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ABSTRACT

Most debilitating neurological disorders can have anatomical origins. Yet unlike other body organs, the anatomy
alone cannot easily provide an understanding of brain functionality. In fact, addressing the challenge of linking
structural and functional connectivity remains in the frontiers of neuroscience. Aggregating multimodal neu-
roimaging datasets may be critical for developing theories that span brain functionality, global neuroanatomy
and internal microstructures. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTT)
are main such techniques that are employed to investigate the brain under normal and pathological conditions.
FMRI records blood oxygenation level of the grey matter (GM), whereas DTI is able to reveal the underlying
structure of the white matter (WM). Brain global activity is assumed to be an integration of GM functional hubs
and WM neural pathways that serve to connect them. In this study we developed and evaluated a two-phase
algorithm. This algorithm is employed in a 3D interactive connectivity visualization framework and helps to
accelerate clustering of virtual neural pathways. In this paper, we will detail an algorithm that makes use of an
index-based membership array formed for a whole brain tractography file and corresponding parcellated brain
atlas. Next, we demonstrate efficiency of the algorithm by measuring required times for extracting a variety of
fiber clusters, which are chosen in such a way to resemble all sizes probable output data files that algorithm
will generate. The proposed algorithm facilitates real-time visual inspection of neuroimaging data to further the
discovery in structure-function relationship of the brain networks.

Keywords: Diffusion Tensor Imaging, functional MRI, Multimodal, Interactive Visualization, Fiber Tractogra-
phy, Collision Detection

1. INTRODUCTION
1.1 Multimodal neuroimage data visualization

Proper planning and guidance of central nervous system neurosurgical procedures has a major effect in reducing
of associated risks such as postoperative neurological deficits, for example simple sensory motor function or more
more complex cognitive problems. Achieving brain eloquence preservation during neurosurgical interventions is
contingent upon adequate knowledge of how the brain functions and demands a thorough investigation of under-
lying tissues in the planning stage by employing brain 3D images. Modelling brain anatomy and functionality
as a complex network for both neurological disorders and normal conditions is becoming main stream research
in discovering how brain executes cognitive and motor tasks. This type of network, often called a functional or
structural connectivity, is formed based on measurements from functional (e.g. fMRI, Positron Emission Tomog-
raphy,! Magnetoencephalography?) or structural (e.g. T1 weighted MRI,? diffusion weighted imaging* (DWT))
brain imaging modalities . One of the major milestones in connectivity research area is examining functional
and structural relation as a promising method to unravel neural basis of brain activity. Undoubtedly, fMRI and
DTT are two important in vivo imaging modalities to quantify respective interactions. DTI data is the basis for
generating virtual 3D model of actual axonal linkages in the brain called fiber tracts that serve to non-invasively
identify configuration of WM bundles around intervention site and access trajectory.
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Due to this fact, aggregation of multimodal neuroimaging data has been very popular among neuroscientists.’
Visualization has a crucial role in assisting a researcher to picture mutual information of dual modalities. It should
be noted, that due to large quantity of processed information for each volume, exploration is a key component to
enable user to view desired content in the anatomical space, selectively. This was a key consideration in designing
and development of MultiXplore.® In addition, this platform can visually integrate functional landmarks from
an atlas parcellated brain and mutually intersecting fiber tracts. This unique visualization technique allows user
to interactively inspect underlying WM pathways of functionally connected areas and aims to improve current
knowledge of anatomical foundation serving brain networks. One of the main requirements of this visualization
framework was minimization of system response time to achieve real time user interactions. This paper introduces
a new technique to minimize computation time of fiber analysis algorithms.

1.2 Related works

Whole brain fiber tracts are densely populated inside of the brain, making it cumbersome to comprehend ab-
normalities within that limited space.” Fiber clustering techniques have been used to group and classify fiber
bundles of the WM to visualize them as subsets of whole brain tractography. Criteria for this classification is
variant from shape similarity of adjacent fibers® and originating/crossing from a given region of the brain® to
fMRI based inferential of fiber clusters.!® Chamberland et. al.'! considered user interaction feature in a 3D
environment to visualize fiber tracts originating from an interactive seed volume. Their algorithm employs an
accelerated fiber tracking technique that supports real time generation of fiber tracts in the case of seed region
displacement or parameter adjustment.'?Weiler et. al.'® introduced a tool to assist with defining anatomically
meaningful region(s) of interest (ROI) for fiber tract extraction. A tree-based data structure was utilized to
store fiber information for interaction stage. A similar strategy was considered to facilitate fiber extraction from
a whole-brain tractography. Optimizing required time to render the selected fibers is the main requirement for
exploration of the large fiber bundles. The original contribution of this work extends upon a fiber selection
algorithm used in fiber bundle label select (FBLS)'* to optimize its run time. This happened by generating a
membership array to facilitate interactive visualization and selection of tracts in a real-time fashion. The module
is developed within the framework of the 3D Slicer software platform.'®

In this paper, a summary of imaging inputs for the algorithm is provided and data structure of the outputs
is defined. In the results sections, we will represent generated fiber bundles and will compare required time of
the new method to the current tools.

2. COMPUTATIONAL MODEL FOR FIBER CLUSTERING AND RETRIEVAL
2.1 DWI, DTI and Brain fiber tractography

DWI is a non-invasive medical imaging modality that relies on diffusion of water molecules inside of a tissue to
generate structural images that indicates macrostructure of that tissue'S(Figure 1a). DTI is the outcome of a
mathematical operation on DWI images and computes distribution of major orientation of gradient directions in
each voxel of the target tissue ( Figure 1b). Parameters that are derived from tensors in DTI can be visualized
as scalar values over brain volume. Other application of tensors are generating neural pathways by tracing
voxel-level major orientation vectors. This process is called tractography (Figure 1f) and two major types are
probabilistic and deterministic.'” Probabilistic method considers all possible tree branches of a neural fiber in
a voxel with nonsignificant difference between first and second eigenvector, thus results in multiple tracks from
a single seed region. Deterministic method prioritizes only one path for the fiber, without considering relative
eigenvectors and generates a view of brain WM pathways that is more realistic and resembles actual brain WM
anatomy.

2.2 Brain landmarks and parcellation

Brain atlas is a segmentation of brain volume to isolated subsets of regions that share similar anatomical, physical
or functional properties. It provides a universal platform to label the brain regions across a large population of
subjects. These labels can later be registered to the T1 weighted image and represent areas that share similar
features. More details are shown in figure 2b and 2c.
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(e)
Figure 1: Basics of DTI and tractography: a) Eddy corrected DWI image b) DTI image constructed by painting
voxels based on 3D orientation of their major diffusion gradient. Major diffusion orientation may be visualized
as a 3D ellipsoid and overlaid on 2D slices (c¢) or 3D volumes (d) in a selected slice of the volume. d) uses line
segments instead of ellipsoid to visualize voxel level diffusion tensors. As shown in (f) Voxel by voxel tracing for
the major orientation of diffusion tensors constructs fibers that cross through that plane.

2.3 Functional connectivity

Functional MRI is a non-invasive MRI modality that records brain activity based on measuring consumed energy
of that activity: oxygen. In other words, fMRI can spatially differentiate areas that demand higher oxygenated
blood supply with an acceptable temporal resolution. Basic assumption of fMRI is originated from the fact that
higher brain activity necessitates more oxygenated blood at a given area. These activation signals are recorded
along the time while subject of the study is in the MRI scanner performing designed tasks. As a result, fMRI
yields a temporal signal of BOLD response in each brain region within the determined field of view. Functional
connectivity is a computational approach to analyze fMRI signal all over the brain and aims to find recurrent
patterns of brain activity between different regions of the brain and along the recorded window of experiments.
Connectivity can be modelled as graph with nodes located in atlas areas of the brain and strength of between-
node similarity is represented as graph edges. Similar to graph theory, a matrix can hold and represent numerical
values of graph connections in a compact fashion. Atlas defined subvolumes (here we call them ROI) of the brain
serve as nodes of the connectivity graph. Functional MRI signals of the corresponding nodes are obtained from
these subvolumes of the GM.

2.4 VTK Fiber Bundle data structure

Here we will review data structure of a VTK'® file that is employed to display and store results of fiber tractog-
raphy in 3D Slicer. As shown in figure 3a, a deterministic fiber tractography file consists of a finite number of
lines. Each line has an identifier index that uniquely represents that particular line. Second level is the number
of spatial points that exist inside of any given line. Those set of point coordinates are an attribute of the line.
Another attribute of the line is principal diffusion gradients of any corresponding voxel along the line that is
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saved in a 3 x 3 tensor unit holds three eigenvectors of each point and is used to render colors of the fibers
according to the parameters of choice for the user.

2.5 Atlas registered brain

Outcomes of the brain atlas parcellation are saved in a 3D volume with same coordinate system as original file.
Main difference between a normal volumetric structural brain scan (Figure 1b) and atlas volume (Figure 1c) is
narrowed to voxel values. Volume content of the atlas, instead of grey level values, are integers that represent
labels of the region every given voxel is associated during registration. This label file serves to determine which
atlas region any given point of a fiber belongs to (figures 2e and 2d) .

(e) (f)

()

Figure 2: Brain Atlas Parcellation: a) Cortical 3D surface generated by FreeSurfer!? b) One axial slice of a T1
weighted volume ¢) One axial slice of resulted atlas registration: This a DK Atlas that is registered to subject
space using FreeSurfer. Each color represents voxels that belong to the same label. d) Corresponding location
of the slice compared to brain volume. Left hemisphere cortical mesh is translucent to allow see the labels. e)
Subset of fibers that pass through a selected rectangular area over the chosen slice. f) Magnified view of the
rectangular area in (e) with numeric equivalent of the labels manually added to the image.

2.6 Coordinate system transformation

Since tractography lines and atlas registered labeled brain volumes might depend on different coordinate systems,
it is wise to inspect whether a transformation for projecting labeled file to tractography file space is required
or not. For instance, in our data, tractography was performed in scanner space (IJK) coordinate system, while
label file was in subject space (RAS) and was transformed to IJK space during the memory array generation
process.

2.7 Memory array, Label lookup table (LUT) and memory points

Our proposed algorithm imports a set of spatial maps accessed via a parcellated brain atlas. These maps can
later be used to verify whether a line enters into that region or not. The main task of the proposed algorithm
is to iterate through each point of every given line and distinguish which spatial map each point under inves-
tigation belongs to, and record it in a membership array. As figure 3b illustrates, concatenation of these 1D
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binary vectors forms the final 2D array that will be stored and referred during interaction stage. The number
of rows is equal to the number of brain atlas regions that intersect fibers and the number of columns is same
as number of lines in the main tractography file. There are two other data segments that are generated during
memory array processing: memory points and label lookup table. Memory points obtains number of points in
each individual line and stores them as a 1D array with a length equal to the number of lines in tractography
file. Similarly, label look up table (LUT) is the other 1D array that stores integer value of the engaged labels
in the same order of memory array with a size equal to the number of engaged labels. Upon the users selec-
tion, the selected rows of the memory array will be element-wise multiplied, producing a vector with the same
size (Figure 4). This new array contains indices of the lines that are added to the scene in every iterative selection.
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Figure 3: Formation of membership array: a) Whole brain fiber tractography and A single streamline b) Scanning
of streamlines according to brain labels to generate membership array.
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Figure 4: Processing of users input from a user interface developed in MultiXplore_‘ﬁ from left 1 t(;ight: rows of
selected ROIs are multiplied and corresponding streamlines are transferred into 3D view.

3. RESULTS

In order to test efficiency of the proposed algorithm, three sets of experiments are carried out. First one examines
processing times required to generate memory arrays for whole-brain tractography files with a variety of line
densities. Next two experiments allow us to compare outcomes of our method to two other available tools with
similar functionality: FBLS and tractography label map seeding (TLMS).!*

Second one aims to investigate required time to transfer selected tracts upon user’s selection. In this test,
acquired times from our method are compared to FBLS. Similar to the second one, third experiment reports the
required time for extracting a subset of fibers. Main difference from second experiment is being restricted to one
ROI at very repetition. Our proposed algorithm (Pre-computed Array) and FBLS have the potential to accept
multiple regions as input. TLMS is the other module in 3D Slicer that can generate ROI based fiber bundles.
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(b) 2
Figure 5: Axial views of tractography files with low (a) to high (d) line densities

TLMS performs the fiber subset generation differently than FBLS. It performs tractography by seed placement
inside of the designated volume. Sole limitation of this module is being restricted to one ROI at a time. Due
to tractography procedure, where fibers can’t be filtered to retain the ones that pass through multiple ROIs.
Anatomical scan and DTI data used in this study are from a 30 year old healthy subject. Cortical surface and
registration of desikan-killiany Atlas labels is done using FreeSurfer (http://surfer.nmr.mgh. harvard.edu/).

These tests have been carried out in the imaging platform of 3D Slicer version 4.5.0-1 using a Windows 10
PC (24 GB DDR3 RAM, Intel core i7 CPU 64 bit). FBLS and TLMS are loadable modules in 3D Slicer, built as
C++ plugins and optimized for heavy computations. Pre-computed array is written in Python and implemented
as a scripted module to prototype the novel idea. Inputs for preprocessing algorithm are 4 tractography files
prepared by 3D Slicer from DTI images and with varying seed spacing parameter to prepare a range of line
numbers and observe its effect on the computation time. Other tractography parameters are identical for all four
scenarios and are as follow: linear measure start threshold: 0.3, minimum path length: 10mm, maximum path
length: 800mm, stopping criteria: fractional anisotropy (FA), stopping value: 0.2, Stopping Track Curvature:
0.6, Integration Step: 0.5mm. Table 1 outlines number of lines and points in the generated fibers, as well as
spacing of the seed in tractography stage and required time to generate precomputed memory array, memory
points and LUT. Figure 5a to 5d exhibits generated data. By visual inspections of those 4 data we decided to
set seed spacing to 0.5 mm for input file of the next step. Fibers in all the figures are colored according to the
voxel level FA and a rainbow colormap.

Table 1: Properties of generated tractography files and required preprocessing times in seconds

Number of Lines | Number of Points | Seed Spacing(mm) | Computing time(s)
1 3527 296977 3 4
2 1696 989244 2 9
3 54559 4593416 1.2 34
4 172553 14169565 0.5 106

Table 2: Considered single ROI for evaluating required wait time: lh and rh refers to left hemisphere and right
hemisphere respectively, reported times are in seconds.

Index Selected Region | Num. of Ng?' TLMS Num. of NE?L FBLS Nf::_?:ry
of ROI Atlas Label Points . Points . (s) Y
Lines (s) Lines (s)
1 Temporalpole(rh) 80751 1154 11 92755 1204 62 6
2 S“pe;;?(rlt}f;npo' 252892 | 3823 | 14 275340 | 3180 64 20
3 Superiorfrontal(rh) 1074906 14599 28 940236 11059 67 150

In the next experiment, fiber bundle selection base is single ROI. According to table 2 and figure 6 three
regions are considered. Generated fibers from TLMS had slightly different characteristics than FBLS and our
method, therefore we reported their number of points and lines in a separate column. For the third experiment,
we found 5 combinations of ROIs that enabled testing FBLS and our method on a fiber bundle with minimum
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of 18 and maximum of 3420 lines. Figure 7 shows spatial configuration of the processed fiber bundles. Likewise,
table 3 reports the numerical outcomes of this experiment.

(c) index of ROL: 3
Figure 6: Axial, Sagittal and Coronal views of the extracted tracts with highlighted atlas labels in color along
with a cortical surface to ease anatomical localization, numbers in the left indicate Index of selected ROI from
Table 2

4. DISCUSSION

The proposed algorithm demonstrates an improved speed on ROI-based fiber bundle extraction, compared to
FBLS. In the first experiment and according to table 1 we observed that line and point density of the fiber
tractography is the main factor to determine the necessary time for memory arrays computation. As can be seen
from time performance of table 6, TLMS holds a significantly better time performance than other two methods.
For instance, Superiorfrontal region takes 28 seconds for TLMS compared to 150 seconds of precomputed array.
However and as stated above, main limitation of TLMS is being confined to one ROI, therefore fiber pathways
between separate ROIs cannot be found.

According to the table 3 (last column) required time for memory array method is proportional to the fiber
bundle density. On the other hand, FBLS operation is divided into two steps. No matter how large or small
the output fibers would be, first step takes around 60 seconds for each selection to scan the fiber bundle and
create a temporary memory array and second step takes 2 to 8 seconds for considered ROIs and is intended
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(e) index of ROI: 5
Figure 7: Axial, Sagittal and Coronal views of some of the extracted tracts with highlighted atlas labels in color

along with a cortical surface to ease anatomical localization, numbers in the caption indicate Index of selected
ROI from Table 2
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Table 3: Considered pairs of ROIs for evaluating required wait time: lh and rh refers to left hemisphere and
right hemisphere respectively, reported times are in seconds.

Inl(i:soxI of Selected I;‘ez;glizlll(s) Atlas Num. of Points NEiI;l(.esof F](3S§JS 11;/11‘;3:}1’087)
1 Caudalfli/ili(ggiif;‘c(?}ll() Ih) and 1843 18 62 <1
;| e e NI
? CanalMtiddiehronta(sh 7029 | e ?
T e e | w | w |
5 S“gi;ﬁgg?gzltgﬁgnd 311155 3420 68 32

for copying selected fibers. Despite lengthier total required time in FBLS, copying fibers happens in much
faster speed compared to memory array. This is due to the inherent speed differences of C++ compared to
Python. It should be noted that our current implementation is a scripted module (based on Python); whereas
FBLS or TLMS modules C++ plugin (called loadable module) built against 3D Slicer and have access to more
efficient processing power. Despite this, overall computation time for largest dual ROI selection (left and right
Superiorfrontal, last row of table 7) in precomputed array achieves 32 seconds, less than half of the similar time
for FBLS (67 seconds).

5. CONCLUSION

In this paper a novel fiber selection algorithm is presented This algorithm improves run time of FBLS by
optimizing redundant operations. This improvement leads to adapt the new method in a multimodal visualization
framework of fMRI and DTI that intends to visualize the anatomical origins of brain functional hubs during
neurosurgical treatments, as well as clinical research, and for neuroscientific enquiry.

In this paper, we presented a novel algorithm that significantly reduces required time for fiber clustering.
This has been realized by dividing a fiber selection pipeline to two stages and performing first stage that results
in a membership array which helps to reduce the required time for the second stage. This method contributes to
relatively low wait time and an ultimate key role in implementation of MultiXplore.® Time requirement for the
first stage depends on the volume of the input tractography file and varies from 1 to 3 minutes for an adequately
dense tractography data in the current system. According to our tests and results, the required time for the
second stage is dependent on the number of lines and never exceeds 1 minute for the largest probable selection.
This is due to the fact that copying lines takes place in an iterative loop. FBLS wasn’t designed to support timely
responses to user’s multiple queries and consequently user might end up waiting for several minutes. Therefore,
a new approach was needed to minimize the time and allow for smooth exploration of multimodal brain imaging
data. Such an exploration would be beneficial in visualization of brain structural-functional relations. In future
we plan to transfer our implementation to C++ to further acceleration of the fiber extraction process.
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