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Abstract

Oscillating gradient spin-echo (OGSE) is an implementation of di�usion MRI that

enables shorter e�ective di�usion times than the conventional pulse gradient spin-echo

(PGSE) by periodically modulating the di�usion gradient. Measurements of the di�usion

kurtosis, which reflects the degree of restricted di�usion, have previously been prohib-

ited with OGSE due to technical limitations of clinical gradient systems. This thesis

presents a novel oscillating gradient waveform that enables the measurement of kurto-

sis using OGSE without requiring advanced gradient hardware. Decreases of kurtosis

are observed in OGSE acquisitions of healthy subjects relative to PGSE, demonstrating

the dependence of the kurtosis on oscillation frequency. This frequency dependence is

exploited to generate novel contrast based on the di�erence between PGSE and OGSE

kurtosis measurements acquired with an optimized protocol. This work demonstrates

the first in vivo measurements of kurtosis in the human brain using OGSE without the

aid of advanced gradient hardware.

Keywords: Di�usion MRI, Oscillating Gradient Spin-Echo, Kurtosis, Ultra-high field

MRI, Optimization.
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Summary for lay audience

Magnetic resonance imaging (MRI) is a diagnostic imaging modality that can image

soft tissues for the characterization of anatomy and diagnosis of disease. Di�usion MRI is

a particular type of MRI that can image water molecules in the body that are randomly

moving due to thermal energy. When molecules di�use they often bounce o� bound-

aries like cell membranes and other structures they encounter as they move, therefore by

following the di�usion of water molecules it is possible to gain insight into cellular struc-

tures that make up the surrounding environment. Oscillating gradient spin-echo (OGSE)

is a specialized di�usion MRI method that can control the time the tracked molecules

are allowed to di�use for. By looking at di�usion using di�erent di�usion times more

insight about cellular structures can be acquired; a short di�usion time gives less time

for the molecule to explore surrounding structures while a long di�usion time means the

molecules will interact with many structures.

This thesis presents a method to apply OGSE in the human brain to measure a

quantity called the di�usion kurtosis, which provides information about how restricted

di�usion is. Previously, measuring the kurtosis with OGSE was not possible due to

technical limitations however in this work a new implementation of OGSE is proposed

that allows the kurtosis to be measured on clinical MRI scanners. By using OGSE a new

type of contrast can also be generated by calculating the di�erence in kurtosis values

between the images taken with two di�erent di�usion times. This type of contrast has

been observed in animals before but never in humans and is a candidate for being sensitive

to stroke and brain tissue degeneration. The new method presented here will allow us

to begin exploring new diagnostic applications of the di�usion kurtosis with OGSE in

humans in future studies.
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Preface

The brain is arguably the most vital and complex organ in the human body. Despite
this however, the structure of the brain and its relation to pathology and development is
not fully understood. The complexity, scale and organization of the billions of neurons in
our brains compounded by our present inability to individually monitor these structures,
is a primary hurdle in our pursuit of understanding the human connectome and diagnosing
associated diseases.

While the development of novel neuroimaging modalities including optical and X-
ray based technologies continues, no technique has received wider adoption in clinical
and research settings than magnetic resonance imaging (MRI). Introduced nearly half a
century ago, its impact has revolutionized the study of the brain by providing a tool that
enables non-invasive in vivo imaging without the necessity of ionizing radiation, required
for alternative techniques such as conventional radiography or computed tomography.
MRI has since been refined to become a robust and reliable tool to image soft tissue
across the whole body however this work will focus on it’s application to the human
brain.

While the physical principals behind magnetic resonance and MRI are rich and in-
sightful, to maintain readability and avoid excessive length, these principals are not
extensively presented in this thesis. Rather, the author would refer readers to the fol-
lowing references that were particularly helpful for this work in providing exceptionally
informative and in-depth discussions of the physics of MRI and fundamentals of image
acquisition:

• Brown, Robert W., Y-C. Norman Cheng, E. Mark Haacke, Michael R. Thompson,
and Ramesh Venkatesan. Magnetic resonance imaging: physical principles and
sequence design. John Wiley & Sons, 2014.

• Bernstein, Matt A., Kevin F. King, and Xiaohong Joe Zhou. Handbook of MRI
pulse sequences. Elsevier, 2004.
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Chapter 1

Introduction

1.1 Di�usion

Di�usion describes the random movement of molecules due to thermal motion. The in-

trinsic energy possessed by a molecule or particle at any temperature above absolute zero

results in randomized motion and is responsible for numerous biochemical and physical

processes. This e�ect was initially observed by Robert Brown in 1827 [1], who noted the

agitation of pollen molecules submerged in water when viewed below a microscope; con-

sequently this random movement phenomenon is often referred to as Brownian motion.

The evolution of a given concentration of particles due to Brownian motion can be

described by Fick’s second law (also known as the di�usion equation):

ˆÏ(x, t)
ˆt

= D
ˆ2Ï(x, t)

ˆx2 (1.1)

where D is the di�usivity (also called the di�usion coe�cient) and Ï is the local concen-

tration of molecules. However, Einstein demonstrated that in the absence of a concentra-

tion gradient (i.e. self-di�usion) equation 1.1 still applies [2]. In this case however, the

stochastic nature of di�usion becomes apparent and Ï(x, t) is interpreted as the prob-

ability of finding a molecule at location x and time t. For the case of a free particle

1



Figure 1.1: Gaussian probability distribution indicating likelihood of a molecule di�using a
given distance in a fixed observation time t; the MSD is described by the variance of the
distribution. Shown curves were generated using a di�usion coe�cient of 3 ◊ 10≠3 mm2/s

whose displacement is not limited by an external barrier, boundary or force the particle’s

displacement is governed by a Gaussian probability distribution obtained from solving

Fick’s second law (1.1):

Ï(x, t) = 1Ô
4fiDt

e
≠x

2
4Dt (1.2)

Particles that obey this relation are said to be undergoing free di�usion (sometimes called

Gaussian di�usion based on the functional form). Equation 1.2 may also be referred to as

the di�usion propagator and features prominently in theoretical discussions of di�usion.

This multivariate expression depends on both space (x) and time (t) with its evolution

in both dimensions shown in Figure 1.1. The variance of this distribution:

Èx2Í = 2Dt (1.3)

represents the mean-squared displacement (MSD) of the molecule over a fixed time in-

terval of duration t where D is the di�usion coe�cient.

The di�usion coe�cient D will have units of length2/time and hence intuitively de-

scribes the MSD per unit time. Its value is determined based on the temperature of the

2



molecule T , the resistance it experiences as it moves through the medium ’ (based on

the Stokes drag) and the Boltzmann constant kB according to the equation:

D = ’

kBT
(1.4)

While the Equipartition theorem describes the relationship between energy and tem-

perature, it was Einstein who first related temperature to displacement through equations

1.3 and 1.4. Notably equation 1.3 also relates the duration of the di�usion process to the

MSD of the molecule through the di�usion coe�cient. This e�ect is evident in Figure 1.1

where the MSD, represented as the full width at half maximum, increases with increasing

di�usion time. This is a key premise and will be touched upon throughout this work, in

particular in sections 1.2 and 1.4 regarding time-dependent di�usion.

1.2 Biological Di�usion

Despite being well characterized, not all di�usion processes can be classified as purely

Gaussian. In biological systems free di�usion is in fact scarcely found; the presence of

membranes, organelles and molecules often interfere with di�usive movement. These

obstacles give rise to two non-Gaussian di�usion regimes termed hindered and restricted

di�usion. When a molecule’s movement is rigidly confined, for example when bound

within an impermeable membrane, irrespective of the time allowed to di�use it can never

travel beyond this boundary and hence it is said to be undergoing restricted di�usion.

However if that same membrane now featured several small pores the molecule would

(in theory) be able to escape the boundary should it happen to di�use through a pore.

However, since there are only few pores it is more probable that the molecule remains

within the boundary. In this second example, the molecule’s movement is not strictly

prohibited but rather impeded and hence this is known as hindered di�usion. Experimen-

tally these regimes can be distinguished at long time scales where the restrictive nature

3



Figure 1.2: (A) Visual representation of ”random walk” di�usion trajectories for both restricted
(red) and hindered (blue) di�usion regimes. The black boundaries, representative of cell mem-
branes act to restrict the movement of di�using molecules. (B) Resultant time trends in mean-
squared displacement for free, hindered and restricted di�usion regimes. Note for restricted
di�usion a terminal MSD is reached based on the restricting boundary.

of boundaries can manifest their e�ects on limiting the maximum MSD. The visual dis-

tinction between hindered and restricted di�usion in a cellular context is presented in

Figure 1.2A while Figure 1.2B demonstrates the dependence of the MSD on the di�usion

time for each of the three regimes discussed thus far.

Contrary to the simplistic representations of Figure 1.2A, not all cells can be modeled

as spherical or symmetric. In particular the neurons that constitute the electrically

excitable nerve cells in the brain are highly asymmetric as seen in the diagram of Figure

1.3. While dendrites fan out, axons are long cylindrical-like structures surrounded by a

myelin sheath to enhance conductivity. Bundles of myelinated axons are tightly grouped

together to form tracts that largely constitute white matter (WM) while dendrites and cell

bodies of axons make up the majority of grey matter (GM) [3]. While the characterization

of the brain on a cellular or neurological level is beyond the scope of this work, the key

attribute of these cells from a di�usion standpoint is their geometry.

The long cylindrical-like shape of axons implies that di�usion is not symmetric along

the radial and axial directions. In this configuration because the radius is much smaller

than the length, a molecule di�using within an axon will travel further axially than

4



Figure 1.3: Labled diagram of a human neuron demonstrating the long and narrow geometry of
axons and more dispersed nature of dendrites. Image © Arizona Board of Regents / ASU Ask
A Biologist, licensed under CC-BY-SA 3.0. Accessed via www.askabiologist.asu.edu/neuron-
anatomy

radially in the same time interval. This disparity leads to a directionally dependent

di�usion known as anisotropic di�usion (not to be confused with the image processing

technique of the same name). Anisotropic di�usion occurs when the Brownian motion

of a molecule cannot be described by a single di�usion coe�cient but rather requires

multiple di�usion coe�cients (one for each direction of di�usion) [4]. In the example of

an axon, the radial di�usivity can be nearly four times smaller than the axial di�usivity

due to the constraints imposed by the cylinder-like geometry [5]. While anisotropy implies

directional dependence, isotropic di�usion is synonymous with free di�usion and hence

a single di�usion coe�cient is adequate to describe di�usion in every direction. The

concepts of isotropic and anisotropic di�usion will be featured throughout this work and

are key to the large-scale physiological interpretation of di�usion MRI data.

For a more in-depth understanding and detailed review of cellular di�usion and its

biophysical role in vivo, the author found references [4, 6, 7] to be particularly helpful.
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1.3 Di�usion MRI

A large percentage of the human body is composed of water and as such, fluids are con-

stantly in flux in our organs and cells. Whereas conventional MRI can image the spatial

location of water molecules by monitoring the hydrogen (often referred to as just proton)

signal, di�usion MRI (dMRI) is a similar MRI technique that images the di�usive motion

of water molecules. As discussed in the previous section, the monitoring of this di�usion

can reveal information regarding the underlying geometry of the cellular environment

and thereby provide information about the physiological condition of the cellular land-

scape. Hence, dMRI has gained significant traction in the last three decades as a tool

for the investigation of human anatomy and the diagnosis of various pathologies [8–10].

While not restricted exclusively to imaging the brain, from here onwards the discussions

of dMRI and related methodologies will center upon neuroimaging applications.

1.3.1 Sensitizing MRI to Di�usion

The notion of using nuclear magnetic resonance (NMR) to monitor di�usion was initially

suggested by Torrey [11], who developed a framework to integrate Fick’s law (Equation

1.1) into the Bloch equations as:

dMt

dt
= ≠i“G̨ · r̨ ≠ Mt

T2
+ DÒ2Mt (1.5)

Equation 1.5 is known as the Bloch-Torrey equation where Mt is the transverse magne-

tization, D is the di�usivity, “ is the gyromagnetic ratio, T2 is the spin-spin relaxation

time and G(r) is a spatially dependent magnetic field gradient. Through this equation

Torrey proposed that the magnetization of di�using spins could be monitored through

the application of a spatially varying local magnetic field gradient G(r) [11]. Stejskal and

Tanner later extended this framework [12] to use pulsed gradients that were feasible to

implement in a technique that is now known as Pulsed Gradient Spin-Echo (PGSE) [13].
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PGSE inserts two trapezoidal gradient pulses symmetrically on either side of the refo-

cusing radiofrequency (RF) pulse in a conventional Spin-Echo sequence and in the years

that followed this technique began to be applied ex vivo to monitor di�usion in various

biological systems including human muscles [14] and di�erent types of cells [15]. The

solution to equation 1.5 describing the transverse magnetization can be written as [16]:

Mt = e≠i“
s

t

0 G(tÕ)·r̨dt · e≠t/T2 · e≠D“2
s

t

0 (
s

·

0 G(tÕ)dtÕ)2
d· (1.6)

This solution can be interpreted as having three parts (split as the 3 exponential terms):

a complex phase term due to gradient dephasing e�ects, a term that describes the T2

relaxation of the magnetization according to the Bloch equations and an additional term

which attenuates the signal based on the di�usion induced dephasing during the gradients.

This final term is of most interest and describes precisely how the MRI signal is made

sensitive to di�usive movements.

As seen in the final term of equation 1.6, the di�usion gradient is the critical compo-

nent to sensitize the acquired signal to di�usion. According to the Larmor equation:

Ê(r̨) = “(B0 + G(r̨)) (1.7)

the angular precession frequency of nuclear spins Ê can be altered by applying a spatially

dependent magnetic field gradient G(r) which acts to modify the magnetic field experi-

enced by the spins based on their position r̨ (i.e. can add or subtract from the main field

B0); this is the principle that enables the spatial localization of the MRI signal for image

generation. This e�ect is scaled by the gyromagnetic ratio “, which is a constant defining

the precession frequency per unit magnetic field associated with the nuclear species (for

H1, “ = 2.675 ◊ 108 rad/s/T ). Based on the solution to the Bloch-Torrey equation

(equation 1.6) and through interpretation of the Larmor equation, the application of a

magnetic field gradient will impart some additional phase on the signal (via the complex
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phase term in equation 1.6). The introduction of this phase causes the spins to dephase

relative to each other, leaving their presumed coherent state - this is the result of the

application of the initial di�usion gradient. This change in coherence is precisely reversed

by the e�ects of the second di�usion gradient which acts in the exact opposite manner

(due to its placement after the refocusing pulse), to revert any dephasing accrued from

the first gradient. Thus static (i.e. non-moving) spins will return to a coherent state

before the signal is measured and thus the di�usion gradients in essence have no e�ect.

However, for non-static spins that are moving (due to di�usion or otherwise) there is

additional dephasing that occurs due the movement during the gradient pulse (see the

third exponential term in equation 1.6). The spatial variation in magnetic field due to

the gradient means that as any particular spin moves it experiences a slightly di�erent

magnetic field resulting in dephasing. This allows the gradients to, in e�ect tag the

di�using molecules by applying additional dephasing in a manner proportional to their

displacement. This dephasing due to di�usion is not resolved by the second di�usion

gradient and results in net signal loss via reduced echo amplitude. The reduction in the

acquired signal is what is generally referred to as di�usion weighting. The e�ect of the

di�usion gradients on both stationary and non-stationary spins is visualized in Figure

1.4.

It should be noted that this e�ect is true for all gradients in an imaging sequence

and hence is not exclusive only to the di�usion gradients however, the magnitude and

duration of the gradients required for di�usion encoding significantly dominate this e�ect;

the di�usion weighting applied by a sequence that does not contain dedicated di�usion

encoding gradients is typically 2-3 orders of magnitude lower and hence any e�ects of

di�usion on the signal are negligible [7].
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Figure 1.4: Spin dephasing behaviour for a typical di�usion sequence. Static spins experience
dephasing due to gradients alone which is reverted by the second gradient. Di�using spins
experience additional dephasing due to thermal displacements which is not reverted by the
second di�usion gradient resulting in signal loss. As shown ” corresponds to the gradient
duration, � denotes the gradient duration plus the time which separates the two di�usion
gradients and G denotes the gradient amplitude. Figure adapted from Patterson et al. [10]
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1.3.2 Di�usion Attenuated Signal

Le Bihan et al. [17,18] were the first to aggregate these gradient-dephasing e�ects, lump-

ing them into a single factor called the b-value. Moreover, the work by Le Bihan et al. [17]

represented the first measurements of in vivo di�usion using MRI, pioneering the field

from that point on. Adopting this convention allows the di�usion-attenuated portion of

the signal to be written compactly as:

S(b) = e≠D“2
s

t

0 (
s

·

0 G(tÕ)dtÕ)2
d· = S0e

≠bD (1.8)

where D is the di�usivity, b is the di�usion weighting (b-value), S0 is the signal with

no di�usion weighting applied and S(b) is the acquired signal. Based on equation 1.8

the b-value can be interpreted as the amount of di�usion weighting that is applied in

an acquisition; to preserve dimensionality it has units of time/length2. Practically the

b-value gives an indication of the amount of signal attenuation that will occur in the

image due to di�usion and is generally proportional to the square of the amplitude of

the applied gradient. To illustrate this point, Figure 1.5 shows di�usion weighted images

(DWIs) of a healthy human brain acquired with increasingly larger b-values using PGSE,

demonstrating the increased signal attenuation with greater di�usion weighting.

For a pair of pulsed gradients as proposed by Stejskal and Tanner [12,13] and as used

by Le Bihan et al. [17] the b-value can be written as:

b = ≠“2G2”2(� ≠ ”

3) (1.9)

Where the definitions of ”, � and G in relation to the gradient pulse are illustrated

in Figure 1.4. Hence, by controlling the gradient specifications, in particular gradient

amplitude and duration, a broad range of di�usion weighting can be achieved. Di�usion

encoding gradients can be applied along any one (or combination of) the three axes that
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Figure 1.5: Di�usion weighted images (DWIs) acquired with PGSE at b-values of 0 (left), 1000
(middle) and 2000 s/mm2 (right). Images demonstrate decreasing SNR due to increasing signal
attenuation with larger b-values (moving from left to right).

compose the cartesian scanner coordinate system. Generally these are referred to as Gx,

Gy and Gz for gradients applied along the x, y and z axes respectively.

Since the signal is attenuated as spins di�use, dMRI su�ers from inherently lower

signal-to-noise ratio (SNR) than it’s parent proton MRI methods. As seen previously

in Figure 1.5 the reduction in SNR is apparent for increasing b-value and hence this

requires an increased number of averages to maintain the same SNR, thereby elongating

the scanning time. Moreover applying di�usion encoding along multiple directions can

also increase scan times leading to generally longer scans than more conventional non-

di�usion sequences.

1.3.3 Apparent Di�usion Coe�cient

The di�usivity that appears in equations 1.6 and 1.8 implies that the di�usion coe�-

cient of the water molecules being tracked can be recovered by careful monitoring of the

magnetization – which constitutes the signal, and knowledge of the gradients applied.

However, while this may be feasible in NMR experiments, it is misleading to assume that

the exact di�usion coe�cient can be obtained from images where voxels sizes are on the

order of a few millimeters while cell structures are on the order of microns. Instead, bulk
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di�usion information is measured in each voxel, which is inclusive of additional e�ects

that may influence measurements of di�usivity. These e�ects as observed by Le Bihan et

al. [17] were termed intravoxel incoherent motion and include additional factors such as

cardiac or respiratory pulsatile e�ects, microcirculatory or related flow and others. In this

context the di�usivity is replaced with a more appropriate title known as the apparent

di�usion coe�cient (ADC). In current literature the term ADC is used to acknowledge

both the presence of these e�ects in di�usion measurements and the inherent averaging of

cellular di�usion e�ects within a single voxel. Nevertheless, this change in interpretation

of the di�usivity as the ADC does not a�ect the method of its calculation. Based on

equation 1.8, in order to calculate the ADC we require three values: b the b-value of

the acquisition, S(b) the measured signal with said b-value and S0 the measured signal

with no di�usion weighting applied. The b-value is known and selected as part of the

scanning protocol and the signal S is acquired in each voxel constituting the image hence

only S0 remains unknown. For this reason common practice is to acquire two images in a

di�usion protocol, one with the desired b-value and one with no di�usion weighting ap-

plied (though any two unequal b-values would su�ce). Acquiring images at two di�erent

b-values permits the simple calculation of the ADC by fitting equation 1.8 to the curve

generated from S(b1) and S(b2). To make this process more computationally e�cient,

a logarithm can be applied to equation 1.8 allowing it to be rewritten in the form of a

straight line:

ln(S(b)) = ln(S0) ≠ bD (1.10)

This allows the ADC to be extracted from a single parameter linear fit (see Figure 1.6)

permitting an ADC to be determined for each voxel of the image. Displaying the ADC

value of each voxel is known as an ADC map - an example of such a map is presented in

Figure 1.7B. The contrast of ADC maps is inverted when compared to DWIs; in DWIs

areas with higher ADCs appear darker while those with lower ADCs appear brighter.

This can be understood by recalling the discussion from the previous section regarding
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Figure 1.6: Typical di�usion signal curve generated from two b-value acquisitions corresponding
to S(b1) and S(b2). The ADC is determined as the slope of the linear fit between the natural
logarithm of the two points according to equation 1.10.
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Figure 1.7: Comparison of various di�usion metrics and contrasts from a healthy subject. (A)
DWI acquired with PGSE at b = 1000 s/mm2, (B) calculated average ADC map and (C)
calculated apparent kurtosis map generated from b = 0, 1000, 2000 s/mm2 acquisitions.

the attenuation of the signal due to di�usion - namely that a larger ADC will result in

a more attenuated signal. Figure 1.7 shows the distinct contrast in di�usion-weighted

images with cerebrospinal fluid (CSF) in the ventricles appearing considerably darker

than brain parenchyma due to the increased di�usivity of CSF.

As discussed previously in Section 1.2, anisotropic di�usion creates a directionally

dependent di�usion coe�cient based on cellular and/or environmental structures. Prac-

tically, this translates to a directionally dependent ADC which can be probed through

the application of gradients along any one (or combination of) directions. Initially pro-

posed by Basser et al. [19] di�usion tensor imaging (DTI) provides a formal framework to

account for this directional dependence of the ADC. The dependence is conveyed through

the di�usion tensor D whose components comprise the measured di�usivity along each

direction [20]. Traditionally the di�usion tensor is written as:

D =

S

WWWWWWU

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

T

XXXXXXV
(1.11)
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where Dnm denotes the ADC measured along the n and m directions simultaneously.

Since the tensor is both real and Hermitian it is also symmetric (i.e. that Dxy = Dyx,

Dzy = Dyz, Dxz = Dzx) therefore only six of the nine elements are unique. Consequently

at least six di�usion directions are required to calculate the entire tensor (not including

the necessary b = 0 acquisition) [21]. While six is the minimum number of non-collinear

directions required to estimate D, additional directions provide increased sensitivity to

complex fibre arrangements (e.g. crossing or kissing fibres) [22] and may reduce sensitivity

of tensor metrics to noise [23].

From D, it is also possible to derive numerous metrics and maps including the frac-

tional anisotropy (FA), which enables the visualization of anisotropy, radial and axial

di�usivity (RD, AD) that describe the di�usion in radial and axial directions relative to

the orientation of the neurite and mean di�usivity (MD), which is the average di�usivity

along the x, y and z directions.

The utility of DTI and its associated key metrics is undisputed; since its introduction

it has quickly become the Gold Standard for investigating in vivo di�usion with MRI and

has found a myriad of clinical and research applications. These applications, though too

broad to discuss in detail here, include the detection and monitoring of cerebral ischemia,

multiple sclerosis lesions, Alzheimer’s disease, epilepsy and various types of tumors and

tumor associated edema [24,25].

1.3.4 Di�usion Kurtosis

The utility of ADC measurements and DTI protocols are undisputed; however, despite

this, these methods remain beneath the assumption that measured di�usion is Gaussian.

While this may be the case for free di�usion where predictions from Einstein remain

valid, this assumption breaks down for intricate cellular environments where membranes

and other obstacles act to restrict di�usion (as discussed in section 1.2). The result is

a deviation from the Gaussian distribution to reflect the presence of such barriers. The

15



kurtosis is a statistical measure that serves to quantify this degree of non-Gaussianity.

In the context of di�usion, a positive kurtosis reflects a narrowing of the probability

distribution as shown in Figure 1.8 and is associated with restricted di�usion through a

reduction of the MSD.

Practically, the kurtosis is introduced through a series expansion of the signal S(b)

and results in an additional second order term added to equation 1.8 [26,27]:

S(b) = S0e
≠bD+ b

2
D

2
K

6 (1.12)

where K denotes the dimensionless kurtosis and all other parameters remain the same as

in equation 1.8. Equation 1.12 can be understood as having an additional higher order

term which acts to correct the signal for large b-values where the linearity of equation

1.10 breaks down due to the assumptions discussed (see Figure 1.9). Consequently,

the kurtosis is only apparent for high di�usion weighting (b > 1000 s/mm2) where the

nuances of cellular barriers become evident. In practice this makes kurtosis imaging

more demanding on scanner hardware than traditional di�usion sequences requiring high

gradient amplitudes and longer gradients to achieve necessary b-values though even still,

kurtosis imaging is well within reach of most clinical systems.

Similar to DTI an analogous treatment for kurtosis was also proposed [26] known as

di�usion kurtosis imaging (DKI). Like DTI, DKI scales the signal in equation 1.12 up

to 3-dimensions to capture the directionality by introducing a di�usion kurtosis tensor.

Unlike the di�usion tensor however, the kurtosis tensor has 15 unique elements and thus

requires at least 15 di�erent directions to estimate. Despite their di�erent definitions

the kurtosis is obtained through a similar procedure as the ADC (ie. by fitting the

signal curve). However, since this procedure now involves a two-parameter quadratic fit

(equation 1.12 now contains a b2 term), at least 3 b-values are required to determine both

the ADC and the kurtosis from acquired data.
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Figure 1.8: Probability distributions that governs the likelihood of a spin di�using a given
distance in a fixed time interval, for both zero kurtosis (pink) and positive kurtosis (blue). The
narrowing of the probability distribution for positive kurtosis signifies restricted di�usion and
increased heterogeneity compared to purely Gaussian di�usion which has no kurtosis. Image
courtesy of Allen D. Elster, MRIquestions.com
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Figure 1.9: Natural logarithm of the di�usion signal across a wide range of b-values. The linear
approximation of equation 1.8 is valid up to b ≥ 1000 s/mm2. Higher order e�ects are observed
for b > 1000 s/mm2 where the signal begins to deviate from the first-order linear approximation
due to kurtosis e�ects and is better described by the additional term in equation 1.12.
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Since it’s relatively recent introduction [26], kurtosis imaging has already demon-

strated unique properties that have brought it to the forefront of di�usion MRI investi-

gations. As seen in Figure 1.7C, kurtosis images display unique contrast between WM

and GM demonstrating sensitivity to structural anisotropy that is not apparent from

the ADC alone [26]. As a result significant clinical applications in neuroimaging have

emerged. Recent progress in kurtosis imaging applications includes using kurtosis for

the detection of ischemic and traumatic brain injury, Alzheimer’s disease, cognitive im-

pairment and gliomas [28]. Moreover, despite the prominence in neuroimaging, kurtosis

also has demonstrated utility in imaging pathology of other organs including the kidneys,

breast, neck and prostate [28, 29]. Given its unique role recent e�orts have focused on

determining the optimal parameters for acquiring kurtosis images including the num-

ber of directions, target b-values and the distributions of said b-values with respect to

each other [30–35]. Current work appears to focus on further optimizing acquisitions to

generate higher SNR, reduce scan times and explore novel clinical applications.

1.4 Oscillating Gradient Di�usion MRI

The motivation for oscillating gradients stems from the notion that in the context of

restricted di�usion the di�usion time (which can be thought as analogous to the exposure

time of a camera), will determine the measured value of the ADC in a manner that reflects

the surrounding geometry. As the e�ective di�usion time (td) is reduced, molecules probe

increasingly shorter distances and thereby experience fewer interactions with boundaries,

barriers and other cellular-level obstacles. In this sense the probing of shorter di�usion

times can be understood as the probing of the transition from restricted to free di�usion;

given a short enough amount of time to di�use the molecule will not reach the boundary

that would restrict its movement thus giving the appearance of free, isotropic di�usion.

The result is an ADC that will be determined based on the di�usion time, with shorter
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Figure 1.10: Visual representation of possible random walk trajectories for two relative di�usion
times (or conversely two di�erent oscillation frequencies) for both large (top row) and small
(bottom row) diameter axons. Red trajectories indicate restricted di�usion, where the di�usion
time is long enough to permit the boundary to limit the MSD resulting in reduced ADCs and
increased kurtosis. Blue trajectories indicate free unrestricted di�usion resulting in larger ADC
values and reduced (or zero) kurtosis. Since the distance to the boundary is less for smaller
axons, an even shorter di�usion time would be required to observe di�erences in the ADC and
kurtosis based on changes in the MSD, hence restricted di�usion is implied in small axons for
both di�usion times.

di�usion times predicted to result in larger ADC values. This is represented graphically

in Figure 1.10, demonstrating the e�ect of di�usion time on molecular movement, the

ADC and the impact of cellular dimensions on this e�ect.

Recalling equation 1.3 it can be estimated that in 30 ms (a typical di�usion time

for PGSE) a water molecule would di�use ≥13 µm in any single direction. Given the

distribution of axon sizes in the human brain varies between 0.5-10 µm in diameter [3] this

di�usion time is insu�cient to probe the length scales of individual axons. Consequently,

such a measurement can only reveal a portion of the present microstructural features that
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could otherwise be accessible through shorter di�usion times. While PGSE is limited to

di�usion times greater than ≥ 20 ms due to hardware constraints, oscillating gradient

di�usion MRI provides a convenient method for reducing the di�usion time below that

which is possible with PGSE. In doing so it provides a method for probing shorter length

scales granting access to previously inaccessible microstructural characteristics. The

mechanism of oscillating gradients, its current applications and limitation are discussed

in more detail in the following subsections.

1.4.1 Oscillating Gradient Spin-Echo (OGSE)

The current implementation of oscillating gradients is known as oscillating gradient spin-

echo (OGSE). Initially proposed by Gross and Kosfeld [36], Stepisnik later used a density

matrix framework to derive an expression for the di�usion-attenuated signal of a time

varying gradient as [37, 38]:

S = S0 · exp
3≠1

2fi

⁄ Œ

≠Œ
F (Ê)D(Ê)F ú(Ê)dÊ

4
= S0 · exp

3≠1
2fi

⁄ Œ

≠Œ
|F (Ê)|2D(Ê)dÊ

4
(1.13)

where S0 is the signal without any di�usion weighting applied (i.e. b = 0 s/mm2), |F (Ê)|2

is the gradient-modulation power spectrum and D(Ê) is the di�usion spectrum which

determines the frequency dependent di�usivity and can be derived from the velocity

autocorrelation function [38]. The gradient modulation spectrum is constructed from an

intermediate term F (Ê) which is defined as:

F (Ê) =
⁄ Œ

≠Œ

3⁄ ·

0
g(t)dt

4
e≠iÊ· d· (1.14)

and can be interpreted as the Fourier transform of the zeroth moment of the gradient

g(t), corresponding to the phase accumulation of the spins. In order to acquire mean-

ingful spectra (i.e. that have non-zero spectral components), periodic modulation of the

di�usion gradient is required, where the modulation frequency is denoted as Ê. This
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modulation can take the form of sine or cosine apodization however, with sine modu-

lation measuring di�usion at a particular non-zero frequency can be problematic as a

sine function inherently produces a peak frequency at zero (Êpeak = 0). Cosine modu-

lation provides increased spectral selectivity by ensuring the peak frequency is non-zero

(Êpeak ”= 0) allowing specific frequencies to be probed. Additionally, the increase in max-

imum possible b-value between cosine and trapezoidal-cosine modulated waveforms is

significant [39] and for this reason most modern implementations rely on the trapezoidal-

cosine method. For this configuration the b-value can be calculated as [40]:

b = ≠“2G2
1
tr + tp)2(� ≠ (tr + tp)/3 + t3

r/30 ≠ t2
r(tr + tp)2/6

2
(1.15)

Where G is the maximum gradient amplitude, tp is the period of the waveform (defined

as 2fi/Ê) and tr is the gradient rise time. However, the oscillatory nature of the gradient

prevents the max amplitude from being exploited for the entire gradient duration and as

a result the b-values are significantly lower for OGSE compared to PGSE (this limitation

is discussed further in section 1.4.3). Figure 1.11 compares the gradient waveforms and

power spectra of PGSE to both trapezoidal sine and cosine OGSE highlighting the key

spectral di�erences.

Another key di�erence between PGSE and OGSE is the estimation of td, the e�ective

di�usion time. While the td for PGSE (in the narrow pulse limit) can be calculated as

td = � ≠ ”/3, the e�ective di�usion times of OGSE sequences are not as well defined;

the literature demonstrates disagreement on the exact relation of the di�usion time to

oscillation frequency [40]. The initial solution was to use td = 1/(4f), where f = Ê/(2fi)

[41, 42] however later it was suggested a more accurate representation is td = 7/(64f)

[43]. Nevertheless, what is agreed upon is that the use of increasingly higher frequencies

translates to shorter e�ective di�usion times, scaling inversely with frequency. For this

reason it can be instructive to work instead in the spectral domain with reference to
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Figure 1.11: Comparison of gradient waveforms for PGSE (A), cosine modulated OGSE (C) and
sine modulated OGSE (E). The corresponding normalized gradient modulation spectra are also
shown (B,D,F) with cosine modulated demonstrating a non-zero peak frequency corresponding
to the oscillation frequency. Waveform polarity is reversed for the second di�usion gradient due
to the e�ects of the refocusing RF pulse (not shown); OGSE waveforms are shown using only
2 periods.
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oscillation frequency as opposed to di�usion time. An increasing number of studies are

adopting this approach [39, 44–46] as it eliminates the ambiguity of the di�usion time

definition while still enabling time-dependent di�usion observations.

In essence OGSE enables access to shorter e�ective di�usion times by rapidly tagging

and untagging molecules via phase accrual through the rapidly changing polarity of the

gradient. This enables the exploration of time-dependent e�ects of di�usion that are

otherwise invisible to PGSE and constitutes a unique tool for imaging di�usion in the

brain.

1.4.2 Applications and Current Progress

Given the unique spectral treatment of di�usion enabled by OGSE, current applications

revolve around probing the di�usion spectrum D(Ê) to acquire frequency dependent ADC

measurements. Due to advanced hardware capabilities that permitted easier implemen-

tation of OGSE, small animal studies were the first to explore time-dependent e�ects

with oscillating gradients; in the following subsection, key studies from animal subjects

are summarized followed by recent progress in human imaging and an examination of

current avenues of interest.

Initial investigations of the time-dependent ADC were conducted in healthy and is-

chemic rat brains by Does et al. [41] who demonstrated an ADC increase with frequency.

Subsequent works built upon this study applying OGSE to mouse models and demon-

strating increased sensitivity to gliomas [47,48] and ischemic injury [45,49,50] compared

to PGSE alone. From these studies evidence was presented demonstrating the ability

to di�erentiate between diseased and healthy tissue based on the response of the ADC

measured across varied frequency.

During this time advances were also made in connecting short di�usion time ADC

measurements with quantitative microstructural properties. The e�ect demonstrated in

Figure 1.10 also intuitively suggests some sensitivity to cell dimensions. Using a fixed
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di�usion time, larger changes in ADC would be expected for larger diameter axons for

example. Hence theoretical frameworks were developed to enable the determination of

surface-to-volume ratios [51], extracellular space [52] and mean cell size [53–56]. Of par-

ticular note, the concept of temporal di�usion spectroscopy [57–59] which uses OGSE for

the determination of cell sizes has recently received significant attention, with numerous

studies demonstrating the ability to infer tumor and cell sizes in both human and animal

models [53,56,60–64].

In addition to ADC investigations recent studies by Wu et al. [45] and Aggarwal et

al. [65] have demonstrated OGSE measurements of in vivo kurtosis with mice. While

previous studies have observed time-dependent kurtosis ex vivo using prepared samples

of procine spinal cord [66] and small animal brains [67, 68], the studies of [45] and [65]

constitute the first (and at the time of writing the only) published studies to image

the di�usion kurtosis in vivo using OGSE. The findings from both studies suggest a non-

monotonic behavior of the kurtosis when measured across a wide range of di�usion times.

This is in agreement with ex vivo observations and can be understood by considering

cellular exchange. The longer exchange times predicted by the Kärger model of exchange

are typically shorter than the e�ective di�usion times attainable with OGSE [69, 70],

as a result the kurtosis is expected to decrease with frequency as di�usion becomes

increasingly Gaussian. The longer di�usion times of PGSE make the measured di�usion

susceptible to exchange e�ects, which cause the kurtosis to decrease with di�usion time.

Notably, Aggarwal et al. [65] also present simulations that suggest permeability plays

a role in time-dependent kurtosis metrics which also explains the sensitivity of their

measurements to detecting demyelination.

Due to the gradient hardware limitations of clinical MRI systems, only a handful of

studies have successfully implemented OGSE imaging in the human brain. The pioneering

studies of [42] and [39] were the first to demonstrate the use of oscillating gradients for

in vivo measurements of di�usion. Results from DTI studies performed by Baron and
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Beaulieau [42] confirmed the findings from previous small animals studies indicating that

through the reduction of e�ective di�usion time OGSE provides additional sensitivity

to di�usion that is not observable with PGSE. Notably, Van et al. [39] were the first to

demonstrate the superiority of using trapezoidal cosine-modulated gradients for improved

OGSE di�usion encoding, citing better spectral selectivity and increased b-value. Studies

have since continued to explore the time-dependent ADC and it’s utility for detection

of ischemic injury [71,72], benign and malignant tumors [73] and cell size measurements

[53,56,60–64].

Moreover, recently Arbabi et al. [44] demonstrated the frequency dependence of the

ADC (termed di�usion dispersion) takes the form of D(Ê) Ã Ê1/2. This key result also

validates the predicted structural disorder model proposed for neurites [74] and is one

of the first studies to quantitatively assess a time-dependent microstructural model in

the human brain using OGSE. Moreover, [44] also demonstrated the acquisition of so-

called di�usion dispersion maps, whose contrast is based on the di�erence in ADC values

(�ADC) between PGSE and OGSE acquisitions (or conversely between a long and short

di�usion time). Investigations using these di�usion dispersion maps have recently proved

useful in the assessment of ischemia in neonates [75], the di�erentiation of malignant from

benign tumors [73] and structural changes in conditions such as Down Syndrome [76].

In addition to these studies recent measurements from Tétreault et al. [77] have used

OGSE to characterize time dependent di�usion in the corpus callosum of the human

brain finding preliminary dependencies on both sex and age across healthy subjects.

The utility of OGSE is still being realized with an increasing number of clinical and re-

search studies employing the technique. Current and future work focuses on improving ac-

quisition times, incorporating higher performing gradients and improved time-dependent

microstructural models.
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1.4.3 Limitations

Briefly discussed above, the primary limitation of OGSE methods is the limited parameter

space available for protocol (and thereby study) design. This is apparent through the

significant technical restriction of two key acquisition parameters: the b-value and the

echo time (TE).

The periodic modulation of the di�usion gradient ensures only gradient waves can be

implemented where the duration of the wave is dependent on the frequency and number

of oscillation periods, N (see Figure 1.12). This causes the di�usion gradient durations

to be longer than those typically required for PGSE. This e�ect is particularly sensitive

to the selected frequency, with lower frequencies requiring increasingly longer TEs due to

the longer period of the waveform. The result is intrinsically longer TE values associated

with OGSE sequences. Studies in the human brain typically have TE > 110 ms causing

exponential signal loss due to T2 decay; for comparison the typical TE of PGSE based

di�usion sequences lay in the range of ≥60-80 ms. For this reason partial Fourier phase

encoding (which is often employed for PGSE as well) is especially advantageous for the

readout of OGSE images. This technique exploits the conjugate symmetry of k-space

acquiring only a fraction of the entire space. Partial Fourier encoding reduces the readout

of the sequences e�ectively resulting in shorter echo times and reduced scan time both

of which are much desired for OGSE.

The second limitation occurs again due to the oscillating nature of the di�usion gra-

dients. Modulation prohibits the maximum gradient amplitude from being exploited for

the entire gradient duration as is possible with PGSE (see Figure 1.12). As a result, the

b-values associated with cosine-modulated OGSE gradient waveforms scale inversely with

frequency according to the relation b Ã 1/f 3 [40]. Hence, higher frequencies are severely

limited by the range of b-values that can be accessed. Moreover, while the addition

of more periods can mitigate this e�ect by enabling longer gradient wave-trains, these

simultaneously act to further elongate the TE of the acquisition. As a result, previous
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Figure 1.12: Comparison of PGSE with 40 Hz N = 2 and N = 3 cosine modulated trapezoidal
OGSE. For the same gradient amplitude and slew rate, N = 2 OGSE can achieve only ≥3% of
the b-value possible with a PGSE sequence of equal duration (bP GSE). Increasing the number of
oscillation periods (N) can increase the b-value, however addition of extra periods also elongates
the gradient duration as shown for N = 3.

28



studies conducted in the human brain have relied on either low b-values (b < 500 s/mm2)

or have limited frequency ranges (typically 20-60 Hz). In an e�ort to achieve larger b-

values it is becoming increasingly common to utilize a 4-direction tetrahedral direction

scheme, where the di�usion gradients are applied along the four directions constituted

by the vertices of a tetrahedron. While this is an insu�cient number of directions to

compute a full di�usion tensor, it does have the compelling advantage of enabling access

to higher b-values, increasing the max b-value by 50% compared to a 6-direction scheme.

As outlined by Conturo et al. [78] because the tetrahedral scheme samples all 3 princi-

pal directions (x,y,z) simultaneously it enables the gradients along each direction to be

maximized at the same time, achieving larger maximum b-values. A separate emerging

solution to this issue is the use of high-performance gradient systems [79–81] which have

expanded the parameter space considerably to include studies with b-values in excess

of 900 s/mm2 [82] and oscillation frequencies up to 100 Hz [83]. The larger gradient

amplitudes (up to 200 mT/m) and slew rates (up to 500 T/m/s) permit significantly

higher b-values to be achieved than on clinical systems where gradient amplitudes are

typically 60-80 mT/m. Larger gradient amplitudes however, increase the concerns re-

garding peripheral nerve stimulation (PNS) in which the rapidly changing magnetic field

gradient induces stimulating electrical current in nerves resulting in involuntary muscle

contractions. While less concerning for neuroimaging with head only scanners, this con-

sequence remains for full body scanners where the PNS threshold is lower and must be

considered for OGSE protocol design, particularly when high frequencies (f > 60 Hz) or

exceptional gradient amplitudes are to be used.

In addition to echo-planar imaging (EPI) and k-space related artifacts that a�ect

PGSE di�usion MRI, OGSE also su�ers from particularly strong eddy current distortions

and artifacts. The rapid switching of the gradient polarity that occurs with OGSE induces

the formation of strong eddy currents in conductive hardware components via Faraday’s

law. The induced currents act to alter the local magnetic field thereby contributing to
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magnetic field inhomogeneity. The result is distortions in acquired DWIs in the form

of shearing, stretching, scaling and/or positional shifting artifacts [84]. Strategies have

evolved for mitigating eddy current e�ects including gradient waveform compensation [85]

and acquiring reverse polarity gradients [86]. Recent work on this front has worked

to characterize time-varying eddy currents using retrospective model-based correction

algorithms [87] however, the gold standard for eddy current correction is accomplished

through the use of advanced field-monitoring systems. These systems consist of several

probes that function to directly measure local changes in field homogeneity during the

imaging sequence and as a result have the unprecedented ability to precisely correct for

eddy current induced distortions and artifacts. Their use in this work and in other studies

constitutes a vital tool in the enhancement of di�usion weighted image quality.

1.4.4 Summary

OGSE provides a method for achieving di�usion times that are substantially shorter

than what is possible with PGSE methods by modulating the di�usion gradient at a

frequency Ê. This results in OGSE providing microstructural di�usion information on

shorter length scales associated with increasing frequency, leading to observations of

frequency dependent ADCs. The investigation of the frequency/time dependent ADC

is still on going but select recent findings, in both animals and humans, have already

demonstrated key applications in probing tissue microstructure and exploring pathology

through the frequency dependent ADC. Despite these advances however, numerous tech-

nical challenges still exist in the implementation of OGSE sequences on human scanners.

Together, the restrictions of the b-value and the long TEs continue to limit the applica-

tions of OGSE in both clinical and research settings. The careful balancing of b-value,

frequency and TE has made protocol design with OGSE substantially more di�cult than

using PGSE methods alone. In the context of this work, these limitations have also con-

tributed to the lack of studies exploring the frequency-dependent kurtosis in vivo. This
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thesis sets to address this unexamined area by presenting the first measurements of the

frequency dependent kurtosis in the human brain using a clinically relevant gradient

system.
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Chapter 2

Bipolar oscillating gradients for

mapping di�usion kurtosis

dispersion in the human brain

2.1 Introduction

Conventional di�usion MRI is performed using the well characterized pulsed gradient

spin-echo (PGSE) sequence [12]. PGSE sequences enable e�cient generation of di�usion

weighting, and recent studies have explored time-dependent di�usion using PGSE meth-

ods [70,88]. However, due to hardware limitations the range of accessible di�usion times

remains limited to > ≥20 ms.

Complimentary to PGSE, oscillating di�usion gradients initially proposed by Step-

snik [37, 38], are utilized in oscillating gradient spin-echo (OGSE) sequences. While the

e�ective di�usion time is not well defined for oscillating gradients, it is generally ac-

cepted that shorter e�ective di�usion times can be achieved with increasing oscillation

frequency Ê when compared to PGSE [40–42]. Consequently, OGSE has constituted a

powerful tool in the investigation of time-dependent restricted di�usion through mon-
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itoring of the ADC. As Ê is increased, tracked water molecules di�use shorter lengths

and thereby have a reduced capacity to probe the surrounding environment; hence, the

apparent di�usion coe�cient (ADC) approaches the free di�usion limit. Deviations from

this intrinsic limit, manifested as reductions in the ADC, can be instructive in providing

information about physiological structures impeding di�usion such as cell membranes,

cell density or extracellular components. Recent applications on this front include the

probing of cell dimensions [53, 55, 60, 63, 64, 89], surface-to-volume ratios [51, 90] and ad-

ditional microstructural characteristics such as packing [58, 91], extracellular space [52]

and pore sizes [58]. Recently, OGSE sequences utilized by Arababi et al. [44] have also

been used to investigate structural disorder in the human brain, confirming the predicted

square-root dependence of the ADC on oscillation frequency [74].

It must be noted that most ADC investigations and di�usion tensor imaging (DTI)

protocols fundamentally rely on Gaussian di�usion approximations [7]. However, local

inhomogeneity of the tissue microenvironment results in deviations from Gaussian dif-

fusion. Such deviations are quantified by extending the DTI treatment to estimate the

directionally dependent di�usion kurtosis tensor, formally introduced in di�usion kurto-

sis imaging (DKI) [26, 92]. Similar to the ADC, it has been proposed that the di�usion

kurtosis is also a time-dependent quantity, approaching zero with vanishing e�ective dif-

fusion times [27]. Studies by Lee et al. [70] have used PGSE to explore time-dependent

kurtosis in human gray matter, while small animal studies [65,68,88,93] in addition to ex

vivo studies [66, 67] have benefited from advanced hardware to observe time-dependent

kurtosis more thoroughly. Notably, Aggarwal et al. [65] used both PGSE and OGSE

methods to characterize the time-dependence of di�usion kurtosis in mice while Wu et

al. [93] demonstrated the use of OGSE kurtosis imaging of healthy and injured mouse

brains. Moreover, both studies highlight the utility of comparing kurtosis measurements

between PGSE and OGSE in the form of di�erence maps, indicating their sensitivity to

demyelination [65] as well as hypoxic-ischemic injury [93].
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Despite this however, at the time of writing only a single recent preliminary work by

Yang et al. [94] has explored the in vivo kurtosis in the human brain using oscillating

gradients. The technical challenges associated with translation to clinical imaging sys-

tems have severely limited kurtosis measurements in humans using OGSE. In particular,

limitations of gradient systems (both slew rate and gradient amplitude) have significantly

hindered progress on this front by restricting the range of frequencies and b-values avail-

able for protocol design. The recent advent of high-performance gradient insert coils (as

used by Yang et al.) has expanded this parameter space and made kurtosis measurements

more feasible. Such gradient insert coils significantly outperform modern clinical gradient

systems, routinely realizing max amplitudes of 200 mT/m and slew rates in excess of 500

T/m/s [80,94,95] permitting both rapid slewing and increased gradient amplitudes to be

achieved across a wider range of frequencies [83]. Unfortunately, such hardware is not

widely accessible and thus there remains a need to accommodate kurtosis measurements

with OGSE to clinically relevant systems to further explore its utility for investigating

restricted di�usion.

In this work we demonstrate the first kurtosis measurements in humans using OGSE

with a clinically relevant gradient system. Our measurements, in conjunction with PGSE

acquisitions, enable the generation of maps demonstrating the frequency dispersion of

both the ADC and the di�usion kurtosis. This protocol is enabled by a novel gradient

waveform design that reduces the echo time (TE) of the di�usion gradient while retaining

the intrinsically high b-values required for kurtosis imaging. In the sections that follow we

present our waveform design, the optimization and validation of our acquisition protocol

and preliminary results for di�usion kurtosis dispersion in healthy human subjects.
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2.2 Methods

2.2.1 Gradient Waveform Design

Conventional OGSE is typically performed with trapezoidal cosine modulated waveforms

(Figure 2.1B) to maximize the achievable b-value [39]. However, recently proposed by

Hennel et al. [82], the conventional cosine sequence can be modified by optimizing ramp

times and reducing the spacing between the two di�usion gradients to the minimum

allowable, thereby e�ectively consolidating the two di�usion gradients into a single wave-

form. These changes were shown to produce more selective power spectra and increased

di�usion weighting capabilities [82]. The framework presented by Hennel et al. enabled

the implementation of a non-integer number of periods introducing the N = 2n + 1/2

convention where N constitutes the number of periods and n is an integer greater than

0.

Our proposed waveform achieves shorter di�usion weighting durations by utilizing

only N = 1.5 net oscillation periods over both sides of the refocusing RF pulse via

two bipolar gradient waveforms that are tuned to achieve the desired net frequency.

This approach functions to reduce the duration of the di�usion gradients and thereby

significantly reduce the TE of the acquisition. A comparison between this new N = 1.5

waveform and normal N = 2 cosine modulated OGSE is presented in Figure 2.1, where

similar spectral selectivity is demonstrated between the two methods.

The waveform is constructed by initially determining duration of the second lobe (T )

using the expression:

T = 1
2

A
1
f

≠ ·RF ≠ 2·

B

(2.1)

where ·RF is the separation required for the refocusing pulse and · is the gradient rise

time. This equation stems from an assumption that the central lobe of the three lobe

k-space waveform will dominate the net frequency content of the di�usion weighting (see

middle column of Figure 2.1). Constraining the integral of the zeroth moment to be zero
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Figure 2.1: Comparison of new bipolar N = 1.5 OGSE waveform (A), N = 2 OGSE (B)
and PGSE (C) waveforms. Corresponding power spectra (G-I) are also shown demonstrating
comparable spectral selectivity between N = 1.5 and N = 2 OGSE for the target frequency.
Also shown is the zeroth moment of each waveform (D-F). Continuous periodicity of the zeroth
moment is apparent in the N = 1.5 waveform (D) compared to N = 2 (E) due to the reduction
of the gradient separation time.
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to eliminate any DC spectral components, the duration of the first lobe (L) can then be

calculated as (see Appendix A):

L = 1
2

3
≠2T ≠ ·RF ≠ 7· +

Ò
8T 2 + 8T ·RF + · 2

RF + 32T · + 14·RF · + 33· 2
4

(2.2)

This equation can also be further generalized to include additional periods, which we

note resembles the method presented by Hennel et al. [82] with the added condition of

encoding only non-zero spectral components. However, the finite truncation of the gradi-

ent waveform (more prominent for our abbreviated rendition) imposes a frequency limit

based on the minimum permitted separation time ·RF . In general this is not problematic

for low frequencies when the period of the waveform is much larger than the separation

time. However, when the period of the waveform approaches or exceeds the minimum

separation time, the fidelity of the spectral components can become compromised as the

gap between the gradients interrupts the periodicity. This can result in deviations from

the target frequency in addition to significant spectral broadening. A useful empirical

relationship for this limit proposed here is that this method is viable for frequencies that

obey the relation T > ·RF such that the period of the waveform is greater than the sepa-

ration time between gradients. For a separation time of 7 ms – the minimum permitted

on our system, this limit is found to be ≥50 Hz.

2.2.2 Monte Carlo Optimization

The signal when kurtosis is introduced by a series expansion in b can be written as [26,27]:

S(b) = S0e
≠bD+ b

2
D

2
K

6 e
≠ T E

T2 (2.3)

where b is the b-value, D the apparent di�usion coe�cient, K the kurtosis, T2 the spin-

spin relaxation time and TE the echo time. Monte Carlo simulations were used to

optimize the SNR of the di�erence in kurtosis between PGSE and OGSE acquisitions
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(�K); we define this quantity as:

�K = KOGSE ≠ KP GSE (2.4)

The signal curve for both PGSE and OGSE acquisitions was generated using equation

2.3 at three di�erent b-values of 0, a maximum b-value that was varied and a third

intermediate b-value that was equal to half of the maximum. In order to maintain

feasibility for clinical systems, the maximum frequency was limited to 45 Hz. Gaussian

noise was added to the calculated PGSE and OGSE signals upon which the magnitude

of the noisy signals were then fitted to equation 2.3 with a non-negative least squares

algorithm to recover ADC and kurtosis values. These values were then used to calculated

�K according to equation 2.4. This procedure was repeated for 2000 iterations per each

frequency/b-value combination. Subsequently the SNR of �K was estimated as the

mean of this set of values divided by the standard deviation. The b-values for OGSE

and PGSE encoding were simulated for a gradient system with slew rate of 180 T/m/s

and max gradient amplitude of 75 mT/m. To avoid the e�ects of higher order terms in

the kurtosis signal expansion our simulations were limited to a maximum b-value of 2500

s/mm2. The TE was chosen to be the minimum allowable for each frequency; accordingly

the TE dependence is implicitly reflected through the varied frequency.

Accurate simulation of the di�usion signal required a priori knowledge of the fre-

quency dependence of the di�usivity D(Ê) and kurtosis K(Ê) to capture the time-

dependence of both quantities. The model of the di�usion dispersion presented by

Arbabi et al. [44] was used to infer D(Ê) such that a unique di�usivity was assigned

to each frequency. A similar relationship for K(Ê) was also required, however no such

characterization has yet been performed for the di�usion kurtosis. Rather, the multi-

frequency measurements of mean kurtosis (MK) presented by Yang et al. [94] were fitted

to a power law model. This model, reported as K(Ê) = 0.93 ≠ 0.0016Ê(0.78) provided an
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empirical relationship between frequency and MK enabling simulation of the frequency

dependent kurtosis.

The entire simulation was repeated for alternate di�usion encoding schemes including

nominal N = 2 cosine modulated OGSE (Figure 2.1B) and N = 2.5 OGSE to observe

e�ects of adding additional periods. In addition to �K the SNR of �ADC (defined

similarly as �ADC = ADCOGSE – ADCP GSE), was also evaluated in a manner identical

to �K.

2.2.3 In Vivo Protocol

Five healthy participants (3 male, 2 female, mean age 26±4 years) were scanned on a

head-only 7 Tesla MRI scanner (Siemens Magnetom 7T Plus, Erlangen Germany). The

scanner was equipped with a gradient system capable of a maximum gradient amplitude

and slew rate of 80 mT/m and 333 T/m/s respectively, however to maintain clinical

feasibility, the maximum gradient amplitude was limited to 75 mT/m and slew rate to

125 T/m/s. Approval for this study was granted by the Institutional Review Board at

Western University, written informed consent was obtained from each participant prior

to scanning.

The in vivo protocol consisted of an optimal (as determined from Section 2.2) and sub-

optimal scan each conducted twice in a test and re-test fashion: subjects were scanned to

acquire the test data and were subsequently removed from the scanner, repositioned and

returned after a short period to obtain the re-test acquisitions. Di�usion weighted images

(DWIs) were acquired with two di�usion weighting schemes each with three shells using

b-values of 0, 1250 and 2500 s/mm2 and 0, 1000, 2000 s/mm2 constituting the optimal

and sub-optimal scans respectively. Images were acquired at each shell using both PGSE

(f = 0 Hz) and modified 23 Hz N = 1.5 OGSE encoding (see Figure 2.1A). PGSE and

OGSE acquisitions were integrated into one scan such that all acquisitions required for

�K map generation could be performed in a single scan.

39



Di�usion weighting for both scans was applied along 4-directions in a tetrahedral

scheme to enable maximum achievable b-values [78]. The remaining acquisition details

of both the optimal and sub-optimal scans were identical and were as follows: TE/TR

= 91/6500 ms, FOV = 200 x 200 mm, matrix size = 100 x 100, 2174 Hz bandwidth,

38 slices, 2 mm3 isotropic resolution, 8 averages. Images were acquired with 6/8 partial

Fourier phase encoding using a single shot EPI readout. The acquisition time per scan

was 14 minutes for a total scanning time of 56 minutes (2 x (2 x 14) minutes) not

inclusive of the break between test/re-test sessions.

2.2.4 Image Analysis

Eddy current characterization was performed independently using a field-monitoring sys-

tem (Skope MRT, Zurich Switzerland). Acquired k-space trajectories and field maps were

utilized to correct for eddy current distortions through integration in an o�ine model-

based image reconstruction algorithm. Principal component analysis based denoising [96]

was also applied to the complex data during reconstruction. Following reconstruction,

all di�usion-weighted images were processed with Gibbs ringing removal (MRtrix) upon

which FSL’s BET tool [97] was used to perform brain extraction and mask generation.

Re-test images were registered to test images by applying rigid a�ne transforms gener-

ated from b = 0 s/mm2 images from each acquisition; registration was performed using

ANTs software [98].

DWIs from each shell were directionally averaged and fitted on a voxel wise basis

to the natural logarithm of equation 2.3 with a non-negative least squares algorithm

to extract ADC and kurtosis parameters; we note the use a non-negative least squares

fitting algorithm eliminates the potential for implausible negative kurtosis values. From

the fitted data, mean ADC and apparent kurtosis maps were generated for the PGSE

and OGSE acquisitions separately. We note the apparent kurtosis - as used here, is

formally distinct from the mean kurtosis, the latter being derived from the di�usion
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kurtosis tensor.

Dispersion maps of the ADC (�ADC) and kurtosis (�K) were generated for each

subject as the di�erence between PGSE and OGSE acquisitions; we define �K = KOGSE

– KP GSE and �ADC = ADCOGSE – ADCP GSE.

2.2.5 Re-test Analysis

�K maps generated from registered re-test DWIs were compared to test �K maps

through a Bland-Altman analysis [99] for both the optimal (b = 2500 s/mm2) and sub-

optimal (b = 2000 s/mm2) protocols. A minimum kurtosis threshold of 0.9 was applied

to isolate white matter voxels upon which volumes from each subject were combined and

were used to generate Bland-Altman plots of �K measurements. Coe�cients of variation

(CoVs) and standard deviations were calculated for both the optimal and sub-optimal

scans to infer relative di�erences in SNR.

2.3 Results

2.3.1 Optimization Results

Optimization results in Figure 2.2 indicate the optimal frequency of 23 Hz was most

influenced by di�erences in maximum b-value between frequencies. The optimal protocol

to acquire �K maps was found to consist of 23 Hz OGSE with a b-value of 2500 s/mm2

and a corresponding TE of 91 ms. The proposed N = 1.5 waveform (Figure 2.1A) achieves

maximum SNR for both �K as well as �ADC maps as seen in Figure 2.2B. We note the

distinction in scaling in Figure 2.2B, with �ADC maps having approximately 4 times

higher SNR than �K.
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Figure 2.2: SNR of �K for varying b-value and frequency combinations (A) and comparisons
of maximum possible SNR for N = 1.5, N = 2 and N = 2.5 oscillation periods for both �K
and �ADC maps (B).

2.3.2 in vivo Results

A trend of decreasing kurtosis and increasing ADC is observed when comparing OGSE

to PGSE images (Figure 2.3). In frontal white matter ROIs (see Figure 2.3C) mean dif-

ferences between OGSE and PGSE of approximately 10% and 14% are observed across

subjects in apparent kurtosis and ADC values respectively. These di�erences constitute

the contrast of the dispersion maps generated from PGSE and OGSE (Figure 2.4), show-

ing comparable image quality across all subjects in both �K and �ADC. Consistent

measurements of �K were observed across participants in the genu, splenium and body

of the corpus callosum (see Figure 2.5B) with no statistically significant di�erences ob-

served between the regions. However, significantly larger absolute �K values (p < 0.05)

were observed in the internal capsule of the corticospinal tract relative to the surrounding

WM as seen in Figure 2.6.

The e�ect of applied di�usion weighting on �K maps is presented in Figure 2.7. A

noticeable qualitative di�erence is observed when comparing the optimal and sub-optimal

scans, with the lower b-value protocol exhibiting reduced SNR.

Bland-Altman plots comparing the test and re-test �K measurements across all vol-

umes from each subject are shown in Figure 2.8. Mean Coe�cients of variation (CoV)
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Figure 2.3: Generated ADC maps (top row) and apparent kurtosis maps (bottom row) from one
healthy subject using both PGSE (A,C) and OGSE (B,D). An increase of ADC in parenchyma
is observed in OGSE relative to PGSE in ADC maps and a reduction is demonstrated in
apparent kurtosis maps. Also shown in (C) is an example ROI used for calculating mean
di�erences between OGSE and PGSE.
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Figure 2.4: Generated �ADC (top) and �K (bottom) maps for a few slices from each sub-
ject. Comparable image quality is observed across participants though some B0 inhomogeneity
induced distortions are apparent.
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Figure 2.5: Sagittal slices of kurtosis dispersion maps showing the corpus callosum of each
subject (left) and mean absolute �K values of di�erent regions of the corpus callosum averaged
across all subjects (right); error bars indicate the standard deviation. There is no statistically
significant di�erence between regions.

Figure 2.6: Example regions of interest (A) of the internal capsule (green) and posterior white
matter (blue) regions. (B) comparison of mean absolute �K values across all subjects be-
tween the internal capsule (IC) and white matter (WM) ROIs, error bars denote the standard
deviation. Here * denotes p < 0.05.
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Figure 2.7: Comparison of optimal (b = 2500 s/mm2, top row) and suboptimal (b = 2000
s/mm2, bottom row) �K maps from one subject. A qualitative increase in noise is apparent
in the suboptimal scans supporting the optimization results.

from �K maps across all subjects are reported as 0.60 and 0.69 for the optimal (b =

2500 s/mm2) and sub-optimal (b = 2000 s/mm2) scans respectively. The lower variation

in the b = 2500 s/mm2 images suggests a higher SNR of �K which is also qualitatively

observed in Figure 2.7 and consistent with the optimization results of Figure 2.2A. More-

over, mean CoVs for �ADC maps were considerably lower and calculated to be 0.50 and

0.54 for the optimal and sub-optimal protocols respectively, demonstrating increased

SNR relative to �K. This is supported by observations from Figure 2.2B that suggest

an increased SNR for �ADC maps when compared to �K. The trends observed in the

coe�cients of variation were mirrored in the standard deviations, which are also shown

on the Bland-Altman plots in Figure 2.8.
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Figure 2.8: Bland Altman plots comparing test and re-test acquisitions for the b = 2000 (left
column) and b = 2500 s/mm2 scans (right column) across all volumes from each subject; rows
correspond to di�erent subjects, columns correspond to the sub-optimal and optimal protocols.
Also shown are the coe�cients of variation (CoV) and standard deviations (Std). The dashed
lines on each plot denote ±1.96 standard deviations and the solid black line denotes the mean
di�erence between the test and retest measurements.
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2.4 Discussion

2.4.1 Waveform Remarks

This chapter demonstrates the first measurements of kurtosis in the human brain using

oscillating gradients with a clinically relevant gradient system. The work was facilitated

by the introduction of a bipolar OGSE gradient waveform that significantly reduces the

TE of the acquisition. By e�ectively reducing the minimum number of periods to 1.5,

significant gains in SNR were made possible through reduced TE. Optimization results

confirm this configuration to be optimal for measurements of �K and �ADC providing

higher SNR for both when compared to OGSE performed with additional periods (see

figure 2.2B). This result agrees with results from Arbabi et al. [44] that suggested a

waveform with less than 2 periods would provide higher SNR than conventional N Ø 2

OGSE for �ADC maps.

Despite these advantages, the shorter duration of the waveform further limits the

range of possible b-values and as such our method is likely best suited for lower oscilla-

tion frequencies (f < 40 Hz) where the reduction in b-value due to oscillation is negated

by the longer period of the waveform. This e�ect further justifies the use of the tetra-

hedral direction scheme, which critically enables the maximum gradient amplitude to

be exploited in each direction simultaneously thereby maximizing the applied di�usion

weighting [78]. While the tetrahedral scheme also prevents the use of DKI derived metrics

associated with the di�usion kurtosis tensor and may introduce rotation variance [100],

the directionally averaged kurtosis has been shown to be a useful and accurate reflection

of MK derived from tensor fitting [35].

In addition, the method presented here inherently includes first-moment nulling to

eliminate any spectral component at 0 Hz. While this change also provides flow-compensation

to avoid perfusion e�ects, it may also be vital when performing �K or �ADC map gener-

ation using PGSE and OGSE acquisitions. Spectral overlap between the two acquisitions
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may result in signal loss when a di�erence is taken and hence eliminating overlapping

components mitigates this potential issue.

2.4.2 In Vivo Findings

The �K maps demonstrate consistent di�erences between white (WM) and gray matter

(GM) regions across all subjects as seen in Figure 2.4B. The larger negative �K in

WM suggests that, somewhat surprisingly, 23 Hz is a su�ciently high frequency to be in

a regime where di�usion becomes increasingly Gaussian and kurtosis begins to vanish,

similar to findings at short di�usion times in the ex vivo spinal cord and mouse brain

[65, 66]. This interpretation is supported by the pronounced negative �K observed in

the internal capsule (see Figure 2.6) where the largest axons in the human brain are more

prevalent [101,102] and would thus trend towards Gaussian di�usion at lower frequencies

than smaller axons. Expectedly however, our frequency is not high enough to observe

significant changes between regions of the corpus callosum where di�erences in axon

size are more subtle. While the proximity to the ventricles may make measurements in

the corpus callosum more susceptible to cerebrospinal fluid partial volume e�ects [77],

given the high di�usion weighting cerebrospinal fluid is not anticipated to contribute

to these results. Moreover, lack of trends in the �K of the corpus callosum suggests

higher frequencies may be required to observe finer structural changes even in dominant

WM tracts [103]. Conversely, at even lower frequencies (i.e., longer di�usion times), it

is expected that the trend of kurtosis with frequency will reverse due to the e�ects of

permeability, contributing to observed non-monotonic behavior [65–68]. Notably, this

transition frequency may be larger here compared to previous ex vivo samples due to

axon shrinkage that is known to occur with sample fixation. Given that the di�usion

times accessible through OGSE are shorter than typical exchange times derived from the

Kärger model, our measurements lie in the short di�usion time regime where exchange

and permeability e�ects that act to reduce the apparent kurtosis likely do not have a
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significant role in these results [69, 70]. Moreover, for this reason a monotonic model is

likely appropriate to describe K(Ê) in the context of OGSE measurements.

As observed in Figure 2.7 even relatively small decreases in b-value (20%) for the

same frequency have noticeable impact on the SNR of produced �K maps. This e�ect is

consistent with previous studies focusing on the optimization of kurtosis measurements

[30, 33] and suggests the optimal �K protocol will favor increasingly larger di�usion

weighting. Accordingly, future protocol designs should be attentive to the validity of

equation 2.3 for b Ø 3000 s/mm2 beyond which higher order e�ects begin to emerge.

Such limitations may be avoided by recalling the relation proposed by Jensen et al. [27],

indicating that equation 2.3 remains valid so long as the condition b < 3
KD

is satisfied.

These e�ects were assumed to be conservatively avoided in this study by limiting the

b-value of the acquisitions to 2500 s/mm2. However, the general increase in �K values

for the sub-optimal (lower b-value) acquisition observed in Figure 2.7 may suggest some

higher order e�ects are still present in our optimized protocol due to the increased b-value.

2.4.3 Applications

Observations of the frequency/time dependence of the kurtosis may constitute a novel

biomarker, enabling further insight into physiological conditions influencing the degrees

of di�usion restriction - similar to the utility of �ADC [44,73,75,76]. Aggarwal et al. [65]

observed significantly reduced �MK in regions of local demyelination due to increased

permeability while Wu et al. [93] noted increases in �MK corresponding to regions of

severe edema in a mouse model of hypoxic ischemic injury demonstrating the sensitivity

of the frequency dependent kurtosis to various pathologies. Wu et al. [93] also noted

significantly larger di�erences in kurtosis relative to di�erences in ADC between PGSE

and OGSE, suggesting �K may be an equally prominent indicator of pathology.

Since our method does not require rapid slewing or extremely large gradient am-

plitudes our protocol can be easily adapted to full body scanners without exceeding
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the specifications of modern conventional gradient systems. However despite this, the

method presented here is still likely ill-suited to fully characterize the relationship be-

tween kurtosis and frequency, K(Ê). The range of frequencies remains limited by the

b-values required for observing kurtosis e�ects while the tetrahedral scheme prohibits the

calculation of the di�usion kurtosis tensor. Consequently, a multi-frequency investiga-

tion would benefit from the performance presented by recent advancements in gradient

coils [80,95]. As a result, our optimized protocol does not aim to replace high-performance

gradient measurements but rather to compliment them, providing an e�cient method to

make frequency dependent kurtosis measurements more accessible on a wider variety of

systems.

The primary limitation of this study however, remains the low SNR of the generated

�K maps. The results of Figure 2.8 demonstrate large CoVs for both the optimal and

sub-optimal protocols. Moreover, while our study avoids the use of high-performance

gradients, it does benefit from the additional SNR that arises due to imaging at ultra-

high field (7T). Equivalent measurements conducted at 3T would require approximately

twice as many averages thereby further elongating the scan time. However, our technique

will benefit from recent and on-going advancements in the field including non-Cartesian

readouts such as single-shot spirals to provide increased SNR [104] or 3D multi-slab

acquisitions [105]. Future work may also include the in-depth anatomical characterization

of �K in addition to multi-frequency investigations of the time dependent kurtosis in

the short di�usion-time regime that is made possible through oscillating gradients.

2.5 Conclusion

In this work we present a method for the generation of di�erential kurtosis maps on the

basis of the kurtosis dispersion probed using oscillating gradients. Our optimized bipo-

lar gradient waveform demonstrates maximum SNR for �K maps while also providing
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considerably higher SNR for �ADC maps compared to alternative OGSE encodings.

Our results demonstrate these measurements are plausible on clinically relevant gradi-

ent systems and no longer restricted to high-performance gradient inserts. Moreover,

our protocol constitutes a viable method for exploring the increasingly compelling evi-

dence from rodent studies suggesting the role of the frequency dependent kurtosis as a

multi-purpose biomarker.
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Chapter 3

Conclusions

This chapter summarizes the themes presented in this thesis, it’s context in the broader

field and directions of future study.

3.1 Overview and Objective

Di�usion MRI constitutes a powerful tool to explore the microstructure of the brain

through the monitoring of di�using water molecules. The di�usion time dictates the

length scales that may be probed by di�using protons and as a result is vital for obtain-

ing information regarding the degree of restricted di�usion imposed by microstructure.

Oscillating gradient spin-echo (OGSE) is a di�usion MRI technique that enables access

to shorter di�usion times than it’s traditional pulsed gradient spin-echo (PGSE) coun-

terpart via periodic modulation of the di�usion gradients. Due to technical limitations

imposed by the required gradient waveforms the range of protocol parameters for OGSE,

in particular combinations of frequency, b-value and TE, are severely limited. As a result

applications of oscillating gradients in humans have been relatively sparse. Previous stud-

ies have focused almost exclusively on observing di�erences in the ADC between PGSE

and OGSE and have demonstrated frequency dependent ADC measurements though none

have yet to investigate the di�usion kurtosis with OGSE. Conventionally, the di�usion
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kurtosis is only observable at large di�usion weighting (i.e. b-values > 1000 s/mm2) and

as such has traditionally been beyond the capabilities of OGSE implemented on modern

clinical gradients systems. While high-performance gradient systems can increase gradi-

ent amplitudes to make OGSE kurtosis imaging feasible, the prevalence of such hardware

is limited restricting accessibility to select research groups. As a result, this thesis has

presented a novel method for implementing oscillating gradients for di�usion kurtosis

measurements using a clinically relevant gradient system.

3.2 Findings and Limitations

This objective was made possible by the use of a novel bipolar gradient waveform that

reduced the TE of the acquisitions while retaining access to the high b-values required

to observe kurtosis. Our optimized protocol demonstrated consistent negative kurtosis

dispersion realized by decreases in kurtosis across all healthy human subjects (n = 5)

in OGSE images relative to PGSE. Generated kurtosis dispersion maps visualize the

spatial change in kurtosis with frequency and were observed to be elevated in areas of the

corticospinal tract but consistent across regions of the corpus callosum. This may suggest

some sensitivity to axon size with the corticospinal tract exhibiting some of the largest

axons in the brain. Moreover, the inability to distinguish between regions of the corpus

callosum suggests higher frequencies may be required to observe di�erences between

these regions based on the disparity of their axon diameters. While permeability can

also impact di�usion kurtosis measurements by altering the degree of restriction making

membranes more or less penetrable to di�using water molecules, since we are in the

short di�usion time regime of OGSE we anticipate negligible contributions of exchange

to our measurements. Despite su�ering from low SNR our optimized protocol is the

first to demonstrate kurtosis dispersion maps providing a new, unexplored approach to

investigating time-dependent di�usion. Moreover, while our optimized bipolar method
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is useful for investigating kurtosis, it may also prove valuable in future OGSE studies by

providing access to lower frequencies and/or shorter TEs.

3.3 Future Work

Presently, the utility of the kurtosis dispersion (�K) remains relatively unexplored.

Promising findings from small animal studies suggests �K may constitute a novel biomarker

in the study of neurodegenerative diseases and brain injury. Inherent sensitivity to perme-

ability e�ects have demonstrated uses for monitoring myelin integrity in mice, suggesting

applications to neurodegenerative disorders such as multiple sclerosis. The unique con-

trast of �K, stemming from changes to microstructural permeability, may enable more

e�ective detection of localized demyelination - permitting accurate lesion assessment.

Similarly, the kurtosis dispersion’s demonstrated sensitivity to spatial dimensions may

be useful for detecting swelling in brain tissue. As observed in mice, possible applications

include the detection of edema caused by ischemia or axonal beading due to traumatic

injury. Confirmation of these findings in human subjects remains to be explored and

should be a focal point of future study. Additionally, as microstructural models improve

the understanding of both short and long di�usion time dynamics and their relation to

pathology, new presently undiscovered clinical uses may arise.

In order to fully realize these applications however, imminent future work should focus

on improving the SNR of acquired kurtosis dispersion maps. One promising avenue on

this front is the incorporation of non-Cartesian readouts such as spirals to replace EPI and

provide increased SNR for both kurtosis measurements and generated kurtosis dispersion

maps. In addition, the reduced TE associated with spiral acquisitions may provide further

flexibility in protocol design permitting multi-frequency investigations to explore the role

of the frequency dependent kurtosis in the context of anatomical microstructure.
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Appendix A

A.1 Derivation of Equation 2.2

We define the bipolar gradient waveform of Figure 2.1A in a piece-wise fashion as:

g(t) =

Y
______________________________________________]

______________________________________________[

Gt
·

0 Æ t Æ ·

G · Æ t Æ · + L

GL
·

≠ Gt
·

+ 2G · + L Æ t Æ 3· + L

≠G 3· + L Æ t Æ 3· + L + T

Gt
·

≠
1

T G
·

+ GL
·

+ 4G
2

3· + L + T Æ t Æ 4· + L + T

0 4· + L + T Æ t Æ 4· + L + T + ·RF

Gt
·

≠ G(T +L+4·+·
RF

)
·

T + L + 4· + ·RF < t < T + L + 5· + ·RF

G T + L + 5· + ·RF < t < 2T + L + 5· + ·RF

G(2T +L+6·+·
RF

)
·

≠ Gt
·

2T + L + 5· + ·RF < t < 2T + L + 7· + ·RF

≠G 2T + L + 7· + ·RF ) < t < T + 2L + 7· + ·RF

Gt
·

≠ G(2T +2L+8·+·
RF

)
·

2T + 2L + 7· + ·RF < t < 2T + 2L + 8· + ·RF

(A.1)

where G is the maximum gradient amplitude, · is the gradient rise time (also known

as ramp time), L is the duration the initial positive lobe, T is the duration of the sec-
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ond negative lobe and ·RF is the separation time required for the refocusing RF pulse.

Performing
s

g(t)dt in a piece-wise fashion yields an expression for the zeroth moment

as:

⁄ 2T +2L+8·+·
RF

0
g(t)dt = G(2T + 2L + 8· + ·RF )2

2·
≠

G
1
2Lt ≠ t2

2 + 2Tt + 8· t + t·RF

2

·

(A.2)

integrating once more it is possible to obtain the integral of the zeroth moment:

G
1
≠T · ≠ T (T + ·RF ) + L2 + L(2T + 7· + ·RF ) + 4· 2

2
≠ G(2T + 2L ≠ t + 8· + ·RF )3

6·

(A.3)

Setting the integral of the zeroth moment (Equation A.3) to zero and solving the equation

for L allows the duration of the initial gradient to be determined (taking the positive

root) as:

L = 1
2

3Ò
8T 2 + 32T · + 8T ·RF + 33· 2 + · 2

RF + 14··RF ≠ 2T ≠ 7· ≠ ·RF

4
(A.4)
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nucléaire,” Comptes rendus de l’Académie des sciences. Série 2, Mécanique,
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[37] J. Stepǐsnik, “Analysis of nmr self-di�usion measurements by a density matrix
calculation,” Physica B+ C, vol. 104, no. 3, pp. 350–364, 1981.
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