
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

August 2010 

Addressing Computational Complexity of Electromagnetic Addressing Computational Complexity of Electromagnetic 

Systems Using Parameterized Model Order Reduction Systems Using Parameterized Model Order Reduction 

Majid Ahmadloo, University of Western Ontario 

Supervisor: Dr. Anestis Dounavis, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Electrical and Computer Engineering 

© Majid Ahmadloo 2010 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Electromagnetics and Photonics Commons, and the VLSI and Circuits, Embedded and 

Hardware Systems Commons 

Recommended Citation Recommended Citation 
Ahmadloo, Majid, "Addressing Computational Complexity of Electromagnetic Systems Using 
Parameterized Model Order Reduction" (2010). Electronic Thesis and Dissertation Repository. 12. 
https://ir.lib.uwo.ca/etd/12 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/271?utm_source=ir.lib.uwo.ca%2Fetd%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ir.lib.uwo.ca%2Fetd%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=ir.lib.uwo.ca%2Fetd%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/12?utm_source=ir.lib.uwo.ca%2Fetd%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Addressing Computational Complexity of 
Electromagnetic Systems Using Parameterized Model Order 

Reduction  
 
 

(Spine Title: Numerical Reduction Techniques for 
Electromagnetic Systems) 

 
 

(Thesis format: Monograph) 
 

by 
Majid Ahmadloo 

 
Graduate Program in Engineering Science 

Department of Electrical and Computer Engineering 
 
 

 
 
 

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND 
RESEARCH IN PARTIAL FULLFILMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF DOCTOR OF PHILOSOPHY 
 
 
 
 
 
 
 
 
 
 
 
 
 

THE SCHOOL OF GRDAUATE AND POSTDOCTORAL STUDIES 
THE UNIVERSITY OF WESTERN ONTARIO, LONDON, ONTARIO, CANADA 

© Majid Ahmadloo 2010 



THE UNIVERSITY OF WESTERN ONTARIO 
SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES 

 
 

CERTIFICATE OF EXAMINATION 
 
 
Supervisor 
 
______________________________  
Dr. Anestis Dounavis  
 
 
Supervisory Committee 
 
______________________________  
 

Examiners 
 
______________________________  
Dr. Kazimierz Adamiak 
 
______________________________  
Dr. Jayshri Sabarinathan 
 
______________________________  
Dr. Anand V. Singh 
 
______________________________  
Dr. Mustapha C. E. Yagoub 
 
 

 
 
 

The thesis by 
 
 

Majid Ahmadloo 
 

entitled: 
 

Addressing Computational Complexity of Electromagnetic Systems 
Using Parameterized Model Order Reduction  

 
is accepted in partial fulfilment of the  

requirements for the degree of  
 

Doctor of Philosophy 
  
 
 
Date__________________________ _______________________________ 

Chair of the Thesis Examination Board 
  
 

 
ii 



 iii

Abstract 

As operating frequencies increase, full wave numerical techniques such as the finite 

element method (FEM) become necessary for the analysis of high-frequency and 

microwave circuit structures. However, the FEM formulation of microwave circuits often 

results in very large systems of equations which are computationally expensive to solve. 

The objective of this thesis is to develop new parameterized model order reduction 

(MOR) techniques to minimize the computational complexity of microwave circuits. 

MOR techniques provide a mechanism to generate reduced order models from the 

detailed description of the original FEM formulation.  

 The following contributions are made in this thesis: 

1. The first project deals with developing a parameterized model order reduction to 

solve eigenvalue equations of electromagnetic structures that are discretized by using 

FEM. The proposed algorithm uses a multidimensional subspace method based on 

modified perturbation theory and singular-value decomposition to perform reduction 

directly on the finite element eigenvalue equations. This procedure generates 

parametric reduced order models that are valid over the desired parameter range 

without the need to redo the reduction when design parameters are changed. This 

provides significant computational savings when compared to previous eigenvalue 

MOR techniques, since a new reduced order model is not required each time a design 

parameter is changed. 

2. Implicit moment match techniques such as the Arnoldi algorithm are often used to 

improve the accuracy of the reduced order model. However, the traditional Arnoldi 

algorithm is only applicable to first order linear systems and can not directly include 
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arbitrary functions of frequency due to material and boundary conditions. In this 

work, an efficient algorithm to create parametric reduced order models of distributed 

electromagnetic systems that have arbitrary functions of frequency (due to material 

properties, boundary conditions, and delay elements) and design parameters. The 

proposed method is based on a multi-order Arnoldi algorithm used to implicitly 

calculate the moments with respect to frequency and design parameters, as well as the 

cross-moments. This procedure generates parametric reduced order models that are 

valid over the desired parameter range without the need to redo the reduction when 

design parameters are changed and provides more accurate reduced order systems 

when compared with traditional approaches such as Modified Gram Schmidt.  

3. This project develops an efficient technique to calculate sensitivities of microwave 

structures with respect to network design parameters. The proposed algorithm uses a 

parametric reduced order model to solve the original network and an adjoint variable 

method to calculate sensitivities. Important features of the proposed method are 1) 

that the solution of the original network as well as sensitivities with respect to any 

parameter is obtained from the solution of the reduced order model, and 2) a new 

reduced order model is not required each time design parameters are varied.     

 

 

 

 

 

 

 

 



 v

Acknowledgement 
 

This thesis could not be successful without the invaluable support of my supervisor 

Dr. Anestis Dounavis of the Department of Electrical and Computer Engineering, 

University of Western Ontario. I would like to express my gratitude towards him for 

introducing me to the area of model order reduction and imbibing in me the enthusiasm 

for research. His motivation, keen acumen in this field of research and friendly 

disposition has always had a positive effect on my work.  

I would also like to extend my thanks towards every faculty member, staff member 

and friend of the Department of Electrical and Computer Engineering, University of 

Western Ontario for their support and help at various stages of my thesis work. I would 

like to specially mention my colleagues Amir Beygi and Ehsan Rasekh and Sourajeet 

Roy for their invaluable advice. 

My final thoughts are with my parents, Abolghasem and Fatemeh. Without their 

encouragement and endless support, I would not have had the opportunity to complete 

this study. 

 

 
 
 
 
 



 vi

 
Contents 
 
Certificate of Examination………………………………………………………...……... ii
Abstract…………………………………………………………………...…..…………. iii
Acknowledgements……………………………………………………………...……….. v 
Contents…………………………………………………………………………………. vi 
List of Tables………………………………………………………………………...… viii 
List of Figures ……………………………………………………………...……..…….. ix 
Abbreviations……………………………………………………………...…………….. xi 
 
1. Introduction………………………………………..…………………………………. 1 
1.1. Background and Motivation………….………………………………………………1 
1.2. Objectives…………………………………..……………………………………….. 4 
1.3. Contributions……………….……………………………….………………………. 6 
1.4. Organization of Thesis………………………………………….…………………… 7 
 
2. Background and Literature Review……………………………………………….... 9 
2.1. Introduction……………………………………..…………………………………… 9 
2.2. Simulation of Microwave Systems…………………….……………………..……. 10 
2.2.1. FEM formulation of Microwave Systems………………..………………………. 11
2.3. Simulation Techniques based on MOR…………………………………….……… 15 
2.3.1. SVD Based MOR on Eigenproblems………….……………………….………... 16 
2.3.2. Moment Matching Based MOR………………………………………………..… 18 
2.3.3. Sensitivity Analysis Using MOR Techniques………………………………..….. 24 
 
3. Parameterized Model Order Reduction on Eigenvalue Equations……………… 27 
3.1. Introduction…………………………………………………………………..…….. 27 
3.2. Formulation of microwave system…………………………………………..……... 27
3.3. Parameterized Reduced Order Model………………………………………..…….. 28 
3.3.1. Parametric System Formulation……………………………………………..…… 28
3.3.2. Computation of Parameterized Reduced Order Model…………………..………. 29
3.3.3. Selecting the Order of the Reduced Order Model………………………..……… 34 
3.4. Numerical Examples……………………………………………………………..… 35 
3.4.1. Example I: Partially-Filled Rectangular Waveguide………………..…………… 35 
3.4.2. Example II: Microstrip Line…………………………………………..…………. 40 
 
4. Parameterized Model Order Reduction of Electromagnetic Systems using Multi-
Order Arnoldi………………………………………………………………………….. 45
4.1. Introduction…………………………………………………………………..…….. 45 
4.2. Parameterized Multi-Order Arnoldi for Systems with Arbitrary Functions…..…… 46 
4.2.1. Computation of Reduced Order Model………………………………………..…. 46
4.2.2. Selecting the Order of the Reduced Order Model……………………………..… 54 
4.3. Problem Formulation and Numerical Examples………………………………..….. 55 
4.3.1. Example I: RLC Network with Delay Elements………………………………..... 55
4.3.2. Example II: Cascade Inductive Irises…………………………………………..... 61 



 vii

 
5. Sensitivity Analysis of Microwave Circuits using Parameterized Model Order 
Reduction Techniques………………………………………………………………… 66 
5.1. Introduction…………………………………………………………………..……...66 
5.2. Formulation of Microwave System………………………………………………... 67 
5.2.1. Adjoint Variable Method using MOR…………………………………………… 67 
5.2.2. Sensitivity Analysis of S-Parameters…………………………………………….. 69 
5.3. Numerical Example………………………………………………………..………. 71 
 
6. Conclusion and Future Research………………………………………………….. 85 
6.1. Conclusion…………………………………………………………………..……... 85 
6.2. Suggestions for Future Research……………………………………………..……. 86 
 
References……………………………………………………………………………… 87 
Curriculum Vitae…………………………………………………………………….. 100 
 
 
 
 
 
 



 viii

 
 
 
 
 
 
List of Tables 
 
TABLE 3.1. …………………………………………………………………………..… 38
TABLE 3.2. ……………………………………………………………………..……… 44
TABLE 4.1. ……………………………………………………………………….……. 60
TABLE 4.2. ……………………………………………………………………..……… 65
TABLE 5.1. …………………………………………………………………………….. 83
 



 ix

 
List of Figures 
 
Fig.2.1. Block Arnoldi Algorithm for expansion about a complex frequency point 

0ss = ……………………………………………………………………………………. 22
Fig. 3.1.  Dielectric-loaded rectangular waveguide and the dispersion curves of the lowest 
four modes as εr ranges from 1.5 to 5 (a) mode 1 and physical geometry of waveguide (b) 
mode 4…………………………………………………………………………………... 34
Fig.3.2. Dispersion curves of the lowest five modes at the four extreme corners of 
parameter ranges for  εr  and d (a) At εr =1.5 and d=b  (b) At εr =1.5 and d=1.3b  (c) At εr 
=5 and d=b (d) At εr =5 and d=1.3b……………………...……………………………... 35
Fig. 3.3. Lossless microstrip line and the dispersion curves of the first two modes at the 
four extreme corners of parameter ranges for εr and w  (a) At w=1.27 mm for εr =5 and εr 
=10, (b) At w=1.65 mm for εr =5 and εr =10.  In all cases A=12.7 mm, d1=1.27 mm, 
d2=11.43 mm and t=0.127 mm…………………………………………………………. 40 
Fig. 3.4. Dispersion curves of the lowest twelve modes at the four extreme corners of 
parameter ranges for εr  and w  (a) At εr =5 and w=1.27 mm  (b) At εr =5 and w=1.65 mm  
(c) At εr =10 and w=1.27 mm  (d) At εr =10 and w=1.65 mm…………………………. 41 
Fig. 4.1.  Multi-Order Block Arnoldi Procedure including self-terms; with respect to 
frequency s, the design parameter λ and the cross-terms………………………………. 49 
Fig.4.2.  Multi-Order Block Arnoldi Procedure including self-terms; with respect to 
design parameters 0,, λλ KN and the cross-terms………………………………………… 50 
Fig. 4.3. RLC network including delay elements………………………………………. 55 
Fig. 4.4. Frequency responses of the system of example 1 at the far end point at the 
expansion point at T = °5 C……………………………………………………………... 56 
Fig. 4.5. Time domain response of the system of example 1 at the far end point, at (a) T = 

°− 40 C and (b) T = °50 C………………………………………………………………... 57 
Fig. 4.6. Geometry of the dual inductive iris filter……………………………………... 59 
Fig. 4.7. The magnitude of S21 as a function of frequency at the expansion point at the 
mid-range of design parameters rε andσ ……………………………………………….. 60 
Fig. 4.8. The magnitude of S21 as a function of frequency for different parameter values at 
the corner of design parameters; (a) rε =1 and σ =3.78e7, (b) rε =5 and σ =3.78e7, 
(c) rε =1 and σ =6.301e7 and (d) rε =5 and σ =6.301e7………………………………... 61 
Fig.5.1. WR90 waveguide with metallic iris at the input port. The rest of the waveguide is 
filled with dielectric material…………………………………………………………… 70 
Fig. 5.2a. S11 of the waveguiding structure at extreme corners of parameter ranges for rε and w (a) 

rε =1 and w=0.00386, (b) rε =1 and w=0.00586…………………………………..……………. 73 
Fig. 5.2b. 11S  of the waveguiding structure at extreme corners of parameter ranges for rε and w 
(a) rε =5 and w=0.00386 and (b) rε =5 and w=0.00586………………………………………… 74 
Fig. 5.3a. 11S∠  of the waveguiding structure at extreme corners of parameter ranges for rε and w 
(a) rε =1 and w=0.00386, (b) rε =1 and w=0.00586…………………………………………….. 75 
Fig. 5.3b. 11S∠  of the waveguiding structure at extreme corners of parameter ranges for rε and w 
(a) rε =5 and w=0.00386 and (b) rε =5 and w=0.00586………………………………………… 76 



 x

Fig. 5.4a. Sensitivities of 11S of the waveguiding structure with respect to rε at (a) rε =3, 
w=0.00386, (b) rε =3, w=0.00586………………………………………………………………. 77 
Fig. 5.4b. Sensitivities of 11S∠ of the waveguiding structure with respect to rε at (a) rε =3, 
w=0.00386, (b) rε =3, w=0.00586………………………………………………………………. 78 
Fig. 5.5a. Sensitivities of 11S of the waveguiding structure with respect to w at (a) rε =1, 
w=0.00486, (b) rε =5, w=0.00486………………………………………………………………. 79 
Fig. 5.5b. Sensitivities of 11S∠ of the waveguiding structure with respect to w at (a) rε =1, 
w=0.00486, (b) rε =5, w=0.00486………………………………………………………………. 80 
 



 xi

Abbreviations 
 
 

AWE Asymptotic Waveform Evaluation. 

CFH Complex Frequency Hopping. 

EM Electromagnetic. 

FEM Finite Element Method. 

LU Lower-upper matrix decomposition. 

MGS Modified Gram Schmidt. 

MOR Model Order Reduction. 

ODE Ordinary Differential Equation. 

PDE Partial Differential Equation. 

PEC Perfect Electric Conductor. 

PMC Perfect Magnetic Conductor. 

p.u.l. Per-unit-length. 

RF Radio Frequency. 

SVD Singular Value Decomposition. 

TEM Transverse electromagnetic. 

VLSI Very Large Scale Integration. 

 

 
 
 
 
 
 
 
 
 



 1

Chapter 1 

1. Introduction 

1.1. Background and Motivation 

The rapid advances of high frequency circuit technology have significantly affected the 

construction of different types of microwave, millimeter-wave, optical and VLSI devices 

commonly used in mobile communications, radio links, optical communications, and 

various other automotive electronics systems. Modern wireless systems involve 

electrically large electromagnetic (EM) structures such as the waveguides, antennas, 

microwave circuits, and optical components, which are very complex in both geometry 

and material properties [1]. Also technological advances in the circuit technology have 

significantly reduced the feature sizes of high-speed electronic circuits and increased the 

density of chips. This leads to the need for efficient analysis and design tools for 

simulating and modeling the behavior of such structures and also performing 

optimization on the parameters of such devices prior to costly prototype development. 

Moreover, circuit designers also demand that the simulation techniques be fast and run on 

relatively small computing platforms, such as standard desktop personal computers [1]. 

Hence at higher frequencies, integrated and microwave circuits require fast and accurate 

modeling and simulation techniques for the optimization and design space exploration 

problems. 

The design of electromagnetic devices such as wave-guiding structures, microstrip 

devices, filters, couplers, junctions and resonators are usually described by Partial 
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Differential Equations (PDE)s such as the vector wave equation derived by Maxwell’s 

equations and hence full wave techniques are required to accurately characterize these 

systems [2]-[6]. Numerical methods, such as the Finite Element Method (FEM), have 

become extensively popular for accurate full wave analysis of microwave waveguide 

devices [2]-[6]. The key advantages of the FEM are the accuracy, versatility and its 

ability to handle complex materials (including anisotropic, lossy, non-linear etc) and 

complicated geometries [2]-[4]. However it relies on the discretization of three 

dimensional space and thus results in very large systems of equations which are 

prohibitively expensive to solve. Furthermore, these equations are solved for a wide 

frequency band and at different design parameters. One way to address computational 

complexity of FEM is based on Model Order Reduction (MOR) techniques [7]-[19], 

[28]-[30]. MOR techniques have been developed to efficiently calculate the scattering 

parameters [11]–[12], [14]-[16], [19] and to perform fast wideband eigenmode analysis 

of electromagnetic devices [28]–[31]. These algorithms are able to capture the frequency 

response of large linear networks with low-order rational approximations. The underlying 

concept of MOR is that distributed networks usually have large number of poles, 

however, only a small percentage of these poles is dominant. Dominant poles are defined 

as poles that have significant influence in the behavior of the network. By capturing only 

the dominant poles, the CPU expense of the simulation can be significantly reduced 

without compromising accuracy. 

MOR techniques provide a mechanism to generate reduced order models from the 

detailed description of the original FEM network. This is achieved by using moment 

matching techniques, where the reduced order model matches the moments of the 
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original system to approximate the response with a low-order transfer function [12], [14]-

[17], [19], [21]-[30]. However, these numerical techniques all conserve the original 

system moments only with respect to frequency. While this provides a significant CPU 

cost advantage when performing a single frequency sweep, a new reduced order model is 

required each time a parameter is varied in the structure under study. This results in a 

significant overhead and reduced efficiency when performing common design steps such 

as optimization and design space exploration. Parameterized model order reduction 

techniques have been proposed in the circuit area to address such concerns which 

produce reduced order models that are functions of frequency or time as well as other 

design parameters [20]-[26]. However, parameterized MOR techniques have not been 

developed to solve microwave systems described by FEM equations.  

Reduced order models are accurate at the frequency point of expansion and less 

accurate away from the expansion point. To increase the accuracy of the reduced order 

model additional moments are required or multiple expansion points can be used [43]. An 

issue in developing efficient reduced order models is that as the number of moments 

increases, the moments become ill-conditioned due to the fact that the higher order 

moments converge to the largest eigenvalue of the system and are almost identical or 

parallel to each other  [43]-[44]. This minimizes the efficiency of the reduced order 

model. One approach to improve the conditioning of the moment generating process is to 

use implicit moment matching techniques such as the Arnoldi process [43]-[44]. The 

traditional Arnoldi algorithm is applicable to first order linear systems that have a linear 

dependency with respect to frequency. However, distributed microwave systems are 

described by a second order polynomial matrix and may contain arbitrary functions of 
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frequency due to material properties and boundary conditions. As a result, traditional 

Arnoldi algorithms are not directly applicable in calculating the moments of the reduced 

order system for microwave systems that exhibit arbitrary functions of frequency due to 

high frequency phenomena such as skin effect.    

MOR techniques have also been applied to perform sensitivity analysis of distributed 

interconnects and microwave systems [80], [89]-[90]. However, these MOR-sensitivity 

algorithms capture only the frequency moments of the original system. As a result, a new 

reduced order model is required each time a design parameter is modified, which can 

significantly increases the overhead of the optimization process.  

The next sections describe the objectives and contributions of this thesis. 

1.2. Objectives 

The objective of this thesis is to develop efficient modeling techniques for the EM 

structures and high frequency microwave circuit simulation. The proposed methodology 

uses parameterized MOR techniques to reduce the computational complexity of 

microwave systems described by the FEM formulation.  

The FEM model used for microwave systems is obtained from the vector wave 

equation for the electric field derived from Maxwell’s equation [27]. FEM discretization 

of the vector wave equation results in a very large system of equations that are inherently 

time consuming to solve. MOR techniques have been proposed in literature to 

significantly reduce the CPU time required to simulate these large scale FEM problems 

[11]–[12], [14]-[16], [19], [28]-[31]. However, the reduced order models do not capture 

the variance with respect to design parameters since only the frequency moments are 
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matched. As a result, a new reduced order model is required each time a design parameter 

is modified which increases the overhead of the optimization process. In this thesis, a 

methodology is proposed to form parametric reduced order models to perform fast 

wideband eigenmode analysis of waveguide structures and to efficiently solve the 

scattering parameters of microwave devices. The resulting reduced order models match 

the characteristics of the original system in frequency domain as well as the other design 

parameters within a range of interest.  

For the scattering problems, the general form of the resulting FEM equations may 

contain arbitrary functions of frequency due to material properties and boundary 

conditions. However, these equations are not directly compatible with the traditional 

Arnoldi algorithm, which relies on an implicit moment matching technique to obtain 

numerically well conditioned subspace from the moments of the original system. In this 

thesis the Arnoldi algorithm is extended to include arbitrary functions of frequency and 

design parameters. This approach yields more accurate reduced order models for 

complicated microwave systems that exhibit arbitrary functions of frequency and design 

parameters due to material properties and boundary conditions.    

Microwave designers must make proper trade-offs, often between conflicting design 

requirements to obtain the best possible performance. Sensitivity analysis provides 

designers with valuable information in terms of identifying critical components in the 

design and provides gradient information needed for optimization. To combat the 

computational burden of performing sensitivity analysis on large EM systems a 

parameterized MOR technique is presented. Such an approach is significantly more CPU 
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efficient in optimization since a new reduced model is not required each time a design 

parameter is modified.  

 

1.3. Contributions 

The main contributions of this thesis are: 

1. A parameterized model order reduction algorithm is developed to solve eigenvalue 

equations of electromagnetic systems. The model uses perturbation technique to obtain 

frequency moments as well as the moments with respect to other design parameters of 

interest. Next Singular Value Decomposition (SVD) is used to obtain a parameterized 

reduced order model which can be used to calculate the dispersion curves of the 

microwave devices. This procedure generates parametric reduced order models that are 

valid over the desired parameter range without the need to redo the reduction when 

design parameters are changed.  

2. An Arnoldi technique is developed for the reduction of finite element electromagnetic 

systems to model structures with frequency dependant materials, delay elements and 

boundary conditions, as traditional MOR techniques using the Arnoldi algorithm are only 

applicable to first order linear systems and can not directly include arbitrary functions of 

frequency. The algorithm uses multi-order Arnoldi method to implicitly calculate the 

moments of the original system with respect to frequency, design parameters and well as 

cross-moments. Numerical examples will illustrate that this approach yields more 

accurate parameterized reduced order models when compared to explicit moment match 

techniques such as Modified Gram Schmidt (MGS).  
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3. The parameterized MOR technique is developed to perform sensitivity analysis of 

electromagnetic devices. The proposed algorithm uses a parametric reduced order model 

to solve the original network and an adjoint variable method to calculate sensitivities. 

Important features of the developed algorithm are: 1) a new reduced order model is not 

required each time design parameters are varied, and 2) the solution of the original 

network as well as sensitivities with respect to any parameter is obtained from the 

solution of the reduced order model. 

1.4. Organization of Thesis 

The organization of the thesis is as follows. Chapter 2 begins by reviewing the FEM 

based full wave analysis of microwave systems. From this discussion, MOR techniques 

are examined to reduce the computational difficulties of large scale FEM systems. In 

Chapter 3, a parameterized MOR technique for eigenvalue analysis of electromagnetic 

structures is presented. The development of a perturbation method and the SVD 

technique is described to create parametric reduced order models. Numerical examples 

are presented to demonstrate the efficiency of the proposed eigenvalue analysis 

algorithm. Chapter 4 describes the details of a multi-order Arnoldi technique for the 

reduction of finite element electromagnetic systems to include the effect of frequency 

dependant materials, delay elements and boundary conditions in the reduced order model. 

This chapter is concluded by presenting some numerical examples to show the efficiency 

of the algorithm. In Chapter 5, the parameterized MOR technique is developed to 

calculate the sensitivities of wave-guiding structures and the adjoint variable method 
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using parameterized MOR is described. A numerical example is presented to illustrate the 

validity of the algorithm. Chapter 6 presents a summary and suggestions for future works.  

 



 9

Chapter 2 

2. Background and Literature Review 

2.1. Introduction 

The finite-element method (FEM) is one of the most used numerical techniques for the 

analysis and design of microwave and optical wave guiding structures. While the FEM 

provides a high degree of versatility and accuracy, it relies on the discretization of 2-D or 

3-D space and thus results in very large systems of equations which are computationally 

expensive to solve. If the solution over a broad frequency spectrum is required, then the 

analysis must be repeated at many frequency points. This problem is further exacerbated 

when one considers the typical design process which includes optimization and design 

space exploration and thus requires repeated simulation of the same problem for different 

parameter values.  

One approach to minimize the computational complexity of FEM is based on model-

order reduction (MOR) [20], [28]-[31], [47]-[48]. These techniques provide a mechanism 

to generate reduced order models from the detailed description of the original FEM 

network. MOR techniques are able to conserve the moments of the original network and 

approximate the response with a low-order transfer functions. The goal of this chapter is 

to review the FEM formulation and MOR techniques that are used to model high speed 

VLSI interconnects and microwave circuits. 

This organization of this chapter is as follows. The finite element formulation for the 

analysis microwave circuits is described in Section 2.2. This formulation leads to solving 
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a generalized eigenvalue problem or algebraic set of equations. Section 2.3 reviews MOR 

techniques that are used to reduce the computational complexity of the FEM formulation.  

2.2. Simulation of Microwave Systems 

Microwave devices such as antennas, waveguides, filters, couplers, junctions and 

microstrip devices are usually very complicated in geometrical structure and material 

properties. These devices are governed by the Maxwell’s equations which can be 

expressed in the form of PDEs. The mathematical difficulties inherent in analytical 

solution of Maxwell’s equation, e.g. geometries with various cross-sections of 

conventional microwave devices, and the use of anisotropic, nonlinear, and lossy 

materials, make the analysis of such devices considerably complicated. As the operating 

frequencies increase, full wave methods which directly solve Maxwell’s equation are 

essential in order to accurately predict high frequency electromagnetic behaviour of 

microwave devices. The FEM technique has now been a very popular approach for full 

wave electromagnetic modeling of high frequency microwave devices due to its 

accuracy, versatility and flexibility. However, the resulting system of equations after the 

FEM discretization is typically very large and cumbersome to solve. This section briefly 

reviews the FEM formulation for the microwave systems and MOR techniques to be used 

to reduce the computational complexities of the FEM analysis.  
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2.2.1. FEM formulation of Microwave Systems 

Considering a general waveguide whose conductors can be lossy and whose dielectrics 

can be inhomogeneous and anisotropic, the FEM formulation begins with the 

discretization of the electric field vector wave equation [27] 

[ ]( ) [ ] 0~21 =⋅−×∇⋅×∇ − EE rr k εµ                                           (2.1) 

where 00
22 µεω=k . The variables 0ε  and 0µ  are the permittivity and permeability of free 

space; [ ]rµ  and [ ] [ ] [ ] )/(~
0ωεσεε jrr −=  are the relative permittivity and permeability 

coefficients, respectively; [ ]σ  is the conductivity; ω  is the angular frequency and E is 

the electric field vector. For waveguide problems, on the conducting surfaces, the electric 

field satisfies the Dirichlet boundary condition on perfect electric conductor (PEC) as 

0ˆ =×En                                                           (2.2) 

If symmetry can be used to reduce the size of the original problem then Neumann 

boundary condition on perfect magnetic conductor (PMC) is applied  

[ ] 0))((ˆ 1 =×∇⋅× − Ern µ                                                (2.3) 

By a variational formulation, the functional related to (2.1) and the boundary conditions 

can be expressed as [27], [30] 

[ ]{
[ ] } Ω∇+⋅⋅∇−−+

−⋅⋅×∇⋅×∇=

−

Ω

−
∫∫

dµ

k-)()(µ
2
1)F(

t
1

rtt

rtrt
2
0

1
rz

)()(

)(

ztzt

zztttt

EEEE

EEEEEEE

γγ

εε
         (2.4) 
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where βαγ j+= is the complex propagation constant and Ω  the cross section of the 

waveguide. Considering the following transformations tt Ee γ= and zz Ee γ=  along with 

combining the basis functions, the following formulation can be obtained 

eeF TT MeKeE 2)( γ−=                                              (2.5) 

where 

[ ] }{∫∫Ω
− Ω⋅⋅×∇⋅×∇= dk-)()(µe trtt

2
0tt

1
rz

T eeeeKe ε  

{ [ ] }∫∫Ω
− Ω−∇+⋅⋅∇+= dkµe ztrzztt

1
rtztt

T eeeeeeMe ε2
0)()(  

where e is a column vector containing nodal and edge variables related to field 

distribution. Applying Ritz method to (2.5) result in a generalized eigenvalue problem 

ee MK 2γ=                                                        (2.6) 

Finally the frequency dependant eigen problem of (2.6) can rewritten as 

0)( =⋅− (k)(k)(k)(k) EBA λ                                            (2.7)            

where 2γλ =  and E are the eigenvalues and eigenvectors, respectively and k is the 

wavenumber. The matrices A and B are functions of the wave number k which can be 

expressed as      

2
2

10

2
2

10

BBBB

AAAA

kk(k)

kk(k)

++=

++=
                                            (2.8) 
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To perform modal analysis of the EM structures the generalized eigenvalue problem 

of (2.7) has to be solved. Such calculations are very time consuming, since the FEM 

formulation of (2.7) often leads to a very large system of equations which needs to be 

solved over a broad frequency spectrum.  

For the case of scattering problems, the functional for boundary value problem 

defined in (2.1) in accordance with the general variational principle can also be 

represented in the presence of excitation incE as [27] 

[ ] [ ][ ]

∑ ∫∫

∫∫∫

=
Γ

−

⎭
⎬
⎫

⎩
⎨
⎧ ⋅×⋅×+

⋅−×∇⋅×∇=

p

i

V
*

r
21

i
dS2j-)n()n(

2
j

dVεk)()(µ
2
1)F(

1
]ˆˆ[

~

incEEEE

EEEEE

ββ
                         (2.9) 

where βαγ j+= is the complex propagation constant; V denotes the volume of the 

structure; S denotes the surface enclosing V and n̂  is outward normal to S and p is the 

total number of ports. The FEM discretization of (2.9) when there is finite conductivity 

using vector basis functions results a matrix equation as 

beAAAA ββ jjss s =+++ )( 3
2

210                                        (2.10) 

where ωjs =  is the angular frequency, β  is the propagation constant and is a function of 

frequency, the matrices 3210 ,,, AAAA and b are given by 

∫∫∫ ×∇⋅×∇=
V jiij dVNNA
µ
1

,0                                           (2.11) 

∫∫∫ ⋅=
V jiij dVNNA σ,1                                                 (2.12) 
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 ∫∫∫ ⋅=
V jiij dVNNA ε,2                                                (2.13) 

∫∫∫ ⋅=
V jiij dVSSA ,3                                                 (2.14) 

dSninc
S ii )ˆ(2 ×⋅−= ∫∫ ESb                                             (2.15) 

where Si is the vector basis functions and ii n NS ×= ˆ  where Ni are the vector basis 

functions that have unit tangential component at edge i, NN×ℜ∈0A , 

NN×ℜ∈1A , NN×ℜ∈2A and NN×ℜ∈3A are the sparse matrices obtained through the FEM 

formulation. N
s C∈e is the vector of unknown variables in the approximation of E, 

Nℜ∈b in the vector of the incident field and N is the total number of variables in the 

FEM formulation. In case of no finite conductivity (2.10) can be simplified as  

beAAA kkk k =++ )( 2
210                                              (2.16) 

where N
k C∈e in the vector of unknowns and βjk = . The matrices 10 , AA and 2A are as 

follows 

2
00

2

00 )( AAA
µε
tk

−=                                                   (2.17) 

31 AA =                                                              (2.18) 

2
00

0 )1( AA
µε

=                                                      (2.19) 

Equations (2.10) and (2.14) can be rewritten in a general linear network form as   
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                             )()()( sss bXY =⋅                                                (2.20) 

 
where )(sY NNC ×∈  is the transfer function of the system; )(sX NC∈   is the vector of 

unknown variables; )(sb NC∈  represents the excitation of the network; N  is the number 

of unknown variables in )(sX  and s is the angular frequency. Complexity of such system 

of equations often leads to large system matrices in (2.20) and as a result simulation of 

which is computationally expensive.  

One way to combat such computational complexity of FEM solutions is to use MOR 

techniques. In the following sections, the MOR algorithms used to perform eigen-

analysis and calculate the scattering parameters of microwave systems are briefly 

reviewed. In addition, MOR techniques to calculate sensitivities are also described.  

   

2.3. Simulation Techniques based on MOR 

To efficiently solve the eigenvalue problem of (2.7), MOR techniques based on hyper-

perturbation Taylor series expansion [28]-[30], asymptotic waveform evaluation [8]-[9] 

and singular value decomposition [29]-[30] have been proposed. To obtain reduced order 

models for (2.20), MOR techniques are either based on explicit moment matching based 

on direct Padé approximants [32]-[34] or implicit moment matching based on projecting 

large matrices on its dominant eigenspace [30], [36]-[39], [42]. The following sections 

briefly reviews MOR techniques to efficiently solve the system equations in (2.7) and 

(2.20). 
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2.3.1. SVD Based MOR for Eigenvalue Problems 

Modal analysis of the EM structures corresponds to solving a generalized eigenvalue 

problem of (2.7). One approach to derive a reduced order model for (2.7) is based on 

using modified perturbation theory and singular value decomposition [28]-[30]. This 

approach expands the eigenvectors (k)E  and eigenvalues (k)λ  of (2.7) into a Taylor 

series at 0kk =  as       

∑
=

−=
M

0i

i
i kk(k) )( 0EE                                                (2.21) 

∑
=

−=
M

0i

i
i kk)h(k, )( 0λλ                                              (2.22) 

Substituting (2.8), (2.21)-(2.22) into (2.7) and matching coefficients of corresponding 

powers of )( 0kk −  yields the following recursive relationship 

01010011000 )()( EBAEBEBA λλλ −−=−  

)()(
)()(

011010202

11010022000

EBEBEA
EBAEBEBA

++−−
−−=−
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λλλ

B
 

M  

 
∑∑∑

−

=
−−

−

==
− ⋅+−

−=−
),2min(

0

1

1

),2min(

1
0

00000

)(

)(
iM

j
jiMj

M

i
i

M

i
iMii

MM

EBEBA

EBEBA

λλ

λλ
                        (2.23) 

To obtain the Taylor series coefficients of (2.21)-(2.22) from (2.23), equation (2.7) must 

first be solved at 0k  to obtain the eigenvalue 0λ  and corresponding eigenvector 0E . This 
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can be done by using the Lanczos algorithm as reported in [28], [30]. Since 0E  is an 

eigenvector of (2.7), then the following relationship holds true 0)( 000
H
0 =− BAE λ  [28]-

[30], where the superscript H denotes the Hermitian of the matrix. Therefore, by 

multiplying the first equation of (2.23) by H
0E  will make the left-hand side disappear and 

1λ  can be found. With the knowledge of 1λ  the first equation of (2.23) can be used to 

find 1E . This process is repeated recursively to find the higher order polynomial 

coefficients iλ  and iE , where ],...,1,0[ Mi = . Once all the required Taylor series 

coefficients with respect to k are evaluated, the subspace K is constructed as 

[ ]MEEEK ,...,, 10= . As the number of Taylor coefficients increase, the matrix K becomes 

ill-conditioned. As a result, to obtain a more accurate reduced order system, the matrix K   

is converted into orthonormal matrix Q using singular value decomposition [28]-[30]. 

The reduced order model is obtained by a change of variables as 

(k)(k) EQE ˆ=                                                     (2.24) 

Substituting (2.24) into (2.7) and pre-multiplying by HQ  yields 

0ˆ)ˆˆ( =⋅− (k)(k)(k)(k) EBA λ                                        (2.25) 

where 

QAQA (k)(k) H=ˆ  

QBQB (k)(k) H=⋅ˆ                                                (2.26) 
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The size of the reduced order model depends on the order M, which is very small 

compared to the size of the original system. Once the reduced system of (2.25) is 

obtained, it can be applied to perform fast frequency sweeps of electromagnetic 

eigenvalue problems. However if one decides to change a parameter in the system, the 

reduced order model of (2.25) is no longer valid and a new reduced order model needs to 

be calculated. This is due to the fact that the moments are captured only with respect to 

frequency.  

2.3.2. Moment Matching Based MOR 

For the solution of (2.20), MOR techniques can be broadly classified into two main 

categories: approaches based on explicit moment matching based on direct Padé 

approximants and implicit moment matching based on projecting large matrices on its 

dominant eigenspace. 

 Explicit moment matching techniques calculate the actual moments of (2.10) and 

(2.16) to obtain a reduced order system. However, these methods are limited to low order 

approximations, due to the fact that the higher order moments converge to the largest 

eigenvalue of the system and are almost identical or parallel to each other [15]-[16], [43]. 

As a result, the additional higher order moments add no new information to the reduced 

order model. On the other hand, Krylov subspace methods based on congruent 

transformations capture the system moments implicitly by using Arnoldi process [44] to 

provide high order approximations. A general approach used to apply the Arnoldi process 

for polynomial matrix equations in (2.16) is to convert it to a linear system by using extra 

state variables  as [12], [14]-[19], [46] as 
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BXGC =+ )(s                                               (2.27) 

where 
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0

1

0

1
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

=
0A
IA

C
0A
IA

G NN  

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
′

=
0
b

B
e
e
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k                                             (2.28) 

where NN
N

×ℜ∈I is the identity matrix and N
x C∈′e is the vector of extra unknown 

variables. The system of equations (2.27) has linear dependency with respect to s, so that 

the Arnoldi algorithm is directly applicable.  

 To obtain a reduced order model the moments of the network need to be 

evaluated. To illustrate this concept, for both explicit and implicit moment matching 

techniques, consider a single-input single-output linear system and let H(s) be the transfer 

function. Using a Maclaurin series expansion, H(s) can be expressed as 

.....smsmmH(s) 2
21o +++≈                                        (2.29) 

where mi is referred to as the ith moment of H(s). To construct a reduced-order model 

using explicit moment matching techniques such as Asymptotic Waveform Evaluation 

(AWE), the series expansion of (2.29) is converted to a rational function using Padé ap-

proximation as 

N
N1

L
L101LN

1LN
2

21o sb...sb1
sa...saa

s...msmsmmH(s)
+++
+++

≈+++≈ −+
−+          (2.30) 
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The coefficients ai and bi are obtained by cross multiplying the denominator of (2.28) and 

equating similar powers of s. In general the system of equations can be represented as  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+

+

−

−++

++−+−

+−+−

NL

2L

1L

1

1N

N

1LN2LL

1L3NL2NL

L2NL1NL

m

m
m

b

b
b

mmm

mmm
mmm

MM

K

MMM

L

L

 

∑
=

−+=

+=
=

N)min(L,

1i
iLiLL

0111

00

mbma

mbma
ma

L                                           (2.31) 

The moments of (2.27) can be calculate by replacing X with a Maclaurin series 

expansion, gives 

BMMMGC =++++ ....))(( 2
210 sss                                    (2.32) 

Equating the coefficients of similar powers of s on both sides yields 

0GMCM

0GMCM
0GMCM

BGM

=+

=+
=+

=

− kk 1

21
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          (2.33) 

Substituting CGA -1−= and BGR -1= into (2.33) yields 

1

0

−=
=

kk AMM
RM

                                 (2.34) 
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Equation (2.34) yields a closed form relationship for the computation of the moments Mk. 

As shown in (2.33), only one matrix inversion is required to calculate the moments. As a 

result the main computational cost to calculate the moments is one lower-upper 

decomposition for each expansion point and one forward-backward substitution for each 

moment. This significantly reduces the simulation time of linear circuits since the 

original system requires many matrix inversions to solve the system at different 

frequency points.  

Explicit moment matching techniques based on AWE is limited to a low order 

rational approximation, since (2.31) becomes an ill-conditioned matrix as the number of 

moments increases. In addition, Padé approximants may produce unstable poles and 

provide no estimates for error bounds. To address some of the difficulties with single 

Padé expansition complex frequency hopping (CFH) has been developed which relies on 

multiple expansion points to construct a unified rational function. However in both AWE 

and CFH there is no guarantee that the reduced order model is passive [43]. 

 Implicit moment matching techniques use Krylov subspace approaches to project 

large matrices on its dominant eigenspace. The moments calculated using (2.33) are used 

to form the moment matrix K as 

[ ] [ ]qRARARARMMMMK ........ 2
210 ==       (2.35) 

The matrix K becomes an ill-conditioned matrix as the number of moments increase [43]. 

To obtain more accurate reduced order models, implicit moment matching techniques 

such as the Arnoldi algorithm are used to convert the matrix K  into an orthonormal 

matrix Q as  
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IQQKQ == Tcolspcolsp )()(    (2.36) 

where both matrices K and Q span the same column space and I is the identity matrix. An 

orthonormal matrix satisfies the following conditions: 

[ ]q210 qqqqQ L=  

nm ≠∀=

=

;0
1

nm

i

qq
q

    (2.37) 

The reduced-order system is obtained by a change of variables in (2.27), 

 X̂QX =      (2.38) 

where  X̂ contains the variables of the reduced order system. The reduced order system is 

obtained by congruent transformation by substituting (2.38) into (2.27) and pre-

multiplying by QT yields 

BXGC ˆˆ)ˆˆ( =+s              (2.39) 

where 

BQBCQQCGQQG TTT === ˆˆˆ               (2.40) 

The orthonormal matrix Q is generated using the Arnoldi algorithm as described in 

Fig. 2.1, where “orthonormalize” refers to the Modified Gram-Schmidt (MGS) 

orthonormalization procedure. The basic idea of the Arnoldi algorithm is to exploit the 

relationship between successive moments of (2.35) which forms a Krylov subspace. 
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While the Arnoldi algorithm yields numerically more accurate results when compare to 

explicitly calculating the moments, the Arnoldi algorithm is not directly applicable for 

microwave systems that have arbitrary functions of frequency due to material properties 

and boundary conditions. This is due to the fact the relationship between successive 

moments does not satisfy the pattern of (2.35). Arnoldi algorithms have been extended to 

second order polynomial systems as well as multi-order polynomial systems [56]-[57], 

[60]-[61]. Approaches to model distributed systems with arbitrary functions of frequency 

are either based on rational curve fitting and applying multiorder Arnoldi [57] or to treat 

the arbitrary frequency functions as separate variables and apply multidimensional 

subspace methods [24]-[25], [47]. 
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Fig.2.1. Block Arnoldi Algorithm for expansion about a complex frequency point 0ss = . 
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2.3.3. Sensitivity Analysis Using MOR Techniques  

Sensitivity analysis is important to determine which circuit parameters significantly 

influence the response of the system. In addition, sensitivity analysis provides gradient 

information needed for optimization. Among the techniques used to calculate 

sensitivities, the adjoint method has been found to be the most efficient [86], [92]. The 

following section briefly reviews the adjoint method using model order reduction 

techniques. 

 Consider the linear network described by (2.20) in the frequency domain. Let λ  

be a design parameter of the network. The adjoint or transpose method calculates 

sensitivity of a specific output with respect to the circuit parameters. Let the output 

variable be as following 

Xd T=Φ                                                     (2.41) 

where Φ is the scaler variable of interest, d is a constant vector that selects the output of 

interest and the superscript T denotes the transpose of matrix. Differentiating (2.20) and 

(2.41) with respect to parameterλ yields 

λλ d
d

d
d T Xd=
Φ                                                  (2.42) 

⎟
⎠
⎞

⎜
⎝
⎛ −−=

λλλ d
d

d
d

d
d bXAYX 1-                                         (2.43) 

Substituting (2.43) into (2.42) yields 
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( ) ⎟
⎠
⎞

⎜
⎝
⎛ −=

Φ
λλλ d

d
d
d

d
d Ta bXAX                                        (2.44) 

where  aX  is the solution of the adjoint network defined as 

dXAT −=a                                                  (2.45) 

Note, that the solution of the adjoint variable network does not require additional lower-

upper decompositions to invert TA  since the lower-upper matrices are known from the 

solution of (2.20). This leads to significant computational savings, since the sensitivities 

with respect to all design parameters can be obtained with only one forward-backward 

substitution to solve (2.44). 

The find magnitude and phase values of the sensitivities Let the response of the 

system be expressed in terms of the phase θ  and magnitude || Φ as 

θje|| Φ=Φ                                                   (2.46) 

The sensitivity of the magnitude or absolute value of the function is defined as λdd /Φ . 

The value of λdd /Φ  is referred to the absolute sensitivity. To calculate λdd /Φ  and 

λθ dd / , (2.46) is expressed as  

θjlnln +Φ=Φ ||                                          (2.47) 

Differentiating (2.47)Error! Reference source not found. with respect to a circuit 

parameterλ , 

λ
θ

λλ d
dj

d
d

d
d

+
Φ

Φ
=

Φ
Φ

||
||

11                                     (2.48) 

The real and imaginary part of (2.48) can be split into two equations as 
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⎟
⎠
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d
d 1Re||||                                       (2.49) 

⎟
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⎜
⎝
⎛ Φ
Φ

=
λλ

θ
d
d

d
d 1Im                                            (2.50) 

where “Re” and “Im” denote the real and imaginary parts. Equations (2.49) and (2.50) 

calculate the absolute and phase sensitivities, respectively. 

 Recently MOR techniques have been used to perform sensitivity analysis of 

distributed interconnects and microwave circuits [80], [89]-[90]. The methodologies of 

[80] and [89] calculate moments for (2.20) and (2.45), to obtain reduced order models for 

both the original and adjoint networks. In [90], the sensitivities are derived from the 

reduced order model of the original network by finding the derivative of the orthogonal 

basis. However, all these MOR-sensitivity algorithms conserve the original system 

moments only with respect to frequency. As a result, a new reduced order system is 

required each time a design parameter is changed.  
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Chapter 3 
 
3. Parameterized Model Order Reduction 
on Eigenvalue Equations 
 
 
3.1. Introduction  

In this work, a parameterized model reduction technique is developed to perform 

eigenanalysis of waveguiding structures. The proposed methodology uses modified 

perturbation theory to calculate a multidimensional Taylor series and singular value 

decomposition to perform reduction directly on the FEM eigenvalue equations. This 

procedure results in a parameterized reduced order model that is valid over a user defined 

range of design parameter values (such as material properties, geometrical parameters). 

Such an approach is significantly more CPU efficient in optimization and design space 

exploration problems since a new reduced model is not required when a design parameter 

is modified. Numerical examples are presented to illustrate the validity of the proposed 

technique.  

 This chapter is organized as follows. Section 3.2 describes the eigenvalue 

problem derived from the FEM formulation of the vector wave equations. The proposed 

parameterized model reduction technique is described in section 3.3. Numerical examples 

are provided is section 3.4.   

3.2. Formulation of microwave system 

Applying Galerkin’s procedure to the vector wave equation of (2.1) yields a linear sparse 
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eigenvalue problem of (2.7). To derive a parametric reduced order model for (2.7), the 

system is expressed as a function of the frequency variable k and other design parameters 

as  

0)( =⋅− )h(k,)h(k,)h(k,)h(k, EBA λ                                    (3.1) 

where  

)h(k)h(k)h()(k,

)h(k)h(k)h()h(k,

2
2

10

2
2

10

BBBB

AAAA

++=

++=

λ

                                 (3.2) 

and [ ]nhhhh ....., 21=  are the design parameters of interest in the system.   

 

3.3. Parameterized Reduced Order Model 

3.3.1. Parametric System Formulation 

The design parameters of (3.1) can be material properties such as the permittivity, 

permeability, and conductivity whose dependencies in the system are known directly. 

However, in certain cases, the dependence on parameters (such as geometrical variations) 

in the electromagnetic model is not known explicitly. In order to include geometrical 

design parameters in the reduced order model, a polynomial fitting algorithm for 

parametric model reduction is used [24], [46]-[47]. 

The polynomial fitting based approach samples the matrices at different points in the 

parameter space, and fits the entries with polynomials. This technique requires that the 

discretized mesh for all sample points in the parameter space is identical (i.e., they have 
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the same number of degrees of freedom and their corresponding locations in the system 

matrices are same). For a given matrix ).....( 10 nhhA , the polynomial fit ).....( 10 nhhA′ is 

ji
ji

i
i

iin hhhhh ,0
,

j00010 ).....( AAAA ′+′+′=′ ∑∑  

L+′+ ∑ kji
kji

kji hhh ,,0
,,

A   nkji ,,1,, K=                                (3.3) 

Once the system matrices are calculated as a function of design parameters using a 

polynomial fit, they are substituted in (3.1) to derive a parameterized reduced order 

model. In Section 3.4, a step by step approach of generating the reduced order model 

using the polynomial fitting technique is illustrated.  

 

3.3.2. Computation of Parameterized Reduced Order Model 

The computation of the parameterized reduced order model expands the quantities of 

(3.1) into a multidimensional Taylor series expansion with respect to the wave number k 

and the design parameters h . For ease of presentation and without the loss of generality, 

the method is described for the case when there is only one design parameter [ ]hh = . The 

eigenvectors )h(k,E  and eigenvalues )h(k,λ  of (3.1) are expanded into a 

multidimensional Taylor series at 0kk =  and 0hh = , expressed as       
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where the first and second summation terms of (3.4) and (3.5) correspond to the self-

terms with respect to k and h, respectively, and the double summation terms of (3.4) and 

(3.5) correspond to the cross terms. The matrices )h(k,A  and )h(k,B  of (3.1) are also 

written as multidimensional series as 
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When the design parameter h represents a material property such as the permittivity, 

permeability, or conductivity, the dependence on the design parameter in the system is 

known and the matrices ijA  and ijB  are determined directly form the FEM formulation. 

For the case when the dependency of the design parameter h is not known explicitly (i.e. 

such as geometrical variations), the matrices of (3.6) and (3.7) are obtained using a 

polynomial fitting algorithm for parametric model reduction as described in section 3.4.1. 

The Taylor series coefficients of (3.4) and (3.5) are obtained following a procedure 
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similar to [28] and [30], except in the proposed work it is extended to include design 

parameter variations. Substituting (3.4)-(3.7) into (3.1) and matching coefficients of 

corresponding powers of )( 0kk −  yields the following recursive relationship 
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Similarly, matching coefficients of corresponding powers of )( 0hh −  yields 
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The cross-terms NM hhkk )()( 00 −− , are also computed by matching coefficients of 
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similar powers as  

∑ ∑ ∑∑∑∑
=

−

=

−

=
−−−−

== =
−− ⋅=

M

i

iM

p

jN

q
qjNpiMpq

N

j
ij

M

i

N

j
jNiMij

0 0 0
,

00 0
, EBEA λ           for 

⎩
⎨
⎧

≥
≥

1
1

N
M

         (3.10) 

To obtain the Taylor series coefficients of (3.4)-(3.5) from (3.8)-(3.10), equation (3.1) 

must first be solved at 0k  and 0h  to obtain the eigenvalue 00λ  and corresponding 

eigenvector 00E . This can be done by using the Lanczos algorithm as reported in [28]- 

[30]. Since 00E  is an eigenvector of (3.1), then the following relationship holds true 

0)( 000000
H
00 =− BAE λ  [28]- [30], where the superscript H denotes the Hermitian of the 

matrix. Therefore, by multiplying the first equation of (3.8) and (3.9) by H
00E  will make 

the left-hand side disappear and 10λ  and 01λ  can be found. With the knowledge of 10λ  

and 01λ  the first equation of (3.8) and (3.9) can be used to find 10E  and 01E , 

respectively. This process is repeated recursively to find the higher order polynomial 

coefficients 0iλ , 0iE , j0λ  and j0E ,  where ],...,1,0[ Mi =  and ],...,1,0[ Nj = . To find the 

cross-terms ijλ  and ijE  using (3.10) a similar procedure is followed. The equations of 

(3.10) are arranged in a form similar to (3.8) and (3.9) where the left hand side is 

expressed as ijEBA )( 000000 λ−  and the right hand side contains remaining terms. By 

multiplying (3.10) by H
00E  will make the ijE  term disappear and the corresponding ijλ  

can be determined. With the knowledge of ijλ , equation (3.10) can be used to determine 

the corresponding eigenvector ijE . This process is repeated to find the higher order cross-

terms.    

Once all the required Taylor series coefficients with respect to k and h are evaluated, 
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the multidimensional subspace K is constructed as  

[ ]Xhk MMMK =                                              (3.11) 

where ],...,,[ 01000 M
k EEEM =  contains the series coefficients corresponding to powers 

of )( 0kk − , ],...,[ 001 N
h EEM =  contains the series coefficients corresponding to powers 

of  )( 0hh −  and ,...],...,[ 11 ij
X EEM =  contains the cross-term coefficients. For the case 

when a reduced order model with multiple parameters is required, the multidimensional 

subspace K becomes 

[ ]Xhhk n1 MMMMK ...=                                     (3.12) 

where ihM  contains the series coefficients corresponding to the self-terms of parameter 

hi. Since the matrix K is generally ill-conditioned, it is converted into an orthonormal 

matrix Q using singular value decomposition as in [29]-[30]. The parametric reduced 

order model is obtained by a change of variables as 

)h(k,)h(k, EQE ˆ=                                            (3.13) 

where q)h(k, ℜ∈Ê ; x
n
i hk qqqq

i
++= ∑ =1 ; kq , 

ihq  and xq  are the number of columns in 

kM , ihM and XM , respectively. Substituting (3.13) into (3.1) and pre-multiplying by 

HQ  yields 

0ˆ)ˆˆ( =⋅− )h(k,)h(k,)h(k,)h(k, EBA λ                                   (3.14) 

where 
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QAQA )h(k,)h(k, H=ˆ  

QBQB )h(k,)h(k, H=⋅ˆ                                           (3.15) 

The size of the parameterized reduced order model depends on the order q which is very 

small compared to the size of the original system. Once the reduced system of (3.14) is 

obtained, it can be used to perform fast frequency sweeps of electromagnetic eigenvalue 

problems that are valid within a user defined range of design parameters and frequency.    

 

3.3.3. Selecting the Order of the Reduced Order Model 

The accuracy of the parameterized reduced order model can be verified by examining 

the residual error which is defined as [28]-[30], 

)h(k,

)h(k,)h(k,)h(k,)h(k, 

E

EBA ⋅−
=

)( λ
ε                              (3.16) 

where )h(k,λ  and )h(k,E  are the approximate solutions given by (3.13). If the residual 

error ε  is below a given tolerance for the specified ranges of design parameters and 

frequency, then the reduced order model is assumed to be accurate and the reduction 

process is terminated. Otherwise additional Taylor series coefficients or multiple 

expansion points can be used in (3.13) to improve the accuracy of the reduced order 

system.   
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3.4. Numerical Examples 

In this section, numerical examples of a dielectric loaded rectangular waveguide and 

a microstrip line are presented. All computations are performed on a Pentium 4 (2.8GHz) 

PC with 2048 MB memory. The developed algorithm was programmed in MATLAB 

using sptarn function to solve the generalized eigenvalue problem [49].  

 

3.4.1. Example I: Partially-Filled Rectangular Waveguide 

A partially dielectric filled rectangular waveguide proposed in [29], is shown in Fig. 

3.1a. The waveguide structure is discretized using Lagrange-quadratic elements [27] and 

the total number of degrees of freedom in the original system of (3.1) is equal to 1978. 

The bandwidth of interest for this problem ranges from normalized frequency bk0 =1.5 to 

6. Two parameterized reduced order models are generated to study the dispersion curves 

of the waveguide. The first reduced system models the variation with respect to 

frequency k and the relative dielectric permittivity which ranges from rε =1.5 to 5. The 

second reduced system includes an additional design parameter which represents the 

boundary position of the dielectric medium and ranges from d=b to 1.3b (labeled in Fig. 

3.1a).  

To obtain the first parameterized reduced order model, the matrices iA  and iB  of 
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Fig. 3.1.  Dielectric-loaded rectangular waveguide and the dispersion curves of the lowest four 
modes as εr ranges from 1.5 to 5 (a) mode 1 and physical geometry of waveguide (b) mode 4. 
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(3.6) where ]2,1,0[=i  have a linear dependency with respect to rε  and are expressed as  

)d((d)d),(

)d((d)d),(

iriri

iriri

10

10

BBB

AAA

εε

εε

+=

+=
                                         (3.17) 

kob

β/
k o

Proposed
FEM system / Analytic solution 

kob

β/
k o

Proposed
FEM system / Analytic solution 

 
                                                    (a)                                                                                               (b) 

kob

Proposed
FEM system / Analytic solution 

β/
k o

β/
k o

kob

Proposed
FEM system / Analytic solution 

 
                                                     (c)                                                                                              (d) 

 
 
Fig. 3.2. Dispersion curves of the lowest five modes at the four extreme corners of parameter ranges for  εr  and d 
(a) At εr =1.5 and d=b  (b) At εr =1.5 and d=1.3b  (c) At εr =5 and d=b (d) At εr =5 and d=1.3b. 
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and the boundary position of the dielectric medium is set to d=b. To derive compact 

parametric reduced order models with residual error of less than 510−<ε for the first four 

modes, two expansion points were selected at normalized frequency bk0 =2 and rε  =3.25 

and at bk0 =4.5 and rε  =3.25. Each expansion point used 7 Taylor coefficients for k, 5 

Taylor coefficients for rε  and 4 cross-terms resulting in a reduced order system of size 

32x32. Fig. 3.1 shows the dispersion curves for the first and forth modes as a function of 

normalized frequency and rε . Both the reduced order model and the analytical solution 

for this structure are in agreement. The accuracy of two different reduced order systems 

of size 32x32 and 8x8 is verified by checking the residual error of the dominant mode 

using (3.19). The simulations were performed at 50 different frequency points and 50 

different rε  values as described in Table I. The 32x32 model corresponds to the plots of 

Fig. 3.1 and has a maximum residual error of 6105.4 −⋅ , while the 8x8 model uses 2 

Taylor coefficients for k and 1 Taylor coefficient for rε  and 1 cross-term at the same 

expansion points and has a maximum residual error of 0.89. 

                                                          TABLE 3.1 
                                             COMPUTATIONAL INFORMATION – EXAMPLE I 

Solution 
Method 

Size CPU Time to generate 
reduced system 

Simulation Time Savings in 
Size 

Speed Up 
Factor 

Original 
System* 

1978 - 5 hrs and 46 min - - 

Proposed* 32 108 sec 4 min and  2 sec  98% 86 
Original 
System** 

1978 - 57 hrs and 2 min  - 

Proposed** 40 135 sec 50 min and 20 
sec 

97% 68 

 

* 2500 simulations corresponding to 50 different frequency points and 50 different values of rε . 
** 25000 simulations corresponding to 50 different frequency points, 50 different values of rε and 
10 different values of d. 
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To obtain a parameterized reduced order model that includes the boundary position 

variable d, the following procedure is followed based on a polynomial fitting approach. 

1. At first, a number of evaluation points of the design parameter d were chosen. Here 10 

test points (di , i = 1,….10) between d=b and 1.3b are considered. 

2. The matrices 0iA , 1iA , 0iB , and 1iB  of (3.20) depends on ‘d’.  At each test point di, the 

matrices 0iA , 1iA , 0iB , and 1iB  are calculated. The crucial point in this technique is that 

the finite element mesh for all the test points is identical (i.e., they have the same 

number of degrees of freedom and their corresponding locations in the system matrices 

are same). For each of the test points, the mesh was adjusted in the areas close to where 

the geometry has been perturbed.  

3. The elements of the matrices 0iA , 1iA , 0iB , and 1iB  which are affected by the mesh 

adjustments at each test point di, are then fitted to a low order polynomial. This 

example required a quadratic fit for the matrices since Lagrange-quadratic elements 

were used and are expressed as  

i02
2

i01i000 )( AAAA dddi ++= ; 

i12
2

i11i101 )( AAAA dddi ++= ; 

i02
2

i01i000 )( BBBB dddi ++= ; 

i12
2

i11i101 )( BBBB dddi ++=  

4. In order to find an accurate fit for 0iA , the least squares method is used to calculate the 

three coefficients i00A , i01A  and i02A  of the second order polynomial matching the 10 

test points as 
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where j, k denotes the element indices of the matrix. A similar procedure was used to fit 

the elements of matrices 1iA , 0iB , and 1iB .. 

5. The parametric system is then expressed as in (3.9) and (3.10) and the technique 

proposed in section III is used to generate a parameterized reduced order system as a 

function of k, rε  and d. 

 For this example, two expansion points were selected at normalized frequency 

bk0 =2, rε =3.25 and d=1.15b and at bk0 =4.5, rε =3.25 and d=1.15b to derive parametric 

reduced order models with residual error of less than 510−<ε . Each expansion point used 

7 Taylor coefficients for k, 5 Taylor coefficients for rε , 3 Taylor coefficients for d and 5 

cross-terms resulting in a reduced order system of size 40x40. Fig. 3.2 shows the 

dispersion curves of the first five modes as a function of normalized frequency at the four 

extreme corners of parameter ranges for rε  and d. Table 3.1 compares the total size, CPU 

times to generate the parametric reduced order models and simulation times. A speed up 

of 68 to 86 was achieved using the proposed approach when compared to the original 

simulation time.  

3.4.2. Example II: Microstrip Line 

A shielded microstrip transmission line with perfect conductors on an isotropic 

lossless substrate proposed in [30] is shown in Fig. 3.3a. The structure is discretized 
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using Lagrange-quadratic elements [27] and the total number of degrees of freedom in 

the original system of (3.2) is equal to 10359. The proposed parameterized model order 

reduction technique is used to model variations with respect to frequency, relative 

permittivity rε , and the conductor width w. The bandwidth of interest is from 1GHz to 

15GHz, the relative permittivity ranges from rε =5 to 10 and the conductor width ranges 

from w =1.27 mm to 1.65 mm. To include the parameter variation of the conductor width 

w, the polynomial fitting approach is used following the procedure similar to Example I. 

The expansion point for frequency and the design parameters is chosen to be in the 

middle of the range of interest. Applying the proposed algorithm with 10 Taylor 

coefficients for k, 7 Taylor coefficients for rε , 4 Taylor coefficients for w, and 4 cross-

terms, the dispersion curves for the first two modes can be obtained. Fig. 3.3 shows the 

dispersion curves as a function of frequency at the four extreme corners of parameter 

ranges for rε  and w. The reduced order model obtained using the proposed approach 

shows good agreement with the results of the original FEM model.  

To study the dispersion curves of higher order modes, the same structure is also 

analyzed from 15 GHz to 20GHz, while the parameter range for  rε  and w are kept the 

same. Once again, the expansion point for frequency and the design parameters are 

chosen to be in the middle of the range of interest. For this example, the reduced order 

model used 10 Taylor coefficients for k, 7 Taylor coefficients for rε , 4 Taylor 

coefficients for w, and 4 cross-terms. Fig. 3.4 shows the dispersion curves as a function 

of frequency at the four extreme corners of parameter ranges for rε  and w. In Fig. 3.4c 

the dispersion curves of modes eight and nine degenerate and merge into complex 

conjugate modes.  
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Fig. 3.3. Lossless microstrip line and the dispersion curves of the first two modes at the four extreme 
corners of parameter ranges for εr and w  (a) At w=1.27 mm for εr =5 and εr =10, (b) At w=1.65 mm 
for εr =5 and εr =10.  In all cases A=12.7 mm, d1=1.27 mm, d2=11.43 mm and t=0.127 mm. 
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Fig. 3.4. Dispersion curves of the lowest twelve modes at the four extreme corners of parameter ranges 
for εr  and w  (a) At εr =5 and w=1.27 mm  (b) At εr =5 and w=1.65 mm  (c) At εr =10 and w=1.27 mm  
(d) At εr =10 and w=1.65 mm.  

Similarly, in Fig. 3.4d the dispersion curve of modes nine and ten as well as eleven and 

twelve also degenerate and merge into complex conjugate modes. This phenomenon is 

accurately described by the reduced order model, illustrating the accuracy of the proposed 
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method over broad ranges of frequency and design parameter variations. Table 3.2 compares 

the total size, CPU times to generate the parametric reduced order models and simulation 

times. For this example a speed up of 95 to 137 was achieved.  

 

 

 

 

 

 

 

 

 

                           TABLE 3.2 
COMPUTATIONAL INFORMATION – EXAMPLE II 

Solution Method Size CPU Time to 
generate 

reduced system 

Simulation 
Time 

Savings in 
Size 

Speed Up 
Factor 

Original System 
(1-15GHz) 

10359 - 22 hrs and 51 
min. 

- - 

Proposed 
(1-15GHz) 

25 308 sec 10 min and 2 sec 99.75% 137 

Original System 
(15-20GHz) 

10359 - 27 hrs and 23 
min. 

- - 

Proposed 
(15-20GHz) 

25 317 sec 17 min and 23 
sec 

99.75% 95 

 
375 simulations corresponding to 15 different frequency points, 5 different values of rε and 5 
different values of w. 
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Chapter 4 

4. Parameterized Model Order Reduction 
of Electromagnetic Systems using Multi-
Order Arnoldi  

4.1. Introduction 

 
In this chapter, a parameterized MOR technique is developed for distributed 

electromagnetic systems that have arbitrary functions of frequency due to material 

properties, boundary conditions and delay elements. The proposed algorithm directly 

differentiates the network equations and uses multi-order Arnoldi method to calculate the 

moments, without having to perform rational curve fitting or introduce separate variables 

to approximate the arbitrary functions of frequency. The developed algorithm is also 

extended to implicitly calculate the moments with respect to arbitrary function design 

parameters as well as the cross-moments. This procedure results in a parameterized 

reduced order model that is valid over a user defined range of design parameters while 

preserving the form of the original system.  Numerical examples are provided to illustrate 

the validity of the proposed technique.   

This chapter is organized as follows. Section 4.2 describes the proposed 

parameterized multi-order Arnoldi model reduction technique. Numerical examples are 

provided in section 4.3. 
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4.2. Parameterized Multi-Order Arnoldi for Systems 
with Arbitrary Functions 

4.2.1. Computation of Reduced Order Model 

For the case of scattering problems, applying Galerkin’s procedure to the vector wave 

equation of (2.1) yields a linear sparse algebraic system of (2.20). To derive a parametric 

reduced order model for (2.20), the system is expressed as a function of the frequency 

and other design parameters as   

                             ),(),(),( hshshs bXY =⋅                                              (4.1) 

where ),( hsY ϕϕ×∈C  is the transfer function of the system; ),( hsX ϕC∈   is the vector 

of unknown variables; ),( hsb ϕC∈  represents the excitation of the network; 

],,,[ 21 nhhhh K=  are the design parameters of interest; and ϕ  is the number of unknown 

variables in ),( hsX . It is assumed that the system of (4.1) has arbitrary functions of 

frequency due to material properties, boundary conditions and delay elements, as well as 

arbitrary functions of design parameters, which makes the calculation of the moments 

using traditional Arnoldi methods a challenging task. In this section, a multi-order 

Arnoldi method is described to accurately calculate the moments of reduced order models 

for arbitrary functions of frequency and design parameters. 

The computation of the parameterized reduced order model expands (4.1) into a 

multidimensional Taylor series with respect to frequency and design parameters h . For 

ease of presentation and without loss of generality, the method is described for the case 

when there is only one design parameter of interest ][hh = . The computation of the 
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parameterized reduced order model begins with the evaluation of the multidimensional 

subspace. This is accomplished by calculating the moments of ),( hsX  with respect to 

frequency s and design parameter h  as well as the cross moments. The moments of 

),( hsX  are computed by expanding ),( hsY  and  )( hs,b  into a multi-dimensional Taylor 

series as 
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where os and oh  are the expansion points of the Taylor series. The first and second 

summation terms of (4.2) correspond to the self-terms with respect to s and h  

respectively, and the double summation term of (4.2) corresponds to the cross terms. 

Assuming that the transfer function ),( hsY  and forcing function )(s,hb  are known and 

differentiable, the Taylor series coefficients of (4.2) and (4.3) can be determined by 

differentiating ),( hsY  and )(s,hb  with respect to s and h . Similarly, ),( hsX  is also 

expanded into a multidimensional power series as 
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Substituting (4.2)-(4.4) into (4.1) and matching coefficients of corresponding powers of s 

yields the following recursive relationship:  
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Similarly, matching coefficients of corresponding powers of h , yields  
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The cross-moments of ji hhss )()( 00 −−  are also computed by matching coefficients of 

similar powers as 
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Once all the required moments with respect to s and h  are evaluated, the 

multidimensional subspace K is constructed as  

[ ]( )Xhscolsp MMMK =                                        (4.8) 
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where ],,,[ s
n0

s
10

s
00

s MMMM K=  contains the series coefficients corresponding to 

powers of iss )( 0− , ],,,[ h
0m

h
02

h
01

h MMMM K=  contains the series coefficients 

corresponding to powers of ihh )( 0−  and ],,,[ KK sh
ij

sh
11

X MMM =  contains the cross-

term coefficients. The main computational complexity to calculate the moments of the 

reduced order system using (4.5)-(4.7), requires solving the original network at os and oh  

(i.e. inverting ),( 00 hsY ). Hence the calculation of the first moment requires one lower-

upper decomposition and one forward-backward substitution, while each additional 

moment requires only one forward-backward substitution [43]-[44]. Since the major cost 

of solving the original network is the lower-upper decompositions at different frequencies 

and design parameters, moment matching techniques yield very high speed advantage 

due to the fact that only one lower-upper decomposition is required for each expansion 

point to create the model. Furthermore, the size of the reduced order system is usually 

significantly smaller and hence less computationally expensive than the original system. 

For the case when a reduced order model with multiple parameters is required, the 

multidimensional subspace K becomes 

[ ]( )Xhhh Ncolsp MMMMK L10=                               (4.9) 

where 0hM  may correspond to the Laplace frequency moments similar to (4.8) and ihM  

are the self-term moment matrices corresponding to parameter ih . Since the matrix K is 

generally ill-conditioned, Arnoldi methods are usually used to convert (4.8) and (4.9) into 

an orthonormal matrix Q [43]. However, the original Arnoldi algorithm is only applicable 

for systems that have linear dependency with respect to frequency (i.e. CGY s+= ) [44]. 
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Since the network of (4.1) is assumed to exhibit arbitrary functions of frequency and 

design parameters, the traditional Arnoldi algorithm is not directly applicable. To address 

this issue, a multi-order Arnoldi algorithm is described to create parameterized reduced 

order models for arbitrary functions of frequency and design parameters by implicitly 

calculating the orthonormal subspace derived from the self-moments and cross-moments.  

The description of the proposed multi-order Arnoldi algorithm for the two parameter 

case is provided in Fig. 4.1, where 
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and c
sn and c

hn  determine the number of cross-moments with respect to s and h  

respectively, for the reduced order system. The multi-order Arnoldi algorithm described 
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in Fig. 4.1 is similar to the algorithm described in [56]-[57], except in this work it is 

extended to include design parameter variations of arbitrary functions, as well as to 

implicitly calculate the cross-moments. 

The extension of the proposed algorithm to multiple parameters is also provided in 

Fig. 4.2, where 
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                        Fig.4.1.  Multi-Order Block Arnoldi Procedure including self-terms; with respect to frequency s,  
                        the design parameter λ and the cross-terms 
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                               Fig 4.2.  Multi-Order Block Arnoldi Procedure including self-terms; with respect to design  
                                parameters 0,, λλ KN and the cross-terms. 
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The values 
00 0N h,...,h  are the expansion points of the Taylor series and c

hi
n  determines 

the number of cross-moments with respect to ith  parameter ih  for the reduced order 

system. Using the procedure of Fig. 4.1 or Fig. 4.2 to calculate Q will result in a more 

accurate reduced order model when compared to directly converting (4.8) and (4.9) to an 

orthonormal matrix, since implicitly calculating the moments leads to fewer numerical 

difficulties in the inclusion of higher order moments. This is due to the fact that the 

higher order moments of (4.8) and (4.9) converge to the largest eigenvalue of the system 

and are almost identical or parallel to each other causing the matrix K to be ill-

conditioned [43], [71].  

Using the orthonormal matrix Q derived from Fig. 4.1 or Fig. 4.2, the parametric 

reduced order model is obtained by a change of variables as 

),(ˆ),( hshs XQX =                                               (4.18) 

where qC)h(s, ∈X̂  and  q  corresponds to the number of columns in the orthonormal 

moment matrix Q. Substituting (4.18) into (4.4) and pre-multiplying by TQ  yields 

(s)ˆ),(ˆ),(ˆ bXY =⋅ hshs                                           (4.19) 

where 

QYQY ),(),(ˆ hshs T=                                           (4.20) 

(s)(s)ˆ T bQb =                                                  (4.21) 

and the size of the reduced order matrices are qqC)h(s, ×∈Ŷ ; qC)h(s, ∈b̂ . It can be 



 54

shown that the reduced system of (4.19) preserves the moments of the original system as 

presented in [23], [56] and [60]. 

Note that the size of the reduced order model depends on the number of columns in 

Q. As the variance of the parameters increase or extra design parameters are required the 

size of the reduced order system will increase since additional moments are required. As 

a result a trade-off between efficiency and the range of accuracy has to be made for the 

reduced order model.  

 

4.2.2. Selecting the Order of the Reduced Order Model 

To select the appropriate order, error bounds are required to estimate the accuracy of the 

reduced order model with respect to the original system. Some interesting error bounds in 

[72]-[74] could be applied to automatically select the order of the reduced model. 

However, the implementation of these methods requires extra memory resources. In this 

work the accuracy of the reduced order model is verified by examining the residual error 

which is defined as [28]-[30], 

),(

),(),(),(

hs

hshshs

X

bXY −⋅
=ε                                       (4.22) 

where ),( hsX  is the approximate solutions derived by (4.18). If the residual error is 

below a given tolerance for the specified ranges of design parameters and frequency, then 

the reduced order model is assumed to be accurate and the reduction process is 

terminated. Otherwise additional moment coefficients or multiple expansion points [43], 

[72]-[74] can be used in (4.9) to improve the accuracy of the reduced order system. 
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4.3. Problem Formulation and Numerical Examples 

In this section, two numerical examples are presented. The first example is a 

distributed interconnect network modeled as delay lines using the method of 

characteristics. The second is a two cascaded inductive irises in a dielectric loaded WR90 

waveguide. All computations are performed on a Pentium 4 (2.80 GHz) PC with 2048 

MB memory. The developed algorithms are programmed in MATLAB [49].    

 

4.3.1. Example I: RLC Network with Delay Elements  

In this example, the distributed network of Fig. 4.3 is analyzed at different 

temperatures. The dependency of electrical parameters on temperature T  is modeled as  

( )2
21 )()( 0
R

0
R

0 TTTT1)R(TR(T) −+−+= αα  

( )2
21 )()( 0
L

0
L

0 TTTT1)L(TL(T) −+−+= αα                              (4.23) 

( )2
21 )()( 0
C

0
C

0 TTTT1)C(TC(T) −+−+= αα  

where ),(),,( 2121
LLRR αααα and ),( 21

CC αα  are the first and second order temperature 

coefficients of the resistance R, inductance L and capacitance C, respectively. For the 

three-coupled interconnect networks, the temperature coefficients of the electrical 

parameters for 0T = °25 C are 

),( 21
RR αα  = )1015,00404.0( 6−×  
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),( 21
LL αα  = )1018,1017( 66 −− ×−×  

),( 21
CC αα  = )10285.1,1075.5( 55 −− ×−×  

The per-unit-length parameters of the lossy coupled interconnect network at 0T = °25 C 

are 

cm
Ω

⎥
⎥
⎥

⎦

⎤

⎢
⎢
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=
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0016
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C  

and the length of each line is l=5cm. The temperature variations of the lossless lines for 
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Fig. 4.3. RLC network including delay elements 
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0T = °25 C are  

),( 21
LL αα  = )1052.1,1002.3( 54 −− ×−×  

),( 21
CC αα  = )1048.1,1083.2( 54 −− ×−×  

The per-unit-length parameters of the lossless lines at 0T = °25 C are L=3.5 cmnH / , 

C=1.4 cmpF /  and the length of each line is l=15cm. The near end resistances iR  and far 
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Fig. 4.4. Frequency responses of the system of example 1 at the far end point at the expansion point  
at T = °5 C. 
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end load capacitances iC  are also modeled as functions of temperature as  

),( 21
RR αα  = )1015,00404.0( 6−×  

),( 21
CC αα  = )10285.1,1075.5( 55 −− ×−×  

for 0T = °25 C, where Ω= 50)( 0TRi  and pFTCi 25.0)( 0 = . 

For the system of Fig. 4.3, the lossy coupled interconnect lines are modeled using the 

conventional lumped model [75] while the lossless lines are modeled using the Method of 

Characteristics (MoC) [76]. The general form of the Modified Nodal Analysis (MNA) 

matrices using the MoC and lumped elements can be expressed as [58] 

)()( s(T)e(T)s(T) i
i

Ts i BVXA CG - =⎟
⎠
⎞

⎜
⎝
⎛ ⋅++ ∑ τ  

                                         XLI T=                                                      (4.25) 

where (T)G  and (T)C ϕϕ×ℜ∈  are matrices describing the lumped memoryless and 

memory elements of the network, respectively. X ϕC∈ is a vector of the unknown 

voltage and current variables; (T)iA ϕϕ×ℜ∈ is the matrix derived from the MoC 

macromodel and is multiplied by the extracted delay of the lossless LCli =τ  (the 

description of iA  matrices can be found in [58] to obtain a passive reduced order model); 

B k×ℜ∈ ϕ is a selector matrix that maps the port voltages V  into the network; L k×ℜ∈ ϕ  

selects  the port current variables I  of the network. The original network using the 

conventional lumped model and MoC consists of 2733 unknown variables.  
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(b) 

Fig. 4.5 Time domain response of the system of example 1 at the far end point, at (a) T = °− 40 C 
and (b) T = °50 C. 
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The proposed parameterized model order reduction technique is applied to model 

variations with respect to frequency and temperature. The frequency bandwidth of 

interest for this problem ranges from 0 to 6GHz while the temperature variation ranges 

from °− 40 C to °50 C. To derive a compact parametric reduced order model two 

expansion points are selected at frequency = 0.5 GHz, T= °5 C and at frequency = 5 GHz, 

T= °5 C. To achieve a residual error of less than 510−<ε for (4.25), the reduced order 

model required 30 moments for frequency, 22 moments for temperature and 7 cross 

moments for each expansion point. The size of the reduced order model consists of 236 

variables.  

Fig. 4.4 shows the unit impulse frequency response of node Vout at the expansion 

temperatures of T = °5 C. The results of the proposed model are also compared with 

Modified Gram Schmidt (MGS). Within the context of this section, MGS refers to 

parameterized reduction technique that explicitly matches the moments of (4.8) using 

MGS [44] to construct the orthonormal matrix of Q. Both the proposed and MGS are 

accurate near the expansion points of 0.5 GHz and 5 GHz. However, the proposed 

                                           TABLE 4.1 
COMPUTATIONAL INFORMATION OF TIME DOMAIN RESPONSE 

Solution 
Method 

Size CPU Time  
to generate  

reduced model 

Simulation 
Time 

Savings in 
Size 

Speed Up 
Factor 

Original 
System 

2733 - 5085 sec  - - 

Propose
d 

236 763 sec 297.4 sec  91% 17 

 
4000 simulations corresponding to 400 different time points and 10 different temperature values. 

 
 
 



 61

algorithm is able to achieve better accuracy and match the entire frequency range since it 

takes advantage of the Arnoldi algorithm to implicitly calculate the moments. Fig. 4.5 

shows the transient response at node Vout, corresponding to a unit step input voltage with 

a rise time of 0.2 ns at the two extreme temperatures of T = °− 40 C and T = °50 C. For 

both simulations, the time domain responses of the reduced order model are in agreement 

when compared to the original solution. Table 4.1 compares the total size and simulation 

times of the original and proposed algorithm. For this example, the simulation time of the 

parameterized reduced order model is about 17 times faster when compared to the 

original system.    

4.3.2. Example II: Cascade Inductive Irises  

A four cascaded inductive irises in WR90 waveguide (a=22.86mm, b=10.16mm) is 

shown in Fig. 4.6. Each of the irises consists of two symmetric H-planes, separated by 

distance 20 millimeters for the outer cavities and 16.8 millimeters in the middle cavity. 

The Finite Element Method (FEM) discretization of the electric field vector wave 

equation [27] for a k port device with surface impedance losses of the conductor can be 

expressed as [57] 

XLy

BuXHAAA
T
r2r1r0 ssFεsεsε

=

=+++ )),()(),()(( 2 σσ
                       (4.26) 

where 10 AA , , 2A  and H ϕϕ×ℜ∈  are matrices obtained from the FEM approximation; 

X ϕC∈ is the vector of unknown variables in the approximation of the electric field; 

B k×ℜ∈ ϕ is a selector matrix that maps the excitation input u into the system; L k×ℜ∈ ϕ  
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selects  the output variables of interest and maps them to the output vector y of the 

electric field used to calculate the S-parameters of the system. The scalar function 

),( σsF represents the skin effect losses in a non-perfect conductor modeled as [57], 

µ
σσ s

j
sF 2

1
1),(
+

=                                                 (4.27)  

where µ  is the magnetic permeability of the material and σ  is the conductivity.  
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Fig. 4.6. Geometry of the dual inductive iris filter. 
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The structure is discretized using Lagrange-quadratic elements and the total number 

of degrees of freedom in the original system is equal to 52746. The bandwidth of interest 

for this problem ranges from 8GHz to 21GHz. The design parameters of interest are the 

dielectric permittivity which ranges from rε =1 to 5 which loads the waveguide and the 

conductivity of non-perfect metallic walls of the irises σ  which ranges from 3.78e7 

[S/m] for aluminum to 6.301e7 for silver. The proposed multi-order Arnoldi algorithm is 

implemented to obtain a parameterized reduced order system of size 296.  
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Fig. 4.7. The magnitude of S21 as a function of frequency at the expansion point at the mid-range 
of design parameters rε andσ . 
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For this example, two expansion points are selected at frequency=12GHz, rε =3, 

σ =5.8e7 [S/m] and at frequency=16GHz, rε =3, σ = 5.8e7[S/m]. To achieve a residual 
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Original
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                                                               (a)                                                                                                       (b) 
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(c)                                                                                                       (d) 
 

Fig. 4.8. The magnitude of S21 as a function of frequency for different parameter values at the 
corner of design parameters; (a) rε =1 and σ =3.78e7 [S/m], (b) rε =5 and σ =3.78e7 [S/m], 
(c) rε =1 and σ =6.301e7 [S/m] and (d) rε =5 and σ =6.301e7 [S/m]. 

 



 65

error of less than 510−<ε for (26), each expansion point uses 32 moments for frequency, 

26 moments for rε , 9 moments for σ  and 7 cross moments.   

Fig. 4.7 shows the magnitude of S21 as a function of frequency at the expansion point 

at rε =3 and σ = 5.8e7, calculated by the proposed method and compared to MGS. As 

expected, the proposed approach is able to achieve better accuracy than MGS since it 

uses the Arnoldi algorithm to implicitly calculate the moments. Fig. 4.8 shows the 

magnitude of S21 as a function of frequency at the four extreme corners of parameter 

ranges for rε  and σ . Table 4.2 compares the total size and simulation times of the 

original and proposed reduced order model. For this example, a speed up of 137 was 

achieved using the proposed approach when compared to the original simulation time.  

 

 

 

                                                 TABLE 4.2 
COMPUTATIONAL INFORMATION 

Solution 
Method 

Size CPU Time  
to generate  reduced 

model 

Simulation Time Savings in 
Size 

Speed Up Factor 

Original 
System 

52572 - 44 hours & 
34 min  

- - 

Proposed 296 34 min & 22 sec 19 min &  
33 sec  

99.4% 137 

1875 simulations corresponding to 125 different frequency points, 5 different values of 
rε and 3 different values of σ . 
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Chapter 5 

5. Sensitivity Analysis of Microwave 
Circuits using Parameterized Model 
Order Reduction Techniques   

5.1. Introduction 

In this chapter, a parameterized model order reduction technique is used to efficiently 

solve the original FEM network and to calculate sensitivities of microwave circuits. The 

proposed methodology uses a multi-order Arnoldi method to calculate the moments with 

respect to arbitrary functions of frequency and design parameters, as well as the cross-

moments. This procedure results in a parameterized reduced order model that is valid 

over a user defined range of design parameter values (such as material properties, 

geometrical parameters) and can be used to calculate sensitivities using an adjoint 

variable method. Such an approach is significantly more CPU efficient in optimization 

since a new reduced model is not required each time a design parameter is modified. 

Furthermore, the solution of the original FEM network, as well as the sensitivities with 

respect to any network parameter is obtained from the solution of the reduced order 

model. 

This chapter is organized as follows. Section 5.1 describes the adjoint variable 

method using parameterized MOR. A numerical example is provided is Section 5.2 to 

illustrate the validity of the proposed algorithm.     
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5.2. Sensitivity Analysis using Parameterized MOR  

This section describes how to determine the sensitivities of electromagnetic structures 

using the adjoint variable method and the reduced order model of (4.19).     

5.2.1. Adjoint Variable Method using MOR 

Let the objective function of interest be defined as )).,(,( hshF X  The goal is to find the 

sensitivity of the objective function with respect to a network parameter kh , as 
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                       (5.1)   

In the proposed scheme, the solution of the original network is obtained by solving (4.19) 

and using (4.18) to calculate ),( hsX . Thus to calculate (5.1) using the reduced order 

model requires differentiating (4.18) with respect to kh  as 

),(ˆ),(ˆ),( hs
hh
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hs

kkk

XQXQX
∂
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∂
=

∂
∂                                (5.2) 

Note that if the moments of Q are only with respect to frequency, then kh∂∂Q  needs to 

be evaluated since the frequency moments change and a new reduced order model is 

required each time a design parameter is changed [80], [89]-[90]. In the proposed 

scheme, the moments of Q are with respect to frequency and the design parameters. As a 

result, the reduced order model of (4.19) is able to capture the variance with respect to 
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frequency and design parameter variables without the need to recalculate Q. Thus 

0Q =∂∂ kh  and (5.2) reduces to 

kk h
hs

h
hs

∂
∂

=
∂

∂ ),(ˆ),( XQX                                           (5.3) 

This approach is significantly more efficient in optimization since kλ∂∂Q does not have 

to be evaluated and a new reduced model is not required each time a design parameter is 

modified. 

Next, the sensitivity of the reduced order model is obtained by differentiating (4.19) by 
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Using (4.20), (4.21) and (5.3), the derivatives of ),(ˆ hsY  and ),(ˆ hsb  with respect to kh  

are 
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The sensitivity of the objective function using the reduced order model can be calculated 

by substituting (4.18), (5.3) and (5.4) into (5.1) to obtain 
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where ),(ˆ hsaX  is the solution of the adjoint variable network defined as 
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The solution of the adjoint variable network does not require additional lower-upper 

decompositions to invert ),(ˆ hsTY  since the lower-upper matrices are known from the 

solution of (4.19). This leads to significant computational savings, since the sensitivities 

with respect to all design parameters can be obtained with only one forward-backward 

substitution to solve (5.8). In addition, (5.9) has fewer variables when compared to the 

adjoint variable network derived from the original network of (4.1).   

 

5.2.2. Sensitivity Analysis of S-Parameters 

Typical objective functions in analyzing microwave devices are the scattering 

parameters (S-parameters), electromagnetic fields and potentials, dispersion curves and 

current densities. This section briefly describes how to calculate the sensitivities of the S-

parameters using the proposed model order reduction algorithm. From the solution of the 

FEM equations, the scattering parameters ),,1( NiSij K= can be calculated as [78]-

[81] 
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where )(iX  and )( jX  are the vectors containing the E-field solution at ports i and j, 

respectively, and the superscript T denotes the transpose of a matrix. The derivate of the 

scattering parameters with respect to a network parameter kh  is obtained as [78]-[81] 
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The sensitivity of the S-parameters using (5.10) is valid provided the geometries of port i 

and j do not change as kh  varies [78]-[81], [85]. Note that (5.10) does not require an 

adjoint-system analysis since the derivatives of the electric field with respect to kh  are 

not used. For this scenario, even though adjoint-variable solution of (5.8) is not required, 

the parameterized reduced order model can still be used to efficiently calculate 

sensitivities of the S-parameters by substituting (4.18) into (5.9), as 
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where )(ˆ iX  and )(ˆ jX  are obtained by solving (4.19). Note that in comparison to using 

Padé rational function to calculate the sensitivities of the S-parameters [80], the proposed 

approach does not have to recalculate the system moments each time a design parameter 

is changed, leading to significant computational savings.  

For the case when the geometries of port i and j change as kh  varies, the sensitivities 

of the S-parameters require an adjoint-system analysis which can be evaluated using 
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(4.19), (5.7) and (5.8). How to define the objective function to calculate the sensitivities 

of the S-parameters from the solution of the original and adjoint-variable networks is 

described in [11]-[12].   

5.3. Numerical Example  

An H-plane WR90 waveguide (a=22.86mm, b=10.16mm) loaded with dielectric is 

shown in Fig. 5.1. The input port consists of two symmetric H-planes that control the size 

of the port by changing the spacing between the planes of the thick iris. The structure is 

discretized using Lagrange-quadratic elements and the total number of degrees of 

freedom in the original FEM system is equal to 13625. The bandwidth of interest is from 

50GHz to 75GHz. The design parameters of interest in this example are the dielectric 

permittivity which ranges from rε =1 to 5 and the spacing between the planes of the input 

iris w, which ranges from 0.00386m to 0.00586m. 

For this example, the FEM discretization of the electric field vector wave equation has 

the following dependency of frequency 

ubXHYYY ),())(),(),(),(( 2 wεssFwεswεswε rr2r1r0 =+++                  (5.12) 

where 10 YY , , 2Y  and H ϕϕ×ℜ∈  are matrices obtained from the FEM approximation [27], 

[57]; X ϕC∈ is the vector of unknown variables in the approximation of the electric 

field; b k×ℜ∈ ϕ is a selector matrix that maps the excitation input u into the system. The 

scalar function F(s) represents the skin effect losses in a non-perfect conductor modeled 

as 
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where r0 µµµ = . The matrices 10 YY , , 2Y  and b  have a linear dependency with respect to 

rε  and can be expressed as 
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Fig. 5.1. WR90 waveguide with metallic iris at the input port. The rest of the waveguide is filled with 
dielectric material. 
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Fig. 5.2a. S11 of the waveguiding structure at extreme corners of parameter ranges for rε and w (a) rε =1 and 
w=0.00386, (b) rε =1 and w=0.00586. 
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Fig. 5.2b. 11S  of the waveguiding structure at extreme corners of parameter ranges for rε and w (a) rε =5 and 
w=0.00386 and (b) rε =5 and w=0.00586. 
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Fig. 5.3a. 11S∠  of the waveguiding structure at extreme corners of parameter ranges for rε and w (a) rε =1 
and w=0.00386, (b) rε =1 and w=0.00586. 
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Fig. 5.3b. 11S∠  of the waveguiding structure at extreme corners of parameter ranges for rε and w (a) rε =5 
and w=0.00386 and (b) rε =5 and w=0.00586. 
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Fig. 5.4a. Sensitivities of 11S of the waveguiding structure with respect to rε at (a) rε =3, w=0.00386, (b) 

rε =3, w=0.00586. 
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Fig. 5.4b. Sensitivities of 11S∠ of the waveguiding structure with respect to rε at (a) rε =3, w=0.00386, (b) 

rε =3, w=0.00586. 
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Fig. 5.5a. Sensitivities of 11S of the waveguiding structure with respect to w at (a) rε =1, w=0.00486, (b) 

rε =5, w=0.00486. 
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Fig. 5.5b. Sensitivities of 11S∠ of the waveguiding structure with respect to w at (a) rε =1, w=0.00486, (b) 

rε =5, w=0.00486. 
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To obtain a parameterized reduced order model that includes the spacing between the 

planes of the input iris w, the following procedure is followed based on a polynomial 

fitting approach [47], [92]-[95]. 

1. First, a number of evaluation points of the design parameter w are chosen. Here we 

considered 10 test points (wi , i = 1,….10) between w=0.00386m and 0.00586m. 

2. The matrices i0Y , i1Y , 0b  and 1b  of (5.14) depends on ‘w’.  At each test point wi, the 

matrices i0Y , i1Y , 0b and 1b are determined. The crucial point in this technique is that the 

finite element mesh for all the test points is identical (i.e., they have the same number 

of degrees of freedom and their corresponding locations in the system matrices are 

same). For each of the test points, the mesh was adjusted in the areas close to where the 

geometry has been perturbed.  

3. The elements of the matrices i0Y , i1Y , 0b and 1b  which are affected by the mesh 

adjustments at each test point wi are then fitted to a low order polynomial. This example 

requires a quadratic fit for the matrices since Lagrange-quadratic elements are used, 

where (w)i0b  is expressed as 

 i02
2

i01i00i0 ww(w) YYYY ++=                                      (5.15) 

The matrices i1Y , 0b and 1b  are also expressed as quadratic polynomials as in (5.15).  

4. In order to find an accurate fit for i0Y , a least squares method is used to calculate the 

three coefficients i00Y , i01Y  and i02Y  of the second order polynomial matching the 10 test 

points as 
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where j, k denotes the element indices of the matrix. A similar procedure is used to fit 

the elements of the other matrices. 

5.Once the matrices of (5.12) are determined from (5.14) and (5.15), the technique 

proposed in section 4.2 is used to generate a parameterized reduced order system as a 

function of frequency, rε  and w. 

 

To select the appropriate size of the reduced order model the residual error of (4.22) 

is examined. For this example, four expansion points were selected at frequency = 

50GHz, rε =3, w=0.00486, at frequency = 55GHz, rε =3, w=0.00486, at frequency = 

60GHz, rε =3, w=0.00486 and at frequency = 70GHz, rε =3, w=0.00486 to derive a 

parametric reduced order model with residual error of less than 510− . Each expansion 

point used 12 moments for frequency, 11 moments for rε , 11 moments for w and 4 cross 

moments. Fig. 5.2a and 5.2b show the amplitude and Fig. 5.3a and 5.3b show the phase 

of  scattering parameter, S11, respectively, as a function of frequency at the four extreme 

corners of parameter ranges for rε  and w. The reduced order model obtained using the 

proposed approach shows good agreement with the results of the original FEM model. 

Sample sensitivities of the amplitude and phase of  S11 each with respect to rε  and w 

using equations (2.49) and (2.50) and the proposed reduced order model are shown in 

Fig. 5.4a, 5.4b and Fig. 5.5a and 5.5b, respectively. To calculate the sensitivities with 
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respect to rε , (5.11) is used since the port geometries do not change as rε  varies and to 

calculate the sensitivities with respect to w, (5.7)-(5.8) are used since the port geometries 

change as w varies. The results of the proposed method are compared with the 

perturbation of the original FEM network. Both the proposed method and the 

perturbation results are in good agreement.  

It is to be noted that using the proposed parameterized reduced order model to calculate 

sensitivities provides the following advantages: 

1. Using the parameterized reduced order model provides significant CPU advantage 

compared to the solution of the original FEM network. Table I compares the total size, 

CPU times to generate the parametric reduced order model, and simulation times of 

the proposed method and original FEM network. 

2. Perturbation based techniques can lead to inaccurate results depending on the 

magnitude of the perturbation. 

3. In addition, the perturbed network must be solved separately for every parameter of 

interest.  

                                 TABLE 5.1 
COMPUTATIONAL INFORMATION 

Solution 
Method 

Size CPU Time  
to generate  reduced 

model 

Simulation Time Savings in 
Size 

Speed Up Factor 

Original 
System 

13625 - 5 hours & 
53 min  

- - 

Proposed 304 12 min &  
17 sec 

8 min &  
11 sec  

98% 43 

3600 simulations corresponding to 200 different frequency points, 6 different values of rε and 3 
different values of w. All computations are performed on a Pentium 4 (2.8GHZ) PC with 2048 MB 
memory. 
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However, in the proposed approach, the sensitivity information with respect to all the 

parameters can be essentially obtained from the solution of the reduced order model 

using (5.7)-(5.8) or (5.11). For the case when (5.7)-(5.8) is used, the additional cost to 

calculate the sensitivities is only one forward-backward substitution of the reduced order 

model equations. 
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Chapter 6 

6. Conclusion and Future Research 

6.1. Conclusion 

In this thesis, three major contributions have been made to address the computational 

complexities involved in the simulation of high frequency EM structures. Firstly, a 

parameterized model order reduction technique has been developed to solve eigenvalue 

equations of electromagnetic structures that are discretized by using FEM. The proposed 

algorithm uses a multidimensional subspace method based on modified perturbation 

theory and singular-value decomposition to perform reduction directly on the finite 

element eigenvalue equations. Applying this procedure parametric reduced order models 

can be obtained that are valid over the desired parameter range without the need to redo 

the reduction when design parameters are changed. This leads to significant 

computational savings since a new reduced order model is not required each time a 

design parameter is changed.   

The second part deals with a multi-order Arnoldi model order reduction algorithm, as 

the traditional model order reduction techniques using the Arnoldi algorithm are only 

applicable to first order linear systems and can not directly include arbitrary functions of 

frequency dependant materials and boundaries. In this part of the thesis, a multi-order 

Arnoldi model order reduction algorithm is developed to generate efficient reduced order 

models that include arbitrary functions of frequency and design parameters. This 

procedure is able to provide more accurate reduced order systems when compared with 
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traditional approaches such as Modified Gram Schmidt (MGS).   

Finally, in the third part of the thesis an efficient technique has been developed to 

calculate sensitivities of EM structures with respect to network design parameters. The 

proposed algorithm uses a parametric reduced order model to solve the original network 

and an adjoint variable method to calculate sensitivities. The main advantage of the 

proposed method is that the solution of the original network as well as sensitivities with 

respect to any parameter are obtained from the solution of the reduced order model.    

6.2. Suggestions for Future Research 

This section provides some suggestions for future research based on the work presented 

in this thesis. 

 Nonlinear MOR algorithms have been developed to efficiently model integrated, 

microwave and micro-electromechanical systems [96]-[98]. However, the nonlinear 

reduced order models of [96]-[98] do not capture the variances of design parameters and 

are not valid if design parameters are changed. A suggested future project is to extend the 

nonlinear MOR algorithms of [96]-[98] to include design parameter variations. This can 

be achieved by using multi-dimensional Taylor series or Voltera series to obtain a 

parametric reduced order nonlinear model. The development of such an algorithm can be 

used to study the properties of nonlinear integrated, microwave and micro-

electromechanical systems without the need to solve the original large nonlinear system. 

In addition, the parametric reduced order nonlinear model algorithm can be combined 

with the adjoint variable technique to perform sensitivity analysis of nonlinear systems.  
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