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Abstract

High-Impedance Faults (HIFs) are a hazard to public safety but are difficult to detect be-

cause of their low current amplitude and diverse characteristics. Supervised machine learning

techniques have shown great success in HIF detection; however, these approaches rely on

resource-intensive signal processing techniques and fail in presence of non-HIF disturbances

and even for scenarios not included in training data. This thesis leverages unsupervised learn-

ing and proposes a Convolutional Autoencoder framework for HIF Detection (CAE-HIFD).

In CAE-HIFD, Convolutional Autoencoder learns only from HIF signals by employing cross-

correlation; consequently, eliminating the need for diverse non-HIF scenarios in training. Fur-

thermore, this thesis proposes a novel HIF classification approach based on the transformer

network stacked with the convolution neural network. To discriminate HIFs from non-fault

disturbances, probability distribution-based kurtosis analysis is utilized. The proposed ap-

proaches reliably detect HIFs with 100% success rate in terms of all five metrics of protec-

tion system performance, namely accuracy, security, dependability, safety, and sensitivity. The

evaluation studies show that proposed approaches outperform the state-of-the-art HIF detection

techniques and are robust against noise.

Keywords: High-Impedance Fault; Power System Protection; Deep Learning; Convolu-

tional Autoencoder; Convolutional Neural Network; Transformer Network
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Summary for Lay Audience

A High-Impedance Fault (HIF) typically occurs in a distribution network when a live con-

ductor in a distribution network touches surfaces, such as tree limbs, ground, and gravel. The

HIF current is usually too low to cause any direct damage to the power system equipment;

however, undetected HIFs are a potential hazard to public safety. The inception of HIFs of-

ten causes arcing ignition, which can result in wildfires, life-threatening injuries, and other

irreparable damages. Moreover, the undetected HIFs cause grid instability and hinder power

system integrity. The traditional protection relays fail to reliably detect the majority of HIFs

because of diverse characteristics and the low current magnitude of HIFs. The existing ap-

proaches for HIF detection are associated with resource-intensive signal processing techniques

and supervised Machine Learning algorithms that are not reliable under diverse non-HIF dis-

turbances. Consequently, this thesis proposes Convolutional Autoencoder framework for HIF

detection (CAE-HIFD), an unsupervised learning-based approach that solely learns from the

fault data and omits the requirement of the diverse non-fault scenarios during the training pro-

cess. Also, this thesis proposes a Transformer-CNN (T-CNN) framework for HIF detection

and classification, a deep learning-based approach for reliable identification of fault type in the

presence of diverse HIF and non-HIF conditions without requiring resource-intensive signal

processing. The non-fault disturbances, such as capacitor and load switching, exhibit char-

acteristics similar to the HIFs; therefore, a probability distribution-based kurtosis analysis is

utilized to provide security against non-HIF disturbances. The performance of the proposed

approaches is evaluated on the diverse data generated by the IEEE 13-node test feeder, and the

response is measure on various challenging case studies. The results show that CAE-HIFD

and T-CNN achieve 100% accuracy and outperformed the state-of-the-art approaches for HIF

detection.
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Chapter 1

Introduction

1.1 Motivation

High-Impedance Faults (HIFs) typically occur when a live electrical conductor unintentionally

comes in contact with a highly resistive surface, such as trees branches, sand, and concrete [1–

4]. The undetected HIFs pose a potential threat to personnel, environment, and grid stability

[5]. As shown in Fig. 1.1, the HIF is often followed by the occurrence of arcing ignition.

Thus, the downed conductor is a safety hazard, as the fire caused by arcing can cause great loss

to life and property [4, 6]. In late 2017, the deadliest fires in Mendocino and Napa Counties

killed 15 people, burned a total of approximately 88,000 acres, and destroyed nearly 1200

structures [7]. The California Department of Forestry and Fire Protection reported the cause

of these incidents to be power lines that ignited fires when they came in contact with trees and

branches [7]. Moreover, undetected HIFs have been reported to cause instability of renewable

energy systems [8]. As a result, reliably detecting and clearing HIFs on time is crucial to

ensure the safety of personnel and maintain the power system integrity [4, 6, 9]. Furthermore,

classification of the type of HIFs assists in isolating the fault, which ensures timely removal of

faults and reduces the number of power outages.

HIFs commonly have characteristics such as asymmetry of the current waveform, random-
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2 Chapter 1. Introduction

ness, and nonlinearity of the voltage-current relationship. These characteristics are diverse

and are affected by multiple factors, including surface types and humidity conditions [4]. As

a result, the HIF current magnitude typically ranges from 0 to 75 A [1]. Such low current

magnitudes compared to normal load current levels, together with a high diversity of charac-

teristics and patterns, make HIFs difficult to detect. Diversity and randomness make it difficult

to quantify and characterize the HIFs and, consequently, complex techniques, such as those

based on machine learning, are required for HIF detection. Moreover, due to the low fault

current magnitude, the conventional overcurrent relays fail to discriminate most HIFs from a

load unbalance [1, 2, 9].

Figure 1.1: Arcing ignition caused by power lines touching tree branch.

As shown in Fig. 1.2, the HIFs are characterized as the distortion of the voltage and current

signals. These distortions are so minute that they are hard to note on the current signal plots.

As shown in Fig. 1.2 (b), they can be hardly seen even on the magnified plots of the voltage

signals. As a result, it is hard to detect HIFs by directly using the voltage or current signals;

thus, these signals are typically preprocessed by utilizing various signal processing or domain

transformation techniques.

Numerous protection schemes have been proposed to detect HIFs that utilizes signal pro-



1.1. Motivation 3

Figure 1.2: The phase-A type HIF: (a) voltage signals, (b) magnified distortions, and (c) current
signals.

cessing techniques, such as, harmonic transformations [10–16], Discrete Wavelet Transforma-

tions (DWTs) [5, 17–21], Kalman Filtering [22], Empirical Mode Decomposition (EMD) [23],

Variational Mode Decomposition (VMD) [6, 9], fractal theorem [24], and energy variance cri-

terion [25]. Recently, Machine Learning (ML) has been gaining popularity in the field of HIF

detection. The combination of signal processing and ML-based algorithm, such as, Artificial

Neural Network (ANN) [26–29], Support Vector Machine (SVM) [30], decision tree [31], Re-

current Neural Network (RNN) [32], and Convolutional Neural Network (CNN) [33] have been

proposed in the literature to detect the HIF scenarios.

The signal processing-based protection strategies have achieved high accuracy in detect-

ing the HIFs. However, the signal processing used for preprocessing of the data is resource-

intensive, and the HIF detection techniques based on the signal processing fail to reliably detect

HIFs in presence of diverse non-fault disturbances and nonlinear loads. The widely utilized
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harmonic-based approaches may falsely detect non-HIF disturbances (e.g., capacitor and load

switching), transformer energization, and may falsely classify nonlinear loads as HIFs. Fur-

thermore, the DWT-based techniques are vulnerable to noise and harmonic variations in the

system. Most of the signal processing-based HIF detection approaches neglect the effects of

noise [19, 21, 27, 30] and non-fault disturbances, such as capacitor switching and load switch-

ing in their evaluation studies [17, 22, 28].

Although the ML-based HIF detection techniques have high pattern recognition capability,

these studies apply a supervised approach to learn the mapping from the input to the output

based on a limited set of HIF and non-HIF scenarios present in the training set. Here, the

non-HIF scenario refers to the normal steady-state operation and any transient response to

non-HIF disturbance such as capacitor switching and load variations. A supervised learning

system may fail to reliably identify any fault scenario or any non-fault disturbance, which is not

present in the training set. However, there is a wide range of non-fault operating conditions and

it is difficult to include them all in the training set. Therefore, a different way of training ML

models is required that does not require a variety of non-fault scenarios. Furthermore, there

are very few studies capable of detecting the fault type, as discriminating phases in a HIF is a

challenging task [4]. Thus, there is a need for a protection technique that can reliably detect on

which phase the fault occurred.

Consequently, this thesis proposes HIF detection and classification techniques that reliably

detect HIFs and the fault type regardless of the type of surface involved and the fault distance.

For the HIF detection and classification, two different deep neural network architectures are

designed without making use of resource-intensive signal processing techniques. The Convo-

lutional Autoencoder (CAE) framework has been developed for HIF Detection (CAE-HIFD),

which utilizes an unsupervised approach to learn solely from the fault data, thus avoiding the

need to take into account all possible non-fault scenarios in the learning stage. Furthermore,

for the HIF classification, we have developed the transformer network-based framework that

employs supervised learning to reliably detect the HIFs and the fault type [34].
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1.2 Contributions

The primary objective of this thesis is to leverage deep learning-based algorithms to design and

develop reliable and accurate HIF detection and classification frameworks. The main contribu-

tions of this thesis are as follows:

• Proposing the Convolutional Autoencoder (CAE) framework for HIF Detection (CAE-

HIFD), which learns solely from the fault data by utilizing unsupervised learning. The

proposed approach does not need to consider diverse non-fault scenarios in the learning

stage. The ability of the CAE to model the relationship between the data points consti-

tuting a signal enables the CAE-HIFD to learn complex HIF patterns. Furthermore, the

CAE discriminates non-HIF steady-state conditions from HIFs by identifying deviations

from the learned HIF patterns using Cross-Correlation (CC).

• Proposing the probability distribution-based kurtosis analysis for achieving security against

falsely treating non-HIF disturbances, such as capacitor and load switching, and non-

linear loads as HIFs. Non-HIF disturbances can cause voltage and current distortions

similar to the HIFs, making HIF detection even more difficult. Consequently, the kurto-

sis analysis is utilized in the proposed CAE-HID and T-CNN frameworks to detect these

disturbances.

• Proposing the HIF detection and classification approach based on the state-of-the-art

deep neural network architecture, the transformer network, that reliably detect fault type.

The transformer network is stacked with a convolutional layer to provide robustness

against noise.

• Evaluating the performance of the proposed CAE-HIFD through comprehensive studies

conducted on the IEEE 13-node test feeder taking into account various HIF conditions

involving seven different fault surfaces and diverse non-HIF scenarios.

• Evaluating the performance of the proposed Transformer network-based HIF detection
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and classification approach. The training and testing are done on the data comprising

of diverse non-HIF scenarios and HIFs occurring at the three different phases. The data

was obtained from the IEEE 13-node test feeder that considered HIF conditions at seven

different fault surfaces.

• Conducting case studies to measure the response of the proposed CAE-HIFD on HIF

scenarios, intermittent HIFs, frequency deviations, and non-HIF disturbances such as

capacitor switching, nonlinear load, and transformer energization.

• Conducting case studies to examine response of the proposed transformer-based HIF

detection and classification approach on HIF scenario and non-HIF disturbances such as

capacitor switching, nonlinear load, and transformer energization.

• Demonstrating the robustness of the proposed CAE-HIFD and transformer-based ap-

proach against various levels of noise. Additionally, the performance of the transformer-

based approach has been examined with the input data having sampling frequencies rang-

ing from 1.25 kHz to 10 kHz.

The proposed CAE-HIFD and T-CNN frameworks achieved 100% accuracy and outper-

formed the existing state-of-the-art techniques for HIF detection and classification. Further-

more, the proposed approaches exhibit robustness against noise and perform well under all the

challenging case studies.

1.2.1 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 describes the background,

which includes Autoencoders in Section 2.1, Convolutional Neural Network in Section 2.2,

and Transformer Network in Section 2.3.

Chapter 3 discusses the related works. First, Section 3.1 discusses signal processing tech-

niques for HIF detection and classification, and then Section 3.2 introduces machine learning

techniques for HIF detection and classification.
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Chapter 4 presents the methodology applied in the Convolutional Autoencoder for HIF

Detection, including data preprocessing, offline training, and HIF detection.

Chapter 5 describes the methodology applied in the Transformer-CNN Framework for HIF

Classification, including data preprocessing, offline training, and HIF classification.

Chapter 6 discusses the results and analyzes the findings: Section 5.1 presents the study sys-

tem. Section 5.2 presents evaluation conducted for the proposed CAE-HIFD, including CAE-

HIFD Model training, effects of CAE-HIFD’s components, CAE-HIFD response to different

case studies, comparison with other approaches, the robustness of the proposed CAE-HIF

against noise, and discussion. Section 5.2 describes evaluation conducted for the transformer-

CNN, which consists of T-CNN Model training, the effect of kurtosis and differencing, system

response for representative case studies, the effect of the sampling frequency, and robustness

of the proposed T-CNN against noise.

Finally, Chapter 7 concludes the thesis and discusses future work.



Chapter 2

Background

This section provides an overview of the autoencoders, the convolutional neural networks, and

the transformer network in terms of structure and functions.

2.1 Autoencoders

A supervised machine learning model learns the mapping function from the input to output

(label) based on example input-output pairs provided in the training dataset. In contrast, an

unsupervised learning model discovers patterns and learns from the input data on its own,

without the need for labeled responses, which makes this approach a go-to solution when

labels are not available. Autoencoders are trained through unsupervised learning where the

model learns data encoding by reconstructing the input [35]. They are commonly used for

dimensionality reduction [35, 36], but the non-linear feature learning capability has made them

also successful in denoising and anomaly detection [37–39].

As shown in Fig. 2.1, a conventional autoencoder is a feed-forward neural network consist-

ing of an input, an output, and one or more hidden layers. The encoder part of the autoencoder

reduces dimensionality. The input x of dimension f is multiplied by the weights W and, to-

gether with the bias b, is passed through the activation function σ to produce representation z

of dimension m, m < f [35], as follows.

8



2.1. Autoencoders 9

z = σ(Wx + b) (2.1)

Next, the decoder attempts to reconstruct the input x from the encoded value z. The product

of weights W ′ and z is added to biases c, and the resultant is utilized as an input to the activation

function σ to generate the reconstructed signal y as follows:

y = σ(W ′z + c) (2.2)

Over a number of iterations (epochs), the autoencoder optimizes the weights and biases by

minimizing an objective function such as Mean Squared Error (MSE) [35]:

MS E =
1
f

f∑
i=1

(xi − yi)2 (2.3)

Figure 2.1: Conventional Autoencoder structure

where x1, x2, x3, ..., x f is the input vector, y1, y2, y3, ..., y f is the output vector produced by the

autoencoder, and f is the number of features as per Fig 2.1. The described feed-forward au-

toencoder ignores the spatial structure present in data and, to address this issue, the CAE was

introduced [40]. A CAE replaces the fully connected layers of the feed-forward autoencoder

with convolutional and deconvolutional layers.
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2.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are the type of deep neural networks for learning pat-

terns from the data that have grid-like topology. As depicted from the name, the CNNs apply

convolution operation on local spatial regions of the input. The CNNs have been tremendously

successful with image data, which can be perceived as 3D matrix with RGB grid of pixels [41].

Consequently, the CNNs have been employed to accomplish classification, segmentation, and

detection tasks in radiology, detect tampering in the images, and conduct medical image anal-

ysis [42–44]. The one-dimensional (1D) convolutions have led to significant advancements in

sensor data processing [45–47]. For example, the 1D-CNN has been successful in achieving

high accuracy for applications, such as motor fault detection [45], photovoltaic power forecast-

ing [46], and human activity recognition [47].

Figure 2.2: Convolutional Neural Network

In this thesis, the 1D-CNN is utilized for HIF detection and classification. A shown in

Fig. 2.2, a typical CNN has layers, such as input, convolution, max-pooling, fully connected,

and output layer. The convolution layer consists of kernels, also known as filters, which move

across the timesteps and perform element-wise multiplication with the input matrix to generate

an activation map. Next, the pooling layer (e.g., max-pooling) performs down-sampling to

reduce dimensionality and associated computational complexity. The output dimension of the

max-pooling layer is flattened to connect with all the nodes of the fully connected layers.

For the classification task, the output classes are generated by the output layer. Next, loss
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function, such as categorical crossentropy calculates the error between predicted and actual

labels. Finally, backpropagation and gradient descent are applied to the CNN to update the

kernels and weights in the convolution and fully connected layers.

2.3 Transformer Network

Recurrent Neural Networks (RNNs) are well suited for sequential data as they are capable of

capturing temporal dependencies. However, their sequential nature restricts them from pro-

cessing the whole input sequence at once resulting in a long training time. To remedy this

issue, in natural language processing, the transformer network has been recently introduced:

this network enables high parallelism by processing the whole input sequence at once [34].

As shown in Fig. 2.3, the transformer network comprises of the encoder and decoder [34].

The embedding and positional encoding block in Fig. 2.3 signify that the text data input in the

Natural Language Processing (NLP) is transformed into a numerical vector before feeding it to

the encoder. Furthermore, the positional embedding is added to the input embedding in order

to introduce the order of the sequence information in the temporal data.

The encoder takes as the input vector sentence embeddings together with positional encod-

ing. The multi-head self-attention block comprised of parallel placed fully connected neural

network layers simultaneously processes different portions of the input vector to learn asso-

ciations within vector time steps [34]. Next, the normalization and the feed-forward layers

generate an abstract representation of the complex input patterns, which is passed to the de-

coder.

Similar to the encoder, the decoder has the multi-head self-attention, the feed-forward, and

normalization layers. Additionally, the decoder inserts a masked multi-head attention layer

that processes right-shifted output embeddings. The masking of future values ensures that

the prediction for the current position only depends on the outputs of the previous positions.

The masking of the future values preserves the auto-regressive properties of the transformer

network and allows it to employ a teacher-forcing learning procedure. As a result, the trans-
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Figure 2.3: Transformer Network

formers outperform existing approaches for the applications, such as language translation [34].

Finally, linear transformation and the softmax function generate the output in the form of prob-

abilities.

Several recent works in the field of NLP apply transformer networks to achieve better re-

sults than widely used RNNs for applications such as machine translation, text summarization,

and text generation [34]. Moreover, the temporal data handling attribute of the transformer

network encoder has shown good initial results in time series classification, time-series fore-

casting, and music generation [48–50]. Consequently, the complex pattern learning capability

of the transformer network is utilized in this thesis to detect the HIFs and identify the fault

type.



Chapter 3

Related Work

This chapter first reviews various signal processing-based techniques for HIF detection. Next,

different machine learning algorithms for HIF detection and classification are discussed.

3.1 Signal Processing Techniques for HIF detection and clas-

sification
Reliably detecting HIFs in a distribution network remains a challenge due to their random, as

well as dynamic nature. Various HIF detection techniques have been proposed in the literature

that exploits different characteristics of the HIFs. A significant number of HIF detection meth-

ods apply signal processing techniques on the current and voltage signals observed at the relay

substation, and this subsection reviews those techniques.

Arcing caused by the HIFs results in the formation of low and high-frequency components

in the current spectrum [4]. Various approaches take advantage of the frequency components

to detect the HIFs [10–16]. The early works used the third and fifth harmonics magnitude

[10, 11], even-order harmonics [12], and inter-harmonics [13] to detect HIF in the distribution

network. Emanuel et al. [14] compared the low-frequency spectrum with current harmonics to

understand the importance of 120 Hz and 180 Hz components in HIF detection. Their exper-

imental studies confirmed that the second harmonic can be applied to detect the HIFs caused

13
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by the low amplitude arcs on the sandy surface. Jeerings et al. [15, 16] relied on a change in

the magnitude and phase angle of the third harmonic current to detect high impedance ground

faults. In general, Harmonic-based HIF detection techniques are not sufficiently sensitive to

detect remote HIFs [1]. Moreover, the harmonic-based approaches may falsely detect transient

events, such as capacitor switching, transformer energization, and the presence of nonlinear

loads as HIFs [1].

An HIF detection scheme based on a power line communication system is proposed by

Milioudis et al. [51]. This method discriminates the HIFs from normal operating conditions

by observing deviations in the input impedance of the network at particular frequencies. Al-

though the power line communication system-based method is successful in detecting and lo-

cating HIFs, it requires costly communication systems and is not suitable for large and complex

networks [52].

The Discrete Wavelet Transformation (DWT)-based HIF detection techniques [20] oper-

ate by examining the measured signals in both the time and frequency domains. The DWT

has been widely utilized in literature to detect HIFs [5, 17–21]. In these methods, the mother

wavelets, such as Daubechies [5, 17–19, 21] and Rbior [20] are used to decompose the current

or voltage signals into approximation and detail coefficients. Next, the HIFs are discriminated

from the non-HIF scenarios by analyzing these extracted coefficients. Vulnerability to noise

and harmonics are the main shortcomings of the DWT-based approaches [53] with their accu-

racy being highly dependent on the choice and order of the mother wavelet [4].

The Time-Frequency Analysis (TFA) has also been proposed for detecting the HIFs, and

techniques based on this typically consider the energy of the input signal at all time and fre-

quency coordinates [4]. Lima et al. [54] used Short Time Fourier Transform (STFT) to extract

lower order harmonics, which assisted in analyzing the HIF behavior in time and frequency

domains. In this technique, a time delay of five cycles is required to discriminate HIFs from

distribution network disturbances, such as capacitor or load switching. Cheng et al. [55] ap-

plied TFA by combining the Gabor Transform (GT) and Wigner distribution to detect HIFs and
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distinguish them from non-stationary signals. In general, TFA algorithms are highly sensitive

to discontinuities and require extensive computational resources [53].

The presence of randomness and flicker in currents signals can be the result of HIFs in

distribution systems. Mamishev et al. [24] applied Fractal theorem on the Root Mean Square

(RMS) values of the current signals to measure the degree of chaos caused by the HIFs. Lien

et al. [25] utilized a three-phase unbalance current as an input signal to an HIF detector that

estimated randomness by calculating the energy variance for the second, fourth, and sixth

harmonics of the input signal. Typically, randomness-based HIF detection approaches achieve

high detection rate [24, 25]. However, the HIF current is too low to cause any significant

changes to the measured current signals at the substation [56], especially under the unbalanced

load conditions. Hence, these techniques fail to provide dependable protection against HIFs in

distribution systems.

HIF detection by Kalman filtering [22] is based on tracking randomness in the current

waveform. In this approach, time variations in the fundamental and harmonic components

have been extracted by applying the Kalman filter to detect the HIF scenarios. Because the

small HIF current does not cause significant variations in the current waveforms seen by the

relay at the substation [56], the Kalman filtering-based technique exhibits low sensitivity.

The presence of randomness and disturbance in the voltages or current signals may be an

indication of HIFs; thus, a mathematical morphology has been employed [2]. However, when

HIF occurs, the fundamental frequency components dominate the HIF signatures and thus, this

technique causes a significant time delay in HIF detection. Moreover, under remote HIFs or

the presence of nonlinear loads, this strategy fails to provide a reliable HIF detection [53].

The HIF can also be detected by analyzing temporal inconsistencies in the time domain.

Carr et al. [57] developed proportional relay based on a time-domain analysis to detect the

HIFs. In the study by Sarlak et al. [58], time-domain features are extracted by measuring the

magnetic-field strength signal near the conductor of the feeder, and these features are utilized as

an input by a pattern recognition algorithm. Although methods based on time-domain analysis
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exhibits low computational complexity, they invalidate HIF detection under unbalanced load

conditions and switching events scenarios [16].

Empirical Mode Decomposition (EMD) [23] and Variational Mode Decomposition (VMD)

[6, 9] have been recently proposed for HIF detection. These techniques operate by extracting

features from the signals. However, the EMD-based methods suffer from modal mixing and

are sensitive to noise [59]. On the other hand, the VMD-based technique is more robust against

noise; nevertheless, it requires a large number of decomposition modes as well as a high sam-

pling frequency to perform well, which results in a large computational burden. Moreover, the

VMD technique [9] for HIFs detection cannot reliably detect HIFs when a large nonlinear load

is in operation.

In contrast to the reviewed works [2, 5, 6, 9–25, 51, 54, 55, 57, 58], preprocessing in

the proposed CAE-HIFD and T-CNN frameworks does not require resource-intensive signal

processing. In addition, approaches that operate on the fundamental frequency components

risk failures in the presence of frequency deviations [10–16]. However, CAE-HIFD does not

operate based on the fundamental frequency components of the input signals and, consequently,

is not sensitive to frequency deviations as examined in the evaluation section. Furthermore,

the proposed techniques are robust against non-fault disturbances, such as capacitor or load

switching, nonlinear loads, and inrush currents.

3.2 Machine Learning Techniques for HIF detection and clas-

sification

Machine Learning (ML) algorithms can learn patterns in the data and thus, in recent years, ML-

based approaches have been gaining popularity in many domains, including HIF detection.

Artificial Neural Networks (ANNs) are the most prevalent algorithms utilized in detecting

and classifying the HIFs [26–28, 60, 61]. They are inspired by the biological neural networks

in the human brain and can achieve high accuracy in classifying the faults [27, 35]. Baqui
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et al. [27] combined an ANN with Discrete Wavelet Transform (DWT) for HIF detection in

medium-voltage networks. They applied DWTs to extract the relevant features from the current

waveforms and then used the extracted features as an input to the ANN classifier. In a study

by Michalik et al. [26], the high-frequency components of zero-sequence voltage and current

signals are suppressed by using Butterworth filter, and ANN is trained over this preprocessed

signal. Routray et al. [61] applied Stockwell Transform to extract time and frequency-based

features from the current and voltage signals. The ANN classifier is utilized to identify the

fault and non-fault scenarios from the extracted features. They reported average accuracy of

96.5% under 50 dB noise.

Tonelli-Neto et al. [28] applied Wavelet Transform (WT) on the current signals to conduct

multi-resolution analysis and then, utilized the energy concept to extract features. They used

multiple fuzzy-ARTMAP neural networks and multiple fuzzy inference systems along with

the extracted features to detect and classify HIFs. Moravej et al. [29] took advantage of

dual-tree complex WTs to extract the features that were used as input by probabilistic neural

networks to discriminate HIF cases from non-HIFs. Veerasamy et al. [62] used classifiers such

as adaptive neuro-fuzzy inference system and multi-layer perceptron along with DWT-based

feature extraction to detect HIFs and to discriminate them from other transients in medium-

voltage distribution systems. Although the neural networks achieve acceptable accuracy in

detecting the HIFs, they are sensitive to frequency changes and noise [4].

The Support Vector Machine (SVM) is another commonly used classifier that can catego-

rize data by mapping it to higher dimensions [30]. Ghaderi et al. utilized TFA to determine

the energy of low-frequency component features that are used as an input for the SVM clas-

sifier to separate the HIF from the non-HIF scenarios [30]. Although this method could only

achieve 93.6% detection accuracy, it eliminated the need for modification of the technique in

case of new observed HIF samples by preserving the information during the feature extraction.

In another study, an SVM-based model is used with features extracted by VMD for HIF detec-

tion in distribution lines incorporating distributed generators [6]. This technique prevents false
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detection of switching events as HIFs; however, it is sensitive to noise for SNRs below 30 dB.

Moreover, the transformations associated with the VMD require high computational capability

[4].

The decision tree algorithm with the fast Fourier transform is also an alternative HIF de-

tection approach, which utilizes the HIF features, such as the phase of the third harmonic,

magnitude of the second, third, and fifth harmonics, and RMS value of current signals [31].

Although this technique is successful in discriminating HIFs from non-fault disturbances, it is

sensitive to the presence of noise.

Recurrent Neural Network (RNN) architecture is well suited for sequential data [63]; there-

fore, its variant, Long Short Term Memory (LSTM) was used with features obtained by DWT

analysis to detect the HIFs in the solar photovoltaic integrated power system [32]. However,

this method detects HIFs with a success rate of only 92.42% and, moreover, this study uses

DWT-based features which are sensitive to noise [64].

Another study relies on modified Gabor WT for extracting the Two Dimensional (2-D)

scalograms from the input signal [33]. The extracted 2-D features are used as aninput to the

Convolutional Neural Network (CNN) classifier for detecting the HIFs [33]. This method was

accurate in the presented experiments; however, as it is a supervised learning method, it may

fail to reliably detect HIF and non-HIF scenarios that are not present in the training data.

The huge success of deep learning algorithms has motivated this thesis to explore and

leverage deep learning to detect and classify HIFs with promising accuracy. The reviewed

works [6, 26–28, 28–33, 60–62] rely on supervised learning, which utilizes a limited set of HIF

and non-HIF scenarios to learn the patterns in the data. As there could be a wide range of HIF

and non-HIF scenarios, the supervised learning-based method may fail to reliably detect any

new HIF or non-HIF scenarios. In contrast, the proposed CAE-HIFD utilizes an unsupervised

approach that learns solely from the fault data, which avoids taking into account diverse non-

HIF scenarios. Furthermore, as the HIFs do not cause significant changes in the voltage or

current signals, very few studies are able to detect the fault type [4]. However, the proposed T-



3.2. Machine Learning Techniques for HIF detection and classification 19

CNN can reliably perform the HIF detection and classification. Many studies neglect the effects

of noise [19, 21, 27, 30] and omit to examine non-fault disturbances [17, 22, 28]. However,

the robustness of the proposed CAE-HIFD and T-CNN against noise has been examined in this

thesis.



Chapter 4

High-Impedance Fault Detection

This chapter aims to provide a detailed explanation of the proposed deep learning-based frame-

work for the High-Impedance Fault (HIF) detection. Subsections within the chapter discuss

different components of the proposed framework, such as data preprocessing, offline training,

and HIF detection.

4.1 Convolutional Autoencoder for HIF Detection

Traditionally, for fault detection, autoencoders are trained with normal data and then used to

detect abnormal operating conditions by identifying deviations from the learned normal data

[38]. On the contrary, in the proposed CAE-HIFD, the CAE is trained using fault data only

and recognizes non-fault operating condition by detecting deviations from the learned fault

scenarios. The spatial feature learning and generalization capability of the CAE assist the

CAE-HIFD to detect new HIF scenarios that are not present in the training set. Furthermore,

since the CAE is only trained on the fault data, any non-fault cases will not be identified as

HIF, which increases the security of the proposed protection strategy.

As depicted in Fig. 4.1, the CAE-HIFD is comprised of offline training and online HIF

detection. The analog three-phase voltage and current signals are sampled and converted to

digital signals using A/D converters. Training happens in the offline mode using a dataset

20
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prepared from multivariate time series consisting of three-phase voltage and current signals.

The online HIF detection uses the weights and thresholds obtained from the offline training.

As the data preprocessing step is the same for both training and detection, the preprocessing is

described first, followed by the explanation of training and detection.

Figure 4.1: CAE Framework for HIF Detection (CAE-HIFD

4.1.1 Data Preprocessing

The first step of data preprocessing entails the sliding window approach applied to time-series

data to transform it into a representation suitable for the CAE. As illustrated in Fig. 4.2, the

first n samples (readings) make the first data window; thus, the data window dimension is n

time steps × f number of features. In each iteration of the algorithm, the data window slides

for s time steps, where s is referred to as a stride, to create the second data window and so on.

Note that Fig. 4.2 illustrates a case where s = n.

Each voltage and current phase signal (each feature) in the sliding window is processed

individually by differencing. The first-order d1 and second-order d2 differencing of signal y(t),

e.g., phase A voltage, are as follows:

d1(t) = y(t) − y(t − 1) (4.1)
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d2(t) = d1(t) − d1(t − 1) (4.2)

The HIF causes small distortions in the voltage and current waveforms. The second-order

differencing helps the CAE to learn and detect the HIF pattern by amplifying these distortions

and suppressing the fundamental frequency component of each input signal. Differencing also

amplifies noise; nevertheless, the generalization and spatial feature extraction capabilities of

the CAE make the CAE-HIFD robust against noise as demonstrated in Section 6.2.4.

Figure 4.2: Sliding window approach

4.1.2 Offline Training

The CAE is trained solely with the fault data, and the non-fault data are only utilized for the

system validation. As illustrated in Fig. 4.1, the preprocessed data are passed to the CAE as

one data window, n × f matrix, at a time. As shown in Fig. 4.3, the CAE is composed of two

main components: the encoder and decoder [35].

The first layer in the encoder performs the 1D convolution operation on the n × f input

matrix with the kernel of size k × f. This kernel moves across the time steps of the input

and interacts with k time steps (here k < n ) of the input window at a time; thus, during

the CAE training, the kernel learns the local spatial correlations in the input samples. There
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Figure 4.3: Convolutional Autoencoder (CAE) structure

are m kernels in the first layer and each kernel convolves with input to generate an activation

map. Consequently, the output of the first layer has a dimension of (n − k + 1) × m, and every

column of this output matrix corresponds to the weights of one kernel. These kernel weights are

learned during the CAE training process. Rectified Linear Unit (ReLU) activation function is

often used to introduce non-linearity after the convolution. However, here LeakyReLU, a leaky

version of ReLU, is used instead because ReLU discards the negative values in the sinusoidal

wave [35]. Next, the batch normalization layer re-scales and re-centers data before passing

them to the next layer in order to improve the training convergence. The batch normalized

data are passed to the max-pooling layer to reduce data dimensionality and the associated

computational complexity. The size of the max-pooling operation is p; therefore, the output of

the pooling layer is 1
p of the convolved input. As illustrated in Fig. 4.3, the convolution, batch

normalization, and max-pooling layers are repeated two times to extract features on different

levels of abstraction. These encoder layers create an encoded representation of the input signal

which is passed to the decoder.

While the encoder decreases the dimensionality of the input, the decoder reconstructs the

original signal from these encoded values. In the decoder, as illustrated in Fig. 4.3, the convolu-
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tional layer first generates the activation map, and then the up-sampling operations increase the

dimensionality of the down-sampled feature map to the input vector size. During up-sampling,

the dimensionality of the input is scaled by repeating every value along the time steps in the

signal with the scaling factor set according to the max-pooling layer size in the encoder. Simi-

lar to the encoder, in the decoder, the convolutional and up-sampling layers are repeated twice

(Fig. 4.3).

The CAE optimizes the weights and the biases using the backpropagation process in which

the gradient descent is applied based on the loss function, typically MSE. In the proposed

CAE-HIFD, the MSE is utilized as the loss function for training the CAE using fault data. In

autoencoder, the MSE is also referred to as a reconstruction error as it evaluates the similarity

between the input signal and the reconstructed signal given by the autoencoder output. As the

objective of the gradient descent algorithm is to minimize the MSE for training data, the MSE

is expected to be low for the training data and high for any deviations from the training patterns.

In the CAE-HIFD, the CAE sees only the fault data during training, and consequently,

the trained CAE is expected to fail in reconstructing the non-fault data input. Therefore, the

MSE for the non-fault data is expected to be higher than the MSE for the learned fault data.

Traditionally, in autoencoders, the separation between fault and non-fault data is done based

on a threshold which is determined using the MSE of the training dataset. However, in HIF

detection, when CAE is trained with fault data, MSE is not a reliable metric for calculating the

threshold. As illustrated in Fig. 4.4, the differentiated fault data forms a complex pattern with a

high number of fluctuations causing the dissimilarities between the CAE output and input. The

magnitude of these fluctuations varies from -2.0 to 1.0 and, as a result, even a small mismatch

between input and CAE output leads to high MSE: for example, in Fig. 4.4 (a), MSE for fault

data window is 0.0244. On the other hand, in Fig. 4.4 (b), MSE for steady state data window

is 0.0002 because of a relatively simpler pattern compared to HIFs and small amplitudes of

differentiated signal oscillations varying from -0.04 to 0.04. Consequently, the MSE is not a

reliable indicator to discriminate between HIF and non-fault cases.
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In signal processing, a metric commonly used to evaluate the similarity between signals is

the cross-correlation (CC) [65] which is defined as:

CC = ( f ∗ g)(τ) =

∫ ∞

−∞

f (t)g(t + τ)dt (4.3)

where f and g are two signals and τ is a time shift in the signal.

Figure 4.4: Input and output of the CAE for (a) HIF and (b) Non-HIF scenario.

In CAE-HIFD, CC is used to measure the similarity between the CAE input and output

signals. As illustrated in Fig. 4.1, after the CAE training is completed, the trained CAE

reconstructs all data windows from the training set and obtains reconstructed signals. Next,

for each window in the training set, the CC value is calculated for the input signal and the

corresponding CAE output. As seen in Fig. 4.4 (a), the HIF data window has a CC value of

27.677 because the input and output signals of the CAE are similar. On the contrary, a normal

steady-state operating condition data window, Fig. 4.4 (b), has a low CC value of 0.143 as the
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output deviates from the input. As the minimum CC value from the training set represents the

least similar input-output pair from the training set, this minimum CC value serves as the CC

threshold for separating HIF and non-HIF cases.

The CAE perceives the responses to disturbances such as capacitor and load switching to

be HIFs because these disturbances cause waveform distortions. However, these disturbances

usually occur for a shorter duration of time than HIFs making their statistical distribution dif-

ferent from those of HIFs and steady-state operation. Fig. 4.5 shows that the disturbances

and HIFs both exhibit Gaussian behavior, but the disturbances have a thinner peak and flatter

tails on the Probability Density Function (PDF) plot. In contrast, steady-state operation data

(sinusoidal waveforms) have an arcsine distribution.

To distinguish disturbances from HIFs, the statistical metrics kurtosis is used. The kurtosis

provides information about the tailedness of the distribution relative to the Gaussian distribu-

tion [65]. For univariate data y1, y2, y3, ..., yn with standard deviation s and mean ȳ, the kurtosis

is:

K =

∑n
i=1(yi − ȳ)4/n

s4 (4.4)

As Fig. 4.5 shows, flatter tails and thinner peaks results in higher kurtosis values. For exam-

ple, the distribution of the differentiated capacitor switching disturbance in Fig. 4.5 (b) has a

kurtosis value of K = 76.6 which is higher than the K = 1.9 for the HIF distribution in Fig. 4.5

(f).

The kurtosis is calculated from the training set individually for each data window after

applying differencing. To prevent misinterpretation of the K values and avoid treating HIFs as

non-fault disturbances, the kurtosis threshold must be higher than every K value present in the

training set. Accordingly, the kurtosis threshold is the value below which all the K values of

the training data lie.

The artifacts of the offline training are the CC threshold, the learned CAE weights, and the

kurtosis threshold. These artifacts are used for online HIF detection.
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Figure 4.5: Kurtosis analysis: (a) differentiated voltage signal corresponding to a capacitor
switching disturbance, (b) PDF of the voltage signal corresponding to a capacitor switching
disturbance (c) differentiated normal steady-state voltage, (d) PDF of the normal steady-state
voltage,(e) differentiated HIF voltage, and (f) PDF of the HIF voltage.

4.1.3 HIF Detection

The online HIF detection algorithm uses the artifacts generated by offline training as illustrated

in Fig. 4.1. First, the analog input signal is converted to digital by the A/D converter and the

data preprocessing module generates data windows which proceed through the remaining HIF

detection components, one window at the time.

The value of kurtosis is calculated for each data window and compared with the corre-

sponding threshold obtained from the offline training. Any data window with the kurtosis

value above the threshold is identified as a non-fault disturbance case for which the CAE is
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disabled because there is no need for additional processing as the signal is already deemed to

be a disturbance. Next, the timer is reset for processing the next input signal segment.

If the kurtosis value is less than the threshold, the data window is sent to the trained CAE

which encodes and reconstructs the signal. As the CAE is trained with fault data, for HIFs,

the reconstructed signal is similar to the original signal. This similarity is evaluated by calcu-

lating the CC between the reconstructed signal and the original signal. If the CC value of the

data window is greater than the CC threshold determined in the training process, the signal is

identified to be corresponding to a HIF.

Under transient disturbances such as capacitor switching, the value of CC may exceed the

corresponding threshold for a short time period immediately after the inception of disturbance.

False identification of disturbances as HIFs is prevented using a pick-up timer. The timer is

incremented when the CC exceeds its threshold and is reset to zero whenever the CC or K

indicates a non-HIF condition, as shown in Fig. 4.1. A tripping (HIF detection) signal is issued

when the timer indicates that the time duration of the HIF exceeds a predetermined threshold.



Chapter 5

High-Impedance Fault Classification

One of the objectives of this thesis is to detect the fault type; therefore, a deep learning-based

framework for HIF detection and classification is proposed. Consequently, this chapter in-

troduces the proposed framework and discusses its components, such as data preprocessing,

model training, and HIF classification.

5.1 Transformer-CNN Framework for HIF classification

The transformer network outperforms sequence-based models in learning complex patterns

from time-series data; however, it is not good at capturing the spatial structures present in the

data. On the other hand, CNNs are capable of learning the multiple discriminative features in

time-series data for classification tasks [45, 47]. Consequently, the Transformer-CNN (T-CNN)

framework proposed here combines the temporal data handling capabilities of the transformer

network and the spatial feature learning ability of the CNN for the HIF classification. As shown

in Fig. 5.1, the T-CNN framework has two main stages: 1) model training and 2) online HIF

classification. The training is conducted in an offline setting using a dataset prepared from

multivariate time-series data. The online HIF classification utilizes the weights and thresh-

old obtained from offline training. The data preprocessing is conducted for both training and

classification; therefore, it is described first, followed by training and classification.

29
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Figure 5.1: Transformer-CNN Framework for HIF Classification (T-CNN)

5.1.1 Data preprocessing

The digital signals obtained by sampling the analog voltage and current signals using Analog

to Digital (A/D) converters comprise the multivariate time-series data utilized for the model

training. The sliding window technique transforms this time series data into data windows of

w × f size, where w is the number of time steps, and f is the number of features. The window

slides for s time steps to form the next data window; s is referred to as a stride. The first order

d f1 and second-order d f2 differencing is applied on every data window, where d f1 and d f2 are

described as follow:

d1(t) = y(t) − y(t − 1) (5.1)

d2(t) = d1(t) − d1(t − 1) (5.2)

where y(t) is signal at time t; for example phase A current. HIFs introduce distortions to the

waveforms, and the second-order differencing amplifies these distortions and suppresses the

fundamental frequency. Consequently, the resulting complex pattern is a mixture of tempo-

ral and amplitude variations. The differencing leads to amplification of noise; however, as

demonstrated in experiments, the CNN layer in the proposed T-CNN enables generalization

and makes T-CNN robust against noise.
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5.1.2 Model Training

Non-HIF disturbances, such as the capacitor and load switching can cause signal distortions

similar to the HIF data, and thus can result in false tripping. The T-CNN framework (Fig. 5.1)

deals with these disturbances through kurtosis analysis. Non-fault disturbances occur for a

short duration of time which makes their statistical distribution different from that of faults. The

Probability Density Functions (PDF) from Fig. 4.5 in Chapter 4 illustrate that both non-fault

disturbances and HIF data windows have leptokurtic distribution (i.e., normal distribution with

more concentration around the mean) while the steady-state operation has arcsine distribution.

As the kurtosis indicates the tailedness of the distribution relative to the Gaussian distribution,

it is used to differentiate non-fault disturbances from the HIF and the steady-state operation.

As mentioned in Chapter 4, for univariate data y1, y2, y3, ..., yn with standard deviation s and

mean ȳ, the kurtosis is:

kurtosis =

∑n
i=1(yi − ȳ)4/n

s4 (5.3)

The kurtosis value for each HIF data window in the training set is calculated individually,

and the maximum value is selected as the kurtosis threshold. The data windows with the

kurtosis above this threshold are deemed non HIFs and the remaining data windows comprise

the training dataset (Fig. 5.1). As shown in Fig. 5.2, the proposed transformer-CNN model

utilized in the T-CNN framework has multiple layers: data windows w × f are first passed

through the transformer network encoder and then through CNN layers. Here, only the encoder

part of the original transformer network [66] is used, as it is capable of generating meaningful

representations for successfully HIF classification.

As shown in Fig. 5.2, similar to the transformer network, the encoder of the transformer-

CNN model consists of multi-head attention, feed-forward, and normalization layers. The

multi-head attention applies a self-attention mechanism to the input vector, which associates

each time step in the data window (input vector) to other time steps in the input. An attention

function is defined as mapping a query and set of key-value pairs to an output, where attention
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Figure 5.2: Transformer-CNN Model

weights are queried in the timesteps (keys) and output is the weighted sum of values [66]. To

achieve self-attention in the encoder, the input vector is passed through fully connected layers

to generate the query q, key k, and value v vectors [66]. The attention function utilized in the

transformer network is described as follows:

Attention(q, k, v) = v × so f tmax(
qkT

√
dk

) (5.4)

where softmax function produces class probabilities, and dk is the dimension of k and q vec-

tors. The dot product of q and k produces a score matrix that defines relative dependencies

and associations within a data window. The scores are scaled down by a factor of
√

dk to pre-

vent exploding gradient problem; where dk is the dimension of keys and queries. Finally, the

attention weights are computed by applying softmax operation on scaled-down scores, and an

output vector is obtained by multiplying attention weights and v vector. In the multi-head at-

tention mechanism, each head generates a separate part of the output vector Attention(q, k, v),

and each part learns something different, ultimately boosting performance. All the parts of

output vectors from every head are concatenated and passed through a linear layer to generate

an abstract encoder representation. The multi-head mechanism enables the parallelization, for

example, the input with 6 features and heads = 3, each head can process 6/3 = 2 features

parallelly.

The output of the encoder is passed through the CNN, wherein, the 1D convolutional layer
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extracts spatial features using the kernel (k × f ), which moves across the time steps of the en-

coder output. Furthermore, l kernels produce an activation map of dimension (n − k + 1) × l

and columns of this map are weights of the l kernels. The Rectified Linear Unit (ReLU) acti-

vation function is typically applied to the output of the convolution layer to add non-linearity.

Here, Leaky ReLU is used as the activation function instead of common ReLU because of its

advantage in processing negative values [35]. Next, the output is re-centered and re-scaled in

the batch normalization layer to reduce the time taken for the convergence during the training.

The dimensionality of the batch normalized output is reduced in the pooling layer by a factor

of 1
pool−size , where pool − size is max-pooling operation size. The max-pooling also assists in

reducing the computational time complexity of the training process. Next, the fully connected

layer calculates the final output probabilities by applying the softmax operation. Finally, the

output of the proposed T-CNN framework is the class that has the highest probability: non-HIF,

Phase A, Phase B, or Phase C fault.

The model is trained for N epochs by updating the weights to minimize negative log-

likelihood loss between actual and predicted labels. The learned transformer-CNN weights

and the kurtosis threshold are the outputs of the model training: they are used for the online

HIF classification

5.1.3 HIF classification

The online HIF classification first transforms the analog signals into digital signals by using

A/D converters as seen in Fig. 5.1. Next, these digital signals are preprocessed in the same way

as for the model training: the sliding window technique is applied to generate data windows,

and then the second-order differencing is applied on each individual data window.

The kurtosis value of each differentiated data window is calculated and compared with

the kurtosis threshold obtained from the training process. If the kurtosis is greater than the

threshold, the data window corresponds to non-HIF disturbance and is classified as non-HIF.

Data windows with the kurtosis less than the threshold, the window proceeds to the trained
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T-CNN model which discriminates the non-HIF cases from the HIF cases and identifies the

fault type. Hence, the proposed T-CNN framework detects four classes: non-fault, phase A, B,

and C fault.
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Evaluation

This chapter first describes the study system and the process of obtaining data for the per-

formance verification studies. Next, evaluations of the proposed CAE-HIFD and the T-CNN

frameworks are discussed.

6.1 Study System

The data set utilized for model training and evaluation is obtained through time-domain simu-

lation studies performed in the PSCAD software. The study system is the IEEE 13 node test

feeder of Fig. 6.1, a realistic 4.16 kV distribution system with a significant load unbalance.

This test feeder was selected in order to examine the system behavior under challenging load

unbalance conditions and because of its common use in HIF studies [67]. Detailed informa-

tion regarding the line and the load data are provided in the appendix, and further information

about this benchmark system can be found in [67]. For an accurate representation of the HIF

behavior, the antiparallel diode model of Fig. 6.2, [2, 3, 6, 9, 68] is utilized. The HIF model

parameters representing seven different faulted surface types are given in Table 6.1 [2, 69].

These parameters lead to effective fault impedances as high as 208 ohms in 4.16 kV distribu-

tion system.

In total, 210 faulty cases were simulated: 7 different surfaces, 10 fault locations, and 3

35
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Figure 6.1: IEEE 13 node test feeder

phases. After the windowing technique, this resulted in 1372 HIF data windows. Additionally,

the dataset obtained from simulations contained 272 non-fault data windows. Using data ob-

tained from simulation studies enables considering diverse fault types, locations, and surfaces

while obtaining such diverse data from real-world experiments would be difficult or even im-

possible. The 80% of the fault data is assigned for the model training and the rest for testing.

As CAE-HIFD requires only fault data for training, all non-fault data is assigned for testing.

The 10% of the training set is used as a validation set for the hyperparameter optimization.

Table 6.1: HIF Model Parameters For Different Surfaces.
Surfaces R1 (Ω) R2 (Ω) V1 (V) V2 (V)
Wet Sand 138±10% 138±10% 900±150 750±150

Tree Branch 125±20% 125±20% 1000±100 500±50
Dry Sod 98±10% 98±10% 1175±175 1000±175

Dry Grass 70±10% 70±10% 1400±200 1200±200
Wet Sod 43±10% 43±10% 1550±250 1300±250

Wet Grass 33±10% 33±10% 1750±350 1400±350
Rein. Concrete 23±10% 23±10% 2000±500 1500±500
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Figure 6.2: Nonlinear HIF model utilized for time-domain simulation studies.

6.2 CAE-HIFD Evaluation

This section first describes the details of CAE-HIFD model training and the effects of different

CAE-HIFD components are presented. Next, the response of the CAE-HIFD to different case

studies is demonstrated. Finally, the CAE-HIFD performance is compared with other HIF

detection approaches, and its sensitivity to noise is examined.

6.2.1 CAE-HIFD Model Training

The performance of the CAE is evaluated using accuracy (Acc), security (Sec), dependability

(Dep), safety (Saf), and sensibility (Sen) [30].

Acc =
T P + T N

T P + T N + FP + FN
× 100% (6.1)

S ec =
T N

T N + FP
× 100% (6.2)

Dep =
T P

T P + FN
× 100% (6.3)

S a f =
T N

T N + FN
× 100% (6.4)

S en =
T P

T P + FP
× 100% (6.5)

Here True Positives (TP) and True Negatives (TN) are the numbers of correctly identified fault
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and non-fault cases, and False Negatives (FN) and False Positives (FP) are the numbers of

miss-classified fault and non-fault cases. The accuracy is the percentage of overall correctly

identified states, the security is the healthy state detection precision, the dependability is the

fault state detection precision, the safety is resistance to faulty tripping, and the sensibility is

resistance to unidentified faults [30]. Note that dependability is also referred to as True Positive

Rate (TPR) or sensitivity, while security is referred to True Negative Rate (TNR) or specificity

[38].

To achieve high accuracy, the CAE hyperparameters must be tuned; this includes the num-

ber and size of kernels, learning rate, optimizer, and batch size. Hyperparameter tuning is

performed with Grid Search Cross-Validation (GSCV), wherein an exhaustive search is con-

ducted over pre-specified parameter ranges. The GSCV determines the best performing pa-

rameters based on the scoring criteria provided by the model, in our case accuracy. The tuned

CAE has 256-128-128-256 filters of size 3 × 3 in the four convolution layers, the optimizer is

Adam, the learning rate is 0.001, and the batch size is 16.

The window size after differencing is 166 voltage/current samples, which corresponds to

one cycle of the 60 Hz power frequency signal sampled at a rate of 10 kHz. The proposed

method does not operate based on the fundamental frequency components of the input signal

and thus, is not sensitive to frequency deviations as shown in Subsection 6.2.3, case study VII.

The sliding window stride during training impacts the CAE-HIFD performance: its value is

determined on the training data set. Once the system is trained, it is used with the stride of one.

The upper bound for the stride value is 166 as a higher value would lead to skipped samples.

The performance metrics for varying stride values are shown in Fig. 6.3. It can be observed

that the safety and dependability are not affected by the change in the stride value as none of

the non-HIF cases are misclassified as a HIF case. The accuracy, security, and sensibility are

100% for the stride size of 166, and for shorter strides, these metrics are slightly lower. As the

stride decreases, a few data windows are mistakenly identified as faults resulting in decrease

of security, sensibility, and accuracy. Hence, the stride value of 166 is selected for the sliding
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window in the preprocessing of the training data set.

Figure 6.3: Impact of the sliding window stride on the performance metrics of the CAE-HIFD.

The CAE-HIFD prevents false detection of disturbances as HIFs using kurtosis value. As

the distributions of the HIFs and disturbances both exhibit Gaussian behavior, an HIF window

can have a K value close to the K value of a disturbance. The kurtosis threshold is determined

starting from the kurtosis values for which all HIFs scenarios in the training data lie below this

threshold: in this case 10. Next, accuracy on the training data is examined with thresholds

close to this initial threshold. As illustrated in Fig. 6.4, the accuracy is 100% when kurtosis

thresholds are between 9.5 and 10.5. The accuracy decreases when threshold is below 9.5

because some of the HIF scenarios are mistakenly detected as non-HIF scenarios (FN > 0).

Furthermore, the threshold above 10.5 leads to low accuracy as some non-HIF scenarios are

falsely declared as HIFs (FP > 0). Consequently, the kurtosis threshold of 10 is selected to

discriminate the non-fault disturbances from the HIFs.

6.2.2 Effects of CAE-HIFD’s Components

The proposed CAE-HIFD uses differencing and cross-correlation in addition to the main com-

ponent, the CAE, to increase various performance metrics. Furthermore, kurtosis is utilized

to improve the security of the proposed method. Consequently, as depicted in Table 6.2, the

CAE-HIFD achieves 100% performance in all five considered metrics regardless of the surface
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Figure 6.4: Impact of the Kurtosis threshold on the accuracy of the CAE-HIFD.

type, inception angle, and fault locations.

Table 6.2: Impact of differencing, cross-correlation, and kurtosis on CAE-HIFD performance.

Model Acc Saf Sen Sec Dep
Proposed CAE-HIFD 100 100 100 100 100

CAE with CC, K 51.19 100 51.10 0.37 100
CAE with K, Diff 48.29 4.76 50.10 0.40 92.67

CAE with CC, Diff 96.38 100 93.31 92.70 100
CAE with CC 51.10 100 50.64 1.84 100
CAE with Diff 48.9 37.93 49.51 4.04 93.43
CAE with K 89.64 96.67 84.16 82.77 96.35

Additionally, Table 6.2 includes variants of the CAE-HIFD with only some of the three

components included. With only CC and kurtosis, the accuracy and sensibility drop to nearly

51%, and the security decreases by 99.6%. In the absence of differencing, the CAE cannot

learn patterns to distinguish between the HIF and the non-HIF data windows and, as a result, a

large number of the non-HIF data windows are falsely classified as the HIF which means high

FP, thus low security.

To examine the impact of CC, the traditional MSE is used in place of CC to measure the

similarity of the input and reconstructed signal. As shown in Table 6.2, in the absence of CC,

the values of accuracy and sensibility drop to nearly 50%. This happens because the MSEs

calculated for the HIF and non-HIF data windows are similar and, thus, non-HIFs are falsely

detected as HIFs. Furthermore, the security value is low (0.40%), whereas the dependability
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value is high (92.67%) as there are only a few TN and FN compared to TP and FP.

Omitting the kurtosis evaluation results in only a small increase in the number of FP cases

which are the non-fault disturbances falsely declared as HIFs. Therefore, as shown in Table

6.2, all the performance metrics values decrease by less than 8%.

Finally, only one out of the three components is included in the CAE-HIFD framework.

Whereas the simultaneous use of differencing and cross-correlation achieves relatively high

performance metrics, with only one of the two components, there is a major decrease in secu-

rity (more than 95%). With kurtosis only, all metrics are between 82% and 97% in comparison

to 100% obtained in the presence of all three components. This is caused by the absence of dif-

ferencing which assists in amplifying sign wave distortions and omission of cross-correlation

which facilitates signal comparisons. The results shown in Table 6.2 highlight the necessity

of each CAE-HIFD component and the contribution of each component to the HIF detection

performance.

6.2.3 CAE-HIFD Response to Different Case Studies

In this section, seven case studies have been conducted to depict the response of the proposed

CAE-HIFD.

Case study I − Close-in HIF

Fig. 6.5 illustrates the performance of the CAE-HIFD under both normal and HIF conditions.

In this case study, the HIF is applied at Node 632 starting at 0.05 s, as seen in Fig. 6.5 (a). The

input voltage and current signals observed at the substation relay are shown in figures 6.5 (b)

and (c), and the kurtosis calculated from those voltages and currents is displayed in Fig. 6.5

(d). During normal operation, the kurtosis is below the threshold; upon the HIF inception, it

raises over the threshold for approximately 8-10 ms returning quickly back to below threshold

values. The HIF causes the CC value to rise above the threshold, Fig. 6.5 (e), and, therefore, a

trip signal is issued approximately 60 ms after the HIF inception as seen in Fig. 6.5 (f).
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Figure 6.5: CAE-HIFD performance under normal and close-in HIF conditions: (a) HIF cur-
rent, (b) three-phase input voltages, (c) three-phase input currents, (d) kurtosis, (e) cross-
correlation, and (f) trip signal.

Case study II − Remote HIF

Fig. 6.6 depicts the result of the CAE-HIFD in presence of a remote HIF: the HIF is applied

at Node 652 starting at 0.05 s, as seen is Fig. 6.6 (a). The input voltage and current signals
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are observed in figures 6.6 (b) and (c), and the calculated kurtosis is shown in Fig. 6.6 (d).

Due to the remote location of HIF, the HIF influence on the voltages and current signals is

highly attenuated. As a result, the kurtosis surpasses the threshold for shorter duration of

time (approximately 1-2 ms) as compared to Case study I. As shown in Fig. 6.6 (e), the CC

value raises above the threshold after the inception of HIF. Consequently, a trip signal is issued

approximately 50 ms after the HIF inception as seen in Fig. 6.6 (f).

Case study III − Capacitor switching

The proposed HIF detection method successfully discriminates HIFs from switching events as

shown in Fig. 6.7 with a three-phase capacitor bank located at node 675. Fig. 6.7 (a) depicts

phase A current caused by the capacitor energization at t = 0.05 s. The current and voltage

signals seen by the relay at substation exhibit significant oscillations as shown in figures 6.7

(b) and (c). This switching event causes sudden increase in the kurtosis for a short duration of

time, approximately 15 ms (Fig. 6.7 (d)). Although the CC for the switching event is higher

than its threshold, Fig. 6.7 (e), this disturbance is not falsely identified as an HIF, due to the

high kurtosis value. Moreover, the CC for remaining non-HIF signal is below the threshold.

Consequently, a trip signal is not issued throughout the switching event, Fig. 6.7 (f).

Case study IV − Nonlinear load

Fig. 6.8 shows the performance of the proposed CAE-HIFD in presence of a nonlinear load

which causes significant harmonics. The load at node 634 is replaced by a DC motor fed by

a six-pulse thyristor rectifier. The motor is started at t = 0.05 s. Fig. 6.8 (a) illustrates the

phase A current of the nonlinear load, while figures 6.8 (b) and (c) show voltages and currents

measured by the relay at the substation. Although the CC is higher than its threshold (Fig. 6.8

(e)), the trip signal (Fig. 6.8 (f)) is not issued because the kurtosis surpasses its threshold (Fig.

6.8 (d)).
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Figure 6.6: CAE-HIFD performance under normal and remote HIF conditions: (a) HIF current,
(b) three-phase input voltages, (c) three-phase input currents, (d) kurtosis, (e) cross-correlation,
and (f) trip signal.

Case study V − Transformer energization

This case study investigates the performance of the CAE-HIFD under a transformer energiza-

tion scenario: the transformer at node 633 is energized at t=0.05 s. The inrush current for
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Figure 6.7: CAE-HIFD performance under a capacitor switching scenario: (a) capacitor cur-
rent, (b) three-phase input voltages, (c) three-phase input currents, (d) kurtosis, (e) cross-
correlation, and (f) trip signal.

phase-A is shown in Fig. 6.9 (a) while figures 6.9 (b) and (c) display voltages and currents

measured at the substation. Both the resulting kurtosis shown in Fig. 6.9 (d), and the CC
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Figure 6.8: CAE-HIFD performance under non-linear load switching: (a) non-linear load
current, (b) three-phase input voltages, (c) three-phase input currents, (d) kurtosis, (e) cross-
correlation, and (f) trip signal.

shown in Fig. 6.9 (e) are below their corresponding thresholds. As a result, the proposed pro-

tection strategy does not cause any unnecessary tripping (Fig. 6.9 (f)) under the transformer

energization scenario.
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Figure 6.9: CAE-HIFD performance under inrush currents: (a) Inrush current, (b) three-phase
input voltages, (c) three-phase input currents, (d) kurtosis, (e) cross-correlation, and (f) trip
signal.

Case study VI − Intermittent HIFs

This case study demonstrates the effectiveness of the proposed CAE-HIFD in detecting inter-

mittent HIFs. A tree branch momentarily connects the phase-A to the ground for approximately
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3.5 cycles (55 ms) as illustrated in Fig. 6.10 (a). The voltage and current signals shown in fig-

ures 6.10 (b) and (c) are measured by the relay at the substation. As depicted in Fig. 6.10 (d),

the kurtosis does not exceed the threshold. The CC in Fig. 6.10 (e) crosses the threshold during

the intermittent faults. As shown in Fig. 6.10 (f), the trip signal is issued after 50 ms. The trip

signal is reset after the intermittent fault is cleared.

Case study VII − Frequency Deviations

To demonstrate the effectiveness of the proposed method in presence of frequency deviations,

the system frequency is increased to 61 Hz in this case study. The HIF is initiated at t = 0.05 s.

figures 6.11 (a) and (b) represent currents and voltages measured by the relay at the substation.

As shown in Fig. 6.11 (c), before the HIF takes place, the kurtosis is below the threshold.

As the HIF samples enters the sliding window, the kurtosis exceeds the threshold because the

distribution suddenly changes during the transition. Next, the kurtosis returns to values below

the threshold. The CC in Fig. 6.11 (d) is above the CC threshold; therefore, the system trips

within three cycles of the HIF inception.

6.2.4 Comparison with Other Approaches

This section first compares the proposed CAE-HIFD with other supervised and unsupervised

learning algorithms. The two supervised models selected for the comparison are: Support

Vector Machine (SVM) [6] and Artificial Neural Network (ANN) [27]. As supervised models

require the presence of both, HIF and non-HIF data in the training set, these models are trained

with a data set containing an equal number of the HIF and non-HIF instances. Moreover, as

those models have originally been used with the DWT applied on the current waveform [6, 27],

DWT is used here too. DWT extracts features by decomposing each phase current into seven

detail level coefficients and one approximate level coefficient using the db4 mother wavelet.

The features are formed by computing the standard deviation of coefficients at each level;

therefore, eight standard deviations from each phase form a new input sample with 24 elements
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Figure 6.10: CAE-HIFD performance under intermittent HIF condition: (a) fault current, (b)
three-phase input voltages, (c) three-phase input currents, (d) kurtosis of the input, (e) cross-
correlation, and (f) trip signal.

[27]. As with CAE-HIFD, the SVM and ANN hyperparameters are tuned using GDCV. The

SVM kernel is RBF with γ of 0.05. The ANN has three layers with 24-18-1 neurons, the
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Figure 6.11: CAE-HIFD performance under 61 Hz fundamental frequency: (a) three-phase
input voltages, (b) three-phase input currents, (c) kurtosis, (d) cross-correlation, and (e) trip
signal.

activation function for input and hidden layers is ReLU, and binary cross-entropy is the loss

function.

As other studies have only used supervised learning, to examine unsupervised learning

techniques, variations of the proposed approach are considered in this evaluation. Fig. 6.12

shows the flowchart for the unsupervised ML models. Preprocessing, Kurtosis, and CC calcu-

lation components are exactly the same as in the proposed CAE-HIFD, while two options are



6.2. CAE-HIFD Evaluation 51

considered for the autoencoder algorithm and the training dataset. As the autoencoder, the pro-

posed CAE-HIFD uses CAE while here we consider a variant of Recurrent Neural Network,

Gated Recurrent Units Autoencoder (GRU-AE). GRU-AE is selected because it issuccessful

in extracting patterns from time-series data such as those present in the current and voltage

signals. The GRU-AE tuned with GDCV has two hidden layers, each one with 32 GRU cells

and the ReLU activation function. For both, CAE-HIFD and GRU-AE, two types of studies

are conducted: training on HIFs data only and training on non-HIFs data only.

Figure 6.12: Flowchart for the alternative unsupervised HIF detection models

For the comparison with an unsupervised learning model, a variant of Recurrent Neural

Network, Gated Recurrent Units Autoencoder (GRU-AE) is selected because the GRU-AE is

successful in extracting patterns from time-series data such as those present in the current and

voltage signals. The GRU-AE tuned with GDCV has two hidden layers, each one with 32 GRU

cells and the ReLU activation function. As show in Fig. 6.12, the GRU-AE is used in place

of CAE in the proposed CAE-HIFD approach keeping data preprocessing, kurtosis, and cross-

correlation the same. For both, CAE-HIFD and GRU-AE, two types of studies are conducted:

training on HIFs data only and training on non-HIFs data only.

The results of the comparison between CAE-HIFD and the other approaches are shown in

Table 6.3. It can be observed that CAE-HIFD outperforms other approaches and is the only

one not susceptible to false tripping as indicated by the security metrics. In addition, the CAE-

HIFD trained only with HIF data is highly efficient in discriminating non-HIF instances by

detecting deviations from the learned HIF patterns. This prevents the algorithm from false

tripping in the case of a new non-HIF pattern not present in the training set. The results of

the studies presented in Table 6.3 indicate that the CAE-HIFD achieves equally good results

regardless of whether it is trained on the HIF data or non-HIF data; however, when trained
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with non-HIF data, there is a risk of identifying new non-HIF patterns as HIFs. The supervised

learning-based approaches category can only recognize the pattern present in the training set

and, thus, may recognize new non-HIF events as HIFs. Overall, the proposed CAE-HIFD

achieves better performance than the other approaches.

Table 6.3: Comparison of CAE-HIFD with other HIF detection approaches.

Model Acc Saf Sen Sec Dep
Other Approaches - Supervised

DWT+SVM [6] 97.97 100 97.78 78.99 100
DWT+ANN [27] 97.72 100 97.55 76.47 100

Variants of our approach - Unsupervised
Train on non-faults

GRU-AE 99.92 100 96.92 99.92 100
Proposed CAE-HIFD 100 100 100 100 100

Train on faults
GRU-AE 34.61 32.24 83.22 97.52 5.66
Proposed CAE-HIFD 100 100 100 100 100

6.2.5 Robustness of the Proposed CAE-HIF Against Noise

To examine CAE-HIFD robustness against noise, studies are conducted by introducing differ-

ent levels of noise. The white Gaussian noise is considered because it covers a large frequency

spectrum. The noise is added to the current signals because current waveforms are more sus-

ceptible to noise [1]. The ratio of the signal power to the noise power (SNR) is considered to

measure the level of noise added to the system. The SNR is measured in decibel and given as:

S NR = 20 log
S p

Np
(6.6)

Where S p and Np refers to the signal and noise power, respectively. As shown in Fig. 6.13,

the proposed CAE-HIFD approach is immune to noise when SNR value is higher than 40 dB.

In a case of high nose, SNR below 40 dB, the accuracy reduces to 97%. Thus, more than one

consecutive window is needed to be processed before making a tripping decision in order to
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avoid undesired tripping and to ensure accurate HIF detection. Therefore, three consecutive

windows are utilized in all performance evaluation studies in order to accurately detect all

HIFs. Increasing the timer threshold improves the resiliency against unnecessary tripping,

but prolongs HIF detection time. Even with the extremely noisy condition of 1 dB SNR, the

accuracy, security, and sensibility do not fall below 97.65%, 94.03%, 96.28% respectively.

The reason behind this robustness is the CAE de-noising ability and strong pattern learning

capability. The inherent de-noising nature of the autoencoders assists the CAE to generalize

the corrupted input. Also, the CAE-HIFD learns the complex HIF patterns because of spatial

feature learning proficiency of the CAE. The model accurately detects non-HIF scenarios under

considered noise levels; hence, the safety and dependability remains at 100% even with high

levels of noise. Moreover, the values of other performance metrics are also greater than 90%

throughout the SNR range of 5dB to 50dB demonstrating noise robustness of the CAE-HIFD.

Fig. 6.14 shows CAE-HIFD performance in presence of noise of 20 dB SNR. Before

the HIF inception at 0.05 s, despite the significant noise, the kurtosis (Fig. 6.14 (b)) and the

CC (Fig. 6.14 (c)) remain below their thresholds. The CC surpasses the threshold upon HIF

inception and, as a result, the designed protection system issues trip signal (Fig. 6.14 (d)).

Figure 6.13: Effect of noise on the CAE-HIFD performance.
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Figure 6.14: CAE-HIFD performance under 20 dB SNR: (a) three-phase input currents, (b)
kurtosis, (c) cross-correlation, and (d) trip signal.

6.2.6 Discussion

The evaluation results demonstrate that the proposed CAE-HIFD achieves 100% HIF detection

accuracy irrespective of the surface type, fault phase, and fault location. All metrics, includ-

ing accuracy, safety, sensibility, security, and dependability are at 100% as shown in Table

6.2. Moreover, for all considered scenarios, the system trips within three cycles after the HIF

inception.

The challenging part of machine learning for HIF detection is in the diversity of non-fault

and fault signals together with similarities between non-HIF disturbances and HIFs. By train-

ing on faults only, the proposed approach does not require simulation of non-fault scenarios
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for training. Distinguishing HIFs from the non-HIF steady-state operation can take advantage

of the smoothness of non-HIF steady-state signal; however, non-HIF disturbances, such as

capacitor and load switching, share many characteristics (e.g., randomness and non-linearity)

with the HIF signals making it difficult for a neural network (in our case CAE) to distinguish

between them. To address this challenge, the proposed approach takes advantage of differ-

ences in data distributions between non-fault disturbances and HIFs and employs kurtosis to

differentiate between the two.

In experiments, 210 fault cases were considered corresponding to 1372 fault data windows

as described in Subsection 6.1. Signals corresponding to these faults are different from each

other as simulations included different surfaces, fault locations, and fault phases. From these

fault cases, 80% is selected randomly for training, therefore, some cases are present only in

testing. Moreover, all the case studies presented in Subsection 6.2.3 are conducted with data

that is not seen by the proposed CAE-HIFD in training. The proposed system successfully dis-

tinguished between fault and non-fault signals for all scenarios, which demonstrates its abilities

to detect previously unseen HIF and non-HIF scenarios.

Frequency deviations, as well as noise, impose major challenges for the HIF detection.

Approaches that operate on the fundamental frequency components risk failures in presence

of frequency deviations. However, CAE-HIFD does not operate based on the fundamental

frequency components of the input signals and, consequently, is not sensitive to frequency

deviations as shown in Subsection 6.2.3. As noise is common in distribution systems, it is

important to consider it in HIF detection evaluation. HIF detection in presence of noise is

difficult as noisy signals are accompanied by randomness and have characteristics that resemble

HIFs. Nonetheless, experiments from Subsection 6.2.5 show that CAE-HIFD remains highly

accurate even in presence of significant noise.
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6.3 T-CNN Evaluation

This section describes the details of model training, the effect of kurtosis and differencing on the

performance, and response of the T-CNN to various challenging scenarios. Furthermore, the

proposed approach is compared with the state-of-the-art approaches and the effects of sampling

frequency and noise are examined.

6.3.1 T-CNN for HIF Classification Model Training

The performance of the T-CNN framework is evaluated with accuracy and F1-score:

Accuracy =
T P + T N

T P + T N + FP + FN
(6.7)

F1 − score =
2 ∗ S ensibility ∗ Dependability

S ensibility + Dependability
(6.8)

S ensibility =
T P

T P + FP
(6.9)

Dependability =
T P

T P + FN
(6.10)

where True Positives (TP) and True Negatives (TN) are the numbers of correctly detected

fault types and non-fault cases, and False Positives (FP) and False Negatives (FN) are the

number of falsely detected fault types and non-fault cases. Although accuracy depicts the

overall performance of the machine learning algorithm, it fails to determine the success rate of

detecting a class in a multi-class output scenario [70]. Consequently, the F1-score is utilized,

which is the harmonic mean of sensibility and dependability.

Initially, hyperparameter optimization of a Machine Learning (ML) model training is neces-

sary to attain high accuracy. The hyperparameters of the proposed T-CNN include the number

of heads, number and size of kernels, optimizer, learning rate, and batch size. The Grid Search

Cross-Validation (GDCV) is utilized to conduct hyperparameter tuning. In GDCV, exhaustive

search is executed over pre-specified parameter ranges based on scoring criteria, e.g., accuracy.

The tuned T-CNN has one encoder layer with four heads, a convolution layer containing 64



6.3. T-CNN Evaluation 57

Figure 6.15: Impact of the window size on accuracy.

kernels of width 3, a fully connected layer, a linear layer, the optimizer is Adam, the batch size

is 16, and the learning rate is 0.001.

For optimal performance, the size of the window is tuned using the training dataset. As

one cycle of the 60 Hz power frequency signal contains 166 voltage/current samples, multiples

of 166 are considered as window sizes. As seen in Fig. 6.15, for window sizes greater than

166, the F1-score in the case of all classes is 100%. As the data window size increases, T-

CNN has more samples to learn from; however, the time complexity also increases. Hence,

the window size of 332 is selected because it is the smallest window achieving 100% F1-score.

Next, the stride of the sliding window is set 1 during the training process in order to provide

the maximum possible data to train the T-CNN. The maximum value of stride cannot exceed

332 as it would lead to the omission of samples. The stride of 332 avoids the overlapping of the

data, as a result, 332 is chosen as the stride value for the sliding window in the pre-processing

of the testing dataset.

6.3.2 Effect of Kurtosis and Differencing

The proposed T-CNN for HIF classification utilizes a kurtosis threshold for detecting non-HIF

disturbances. The kurtosis of all the HIF data windows in the training set is calculated, and the

maximum value, i.e. 8 is selected as the kurtosis threshold. As shown in Fig. 6.16, F1-score

of detecting Phase B and Phase C type fault decreases if threshold is selected below 7. This
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happens because the lower threshold is mistakenly detecting HIF cases as non-HIF cases. On

the other hand, raising the threshold above 9 leads to a decrease in the F-1score of detecting

all the classes as the higher threshold is falsely detecting non-fault disturbances cases as HIF

cases. As a result, the threshold value is selected as 8 to successfully discriminate between

non-HIF disturbances and the HIF cases.

The proposed T-CNN along with components such as, differencing and kurtosis achieves

100% F1-score in detecting all phases and non-fault cases regardless of surface types, fault

inception, and fault location, Fig. 6.17. The differencing is utilized for conducting feature

extraction and kurtosis provides security against non-fault disturbances.

Figure 6.16: Impact of the kurtosis threshold on accuracy.

To examine the impact of kurtosis and differencing on the overall T-CNN framework per-

formance, this section considers variants of the framework with only one of these two compo-

nents. As seen from Fig. 6.17, while complete T-CNN achieves 100% F1-score for all classes,

the omission of kurtosis leads to an increase in false positives reducing the F1-score for all

classes. Without kurtosis, the F1-score for non-faults is approximately 89%, whereas phase

classification F1-score is in the range of 75% to 93%.

The absence of differencing affects the F1-score even more, dropping it to below 50% for

the three phases. The differencing amplifies distortions caused by the HIFs allowing the T-CNN

model to comprehend the complex patterns present in the data and, thus, enabling distinction

among phases. This comparison from Fig. 6.17 establishes the necessity of differencing and
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Figure 6.17: Impact of differencing and kurtosis on T-CNN performance.

kurtosis in the T-CNN framework.

6.3.3 System Response for Representative Case Studies

This section illustrates the response of the proposed framework for representative case studies:

close-in HIF, capacitor switching, and nonlinear load.

Close-in HIF

Fig. 6.18 depicts the performance of the T- CNN framework under both normal and close-in

HIF conditions. The input voltage and current signals observed by the substation relay and

used for HIF detection are shown in figures 6.18 (a) and (b). The HIF is applied to Node

632, at 0.05 s, as shown in Fig. 6.18 (c). As seen from Fig. 6.18 (c), during the steady-state

normal operation, the kurtosis is below the threshold and upon the HIF inception, it raises

over the threshold for approximately 8-10 ms. As observed from Fig. 6.18 (e), after 0.06 s,

phase A type fault has the highest output probability; thus, a trip signal, Fig. 6.18 (f), is issued

approximately 45 ms after the HIF inception.

Capacitor Switching

The response of the proposed framework under the capacitor switching is shown in Fig. 6.19.

As seen from figures 6.19 (a) and (b), capacitor switching causes significant oscillations in the

current and voltage signals measured by the relay at substation when a three-phase capacitor
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Figure 6.18: T-CNN performance under close-in HIF: (a) three-phase input voltages, (b) three-
phase input currents, (c) HIF current, (d) kurtosis, (e) output probabilities, and (f) trip signal.

bank is energized at 0.05 s, as shown in Fig. 6.19 (c). These oscillations are captured by the

sudden rise in the kurtosis value for 30 ms in Fig. 6.19 (d). Despite the output probability for

phase B being the highest during the switching event (Fig. 6.19 (e)), the trip signal is not issued
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as the kurtosis is above the threshold (Fig. 6.19 (d)). Thus, the proposed framework correctly

detects switching events as non- HIF scenarios.

Figure 6.19: T-CNN performance under capacitor switching condition: (a) three-phase input
voltages, (b) three-phase input currents, (c) capacitor current, (d) kurtosis, (e) output probabil-
ities, and (f) trip signal.
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Nonlinear Load

The DC motor fed by a six-pulse thyristor rectifier is utilized as a non-linear load. Figures 6.20

(a) and (b) illustrate the voltage and current signal observed by relay at substation while Fig

6.20 (c) depicts phase A current of the non-linear load. The high kurtosis value after 0.05 s, Fig.

6.20 (d), prevents the trip signal from occurring even though the probability of the non-HIF is

lower than the probability of HIFs on the three phases, Fig. 6.20 (e). Hence, the proposed

T-CNN successfully discriminates disturbance caused by non-linear load from HIFs.

Inrush Currents

This case study demonstrates the robustness of the proposed T-CNN in the presence of inrush

currents. Figures 6.21 (a) and (b) represent the voltage and current signals measured by the

relay at the substation. As shown in Fig. 6.21 (c), the inrush current at phase A is produced

by the transformer being energized at t = 0.05s. The kurtosis value is lower than the threshold

(Fig. 6.21), and the output probability for the non-HIF class is maximum throughout the in-

rush currents. Consequently, the proposed HIF detection method prevents any false tripping

under inrush current (Fig. 6.21).

6.3.4 Comparison with Other Approaches

The proposed T-CNN framework is compared to the four other state-of-the-art ML techniques

for HIF detection on the same study system: FFNN with DWT-Standard Deviation (STD)

[62], FFNN with DWT-Energy [71], CNN, and transformer network. In FFNN with DWT-

STD [62], the db9 mother wavelet is utilized to decompose each phase current to five detail

level coefficients and one approximate level coefficient. Three input features for FFNN are

extracted by taking the standard deviation of the fifth level detail coefficients [62].

FFNN with DWT-energy [71] decomposes a three-phase current signal using db6 mother

wavelet and three levels of decomposition. Then, the input features for FFNN are calculated as
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Figure 6.20: T-CNN performance under non-linear load switching: (a) non- linear load current,
(b) three-phase input voltages, (c) three-phase input currents, (d) kurtosis, (e) output probabil-
ities, and (f) trip signal.

the sum of the squares of the third level detail coefficient. The remaining two approaches, CNN

and transformer network, are the variants of our solution, but instead of the T-CNN model from

Fig. 5.1, they use individual CNN and transformer network, respectively.

Similar to the proposed T-CNN, the GDCV is used to select optimal hyperparameters in
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Figure 6.21: T-CNN performance under inrush currents: (a) three-phase input currents, (b)
three-phase input voltages, (c) inrush current, (d) kurtosis, (e) output probabilities, and (f) trip
signal.

the FFNN, the CNN, and the transformer network. The tuned SVM has kernel Radial basis

function (RBF), regularization parameter (C) 1.0, and gamma scale. After hyperparameters

optimization, the FFNN has three layers with 48-36-4 neurons, wherein the input and hidden
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layer have a ReLU activation function. The output layer of FFNN has a softmax activation

function to generate probabilities resulting in four types of classes, and the network is trained

with a categorical-crossentropy loss function. The tuned hyperparameters of the CNN used for

HIF classification are: one CNN layer containing 64 kernels of width size 3, one fully con-

nected layer containing with LeakyReLU activation function, and a linear layer consisting of 4

neurons with LogSoftmax activation function. The transformer network used for comparison

has one encoder layer with 2 heads, a fully connected layer with ReLU activation function,

and a linear layer with 4 neurons generating output probabilities by the LogSoftmax activation

function.

The results of the comparison are shown in Fig. 6.22. Both T-CNN and transformer net-

work achieve 100% F1-score indicating that these models successfully learn the patterns and

are capable of detecting HIFs and identifying the fault type. Because of the generalization and

spacial-learning capability, the CNN achieved better performance than the FFNN approaches.

Overall, the proposed T-CNN achieved the same F1-scores as the transformer network, but the

T-CNN is more robust against noise as will be shown in subsection 6.3.6.

Figure 6.22: Comparison of T-CNN for HIF detection with other approaches.

6.3.5 Effect of Sampling Frequency

As the proposed T-CNN and the transformer network achieved equal performance in exper-

iments from Subsection 6.3.4, here we compare them with respect to the reduced sampling
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frequency. To examine the effect of the sampling frequency on HIF detection and classifica-

tion, the frequency in a range from 1.25 kHz to 10 kHz is considered. Figures 6.23 and 6.24

show that the transformer network and the proposed T- CNN are achieving 100% F1-score

for all the classes when the sampling frequency is above 2.5 kHz. For lower frequencies, the

proposed T-CNN has performed slightly better: for example, with 1.25 kHz sampling what is

reducing the readings in a data window from 332 to 42, the T-CNN achieves about 0.8% im-

provement over the transformer network. The multi-head attention in the proposed T-CNN and

the transformer network enables them to learn complex HIF patterns from even a few samples

in a data window enabling HIF detection even with low-frequency signals.

Figure 6.23: Effect of sampling frequency on performance of the transformer network.

Figure 6.24: Effect of sampling frequency on performance of the proposed T-CNN.
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6.3.6 Robustness of the Proposed T-CNN Against Noise

Different levels of the Signal-to-Noise Ratios (SNRs) are considered to examine robustness

to noise. To include a wide range of frequency spectrum, the Gaussian white noise is added

to the current signal [1]. The transformer network and the proposed T-CNN are trained with

data containing noise of 40 dB SNR and all experiments in this paper are carried out with

those models. Here, we examine how those models behave when the level of noise increases.

As observed from Fig. 6.25, although the transformer network is immune to SNR above 50

dB, as SNR decreases to 30 dB, the F1-score for non-HIF drops drastically to 63.3% and the

fault type detection F1-score goes as low as 30.3%. On the contrary, even under highly noisy

conditions of 30 dB SNR, the proposed T-CNN detects the HIFs and non-HIFs scenarios with

an F1-score greater than 89%. Furthermore, as illustrated in Fig. 6.26, the proposed T-CNN

accurately detects all the classes through the SNR range of 33 dB to 50 dB; hence, F1-scores

remains 100%. The stacking of the transformer network and CNN layers in the proposed T-

CNN assisted it to learn and generalize complex patterns of corrupted input comprising of

the HIF and the non-HIF data. Although the proposed T-CNN is a better solution than the

transformer network in presence of noise, the CNN adds the computational complexity to the

T-CNN model. Consequently, there is a trade-off between accuracy in the presence of noise

and computational complexity.

Figure 6.25: Effect of noise on performance of the transformer network

Fig. 6.27 illustrates the response of the proposed T-CNN in presence 33 dB SNR noise.
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The kurtosis value is below the threshold before HIF inception at 0.05 s, Fig. 6.27 (b). After

HIF inception, the phase C fault has highest output probability (Fig. 6.27 (c)), consequently,

the proposed protection system issues the trip signal, Fig. 6.27 (d).

Figure 6.26: Effect of noise on performance of the T-CNM.



6.3. T-CNN Evaluation 69

Figure 6.27: T-CNN performance under 33 dB SNR: (a) three-phase input currents, (b) kurto-
sis, (c) output probabilities, and (d) trip signal.



Chapter 7

Conclusion and Future Work

This chapter first summarizes CAE-HIFD and T-CNN and presents the main finding in the

conclusion subsection. Finally, the possible extensions for the work are discussed in the future

work section.

7.1 Conclusion

The HIFs occur in a distribution network when a conductor breaks and touches tree branches

or ground surfaces. The arcing ignition caused by HIFs can result in fires (including wildfires),

injuries, and even fatalities. The conventional relays cannot reliably detect the HIFs because

of the low current magnitude. Recently, various machine learning-based methods have been

proposed to detect and classify HIFs. However, these methods utilize supervised learning;

thus, they are prone to misclassification of HIF or non-HIF scenarios that are not present in the

training data. Furthermore, most of the reviewed approaches are sensitive to noise and non-

fault disturbances, such as capacitor or load switching. Classification of the HIFs is another

challenging task that a majority of ML-based approaches did not consider.

Consequently, this thesis proposes the CAE-HIFD, a novel deep learning-based approach

for HIF detection capable of reliably discriminating HIFs from non-HIF signals including di-

verse disturbances. The convolutional autoencoder in CAE-HIFD applies unsupervised learn-

70
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ing to train from the fault data only, which eliminates the need of considering all possible

non-HIF scenarios for the training process. Typically, the autoencoder is trained by using nor-

mal data, and during the training, it optimizes the weights according to the MSE between the

input and output and determines a threshold, which is utilized to separates the normal data and

the anomalies in the testing set. However, in the proposed CAE-HIFD, the commonly used

MSE is replaced by cross-correlation in order to discriminate HIFs from steady-state non-HIF

scenarios. The non-fault disturbances differ from the HIFs in terms of the probability distri-

bution of differentiated input signals. Therefore, to distinguish the transient events from HIFs,

the CAE-HIFD employs kurtosis analysis.

To achieve the HIF classification, this thesis proposes the T-CNN, a novel supervised

learning-based framework that utilizes the transformer network and the CNN to reliably de-

tect and classify the HIF scenarios. The transformer network, state-of-the-art deep learning

architecture, learns complex patterns in the time-series data, and the CNN further improves

generalizability and enhances robustness against noise. Furthermore, as in CAE-HIFD, kurto-

sis analysis is utilized to provide security against false detection of non-fault disturbances as

HIFs.

The results show that CAE-HIFD achieves 100% performance in terms of all five metrics

of protection system performance, namely accuracy, security, dependability, safety, and sen-

sitivity. The proposed CAE-HIFD outperforms supervised learning approaches, such as the

SVM with DWT and the ANN with DWT, as well as the unsupervised GRU-based autoen-

coder. The CAE-HIFD performance is demonstrated on case studies including steady-state

operation, close-in and remote HIFs, capacitor switching, non-linear load, transformer ener-

gization, intermittent faults, and frequency deviations. Moreover, the case studies conducted

with the proposed CAE-HIFD establish the importance of the kurtosis analysis in providing

security against false identification of non-fault disturbances. The studies on the effect of dif-

ferent noise levels demonstrate that the proposed CAE-HIFD is immune against noise even for

SNR levels as high as 40 dB and provides acceptable performance for higher noise levels.
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The performance evaluation studies demonstrate that the proposed T-CNN exhibits a 100%

success rate in terms of classification metric, the F1-score. Case studies including close-in HIF,

capacitor switching, and nonlinear load are conducted to show the performance of the proposed

T-CNN. The proposed T-CNN outperforms other approaches for the HIF classification, such

as the FFNN with DWT energy, the FFNN with DWT standard deviation, the CNN, and the

transformer network. The robustness of the proposed T-CNN against noise and the sampling

frequency is demonstrated by conducting studies with different levels of noise and sampling

frequency, respectively. The results show that the proposed T-CNN is immune against an SNR

of 33 dB and exhibits an acceptable success rate with 30 dB SNR. In addition, a case study on

the effect of sampling frequency illustrated that the proposed T-CNN achieves 99.7% accuracy

at a low sampling frequency of 1.25 kHz, which is equal to 42 samples available in a window

instead of 332 samples with 10 kHZ frequency.

7.2 Future Work

The proposed CAE-HIFD accurately detected the HIFs and illustrated the advantage of un-

supervised learning in successfully identifying the non-HIF scenarios without requiring the

diverse non-HIF cases during the training process. Furthermore, the transformer network suc-

cessfully detected and classified HIF scenarios, which confirmed that the deep learning models

can be leveraged to achieve the challenging tasks of fault type detection. This work has opened

the doors for further investigation. Consequently, future work will include the following:

• Evaluating the proposed models on different distribution networks: This paper utilized

data obtained from comprehensive studies conducted on the IEEE 13-node test feeder

that simulated a distribution network operating at 4.16 kV. Different types of power dis-

tribution networks around the world can be simulated by designing custom test feeders.

Therefore, a new dataset of HIFs and non-HIFs scenarios can be generated by chang-

ing the type of test feeder. Consequently, the next step will be training and testing the
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proposed approaches on different test feeders.

• Generalizing the models on multiple test feeders: Developing the model in such a way

that it can learn on one distribution network and be applied to a different network will

save efforts and cost to develop multiple models. The data comprising diverse non-HIF

scenarios can be generated by using multiple test feeders. In the future, it would be a

good idea to test our proposed frameworks on the large number of non-HIF scenarios.

• Deploying the proposed models: The CAE-HIFD and the transformer network-based

HIF classification frameworks will be deployed on an embedded system to enhance the

usability of the proposed approaches. In the real world power distribution network, there

could be diverse HIF and non-HIF scenarios which adds risk of using simulated data

for ML training and evaluation. Furthermore, the simulated data may cause overfitting

of ML models used in the proposed frameworks. Consequently, evaluating the trained

model on a real system as opposed to simulated will lead to new insights that can assist

us to further improve the proposed framework.

• Reducing the model size: The trainable parameters in the proposed CAE are approx-

imately 200,000, which may cause memory issues when deployed over the embedded

systems with storage and computation limitations. Therefore, reducing the number of

trainable parameters in the proposed models is the next step.

• Locating the HIF: It is imperative to find the node location to ensure the timely removal

of the detected HIFs. Thus, the next step will be developing an ML-based framework

that can reliably detect the HIF and its locations.

• Applying the proposed models on other types of faults: Apart from the HIFs, other types

of faults, such as low-impedance faults and transmission line faults, should be timely

detected to maintain the power system integrity. It would be interesting to utilize the

CAE and the transformer network to detect the diverse faults occurring in the electrical
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power system.

The proposed deep learning-based CAE-HID and T-CNN performed well for detecting

and classifying the HIFs in a distribution network without the use of resource-intensive signal

processing techniques. However, there is still room for improvement, as discussed in this

section.
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Appendix A

Load Data

The utilized study system, the IEEE 13 node test feeder, is carrying significant levels of imbal-

ance in a steady state. This system is chosen because it contains (i) three phases, two phases

and single-phase overhead lines and underground cables and (ii) is heavily loaded and unbal-

anced. Furthermore, the load data in Table A.1 shows the unbalanced nature of the utilized test

system.

Table A.1: IEEE 13 node test feeder Load Information.
Node Load

Model
Phase 1
(kW)

Phase 1
(kVar)

Phase 2
(kW)

Phase 2
(kVar)

Phase 3
(kW)

Phase 3
(kVar)

634 Y-PQ 160 110 120 90 120 90
645 Y-PQ 0 0 170 125 0 0
646 D-Z 0 0 230 132 0 0
652 Y-Z 128 86 0 0 0 0
671 D-PQ 385 220 385 220 385 220
675 Y-PQ 485 190 68 60 290 212
692 D-I 0 0 0 0 170 151
611 Y-I 0 0 0 0 170 80

Total 1158 606 973 627 1135 735
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Table A.2: IEEE 13 node test feeder Line Length and phasing.

Node A Node B Length (ft) Phasing
632 645 500 C, B, N
632 633 500 C, A, B, N
633 634 0 Transformer
645 646 300 C, B, N
650 632 2000 B, A, C, N
684 652 800 A, N
632 671 2000 B, A, C, N
671 684 300 A, C, N
671 680 1000 B, A, C, N
671 692 0 Switch
684 611 300 C, N
692 675 500 A, B, C, N
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