump station 

on the pipeline are depicted in Fig. 2.1.  The duration of the discharge pressure record is 1.5 years, 

whereas the duration of the suction pressure record is 1.0 year.  A distinct upper bound of the 

discharge pressure equal to approximately 90%MOP can be observed from Fig. 2.1, which 

suggests that the pipeline is operating at 90% of its full capacity.  The suction pressure has a distinct 

lower bound of about 4%MOP.  Figure 2.1 further suggests that the suction end appears to 

experience more pressure cycles per unit time than the discharge end.  

 

(a) Discharge pressure  
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(b) Suction pressure 

Fig. 2.1 Minute-by-minute pressure records at the discharge and suction ends of a pump station 

on a crude oil transmission pipeline 

 

2.3 Statistics of arbitrary-point-in-time and extreme pressures 

2.3.1 Arbitrary-point-in-time pressures 

Let pd-apt and ps-apt denote, respectively, the arbitrary-point-in-time pressures at the discharge and 

suction end of the pump station.  To derive the statistics of pd-apt and ps-apt, well-separated data 

points from the discharge and suction pressure records need to be collected such that these data 

points are approximately considered independent and identical distributed.  To this end, the 

Pearson correlation coefficient () between two sets of data points on the pressure record separated 
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by a given time lag  (min) is evaluated.  Table 2.1 summarizes values of  corresponding to 

different values of  for the discharge and suction pressures.   

Table 2.1 Pearson correlation coefficients for discharge and suction pressures separated by 

different time lags 

Time lag τ 

(minutes) 

 

Discharge pressure Suction pressure 

50 0.89 0.85 

100 0.80 0.78 

200 0.63 0.68 

400 0.40 0.56 

800 0.16 0.41 

1000 0.10 0.36 

3000 0.001 0.14 

 

Table 2.1 indicates that as  increases the correlation coefficient of the discharge pressures 

decreases more rapidly than that of the suction pressures.  Discharge pressures separated by  ≥ 

1000 minutes can be considered uncorrelated, whereas suction pressures with  ≥ 3000 minutes 

can be considered uncorrelated.  Subsequently, 768 discharge pressures with  = 1000 min. and 

174 suction pressures with  = 3000 min. are selected from the pressure records and employed to 

evaluate the statistics of pd-apt and ps-apt (Table 2.2).  The empirical cumulative distribution 

functions (CDF) of pd-apt and ps-apt are depicted in Fig. 2.2. Distribution fitting techniques are then 

employed to find the best-fit probability distributions to characterize pd-apt and ps-apt using the 

commercial software, EasyFit (Version 5.6 
○cMathWave Technologies).  It is observed that the 

Johnson SB (JSB) distribution (Johnson 1949) fits samples of pd-apt and ps-apt well.  The probability 

density function (PDF) and CDF, fX(x) and FX(x), of a random variable X that follows a JSB 

distribution are given by:   
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𝑓𝑋(𝑥) =
𝛿

𝜆√2𝜋𝑧(1−𝑧)
𝑒𝑥𝑝 (−

1

2
(𝛾 + 𝛿 𝑙𝑛 (

𝑧

1−𝑧
))

2
) (2.2) 

𝐹𝑋(𝑥) = Φ (𝛾 + 𝛿 𝑙𝑛 (
𝑧

1−𝑧
)) (2.3) 

where 𝑧 =
𝑥−𝜉

𝜆
; x denotes the value of X; , ,  and  are distribution parameters, and (•) denotes 

the CDF of the standard normal distribution.  Note that JSB is a bounded distribution with the 

lower and upper bounds equal to  and  + , respectively.  Based on Fig. 2.1, the lower and upper 

bounds of pd-apt are set to zero and 0.9MOP, respectively, i.e.  = 0 and  = 0.9MOP, whereas the 

lower and upper bounds of ps-apt are set to zero and 0.7MOP, respectively, i.e.  = 0 and  = 

0.7MOP.  The values of , ,  and  corresponding to pd-apt and ps-apt are summarized in Table 2.2, 

whereby  and  are obtained from the maximum likelihood estimation.  The JSB CDFs are 

depicted in Fig. 2.2 for comparison with the empirical CDFs.  Table 2.2 indicates that the suction 

pressure is on average substantially lower than the discharge pressure, although the former has 

greater variability than the latter.   

Table 2.2 Summary of statistics of pd-apt and ps-apt  

 pd-apt ps-apt 

Number of samples 768 174 

Sample mean (%MOP) 57.3 13.8 

Sample COV (%) 41.0 71.9 

Sample min (%MOP) 6.9 3.4 

Sample max (%MOP) 89.2 45.5 

 (%MOP) 0 0 

 (%MOP) 90 70 

  0.69 1.88 

 -0.53 1.17 
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Fig. 2.2 Empirical and fitted CDFs of arbitrary point-in-time discharge and suction pressures  

2.3.2 Extreme pressures 

As described in the Introduction section, the maximum pressure over a reference period is relevant 

to the reliability analysis of pipelines subjected to slowly degradation mechanisms.  Therefore, 

probabilistic characteristics of the extreme pressures are derived based on the corresponding 

samples (Fig. 2.3) collected from the pressure records provided.  Let pd-we, pd-me and pd-ae denote 

the weekly, monthly and annual maximum discharge pressures, respectively, and ps-we, ps-me and 

ps-ae denote the weekly, monthly and annual maximum suction pressures, respectively.  The 

statistics of pd-we, pd-me, ps-we and ps-me evaluated from the corresponding samples are summarized 

in Table 2.3.   

Table 2.3 Summary of sample statistics of weekly and monthly maximum discharge and suction 

pressures 

 pd-we pd-me ps-we ps-me 

Number of samples 76 18 52 12 

Sample mean (%MOP) 88.7 89.3 45.7 53.7 

Sample COV (%) 2.3 0.07 27.7 9.3 
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Sample min (%MOP) 72.9 89.2 22.6 46.6 

Sample max (%MOP) 89.4 89.4 61.1 61.1 

 

  

(a) pd-we and ps-we 

 

 

(b) pd-me and ps-me 

Fig. 2.3 Weekly and monthly maximum discharge and suction pressure time series 
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Figure 2.3 indicates that pd-we and pd-me have small variability; in fact, the results in Table 3 indicate 

that the variability of pd-me is negligibly small.  It follows that pd-me can be assumed to be a 

deterministic quantity equal to 0.9MOP, i.e. the capacity at which the pipeline is operating. This 

further suggests that pd-ae can be assumed to be a deterministic quantity that equals 0.9MOP.  This 

observation differs markedly from the annual maximum pressure distributions commonly 

suggested in the literature.  It may be further inferred that pd-me and pd-ae could be assumed to equal 

MOP had the pipeline been operating at its full capacity as opposed to 90% capacity. This 

assumption of course needs to be confirmed with the corresponding pressure data in future studies.  

The variability of pd-we is also small (sample COV equal to 2.3%); furthermore, this variability is 

due largely to a marked drop in the maximum weekly pressure in week 63 (see Fig. 3(a)).  If this 

data point is excluded, the sample COV of pd-we decreases to less than 1%.  This suggests that pd-

we can also be considered a deterministic quantity equal to 0.9MOP.   

In contrast to the extreme discharge pressures, the variability of the weekly and monthly maximum 

suction pressure is relatively high.  The beta distribution is found to fit samples of the weekly and 

monthly maximum suction pressures.  The PDF of a beta distributed random variable Y, fY(y), is 

given by,   

𝑓𝑌(𝑦) =
1

𝐵(𝛼,𝛽)

(𝑦−𝑎)𝛼−1(𝑏−𝑦)𝛽−1

(𝑏−𝑎)𝛼+𝛽−1
 (2.4) 

where a and b are the lower and upper bounds of the beta distribution, respectively;  and  are 

the distribution parameters, and B( ) = ()()/( + ) with (•) being the gamma function.  

The mean and COV of Y equal (a + (b-a)/( + )) and 
√

𝛼𝛽

𝛼+𝛽+1

𝛼+
𝑎(𝛼+𝛽)

(𝑏−𝑎)

, respectively.  By setting a = 0 

and b = 0.7MOP for both ps-we and ps-me, the values of  and  for ps-we and ps-me are evaluated 
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using the maximum likelihood method and summarized in Table 4.  Since the duration of the 

suction pressure record is one year, it is not feasible to derive the probability distribution of ps-ae 

from samples.  Therefore, the extreme value analysis is carried out to derive the probability 

distribution of ps-ae from that of ps-me.  The probability of ps-ae less than or equal to a given pressure 

p, Prob(ps-ae ≤ p), can be evaluated from the probability of ps-me ≤ p, Prob(ps-me ≤ p), as follows:  

𝑃(𝑝𝑠−𝑎𝑒 ≤ 𝑝) = (𝑃(𝑝𝑠−𝑚𝑒 ≤ 𝑝))
12

 (2.5) 

By selecting a series of p values between 0.5MOP and 0.7MOP, the corresponding CDF values of 

ps-ae are obtained from Eq. (2.5).  Note that Prob(ps-me ≤ p) is evaluated using the fitted beta 

distribution as indicated in Table 2.4.  The beta distribution with a = 0 and b = 0.7MOP is again 

selected to fit CDF values of ps-ae obtained from the extreme value analysis, with the corresponding 

values of  and  summarized in Table 2.4.  The fitted beta distributions of ps-we, ps-me and ps-ae are 

depicted in Fig. 2.5, along with the corresponding empirical CDFs from the samples or extreme 

value analysis.    

Table 2.4 Parameters of fitted beta distributions for ps-we and ps-me  

Parameters of beta distribution ps-we ps-me ps-ae 

α 11.94 15.23 169.27 

β 6.36 4.74 23.28 

a (%MOP) 0 0 0 

b (%MOP) 70 70 70 
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Fig 2.4. Fitted CDF of weekly maximum of discharge pressure 

  

Fig.2.5. Fitted and empirical CDFs of weekly, monthly and annual maximum suction pressures 
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2.4 Characteristics of the Discharge and Suction Pressures as Stochastic Processes 

It is assumed that pd-apt and ps-apt are stationary stochastic processes.  Key probabilistic 

characteristics of a stationary stochastic process include its marginal distribution function and its 

second-order properties, i.e. the autocorrelation function in the time domain and equivalently the 

power spectral density (PSD) function in the frequency domain (Vanmarcke 2010).  Rosenfeld et 

al. (2002) pointed out that pipeline operators can identify operational events resulting in pressure 

cycles with implications for fatigue damage based on the frequency of events having prominent 

power peaks.  The operator can then evaluate if the operation can be modified to reduce the 

frequency of occurrence of such events or eliminate them all together. 

The marginal distributions of pd-apt and ps-apt have been discussed in Section 2.3.  The 

autocorrelation function, X(), of a zero-mean stationary stochastic process X(t) indexed by time 

(t) is defined as, 

𝜌𝑋(𝜏) =
𝐸[(𝑋(𝑡)𝑋(𝑡+𝜏)]

𝜎𝑋
2  (2.6) 

where E[•] denotes expectation, and X denotes the standard deviation of X(t), respectively.  Note 

that the mean and standard deviation of a stationary stochastic process are independent of time.  It 

follows that X() = 1 for  = 0.  As  → ∞, it is expected that X(t) and X(t + ) are uncorrelated, 

which means X() → 0 as  → ∞.  A stationary process with a non-zero mean can be converted 

to a zero-mean process by simply subtracting the mean value from the original process.   

Table 2.1 summarizes the correlation coefficients between pd-apt (ps-apt) separated by various values 

of the time lag .  The exponential and -exponential correlation functions (Quinonero-Candela J, 

Rasmussen and Williams 2006) are found to fit the correlation coefficients well for the discharge 

and suction pressures, respectively.   
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𝜌𝑑−𝑎𝑝𝑡(𝜏) = exp (−
𝜏

𝜏0𝑑
) (2.7) 

𝜌𝑠−𝑎𝑝𝑡(𝜏) = exp (− (
𝜏

𝜏0𝑠
)

𝛾

) (2.8) 

where d-apt() and s-apt() denote the autocorrelation functions for pd-apt and ps-apt, respectively; 

0d and 0s are the so-called correlation lengths for pd-apt and ps-apt, respectively, and  is the 

additional parameter in the -exponential function.  The values of 0d, 0s and  are evaluated to be 

439 minutes (7.3 hrs), 966 minutes (16.1 hrs) and 0.60, respectively, from the curve fitting.  It 

follows that two discharge (suction) pressures separated by more than 439 (966) minutes can be 

considered approximately uncorrelated.  The fitted autocorrelation functions are depicted in Fig. 5 

along with the correlation coefficients evaluated from the pressure records.  

 

Fig. 2.6 Autocorrelation of arbitrary point-in-time discharge pressure  
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Let SX(f) denote the one-sided PSD function of X(t), where f (f > 0) denotes the frequency in Hz.  

SX(f) is related to X() through the celebrated Wiener-Khintchine relations (Vanmarcke 2010) as 

follows: 

𝑆𝑋(𝑓)

𝜎2 = 4 ∫ 𝜌𝑋(𝜏) cos(2𝜋𝑓𝜏)𝑑𝜏
∞

0
 (2.9) 

𝜎2𝜌𝑋(𝜏) = ∫ 𝑆𝑋(𝑓) cos(2𝜋𝑓𝜏)𝑑𝑓
∞

0
 (2.10) 

If X() is the exponential correlation function, then the analytical expression of the corresponding 

SX(f) can be derived (Vanmarcke 2010).  It follows that the PSD function of pd-apt, Sd-apt(f), 

corresponding to the exponential correlation function d-apt() (i.e. Eq. (2.11)) is given by, 

𝑆𝑑−𝑎𝑝𝑡(𝑓) =
4(𝜎𝑑−𝑎𝑝𝑡)

2
𝜏0𝑑

(2𝜋𝑓𝜏0𝑑)2+1
 (2.11) 

where d-apt is the standard deviation of pd-apt.  Equation (2.11) is consistent with the findings of 

Rosenfeld et al. (2020), who evaluated PSD functions of pressures in four different pipelines 

transporting natural gas, high vapour pressure liquid, crude oil and gasoline, respectively, and 

found that all four PSD functions are approximately proportional to 1/f2.  There is no analytical 

expression of the PSD function of ps-apt, Ss-apt(f), corresponding to the -exponential correlation 

function s-apt(); therefore, Ss-apt(f) can be evaluated from s-apt() by carrying out the integral in 

Eq. (2.9) numerically.  However, it is more efficient and accurate to evaluate the PSD function 

directly from sample records of the stochastic process (i.e. the pressure record in the present study) 

by utilizing the fast Fourier transform (FFT) algorithm (Bendat and Piersol 2010).   

If an ensemble of records of X(t), xk(t) (0 ≤ t ≤ T) (k = 1, 2, …), is available, then SX(f) can be 

estimated as follows: 

𝑆𝑋(𝑓) =
2

𝑇
𝐸[|𝑋𝑘(𝑓, 𝑇)|2] (2.12) 
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𝑋𝑘(𝑓, 𝑇) = ∫ 𝑥𝑘(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
𝑇

0
 (2.13) 

where T is the length of the record; Xk(f, T) is the Fourier transform of xk(t) and can be efficiently 

computed numerically using the FFT; |Xk(f, T)|2 = Xk(f, T)Xk
*(f, T) with Xk

*(f, T) being the complex 

conjugate of Xk(f, T), and the expectation operation in Eq. (2.12) is with respect to all the records 

in the ensemble.   

Welch’s method (Solomon 1991) is used to numerically estimate PSD functions of pd-apt and ps-apt 

in this study.  Welch’s method estimates the PSD function from a single zero-mean time series 

record by partitioning the record into K overlapped segments (i.e. periodograms), xk(t) (0 ≤ t ≤ Ts) 

(k = 1, 2, …, K), where Ts is the length of each segment.  A windowed finite Fourier transform of 

each segment is then carried out as follows: 

𝑋𝑘𝑤(𝑓, 𝑇𝑠) = ∫ 𝑥𝑘(𝑡)𝑤(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
𝑇𝑠

0
 (2.14) 

where w(t) is the window function.  Commonly used window functions include the rectangular, 

Hanning, Hamming and Blackman (Solomon 1991).  The numerical evaluation of the integral in 

Eq. (2.14) can be carried out efficiently using the FFT.  Then SX(f) is estimated as, 

𝑆𝑋(𝑓) =
1

𝐾
∑

2

𝑊𝑇𝑠

𝐾
𝑘=1 |𝑋𝑘𝑤(𝑓, 𝑇𝑠)|2 (2.15) 

𝑊 =
1

𝑇𝑠
∫ (𝑤(𝑡))

2
𝑑𝑡

𝑇𝑠

0
 (2.16) 

In this study, each of the discharge and suction pressure records is partitioned into 3-month long 

segments.  The overlap between consecutive segments is selected to be 50%.  Consequently, there 

are 11 segments for the discharge pressure record and 7 segments for the suction pressure record, 

i.e. K = 11 (discharge pressure) or 7 (suction pressure).  The rectangular window, i.e. w(t) = 1 for 

(0 ≤ t ≤ Ts), is employed.  To facilitate the FFT analysis, each segment is zero padded at the end to 
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ensure the length of the segment to equal the nearest power of two that is longer than the original 

segment length.  The PSD functions, Sd-apt(f) and Ss-apt(f), evaluated using Welch’s method are 

depicted in Fig. 2.7, together with the analytical expression (i.e. Eq. (2.11)) for Sd-apt(f).  Since the 

sampling frequency of the pressure record is one minute, it follows that the Nyquist frequency 

(Bendat and Piersol 2010) for the spectral analysis equals 8.3 × 10-3 Hz, which is the highest 

frequency considered in the PSD functions evaluated using Welch’s method.  Figure 2.7 indicates 

that Sd-apt(f) obtained from Welch’s method agrees very well with Eq. (2.11).  The figure also 

indicates that the dominant frequencies for both Sd-apt(f) and Ss-apt(f) are those below about 5.0 × 

10-6 Hz, corresponding to pressure events with periods longer than 56 hours.   

 

Fig. 2.7 PSD functions of discharge and suction pressures  

Given the PSD function of X(t), the bandwidth parameter, 2 (0 ≤ 2 ≤ 1), of X(t) (Bendat and 

Piersol 2010) can be evaluated as 

𝛼2 =
𝜆2

√𝜆0𝜆4
 (2.17) 



24 
 

𝜆𝑚 = ∫ 𝑓𝑚𝑆𝑋(𝑓)𝑑𝑓
∞

0
 (m = 2, 4) (2.18) 

The process X(t) is wide-banded if α2 is close to zero and narrow-banded if α2 is close to unity.  

The values of α2 of the discharge and suction pressures are calculated to be 0.023 and 0.010 

respectively, based on the corresponding PSD functions.  It follows that both pressures are 

considered wide-band processes.  

2.5 Probabilistic characteristics of pressure ranges 

The rain flow counting analysis (ASTM 2017) is applied to the discharge and suction pressure 

records to evaluate the corresponding pressure ranges pd and ps.  It is observed that both pressure 

records contain a large number of small pressure ranges; those pressure ranges less than or equal 

to 0.1%MOP are considered to have a negligible contribution to the fatigue damage due to pressure 

cycles and therefore ignored.  By considering pressure ranges that are greater than 0.1%MOP, the 

statistics of pd and ps are summarized in Table 2.5.  The histograms of pd and ps are depicted 

in Fig. 2.8.  The Fréchet distributions are found to fit the data of pd and ps reasonably well.  The 

PDF of a Fréchet distributed random variable Z, fZ(z), is given by, 

𝑓𝑍(𝑧) =
𝜂

𝜃
(

𝜃

𝑧
)

𝜂+1

exp (− (
𝜃

𝑧
)

𝜂

) (2.19) 

where η and θ are the shape and scale parameters, respectively. The fitted and empirical CDF of 

pd and ps are depicted in Fig. 2.9, with the shape and scale parameters of the fitted CDF 

summarized in Table 2.5.   

Table 2.5 Summary of statistics of pd and ps 

Statistics pd ps 

# of cycles per year 20625 26992 

Mean (%MOP) 2.03 1.17 

COV 3.39 3.52 
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Minimum (%MOP) 0.1 0.1 

Maximum (%MOP) 84.61 59.10 

η 0.93 1.08 

θ 0.25 0.20 

 

(a) pd 
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(b) ps 

Fig. 2.8 Histograms of pd and ps obtained from rainflow counting analysis 

 

 

Fig 2.9 Fitted and empirical CDF of discharge and suction pressure ranges 

In the context of assessing the fatigue susceptibility of seam welds in vintage electric resistance-

welded (ERW) pipes, Kiefner (2002) recommended that four categories be considered for the 

severity of pressure cycles in pipelines with the MOP corresponding to a hoop stress level of 

72%SMYS, namely very aggressive, aggressive, moderate and light.  The distribution of the 

annual number of pressure cycles with different magnitudes of the corresponding stress ranges 

(calculated from the pressure ranges using the well-known Barlow equation) corresponding to each 

of the four severity categories is shown in Table 2.6 and also depicted in Fig. 2.10.  Kiefner (2002) 
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suggested that if the severity of pressure cycles for a given ERW pipe falls into the aggressive or 

very aggressive category, then a fatigue assessment of the pipe seam weld should be considered.  

Although Kiefner’s recommendation is applicable to ERW pipes, it is interesting to compare the 

discharge and suction pressure cycles for the pipeline considered in the present study with the 

benchmark pressure cycles as depicted in Fig. 2.10.  Figure 2.10 indicates that severity of the 

discharge pressure cycles is generally between the very aggressive and aggressive categories, with 

more cycle counts in the 35 to 55%SMYS range than the aggressive benchmark but less cycle 

counts in the 20 to 35%SMYS range.  In contrast, the suction pressure cycles is generally in the 

light severity category, with the cycle counts in all stress range bins except the 20 to 25%SMYS 

less than the corresponding benchmark counts in the light severity category.  

  

Fig 2.10 Line graph of discharge and suction stress range compared with benchmark 

Table 2.6. Severity categories based on the annual pressure cycle counts proposed by Kiefner 

(2002) 
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Stress range   

(%SMYS) 

# of pressure cycles per year 

Very Aggressive Aggressive Moderate Light 

65 to 72 20 4 1 0 

55 to 65 40 8 2 0 

45 to 55 100 25 10 0 

35 to 45 500 125 50 25 

25 to 35 1000 250 100 50 

20 to 25 2000 500 200 100 

Total 3660 912 363 175 

 

2.6 Conclusion 

This chapter investigates the statistical characteristics of the discharge and suction pressures based 

on the minute-by-minute pressure records obtained from a compressor station on an in-service 

crude oil pipeline. The pipeline has an MOP of 9.9 MPa and a design factor of 0.8.  The discharge 

and suction pressure records are 1.5 and 1.0 years long, respectively.  The pressure records suggest 

that the pipeline is operating at 90% capacity, i.e. the maximum operating pressure is at 90% of 

MOP.  For both the discharge and suction pressures, the probabilistic characteristics of the 

arbitrary-point-in-time pressure as well as the weekly, monthly and annual maximum pressures 

are derived based on the pressure records.  The mean and COV of pd-apt are evaluated to be 57.3% 

and 41% MOP, respectively, and the mean and COV of ps-apt are 13.8%MOP and 71.9%, 

respectively. The Johnson SB distribution is found to be the best fit distribution for pd-apt and ps-apt. 

The monthly and annual maximum discharge pressures can be adequately represented by a 

deterministic quantity equal to 90%MOP, whereas even the weekly maximum distribution of the 

discharge pressure could also be considered to be deterministic considering the marked drop.  The 

weekly, monthly and annual maximum suction pressures are found to be well characterized by the 

beta distributions.     
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By considering the discharge and suction pressures as stationary stochastic processes, the 

autocorrelation and PSD functions of the discharge and suction pressures are evaluated based on 

the pressure records.  The autocorrelation function of the discharge pressure is well characterized 

by the exponential correlation function with a correlation length equal to 439 minutes, whereas the 

-exponential function adequately characterizes the autocorrelation function of the suction 

pressure with a correlation length of 966 minutes.  The analytical expression of the PSD function 

corresponding to the exponential autocorrelation function for the discharge pressure is obtained 

and agrees very well with the numerically evaluated PSD function using Welch’s method.  The 

PSD function for the suction pressure is also numerically evaluated using Welch’s method. The 

bandwidth parameter α2 is also calculated for both discharge and suction pressures and indicates 

that both are wide-band processes. The rainflow counting method is applied to obtain the pressure 

range distributions associated with the discharge and suction pressures.  The Frechet distributions 

are found to fit well the pressure ranges of the discharge and suction pressures.  The discharge and 

suction pressure ranges are further compared with the benchmark pressure cycle counts proposed 

in the literature to identify their severity.  The results suggest that the discharge pressure ranges 

fall in between the very aggressive and aggressive categories, whereas the suction pressure ranges 

can be characterized as light severity.   

The findings of the present study provide valuable information of the basic uncertainties involved 

in the reliability-based integrity management of oil and gas pipelines with respect to various threats 

such as corrosion, third-party interference and fatigue.   
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3 Reliability analyses of corroding pipelines using different approaches 

to characterize uncertainties in internal pressure 

3.1 Introduction 

Reliability-based corrosion management programs are more and more adopted by pipeline 

operators in recent years because of its effectiveness to address various uncertainties involved in 

the decision-making process such as uncertainties associated with the pipe material properties, 

corrosion growth rates and internal operating pressure (Zhang et al. 2014, Adianto et al. 2018, Al-

Amin et al. 2020).  The corrosion management program of a given pipeline typically consists of 

three steps.  In the first step, high-resolution inline inspections (ILI) of the pipeline are carried out 

periodically to detect and size corrosion anomalies on the pipeline.  Based on the ILI data, pipeline 

integrity engineers develop probabilistic corrosion growth models (Zhang et al. 2012) and conduct 

reliability analyses to evaluate the failure probability of the pipeline as a function of time.  In the 

final step, the failure probability of the pipeline is compared with the allowable failure probability 

to determine if corrosion mitigation actions are required and how such mitigation actions can be 

scheduled given various constraints in terms of the maintenance budget and manpower (Gong and 

Zhou 2018).   

The internal pressure is the main operational load for pipelines.  Probabilistic characteristics of the 

internal pressure are one of the key uncertainties in the reliability analysis of corroding pipelines 

(Zhou 2010; Zhang and Zhou 2014).  For natural gas pipelines operating at capacity, the Canadian 

pipeline standard CSA Z662-19 (CSA 2019) suggests that the ratio between the annual maximum 

internal pressure (pae) and Maximum Operating Pressure (MOP), pae/MOP, be represented by a 

beta distribution with a mean of 0.993 and a coefficient of variation (COV) of 3.4%, lower and 

upper bounds of 80 and 110%, respectively.  Jiao et al. (1995) recommended that pae/MOP for gas 



34 
 

pipelines be characterized by a Gumbel distribution with a mean between 1.03 and 1.07 and a COV 

between 1 and 2%.  Because of the difference in the compressibility of gas and liquid, the statistics 

of internal pressure of liquid pipelines (e.g. crude oil pipelines) are different from those of gas 

pipelines; however, such statistics are unavailable in CSA Z662-19.  There are a wide range of 

assumptions in the literature concerning probabilistic characteristics of the pipeline internal 

pressure.  For example, Keshtegar et al. (2019) assumed the internal pressure to follow a normal 

distribution with a COV of 10%; Teixeira et al (2008) assumed the internal pressure to follow a 

Gumbel distribution with a mean of 0.97MOP and a COV of 7%, and Ahammed and Melchers 

(1996) assumed the pressure to follow a normal distribution with a COV of 5%.  It is unclear if the 

above statistics are recommended based on pressure data collected from actual pipelines; it is also 

unclear if these statistics apply to the internal pressure of gas or liquid pipelines.  Although the 

pipeline internal pressure is characterized as a time-independent random variable in a majority of 

studies reported in the literature, the internal pressure inevitably fluctuates with time and should 

be treated rigorously as a stochastic process in the reliability analysis.  Zhou (2010) assumed the 

internal pressure to be approximated by a discrete Ferry-Borges process with a sequence of 

independent and identically distributed (IID) random variables each representing the annual 

maximum internal pressure.  Zhang and Zhou (2013) employed the Poisson square wave process 

to characterize the internal pressure in carrying out the reliability analysis of corroding pipelines.   

The present study obtained from a Canadian pipeline company the minute-by-minute pressure 

records at the discharge and suction ends of a pump station on a crude oil transmission pipeline in 

the company’s pipeline network.  The pipeline has an MOP of 9.964 MPa and a design factor of 

0.8; the meaning of the latter has been explained in Chapter 2.  Statistical analyses of the pressure 

records have been carried out to derive the probabilistic characteristics of the arbitrary-point-in-
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time pressures as well as the weekly, monthly and annual maximum discharge and suction 

pressures.  Furthermore, the discharge and suction pressures are considered as stationary stochastic 

processes.  The marginal probability distributions as well as correlation functions of the discharge 

and suction pressures are derived based on the pressure records.  Detailed analysis results are 

reported in Chapter 2.   

The objective of the study reported in Chapter 3 is to investigate the implications of probabilistic 

characteristics of the internal pressure reported in Chapter 2 for the reliability analysis of corroding 

pipelines.  To this end, two hypothetical crude oil pipeline examples are considered in the analysis.  

Both examples are assumed to have the same MOP as the real pipeline from which the pressure 

records are obtained.  Due to confidentiality reasons, the attributes of the real pipeline are not 

disclosed; therefore, the attributes of the two hypothetical pipeline examples are assumed 

according to the MOP.  It is assumed that the example pipelines have been subjected to recent ILIs 

that report sizes of corrosion defects on the pipelines.  The probabilities of failure of representative 

corrosion defects are then evaluated based on ILI-reported defect sizes and corrosion growth rates 

that are commonly assumed in the literature (Zhou 2010; Gong and Zhou 2017).  The failure of a 

pipeline at a corrosion defect is defined as the pressure containment capacity, i.e. burst capacity, 

of the pipeline at the corrosion defect is below the internal pressure of the pipeline.  The PCORRC 

model (Huang and Zhou 2012), which is a well-known semi-empirical burst capacity model for 

corroded pipelines, is adopted to evaluate the burst capacity of the pipeline at the defect.  The 

pipeline internal pressure is considered as a random variable or stochastic process in the reliability 

analysis.  The probabilistic characteristics of the internal pressure reported in Chapter 2 as well as 

in the literature are considered in the reliability analysis, and the corresponding failure probabilities 

are compared to shed light on the impact of the internal pressure on the evaluated failure 
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probability.  The first-order and second-order reliability method (FORM and SORM) (Der 

Kiureghian 2005; Zhou et al. 2018) and simple Monte Carlo simulation (MCS) (Melchers 1999) 

are employed to evaluate the failure probabilities of the corroding pipelines as a function of time.   

The rest of Chapter 3 is organized as follows.  Section 3.1 describes the reliability analysis 

methodology including the limit state function, PCORRC model and details of using the FORM, 

SORM and MCS to evaluate the failure probability of corroding pipelines; Section 3.2 describes 

the example pipelines and analysis results, followed by concluding remarks in Section 3.4.    

3.2 Methodology 

3.2.1 Limit state function 

The limit state function, g, for a corrosion defect on a pipeline is expressed as follows: 

𝑔 = 𝑟 − 𝑝 (3.1) 

where r is the burst capacity at the defect; p is the internal pressure, and g ≤ 0 represents failure, 

i.e. burst.  It is emphasized that both r and p depend on time t; however, for notational simplicity, 

the dependence is made implicit in Eq. (3.1).  The PCORRC model is used to compute r: 

𝑟 = 𝜉
2𝑤𝑡𝜎𝑢

𝐷
[1 −

𝑑𝑚𝑎𝑥

𝑤𝑡
(1 − exp (

−0.157𝑙

√
𝐷(𝑤𝑡−𝑑𝑚𝑎𝑥)

2

))] (3.2) 

where D and wt denote the pipe outside diameter and wall thickness, respectively; u denotes the 

tensile strength of the pipe steel; dmax and l denote the defect depth and length, respectively (Fig. 

1); and 𝜉 is the model error associated with the PCORROC model (Bao and Zhou 2020).  The 

dependence of r on t derives from the fact that both dmax and l in general grow with time.  Consider 

the time of ILI as time zero.  For simplicity and consistency with typical corrosion assessment 

practice in the industry, the linear growth model, i.e. with a constant growth rate, is adopted for 
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the defect depth in the present study.  Furthermore, the defect length is assumed to remain the same 

over time, i.e. no length growth.  It follows that dmax(t) at year t since the time of ILI can be 

expressed as: 

dmax(t) = dmax0 +gdt (3.3) 

where dmax0 is the defect depth at the time of ILI, and gd denotes the depth growth rate per year.   

 

Fig 3.1. Typical corrosion defect  

3.2.2 Reliability analysis  

The instantaneous failure probability of the corrosion defect at year t is denoted as Pf,i(t) = Prob 

[g(t) ≤ 0].  The well-known FORM can be employed to evaluate Pf,i(t)  (-(t)), where (•) is 

the standard normal distribution function, and (t) is the so-called reliability index obtained from 

the FORM and represents the shortest distance from the limit state surface (i.e. g(t) = 0) to the 

origin in the standard normal space (Zhou et al. 2017).  Because the FORM approximates the limit 

state surface with a hyperplane, the accuracy of the FORM may not be sufficient for limit state 

Typical Corrosion Defect 

𝑑𝑚𝑎𝑥 
𝑤𝑡 
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surfaces with large curvatures.  In this case, the SORM can be used to improve the accuracy of the 

FORM.   

If the internal pressure is assumed to be a (time-independent) random variable, then the failure 

probability of the corrosion defect up to year t since time zero, Pf(t), equals the instantaneous 

failure probability at year t, i.e. Pf(t) = Pf,i(t) (Zhang and Zhou 2014).  This is because the burst 

capacity r monotonically decreases with time as corrosion defects cannot rehabilitate themselves.  

It follows that Pf(t) can be easily computed using the FORM/SORM by assuming the internal 

pressure to be time independent.  If the internal pressure is treated rigorously as a stochastic process, 

then Pf(t) is defined as Pf(t) = Prob[g() ≤ 0, ∋ [0, t]], where the symbol “∋” means “there 

exists”.  The system reliability approach can be employed to approximately evaluate Pf(t) by first 

selecting n points within the interval [0, t] with 0 ≤ 1 < 2 < … < n ≤ t.  Then,  

Pf(t) = Prob[g(1) ≤ 0  g(2) ≤ 0 …  g(n) ≤ 0]  (3.4) 

That is, Pf(t) is the failure probability of a series system consisting of n components, each of which 

is associated with the limit state function g(i) (i = 1, 2, …, n).  Note that the n limit state functions 

are correlated because they share the same random variables (e.g. the pipe wall thickness and 

tensile strength) and because the defect sizes and internal pressures at different times are 

statistically dependent.  A recently-developed efficient system reliability analysis methodology 

based on the FORM (Zhou et al. 2017; Gong and Zhou 2018; Gong and Frangopol 2019) can be 

employed to evaluate Pf(t) based on Eq. (3.4).  The essence of this approach is to use the FORM 

to evaluate the failure probability of each component by involving random variables associated 

with the particular component only.  The solution obtained from the FORM for an individual 

component is then mapped to the space of the random variables associated with all the components 

to facilitate the evaluation of the correlation between different components.  Finally, individual 
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components are combined successively into equivalent components to facilitate the evaluation of 

the system reliability.    

Alternatively, MCS can be employed to evaluate Pf(t) by considering the internal pressure as a 

stochastic process.  In this case, realizations of the internal pressure and the time-independent 

random variables involved in the limit state function need to be generated using suitable techniques.  

In the present study, an improvement spectral representation method proposed by Masters and 

Gurly (2003) is adopted to generate realizations of the internal pressure by assuming the internal 

pressure as a stationary stochastic process with known marginal distribution function and power 

spectral density (PSD) function.  Masters and Gurly’s method, referred to as the iterative spectral 

correction method (ISCM) hereafter, generates realizations of a non-Gaussian stationary process 

by matching the prescribed PSD function while iteratively correcting the probability distribution 

of the generated samples until it converges to the prescribed marginal distribution within a pre-

defined tolerance.  

3.3 Example pipelines and probabilistic characteristics of basic parameters 

The attributes of the two example pipelines considered in the reliability analysis are summarized 

in Table 1.  As explained in the Introduction, both examples are assumed to have the same MOP 

of 9.964 MPa and be subjected to the time-varying discharge pressure as analyzed in Chapter 2.  

Examples #1 and #2 are assumed to have design factors (FS) of 0.72 and 0.8, respectively.  The 

nominal diameters (Dn) of examples #1 and #2 are assumed to be 508 and 914 mm (20 and 36 

inches), respectively, representing medium- and large-diameter pipelines.  The pipe steel grades 

of examples #1 and #2 are assumed to be X52 and X70, respectively, corresponding to the specified 

minimum yield strength (SMYS) of 359 and 483 MPa, respectively.  The specified minimum 

tensile strength (SMTS) of the X52 and X70 steels are 455 and 565 MPa, respectively.  Given Dn, 
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SMYS, MOP and the design factor, the nominal pipe wall thickness (wtn) is determined using the 

well-known Barlow equation as follows: 

𝑤𝑡𝑛 =
𝐷𝑛∙𝑀𝑂𝑃

2∙𝐹𝑆∙𝑆𝑀𝑌𝑆
 (3.5) 

Table 3.1. Attributes of the two example pipelines 

Example Steel Grade SMYS (MPa) 𝑤𝑡𝑛 (mm) 𝐷𝑛 (mm) Design Factor MOP (MPa) 

#1 X52 359 9.80 508 0.72 9.964 

#2 X70 481 11.78 914 0.80 9.964 

 

The probabilistic characteristics of the discharge pressure have been analyzed in Chapter 2.  Let 

pd-apt, pd-we, pd-me and pd-ae denote the arbitrary-point-in-time, weekly maximum, monthly maximum 

and annual maximum discharge pressures, respectively.  As reported in Chapter 2, the analysis of 

the minute-by-minute discharge pressure record suggests that pd-apt can be characterized by a 

Johnson SB (JSB) distribution with the corresponding cumulative distribution function (CDF), 

F(pd-apt), given by  

𝐹(𝑝𝑑−𝑎𝑝𝑡) = Φ (𝛾 + 𝛿 𝑙𝑛 (
𝑧

1−𝑧
)) (3.6) 

where 𝑧 =
𝑝𝑑−𝑎𝑝𝑡−𝜉

𝜆
; (•) denotes the CDF of the standard normal distribution, and , ,  and  

are the distribution parameters, equal to 0, 0.9MOP, 0.69 and -0.53, respectively, as reported in 

Chapter 2.  Note that the JSB distribution is bounded with the lower bound equal to  and the upper 

bound equal to  + .  The analysis of the discharge pressure record further indicates that pd-we, pd-

me and pd-ae all have negligibly small variability such that they can be approximated by a 

deterministic quantity of 0.9MOP.   
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If the discharge pressure is considered to be a stationary stochastic process, then its marginal 

distribution follows F(pd-apt) as given by Eq. (3.5).  The single-sided PSD function of the discharge 

pressure, Sd(f) (f ≥ 0), is given by, 

𝑆𝑑(𝑓) =
4(𝜎𝑑−𝑎𝑝𝑡)

2
𝜏0𝑑

(2𝜋𝑓𝜏0𝑑)2+1
 (3.7) 

where d-apt is the standard deviation of pd-apt and estimated to be 0.23MOP based on samples from 

the discharge pressure record, and 0d is the correlation length of the discharge pressure, which is 

estimated to 439 minutes as reported in Chapter 2.   

The reliability analysis is carried out by considering a single corrosion defect on each of the two 

example pipelines.  The ILI-reported depth and length (dmax0 and l) of the defect are assumed to 

equal 0.3wtn and 100 mm, respectively.  The analysis is then carried out to estimate the failure 

probabilities of the defect for a period of five years after the time of ILI.  The probabilistic 

characteristics of the basic parameters involved in the reliability analysis except the internal 

pressure are summarized in Table 2.  Note that uncertainties associated with dmax0 and l reflect the 

measurement error associated with the ILI tool.  Several scenarios in terms of the uncertainty of 

the internal pressure (p) are considered in the reliability analysis, as summarized in Table 3.  Note 

that scenario #1 is considered the most accurate representation of the uncertainty in the internal 

pressure; therefore, the corresponding failure probabilities are the benchmark results.  Scenario #2 

considers the internal pressure as a deterministic quantity based on findings reported in Chapter 2; 

therefore, the reliability analysis is greatly simplified whereby the failure probability up to time t 

equals the instantaneous failure probability at time t.  The FORM can be easily carried out to 

estimate the instantaneous failure probability.  The MCS is also conducted for scenario #2 to verify 

the accuracy of the FORM results.  Scenarios #3-#5 are sensitivity cases to investigate the impact 
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of the uncertainty in p on the failure probability.  Scenarios #3 and #4 consider p to be random 

variables with different probability distributions as suggested in the literature, whereas scenario 

#5 characterizes p as a Ferry-Borges process (Zhou 2010) consisting of independent, identically 

distributed (iid) pulses represented by the annual maximum pressure that follows a Gumbel 

distribution with a mean of 1.03MOP and a COV of 1%.  Each MCS involves a total of 105 

simulation trials.  In scenario #1, the time step used to generate samples of p in MCS is 3 hrs.  

 

Table 3.2. Probabilistic characteristics of basic parameters involved in the reliability analysis 

Parameter Distribution Mean COV (%) Sources 

wt  Normal 𝑡𝑛 1.50 Gong (2017) 

D Deterministic Dn - CSA (2019) 

𝜎𝑢  Normal 1.1SMTS 3.50 Gong 2017 

l  Normal 100 (mm) 15 Gong 2017 

𝑑𝑚𝑎𝑥0   Normal 30%wt 20 Assumed 

ξ Gumbel 1.079 26.4 Zhou 2012 

𝑔𝑑  Lognormal 0.3 (mm/year) 50 Zhou 2010 

p 
Johnson SB 

process 
0.589MOP 41.15 

Chapter 2 

 

Table 3.3 Scenarios of uncertainty in p considered in the reliability analysis 

Scenario Consideration of uncertainty in p Source 
Reliability analysis 

methodology 

#1 

Stochastic process with the CDF given 

by Eq. (3.6) and PSD function given by 

Eq. (3.7) 

Present study MCS 

#2 Deterministic value equal to 0.9MOP Present study FORM and MCS 

#3 
Gumbel-distributed random variable with 

a mean of 1.0MOP and a COV of 10% 

Teixeira et al. 

(2008) 
MCS 

#4 

Normally distributed random variable 

with a mean of 1.0MOP and a COV of 

10% 

Keshtegar et al. 

(2019) 
MCS 

#5 

Ferry-Borges process with iid annual 

pulses represented by a Gumbel random 

variable with a mean of 1.03MOP and a 

COV of 1% 

Zhou (2010) MCS 
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The computed failure probabilities of the two example pipelines considering different scenarios of 

the uncertainty in the internal pressure are depicted in Fig. 3.2.  The figure indicates that the failure 

probabilities corresponding to scenario #2 are somewhat higher than the benchmark values, i.e. 

corresponding to scenario #1, which suggests that it is acceptable to evaluate the failure probability 

of corroding pipelines by considering the probabilistic characteristics of the annual extreme 

internal pressure as opposed to treating rigorously the internal pressure as a stochastic process with 

the corresponding CDF and PSD function.  The advantage of scenario #2 is its high computational 

efficiency compared with scenario #1.  The comparison of the FORM and MCS results 

corresponding to scenario #2 indicate that the two methods result in almost identical failure 

probabilities for example #1 and that the FORM results are marginally lower than the MCS results 

for example #2.  This confirms the accuracy and suitability of the FORM for the reliability analysis 

of corroding pipelines.  On the other hand, the failure probabilities corresponding to scenarios #3-

#5 are about one order of magnitude higher than the benchmark values.  This underscores the 

importance of appropriately characterizing the uncertainty in the internal pressure in the reliability 

analysis of corroding pipelines.  A comparison of the results corresponding to scenarios #3 and #4 

suggests that the failure probability is not sensitive to the distribution of the internal pressure if its 

mean and COV remain the same.   
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(a) Example 1 

 

(b) Example 2 
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Fig. 3.2 Failure probabilities of two example pipelines considering different scenarios in terms of 

the uncertainty in the internal pressure 

3.4 Comparison between FORM and simulation results 

Because it is relatively time-consuming to evaluate the failure probabilities corresponding to 

scenario #1 using MCS, the FORM-based system reliability method as proposed in the recent 

literature (Zhou et al. 2017; Gong and Zhou 2018; Gong and Frangopol 2019), referred to as the 

improved equivalent component method, is employed to evaluate the failure probabilities.  To this 

end, the number of components included in the system reliability analysis (see Eq. 3.(4)) within 

the analysis period of five years is assumed to be 30 (i.e. an equal interval of 2 months between 

consecutive components), 40 (i.e. an equal interval of 1.5 months between consecutive 

components), 60 (i.e. an equal interval of one month between consecutive components), 130 (i.e. 

an equal interval of two weeks between consecutive components) or 260 (i.e. an equal interval of 

one week between consecutive components).  The corresponding failure probabilities are depicted 

in Fig. 4 for the two example pipelines.  For comparison, the benchmark failure probabilities 

obtained from MCS are also shown in the figure.  Figure 4 indicates that the improved equivalent 

component method results in unreliable predictions of the failure probabilities compared with the 

benchmark values.  This may be explained as follows. Gong (2017) indicated that the improved 

equivalent component method leads to relatively large errors if the limit states corresponding to 

different components are highly correlated with the correlation coefficient greater than 0.9.  

Because corrosion is a slow growth process, there is a small difference between the corrosion 

depths for different components, which implies high correlations between different components.   

It is observed from Fig. 4 that the accuracy of failure probabilities evaluated using the improved 

equivalent component method depends to a large degree on the number of components.  The failure 
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probability evaluated increases with the number of components included in the analysis.  For 

example # 2 (i.e. the large diameter pipeline), the failure probability is relatively larger, it is seen 

that only the 30-component case underestimates the result compared with the benchmark by 1.2%; 

the 40-component case overestimates the benchmark result by 6.1%; the 60-component case 

overestimates the benchmark by 23.4%; the 130-component case overestimates the benchmark by 

62.4%, and the 260-component case overestimates by 103.9%.  On the other hand, for example #1 

(i.e. the medium diameter pipeline), where the failure probability is relatively small, the 260-

component and 130-compoent cases result in the most accurate predictions, whereas errors 

associated with the other cases range from 20 to 60%.  

 

(a) Example #1 
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(b) Example #2 

Fig. 3.3 Failure probabilities evaluated using the FORM-based system reliability method 

compared with the benchmark values obtained from MCS 

 

3.5 Conclusion 

This chapter investigates the reliability of corroded oil pipeline considering arbitrary-point-in-time 

pressure as stochastic process with multiple reliability methods and compares it with different 

pressure assumptions.  Two examples of oil pipeline representing smaller and larger size are 

selected with the same MOP and different parameters (wall thickness, diameter, steel grade, etc.). 

Discharge pressure distribution (Johnson SB) and correlation structure are chosen from chapter 2 

of the thesis. Then, ISCM is used to generated discretized pressure in every three hours for five 

years period where good accuracy is achieved after 5 iterations. Simulation based reliability is 

compared between pressure as a stochastic process (the benchmark) and extreme value pressure 
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are given where the difference at the end of fifth year is 29.41% and 29.13% for two cases 

representing smaller and larger pipe size. Three previously used pressure distribution from several 

papers are also compared by simulation where all of them gives considerably higher failure results 

than pressure as stochastic process. A major reason is those previously used pressure is considered 

pipeline operating under MOP while our record is under 0.9 MOP. However, as the upper bound 

of pressure varies as the operation conditions change, more operations should be implemented as 

opposed to one to better incorporate the actual environment. 

FORM is also tried as an alternative evaluation of the failure probability.  on the improved 

equivalent component method is also applied with the corresponding results compared with MCS 

results.  The results indicate that the accuracy of the improved equivalent component method 

depends largely on the number of components considered in the analysis.  The error can be 

significant if the number of components is not selected properly.   This may be due to the fact that 

different components are highly correlated due to the slow growth nature of the corrosion process.  

However, for extreme value pressure distribution, FORM gives a fairly accurate result comparing 

with the benchmark with small difference of 27.45% and 5.22% for smaller and larger pipe size. 

The findings of this study provide a method to consider internal pressure as a stochastic process in 

reliability analysis of corroded pipeline. The results show evidence of potential conservativeness 

of corrosion failure considering pressure as maximum probable value which is independent of time.  
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4 Summary, Conclusions and Recommendation for Future Study 

4.1 General 

This research investigates the characteristics of the pressure of oil pipeline and its impact on 

reliability analysis. The conclusions drawn from this thesis and recommendations for the future 

study are given as follows. 

4.2 Probabilistic characterization of internal pressure of crude oil transmission 

pipelines based on pressure records 

In chapter 2, statistical characteristics of the discharge and suction pressures based on the minute-

by-minute pressure records obtained from a compressor station on an in-service crude oil pipeline 

was investigated. This pipeline has an MOP of 9.9 MPa and a design factor of 0.8.  The discharge 

and suction pressure records are 1.5 and 1.0 years long, respectively.  The probabilistic 

characteristics of the arbitrary-point-in-time pressure (pd-apt and ps-apt) as well as the weekly, 

monthly and annual maximum pressures are derived based on the pressure records for both the 

discharge and suction pressures.  The mean and COV of pd-apt are evaluated to be 57.3% and 41% 

MOP, respectively, and the mean and COV of ps-apt are 13.8%MOP and 71.9%, respectively. The 

Johnson SB distribution is found to be the best fit distribution for pd-apt and ps-apt. The monthly and 

annual maximum discharge pressures can be adequately represented by a deterministic quantity 

equal to 90%MOP, whereas even the weekly maximum distribution of the discharge pressure 

could also be considered as deterministic considering the marked drop.  The weekly, monthly and 

annual maximum suction pressures are found to be well characterized by the beta distributions.     

The autocorrelation function of the discharge pressure is well fitted by the exponential correlation 

function with a correlation length equal to 439 minutes, whereas the -exponential function 
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adequately characterizes the autocorrelation function of the suction pressure with a correlation 

length to be 966 minutes.  The analytical expression of the PSD function corresponding to the 

exponential autocorrelation function for the discharge pressure is obtained and agrees very well 

with the numerically evaluated PSD function using Welch’s method.  The PSD function for the 

suction pressure is also numerically evaluated using Welch’s method. The bandwidth parameter 

α2 is also calculated for both discharge and suction pressures and indicates that both are wide-band 

processes.  It is found that the Fréchet distributions fit the pressure ranges of the discharge and 

suction pressures well which are obtained from rainflow counting.  The discharge and suction 

pressure ranges are further compared with the benchmark pressure cycle counts proposed in the 

literature to identify their severity.  The results suggest that the discharge pressure ranges fall in 

between the very aggressive and aggressive categories, whereas the suction pressure ranges can 

be characterized as light severity.   

4.3 Reliability analyses of corroding pipelines using different approaches to 

characterize uncertainties in internal pressure 

Chapter 3 investigates the reliability of corroded oil pipeline considering arbitrary-point-in-time 

pressure as stochastic process with multiple reliability methods and compares it with different 

pressure assumptions.  Two examples of oil pipeline with smaller and larger pipe size are chosen 

with the same MOP and different parameters (wall thickness, diameter, steel grade, etc.). 

Discharge pressure distribution (Johnson SB) and correlation structure are picked from chapter 2.  

A spectral representation method ISCM is used to generated discretized pressure in every three 

hours for five years period where good accuracy is achieved after 5 iterations. Simulation based 

reliability analysis is compared between pressure as a stochastic process (the benchmark) and 

extreme value pressure are given where the difference of the failure probability at the end of fifth 



55 
 

year is 29.41% and 29.13% for two cases representing smaller and larger pipe size. Three pressure 

distributions from several research are also compared using MCS where all of them gives 

considerably higher failure results than pressure as stochastic process. A major reason is those 

previously used pressure is considered pipeline operating under MOP while our record is under 

0.9 MOP. However, as the upper bound of pressure varies as the operation conditions change, 

more operating conditions should be implemented as opposed to one to better incorporate the 

actual environment. 

System reliability analysis using FORM proposed by Gong etc. in five years period based on 

equivalent component method is also calculated and compared with MCS results.  FORM analysis 

shows close results to the benchmark with 1.3% difference using 260-component (5-day interval) 

for smaller pipe size and -1.2% difference using 30-component (1-month interval) for larger pipe 

size.  The error occurred could be explained by the instantaneous probability, proximity of each 

equivalent limit state and the number of equivalent components used which all affect the accuracy 

considerably.  However, for extreme value pressure distribution, FORM gives a fairly accurate 

result comparing with the benchmark with small difference of 27.45% and 5.22% for smaller and 

larger pipe size.  The results give evidence of conservativeness of corrosion failure considering 

pressure as maximum probable value which is independent of time comparing to pressure as a 

stochastic process.  

4.4 Recommendations for future work 

For chapter 2, as the characterized statistics is obtained from the pressure record of a particular 

pump station within the pipeline system, one upper bound for discharge pressure and one lower 

bound for suction pressure are observed.  However, the bound changes as the operating condition 

varies.  To get a more generous result, more records with different operating conditions including 
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information about inspection, shutdown etc. and limits like the MOP and lower bound should be 

incorporated.  Distributions that could incorporate those different upper bound should be further 

investigate.  For annual extreme value distribution of the suction pressure which is purely deduced 

needs more evidence to support the conclusion.  For the Welch’s method for PSD estimate, the 

effect of different window function type, overlapping proportion as well as the segment length 

should be further checked and compared.  In addition, the physical meaning about the dominant 

frequency requires more explanations to describe and suggestions for future uses. 

For chapter 3, the failure results from the system FORM are a little deviating from that from the 

simulation-based result, more research is needed to assess the reason behind.  For instantaneous 

failure, some sensitivity about the impact of the truncated distribution on the instantaneous failure 

should be checked and furthermore some alternative method that could provide a more accurate 

method like SORM.  Also, the accuracy of the equivalent method with correlation between limit 

states more than 0.9 should be checked for sensitivity with more components and its limit to obtain 

acceptable estimates.  
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