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Abstract 

We sought to analyse the antimicrobial properties of exogenous copper in human synovial fluid 

against Staphylococcus aureus. We performed several in-vitro growth and viability assays to 

determine the capability of multiple S. aureus strains to survive in synovial fluid under different 

growth conditions. S. aureus UAMS-1 significantly died at 24 hours (p=0.017), and S. aureus 

USA300 WT survived at 24 hours. We confirmed a high sensitivity to killing with the addition of 

exogenous copper on both strains at 4 (p=0.011), 12 (p=0.011), and 24 hours (p=0.011). Both WT 

and CopAZB-deficient USA300 strains significantly died in synovial fluid, evidencing a minimum 

bactericidal concentration of copper of 50 µM against USA300 WT (p=0.011). Synovial fluid has 

antimicrobial properties against S. aureus, and the addition of 10µM of copper was highly 

bactericidal for both strains. Furthermore, we identified the CopAZB proteins as potential targets 

and the use of low exogenous copper concentrations as possible treatment alternatives against S. 

aureus. 

Keywords: Antimicrobial properties; synovial fluid; copper; Staphylococcus aureus; 

periprosthetic joint infection; in-Vitro study  
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Summary for Lay Audience 

Staphylococcus aureus is the most frequently isolated organism in periprosthetic joint infections. 

The mechanism by which the synovial fluid kills bacteria has not yet been elucidated. We sought 

to analyse the antimicrobial properties of exogenous copper in human synovial fluid against S. 

aureus. Synovial fluid samples were collected from patients undergoing total joint arthroplasty. 

Different S. aureus strains were used. We first performed in-vitro growth assays with the different 

S. aureus strains in human synovial fluid. Viability assays were then performed to determine the 

capability to survive in synovial fluid with the addition of exogenous cooper. After confirming the 

antimicrobial effect of copper against S. aureus, we compared the differences in sensitivity 

between a highly resistant and mutant deficient strain. The sensitive strain significantly died after 

24 hours, whereas the resistant strain survived after 24 hours. Both strains significantly died after 

4, 12, and 24 hours with the addition of exogenous copper, confirming its role as an antimicrobial 

agent against S. aureus. Finally, the protein deficient strain was susceptible to lower copper 

concentrations. In light of these findings, we confirmed the antimicrobial properties of synovial 

fluid and the bactericidal effect of exogenous copper against S. aureus. Although future and well-

designed studies might be needed, we propose using exogenous copper and target bacterial 

proteins as possible treatment alternatives against S. aureus infections.  
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Chapter 1 

Background 

1.1 Periprosthetic joint infection in total hip and knee arthroplasty 

Osteoarthritis is the most frequent joint disease worldwide, with knee involvement 

representing over 80% of the total disease prevalence (1,2). Osteoarthritis is a degenerative 

disorder that affects joint cartilage and subchondral bone. Clinical presentation includes joint pain, 

inflammation, and decreased range of motion but can considerably progress, impacting the 

patient's quality of life. 

Total joint arthroplasty (TJA) is a well-known and effective procedure that relieves pain, 

restores range of motion, and improves life quality in patients with end-stage osteoarthritis (3). 

While most TJAs restore pain-free function, a small number of cases will need revision surgery at 

some point during follow-up (4–7). The most typical reasons for revision surgery are infection, 

wear, loosening, instability, persistent pain, and fracture. 

The total volume of primary TJA performed each year is increasing worldwide, and there 

is an expected annual volume of 4 million replacements in the United States (US) by 2030 (4,5). 

In this sense, the number of revision procedures is expected to increase with periprosthetic joint 

infections (PJI) as one of the most common and most challenging causes of revision surgery (4–

6,8). Several studies reported an estimated infection rate of 1-2% after total hip arthroplasty (THA) 

and total knee arthroplasty (TKA) (7–10). 

PJI affects the prosthesis and surrounding soft tissues, and there have not been any 

significant improvements in the diagnosis, treatments, or outcomes of PJIs. If anything, with 

increasing resistant organisms, our ability to eradicate infection is decreasing. Despite all efforts 
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to decrease the incidence of PJI (11,12), the infection burden is still increasing globally (7); hence 

PJI remains one of the most frequent reasons for TJA failure.  

Indeed, PJI has been associated with increased morbidity, mortality and hospitalization, 

and significant physiological, psychological, and economic impact on the healthcare system 

(6,13,14). Even more, Zmistowski et al. (15) demonstrated a 5-year mortality rate of 87%, which 

is higher mortality than what is seen in frequent oncologic diseases, such as prostate, breast, and 

melanoma. 

1.1.1 Epidemiology  

1.1.2 Incidence 

As the total number of TJA continue to increase, the incidence of PJI is expected to grow 

as well. Several studies have identified an increased incidence of PJI in hip and knee replacements. 

Kurtz et al. (14) reported an increase in the annual incidence from 1.99 to 2.18% and from 2.05 to 

2.18% for hip and knee replacements, respectively. The Nordic Arthroplasty Register Association 

also demonstrated an increase in the cumulative 5-year revision rate for PJI after THA, from 0.46% 

to 0.71% during 1995-1999 and 2005-2009, respectively (16).  

On the contrary, Tsaras et al. (17) performed a population-based study from 1969-2007 

analysing 75 PJIs in 7,367 replacements and did not find evidence of an increase during their study. 

The cumulative incidence of PJI were 0.5, 0.8, and 1.4% at 1, 5, and 10 years, respectively. The 

most significant risk period was the first two years after the arthroplasty, accounting for 60 to 70% 

of infections diagnosed (10,17,18).  
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Although the increased incidence per joint per year is controversial, the overall number of 

PJIs will likely increase secondary to the increasing number of elective arthroplasties being 

performed and the total cumulative arthroplasties still functioning well in society.  

1.1.3 Economic Costs 

In addition to the patient morbidity and mortality, there is a significant economic impact 

associated with PJIs. The overall cost to treat PJI in the US was $566 million in 2009, which is 

expected to increase up to $1.62 billion in 2020 (14). Of course, individual costs in each patient 

are influenced by the elected treatment.  

For example, a single-stage revision surgery due to PJI has higher costs than a revision for 

aseptic loosening due to an extended time of surgery, increased blood loss, and a higher 

complication rate (19).  

Indeed, debridement, antibiotics, and implant retention (DAIR) triple the cost to treat a 

single PJI case compared to a primary TJA (20). Even more, the mean costs of one- and two-stage 

revision surgeries are approximately 3.4 and 6 times higher than the cost of a primary arthroplasty, 

respectively (21).  

Additionally, Canadian data also confirms the tremendous economic impact of PJI in TJA. 

The authors reported a 5-fold increase in hospital expenditure in the management of PJI compared 

with primary THA and TKA, including a significant increase in mean length of hospital stay, mean 

number of clinic visits, number of readmissions, and average overall cost (22,23). 

1.1.4 Risk Factors 
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The principal risk factors associated with PJI are obesity, diabetes mellitus, chronic 

inflammatory disorders such as rheumatoid arthritis (RA), smoking, length of primary surgery, 

prior interventions on the joint, and immunosuppression (18,24). 

Obesity (body mass index (BMI>35) has been related to an increased risk of infection in 

several studies (18,25–33). The extended surgical time has been hypothesized as one of the causes 

of increased infection risk (34). Nonetheless, other studies have confirmed obesity as an 

independent risk factor after adjustment for confounders (26,28). Berbari et al. (35) could not 

demonstrate that correlation, and on the contrary, he also reported a higher risk of PJI with BMI < 

25 (24).  

Diabetes mellitus has also been related to an increased risk of PJI (26,36–38), being present 

in almost 30-40% of cases (125). Mraovic et al. (39) reported that before elective THA or TKA, 

perioperative hyperglycaemia was related to a higher risk of PJI, even in non-diabetic patients. 

This might be a consequence of an increased biofilm formation in the context of hyperglycaemia 

(40), inadequate leukocyte response, and microvascular pathology in diabetic patients, which may 

affect wound healing and lead to surgical site infections (SSI). Nevertheless, not all authors have 

found a strong correlation between diabetes and PJI (25,35), and some others have classified 

diabetes with other immunosuppressive diseases (29). 

RA, immunosuppressive therapy, and malignancy have been related to a higher risk of PJI 

in several studies (18,35,41–44). Frequently, it is challenging to isolate the essential role of each 

comorbidity in highly comorbid patients. Bongartz et al. (43) reported an infection rate of 2.3% 

during the first postoperative year for patients with RA. Berbari et al. (29) showed a 2.2-fold 

increase in the risk of PJI when multiple comorbidities such as RA, systemic immunosuppression, 

diabetes mellitus, chronic kidney disease, and malignancy were considered.  
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Biologic disease-modifying antirheumatic drugs (DMARDs) have also been associated 

with an increased risk of SSI after TJA; however, the small number of included patients did not 

allow the authors to reach categoric conclusions (45,46). Current RA guidelines strongly 

recommend withholding tumour necrosis factor-alpha inhibitors (DMARDs) close to the date of 

the surgical procedure (47,48). In clinical practice, the management of DMARDs is diverse and 

must be individualized for each patient. Akkara Veetil et al. (49) suggest withholding one cycle of 

biologic DMARDs before TJA and resume treatment one or two weeks after the procedure. 

Although scarce evidence recommends continuing nonbiologic DMARDs during TJA, 

methotrexate can be withheld if wound healing concerns are expected (50,51). When revision 

surgery due to PJI is indicated, weekly methotrexate and biologic DMARDs should be withheld 

for one or two cycles before the procedure. Once the surgery is performed, nonbiologic DMARDs 

may be reinitiated when the wound is completely healed. The reinitiation of biologic DMARDs 

depends on the surgical treatment employed. If a two-stage revision surgery (TSRS) is indicated, 

biologic DMARDs might be restarted once the incision is healed after the reimplantation. When 

one-stage revision surgery (OSRS) or DAIR is performed, biologic DMARDs reinitiation can be 

indicated once suppressive antibiotic treatment is started. It is essential to highlight that the 

perioperative management of DMARDs should be individualized for each patient and monitored 

by the treating rheumatologist.  

The PJI rate after a revision surgery is higher than that after elective TJA (29,35,52,53). 

Some related risk factors are extended surgical time, a possible PJI undiagnosed during revision 

surgery, and soft tissue deficiency. 

Other variables have been reported to increase the risk of infection after THA or TKA, 

such as male gender (8,10,16,27,54), smoking (12), previous history of bacteraemia during the 
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previous year (55), history of septic arthritis (35), and intra-articular corticosteroid injections three 

months before TJA (56,57). Additionally, a high American Society of Anesthesiologists 

preoperative score has also been related to a higher risk of PJI (18,25,26,29).  

Surgical factors may also influence the risk of infection. Although several studies reported 

no difference between cemented and cementless TJA (35,58), cemented fixation has the theoretical 

benefit of antibiotic addition and the consequent local release to prevent an infection. Postoperative 

wound-related complications have been related to a high risk of infection, such as dehiscence, 

wound drainage, SSI, and hematoma (18,29,35,41,55). An extended surgical time is related to a 

higher risk of infection (8,10,35,54), with a 9% increase risk every 15-min increment of surgery 

(26) due to more prolonged exposure to bacterial contamination.  

Pulido et al. (18) also identified postoperative myocardial infarction and atrial fibrillation 

as additional risk factors for an increased risk of PJI. The authors stated that the necessary 

anticoagulation therapy would predispose to the development of a subclinical hematoma.  

Blood transfusion has been reported as an additional risk factor in several studies. It is 

essential to differentiate the allogenic transfusion from the autologous, as the first one has been 

related to a higher risk than the autologous procedure (18,35,59,60). Several hypotheses have been 

developed, and most of them highlight the role of the immune response to transfusion.  

Perioperative urinary or respiratory tract infections are related to a higher risk of PJI 

(12,18,29), probably because of transient bacteraemia from the distant infection sites during the 

immediate postoperative period (61). In this sense, patients must be thoroughly assessed for 

possible signs and symptoms suggesting urinary or respiratory infections at the pre-admission 

visits and treated consequently to decrease the risk of infections. 
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1.2 Clinical presentation 

Clinical findings can be challenging unless the responsible microbe is aggressive enough 

to activate the immune system. In this sense, the presentation may vary based on the microbe's 

virulence, the type of infection, the host immune system, the surrounding soft tissue, and the 

affected joint.  

Acute compromise usually manifests as deep wound infections. The presentation might 

include different signs and symptoms, including pain, inflammation, erythema, increased 

temperature, fever, wound drainage, or a sinus tract communicating with the joint. While several 

studies recognized pain as the most commonly identified symptom (17,62–64), Peel et al. (65) 

reported wound drainage as the most common manifestation, with pain being diagnosed in only 

42% of patients. Indeed, wound-related complications, such as abscess, sinus tract (17,65,66), or 

dehiscence, were more frequent in perioperatively PJI than in hematogenous PJI (63,66). Clinical 

confirmation of wound infection is the strongest risk factor for acute infection (Odds Ratio: 52, 

95% Confidence Interval: 21 to 130) (67).  

Some chronic PJIs can also be oligo or asymptomatic (6,17). Typically, patients do not 

have overt signs of infection but instead complain about chronic pain, poor function, and history 

of discomfort. Most patients with PJI or aseptic failure will probably complain about pain; thus, 

pain does not seem helpful for the differential diagnosis between them. Fever has been reported to 

be present in only 4.5% of all cases (68), and a systemic compromise is considerably more frequent 

in hematogenous infections. The only exception would be the evidence of a sinus tract 

communicating with the joint, which is considered a major criterion in most international 

consensus (3,69,70). 
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The varied presentation can make the diagnosis of PJI challenging for the clinician. It is 

crucial to assimilate all the clinical findings and risk factors and use them to guide investigations 

to confirm the diagnosis and establish a treatment plan. 

1.3 Classification schemes 

Different classification schemes have been published, but the most accepted is based on 

the time to presentation and dissemination mechanisms (71). 

An acute or early PJI results from microorganism contamination during the surgical 

procedure or the initial postoperative period. These relatively virulent microorganisms are usually 

part of the normal cutaneous flora and compromise wound healing with prolonged post-operative 

wound drainage.  These infections are usually symptomatic and diagnosed within 90 days of 

implantation. 

Late chronic PJIs can occur between 3 to 12-24 months after the surgery. They may also 

result from intraoperative contamination but are caused by less virulent microorganisms. The 

difference between acute and late chronic can be affected by the organism's virulence and the 

needed inoculum to develop the infection, resulting in a more indolent presentation. The time 

between inoculation and initial symptoms is the time needed for microorganisms to grow and 

proliferate. 

Late hematogenous PJIs result from a spread from a distant focus and may appear any time 

after TJA with an acute presentation in a previously healthy joint. Additionally, as distinguished 

from chronic types where general symptoms are usually absent, hematogenous infections cause 

malaise, chills, fever, generally of the septic type (13). 
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Most early and hematogenous PJIs are caused by aggressive microorganisms, especially 

Staphylococcus aureus (S. aureus), beta-haemolytic streptococci, Gram-negative bacteria, and 

polymicrobial infections. On the contrary, chronic PJIs are usually caused by indolent microbes, 

including Coagulase-negative staphylococci (CoNS), Enterococcus and Cutibacterium species. 

Nevertheless, there is a universal consensus to recognize S. aureus as the most frequent causative 

microorganism, responsible for 18 to 73% of all PJIs (72). 

Tsukayama et al. (73,74) developed another type of classification in the 1990s. They 

divided four categories according to the time of the surgery and the mechanism of infection. The 

first category includes cases with positive intraoperative cultures in patients with presumed aseptic 

failures. The second category includes early postoperative PJI occurring during the first 

postoperative month. The third category includes late chronic infections one month after the 

replacement with an indolent presentation. Finally, the fourth category includes acute 

hematogenous PJIs.  

To conclude, McPherson et al. (75,76) described a classification analysing the type of PJI 

and the host immune system. This classification includes early, hematogenous, and late chronic 

infections, categorized as type I, II, or III, respectively. The host immune system can be 

categorized as A (not compromised), B (immunocompromised), or C (significant 

immunocompromised), based on the evidence of neutropenia, low CD4 T-cell count, or patients 

older than 80 years. The joint can be classified as 1 (not compromised), 2 (compromised), or 3 

(significantly compromised), based on the evidence of chronic active infection, including soft 

tissue deficiency, sinus tract, dehiscence, or abscess. 

1.4 Pathogenesis 
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1.4.1 Initiation 

Most PJIs diagnosed during the first postoperative year result from direct contact or 

aerosolized contamination of the implants or surrounding soft tissues during the surgical 

procedure. After contamination and consequent colonization, a low inoculum of bacteria is 

necessary to produce the infection. Southwood et al. (61) demonstrated that less than 102 CFU of 

S. aureus are needed to establish an infection after inoculation during a hip hemiarthroplasty in an 

animal model study, compared with 104 CFU if no device is implanted.  

Another mechanism of initiation is contiguous dissemination from a nearby focus. During 

the early postoperative period, superficial SSIs can progress and affect the prosthesis and deep 

layers. On the other hand, a late PJI can also occur if old wounds are disrupted after a traumatic 

episode or a new adjacent surgery.  

Lastly, hematogenous dissemination from a distant site is infrequent but still possible 

during the entire follow-up of the patient. Uckay et al. (77) reported only seven hematogenous PJIs 

in 551 distant infections after 6,101 TJAs. PJIs were found in 5/81 (6%) patients with confirmed 

bacteraemia, with S. aureus as the most frequently identified microbes.  

Multiple authors reported almost 30 to 40% risk of hematogenous PJI after confirmed S. 

aureus bacteraemia (78,79), compared to a 3 to 10% risk in native joints (80–82). Although S. 

aureus was the most commonly isolated microorganism, CoNS, Streptococcus and Enterococcus 

species, and aerobic Gram-negative bacilli have also been reported as causative pathogens of 

bacteraemia and later hematogenous PJI (18,83,84). Usually, bacteraemia and PJI manifestations 

occur at the same time. Nevertheless, some microbes may need more time to establish the infection 

between bacteraemia and PJI presentation (85). 
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1.4.2 The Importance of Biofilm 

 Biofilms are any syntrophic consortium of microorganisms embedded in an extracellular 

matrix in which cells stick to each other and grow on different surfaces. Usually, microorganisms 

that form biofilms include bacteria, fungi, and protists.  

They can be mono or polymicrobial with different characteristics and growth behaviour. 

In this sense, mixed bacteria biofilms might be differentially affected by antibiotics or the immune 

response, making them challenging to diagnose.  

Biofilm formation has different “stages,” including attachment, initial growth, maturation, 

and detachment. Mature biofilms are formed by multicellular structures in which their components 

communicate with each other and have different functions (86).  

Biofilms can grow on different surfaces, including medical devices and implants. This 

characteristic allows several microorganisms to cause medical device infections, including PJIs. 

Indeed, microorganisms that are part of the normal flora hardly cause infections but can become 

pathogens in the presence of medical devices due to biofilm formation (86).  

The extracellular matrix is made of varying concentrations of polysaccharides and proteins. 

The biofilm is protective against antibiotics and the immune response (87), making treatment 

challenging and may require surgical procedures, including implant removal. The acquired 

antibiotic resistance is associated with the “persisters” cells and the protection provided by the 

biofilm structure (88,89).  

Biofilms have been associated with PJI, and there is strong evidence of their importance in 

the pathogenesis of infections. Stoodley et al. (90) demonstrated viable S. aureus biofilm in an 

infected prosthesis after removal.  
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On the other hand, different theories have been described regarding gene expression for 

biofilm formation. Some authors believe that key gene loci involved may differ between pathogens 

and contaminants. Galdbart et al. (91) demonstrated that the ica genes in Staphylococcus 

epidermidis are implicated in biofilm formation during PJI. Despite these findings, several studies 

have demonstrated that the ica genes are not needed to establish an infection (92,93). Definitive 

evidence regarding gene expression and its association with biofilm formation is needed to 

elucidate this controversy.  

Besides, it is necessary to mention the importance of biofilms in the diagnosis of PJI. 

Usually, microorganisms are settled around the implants and influence the sensitivity of culture 

samples. A diagnostic alternative to solve this challenge is to obtain samples applying sonication 

techniques (86).  

1.4.3 Propagation 

At first, the infection is typically only present in the intraarticular space, and histology may 

reveal large granulomas with neutrophils and abscesses. The next step involves disseminating to 

the proximal bone, with the upper 1/3 of the metaphysis being compromised during the third week. 

If the infection progress, it finally compromises the remainder of the metaphysis and affects the 

immediate area of the diaphysis (86).  

On the other hand, hematogenous infections are believed to have some differences 

regarding the initiation process. Cremieux et al. (94) reported that hematogenous long bone 

osteomyelitis might begin at the metaphysis, and consequently, it is possible that it progresses to 

the joint space and affect the prosthesis. More studies are needed to prove whether this difference 

would alter the diagnosis and treatment of infections. 
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1.5 The role of the immune system 

Physical barriers are the most basic form of nonspecific defence. They aim to prevent 

microbes from reaching tissues and provide mechanical defences that physically remove microbes 

and debris from areas of the body susceptible to infection.  

At the cellular level, barriers are formed by tightly joined cells to prevent invasions from 

deeper tissues. Cell junctions are formed by cell membrane proteins related to the extracellular 

matrix or complementary proteins from other cells. Different cell junctions are available in 

different tissues, including tight junctions, desmosomes, and gap junctions. Pathogens may try to 

break down these barriers chemically, using enzymatic proteases, causing structural damage, and 

creating an entry point (95–97)  

Additionally, the normal microbiota competes with pathogens for nutrients. 

Microorganisms that are part of the normal flora of the cutaneous tissue infrequently cause 

infection unless the host is immunocompromised. The human cutaneous tissue is rich in fatty acids 

and sodium, helping prevent bacterial growth (95,96). 

When pathogens break down these physical and chemical defences, they may invade 

human tissues. If they effectively defeat initial barriers, they may face the primary humoral 

immune response, including the complement system (98). The complement system is formed by 

small proteins synthesized by the liver, circulating in the bloodstream as inactive precursors. When 

stimulated, proteases initiate an amplifying cascade of further events. This complement activation 

stimulates phagocytes, inflammation, and final activation of the cell-killing membrane attack 

complex. The membrane attack complex is a protein complex formed on the pathogen's cell 
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membrane, and its assembly leads to cell membrane disruption of target cells, leading to cell lysis 

and death (99).  

1.6 Synovial fluid, metals and their role in periprosthetic joint infection 

Osteoarthritis is a frequent pathology that affects joint cartilage and synovial fluid (SF), 

resulting in increased wear, inflammation, pain, and decreased mobility (100,101). SF is the 

neutral pH, viscous fluid that lubricates and cushions synovial joints during movement (102). Its 

proteins and hyaluronic acid concentrations, thermostability, and osmolality are essential in 

osteoarthritis and are therefore compromised (101). 

The host's immune system includes an innate response against pathogens in different body 

fluids, including SF. Current literature suggests that SF has defence factors to prevent infections 

apart from the cell-mediated immune response and might participate in the joint's natural defence. 

Gruber et al. (103) showed bactericidal activity of synovial fluid against different Staphylococcus 

species, including S. aureus.  

Iron is a necessary micronutrient for microorganisms due to its wide range of redox 

potentials. The iron participates in catalytic enzymatic processes in DNA synthesis and electron 

transport in any of its presentations. Although iron is abundant, the amount of free iron in living 

organisms is deficient due to its trend to form insoluble oxyhydroxides under aerobic and neutral 

pH conditions. Moreover, iron availability is further reduced by sequestration into proteins such 

as transferrin and lactoferrin (104,105).  

It has been reported that iron is scarce in SF from patients with osteoarthritis due to 

transferrin activity as an iron-binding protein. Ahmadzadeh et al. (106) demonstrated higher 

transferrin concentration in SF from osteoarthritic patients than patients with RA, which showed 
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higher free iron levels. In this sense, transferrin would reduce bacterial growth in SF, as they need 

iron to survive (107). Additionally, Watson et al. (108) demonstrated that SF from patients with 

osteoarthritis has minimum free iron concentration and bactericidal effect against S. aureus. As a 

result, the iron restriction would contribute to SF's bactericidal activity, and the complement 

system would kill bacteria.  

In addition to iron, microbes require zinc, manganese, and copper as essential 

micronutrients to survive. Copper is the third most abundant essential transition metal in humans, 

and it is required by several cellular enzymes that are involved in redox reactions (109). As a 

redox-active metal, copper is an ideal cofactor for enzymes involved in different physiological 

processes such as photosynthesis, respiration and detoxification and iron metabolism (110). 

Nevertheless, an excess of copper can be harmful to cells, potentially producing toxic reactive 

oxygen species (111,112). Consequently, transport and cellular copper homeostasis are strictly 

regulated. 

The entire human body contains between 75–100 mg of copper, and the highest amounts 

are in the liver, kidney, and brain (113). Usually, more than 90% of the copper in the blood is 

bounded to ceruloplasmin, which is responsible for transporting it to different tissues. It is 

estimated that the concentration of protein-free copper is less than 5%, leaving the remaining 

amount bound to transcuperin, albumin, and amino acids. The intracellular cooper is usually bound 

to chaperones because free cooper is potentially harmful to cells (114).  

The excess copper, especially the free proportion, may be toxic due to its redox potential.  

In this sense, the measurement of unbound copper in circulation would theoretically be helpful to 

detect potentially toxic copper overload. The normal range for total copper in blood is 85-180 

µg/dL (13.3-28.3 µmol/l = 13.3-28.3 µM), and serum-free copper reference values have been 
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routinely identified between 0-10 µg/dL (0-1.6 µmol/l = 0-1.6 µM). However, the mechanism by 

which SF kills bacteria is yet to be defined. A better understanding of its antimicrobial properties 

and the role of different metals, especially copper due to its bactericidal activity, might help 

develop new treatment alternatives. 

1.7 Microbiology 

1.7.1 Frequently isolated microorganisms 

Identification of the infecting microorganism is a crucial aspect of successful treatment. 

Several studies have analysed the frequency of the isolated microbes causing PJI (29,35,65,115–

119).  

The results show that Gram-positive cocci are the causative microorganism in most 

infections. S. aureus and CoNS are the most common, accounting for 50 to 60% of all PJIs, 

whereas streptococci and enterococci represent approximately 10% of infections. Aerobic Gram-

negative bacilli are responsible for less than 10% of hip and knee PJIs, and culture-negative 

infections may vary between 5 to 34% (65,119,120). These results might be influenced by several 

variables, such as the administration of preoperative antibiotics, the interpretation of positive 

culture results, the possibility of a positive result as contamination, and the amount and type of 

samples obtained.  

Isolation of the microorganism at the time of presentation with a PJI is relevant because 

causative microbes may vary and require tailored treatments. In acute settings (<1 to 3 months), S. 

aureus and aerobic Gram-negative bacilli account for 60% of infections (73,121–126). The high 

virulence of these microbes contributes to the clinical presentation during the early postoperative 

period. Nevertheless, CoNS and polymicrobial infections remain essential due to the low virulence 
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inoculation with multiple microorganisms during the surgical procedure or local dissemination. 

Late chronic PJIs (3 to 12-24 months) are usually a consequence of low virulence microorganisms 

during the replacement, including CoNS and enterococci as the most frequent, and aerobic Gram-

negative bacilli as less common (127). Late hematogenous PJIs (>12 to 24 months) result from 

spread from a distant site, with S. aureus as the most frequent isolated microorganism (78,79,128). 

1.7.2 Staphylococcus aureus as a pathogen  

Sir Alexander Ogston first discovered S. aureus in 1881, when Staphylococcus was found 

as a possible cause of wound infections (72,129,130). The name was a consequence of its clustered 

appearance, evidenced under microscope. In 1884, Friedrich Rosenbach identified Staphylococcus 

Aureus (Aurum, Latin word for "gold"), differencing it from Staphylococcus Albus (Albus, Latin 

word for "white"), a related bacterium (131). 

S. aureus is a Gram-positive, round-shaped commensal bacterium that forms pairs, tetrads, 

irregular "grape-like" structures and is part of the body's normal microbiota (129,132). It is usually 

found in the upper respiratory tract and on the cutaneous tissue and is positive for catalase and 

nitrate reduction. Additionally, it has unique characteristics to survive in adverse environmental 

conditions, being a facultative anaerobe that can survive without oxygen supply (133). 

Although S. aureus is an endogenous microorganism of the human microbiota, it can also 

behave as an opportunistic pathogen, being one of the most frequently isolated bacteria that causes 

a wide range of clinical infections. Pathogenic strain infections result from the expression of 

virulence factors such as potent protein toxins and cell-surface proteins that bind and inactivate 

human antibodies (72). 
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Approximately 20% to 30% of all healthy patients have their anterior nares colonized and 

are S. aureus carriers, which has been shown to be related to a higher risk of PJI (72,134–136). S. 

aureus can also be isolated from the normal cutaneous flora and women's lower reproductive tract 

(137). Wertheim et al. (138) reported that almost 80% of nosocomial S. aureus infections were 

related to previous nasal colonization. 

A wide range of symptomatic affections has been reported due to acute and chronic S. 

aureus infections, from minor skin infections, osteoarticular, implant-related, to life-threatening 

diseases such as pneumonia, meningitis, osteomyelitis, endocarditis, toxic shock syndrome, 

bacteraemia, and sepsis (72,129). Acute bacteraemia and cutaneous infections are usually a result 

of toxins and enzyme activity (139). On the other hand, chronic infections are related to biofilm 

production, where S. aureus attaches and survives, affecting bone, heart valves, and medical 

implants (140). 

1.7.2.1 Epidemiology 

S. aureus is the most isolated microorganism in all three major osteoarticular infections, 

including osteomyelitis (141), native joint septic arthritis (142), and PJI (83).  

In almost all series and for all types of PJI, S. aureus is the most common causative 

organism, accounting for 18 to 73% of cases (72,86). In patients with TJA who suffer S. aureus 

bacteraemia, a PJI occurs in 29 to 39% (79). Additionally, it is one of the most frequent causes of 

invasive nosocomial and healthcare-associated bloodstream infections (143,144). Several studies 

(145,146) reported an increased risk of invasive infection when risk factors such as medical 

devices, intravenous drug use, haemodialysis, RA, diabetes, and S. aureus nasal colonization are 

present. 
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One of S. aureus's principal characteristics is its capacity to develop antibiotic resistance, 

making treatment even more difficult. The first episode of penicillin resistance was reported in 

1942, although its mechanism was first identified in the mid-1940s based on an inducible beta-

lactamase.  

On the other hand, Beecham developed methicillin in 1959, initially used to treat penicillin-

resistant S. aureus strains. The first methicillin-resistant S. aureus (MRSA) strain was evidenced 

in 1960 (129,147,148), and it is defined as an oxacillin minimum inhibitory concentration ≥ of 4 

micrograms/mL. Its resistance mechanism is not related to beta-lactamase production, like with 

penicillin. Still, it is a consequence of the Penicillin-Binding Protein 2a expression, which has a 

low affinity for beta-lactams (129,132). Penicillin-Binding Protein 2a is expressed by the gene 

mecA, localized in the Staphylococcal cassette chromosome mobile genomic element. The mecA 

gene is present in almost all Staphylococcal species; consequently, the methicillin resistance 

determinant (mec determinant) might be easily transmissible between different strains (129,149). 

In the 1970s, MRSA spread worldwide, acquiring resistance to different antibiotics. The 

additional resistance to gentamicin was initially discovered in Europe and the US, reaching 

Australia and Latin America. In 2003, several authors reported MRSA prevalence of 60% in US 

intensive care units (ICU) (147,150). It has been identified in several cutaneous and soft tissue 

outbreaks in the healthy population in Europe, the US, and Canada (151). According to Kavanagh 

et al. (152), MRSA is endemic in the US, with 2% carriers in the general population and 43% of 

S. aureus cultures' oxacillin-resistant.  

MRSA was first identified in Canada in 1964, but the first outbreak was reported in 1978 

in Montreal. Until the 1980s, MRSA was primarily described as a hospital-acquired infection but 

has become community and livestock-acquired, being highly resistant to most oral antibiotics 
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(153). Healthcare-associated MRSA (HA-MRSA) infections affect patients with predisposing risk 

factors, and community-associated MRSA (CA-MRSA) infections usually occur in the healthy 

population. CA-MRSA strains are widely spread in some areas, being more virulent and 

transmissible than HA-MRSA (154). 

1.7.2.2 Methicillin-resistant Staphylococcus aureus periprosthetic joint infection 

The treatment of PJI after TJA has been complicated with the increasingly frequent 

appearance of antibiotic resistance strains (155). The actual evidence suggests an increasing 

number of PJI caused by MRSA. Parvizi et al. (156,157) reported a 50% prevalence of MRSA in 

the US. 

Usually, PJIs are related to an increased readmission rate, length of stay, follow-up visits, 

and lower functional results (22,23,158). Several studies have found an estimated cost of more 

than $100,000 per case, generating an economic burden for the patient and the healthcare system 

(22,158). 

The economic costs of MRSA PJI are certainly higher than that of methicillin-susceptible 

Staphylococcus aureus (MSSA) infections. Essentially, they are a consequence of the increased 

length of stay and ICU admissions (156). Parvizi et al. (156) reported a significant increase in 

expenses associated with MRSA PJI over the past decade, with estimated annual costs near $450 

million. 

MRSA has been identified as a frequent cause of acute PJI, secondary to its aggressive 

virulence. Due to the growing number of TJA performed worldwide, PJI caused by MRSA would 

have negative consequences on implant survival and are related to higher morbidity and mortality 

rates than MSSA (155). 
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Management is generally prolonged, and most implants are compromised (155). Poor 

DAIR outcomes have been reported when MRSA caused PJI. As expected, the most effective 

treatment for this type of infection is TSRS, with an extended antibiotic treatment before 

reimplantation. Regarding antibiotic treatment, different studies reported a minimum duration of 

5 weeks for TKA and 8-12 weeks for THA, including i.v. vancomycin combined with oral rifampin 

(159).  

Although different pre and postoperative measures, such as skin decolonization, routine 

antimicrobial prophylaxis, increased hand hygiene compliance, and patient isolation, contributed 

to reducing MRSA infections, it still is a significant cause of morbidity and mortality (147); 

therefore, high surveillance and novel treatment options are needed (129). 

1.7.2.3 Mechanisms of antimicrobial resistance 

Several glycopolymers have been described on the surface of S. aureus, including wall 

teichoic acid, peptidoglycan, lipoteichoic acid, and capsular polysaccharides. These cell-surface 

proteins are then recognized by the host's immune system, resulting in the complement system 

activation (160). The essential characteristic of S. aureus is adapting and surviving under 

unfavourable conditions. It is well-known for evolving and generating resistance to almost all 

available antibiotics (147,161).  

Resistance is defined as an increase in an antibiotic's minimum inhibitory concentration 

value due to bacteria mutation. On the other hand, tolerance is the capability to resist the antibiotic 

effect due to reversible phenotypic changes (162). Antibiotic resistance is a natural event since 

bacterial evolution included resistance to antimicrobials even before human existence (163). 

Antibiotic tolerance has been identified in several microorganisms for a wide range of antibiotics. 



22 
 

The main characteristics implicated in antibiotic tolerance/resistance are bacterial dormancy (164), 

biofilm thickness (165), persister cells (164), and sub-minimum inhibitory antibiotic concentration 

(165). 

Biofilm formation is a common characteristic of most bacteria; hence antibiotic tolerance 

is a frequent consequence. In biofilms, antibiotic tolerance is associated with the type of biofilm 

growth (166). Most of the usual microorganisms isolated in PJI have been proven to form biofilms, 

including pathogens such as Cutibacterium acnes, Staphylococcus epidermidis, Enterococcus 

faecium, Pseudomonas aeruginosa, and S. aureus, among others (167). Interestingly, biofilms can 

be formed even before PJI diagnosis. Saeed et al. (168) reported that progressive biofilm formation 

results from several microbial, host, and environmental characteristics without a direct correlation 

with symptoms appearance. In this sense, there are limited chances to act before biofilm formation.  

Survival of S. aureus relies on biofilm formation (169,170). A biofilm is a sessile 

microorganism community where microbes attach to surfaces protected by an extracellular 

polymeric matrix (140). This polymeric matrix structure acts as an environmental reservoir, 

enables S. aureus to adhere to implanted devices, and protects against antibiotics and the immune 

system. Additionally, microorganisms usually begin a stationary phase where they stop growing 

due to biofilm formation, and as a result, they develop a higher resistance to antibiotic killing, 

thereby increasing their virulence (72,171). 

Any type of implant is vulnerable to biofilm attachment and, therefore, at risk of 

developing an infection. S. aureus biofilms have been found in chronic infections, affecting 

different orthopaedic implants, including wires, pins, screws, plates, and prostheses (172). The 

infection can occur during the surgery, due to a traumatic event, or after hematogenous 

dissemination, after microorganism attachment to surface proteins (172). Biofilm formation 
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around implants and surrounding soft tissues have been proven to be difficult to eradicate, and the 

optimal management, including antibiotic therapy, remains unclear (168,173,174). A clear 

understanding of biofilm formation is crucial to developing new alternatives for treating these 

aggressive pathogens.  

Biofilm formation was traditionally described as a three-stage process consisting of (1) 

attachment, (2) accumulation/maturation, and (3) detachment/dispersal (175). The development of 

new technologies using time-lapse microscopy, such as the BioFlux1000 system, allowed 

scientists to analyse a more detailed process, describing five stages instead of three: attachment, 

multiplication, exodus, maturation, and dispersal (Figure 1) (170).  

(1) Attachment: S. aureus cells use several specific proteins to attach to different host 

matrix surfaces. These surface-attached proteins are known as the microbial surface components 

recognizing adhesive matrix molecules. Several of them have similar cell wall structures (176) but 

have different binding characteristics for host matrix components (177).  

(2) Multiplication: after attachment and with enough nutrient supplies, S. aureus cells will 

start division and accumulation. Before the self-production of an extracellular matrix, the new cells 

are at risk of detachment, mainly associated with the fluid flow forces. To maintain this immature 

biofilm's stability, S. aureus cells produce various proteins to stabilize cell-to-cell bindings (170). 

During this phase, microorganisms begin to biosynthesize the cell wall. It is a complex 

structure covering mature S. aureus cells, and it is formed by host factors, secreted and lysis-

derived proteins, polysaccharides, and eDNA. This polymer is the main structure of the bacteria 

and is mainly made of peptidoglycans. It is made of sugars and amino acids that forms a mesh-like 

surface outside the plasma membrane. It provides structural support, regulates the cytoplasm's 
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osmotic pressure, and is involved during bacterial cell division. The peptidoglycan cell wall is 

formed by a polysaccharide intercellular adhesin, known as poly beta-1,6-N-acetyl-D-glucosamine 

(PNAG) (178). The polysaccharide intercellular adhesin polymer is made of β-1,6-linked N-

acetylglucosamine and is an essential component in S. aureus biofilm structure (179). Due to the 

DNA polymer's negative charge, eDNA acts as an electrostatic polymer that binds S. aureus cells 

to a surface, host factors, and each other. The enzyme DD-transpeptidase is responsible for the 

cross-linking process, resulting in a solid and rigid 3-dimensional structure (169). Immature 

biofilms are most susceptible to DNAase treatment, suggesting that eDNA may be implicated 

during attachment (180). The peptidoglycan layer is significantly thicker in Gram-positive bacteria 

(20 to 80 nanometres) compared to Gram-negative bacteria (7 to 8 nanometres) (181). It forms 40 

to 90% of the cell wall's dry weight of Gram-positive microorganisms but only 10% of Gram-

negative. Therefore, these high amounts of peptidoglycan are the primary differentiation of 

bacteria as Gram-positive, participating in attachment and serotyping purposes (181). 

(3) Exodus: this phase is one of the new biofilm formation concepts discovered using time-

lapse microscopy. It consists of a unique and coordinated release of cells approximately 6 hours 

after the beginning of the multiplication phase. Basically, it is an early dispersal with microcolony 

formation resulting in biofilm restructuration. It is regulated by nuclease-dependent degradation 

of eDNA and is independent of the accessory gene regulatory (Agr) quorum-sensing system (170) 

(4) Maturation: this stage consists of microcolony formation that provides an increased 

surface for nutrient and waste exchange. It also encourages biofilm cell dissemination to distal 

sites (182). In this sense, rapidly growing microcolonies are formed from different groups of 

slower-growing cells that persist in the basal layer immediately after the exodus' initiation (183).  
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(5) Dispersal is the final phase where microorganisms can spread to distant sites and 

disseminate the infection. This phase is under the Agr quorum-sensing system's control, 

responding to bacterial cell density and allowing dispersion and bacteraemia (170,184). 

Virulence regulation includes complex global regulatory circuits that sense environmental 

conditions and determine the activation of master regulators to modulate gene expression. S. 

aureus responds to cell density through an auto induced, quorum-sensing signal.  

 

 

 

 

 

 

 

 

 

 

In 1986, Recsei et al. (185) identified this Agr quorum-sensing system as the master 

virulence regulator in S. aureus. The Agr quorum-sensing system depends on cell density and the 

accumulation of signal molecules called autoinducers. In S. aureus, an auto-inducing peptide (186) 

accumulates in the culture medium, and after reaching a specific threshold concentration, binds to 

Figure 1. S. aureus biofilm formation in five stages: A) Attachment: S. aureus cells attach to a 

surface, B) Multiplication: after attachment, the biofilm develops into a confluent group of cells 

made of eDNA and proteinaceous matrix, C) Exodus: after confluency, a massive exodus occurs, 

and a minor subgroup of cells is released from the biofilm to allow three-dimensional 

microcolonies development, D) Maturation: this stage is defined by rapid cell division forming 

big collections of cells. These microcolonies are formed from different groups of cells that have 

remained attached during the exodus stage, E) Dispersal: activated Agr-mediated quorum 

sensing initiates biofilm matrix modulation and dispersal of cells. 
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and activates the histidine kinase, AgrC. Once activated, AgrC phosphorylates the response 

regulator, AgrA, which then initiates transcription from the P3 promoter of the Agr operon, 

producing a regulatory RNA molecule (RNAIII) that regulates the expression of several virulence 

factors and biofilm-associated genes (187,188). BioFlux1000 system demonstrated an increased 

P3 promoter expression within microcolonies due to auto-inducing peptide accumulation (189). 

There is a direct correlation between P3 activation and biofilm dispersal, which may be due to 

increased protease activity and subsequent degradation of the protein-based extracellular matrix 

(190). 

Regarding copper, there is evidence in the literature of an increased systemic and local 

copper availability during infections (191). This suggests that the host environment uses copper’s 

toxic properties to fight microbes. Free copper is toxic for most bacteria, and they go to great 

lengths to avoid its accumulation in the intracellular/cytoplasmic compartment. Most identified 

bacterial cuproproteins are within the cytoplasmic membrane or in the periplasmic space. Usually, 

microbes strictly regulate copper, and they use it in complex physiologic processes. Indeed, several 

studies showed less than 104 free copper atoms in each bacterial cell (192,193).  

Usually, bacteria can avoid copper toxicity by three principal mechanisms, 1) copper efflux 

across the plasma membrane into the periplasmic space or the extracellular compartment, 2) 

copper sequestration within the cytoplasm or periplasm by copper-binding proteins, or 3) Cu(I) 

oxidation to generate the less toxic Cu(II) ion (194,195). Different types of copper export proteins 

have been identified in bacteria, and almost all Gram-negative or Gram-positive microorganisms 

appear to possess at least one copper exporting P1B-type ATPase that prevents the cytoplasmic 

accumulation of copper (196–198). Examples of these proteins include CopA of E. coli, CopA1 

and CopA2 of Pseudomonas aeruginosa and CopA, GolT of Salmonella typhimurium and CopZ 
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of Enterococcus hirae. CopA is a copper exporting P1B-type ATPase that is usually activated 

under high extracellular copper concentrations (199–202). Solioz et al. (196) identified the 

presence of P1B-type ATPases in Gram-positive bacteria, such as S. aureus, that export Cu(I) out 

of the cytoplasm across the cell membrane. 

1.8 Diagnosis 

The complete assessment of a painful TJA must include a detailed history, complete 

physical examination, and radiographic views to evaluate the corresponding implants. The 

diagnosis of PJI is usually based on clinical manifestations, laboratory results, including blood 

work and synovial fluid tests, microbiological data, histological analysis of tissue samples, 

intraoperative evaluation, and radiographic assessment (13). 

Multiple diagnostic guidelines within the joint arthroplasty literature recommend 

physicians suspect a PJI in any patient with a TJA and persistent wound drainage or acute pain 

without previous trauma or chronic pain at any moment since the initial replacement (69). 

High-risk patients include cases with the previous compromise of the same joint, multiple 

procedures, previous PJI or history of SSI, immunocompromised patients (i.e., diabetes mellitus, 

inflammatory arthropathy, human immunodeficiency virus, chronic kidney disease, etc.), and 

finally, patients with a high risk of cutaneous lacerations (i.e., intravenous drug abuse, skin ulcers, 

chronic venous insufficiency). During physical assessment, suggestive findings of PJI include joint 

erythema, effusion, and increased temperature (71). The radiographic analysis is generally 

performed to rule out other pain reasons such as implant loosening, wear, and periprosthetic 

fractures (13). No changes might be seen in the acute onset of symptoms. However, some 
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nonspecific characteristics like bone resorption, periosteal reaction, and osteolysis might suggest 

chronic infection.  

Different serological, synovial, microbiological, and histological investigations are 

performed, being some of them expensive, invasive, and inaccurate. Usually performed studies for 

PJI diagnosis includes direct or indirect methods.  

Direct methods consist of the identification of the pathogen microorganism. A confirmed 

PJI due to S. aureus requires its isolation from intraoperative fluid and/or tissue samples. Positive 

results from three intraoperative samples for the same microorganism represent a 95% probability. 

In contrast, two positive results represent a 20% probability, and one represents only 13% (203). 

Nevertheless, as S. aureus is never considered a contaminant, a single positive culture with a 

compatible clinical presentation can be considered diagnostic. Biofilm microorganisms can be 

difficult to identify due to poor growth and isolation characteristics (168). In order to improve 

isolation accuracy, novel techniques have been developed, including sonication of removed 

implants, the use of disclosing agents, and polymerase chain reaction (PCR) (86,168).  

On the other hand, indirect methods include several tests associated with the host's immune 

response to infection without microorganisms' isolation. Some of them are the erythrocyte 

sedimentation rate (3), C-reactive protein (3), synovial cell count and neutrophil percentage (204), 

leukocyte esterase (205), alpha-defensin (206), d-dimer (207), and histology (Polymorphonuclear 

neutrophils per high-powered field). Despite significant progress in the past years, laboratory 

analysis for the diagnosis of PJI remains a challenge, and no gold standard test exists. In this sense, 

in low-grade infections, some of these studies may not be routinely used (86,168). Recently, novel 

biomarkers and molecular methods have shown promising results in the current literature. Still, 

the most used inflammatory parameters among surgeons include the erythrocyte sedimentation 
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rate and serum C-reactive protein. An increased value of both markers after more than 90 days 

from the replacement suggests PJI (13,71,208). 

When suspecting PJI, one of the most critical diagnostic exams is the culture of SF samples, 

obtained through closed-needle joint aspiration (13). The SF evaluation must analyse the total cell 

and differential leukocyte counts and include culture analysis for aerobic and anaerobic 

microorganisms (3). However, contradictory results have been reported. Some studies (209) 

highlight closed joint aspiration as a highly specific procedure for infection, and others (210) 

confirm its lack of sensitivity. A variable false positive and false negative rate of Gram strains 

have been reported. Stirling et al. (211) reported a false-negative rate of 78% for 143 positive SF 

cultures. In this sense, special considerations must be followed when indicating joint aspiration. 

According to the American Academy of Orthopaedic Surgeons guidelines (212), avoiding any 

antibiotic therapy 14 days before aspiration or biopsy is necessary. If PJI can not be confirmed, 

the next step would be open surgery collecting at least five tissue samples for routine culture and 

histology (203). 

If components are extracted, they should be analysed. Routine sampling and cultures of 

removed implants lack sensitivity due to bacteria's biofilm, antibiotic treatment, or antibiotic-

impregnated cement. Sensitivity from prostheses can be increased by applying sonication 

techniques and culturing the sonicated fluid. This method has 75% sensitivity for culturing 

microorganisms, compared to 34 to 45% sensitivity for culturing multiple tissue samples. It is 

especially relevant if there has been recent antibiotic therapy (213,214). Nevertheless, false-

positive results due to contaminants are still possible if the correct threshold is not applied (215).   

Finally, the precise role of PCR is unknown, as it seems to add limited evidence to routine 

cultures and would also have false-positive and -negative results (216). Although S. aureus can be 
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easily cultured, in PJI, it is usually related to biofilm formation and more virulent and resistant 

infections (217). Consequently, they result in challenging isolation using standard microbiological 

methods.  

1.8.1 Diagnostic criteria 

The diagnosis of PJI continues to be challenging. While many diagnostic criteria have been 

developed over the past decades, including the one from the Infectious Diseases Society of 

America (IDSA) and the Musculoskeletal Infection Society (MSIS) (3,69,70), a universal 

consensus for its diagnosis is still lacking. Furthermore, different organizations, like the MSIS and 

the European Bone and Joint Infection Society, developed an international consensus for the 

definition and diagnosis of PJI (218).  

The MSIS definition has major and minor criteria for PJI diagnosis (69). A major criterion 

of PJI is the evidence of a sinus tract in communication with the joint or the same isolated 

microorganism in two different culture samples. The evidence of at least 4/6 minor criteria can 

also confirm the diagnosis.  

Similarly, the IDSA definition requires evidence of a sinus tract and at least two cultures 

with the same microorganism to confirm the diagnosis (3). On the contrary, the evidence of 

purulence itself, without confirmed aetiology, is considered a definitive criterion of PJI. Being 

said, if using the IDSA definition, excluding other causes of purulence is mandatory (219). The 

evidence of purulence has been removed from the International Consensus Meeting definition 

(218) to unify criteria. Additionally, the IDSA definition does not consider serum inflammatory 

markers or SF cell counts and does not follow major and minor criteria as the MSIS definition. 
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Furthermore, it considers different variables, such as the growth of an aggressive microorganism 

from a single culture or histopathology confirmation of acute inflammatory response. 

1.9 Treatment 

1.9.1 Treatment alternatives 

Despite new surgical techniques, modern designs, and routine antibiotic prophylaxis, PJI 

still is a major concern after TJA. Although PJI prevention should be the primary objective, the 

treatment aims to eradicate the infection and preserve a functional joint (220).  

In order to define the most accurate treatment option, several characteristics must be 

considered, including the host immune status and comorbidities, previous PJI history, duration of 

symptoms, characteristics of the wound, microorganism virulence, and patient expectations (13).  

Different treatment alternatives have been reported based on PJI classification (71), which 

should be individualized in each patient to enhance success. One of the most critical aspects of 

effective treatment is a collaborative and multidisciplinary approach, including surgeons, 

microbiologists, and infectious disease specialists (3,221). 

Current alternatives include non-operative treatment with long term antibiotic suppression, 

DAIR (222,223), one- (220,224,225) or two-stage revision surgery (226), partial implant retaining 

surgery (227), arthroplasty resection without reimplantation, arthrodesis and amputation.  

The use of antibiotic-loaded cement/calcium sulphate beads has been another alternative. 

They deliver high doses of antibiotics at the infection site (228). Calcium sulphate beads are 

biodegradable and, therefore, do not need to be removed. The selected antimicrobial agent should 

be effective against the isolated microorganism and available as a powder without loosening its 
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properties and effect after polymerization (229). The release process is performed in a biphasic 

curve. The first peak is identified between the first hours and days after the surgery. A slow and 

constant release characterizes the second phase during weeks, months, or even years (230,231). 

Antibiotic elution characteristics depend on the polymer used, room temperature, and pH 

conditions. Palacos cement, for example, is known for allowing a complete elution of antibiotics, 

including most aminoglycosides.  

On the other hand, the oldest registered medical use of copper is documented in the Smith 

Papyrus (232). This Egyptian medical manuscript describes the use of copper to sterilize chest 

wounds and drinking water (232). Several civilizations, including Greeks, Romans and Aztecs, 

also used copper to treat headaches, burns, intestinal worms, and ear infections. In the 19th century, 

a new interest in copper’s medical utility was generated by the evidence that copper workers 

appeared to be immune to cholera (232). Finally, the use of copper in medicine became universal 

in the 19th and 20th centuries, being used to treat chronic adenitis, eczema, impetigo, scrofulosis, 

tubercular infections, lupus, syphilis, anaemia, chorea, and facial neuralgia (232).  

The use of copper as an antimicrobial agent continued until antibiotics became available in 

1932. Unfortunately, due to antibiotic resistance, new alternatives to keep pathogenic 

microorganisms at bay are needed. In this sense, the use of copper surfaces in hygiene-sensitive 

areas has been developed (233). At this point, additional studies are needed to determine copper's 

potential role in treating PJIs and the most cost-effective presentation to deal with this devastating 

complication.  

Unfortunately, current treatment options involve aggressive procedures with high 

comorbidity for patients, and therefore, are not recommended in high-risk cases. Moreover, the 

high prevalence of antibiotic resistance raises concerns and limits antibiotic options (234,235). In 
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this sense, new and less invasive treatment alternatives must be developed to avoid aggressive and 

long revision surgeries, hoping to improve the effectiveness of current strategies. 

1.9.1.1 Debridement, antibiotics, and implant retention 

As we previously mentioned, PJI is a devastating complication after TJA with significant 

morbidity and surgical challenges. While TSRS is known as the gold standard for the treatment of 

PJI, it is related to high economic costs, morbidity and mortality. The DAIR procedure is a well-

known therapeutic alternative for acute PJIs. However, the success rate varies widely in the 

literature, and its efficacy and indication are still controversial. 

Several authors (236,237) identified different risk factors affecting DAIR outcomes, such 

as type of microorganisms, duration of symptoms, and previous antibiotic treatment. Even though 

patient comorbidities may affect DAIR outcomes (236,237), no clear association with DAIR 

failure was found (238).  

Obesity is a well-known risk factor that has been related to an increased PJI risk, but no 

direct association has been evidenced between DAIR failure and increased BMI (239). Systemic 

diseases affecting immune response, such as diabetes mellitus and inflammatory arthritis, may 

increase the risk of PJI. However, similarly to obesity, no strong association was reported with 

DAIR failure. In this sense, specific comorbidities may not contraindicate the surgery itself 

(239,240). 

It has been proven that the time between initial symptoms and intervention affects the 

success rate. Kunutsor et al. (240) reported poorer outcomes when DAIR was performed >21 days 

from clinical presentation. On the contrary, better outcomes were found when the surgery was 

performed <21 days from the onset of symptoms. 
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Acute PJI has been traditionally treated with TSRS, with more than 90% satisfactory 

outcomes (241,242). However, DAIR has been increasingly performed during the past two 

decades, reporting 70 to 82% satisfactory results in highly selected patients (243–246), being a 

less aggressive procedure.  

On the contrary, some other authors report poorer outcomes. Cobo et al. (123) analysed 

117 acute PJIs, and reported a 57% success rate. A systematic review including 710 cases of acute 

PJI treated with DAIR showed a 46% success rate for those undergoing a single procedure and 

52% when multiple surgeries were performed (247). Additionally, outcomes can be influenced by 

the responsible microorganism. Kunutsor et al. (240) reported a higher success rate in 

streptococcal PJI (89,5%) when compared to staphylococcal species (75%). Moreover, 

Triantafyllopoulos et al. (248) found higher failure rates when DAIR was performed due to S. 

aureus or MRSA infections. 

The outcomes of DAIR for acute hematogenous PJI are less accurate. Several studies 

reported poorer success rates than acute PJI, ranging from 50 to 70% (63,73,246,249). In patients 

where DAIR is not a possible option, the principal treatment alternative would be single or TSRS. 

On the other hand, chronic PJI is considered an absolute contraindication of DAIR. The 

mature biofilm formation around the implant requires removal of the prosthesis to achieve 

infectious control (250). In this sense, when the risk of failure is high enough, DAIR should not 

be recommended, and implant removal should be considered. 

DAIR seems to be an attractive alternative as it is cheaper and would avoid multiple 

procedures and prolonged postoperative periods. Zimmerli et al. (173) suggested an algorithm for 

the precise indication of DAIR for the treatment of PJI. In this sense, it should only be indicated if 
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the patient is less than three weeks since symptomatic presentation, has a stable TJA, no soft tissue 

deficiency, and susceptible microorganism to rifampin and/or quinolones. In all other cases, the 

intervention selected should be either a single or TSRS, or even long-term antibiotic suppression 

therapy if the patient is unfit for any surgical procedure. 

Two primary antibiotic therapies have been described for staphylococcal PJIs after 

adequate debridement in appropriately selected patients. The first alternative consists of 6 weeks 

of i.v. vancomycin (for MRSA or CoNS) or anti-staphylococcal penicillin (for MSSA). Different 

studies report success rates of 70% in acute PJI of the hip (73,125). The second alternative includes 

2 to 6 weeks of i.v. vancomycin or anti-staphylococcal penicillin, with 3 to 6 months of oral 

rifampin combined with a second oral antibiotic, frequently ciprofloxacin or fusidic acid.  

Zimmerli et al. (251) analysed rifampin's role in treating orthopaedic implant-related 

staphylococcal infections. Patients were randomized to receive either two weeks of i.v. 

flucloxacillin or vancomycin with rifampin or placebo, followed by either ciprofloxacin-rifampin 

or ciprofloxacin-placebo therapy for 3 to 6 months (251). Although the study has significant 

limitations and conclusions must be cautiously interpreted, the authors found successful results at 

24 months of follow-up for 12/12 patients in the rifampin group, compared with 7/12 in the placebo 

group. Other non-controlled studies of this second alternative were also controversial. Several 

authors demonstrated success rates varying from 57% (123) to 85% (243,244). Notwithstanding 

all limitations of these studies, the 2013 IDSA recommendation guidelines (3) suggest combined 

rifampin antibiotic treatment 3 to 6 months after DAIR.  

It is necessary to highlight the importance of an aggressive debridement to achieve 

successful results, even more critical than selecting antibiotic therapy. In this sense, Lora-Tamayo 
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et al. (63) reported that polyethylene liner exchange independently predicted satisfactory outcomes 

(adjusted Odds Ratio: 0.65; 95% Confidence Interval: 0.44 to 0.95). 

1.9.1.2 One-stage revision surgery 

OSRS was initially described by Buchholz et al. (252). Nowadays, it is performed 

worldwide, but it is more frequent in Europe. Several advantages have been associated with OSRS, 

such as only one intervention, anaesthesia, shorter length of stay, earlier postoperative 

rehabilitation, and fewer costs (253,254).  

Not every patient is a candidate for OSRS; on the contrary, specific characteristics should 

be considered for its indication. This includes a healthy patient, correct microorganism isolation 

before the surgery, aggressive intraoperative debridement, complete implant extraction with 

cement mantle if was used, and a precise postoperative antibiotic treatment. Additionally, it is 

necessary to have a collaborative and multidisciplinary approach, including experienced surgeons, 

infectious disease specialists, and microbiologists (254).  

On the other hand, several factors are contraindications for OSRS (220,224,255), such as 

more than two previous OSRS failures, vascular or neurovascular involvement, unidentified 

microorganisms before the surgery, microorganisms with high virulence or resistance, and 

unavailability of specific antimicrobial therapy.  

OSRS would include an aggressive debridement and all implant removal with cement 

mantle if it was previously used. Before antibiotic treatment initiation, a minimum of 5 fluid or 

tissue samples should be sent for further microbiology analysis. Irrigation is usually performed 

with at least 9 litres of saline solution and pulsatile lavage with an antiseptic product. The incision 

is then irrigated, and temporary wound closure is performed with interrupted sutures. The next 
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step includes the second draping in a sterile fashion with new surgical instruments. The new 

prosthesis implantation is generally fixed with antibiotic-loaded cement, considering the isolated 

microorganism and its sensitivity. Postoperative intravenous antibiotic treatment is indicated for a 

minimum of 6 weeks, adjusted to culture results. Additional oral antibiotic administration depends 

on the antibiogram and the microorganism sensitivity (255,256).  

Although TSRS is the most frequent type of treatment, OSRS seems to have comparable 

outcomes when performed by skilled surgeons. Haddad et al. (256) reported a 67% to 95% success 

rate in highly selected patients. In a meta-analysis, including 2,500 patients comparing OSRS vs 

TSRS  for PJI, similar success rates were evidenced at 24 months of follow-up (91% vs 90%) 

(242). Different complications have been related to OSRS, including 10% to 15% risk of re-

infection and reoperation (220). 

1.9.1.3 Two-stage revision surgery 

TSRS was originally described by Insall et al. (257). It has better reported outcomes than 

DAIR and is considered the current gold standard for chronic PJI. Mahmud et al. (119) reviewed 

253 TSRS for infected TKA and reported an infection-free survival rate of 85% at five years and 

78% at ten years.  

The treatment involves at least two procedures to treat the infection. The initial surgery 

includes removing the implants and all infected bone, tissue, and cement, followed by 2 to 8 weeks 

of i.v. antibiotics. A temporary antibiotic-loaded cement spacer is implanted to treat the infection 

and preserve a functional joint. Finally, a second procedure is indicated, where a new replacement 

is implanted once the infection is eradicated and inflammatory markers are normalized. Antibiotics 

are selected according to isolated microorganisms, the culture samples' results, antibiogram, and 
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sensitivity (258,259). Evidence related to the duration of antibiotic treatment between both 

surgeries and the selection of antibiotics is scarce. 

No universal consensus exists regarding the ideal type of spacer. Spacers are meant to 

preserve the joint space, reduce soft tissue tension, and deliver high doses of antibiotics while 

preserving a functional joint. Static spacers are specifically indicated in patients with massive bone 

loss, collateral ligament insufficiency, extensor mechanism injury, and soft tissue deficiency. On 

the other hand, articulating spacers can be indicated in almost all cases, except for the 

aforementioned characteristics. The principal difference between them is the supposed better 

functional outcome when articulating spacers are used. 

Similar results have been reported regarding infection eradication (258). Still, Park et al. 

(260) reported better functional outcomes with an improved range of motion and a more 

straightforward second-stage procedure using articulating spacers. However, evidence concerning 

spacer-related complications is scarce. Struelens et al. (261) reported a 57% complication rate, 

with spacer tilting and mediolateral translation as the most frequent. On the contrary, Lanting et 

al. (262) reported only an 8.4% spacer complication rate. In this study, posterior and lateral 

subluxation cases were not included, as the authors believed these complications were prevalent 

due to spacer mispositioning and incorrect soft tissue tension.  

Another controversial topic is the antibiotic treatment duration and the correct time of 

reimplantation. Insall et al. (257) initially described a prolonged intravenous therapy of 6 weeks 

before the second stage. Kuzyk et al. (263) questioned the standard six-week protocol and stated 

that the infection and the aggressive debridement might compromise the bone blood supply and 

surrounding tissues. In this sense, the antibiotic effect and its presence in the infection site would 

be attenuated. 
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Antibiotic-loaded cement spacers deliver high doses of antibiotics and can maintain an 

effective concentration for almost four months after implant removal (264). On the other hand, a 

shorter intravenous antibiotic protocol would decrease the risk of systemic toxicity and minimize 

the possible emergence of resistant microorganisms (159). Several authors reported similar success 

rates using short antibiotic protocols, with lower patient morbidity than standard therapies 

(159,264). 

Most recommendation guidelines suggest vancomycin for MRSA PJI and anti-

staphylococcal penicillin for MSSA, with or without additional rifampin (3). Due to vancomycin's 

poor bone penetration and low success rates, there is an increasing concern for the indication of 

different antibiotics, such as linezolid (265,266), daptomycin (267) and rifampin combined with 

quinolones or fusidic acid (243,268). 

Byren et al. (267) compared daptomycin versus standard-of-care therapy (vancomycin, 

teicoplanin, or nafcillin) to treat staphylococcal PJI undergoing TSRS. Although the study has 

several limitations, as the analysis was performed only 1 to 2 weeks after the second surgery, the 

authors reported higher creatinine kinase (CK) levels more frequently in the daptomycin group 

than in the standard-of-care group (CK level ˃500 in 19% of patients vs. 8%), and they also found 

a higher success rate in the daptomycin group (60% vs. 38%). 

1.10 Prevention  

Management of modifiable risk factors before surgery is crucial to prevent PJIs. Regarding 

diabetes, blood sugar levels should be improved. Strong recommendations (269) were developed 

suggesting strict blood glucose controls in diabetic patients, patients with hyperglycaemia, and all 

cases treated with therapies that can increase blood sugar levels resulting in hyperglycaemia. 
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Smoking cessation should be strongly suggested. Concomitant infections in other joints or sites 

must be treated before joint replacement. When considering RA, perioperative management of 

DMARDs should be decided with a rheumatologist. Finally, it must be remembered that TJA must 

be considered as elective surgery and should be carefully scheduled to decrease the impact of the 

patient’s underlying risk factors. 

1.10.1 Skin microbiota treatment 

Due to the high frequency of S. aureus PJIs, preoperative detection and decolonization of 

patients colonized with S. aureus have been strongly recommended to decrease the infection rate 

after TJA. Current prevention guidelines suggest mupirocin nasal unguent when nasal colonization 

is detected (270).  

Nevertheless, different studies regarding preoperative decolonization have produced mixed 

results. Bode et al. (271) found an 80% decrease in deep infection rate among different surgeries 

after PCR S. aureus nasal detection followed by a 5-day protocol of twice-daily nasal mupirocin 

and daily chlorhexidine bathing. Additionally, Chen et al. (272) demonstrated an apparent 

reduction of nasal S. aureus colonization on the day of primary TJA using a similar treatment 

protocol. However, these data together cannot confirm whether this treatment is effective in 

decreasing SSI or PJI. A systematic review showed reductions in SSI varying between 13 and 

200% (273). It is essential to mention that this review included 19 heterogeneous studies using 

universal or selective decolonization protocols in orthopaedics, including joint arthroplasty. 

Webster et al. (274) performed a meta-analysis showing no difference in SSI rates between 

chlorhexidine bathing and placebo. Again, this study included heterogeneous surgical procedures, 

and different types of protocols were used. 
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On the other hand, Johnson et al. (275) demonstrated a reduced SSI rate after using 

chlorhexidine wipes the night before knee arthroplasty. However, Farber et al. (276) could not find 

a difference when chlorhexidine wipes were used 1 hour before TJA. Of course, none of these 

studies would have the same skin decolonization rate compared to the conventional 5-day 

treatment. The absence of a clear and consistent benefit, the risk of secondary bacterial resistance 

to mupirocin or chlorhexidine, and the likelihood of side effects should be considered before 

considering this strategy. 

1.10.2 Perioperative antibiotic prophylaxis 

SSI is a well-known risk factor for later PJI (18,29,35,41,55), and perioperative antibiotic 

prophylaxis decreases the risk of infection by >80% (277,278). The general principles described 

in SSI guidelines can be easily applied to TJA (270). 

Importantly, cefazolin is the most used due to its antistaphylococcal activity, availability, 

and low cost (277). The concomitant use of cefazolin and vancomycin might have a theoretical 

benefit for patients with MRSA colonization. Still, Sewick et al. (279) evidenced no significant 

reduction in SSI rate with dual antibiotic prophylaxis. 

Antibiotic allergies and previous adverse reactions must be identified and recorded at the 

preadmission assessment. Most β-lactam allergic patients may safely receive cefazolin as 

antibiotic prophylaxis, avoiding using other antimicrobials (280). On the other hand, vancomycin 

or clindamycin should only be considered in patients with a positive penicillin skin test or a type I 

hypersensitivity reaction to cefazolin. 

The first cefazolin dose should be administrated within 60 minutes before skin incision to 

reach proper tissue concentrations, whereas vancomycin should be administrated 60 to 120 min 



42 
 

before (270). A single preoperative dose is enough to maintain appropriate tissue concentrations 

during the surgical procedure. However, a second intraoperative dose might be necessary if the 

surgery is longer than 4 hours or excessive blood loss (281). A second dose of vancomycin is only 

necessary when the length of the surgery lasts more than twice the expected half-life of the 

antimicrobial. Moreover, Nelson et al. (282) evidenced no benefit in extending the antibiotic 

prophylaxis after 24 hours of the surgery. 

Finally, it is relevant to highlight the importance of weight-based dosing. Of course, 

different indications, physiological characteristics, and types of antibiotics may influence the 

applicability of this strategy. In some scenarios, like vancomycin or linezolid therapy, weight-

based dosing is superior to currently established fixed-dose treatment in adult patients (283–286). 

The usual daily dose of intravenous vancomycin is 2 g (500 mg/6 hours or 1 g/12 hour) for adults 

without renal failure. However, several authors reported better results with weight-based dosing 

(283,284,287). Catanzano et al. (284) retrospectively reviewed MRSA-positive patients before 

TJA or spine surgeries. The antibiotic prophylaxis was the same for all patients, including 1 g of 

vancomycin within an hour before skin incision. They were classified as either underdosed or 

overdosed based on the weight-based dosing protocol (15 mg/kg) for vancomycin. 69% of patients 

were underdosed, and 10% of patients were overdosed. Moreover, 60% of patients had a 

vancomycin level < 15 mg/L at the end of the surgery with a fixed-dose regimen compared to 12% 

with a weight-based dose (p=0.0005). These data suggest that weight-based dosing of vancomycin 

may be better than fixed dosing to prevent MRSA SSIs. 

1.10.3 Laminar airflow rooms and surgical bodysuits 

Theoretically, an “ultraclean” flow in the operating room would reduce intraoperative 

contamination and subsequent PJI. Laminar airflow rooms, in which a positive-pressure ventilation 
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system moves air at a uniform velocity in either a horizontal or vertical flow pattern, significantly 

reduce the number of contaminated particles in the air (288).  

Initially, Lidwell et al. (288) reported a decreased PJI rate with the additional use of 

surgical bodysuits at one year of follow-up. Nevertheless, only 25% of the included patients had 

received perioperative antibiotics. On the contrary, later studies could not show clear benefits when 

current infection guidelines were also applied (25,26,35,289). Indeed, Hooper et al. (289) reported 

a strong correlation between laminar airflow rooms, surgical bodysuits, and the later revision 

surgery due to infection after six months of implantation. Overall, additional studies are still 

required before a definitive conclusion can be reached to support using these technologies when 

other well-known strategies are being used. 

1.10.4 Antibiotic-loaded PMMA at surgical implantation 

The purpose of adding antibiotics in the PMMA is to prevent a possible infection after 

primary arthroplasty or aseptic revision surgery or also increase the local antibiotic effect to 

continue treating an established infection during staged surgeries for PJI. Usually, 0.5 to 1 g of 

antibiotics per 40 g of PMMA are used for primary arthroplasty or aseptic revision, and 1 to 2 g 

during reimplantation after arthroplasty exchange due to PJI (290).  

Lautenschlager et al. (291) reported reduced bone cement mechanical properties when 

large doses of antibiotic powders are added. Parvizi et al. (292) demonstrated an almost 50% 

decrease in deep infection rate when reviewing more than 20,000 primary or aseptic hip revision 

surgeries. However, some patients included in these six studies did not receive systemic 

perioperative antibiotic prophylaxis (293). Two other authors showed a decreased infection rate in 

diabetics (294) and nondiabetics patients (295) after TKA with 2 g of cefuroxime in 40 g of 
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PMMA. Nevertheless, the infection rate in the control groups was high in both studies, 13.5% in 

the diabetics and 3.1% in the nondiabetics despite the use of systemic antibiotic prophylaxis. 

Hinarejos et al. (54) found no difference in the incidence of infection at one year when 

erythromycin- and colistin-loaded cement or plain cement were used during TKA.  

Additional randomized trials using more common antibiotics should be considered to 

generalize these results. Although Dale et al. (16) reported more than 90% of antimicrobial-loaded 

PMMA primary arthroplasties in some countries, no substantial evidence recommends this 

indication. As a consequence, the use of antibiotic-loaded PMMA for primary TJA remains 

controversial (296). Antibiotic-loaded PMMA is generally used during one-stage (297–301) or 

two-stage (302–304) revision surgeries for PJI. Additionally, Engesaeter et al. (305) found a 

similar or higher risk of reinfection when uncemented implants are used for PJI. 

1.10.5 Antibiotic prophylaxis before dental, urologic or gastrointestinal procedures 

For several years, both orthopaedic and dental professionals recommended antibiotic 

prophylaxis before dental procedures for patients with TJAs (306). Initially, this indication was 

based on older evidence and small cohort studies (307–311). 

Current studies reported no increased risk of PJI after low- or high-risk dental procedures 

(29,312). Moreover, antibiotic prophylaxis before dental procedures does not decrease the risk of 

later PJI (29,313). 

It is important to note that a lower risk of PJI was found among patients with good oral 

hygiene. Consequently, the American Dental Association and the American Academy of 

Orthopedic Surgeons recommend “changing routine antibiotic prophylaxis for patients with 

orthopaedic implants who undergo dental procedures” (314). Up to date evidence does not 
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recommend antibiotic prophylaxis before dental procedures. Patients should aim at optimal oral 

hygiene and routine dental visits to avoid possible infections. 

Antibiotic prophylaxis is also not recommended in patients undergoing urologic or 

gastrointestinal procedures. However, Coelho-Prabhu et al. (315) reported a 4-fold increased risk 

of PJI related to oesophagus-gastro-duodenoscopy with biopsy. Other endoscopic procedures were 

not related to an increased risk, highlighting the different available procedures, and encouraging 

individual prophylaxis in each case. 

Infections are a complex problem with a significant burden on patients and the healthcare 

system.  Although much work has been done, we have not improved our diagnosis or treatment of 

infections, and with the increasing resistance, we have the danger of poorer outcomes in the future 

unless improvements are made.  
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Chapter 2 

Project rationale 

Osteoarthritis is the most prevalent joint disease worldwide. Fortunately, TJA is an 

effective procedure that restores quality of life. The worldwide number of TJA increases yearly 

and is projected to reach at least 4 million annual cases by 2030. PJI is the main reason for implant 

failure after TJA, affecting almost 2% of all replacements. S. aureus is a commensal bacterium, 

human pathogen, and is the leading cause of PJIs. Due to increasing multi-resistant 

microorganisms and MRSA prevalence, the eradication rate of chronic PJI continues to decrease, 

severely affecting patients, surgeons, and the healthcare system. In this sense, treatment options 

are limited, and new therapeutics are needed. Several studies have indicated that SF may 

participate in innate joint defence. However, the exact mechanism by which SF kills bacteria is 

yet to be defined, and an improved understanding of its antimicrobial properties would facilitate 

new diagnosis and treatment strategies for S. aureus infections. Thus, adding exogenous copper to 

human synovial fluid is expected to produce a high killing of the different S. aureus strains in our 

in vitro study. This multidisciplinary study will provide a better understanding of the behaviour of 

S. aureus in human SF and try to identify specific synovial proteins that might influence bacterial 

survival. Additionally, it is anticipated that this work will help develop novel strategies such as 

new antimicrobials, and therapies which could, in turn, lead to significant cost savings and reduce 

patient morbidity and mortality associated with this challenging complication. 

2.1 Research objectives 

2.1.1 General objectives  
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1. Analyse the specific antimicrobial properties present in human SF from osteoarthritic patients 

and evaluate how S. aureus can survive in human SF to cause infections 

2. Investigate the pathogenesis of S. aureus and evaluate future alternatives to treat PJI after TJA 

2.1.2 Specific objectives 

1. Assess S. aureus survival in human SF in-vitro 

2. Analyse the effect of exogenous copper on S. aureus viability in human SF 

3. Determine the minimum bactericidal concentration of copper (MBC-Cu) and differences in 

sensitivity to killing between WT and CopAZB-deficient USA300 strains in human SF 

4. Protein identification in human SF by running a sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE)  
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Chapter 3 

Material and methods 

3.1 Ethics statement 

This research was approved by the Western University Research Ethics Board and Lawson 

Research Institute. Informed consent was signed before patient enrolment. See Appendix 1 and 2 

for Research Ethics Board and informed consent, respectively. 

3.2 Synovial fluid collection and preparation 

SF samples were collected from patients undergoing elective primary TKA or THA to treat 

symptomatic osteoarthritis. All patients with inflammatory arthropathy (i.e., rheumatoid arthritis, 

gout) or fibromyalgia were excluded, as well as cases with multiple severe comorbidities. 

The same surgical team performed all procedures under sterile conditions in the operating 

room at Concordia Hospital, Winnipeg, Manitoba, Canada. When TKA was performed, to 

minimize blood contamination, a tourniquet was applied around the thigh before starting the 

intervention. After the skin incision and deep dissection, the joint capsule was exposed, and SF 

was aspirated using a sterile 18-gauge needle and 20 cc syringe.  

After collection, all samples were centrifuged for 10 minutes at 4700g within 12 hours of 

the procedure to remove any possible red blood cell and lymphocyte contamination. The cell-free 

SF supernatant was then aspirated and transferred to cryotubes under sterile conditions. The 

samples that remained with evident blood contamination after centrifugation were excluded from 

the analysis. All eligible samples were then frozen and stored in a -80°C freezer until further 
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analysis. All SF samples were labelled and separated by donor with a unique identification number 

without recording any patient's identifiable information. 

After sterile collection at Concordia Hospital (Winnipeg), the human SF samples were 

shipped on dry ice to ensure they remained frozen during shipping to the Siebens Drake Research 

Institute at Western University (London). At the time of experimentation, randomly selected 

samples were taken out from the -80°C freezer and put in the incubator at 37°C for 5 to 10 minutes 

to thaw. After each experiment was completed and analysis was finished, the SF samples used 

were destroyed. 

All patients were followed according to the surgeon's criteria with routine appointments to 

depict any unexpected complications. No follow-up assessment was necessary for the purpose of 

the present analysis. 

3.3 Staphylococcus aureus strains and routine culture 

Different S. aureus strains previously found to be sensitive and resistant, UAMS-1 and 

USA300 Wild Type (WT), respectively, were used throughout this study. Bacteria were routinely 

cultured at 37°C in liquid tryptic soy broth (TSB) (Difco) with shaking overnight at 200 Rpm or 

on solid tryptic soy agar (1.5% w/v) (TSA) plates. When necessary, S. aureus strains were cultured 

in the presence of 3µg/mL erythromycin to allow for selection of resistance markers. 

It is essential to mention that all analysis and comparisons between strains were ideally 

made with the same human SF sample to avoid a possible bias in the results. When it was not 

possible, a different SF sample was used following the same methodology. A total of 55 different 

human SF samples were used in this study. 



50 
 

At the same time, a minimum of 8 different tubes (n=8) containing each S. aureus strain 

(UAMS-1 and USA300 WT) were used in every assay to reach appropriate statistical results. The 

only exception was the low-pH environment viability assay, where only four tubes for each strain 

were included in the analysis. 

3.4 Staphylococcus aureus survival in synovial fluid in-vitro 

Eleven human SF samples from different living donors were removed from the freezer, 

thawed, and diluted in sterile saline solution immediately before in-vitro growth assays. To analyse 

the effect of SF against S. aureus, in-vitro growth assays were performed with different S. aureus 

strains. We decided to use two of the most prevalent strains associated with human infections, 

including one sensitive and one resistant strain, such as the osteomyelitis isolate UAMS-1 and 

USA300 WT, respectively.  

Overnight cultures of each S. aureus strain were grown in 5mL of TSB and then normalized 

to an optical density (OD600) of 1.0 in sterile saline solution. Tubes containing either 20% SF 

(UAMS-1) or 50% SF (USA300 WT) in sterile saline solution were inoculated with 10μL of the 

S. aureus strain suspension at OD600=1.0 to start each tube at an initial OD600 0.01, equivalent to 

~2-4x106 CFU/mL. The samples were incubated at 37°C for 2, 4, 12, and 24 hours, after which the 

samples were serially diluted, and 10µL were droplet plated on TSA plates. After overnight 

incubation at 37°C, the colonies were counted to determine the final number of colony-forming 

units per ml (CFU/mL) for each sample. 

3.5 The effect of copper on Staphylococcus aureus viability in synovial fluid  

Due to the well-known toxicity of copper (Figure 2) and the presence of ceruloplasmin in 

SF, viability assays were performed to determine the capability of different S. aureus strains to 
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survive in SF with the addition of exogenous copper. As done previously, 12 random SF samples 

were thawed immediately before dilution in sterile saline solution to determine S. aureus survival 

or death. SF samples were diluted in saline to varying concentrations from 20% to 50% along with 

no synovial fluid controls, and 1µL of 10mM copper sulphate (CuS04) was added to achieve a 

working concentration of 10µM copper in each sample. Similarly, tubes containing paired samples 

of SF or saline alone were included as controls without adding copper. All samples were plated on 

TSA at 0 hours after inoculation to assess the starting CFU/mL. Samples were again plated on 

TSA after 4, 12, and 24-hours incubation at 37°C to determine the resultant number of CFU/mL. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Mechanisms of copper toxicity. Copper violates the 

bacterial wall. The reducing environment of the cytoplasm reduces 

copper (Cu++ to Cu+), which can participate in Fenton type 

reactions, produce highly reactive hydroxyl radicals, and affect 

lipids, proteins and DNA. Cu+ can also lead to thiol depletion in 

the GSH pool, proteins and free amino acids. Under anaerobic 

conditions, glutathione-copper complexes (GS–Cu–SG) can act as 

copper-donors for metalloenzymes. The most common mechanism 

of copper toxicity is the displacement of iron from iron-sulfur 

cluster proteins. 
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3.6 Determination of minimum bactericidal concentration of copper and differences in 

sensitivity to killing between WT and CopAZB-deficient USA300 strains in synovial fluid 

The MBC is the lowest amount of an antimicrobial agent required to cause a 3-logarithmic 

microbial death (99.9% killing) in the size of the standard inoculum. To identify the MBC-Cu, we 

performed viability assays using a two-fold dilution series of copper in synovial fluid and saline. 

On the other hand, different copper export proteins have been identified in bacteria (196–198), and 

Solioz et al. (196) identified P1B-type ATPases in S. aureus. All S. aureus strains have a conserved 

operon encoding a P1B-1-type ATPase copper efflux transporter (copA) and a copper chaperone 

protein (copZ) (316) encoded as part of the core genome. Some HA-MRSA strains also have an 

additional copper exporting P1B-3 type ATPase, designated copB, encoded on a plasmid that is 

either free or integrated into the genome (317). 

Different mutant microorganisms with CopA deficiency have been demonstrated to have 

inadequate copper efflux and increased copper sensitivity (318–320). To try elucidating the 

mechanism of bacterial killing, we used the USA300 WT strain due to its inherent high resistance 

and the availability of mutants deficient for CopAZB protein that collaborate with bacterial 

survival by pouring copper out of its cytoplasm. In this sense, we tried to analyse the effects of 

deficient CopAZB protein on sensitivity to SF killing and determine the MBC-Cu. 

Both the WT and CopAZB-deficient USA300 strains were streaked onto TSA plates and 

grown overnight at 37°C. Isolated colonies were inoculated into individual glass test tubes 

containing 5 ml TSB and grown overnight with shaking. The next day, bacteria were diluted in 

sterile saline solution to obtain an OD600 of 1.0. Next, these bacterial suspensions were used to 

inoculate SF and sterile saline solution with 1 in 100 dilutions (final OD600 of 0.01) with and 

without the addition of copper at a range of concentrations. Exogeneous copper sulphate was added 
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to the SF and saline in a two-fold dilution series ranging from 100 µM down to 1.5 µM along with 

a no copper control. A total of 12 different human SF samples were used for this analysis. 

All samples were plated on TSA at 0 hours after inoculation to assess the starting CFU/mL. 

Samples were again plated on TSA after a 24-hours incubation at 37°C to count the resultant 

number of CFU/mL. The MBC-Cu was defined as the lowest concentration of copper, resulting in 

significant bacterial killing following overnight incubation at 37◦C. 

3.7 Analysis of the acidic environment 

Low-pH environments (<6.5) can reduce the survival of gram-positive pathogens (321). 

Indeed, weak acids would have antimicrobial activity because the undissociated form of weak 

acids passes easily through the cell membrane (321). Because of the acidic characteristic of local 

environmental ph. with the addition of exogenous copper, we then sought to analyse if the low-pH 

environment in SF would influence the bacterial killing. 

As done previously, four random SF samples were thawed immediately before dilution in 

sterile saline solution to determine S. aureus survival or death. SF samples were diluted in saline 

to varying concentrations from 20% to 50% along with no synovial fluid controls, and 1µL of 

10mM copper sulphate (CuS04) was added to achieve a working concentration of 10 µM copper 

in each sample. Similarly, tubes containing paired samples of SF or saline alone were included as 

controls without adding copper. Finally, additional samples of SF or saline were included as an 

experimental analysis with the addition of hydrochloric acid (HCl) solution to determine if the 

acidic environment influence the killing of the bacteria. Overnight cultures of each S. aureus strain 

were grown in 5mL of TSB and then normalized to an optical density (OD600) of 1.0 in sterile 

saline solution. All samples were plated on TSA at 0 hours after inoculation to assess the starting 
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CFU/mL. Samples were again plated on TSA after 4, 12, and 24-hours incubation at 37°C to 

determine the resultant number of CFU/mL.  

3.8 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and protein identification 

in synovial fluid 

The amount of copper available in the host environment depends on binding proteins such 

as ceruloplasmin. Ceruloplasmin is a serum ferroxidase responsible for more than 90% of copper 

transportation (322), and its weight ranges between 120-132 kDa (108,323). In this sense, 

ceruloplasmin may be present in SF and may be responsible for the binding of copper.  

To determine whether ceruloplasmin is responsible for the availability of copper in SF, we 

tried to identify the presence of ceruloplasmin in SF. Eighteen random SF samples were thawed 

immediately before dilution in sterile saline solution to an initial concentration of 10% (vol/vol) 

in saline. Then, 10 µL of the previous diluted SF samples from different donors were mixed 1:1 

with Laemmli protein buffer and boiled for 10 min. 

After cooling all samples, 7 µL of the ladder control solution was loaded. Then, 10 µL of 

9 of the SF samples were loaded and run a 12% SDS-PAGE in Tris-glycine buffer at 150 V and 

500 mA for 90 min. The remaining nine samples were loaded and run a second 12% SDS-PAGE 

in Tris-glycine buffer at 150 V and 500 mA but for more than 90 min. Upon completion, the gel 

was removed from the dock and stained overnight with Instant Blue® Coomassie Protein Stain. 

After staining the gel, we used an automated spot picker to identify the individual protein bands 

from the gel. 

3.9 Statistical analysis 



55 
 

Continuous variables were expressed as means and standard deviations (SD) or medians and 

interquartile ranges depending on whether they had a normal distribution. Data were compared 

using the independent-samples t-test, where data were normally distributed, and the Mann-

Whitney U test otherwise. Variables were considered statistically significant at P <0.05 (*P < 0.05, 

**P < 0.01, ***P < 0.001). All analyses were performed using IBM SPSS Statistics (IBM Corp., 

Armonk, NY, USA).  
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Chapter 4 

Results 

4.1 Staphylococcus aureus survival in synovial fluid in-vitro 

Human SF has a heterogenous bactericidal response against different S. aureus strains. 

Both control strains, in sterile saline solution and without SF, clearly died at the final endpoint. 

We only found a higher sensitivity to killing for UAMS-1 after 12 hours (***p=0.001) when 

compared to USA300 WT (Table 1). 

 

Despite an initial growth after the first 2 hours (p=0.33), UAMS-1 died after 4 (p=0.06), 

12 (p=0.33), and 24 hours (p=0.09), without being statistically significant. On the contrary, 

USA300 WT survived for the first 12 hours but showed significant bacterial death after 24 hours 

(*p=0.04) (Figure 3). 

 

Table 1. Staphylococcus aureus survival in saline solution in-vitro 

Time (hours) UAMS-1 (n=8) (CFU/mL) USA300 WT (n=8) (CFU/mL) P value 

0 7.66 x 10e5 (SD, 9.03 x 10e5) 1.36 x 10e6 (SD, 1.01 x 10e6) P=0.14 

2 1.01 x 10e6 (SD, 1.74 x 10e6) 1.32 x 10e6 (SD, 1.55 x 10e6) P=0.92 

4 6.1 x 10e5 (SD, 6.4 x 10e5) 1.37 x 10e6 (SD, 1.21 x 10e6) P=0.09 

12 2.12 x 10e5 (SD, 1.16 x 10e5) 1.45 x 10e6 (SD, 4.7 x 10e5) ***P=0.001 

24 4.12 x 10e5 (SD, 1.11 x 10e6) 5.6 x 10e5 (SD, 4.5 x 10e5) P=0.29 

CFU/mL: Colony-forming units per ml; SD: standard deviation 
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In contrast, we observed a different bactericidal effect of SF against each strain. UAMS-1 

was highly sensitive and significantly died after 12 (***p=0.001) and 24 hours (*p=0.03) when 

compared to USA300 WT (Table 2).  

 

Despite an initial growth after the first 4 hours (p=0.67), UAMS-1 died after 12 hours 

(p=0.09), achieving statistical significance at the 24 hours endpoint (*p=0.02). On the other hand, 

Table 2. Staphylococcus aureus survival in synovial fluid in-vitro 

Time (hours) UAMS-1 (n=8) (CFU/mL) USA300 WT  (n=8) (CFU/mL) P value 

0 9.35 x 10e5 (SD, 5.72 x 10e5) 1.66 x 10e6 (SD, 9.09 x 10e5) P=0.082 

2 1.74 x 10e6 (SD, 1.1 x 10e6) 9.38 x 10e5 (SD, 5.33 x 10e5) P=0.114 

4 1.1 x 10e6 (SD, 7.8 x 10e5) 5.74 x 10e5 (SD, 7.23 x 10e5) P=0.206 

12 5.9 x 10e5 (SD, 1.66 x 10e5) 2.03 x 10e6 (SD, 8.98 x 10e5)    ***P=0.001 

24 1.29 x 10e5 (SD, 2.05 x 10e5) 3.67 x 10e6 (SD, 3.96 x 10e6) *P=0.03 

CFU/mL: Colony-forming units per ml; SD: standard deviation 

Figure 3. S. aureus survival in saline solution in-vitro. 

Variables were considered statistically significant at p <0.05 

(*p < 0.05, **p < 0.01, ***p < 0.001). 
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even though USA300 WT showed a significant decrease of CFU/ml after 2 (*p=0.04) and 4 

(*p=0.04) hours, it could finally survive and even grew after 12 (p=0.53) and 24 hours (p=0.67), 

suggesting an increased resistance to SF activity (Figure 4).  

 

 

 

 

 

 

 

Although we confirmed the bactericidal activity of SF, the sensitivity varied significantly 

between both strains, with UAMS-1 being more sensitive than USA300 WT affecting the overall 

survival of each strain.  

4.2 The effect of copper on Staphylococcus aureus viability in synovial fluid  

The addition of exogenous copper contributes to and increases the antimicrobial activity of 

SF against S. aureus. Due to the presence of ceruloplasmin as a copper-binding protein in SF and 

after demonstrating the bactericidal behaviour of SF against S. aureus, we then sought to analyse 

whether the addition of exogenous copper would contribute to bacterial killing.  

Tables 3 and 4 show the results of bacterial viability assays separated by S. aureus strains, 

while Figures 5 and 6 show the same data but as survival curves for each strain. Both control 

Figure 4. S. aureus survival in synovial fluid in-vitro. Variables 

were considered statistically significant at p <0.05 (*p < 0.05, 

**p < 0.01, ***p < 0.001). 
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strains in saline solution and, with exogenous copper, significantly died after 4 hours. We observed 

a higher sensitivity to killing for UAMS-1 after 12 (**p=0.003) and 24 hours (***p=0.0008) when 

compared to USA300 WT (Table 3).  

Table 3. The effect of copper on Staphylococcus aureus viability in saline solution 

Time (hours) UAMS-1 (n=8) (CFU/mL) USA300 WT (n=8) (CFU/mL) P value 

0 6.83 x 10e6 (SD, 5.50 x 10e5) 6.4 x 10e6 (SD, 2.7 x 10e6) P=0.92 

0 + copper 6.1 x 10e6 (SD, 7.31 x 10e5) 6.34 x 10e6 (SD, 2.24 x 10e6) P=0.67 

4 3 x 10e6 (SD, 1.26 x 10e6) 5 x 10e6 (SD, 1.84 x 10e6) P=0.06 

4 + copper 1.83 x 10e6 (SD, 1.66 x 10e6) 3.25 x 10e6 (SD, 2.14 x 10e6) P=0.14 

12 3.6 x 10e5 (SD, 1.8 x 10e5) 4.28 x 10e6 (SD, 2.1 x 10e6) ***P=0.0008 

12 + copper 6 x 10e4 (SD, 6.4 x 10e4) 3.52 x 10e5 (SD, 3 x 10e5) **P=0.003 

24 3.8 x 10e4 (SD, 1.5 x 10e4) 1.25 x 10e6 (SD, 9.9 x 10e5) ***P=0.0007 

24 + copper 1.8 x 10e31.800 (SD, 1.6 x 10e3) 1.6 x 10e4 (SD, 2.2 x 10e4) ***P=0.0008 

CFU/mL: Colony-forming units per ml; SD: standard deviation 
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Similarly, the addition of exogenous copper in SF resulted in a significant killing of both 

strains after 4, 12 and 24 hours (Figure 6).  

 

 

 

 

 

 

 

 

 

Figure 5. The effect of copper on S. aureus viability in saline. The 

addition of copper resulted in significant killing of both strains after 

4, 12 and 24 hours. Variables were considered statistically 

significant at p <0.05 (*p < 0.05, **p < 0.01, ***p < 0.001). 

Figure 6. The effect of copper on S. aureus viability in synovial fluid. 

The addition of copper resulted in significant killing of both strains 

after 4, 12 and 24 hours. Variables were considered statistically 

significant at p <0.05 (*p < 0.05, **p < 0.01, ***p < 0.001). 
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As expected, UAMS-1 was more sensitive and significantly died after 4 (***p=0.001), 12 

(**p=0.005) and 24 (**p=0.006) hours when compared to USA300 WT (Table 4).  

 

These data again demonstrate that SF from 12 different donors has a higher bactericidal 

effect against UAMS-1 compared to USA300 WT, and the addition of exogenous copper 

significantly increased bacterial killing of both strains.  

4.3 Determination of minimum bactericidal concentration of copper and differences in 

sensitivity to killing between WT and CopAZB-deficient USA300 strains in synovial fluid  

The deficiency of CopAZB protein enhances SF bacterial killing with lower copper 

concentrations. We found that the USA300 WT was significantly sensitive to killing with higher 

copper concentrations in SF after 24 hours. On the other hand, the control strain in saline solution 

Table 4. The effect of copper on Staphylococcus aureus viability in synovial fluid 

Time (hours) UAMS-1 (n=8) (CFU/mL) USA300 WT  (n=8) (CFU/mL) P value 

0 6.5 x 10e6 (SD, 1.6 x 10e6) 7 x 10e6 (SD, 2.7 x 10e6) P=0.67 

0 + copper 5.6 x 10e6 (SD, 1.4 x 10e6) 7.25 x 10e6 (SD, 2 x 10e6) P=0.24 

4 5.1 x 10e6 (SD, 2.2 x 10e6) 5.1 x 10e6 (SD, 2.1 x 10e6) P=0.87 

4 + copper 9.6 x 10e4 (SD, 2.2 x 10e5) 3.84 x 10e6 (SD, 2.9 x 10e6) ***P=0.001 

12 4.7 x 10e6 (SD, 1.9 x 10e6) 5.8 x 10e6 (SD, 1.7 x 10e6) P=0.17 

12 + copper 4.3 x 10e4 (SD, 1.2 x 10e5) 1.76 x 10e5 (SD, 1.8 x 10e5) **P=0.005 

24 4.4 x 10e6 (SD, 1.7 x 10e6) 6.9 x 10e6 (SD, 1.2 x 10e6) *P=0.015 

24 + copper 1.7 x 10e3 (SD, 4.8 x 10e3) 2.5 x 10e5 (SD, 7.1 x 10e5) **P=0.006 

CFU/mL: Colony-forming units per ml; SD: standard deviation 
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was significantly sensitive to killing with any copper concentrations after 24 hours (Table 5). 

Consequently, a 50µM copper concentration was identified as the MBC-Cu (Figure 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Minimum bactericidal concentration of copper on S. aureus USA300 WT. 

Variables were considered statistically significant at p <0.05 (*p < 0.05, **p < 0.01, ***p 

< 0.001). 
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Interestingly, we demonstrated that the USA300 CopAZB mutant strain was significantly 

sensitive to killing in SF with as little as 1,5 µM copper concentration or without adding it (0 µM) 

Table 5. Minimum bactericidal concentration of copper on Staphylococcus aureus USA300 WT  

Time (hours) SF (n=8) (CFU/mL) SL (n=8) (CFU/mL) P value 

0 + 100 µM copper 1.9 x 10e6 (SD, 7.9 x 10e5) 2.5 x 10e6 (SD, 7.8 x 10e5) *P=0.04 

0 + 50 µM copper 1.6 x 10e6 (SD, 4.2 x 10e5) 2.4 x 10e6 (SD, 9.7 x 10e5) *P=0.01 

0 + 25 µM copper 1.9 x 10e6 (SD, 1.1 x 10e6) 2.3 x 10e6 (SD, 7.2 x 10e5) P=0.53 

0 + 12,5 µM copper 1.5 x 10e6 (SD, 1.4 x 10e6) 2.1 x 10e6 (SD, 8.5 x 10e5) *P=0.03 

0 + 6,25 µM copper 1.2 x 10e6 (SD, 7.1 x 10e5) 2.5 x 10e6 (SD, 1.5 x 10e6) *P=0.03 

0 + 3,125 µM copper 1.1 x 10e6 (SD, 5.5 x 10e5) 1.9 x 10e6 (SD, 6.6 x 10e5) *P=0.02 

0 + 1,5 µM copper 2.1 x 10e6 (SD, 7.9 x 10e5) 2.1 x 10e6 (SD, 6.5 x 10e5) P=0.87 

0 + 0 µM copper 2.1 x 10e6 (SD, 9.1 x 10e5) 2 x 10e6 (SD, 1.1 x 10e6) P=0.92 

24 + 100 µM copper 5.3 x 10e3 (SD, 8.4 x 10e3) 9.9 x 10e3 (SD, 8.3 x 10e3) P=0.29 

24 + 50 µM copper 7.9 x 10e3 (SD, 8.4 x 10e3) 7.7 x 10e3 (SD, 1.2 x 10e4) P=0.92 

24 + 25 µM copper 3.2 x 10e6 (SD, 4.3 x 10e6) 8.5 x 10e3 (SD, 8.9 x 10e3) P=0.06 

24 + 12,5 µM copper 3.7 x 10e6 (SD, 4.3 x 10e6) 1.2 x 10e4 (SD, 1.6 x 10e4) **P=0.008 

24 + 6,25 µM copper 6.7 x 10e6 (SD, 4.3 x 10e6) 1.8 x 10e4 (SD, 2.1 x 10e4) **P=0.008 

24 + 3,125 µM copper 1.2 x 10e6 (SD, 2.3 x 10e6) 8.6 x 10e3 (SD, 9.4 x 10e3) *P=0.01 

24 + 1,5 µM copper 6.5 x 10e4 (SD, 1.2 x 10e5) 2 x 10e4 (SD, 2.5 x 10e4) P=0.46 

24 + 0 µM copper 2 x 10e6 (SD, 3.6 x 10e6) 7.3 x 10e5 (SD, 6.1 x 10e5) P=0.40 

SF: synovial fluid; SL: saline solution; SD: standard deviation; M: molar;  

CFU/mL: Colony-forming units per ml 
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after 24 hours (Table 6). Moreover, the mutant strain significantly died even without copper (0 

µM) at 0 hours compared with the control group in saline solution (*p=0.03) (Table 6).  

Table 6. Minimum bactericidal concentration of copper on S. aureus USA300 CopAZB  

Time (hours) SF (n=8) (CFU/mL) SL (n=8) (CFU/mL) P value 

0 + 100 µM copper 1.9 x 10e6 (SD, 5.1 x 10e5) 2.1 x 10e6 (SD, 8.8 x 10e5) P=0.15 

0 + 50 µM copper 1.4 x 10e6 (SD, 6.9 x 10e5) 2.5 x 10e6 (SD, 8.7 x 10e5) *P=0.03 

0 + 25 µM copper 2.1 x 10e6 (SD, 8.4 x 10e5) 2 x 10e6 (SD, 8.1 x 10e5) P=0.96 

0 + 12,5 µM copper 2 x 10e6 (SD, 6.5 x 10e5) 1.6 x 10e6 (SD, 5.5 x 10e5) P=0.09 

0 + 6,25 µM copper 1.3 x 10e6 (SD, 6 x 10e5) 1.7 x 10e6 (SD, 7.6 x 10e5) P=0.60 

0 + 3,125 µM copper 1.6 x 10e6 (SD, 7.4 x 10e5) 2.1 x 10e6 (SD, 9 x 10e5) P=0.21 

0 + 1,5 µM copper 1.8 x 10e6 (SD, 9.1 x 10e5) 2.1 x 10e6 (SD, 7 x 10e5) P=0.56 

0 + 0 µM copper 9.9 x 10e5 (SD, 8.5 x 10e5) 1.9 x 10e6 (SD, 6 x 10e5) *P=0.03 

24 + 100 µM copper 6.7 x 10e4 (SD, 1.6 x 10e5) 0 (SD, 0) ***P=0.0003 

24 + 50 µM copper 2.9 x 10e4 (SD, 3.1 x 10e4) 275 (SD, 778) **P=0.002 

24 + 25 µM copper 1.1 x 10e5 (SD, 1.9 x 10e5) 13 (SD, 35) ***P=0.0005 

24 + 12,5 µM copper 3.8 x 10e5 (SD, 6.6 x 10e5) 0 (SD, 0) ***P=0.001 

24 + 6,25 µM copper 3.8 x 10e5 (SD, 6.6 x 10e5) 313 (SD, 579) **P=0.005 

24 + 3,125 µM copper 1.1 x 10e4 (SD, 1.6 x 10e4) 75 (SD, 139) **P=0.006 

24 + 1,5 µM copper 4.6 x 10e4 (SD, 6.5 x 10e4) 8.8 x 10e3 (SD, 1.6 x 10e4) P=0.05 

24 + 0 µM copper 8.3 x 10e4 (SD, 1.8 x 10e5) 1.7 x 10e5 (SD, 2.7 x 10e5) P=0.43 

SF: synovial fluid; SL: saline solution; SD: standard deviation; M: molar;  

CFU/mL: Colony-forming units per ml 
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These results highlight the importance of the CopAZB protein for bacterial survival, 

showing that the mutant strain cannot survive with small amounts of copper exposure. When 

analysing the results in saline solution, we found a higher sensitivity to killing with any copper 

concentrations after 24 hours, being statistically significant (Figure 8 and Table 6). These data 

suggest that S. aureus requires CopAZB protein for resistance to killing when free or exogenous 

copper is available in SF; however, other proteins or defence mechanisms might play a role in 

resistance to the killing by SF.  

 

 

 

 

 

 

 

4.4 Analysis of the acidic environment 

The addition of exogenous copper is responsible for the increased antimicrobial activity of 

SF against S. aureus. As low-pH environments can reduce the survival of gram-positive pathogens, 

we then sought to analyse if the acidic environment could contribute to bacterial killing because 

of the addition of exogenous copper. For this purpose, additional samples of SF or saline were 

included with hydrochloric acid (HCl) to determine whether the acidic environment influences the 

killing of the bacteria.  

Figure 8. Minimum bactericidal concentration of copper on S. aureus USA300 CopAZB. 

Variables were considered statistically significant at p <0.05 (*p < 0.05, **p < 0.01, ***p < 

0.001). 
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As shown in Tables 7,8, and Figures 9,10, the addition of copper was the critical factor for 

the increased bacterial killing in SF after 24 hours (*p=0.02). Similar to the previous analysis, 

UAMS-1 showed a higher sensitivity to killing when compared to USA300 WT. 

Table 7. The effect of low-pH environment on S. aureus viability in saline solution 

Time (hours) UAMS-1 (n=4) (CFU/mL) USA300 WT (n=4) (CFU/mL) P value 

0 + copper 1.6 x 10e6 (SD, 1.4 x 10e6) 1.2 x 10e6 (SD, 1.6 x 10e6) P=0.56 

0 + HCl 1.5 x 10e6 (SD, 7.1 x 10e5) 2.1 x 10e6 (SD, 9.9 x 10e5) P=0.24 

0 - 1.8 x 10e6 (SD, 7.5 x 10e5) 2.3 x 10e6 (SD, 5.9 x 10e5) P=0.38 

24 + copper 1.3 x 10e3 (SD, 1.1 x 10e3) 1.4 x 10e4 (SD, 1.7 x 10e4) P=1.00 

24 + HCl 2 x 10e4 (SD, 1.1 x 10e4) 4.4 x 10e4 (SD, 1.8 x 10e4) P=0.10 

24 - 1.2 x 10e5 (SD, 1.7 x 10e5) 2.8 x 10e5 (SD, 3.3 x 10e5) P=0.56 

CFU/mL: Colony-forming units per ml; SD: standard deviation 

 

 

 

 

 

 

 

 

 

Figure 9. The effect of low-pH environment on S. aureus viability in saline solution. Variables were 

considered statistically significant at p <0.05 (*p < 0.05, **p < 0.01, ***p < 0.001). 
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Table 8. The effect of low-pH environment on S. aureus viability in synovial fluid 

Time (hours) UAMS-1 (n=4) (CFU/mL) USA300 WT (n=4) (CFU/mL) P value 

0 + copper 2.8 x 10e6 (SD, 1.1 x 10e6) 1.65 x 10e6 (SD, 1.8 x 10e6) P=0.38 

0 + HCl 2.6 x 10e6 (SD, 1.6 x 10e6) 3.3 x 10e6 (SD, 7.9 x 10e5) P=0.55 

0 - 3.1 x 10e6 (SD, 7.1 x 10e5) 2.9 x 10e6 (SD, 1.8 x 10e5) P=0.24 

24 + copper 25 (SD, 29) 3.7 x 10e4 (SD, 2.3 x 10e4) *P=0.02 

24 + HCl 1.4 x 10e6 (SD, 2.6 x 10e6) 5.3 x 10e6 (SD, 3.6 x 10e6) P=0.24 

24 - 1.1 x 10e6 (SD, 1.9 x 10e6) 5.8 x 10e6 (SD, 3.9 x 10e6) P=0.24 

CFU/mL: Colony-forming units per ml; SD: standard deviation 

 

 

 

 

 

 

 

 

4.5 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and protein identification 

in synovial fluid 

Two 12% SDS-PAGE were run using nine randomly diluted SF samples from different 

donors in each gel. The first SDS-PAGE was run for 90 min, and the 9 SF samples ended the 

Figure 10. The effect of low-pH environment on S. aureus viability in synovial fluid. Variables were 

considered statistically significant at p <0.05 (*p < 0.05, **p < 0.01, ***p < 0.001). 
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analysis successfully. The second SDS-PAGE was run for more than 90 to achieve a better 

identification of proteins. Still, unfortunately, one of the SF samples was deficient, and only eight 

samples ended the run correctly. 

The gel demonstrated a heterogeneous amount of protein, around 122 kDa, compatible with 

the estimated size of ceruloplasmin in SF as Watson et al. (108) previously demonstrated (Figure 

11 and 12). In this sense, ceruloplasmin would be responsible for the presence of copper in SF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ~75 kDa 

 ~25 kDa  

 ~100 kDa 

Figure 11. SDS-PAGE and protein identification in synovial fluid run for 90 min. Upon completion, 

the gel was removed from the dock and stained overnight with Instant Blue® Coomassie Protein Stain. 

After staining the gel, we used an automated spot picker to identify the individual protein bands from 

the gel. The red box identifies the heterogeneous band in the different synovial fluid samples 

compatible with the estimated size of ceruloplasmin (122 kDa). 

 ~122 kDa 
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 ~75 kDa 

 ~25 kDa 

 ~100 kDa 

Figure 12. SDS-PAGE and protein identification in synovial fluid run for > 90 min to better identify 

the protein band. Again, upon completion, the gel was removed from the dock and stained overnight 

with Instant Blue® Coomassie Protein Stain. After staining the gel, we used an automated spot picker 

to identify the individual protein bands from the gel. Similarly, the red box identifies the heterogeneous 

band in the different synovial fluid samples compatible with the estimated size of ceruloplasmin (122 

kDa). 

 ~122 kDa 
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Chapter 5 

Discussion and future directions 

The number of TJA performed increases every year, and consequently, the number of 

revision surgeries is expected to grow as well (4,5). PJI is known as the most challenging 

complication after TJA and has been reported as the leading cause of revision surgery (8), with a 

prevalence between 1 to 2 % among all replacements. As previously mentioned, S. aureus is part 

of the human microbiota and is the most frequently isolated bacterial pathogen responsible for PJI 

after THA or TKA. It has a well-known ability to cause infections, plasticity to mutate and develop 

high resistant strains, which has resulted in it being a real threat for surgeons and the health care 

system. Although there is evidence of the bactericidal role of SF, the exact mechanism and the 

specific antimicrobial properties that might be implicated in killing S. aureus still need to be 

defined (101). This study provides evidence that SF from hips and knees of osteoarthritic patients 

is bactericidal against S. aureus. Moreover, we have demonstrated that the addition of low copper 

concentrations exacerbates the bactericidal effect of SF and that S. aureus CopAZB protein-

deficient strain without the capacity to efflux copper ions from the cytoplasm have increased 

sensitivity to synovial fluid and the lowest copper concentrations. 

Regarding S. aureus survival analysis in SF, Watson et al. (108) showed that SF from 

osteoarthritic patients has antimicrobial factors that restrict and kill S. aureus, but sensitivity 

variations exist, with the CA-MRSA strain LAC showing a high level of resistance. Similarly, we 

confirmed the heterogenous bactericidal activity of human SF against different S. aureus strains. 

UAMS-1 was highly sensitive and significantly died, whereas USA300 WT survived and even 

grew at the final endpoint, suggesting an increased resistance to SF activity.  
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It is challenging to confirm how SF can kill bacteria, partly because the precise SF 

composition of osteoarthritic joints is not widely known (100). For example, as we already know, 

iron is an essential micronutrient required by most bacteria for crucial intracellular processes and 

their growth (105,324–326). Nevertheless, free iron is almost non-existent in most host 

environments, as different iron-binding proteins like ferritin, transferrin, lactoferrin, and 

haemoglobin actively bind to iron and sequester most of it from the extracellular space competing 

with bacteria (106,107,324). On the other hand, bacteria, specifically S. aureus, can steal iron from 

the host iron-binding proteins by producing siderophores (327,328). In this sense, Watson et al. 

(108) identified the presence of transferrin in SF of osteoarthritic knees and confirmed the capacity 

of SF to decrease iron availability for bacteria, resulting in a higher siderophore synthesis by S. 

aureus. They also demonstrated increased survival of S. aureus when adding free iron in SF, 

consistent with the concept that iron restriction decreases bacterial growth. 

Many publications have already dealt with the kinetics of contact killing upon exposure of 

bacteria. It seems that dry metallic copper surfaces are even more antimicrobial than moist ones, 

resulting in bacteria inactivation within a few minutes of exposure (329,330). Touch surfaces 

frequently found in hospitals can be highly contaminated, and S. aureus can persist on such 

surfaces for months (331). Systematic and efficient cleaning, combined with proper hand hygiene, 

decreases infections, but complete elimination seems to be impossible (332). With the high 

prevalence of MRSA, nosocomial infections have become a primary concern for hospitals, and 

copper seems to be a promising alternative (330). Thus, the use of metallic copper surfaces would 

protect from microorganisms by reducing surface contamination (233,333,334). Indeed, the 

antimicrobial properties of copper surfaces have been shown to reduce bacterial counts, indicating 
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that copper surfaces are a reliable alternative to decrease the number and severity of hospital-

acquired infections (335–337). 

Microbes might have difficulty facing the bioavailability of copper and other essential and 

deleterious metals during infections. In this sense, host environments take advantage of this 

challenging situation by responding with different strategies to starve pathogens of essential metals 

(338,339). There is reduced availability of iron (338,340,341), as well, manganese and zinc are 

also withheld at local sites of infection by high-affinity metal-binding proteins (342,343). On the 

contrary, it seems to happen exactly the opposite with copper concentrations. Instead of starvation, 

the host environment increases copper during infection to kill pathogens, with copper toxicity 

behaving as an antimicrobial agent (344–347). In our study, we demonstrated that the addition of 

low copper concentrations increases the antimicrobial activity of SF against S. aureus. Although 

we demonstrated a higher sensitivity to killing for UAMS-1 than for USA300 WT, interestingly, 

the addition of a working concentration of 10µM copper resulted in a significant killing of both 

strains. This suggests that the addition of copper in SF, presumably via enhancing cytotoxic 

activity, increases the bactericidal activity of SF and, therefore, bacterial killing.  Theoretically, 

free copper and bounded to ceruloplasmin might be insufficient to produce significant bacterial 

death. In this sense, the copper-additional environment may increase the bactericidal activity of 

SF, but, of course, other factors apart from the addition of copper would undoubtedly contribute 

to bacterial killing. 

In our study, we only used a 10µM working concentration of copper, resulting in a 

significant killing of both strains. As we can see, the copper concentration used (10µM) was less 

than the normal range of total copper (13.3-28.3 µM), but it was higher than the normal reference 

of free copper (0-1.6 µM). As we know, a copper-binding protein such as ceruloplasmin is present 
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in SF, and exogenous copper might bind to ceruloplasmin in SF. As a result, it is challenging to 

assess the real fraction of free copper and its theoretical toxic threshold. It would be vital to know 

the exact concentration of ceruloplasmin in SF, the possible free fraction of copper that might be 

available in SF, and how much of the added copper would be bonded to ceruloplasmin to realize 

the accurate working concentration of copper and avoid possible toxicity. 

Different mutant microorganisms with CopA deficiency, such as E. coli, Streptococcus 

pneumoniae, and Neisseria gonorrhoeae have been demonstrated to have inadequate copper 

efflux, intracellular accumulation, and increased copper sensitivity (318–320). Our data on the 

differences in sensitivity between USA300 WT and CopAZB-deficient USA300 were significant. 

Regarding USA300 WT, we showed high sensitivity to higher copper concentrations in SF after 

24 hours, demonstrating a MBC-Cu of 50µM. On the other hand, USA300 CopAZB mutant strain 

was significantly sensitive to dying in SF with as little as 1,562 µM of copper after 24 hours. We 

demonstrated that S. aureus needs CopAZB proteins to export the copper out of its cytoplasm to 

survive in SF. Indeed, we showed that CopAZB protein deficiency further enhanced sensitivity to 

SF and increased bacterial killing with low copper concentrations.  

As we know, SF may vary among humans, and its exact composition is yet to be defined. 

Ceruloplasmin is a serum ferroxidase responsible for more than 90% of copper transportation 

(322). Also, it is known as an acute-phase reactant, and its concentration in plasma may increase 

during inflammation or infection (348). Ceruloplasmin is a single polypeptide chain that weighs 

between 120 kDa and 132 kDa (108,323). Our study demonstrated a heterogeneous amount of 

protein, around 122 kDa, compatible with the estimated size of ceruloplasmin in SF. It seems that 

ceruloplasmin concentration varies among different samples. Although it might be responsible for 
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the presence of copper in SF, we could not confirm the exact concentration of ceruloplasmin, 

neither of bonded copper nor free fraction. 

Like in most of the daily and labour activities, the COVID-19 pandemic highly impacted 

our thesis. Unfortunately, part of our project was interrupted due to COVID-19 restrictions. To 

better elucidate the pathogenesis of S. aureus and the antimicrobial properties of SF, our original 

thesis included the development of an animal model. We planned to create an animal model, 

including operating rats, implanting 3D printed implants and creating an infection to study the 

pathogenesis of S. aureus in PJIs. Additionally, some other experiments and analyses were also 

cancelled due to COVID-19 restrictions. Some tests were delayed and could not be done on time. 

Those analyses included further tests for different strains of S. aureus and, finally, the Western 

Blot for the precise identification and quantification of ceruloplasmin and copper in SF. 

To conclude, this study highlights the vital importance of exogenous copper and the 

CopAZB proteins as possible antimicrobial tools against S. aureus, although more evidence is 

required to further confirm our findings. Due to the prevalence of S. aureus PJIs, it is possible that 

treatment alternatives considering the use of exogenous copper or therapeutics targeting CopAZB 

protein would be effective in treating S. aureus infections. Here, we demonstrated that 10μM of 

copper effectively killed both S. aureus strains in different human SF samples. Thereby, our study 

supports the use of low copper concentrations as an alternative for treating S. aureus infections; 

however, more evidence is necessary to define the efficacy, safety, and toxicity level of copper in 

animal models before a possible application in humans. Finally, we showed that human SF from 

knees and hips from osteoarthritic patients have heterogenous bactericidal activity against different 

S. aureus strains, which require CopAZB protein, and probably other related factors to efflux 

copper from the cytoplasm and resist SF killing. Thus, we propose using exogenous copper and/or 
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CopAZB protein as possible therapeutic alternatives to the continued efforts to decrease the 

incidence and improve treatment options of S. aureus infections.  
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