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Abstract

The smart manufacturing evolution enables financial and operational improvements across

the manufacturing industry. However, smart manufacturing encompasses complex, intercon-

nected systems which can fail at any time. To address this challenge, a novel, two-part anomaly

detection system for robotic processes, with an application focus on robotic surface finishing,

is presented. The first part proposes an unsupervised Attention-based Convolutional Long

Short-Term Memory Autoencoder with Dynamic Thresholding (ACLAE-DT) framework for

anomaly detection and diagnosis in multivariate time series of robotic surface finishing com-

ponents. The second part proposes a deep residual Convolutional Neural Network-based triplet

model for anomaly detection in the produced robotic surface finishes, where defective train-

ing samples are synthesized exclusively from non-defective samples via random erasing data

augmentation. Evaluation results demonstrate the performance strength of ACLAE-DT over

state-of-the-art time series methods and the performance strength of the proposed triplet model

in detecting anomalies for known and novel surfaces.

Keywords: Smart Manufacturing, Industrial Internet of Things, Anomaly Detection, Ar-

tificial Intelligence, Machine Learning, Deep Learning, Unsupervised Learning, Time Series,

Computer Vision.
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Summary for Lay Audience

Manufacturing is a critical part of any industry and is considered the essence of the sec-

ondary sector of the economy. To further increase revenue and reduce operational risks in

manufacturing, smart manufacturing was born. Smart manufacturing aims to add intelligence

and autonomy to manufacturing by utilizing collaborative robotics, interconnected sensors,

and a range of advanced technologies in an effort to optimize the entire manufacturing pro-

cess. However, the complex network of systems utilized in smart manufacturing increase the

possibility of system failures, which can cause disruptive difficulties for the manufacturer. As

a result, detecting anomalies, which are irregular observations that differ from the norm of the

data, accurately and rapidly across manufacturing processes is vital to enabling the operators

in solving the underlying issues.

In this work, a novel, two-part anomaly detection system for robotic processes, with an

application focus on robotic surface finishing, is presented. The entire system leverages Deep

Learning (DL), which is a collection of theories and methods that enable computers to learn

from data and make predictions without being explicitly programmed. More specifically, DL

allows complex features to be learned from the data autonomously without the need for manual

feature development, thus creating an end-to-end learning structure with minimal human inter-

ference. The first part of the presented system proposes a DL-based framework for anomaly

detection and diagnosis in multivariate time series of robotic surface finishing components.

Moreover, the second part proposes a DL-based computer vision framework for anomaly de-

tection in the produced robotic surface finishes. The entire system eliminates the use of any

real-life anomalous samples during training, as there is often an abundance of non-anomalous

data and a relatively small or no amount of anomalous data in well-optimized processes. Eval-

uation results, conducted on real-life manufacturing data sets, demonstrate the performance

strengths of the proposed system over existing methods in detecting anomalies in robotic time

series processes and in industrial surface images.
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Chapter 1

Introduction

1.1 Background

Manufacturing is an essential and critical part of any industry, as it operates to produce finished,

usable products from extracted raw materials and commodities. Manufacturing is considered

the essence of the secondary sector of the economy, where manufactured goods are crucial

for trade and the service industry, and each manufacturing job creates three other jobs in the

wider economy through ”the multiplier effect” [1]. According to Statistics Canada, manufac-

turing was ranked as the second most contributing sector to Canada’s Gross Domestic Product

(GDP) in 2020, with sales exceeding USD $510 billion for the year [2]. The manufacturing

industry categories include the apparel, chemical, electronic equipment, food, fabricated metal,

furniture, petroleum refining, transportation equipment industries, alongside many others.

Due to the essence of manufacturing worldwide, methods and techniques of optimizing the

entire manufacturing process are required to further increase revenue and reduce operational

risks. As a result, smart manufacturing was born, which aims to add intelligence and autonomy

across the entire manufacturing process. More specifically, smart manufacturing aims to utilize

1



2 Chapter 1. Introduction

advanced collaborative robotics, interconnected sensors, big data analytics, real-time process-

ing, embedded systems, computer vision technologies, unmanned trucks, Unmanned Aerial

Vehicles (UAVs), Augmented Reality (AR), Virtual Reality (VR), Artificial Intelligence (AI),

and various other advanced technologies for smart autonomous operations and management of

supply chains. Figure 1.1 visualizes an example of a smart manufacturing setting in today’s

world. The global smart manufacturing market size is currently valued at USD $249.46 billion

in 2021, and is expected to reach USD $576.21 billion in 2028, a Compound Annual Growth

Rate (CAGR) of 12.7% [3]. These values demonstrate a demand and need for efficient smart

manufacturing processes.

Figure 1.1: A Smart Manufacturing Setting Example

However, due to the complex network of systems in smart manufacturing, potential system

or production failures might occur, imposing detrimental operational and financial difficulties

for the manufacturer [4]. It is estimated that unplanned breakdowns anywhere in the produc-

tion line costs industrial manufacturers USD $50 billion annually [5]. As a result, detecting

anomalies accurately and rapidly across the manufacturing processes is vital to enabling the
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operators to solve the underlying issues. Anomalies within a sequence of data are broadly de-

fined as unusual observations that signify irregular behavior. Furthermore, anomalies have a

very low probability of occurring, meaning that manual detection processes are a meticulous

assignment that often requires more manpower than is generally available, raising the need for

intelligent and automated anomaly detection systems.

One way of adding intelligence to the automated anomaly detection systems in smart manu-

facturing is to leverage Deep Learning (DL) architectures and algorithms, due to their superior

performance strengths in the literature in recent years. DL is a subset of Machine Learn-

ing (ML), which is a data-driven AI technique that enables applications to comprehend and

analyze the features and structures in the data, improving their accuracy over time without

being explicitly programmed to do so. However, ML approaches often require human input

for feature extraction, where they start to fail in dealing with the dimensionality and variety of

the data as data volume and velocity increases [6]. DL solves the aforementioned challenge,

where it transforms data into abstract representations, which allows hierarchical discrimina-

tive features to be learned and eliminates any manual feature development by domain experts.

Moreover, DL integrates feature learning and model construction into a single model and trains

the model’s parameters jointly, creating an end-to-end learning structure with minimal human

interference. The aforementioned features make DL one of the main drivers to the exponen-

tial growth of smart manufacturing, as it reduces manufacturing downtime and operating costs

while gaining more value and better visibility from the operations [6]. Figure 1.2 compares

DL’s performance against traditional algorithms as the amount of data increases.

Various DL architectures exist in the literature, such as Convolutional Neural Networks

(CNNs), Long Short-Term Memory (LSTM) neural networks, Convolutional LSTM (ConvL-

STM) [8] neural networks and autoencoders. CNNs are most commonly applied to the analysis

of visual imagery, as it reduces the number of model parameters very efficiently without losing

out on the quality of models. LSTMs, a special kind of Recurrent Neural Networks (RNNs),
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Figure 1.2: Comparison of DL with Traditional Algorithms in Smart Manurfacturing [7]

accurately models temporal behavior by employing a feedback loop for learning and using an

extra parameter metric for connections between time steps. Leveraging the complementary

strengths of CNNs and LSTMs, ConvLSTM neural networks emerged to accurately model the

spatio-temporal information by having convolutional structures in both the input-to-state and

state-to-state transitions. Finally, autoencoders impose a bottleneck in the network, forcing a

compressed knowledge representation of the original input.

1.2 Thesis Goal and Objectives

In this thesis, the application focus will be on robotic surface finishing. Robotic surface fin-

ishing is one of the most important applications in smart manufacturing, as all manufactured

products undergo at least a single surface finishing session during their production before they

can be used. The goal of robotic surface finishing is to manufacture products without any

defects and with the adequate amount of surface roughness, in order to ensure smooth and
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productive operations. The goal in this thesis is to develop a novel, intelligent, and auto-

mated anomaly detection system to detect faults in robotic surface finishing machines and in

the produced robotic surface finishes, while ensuring a generalization of the system to allow

its extendibility into other collaborative robotic processes in smart manufacturing. Moreover,

the system should operate without the use of any real-life defective samples during training,

as there is often an abundance of non-anomalous data and a relatively small or no amount of

anomalous data in well-optimized processes.

The work in this thesis aims to achieve three objectives:

1. Investigate the domain of anomaly detection in smart manufacturing and in robotic fin-

ishing systems.

2. Monitor and analyze robotic surface finishing machine components via sensor readings

to mitigate potential surface finish anomalies.

3. Analyze the surface quality of surface finished products in an effort to detect surface

defects.

1.3 Thesis Outline

This thesis is organized as follows.

Chapter 2 aims to achieve the first objective outlined in 1.2, by providing an overview of the

components, benefits, challenges, methods, and open problems of anomaly detection in smart

manufacturing and in robotic finishing systems.

Chapter 3 aims to achieve the second objective outlined in 1.2, by presenting a novel, unsu-

pervised Attention-based ConvLSTM [8] Autoencoder with Dynamic Thresholding (ACLAE-
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DT) framework for anomaly detection and diagnosis in smart manufacturing multivariate time

series. Furthermore, the chapter aims to achieve part of the first objective outlined in 1.2 by

investigating the various anomaly detection techniques for multivariate time series in the liter-

ature.

Chapter 4 aims to achieve the third objective outlined in 1.2, by presenting a novel frame-

work that utilizes a deep residual CNN-based triplet model trained on surface texture patches

with a distance-based anomaly detection objective, where defective training samples are syn-

thesized exclusively from non-defective samples via random erasing techniques. Furthermore,

the chapter aims to achieve part of the first objective outlined in 1.2 by investigating the various

anomaly detection techniques for surface finishes in the literature.

Finally, Chapter 5 summarizes the research outcomes and conclusions, along with provid-

ing recommendations for future research.

1.4 Thesis Contributions

The major contributions of the thesis are summarized as follows.

1.4.1 Chapter 2 Contributions

1. Outline the major challenges encountered when applying anomaly detection techniques

to smart manufacturing data.

2. Discuss the general anomaly detection methods utilized in smart manufacturing under

the time series analysis and computer vision domains.

3. Explore open problems and potential directions of anomaly detection methods in smart

manufacturing.
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1.4.2 Chapter 3 Contributions

1. Develop a novel framework that consists of pre-processing and enriching the multivariate

time series, constructing feature images, an attention-based ConvLSTM network autoen-

coder to reconstruct the feature images input, and a dynamic thresholding mechanism to

detect anomalies and identify anomalies’ root cause in multivariate time series.

2. Implement a generic, unsupervised learning framework that utilizes state-of-the-art DL

algorithms and can be applied for various different multivariate time series use cases in

smart manufacturing.

3. Design an attention-based, time-distributed ConvLSTM encoder-decoder model that is

capable of sustaining a constant performance as the rate of input time-series sequences

from the manufacturing operations increase.

4. Construct a nonparametric and dynamic thresholding mechanism for evaluating recon-

struction errors that addresses non-stationarity, noise and diversity issues in the data.

5. Evaluate the robust framework on a real-life public manufacturing data set, where re-

sults demonstrate its performance strengths over state-of-the-art methods under various

experimental settings.

1.4.3 Chapter 4 Contributions

1. Artificially synthesize defective images exclusively from non-defective samples using

lightweight random erasing data augmentation that do not require any extra memory

consumption or parameter learning.

2. Implement a deep, residual-based CNN architecture with very small convolution kernels,

allowing the network to learn more interesting features while having a small number of

trainable parameters.
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3. Maximize the margin of separation between the defective and non-defective images dur-

ing evaluation by utilizing a hard-margin Support Vector Machine (SVM) against both

the mean and maximum feature space distance values collected.

4. Evaluate the framework on a real-world data set with a focus on industrial surfaces,

where results demonstrate its performance strength in detecting different types of anoma-

lies for known surfaces that are part of the training data and unseen novel surfaces.

5. Analyze the individual defect types to gain a deeper insight into the anomalies’ percep-

tibility when using the proposed framework.
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Chapter 2

Literature Review: Anomaly Detection in

Smart Manufacturing with an Application

Focus on Robotic Finishing Systems

2.1 Introduction

Internet of Things (IoT) has boomed in recent years, due to the massive increase in the number

of physical objects embedded with sensors, which allowed the creation of larger and more

interconnected ”smart” networks [1]. IoT is defined as a computing paradigm that allows

interrelated devices to transfer data over a network and communicate with each other without

requiring human-to-human or human-to-computer interaction [2]. By the end of 2020, there

was 6.6 billion active and connected IoT devices worldwide [3], and it is estimated that the

potential economical impact of IoT applications will be up to USD $11.1 trillion per year by

2025 [4].

IoT is used extensively in a range of applications, such as healthcare, agriculture, trans-

11
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portation, and retail. In particular, the industrial segment was ranked as the top IoT application

area in 2020 with a global share of 22% [5], where it is often referred to as Industrial IoT (IIoT).

IIoT entails interconnected sensors and devices that are networked together within industrial

applications, which includes manufacturing. The connected network enables the collection,

exchange, and analysis of data, facilitating improvements in industrial efficiency and overall

productivity, which in turn provides cost reduction, shorter time-to-market, mass customiza-

tion, sustainable production, and improved safety [6]. Accenture estimates that IIoT could add

up to USD $14.2 trillion to the global economy by 2030 [7].

As IIoT systems are becoming increasingly complex and produce diverse data at an ever-

increasing rate, the incorporation of computer intelligence is needed to capture the value that

IIoT applications generate, resulting in the emergence of smart manufacturing. Smart manu-

facturing utilizes intelligent computer-controlled and internet-connected machinery to harness

sensor data and automate operations to enhance the manufacturing supply chain and perfor-

mance. In essence, smart manufacturing integrates IIoT with predictive analytics, big data, and

Artificial Intelligence (AI), as visualized in Figure 2.1, enabling a more intelligent insight into

manufacturing processes.

Statistics show that 82% of the companies that utilize smart manufacturing technologies

have experienced an increase in their manufacturing efficiency and 45% have experienced an

increase in customer satisfaction [8]. However, due to the complex nature of the automated,

interconnected systems in smart manufacturing; potential production failures might occur. This

raises the need to detect anomalies efficiently across the entire manufacturing process in order

for the operators to solve the underlying issues and achieve the required product quality. In

this chapter, the background, benefits, challenges, methods, and open problems of anomaly

detection in smart manufacturing, with an application focus on robotic finishing systems, are

discussed.



2.2. Background 13

AIIIoT

Big Data

Predictive Analytics

Smart Manufacturing

Figure 2.1: Venn Diagram of Smart Manufacturing

2.2 Background

In this section, robotic finishing systems and anomaly detection are introduced and discussed.

2.2.1 Robotic Finishing Systems

All manufactured products undergo at least a single finishing session during their production

before they can be used. A finishing session aims to alter the surface of a manufactured part

in order to achieve a particular characteristic [9]. Traditionally, finishing sessions have been

conducted manually by human experts, particularly in small and medium volume productions

where the finishing tasks are non-repetitive in nature. However, manual finishing can be labor-

intensive and impose health and safety risks to the human workers. Manual finishing can add

significant costs to the overall manufacturing process, as well as reducing the product manufac-



14 Chapter 2. Literature Review

turing rate, especially when all other stages of the manufacturing process are automated [10].

As a result, automated mechanisms, and in particular, robotic-based processes, have emerged

for finishing tasks instead [10].

Robotic finishing systems usually indicate either equipping a standard robotic arm with

material removal devices, such as abrasive stones and grinding tools, or using the standard

robotic arm to present the product to fixed finishing tools. The systems can be used for light-

duty tasks such as buffing, lapping, or polishing, and for heavier operations such as weld bead

finishing or burr removal. Furthermore, the introduction of Computer Numeric Control (CNC)

machines allow more complex parts to be processed, as it provides the ability for program

computer devices to control machine tools, rapidly advancing productivity by automating the

highly technical and labor-intensive processes. Moreover, CNC machines allow the operator to

call a program from memory, change parameters, and resume production in a matter of seconds

or minutes.

Robotic finishing systems include [11, 12]:

1. Grinding Robots: Robots that use an abrasive wheel as the cutting tool for grinding.

Each abrasive part on the wheel’s surface cuts a small chip off the manufactured product

workpiece via shear deformation.

2. Buffing Robots: Robots that enhance metal surfaces by removing its dull, smudged, or

scratched outlook and smoothing it to give a new, refined, shiny or appealing look.

3. Polishing Robots: Similar to buffing robots, as both procedures include changing the

workpiece surface to become more appealing, however, polishing involves the use of

abrasive products to even out imperfections.

4. Sanding Robots: Robots that utilize a moving abrasive surface or sandpaper to smooth

and remove workpiece surfaces to prepare it for painting or repairment.
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5. Cutting Robots: Robots that cut or carve the workpiece into a particular shape and size.

6. Deburring Robots: Robots that remove small imperfections known as burrs from grinded,

drilled, stamped, or machined sharp edges, and from corners on machined parts, molded

components, forgings, castings, and welded assemblies.

7. Deflashing Robots: Robots that remove dross, flash, or parting lines on castings, forg-

ings, molded components and welded assemblies via tumbling, breaking, grinding, or

cutting. Could be considered as a subset of deburring robots in some aspects.

8. Routing Robots: Robots that rout an area in hard material via a rotating blade.

9. Drilling Robots: Robots that cut into a surface vertically by digging holes using up and

down motions.

10. Milling Robots: Robots that cut into a surface vertically and horizontally with the side of

the bit, digging holes using up, down, left, and right motions. Similar to drilling robots

but with a wider range of use and bulkier machinery.

Utilizing these various robotic finishing systems enables efficient material removal, reduced

waste production, reduced tool wear, longer tool life, increased health and wellbeing, improved

energy use, and reduced harmful emissions [13].

Moreover, smart manufacturing provides the required visibility into shop floor and field op-

erations to enable product quality control and anomaly detection, in a process called condition

monitoring. Condition monitoring can be conducted by two methods: by inspecting products

as it moves through the production cycle, or by monitoring the condition of the machinery and

tools which manufacture the products [14]. The former method provides more accurate results

by uncovering minor defects, however, it can only be applicable to discrete manufacturing

and such inspections are performed manually, making it a costly, laborious and time-sensitive
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operation. The latter, on the other hand, helps to detect bottlenecks in the manufacturing op-

eration by identifying badly tuned or underperforming machines when defected products are

manufactured, making it a more suitable method of use in majority of the cases.

However, even with these advantages and advances in smart manufacturing and in auto-

mated robotic finishing systems, it is still not guaranteed that a product will be manufactured

free of defects, raising the need for efficient anomaly detection methods.

2.2.2 Anomaly Detection

Anomaly detection, also called novelty detection, outlier detection, or event detection, is the

process of identifying unusual or novel observations or sequences within the data captured.

These anomalous sequences are often referred to as anomalies, outliers, discordant observa-

tions, exceptions, faults, defects, aberrations, noise, errors, damage, surprise, novelty, pecu-

liarities or contaminants in different application domains [15]. Furthermore, there have been

various attempts to define the nature of anomalous data. Hawkins defined an anomaly as ”An

observation which deviates so significantly from other observations as to arouse suspicion that

it was generated by a different mechanism.” [16]. Alternatively, Barnett and Lewis defined

an anomaly as ”An outlier is an observation (or subset of observations) which appears to be

inconsistent with the remainder of that set of data.” [17].

Anomaly detection is an important concept in the data analysis domain and has been widely

researched in a variety of domains such as fraud detection, fault detection, and intrusion detec-

tion in diverse application domains such as health care, tax, insurance, finance, cyber security,

traffic management, energy management, automated industrial processes, and many others.

Anomalous data can indicate significant and critical incidents that can require urgent attention.

In smart manufacturing, an anomaly is considered as an unanticipated change in the status or

behavior of the IIoT system which deviates from the norm. The nature of IIoT data follows
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two important observations [18]:

1. The majority of the data captured by an IIoT system is considered non-anomalous, rep-

resenting the normal operating status of the system.

2. The normal operating behavior of the system can change at any time for many reasons.

Moreover, there are three broad categories of time series anomalies [18]:

1. Point Anomaly: A single data point that deviates significantly from other observations

before the time series returns to its previous normal state. Point anomalies could be the

result of statistical noise or faulty sensors.

2. Contextual Anomalies: Sequence of observations which deviate from the expected time

series patterns in the same context. However, if these observations were taken indi-

vidually, their values may be within the expected range of values for the time series.

Contextual anomalies could be the result of seasonal patterns.

3. Collective Anomalies: Collection of observation which deviate from the entire data set,

but the values of the individual data points are not considered anomalies contextually.

Collective anomalies could be the result of combining time series data from two sensors

that combined indicate an anomaly.

Many anomaly detection methods require substantial human effort to facilitate a smart man-

ufacturing system, including data interpretation and analysis. It is easier for an expert to man-

ually identify trends and patterns in a small subset of data representing the system, however,

as the number of interconnected devices and machines increase, the complexity of the system

and data analysis increases. This, in turn, increases the need for developing automated and in-

telligent anomaly detection approaches to enable experts to focus solely on the most important
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observations. One of the main purposes of utilizing intelligent anomaly detection approaches

is to provide a deeper insight into the operational state of these devices, improving the overall

process efficiency. In addition, as the prices of IIoT devices fall, the likelihood of replacing

older industrial equipment with new retrofitted monitoring devices increases.

Financially, it is estimated that a 1% productivity improvement across the manufacturing

industry can result in an annual savings of USD $500 million, whereas a breakdown in the

production line can cost up to USD $50 thousand per hour [19]. Furthermore, predicting

anomalies on time can decrease the number of breakdowns by up to 70%, maintenance costs

by up to 30%, and over-scheduled repairs by up to 12% [19].

2.3 Challenges

Maximizing machine availability and reducing the number of defected products is challenging.

Any abrupt machine failure would result in an undesirable loss of quality and low assembly

line uptime would result in loss of productivity [19]. Anomaly detection helps ease and reduce

these challenges, however, there are a number of factors which make anomaly detection itself

very challenging in the smart manufacturing domain. The main factors include [18]:

1. Historical Data: It is challenging to have sufficient historical data to model and define

all the correct normal and anomalous states of a system when deploying an anomaly

detection approach into a poorly known or novel system [20]. Moreover, there is often

an abundance of non-anomalous data and a relatively small or no amount of anomalous

data in well-optimized processes, making supervised learning-based approaches infeasi-

ble. In order to tackle this challenge, a number of methods exist such as manipulating

the imbalanced data sets, introducing copies of known anomalies or synthetic anomalies,

or reducing non-anomalous instances. However, all these approaches can damage the
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temporal context between the time series, as important trends may be eliminated. Un-

supervised or semi-supervised approaches tackle this lack of knowledge by training the

system using only the normal data collected about the system’s state so that when data

falls outside of the system state’s boundary it is considered as anomalous. Unsupervised

or semi-supervised approaches allow the discovery of novel anomalies or anomaly modes

in a new environment, but at a cost of having detailed information about the discovered

anomalies.

2. Data Dimensionality: Refers to the number of separate data attributes represented in

each observation [21]. Some anomaly detection approaches are unsuitable for higher

dimensional data, which incur higher computational costs than lower dimensional data.

IIoT data is produced in two main categories:

(a) Univariate Data: A single sensor producing a sequence of observations or aggre-

gated data from multiple sensors combined into a single sequence of observations

is considered as univariate data. Univariate data are often in the form of key-value

pair, where the key is the timestamp of the observation and the value is the corre-

sponding sensor’s reading. For example, univariate data could just indicate times-

tamps and the corresponding robotic finishing machine’s feedrate.

(b) Multivariate Data: Multiple sensors each producing a sequence of observations,

which can be viewed as a collection of temporally correlated univariate data that

provide a more thorough and rich view of the system, are considered as multivariate

data. Multivariate data are often in the form key-vector pair, where the key is the

timestamp of the observation and the vector is the readings associated with the dif-

ferent sensors. Furthermore, multivariate data requires to analyze the relationship

between the various univariate data at given time steps to enrich the anomaly detec-

tion algorithm. For example, multivariate data could indicate timestamps and the

corresponding readings from the output current, position, and velocity in a robotic
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finishing machine.

3. Stationarity: A stationary time series is one where the mean, variance, and autocorre-

lation does not depend on the time at which the series is observed. A system needs to

display stationarity in order to effectively utilize many smart manufacturing anomaly de-

tection approaches. Furthermore, it is important for anomaly detection approaches to

adapt to the changes in data structures for longer-term deployments, as historic anoma-

lous data points might not be anomalous anymore given the current state of the system.

Non-stationary elements include:

(a) Seasonality: Cyclic patterns that repeat regularly over time.

(b) Trends: The linear increasing or decreasing behavior of the series over time.

(c) Concept Drift: Change in the statistical properties of the data flow over time in

unforeseen ways. [22].

(d) Change Points: Local or global permanent changes in the normal state of the system

[23]. These changes are more sudden and rapid than those in concept drift, and the

system rapidly adapts to a new state. Change points can be expected when machine

or machine component upgrades occur, or an unexpected increase in usage of a

particular component.

4. Noise: Represents fluctuations and unwanted random disturbance in the data caused

by unrelated events within the sensor’s surroundings, transmission errors in the data

management system, or by slight differences in the sensitivity of the detector. Although

noisy data do not affect the overall structure of the data, it is important to understand its

nature and the reasons behind it as it may represent a major event within the system that

requires the use of complex noise reduction techniques.

5. Contextual Information: The abundance of data available enables the inclusion of con-

textual information into the anomaly detection method [24]. The inclusion of contextual
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information enriches the anomaly detection algorithm to correctly identify anomalous

observations or sequences that do not conform to the norm, but increases the complexity

of the process and introduces some challenges that must be overcome, such as:

(a) Temporal Context: It is implied that a temporal correlation between observations

exist in the generated IIoT time series data [25]. For example, there exists temporal

correlation between the output current, position, and velocity in a robotic finishing

machine.

(b) Spatial Context: It is implied that a spatial context exists when there are multiple

sensors deployed monitoring a system, such as sensor’s location and activity, time

of day, and sensor’s proximity to other devices [25]. Spatial context becomes more

challenging as it increases in size or when sensors are made mobile. For example, if

sensors on the robotic finishing system were placed at different elevations or angles,

observations that were previously normal at specific time steps may be anomalous

when observed as the robotic finishing system conducts its task.

(c) External Context: A subset of spatial context that monitors the external conditions

around the system. For example, external context could be monitoring the tem-

perature and humidity of the manufacturing facility in which the robotic finishing

system is placed in, by mounting external sensors on the system.

6. Time and Resource Constraints: The majority of IIoT devices have limited computa-

tional resources, making it challenging to process any data on these devices. Therefore

recently, models are being trained and processed at a centralized location, usually in

the cloud or at a datacenter, where higher computational resources are being leveraged.

However, centralized processing introduces latency due to the round-trip delays and re-

source scheduling [26]. In many cases, having a bit of latency does not raise issues,

however, in some cases, it is a requirement to process the data rapidly and be able to

generate reports as soon as the data is generated [27]. The use of Fog and Edge devices
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aim to perform the data processing closer to the location of the data, however, these de-

vices have lower power than cloud services or datacenters, highlighting the importance

of realizing the computational cost of any operation performed on the data during de-

ployment [27]. Moreover, managing and storing data coming from multiple sensors can

cause a concern due to its volume and velocity. More specifically, storing an entire data

set collected by an IIoT network in a format easily interpreted or retrieved by the anomaly

detection approach may be impractical. As a workaround, analysis and computations can

be performed before further data is collected in techniques such as:

(a) Sliding Windows: Indicates creating a specified window size and performing calcu-

lations on the data within this window, before sliding or rolling to the next window

based on the step size specified and so on, till the entire data has been covered in

at least a single window. Sliding windows help reduce the storage requirements on

devices, however, some attributes and features may not be discovered when anal-

ysis is only conducted on particular windows. Hence, anomaly detection models

would need a way of retaining past trends and patterns without having access to the

entire data history.

(b) Incremental Processing: Indicates processing the most recent observation only,

where each data point is analyzed exactly once by the anomaly detection model.

Using incremental processing requires all past trends and patterns to be retained

within the model.

7. Reporting Anomalies: There are two main ways to report anomalies [28]:

(a) Anomaly Score: Usually a value between 0 and 100 that indicates the degree of

deviation of a data point from the expected value, where a high deviation would

translate to a high anomaly score. This method is useful when anomalies are to be

analyzed further or when investigating certain types of anomalies within a particular

time period. For example, the use of anomaly score would be ideal when different
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types of anomalies exist in robotic finishing machines and these anomalies need to

be analyzed further.

(b) Labels: A binary label indicating whether a data point observation is anomalous

or non-anomalous. The assigned label is often calculated by setting a threshold

and any value that crosses the set threshold is labeled as anomalous. This method

is useful when immediate reporting is required or when having binary labels is

sufficient for the efficiency of the anomaly detection approach. For example, the

use of labels would be ideal when the finished component part is to be visually

inspected for any defects.

The discussed factors and their challenges are also summarized in Table 2.1.

Factor Challenge

Historical Data

- Challenging to have sufficient historical data to model
all the correct normal and anomalous states of a system.
- Challenging to obtain anomalous data in well-optimized
processes.

Data Dimensionality
- Challenging to deal with high dimensonal data, where
many sensors are each producing a sequence of observations.

Stationarity
- Challenging to deal with a time series where its mean,
variance, and autocorrelation are time-dependent.

Noise
- Challenging to deal with major fluctuations and unwanted
random disturbances in the data.

Contextual Information
- Challenging to deal with temporal, spatial, and external
contextual information to enrich anomaly detectors.

Time and Resource
Constraints

- Challenging to process data on IIoT devices due to their
limited computational resources.
- Challenging to store the entire data produced in a practical
format for the anomaly detectors.

Reporting Anomalies

- Challenging to calculate the correct anomaly score for each
obtained observation during deployment.
- Challenging to set the most appropriate anomaly threshold
for observations collected during deployment.

Table 2.1: Summary of Anomaly Detection Challenges in Smart Manufacturing
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2.4 Methods

Effective anomaly detection in robotic finishing systems can be split into two main domains:

time series analysis and computer vision. Firstly, to monitor and analyze robotic machine

components via sensor readings to mitigate anomalous outcomes, time series analysis-based

anomaly detection methods were developed. Secondly, to analyze the visual quality of finished

products and mitigate finishing defects, automated computer vision-based anomaly detection

methods were developed. In this section, each domain and its methods will be discussed in

detail.

2.4.1 Time Series Analysis

Time series is defined as an ordered sequence of data points at equally spaced time intervals.

Time series analysis is a statistical technique for analyzing this time series data, which enables

time series models to be built to obtain an understanding of the underlying nature of the time

series data or fit a model for forecasting or monitoring. An important application of time series

analysis and modelling is anomaly detection, where novel or unusual states within a system are

identified.

To examine the quality of the manufacturing process, components such as equipment cal-

ibration, machine conditions, and environmental conditions are monitored to ensure that their

status are within their normal range and identify when they exceed beyond the normal thresh-

olds. Ideally, if sensor readings are approaching thresholds that can lead to potential product

defects, a monitoring solution should trigger an alert and pinpoint the source of the problem in

order for the operators to be able to solve the underlying problems.

The general methods for detecting anomalies in time series data can be divided into the

following seven groups:
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1. Statistical and Probabilistic: Methods that utilize historical data to model the normal

behavior of the system, where if a new observation received by the system does not fit

the model, the observation is labelled as an anomaly [29, 30].

2. Predictive: Methods that generate a regression model based on historic system trends,

where if a new observation received by the system vary greatly from the predicted values,

the observation is labelled as an anomaly [31].

3. Reconstructive: Methods that embed data into a lower dimensional subspace and then

reconstructs them, where if a new observation received by the system vary greatly from

the expected values, the observation is labelled as an anomaly.

4. Pattern Matching: Methods that use direct modeling of the time series, where if a new

observation received by the system follows known characteristics of anomalous subse-

quences based on a database of labelled anomalies or historic patterns within normal

data, the observation is labelled as an anomaly.

5. Distance-Based: Methods that utilize distance metrics to model relationships between

observations, where if a new observation possess a large enough distance of separation

with the normal data, the observation is labelled as an anomaly [21].

6. Clustering: Methods that project the data into a multi-dimensional space to create clus-

ters, where if a new observation received by the system is further away or does not belong

to the dense clusters, the observation is labelled as an anomaly [21].

7. Ensemble: Methods that utilize different algorithms to observe data points, where a vot-

ing mechanism is employed over the results of each algorithm to produce the resulting

ensemble method output [32].

Table 2.2 discusses pros and cons of the aforementioned general methods. Furthermore,

Chapter 3.2 discusses various state-of-the-art methods in the literature that utilize time series
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analysis to detect anomalies in time series data. As the work in this thesis takes into account

many different manufacturing components and conditions, only methods that detect anomalies

in multivariate time series data were surveyed.

Method Pros Cons

Statistical and
Probabilistic

Often easier to detect outliers
as real-life data often follows
some statistical distribution.

Often challenging with high
dimensional data.

Predictive
Useful for real-time prediction
of anomalies.

Often requires large volume of
training data.

Reconstructive
Able to detect novel
anomalies.

Often requires large volume of
training data.

Pattern Matching Robust in detecting anomalies.
Often requires large volume of
training data.

Distance-Based
Works well when normal data is
highly concentrated around a
region.

Highly dependent on the distance
measures and anomaly scoring
mechanisms used.

Clustering Unsupervised method.
Can mistake data points in less
dense clusters as anomalies.

Ensemble
Often improves the anomaly
detection performance.

Increases computation time and
complexity.

Table 2.2: Pros and Cons of the General Anomaly Detection Methods

2.4.2 Computer Vision

Computer vision is a field concerned with enabling computers to gain high-level understanding

from digital images or videos, by identifying and processing images in the same way that

human vision does. This interdisciplinary field aims to simulate and automate elements of

human vision by using sensors and AI algorithms, emulating human intelligence and instincts

in a computer. Anomaly detection is one of the most important applications of computer vision,

where novel or unusual images or parts of an image within a system are identified.

Moreover, with the increasing demand for maintaining an almost perfect product quality

finish in smart manufacturing, surface finishes are being monitored by cameras installed on

various machines to ensure the surface finish roughness and appearance are within the ac-
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ceptable normal visual bounds. Ideally, if a surface finish does not meet the required product

standard and falls out of the acceptable normal bounds, then the manufacturing process will be

flagged and will request the intervention of system operators for necessary further examination.

There are four primary computer vision techniques for detecting anomalies in images:

1. Image Classification: Technique that aims to comprehend an image as a whole to classify

the entire image as normal or anomalous.

2. Object Detection: Technique that aims to comprehend an entire image to locate and

classify potential anomalous objects within an image.

3. Semantic Segmentation: Technique that aims to segment an entire image and label each

pixel to detect potential anomalous objects within an image. Treats multiple objects of

the same class as a single entity.

4. Instance Segmentation: Technique that aims to segment an entire image and label each

pixel to detect potential anomalous objects within an image. Treats multiple objects of

the same class as distinct individual objects.

Moreover, the general methods mentioned in 2.4.1 can also be classified as the general

methods for anomaly detection in the computer vision domain, but they aim to achieve one

of the aforementioned four primary computer vision techniques for anomaly detection [33].

Chapter 4.2 discusses various state-of-the-art methods in the literature that utilize computer

vision to detect anomalies in surface finishes.
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2.5 Open Problems

Although anomaly detection methods are becoming increasingly accurate and efficient, there

are still research challenges that require further exploration. The following are some of the open

problems faced by anomaly detection methods in smart manufacturing [18, 34, 35, 36, 37]:

1. Real-Time Processing: In smart manufacturing, detecting anomalies in real-time or near

real-time is of utmost importance due to the nature of the manufacturing process. De-

fective products and machine components need to be detected instantly in order for the

operators to fix the underlying issues. Otherwise, if the anomaly detector takes a long

time to process observations to flag anomalies, the system will fail, imposing financial

and operational problems.

2. Reducing Storage Requirements: It would be very costly to hold all the data generated in

smart manufacturing for processing and detecting anomalies. Techniques such as sliding

windows and incremental processing help reduce the storage and memory requirements

for the processing system, but more novel methods could be explored in the future to

allow a reduction of storage requirements while processing a larger number of observa-

tions.

3. Change in Data Structures: As data may change during longer-term deployments, an

anomaly detection method should be able to identify this data change and still be able

to efficiently detect anomalies. However, completely retraining the method with the new

data structures is costly, raising the need for online adaptive learning methods to be

developed, in order to adapt to novel behavior in the data. Offline methods could be used

prior to the the deployment of the online adaptive method for initial method training on

the historical data collected from the system.

4. Insufficient Labeled Anomaly Data: In the real-world, manufacturing processing are
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often well-optimized, meaning that there will be an abundance of non-anomalous data

but a relatively small amount of anomalous data. The lack of anomalous data could

impose a limitation on supervised learning approaches, due to the data imbalance and

that these scarce anomalous data will often not represent the whole range of potential

anomalies that could occur in the system. As a result, efficient unsupervised and semi-

supervised approaches need to be developed to ensure the anomaly detection methods

are able to detect novel anomalies during deployment.

5. Utilizing More Data Sources: Utilizing different types of data from various data sources,

such as the inclusion of contextual information or incorporating more sensors around the

manufacturing systems, can enable the anomaly detection algorithm to learn enriched

data behaviors and structures that can assist with detecting hidden anomalies. Therefore,

it is important for anomaly detection algorithms to be able to process multivariate data

successfully.

6. Developing a Generalized Anomaly Detection Method: The development of generalized

anomaly detection algorithms than can be applied in multiple different areas in smart

manufacturing or different domains enables the reusability of methods and eases their

deployments in new environments.

7. Interpretability of Detected Anomalies: Many anomaly detection methods are proficient

at detecting anomalies, however, most also fail in providing clear and concise reasons

behind the anomaly detection, particularly in rare anomalies which can lead to algorith-

mic bias against particular sensors or machines. To mitigate this risk, anomaly detection

algorithms should be able to provide straightforward cues about why certain data points

are flagged as anomalous, enabling human experts to understand the system better and

correct the bias if needed.
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2.6 Conclusion

Deploying anomaly detection algorithms in smart manufacturing reduces many financial and

operational risks, while reducing the monitoring burden on system operators. However, these

algorithms are associated with many challenges which need to be taken into account. These

challenges are dictated by the system’s specific application, objective, and environment, and

need to be addressed when designing and developing the algorithms. Computer vision meth-

ods and time series analysis methods are the two most common domain of anomaly detection

methods in smart manufacturing, where the former aims to detect anomalies in sensor data and

the latter aims to detect anomalies in the produced surface finishes. Although anomaly de-

tection methods are constantly improving with time, many open problems still exist, meaning

anomaly detection algorithms still have a significant amount of room to evolve and become

more efficient, accurate, and generalized.
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Chapter 3

ACLAE-DT: An Attention-based

ConvLSTM Autoencoder with Dynamic

Thresholding for Unsupervised Anomaly

Detection in Multivariate Time Series

3.1 Introduction

Manufacturing has advanced substantially in recent years and has become more computerized,

complex, and automated, driving the emergence of smart manufacturing [1]. Smart manufac-

turing is a technology-driven approach that integrates Artificial Intelligence (AI), predictive

analytics, big data, and Industrial Internet of Things (IIoT) to harness sensor data and automa-

tion to improve manufacturing performance. As quality control is an indispensable part of the

production process in all manufacturing industries around the globe, smart manufacturing en-

ables higher quality products to be manufactured, while reducing costs and improving safety

36
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[2].

Smart manufacturing encompasses complex systems of interconnected sensors and com-

puter components with diverse types that generate a substantial amount of multivariate time

series data. As a result, potential system or production failures might occur, deeming anomaly

detection at certain time periods as a vital task in order for the operators to solve the under-

lying issues. Anomalies within a sequence of data are broadly defined as observations that

are unusual and signify irregular behavior. These irregular and unusual events have a very low

probability of occurring, meaning that manual detection processes are a meticulous assignment

that often requires more manpower than is generally available. Broken, cracked, and other im-

perfect products may result in costly returns, imposing operational and financial difficulties

[3]. It is estimated that a 1% productivity improvement across the manufacturing industry can

result in an annual savings of USD $500 million, whereas a breakdown in the production line

can cost up to USD $50 thousand per hour [4]. Furthermore, predicting anomalies on time can

decrease the number of breakdowns by up to 70%, maintenance costs by up to 30%, and over

scheduled repairs by up to 12% [4]. As a result, Machine Learning (ML) has been utilized in

recent years to detect anomalies [5, 6, 7, 8], and in particular, Deep Learning (DL) algorithms

[9, 10, 11, 12].

Automated anomaly detection algorithms leverage ML due to the latter’s data-driven na-

ture, efficiency, and ability to perform data analysis without explicitly programming the appli-

cation [13]. Moreover, DL in particular, is able to learn higher level features from data in a hi-

erarchical fashion while continuously improving the system’s accuracy and automated decision

making even as the dimensionality and variety of the data increases [14]. The aforementioned

features make DL one of the main contributors to the fast growth of smart manufacturing, as

it allows operating costs and downtimes to be reduced while gaining more value and better

visibility from the operations [14].

A basic requirement for building a supervised learning-based automated system to detect
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anomalies on a classification objective is the accessibility of a sufficient amount of training data

for each class [15]. However, efficient supervised learning methods are often infeasible, as with

well-optimized processes, there is often an abundance of non-anomalous data and a relatively

small or no amount of anomalous data. To address this data imbalance challenge, a substantial

amount of unsupervised anomaly detection methods have been developed in recent years, as

these methods are trained on unlabeled input data with no output variables. An additional

advantage of this approach is potentially detecting anomalies in novel classes that are not part of

the training data set, providing a general solution to the surface quality manufacturing process

task [16].

Some previous approaches in the literature use defective samples for training, not solving

the anomaly detection task described in this work. Other approaches utilize classical methods,

such as probabilistic, distance-based, clustering, ensemble, and predictive approaches to detect

anomalies in an unsupervised fashion, but all fail to capture complex structures in the data with-

out the input of domain experts [16]. Unsupervised ML approaches were then proposed to cap-

ture these complex structures, however, they start failing to deal with the high dimensionality of

the data feature space and the varying data aggregation as the data volume increases, requiring

human expertise for feature extraction [14]. Various DL architectures, such as Convolutional

Neural Networks (CNNs), Long Short-Term Memory (LSTM) neural networks, Convolutional

LSTM (ConvLSTM) [17] neural networks and autoencoders have emerged in recent literature

to solve the aforementioned challenges. Furthermore, when a production failure is occurring,

it is important to localize the anomaly root cause to plan adequate countermeasures and fix the

production system. This is done by pinpointing the sensors with anomalous readings, assisting

the system operators to perform the system diagnosis and repair the system accordingly.

In this chapter, the ACLAE-DT framework is proposed, which is an unsupervised attention-

based ConvLSTM autoencoder with dynamic thresholding to detect anomalies and identify

anomalies’ root cause in a manufacturing process multivariate timeseries. ACLAE-DT is a
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DL-based framework that is able to capture both the temporal and contextual dependencies

across different time steps in the multivariate time series data, while being robust to noise. The

framework starts by normalizing the input data via Min-Max scaling to scale the values to a

fixed range. Post pre-processing, the data is then enriched using sliding windows to be able to

capture more temporal behavior via the lagged values, followed by the incorporation of contex-

tual manufacturing process data via an embedding layer to capture the contextual information.

Afterwards, ACLAE-DT constructs feature images based on the processed and enriched data,

which are matrices of inner-products between a pair of time series within the sliding window

segments. Feature images characterizes the system statuses across different time steps by cap-

turing shape similarities and inter-correlations between two time series across different time

steps, while being robust to noise. Subsequently, an attention-based ConvLSTM autoencoder

is employed to encode the constructed feature images and capture the temporal behavior, fol-

lowed by decoding the compressed knowledge representation to reconstruct the feature images

input. The structures that exist in the data are learned and consequently leveraged when forc-

ing the input through the autoencoder’s bottleneck. Attention is added to the autoencoder to

sustain a constant performance as the input time-series sequences increase, reducing model

errors [18]. Furthermore, several hyperparameters are optimized via random search in order

to enhance the model’s performance [19]. A dynamic thresholding mechanism is then utilized

against the computed reconstruction errors to detect and diagnose the anomalies, where the

threshold is dynamically updated based on statistical derivations from the reconstructed normal

data errors. The intuition is that ACLAE-DT will not be able to reconstruct the feature images

well if it never observed similar system statuses before, resulting in anomalous processes to

be flagged as it crosses the computed threshold. ACLAE-DT underwent rigorous empirical

analysis, where results demonstrated the superior performance of the proposed approach over

state-of-the-art methods.

The work presented in this chapter is able to capture both the temporal and contextual

dependencies across different time steps in the multivariate time series data in a manufacturing
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process to detect anomalies and identify the anomalies’ root cause. The main contributions of

this chapter include:

• A novel framework that consists of pre-processing and enriching the multivariate time

series, constructing feature images, an attention-based ConvLSTM network autoencoder

to reconstruct the feature images input, and a dynamic thresholding mechanism to detect

anomalies and identify anomalies’ root cause in multivariate time series.

• A generic, unsupervised learning framework that utilizes state-of-the-art DL algorithms

and can be applied for various different multivariate time series use cases in smart man-

ufacturing.

• An attention-based, time-distributed ConvLSTM encoder-decoder model that is capable

of sustaining a constant performance as the rate of input time-series sequences from the

manufacturing operations increase.

• A nonparametric and dynamic thresholding mechanism for evaluating reconstruction er-

rors that addresses non-stationarity, noise and diversity issues in the data.

• A robust framework evaluated on a real-life public manufacturing data set, where re-

sults demonstrated its performance strengths over state-of-the-art methods under various

experimental settings.

The remainder of this chapter is structured as follows. Section 3.2 presents the motivations

behind the use of DL in smart manufacturing and explores related work. Section 3.3 discusses

the technical preliminaries of the key concepts used in this chapter. Section 3.4 details the

methodology and implementation of the ACLAE-DT framework. Section 3.5 describes the

data set used, the different experimental setups, and the comparison benchmarks. Section 3.6

discusses the obtained results and performance evaluation. Finally, Section 3.7 concludes the

chapter and discusses opportunities for future work.
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3.2 Motivation and Related Work

Robotic surface finishing is one of the most important applications in smart manufacturing.

The goal of robotic surface finishing is to manufacture products without any defects and with

the adequate amount of surface roughness, in order to ensure smooth functional and finan-

cial operations. However, potential system or production failures might occur at any point in

time, demonstrating the importance of having an efficient anomaly detection algorithm in place

overseeing different parts of the system to detect and mitigate any manufacturing malfunctions.

Let us consider a robotic surface finishing system designed and calibrated to produce a

finished metal car part. Multiple sensors will be mounted on the system at different locations

in order to gather different types of readings, such as the feed rate, spindle rate, and torque. As

the robotic machine is surface finishing the car part, all the sensor readings are being processed

in order to monitor the system’s performance. In the case of an imperfect finished car part

or an anomalous system behavior, the anomaly detection algorithm will trigger an alarm and

would ideally locate the anomalous sensor readings or system behavior, in an effort to notify

the system operators and enable them to solve the underlying issues.

Many classical methods have been used to detect anomalies, such as probabilistic ap-

proaches [20], distance-based approaches [21], clustering approaches [22], and predictive ap-

proaches [23]. These approaches may be computationally incomplex, however, their perfor-

mance is sub-optimal as they fail to capture complex structures in the data without the input

of domain experts [16]. Furthermore, as the data volume increases, traditional approaches can

fail to scale up as required to maintain their anomaly detection performances [16].

Moreover, ML algorithms were proposed to resolve the limitations in classical methods

for anomaly detection. ML algorithms include K-Nearest Neighbors (K-NNs) [24], Support

Vector Machines (SVMs) [25], and neural networks [26]. These algorithms are all supervised

learning-based, meaning they rely on labeled normal and anomalous historical data for training
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[27]. However, collecting labeled anomalous data is often infeasible, as with well-optimized

processes, there is a often a high imbalance in the training data due to the abundance of non-

anomalous samples and a relatively small or no amount of anomalous samples. Furthermore,

ML approaches often require human input for feature extraction, where they start to fail in

dealing with the dimensionality and variety of the data as data volume and velocity increases

[14].

DL techniques have emerged in recent literature to solve the aforementioned challenges.

Although ML is a data-driven AI technique to model input and output relationships, DL has

distinctive advantages over ML in terms of feature learning, model construction, and model

training. DL transforms data into abstract representations, allowing hierarchical discriminative

features to be learned, which eliminates any manual feature development by domain experts.

Moreover, DL integrates model construction and feature learning into a single model and trains

the model’s parameters jointly, creating an end-to-end learning structure with minimal human

interference.

There has been an increase in available types of sensory data collected from various dis-

tinct aspects across the operational system in smart manufacturing. As a result, data modelling

and analysis are vital tasks in order to handle the large data volume increase and the real-time

data processing to detect any system anomalies; tasks which DL excels in [28]. Different DL

architectures were used in the literature to detect anomalies in smart manufacturing, such as

CNNs [29], LSTM neural networks [30], and autoencoders [31]. A CNN uses convolution in

place of general matrix multiplication in at least one of their layers, and reduces the number

of parameters very efficiently without losing out on the quality of models. This makes a CNN

the prime choice for analyzing visual imagery, however, it faces difficulty in learning the high-

dimensional features of the input time series as it operates in vector space. However, LSTMs, a

special kind of Recurrent Neural Networks (RNNs), excel in modelling temporal behavior, as

they use a feedback loop for learning and an extra parameter metric for connections between
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time-steps. Leveraging the complementary strengths of CNNs and LSTMs, ConvLSTMs [17]

emerged to accurately model the spatio-temporal information by having convolutional struc-

tures in both the input-to-state and state-to-state transitions.

3.3 Technical Preliminaries

3.3.1 Convolutional Neural Network (CNN)

A CNN is a feedforward deep neural network that is most commonly applied to analyzing

visual imagery [32], having a wide range of applications such as image and video recognition,

image classification, image segmentation, and recommender systems. A CNN uses convolution

in place of general matrix multiplication in at least one of their layers, and reduces the number

of parameters very efficiently without losing out on the quality of models. Figure 3.1 visualizes

the structure of a simple CNN.

Figure 3.1: Structure of a Simple CNN

The network keeps on learning new higher dimensionality and more complex features with

every layer. The input data layer takes an input vector with shape (H × V × D), where H is

the height, V is the width, and D is the number of channels. The input is then passed to the

convolutional layer, which convolves the input and abstracts it to a feature map based on a

set of weights called the kernel. In the convolutional layer, each neuron receives input from a
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restricted area of the previous layer called the neuron’s receptive field. The receptive field is

typically a square matrix of weights with sizes that are smaller than the input. The convolution

operation conducted by the receptive field along the input area is described as:

yi j = σ
( F∑

r=1

F∑
k=1

wrkx(r+i×S )(k+ j×S ) + b
)

(3.1)

0 ≤ i ≤
H − F

S
, 0 ≤ j ≤

V − F
S

(3.2)

where yi j is the feature map output of the node, σ is the nonlinear activation function

applied, F is the height and width size of the receptive field, r and k are the receptive field’s

width and height step respectively, w is the weight, x is the input data, S is the stride length,

and b is the bias vector.

The convolutional layer applies a filter that scans the whole image a couple of pixels at a

time, reducing the single input image to produce a feature map of size
(
( H−F+2P

S +1 ) × (V−F+2P
S +1 ) ×

K
)
, where K indicates the number of filters and P indicates the padding value. The pooling

layer scales down the information produced from the convolution layer by reducing the spatial

dimension, yet is still able to maintain the most essential information and control overfitting.

Different types of pooling include max pooling, where the maximum pixel value of the batch

is selected, min pooling, where the minimum pixel value of the batch is selected, and average

pooling, where the average value of all the pixels in the batch is selected. The fully connected

layer connects every neuron in one layer to every neuron in another layer.
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3.3.2 Long Short-Term Memory (LSTM)

An LSTM deep neural network is a special variant of RNN that excel in modelling temporal

behavior, such as time-series, language, audio, and text, due to the feedback loops used for

learning and the extra parameter metric available for connections between time-steps. An

LSTM’s main components are the memory cells and the input, forget, and output gates. These

components allow the LSTM network to have connections from previous time steps and layers,

where every output is influenced by the input as well as the historical inputs. Usually, there

are multiple LSTM layers, where each layer is comprised of many LSTM units, and each unit

comprise of input, forget, and output gates. The input gate protects the unit from irrelevant

events, the forget gate helps the unit forget previous memory contents, and the output gates

exposes the contents of the memory cell at the output of the LSTM unit. The equations for the

input, forget, and output gates, as well as the candidate cell state, the cell state, and the LSTM

cell output are described as, respectively:

it = σ
(
Whiht−1 + Wxixt + bi

)
(3.3)

ft = σ
(
Wh f ht−1 + Wx f xt + b f

)
(3.4)

ot = σ
(
Whoht−1 + Wxoxt + bo

)
(3.5)

C̃t = tanh
(
WhCht−1 + WxC xt + bC

)
(3.6)

Ct = ftCt−1 + (1 − ft)C̃t (3.7)

ht = ottanh
(
Ct

)
(3.8)

where i is the input gate, f is the forget gate, o is the output gate, C̃t is the candidate cell

state, C is the cell state, h is the hidden state and cell output, σ denotes a standard logistic

sigmoid function, W is the weight matrix, and b is the bias vector. Figure 3.2 visualizes the
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structure of an LSTM memory cell.

Figure 3.2: Structure of an LSTM Memory Cell

3.3.3 Convolutional LSTM (ConvLSTM)

ConvLSTMs [17] are a special kind of LSTMs that emerged to accurately model the spatio-

temporal information, by leveraging the strengths of a CNN and an LSTM. Similar to the

LSTM, the ConvLSTM is able to decide what information to discard or retain from the pre-

vious cell state in its present cell state. However, convolutional structures are utilized in both

the input-to-state and state-to-state transitions, which basically exchanges the internal matrix

multiplications with convolution operations. The input vector to the ConvLSTM is fed as a se-

ries of 2-D or 3-D images, as the convolution operations allows the data that flows through the

ConvLSTM cells to keep their input dimension instead of being a 1D vector with features. Fur-

thermore, the transition between the states is analogous to the movement between the frames

in an ConvLSTM. The equations that describe the ConvLSTM operations are as follows:
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it = σ
(
WCi ◦Ct−1 + Whi ∗ ht−1 + Wxi ∗ xt + bi

)
(3.9)

ft = σ
(
WC f ◦Ct−1 + Wh f ∗ ht−1 + Wx f ∗ xt + b f

)
(3.10)

ot = σ
(
WCo ◦Ct + Who ∗ ht−1 + Wxo ∗ xt + bo

)
(3.11)

C̃t = tanh
(
WhC ∗ ht−1 + WxC ∗ xt + bC

)
(3.12)

Ct = ft ◦Ct−1 + (1 − ft) ◦ C̃t (3.13)

ht = ot ◦ tanh
(
Ct

)
(3.14)

where ◦ represents the Hadamard product, ∗ represents the convolutional operator, WCi,

Whi, Wxi, WC f , Wh f , Wx f , WCo, Who, Wxo, WhC, WxC ∈ R
n×T represent the convolutional kernels

within the model and bi, b f , bo, bC are the bias parameters. Figure 3.3 visualizes the structure

of a ConvLSTM, where the red lines indicate the peephole connections found in a conventional

ConvLSTM cell but not in a conventional LSTM cell.

Figure 3.3: Structure of a ConvLSTM Memory Cell
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3.3.4 Autoencoder

An autoencoder is an unsupervised feedforward neural network that imposes a bottleneck in the

network, forcing a compressed knowledge representation of the original input. More specifi-

cally, an autoencoder learns how to efficiently compress and encode data, before learning how

to reconstruct the data back from the reduced encoded representation to an output representa-

tion that is as close to the original input as possible. An autoencoder consists of 3 main parts:

the encoder, which learns how to reduce the input dimensions and compress the input data into

an encoded compressed representation, the compressed representation itself, and the decoder,

which learns how to reconstruct the compressed representation to be as close to the original

input as possible. The network is trained to minimize the reconstruction error, L(x, x̂), which

measures the differences between the original input and the consequent reconstruction. By de-

sign, autoencoders reduce data dimensionality by learning how to ignore the noise in the data.

Figure 3.4 visualizes an autoencoder example, where the original input image is encoded to a

compressed representation via the encoder then the compressed representation is decoded via

the decoder to produce the reconstructed input.

Figure 3.4: An Autoencoder Example
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3.4 ACLAE-DT Framework

The following section details the ACLAE-DT framework’s design, methodology, and imple-

mentation. First of all, the problem statement addressed in this work is discussed, before de-

tailing each module in ACLAE-DT. The framework starts off by pre-processing and enriching

the input raw time series, before constructing feature images across the different time steps.

Afterwards, the attention-based ConvLSTM autoencoder aims to reconstruct the feature im-

ages input by minimizing the reconstruction errors. Hyperparameter optimization is conducted

to improve the model’s performance. Lastly, a dynamic thresholding mechanism is applied

against the computed reconstruction errors for anomaly detection and diagnosis. Figure 3.5

visualizes a flowchart of the ACLAE-DT framework.

Figure 3.5: ACLAE-DT Framework Flowchart
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3.4.1 Problem Statement

The historical raw multivariate time series is represented as,

X = (x1, x2, ..., xn)T ∈ Rn×T (3.15)

where xi is a single time series, n is the number of time series, T is the length of the time

series, and X is the entire time series. Assuming there are no anomalies in the training data,

ACLAE-DT aims to detect anomalies by computing an anomaly score for each time step in

xi after T , such that a score outside of the threshold boundaries is flagged as an anomaly,

indicating an anomalous time step. Moreover, given the anomaly detection results, ACLAE-

DT aims to identify the anomalies’ root cause by quantitatively and qualitatively analyzing the

time series that are most likely to be the causes of the flagged anomalous time step.

3.4.2 Pre-Process Time Series

Each input raw multivariate time series is normalized via Min-Max scaling to rescale their

values between 0 and 1. Min-Max scaling normalization can be implemented as:

x′i =
xi −min(xi)

max(xi) −min(xi)
(3.16)

where x′i is the normalized input time series value. As each time series is considered a

feature, feature scaling eliminates large scaled features to be dominating, while preserving all

relationships in the data [33]. Furthermore, it allows gradient descent to converge much faster

when training the attention-based ConvLSTM autoencoder model [33].
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3.4.3 Enrich Time Series

Utilizing Sliding Windows

Each pre-processed time series is then converted to a larger, more enriched time series of

multivariate subsequences through the use of a sliding window. Sliding window indicates the

creation of a specified window size and performing calculations on the data within this win-

dow, before sliding or rolling to the next window based on the step size specified and so on,

till the entire data has been covered in at least a single window. This means data overlaps can

occur across the different sliding windows when creating these extra sub periods and incor-

porating the lagged values, which can assist the attention-based ConvLSTM autoencoder to

extract richer features from the constructed feature images [34]. A more formal definition of

a sliding window is specified as: given a time series xi of length T and a user-defined subse-

quence length of d, all possible subsequences can be extracted by a sliding window of size d

across xi and considering each subsequence s as t − d to t, where t indicates a particular time

position.

Embedding Contextual Information

Changes in a time series may be due to contextual changes. For example, a surface finished

material in a manufacturing process could end up being scratched or bent due to the clamp pres-

sure used to hold the workpiece in the vise rather than the x, y and z axis sensor values or the

spindles. Therefore, taking contextual changes into consideration when detecting anomalies

can enhance the anomaly detection performance [35].

Contextual information are usually represented as text or categorical variables. However,

DL-based models are only able to process numerical values. One method to achieve the re-

quired numerical conversion includes the use of ordinal encoding, where each unique category
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or text value is assigned an integer value. Nonetheless, this assumes that integer values have

a natural ordered relationship between each other, which is often not the case. To resolve this

shortcoming, one-hot encoding can be applied to remove the integer encoded variable and re-

place it with a one new binary variable for each unique integer value in the variable. However,

one-hot encoding does not scale well with respect to the number of categories, as the compu-

tation cost increase significantly as the categories increase, and it does not capture similarities

between the categories.

Entity embeddings [36] resolve the aforementioned limitations by using an additional map-

ping operation that transforms and represents each category to a low-dimensional space. The

entity embedding vector or layer is a matrix of weights represented as Wembedding ∈ R
q×p, where

q indicates the number of categories and p indicates the number of dimensions in the low di-

mensional space. In this work, given a particular category v, a one-hot representation method

onehot(v) ∈ Rq×1 is used. Afterwards, an embedded representation method embedded(v) =

onehot(v) × Wembedding is used for each category. It is important to set p < q to ensure that as

the number of categories increase, the dimensional value set limits the computational cost from

increasing. As a result, the embedded representation is smaller than the one-hot representation

and is able to capture similarities between the categories. The contextual entity embeddings

are attached to each time series as extra features before constructing the feature images.

3.4.4 Construct Feature Images

In order to characterize the manufacturing system status accurately, it is critical to calculate

and pinpoint the correlations between the different pairs of time series [37]. Acting as an

extension to the work in [38], feature images are constructed in this chapter to represent the

inter-correlations between the different pairs of sensor values and contextual entity embeddings

time series in a multivariate time series. More specifically, an (n + p) × (n + p) feature image
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Mt is constructed for each sliding window segment s based upon the pairwise inner-product of

two time series within this segment. The inter-correlation between two time series in a single

segment is calculated as:

mt
i j =

∑w
δ=0 xt−δ

i xt−δ
j

s
∈ Mt (3.17)

where i and j indicate two time series features, and δ indicates every single step in the seg-

ment. A feature images matrix is produced for each experiment or multivariate time series of

length T , which consists of a feature image Mt for each segment s. In addition to representing

the inter-correlations and shape similarities between the pairs of time series, feature images

are robust to input noise, as instabilities at certain time steps have a small consequence on the

feature images. Figure 3.6 visualizes a single feature image example Mt, where the x axis

indicates features i and the y axis indicates features j.

Figure 3.6: Feature Image Visualization
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3.4.5 Attention-based ConvLSTM Autoencoder Model

Once all feature images has been constructed, they are input into the ConvLSTM autoencoder

for reconstruction. More specifically, the autoencoder first encodes the constructed feature

images and captures the temporal behavior via three alternating ConvLSTM encoding layers

and MaxPool layers, followed by decoding the compressed knowledge representation to recon-

struct the original feature images input via three alternating ConvLSTM decoding layers and

UpSample layers. All MaxPool and UpSample layers have a size of (2x2), whereas all the Con-

vLSTM layers have a kernel size of (3x3) and ’same’ padding. Moreover, all the ConvLSTM

layers have 64 filters, except for the last ConvLSTM encoder layer and the first ConvLSTM

decoder layer, which have 32 filters. To describe the different ConvLSTM layers in the model,

equations (3.9) - (3.14) are rewritten as:

it,l = σ
(
W l

Ci ◦Ct−1,l + W l
hi ∗ ht−1,l + W l

xi ∗ xt,l + bl
i
)

(3.18)

f t,l = σ
(
W l

C f ◦Ct−1,l + W l
h f ∗ ht−1,l + W l

x f ∗ xt,l + bl
f
)

(3.19)

ot,l = σ
(
W l

Co ◦Ct,l + W l
ho ∗ ht−1,l + W l

xo ∗ xt,l + bl
o
)

(3.20)

C̃t,l = tanh
(
W l

hC ∗ ht−1,l + W l
xC ∗ xt,l + bl

C
)

(3.21)

Ct,l = f t,l ◦Ct−1,l + (1 − f t,l) ◦ C̃t,l (3.22)

ht,l = ot,l ◦ tanh
(
Ct,l) (3.23)

where l represents the ConvLSTM layer. Figure 3.7 visualizes the employed ConvLSTM

autoencoder architecture.

Although ConvLSTMs have been developed to accurately model the spatio-temporal in-

formation in a sequence, its performance may deteriorate as the sequence length increases.
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Figure 3.7: The Proposed Attention-based ConvLSTM Autoencoder Model
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To overcome this issue, the Bahdanau attention [18] is added to the model, which can adap-

tively select relevant hidden states across different time steps and aggregate the representations

of the informative feature maps to form a refined output of feature maps. A constant model

performance is achieved and model errors are reduced as the input time-series sequences in-

crease. The Bahdanau attention is the first type of attention introduced for RNNs, becoming

the predominant concept in neural network literature [39]. The additive Bahdanau attention is

described as:

ct =

Tx∑
t′=1

αt,t′ht′ (3.24)

αt,t′ =
exp(ut,t′)∑Tx

k=1 exp(ut,k)
(3.25)

ut,t′ = a(st−1, ht′) (3.26)

where c is the context vector for the sequence of hidden state annotations, α denotes the

weights of each annotation, and u is the alignment model and output score of the feedforward

neural network described by function a that attempts to capture the alignment between the

attention-based ConvLSTM hidden state s of the previous time step t−1 and the t′-th annotation

from the hidden state h of the input sequence.

3.4.6 Model’s Hyperparameter Optimization

In order to enhance the performance of the model, several hyperparameters need to be tuned

and optimized [19]. Model hyperparameters are used in processes to help estimate the model

parameters, which are learned and estimated during the training process of minimizing an ob-

jective loss function. Several hyperparameter optimization methods exist, such as grid search,
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random search, and gradient-based optimization. Grid search is an exhaustive search through a

set of manually specified set of hyperparameter values, which is time-consuming and impacted

by the curse of dimensionality [40]. Gradient-based optimization utilizes the gradient descent

algorithm to compute the gradient with respect to hyperparameters, but they only support con-

tinuous hyperparameters and can only detect a local optimum for non-convex hyperparameter

optimization problems rather than a global optimum [41]. Finally, random search randomly

searches the grid space and supports all types of hyperparameters, allowing a larger and more

diverse grid space to be explored. Hence, random search is used as the optimization method in

this work as it is more computationally efficient than grid search and gradient-based optimiza-

tion [19].

Five hyperparameters are optimized in this work, as presented in Table 3.1 alongside all the

values of consideration and in which layer they lie, if applicable. The selected hyperparame-

ters are considered to be the most influential five hyperparameters on the model’s performance,

based on initial experiments. All hyperparameter value options are based off initial experiments

as well and off the most common used values in the DL domain [19]. Activation function values

considered include Rectified Linear Units (ReLU) [42], Leaky ReLU [43], Exponential Linear

Units (ELU) [44], and Scaled Exponential Linear Unit (SELU) [45]. Optimization algorithms

considered include Adam [46], RMSProp [47], AdaDelta [48], and Stochastic Gradient De-

scent (SGD) [49]. Finally, the loss functions considered include Mean Absolute Error (MAE),

Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).

Layer Hyperparameter Values
ConvLSTM Activation Function ReLU, Leaky RELU, ELU, SELU
N/A Learning Rate 1e-2, 1e-3, 1e-4, 1e-5, 1e-6
N/A Batch Size 16, 32, 64, 128, 256
N/A Optimizer Adam, RMSProp, ADADelta, SGD
N/A Loss Function MAE, MSE, RMSE

Table 3.1: Model Hyperparameters



58 Chapter 3. ACLAE-DT

3.4.7 Compute Reconstruction Errors

The model’s loss objective in this work is to minimize the reconstruction errors of the normal

feature images during training, in order to accurately reconstruct the normal feature images

and inaccurately reconstruct the anomalous feature images during the testing phase. The loss

function used is dependent on the random search hyperparameter optimization method output

for the loss function hyperparameter, with options being MAE, MSE, and RMSE. In general

terms, the model is trained to minimize the reconstruction error, L(xi, x̂i), which measures the

differences between the original input and the consequent reconstruction.

3.4.8 Dynamic Thresholding Mechanism

At this stage, an efficient anomaly thresholding mechanism is needed in order to detect anoma-

lous reconstructed feature images. Often, the anomaly threshold is learned with supervised

methods, however, as the nature of the data in the manufacturing domain is continuously chang-

ing and there is insufficient labeled data for each class, supervised methods would not be opti-

mal for use here [50]. Hence, a nonparametric and dynamic anomaly thresholding mechanism

is proposed in this work, which calculates a different threshold for each time series pair based

on statistical derivations, achieving high anomaly detection performance with low overhead.

More specifically, a single threshold is set against every single time series pair in the feature

image, based on the mean and standard deviation of that specific normal time series pair re-

construction errors. Any time series pair value that surpasses the threshold at any time step

during testing will be flagged as anomalous and will flag the entire process at that time step as

anomalous. Mathematically, the method is described as:

εi j =
(
µ(ei j) + zσ(ei j)

)T
∈ ε (3.27)
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where εi j indicates the threshold value for the i and j time series features pair across the

entire time series, ε is the (n+ p) × (n+ p) threshold matrix, ei j is the set of reconstruction errors

for the normal i and j time series features pair, µ is the mean, σ is the standard deviation, and z

is an ordered set of positive values representing the number of standard deviations. Values for z

depend on context, with a range of two to five found to produce the most accurate experimental

results in this work. The presented dynamic anomaly detection thresholding mechanism detects

outliers as well as localizes the anomaly root cause, by pinpointing the sensors or components

that are causing the detected outlier.

3.5 Experiments

The data set used in this chapter is the Computer Numerical Control (CNC) Mill Tool Wear data

set provided by the University of Michigan [51] and found on Kaggle [52]. The data set con-

sisted of a series of machining experiments run on 2” x 2” x 1.5” wax blocks in a CNC milling

machine in the System-level Manufacturing and Automation Research Testbed (SMART) at

the University of Michigan. Machining data was collected from a CNC machine for variations

of feed rate, tool condition, and clamping pressure, where each experiment produced a finished

wax part with an ”S” shape as visualized in Figure 3.8. 44 time series readings from the 4 mo-

tors in the CNC machine, the X-axis, Y-axis, Z-axis, and spindle (S-axis), were collected at a

sampling rate of 10 Hz. The data set contained a total of 25,286 time series measurements from

18 experiments conducted, where 4 of these experiments failed the visual inspection check.

In this chapter, every measurement is taken as an independent observation within a sliding

window to identify normal or anomalous behavior and to pinpoint the sensors that flagged

windows as anomalous. Data from 10 normal experiments were used for training, whereas

data from the remaining 4 normal experiments and from the 4 anomalous experiments were

used for testing.
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Figure 3.8: Data Set Test Artifact [51]

In order to evaluate ACLAE-DT’s anomaly detection performance, the attention-based

ConvLSTM autoencoder model is compared with seven baseline methods. The baseline meth-

ods comprise of an ML classification method, a classical forecasting method, three state-of-the-

art DL methods, and two variants of ACLAE-DT. The classical and ML methods are evaluated

to demonstrate the effectiveness of using a DL model, the baseline DL methods are evaluated

to demonstrate the effectiveness of a ConvLSTM autoencoder, and the two variants of ACLAE-

DT are evaluated to demonstrate the effectiveness of each component within the model. The

same number of layers, hyperparameters, and components are used for each DL method, if

applicable. The baseline methods are:

1. SVM: An ML method that classifies whether a test data point is an anomaly or not based

on the learned decision function from the training data.

2. Auto Regressive Integrated Moving Average (ARIMA): A classical prediction model that

captures the temporal dependencies in the training data to forecast the predicted values

of the testing data.

3. LSTM Autoencoder: A DL method that utilizes LSTM networks in both the encoder and

decoder.
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4. ConvLSTM-LSTM Autoencoder: A DL method that utilizes ConvLSTM networks in

the encoder and LSTM networks in the decoder.

5. CNN-LSTM Autoencoder: A DL method that utilizes CNN-LSTM networks in both the

encoder and decoder.

6. ACLAE-DT Shallow: An ACLAE-DT variant that utilizes ACLAE-DT’s model without

the last MaxPool3D and ConvLSTM encoder components and without the first UpSam-

ple3D and ConvLSTM decoder components.

7. ACLAE-DT No-Attention: An ACLAE-DT variant that utilizes ACLAE-DT’s model

without attention.

To empirically examine the models, three different experiments are conducted. The models

are tested using a window size of 10 with a step size of 2 in Experiment 1, a window size

of 30 with a step size of 5 in Experiment 2, and a window size of 60 with a step size of 10

in Experiment 3. These are common window sizes used in the literature [38]. All DL-based

models are trained for 250 epochs. Moreover, comparison metrics are employed to evaluate

the models used and compare their anomaly detection performances. In order to fully capture

the values of the true and false positives and negatives for each model, the precision, recall,

and F1 score metrics are utilized, as well as the time taken to train each model. An anoma-

lous window is defined as a poorly reconstructed feature image with a value that surpasses the

corresponding threshold. True positives in this work indicate anomalous windows correctly

classified as anomalous and true negatives indicate non-anomalous windows correctly classi-

fied as non-anomalous. All experiments are repeated five times and the average results are

computed for performance comparison.

Afterwards, ACLAE-DT’s results are analyzed to pinpoint the readings that flagged win-

dows as anomalous. It is important to localize the anomaly root cause during a production

failure in order to plan adequate countermeasures and fix the production system. All networks
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are built and implemented in Python 3.7.9, using the Tensorflow [53] and Keras [54] libraries.

All work is run on a machine which comprises of an NVIDIA GeForce GTX 1650 4GB, a

16GB DDR4 2666MHz RAM, and a 9th Generation Intel Core i7-9750H Processor.

3.6 Performance Evaluation

3.6.1 Anomaly Detection Results

The anomaly detection performance for each model under the three different experimental set-

tings are illustrated in Tables 3.2, 3.3 and 3.4, respectively, and visualized in Figure 3.9. Note

that the results for ARIMA and SVM are the same across all three experiments, as they do

not consider window sizes and step sizes in their algorithmic calculations. Table 3.2 demon-

strates the performance evaluation of all eight models in Experiment 1. It can be observed

that ARIMA detected anomalies better than SVM, indicating that the data set had a tempo-

ral dependency feature that cannot be captured by the classification method. However, all the

DL-based methods performed better than ARIMA, indicating DL’s strength in capturing more

complex structures and model a finer multivariate temporal dependency and correlation from

the data set. Furthermore, it can be observed that all variants of ACLAE-DT performed greater

than the three baseline DL models based on every single evaluation metric used, while taking

less time to train. The full ACLAE-DT model performed at least 4.8% better in every single

evaluation metric, while taking at least 22.9% less time to train than the three baseline DL

models. Moreover, the full ACLAE-DT model performed either similarly or better than the

two variant baseline models, while taking 6.7% less time to train than the shallow model but

3.1% more time than the no-attention model.

Similar observations can be drawn from Tables 3.3 and 3.4, which demonstrate the perfor-

mance evaluation of all eight models in Experiment 2 and Experiment 3, respectively. As the
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Method Precision Recall F1-Score Train
Time (s)

SVM
(Linear Kernel) 0.15 0.17 0.16 14

ARIMA
(2,1,2) 0.52 0.59 0.56 98

LSTM
Autoencoder 0.83 0.80 0.82 13,468

ConvLSTM-LSTM
Autoencoder 0.80 0.84 0.82 11,914

CNN-LSTM
Autoencoder 0.84 0.84 0.84 10,136

ACLAE-DT
Shallow 0.94 0.87 0.90 8,372

ACLAE-DT
No Attention 0.95 0.87 0.91 7,574

ACLAE-DT
Full 0.95 0.88 0.92 7,812

Table 3.2: Anomaly Detection Results Using a Window Size of 10 with a Step Size of 2

Method Precision Recall F1-Score Train
Time (s)

SVM
(Linear Kernel) 0.15 0.17 0.16 14

ARIMA
(2,1,2) 0.52 0.59 0.56 98

LSTM
Autoencoder 0.82 0.83 0.83 15,932

ConvLSTM-LSTM
Autoencoder 0.79 0.84 0.81 8,274

CNN-LSTM
Autoencoder 0.83 0.85 0.84 5,362

ACLAE-DT
Shallow 0.91 0.89 0.90 3,388

ACLAE-DT
No Attention 0.95 0.88 0.90 3,122

ACLAE-DT
Full 0.96 0.90 0.93 3,234

Table 3.3: Anomaly Detection Results Using a Window Size of 30 with a Step Size of 5



64 Chapter 3. ACLAE-DT

Method Precision Recall F1-Score Train
Time (s)

SVM
(Linear Kernel) 0.15 0.17 0.16 14

ARIMA
(2,1,2) 0.52 0.59 0.56 98

LSTM
Autoencoder 0.79 0.83 0.82 7,462

ConvLSTM-LSTM
Autoencoder 0.77 0.82 0.79 13,496

CNN-LSTM
Autoencoder 0.84 0.85 0.85 5,152

ACLAE-DT
Shallow 0.96 0.99 0.97 2,814

ACLAE-DT
No Attention 0.97 0.99 0.98 1,638

ACLAE-DT
Full 0.99 1.00 1.00 1,736

Table 3.4: Anomaly Detection Results Using a Window Size of 60 with a Step Size of 10

Figure 3.9: Method F1-Score Under Each Experimental Setting
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window size and step size increased, the training time for all ACLAE-DT variants decreased,

whilst average performance improved. This was not the case with the DL baseline models

however, as training time and performance did not follow a general trend as window sizes and

step sizes changed. In Experiment 2, the full ACLAE-DT model performed at least 5.8% better

in every single evaluation metric, while taking at least 65.8% less time to train than the three

baseline DL models. In Experiment 3, the full ACLAE-DT model performed at least 16.5%

better in every single evaluation metric, while taking at least 196.7% less time to train than the

three baseline DL models. In both experiments, the full ACLAE-DT model performed better

than the two variant baseline models, while taking less time to train than the shallow model but

more time than the no-attention model.

All the previous results demonstrate the strength of utilizing a DL-based anomaly detection

model in multivariate time series, as SVM and ARIMA failed to capture complex relationships

and detect anomalies appropriately. Moreover, the results demonstrate the effectiveness of

deploying ConvLSTM networks in both the encoder and decoder in an autoencoder compared

to deploying LSTM networks or CNNs in either the encoder or decoder, as ACLAE-DT was

capable of capturing the inter-sensor correlations and temporal patterns of multivariate time

series effectively. The results further demonstrate the effectiveness of constructing a deeper

model and adding attention to it, particularly for when the window size is 30 and above, as

performance constantly improved. The full ACLAE-DT model and all its variants performed

the best in Experiment 3, whilst taking the least amount of training time. The full ACLAE-DT

model had the best model performance out of all the compared models in the aforementioned

experimental setting, scoring a perfect recall and F1-score, and close to perfect precision score,

with a total average training time of 1,736 seconds.
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3.6.2 Anomaly Root Cause Identification Results

If the reconstruction error of an inter-correlation between two time series crossed the set thresh-

old for a particular window, then the corresponding pair of sensors were signified as contrib-

utors towards the anomalous window. The three sensor readings and univariate time series

measurements that contributed the most towards the flagged anomalous windows in Experi-

ment 3 are visualized in Figure 3.10. The x-axis indicates the sensor readings, or features, and

the y-axis indicates the feature’s anomalous window appearance percentage. It can be observed

from the figure that the readings from the X-axis motor had the greatest influence on the suc-

cess of the visual inspection check as they contributed the most towards flagging a window as

anomalous. The X1-OutputCurrent feature had the greatest influence as it passed its threshold

in 95.7% of the windows, followed by the X1-DCBusVoltage feature as it passed its thresh-

old in 88.2% of the windows, followed by the X1-ActualAcceleration feature as it passed its

threshold in 78.7% of the windows.

Figure 3.10: Anomaly Root Cause Feature Analysis
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X1-OutputCurrent was further analyzed in order to have a thorough understanding of ACLAE-

DT’s mechanism and results. Figure 3.11 visualizes three charts within a specific time series

cross-section: (a) X1-OutputCurrent original vs reconstructed normal data, (b) X1-OutputCurrent

original vs reconstructed anomalous data, and (c) X1-OutputCurrent reconstructed normal vs

anomalous data errors with the calculated dynamic threshold boundary in red. In chart (a),

it can be observed that ACLAE-DT was able to reconstruct the original normal data well for

most data points with a small margin of error. In chart (b), it can be observed that ACLAE-

DT was not able to reconstruct the original anomalous data well, particularly for the reading

peaks, as it never observed similar system statuses before. Finally, in chart (c), it can be real-

ized that the reconstructed anomalous data errors crossed the threshold frequently, whereas the

reconstructed normal data errors never crossed the threshold. It is important to note that many

of the reconstructed anomalous errors were just shy of crossing the threshold, indicating that

when the inter-correlation between X1-OutputCurrent and another time series was computed,

the results were bound to cross the set threshold if the time series contained any novel system

behavior, contributing to X1-OutputCurrent’s high anomalous correlation.

3.6.3 Execution Time and Memory Requirements

To further evaluate ACLAE-DT against the baseline methods, the execution time and memory

requirements of each method for a single window in Experiment 3 were calculated as visual-

ized in Figures 3.12 and 3.13, respectively. Ten experimental executions were conducted and

the average results were used. SVM and ARIMA were not included in the comparison due to

their poor anomaly detection performances, deeming both methods unsuitable for use in real-

life smart manufacturing processes.

It can be observed from Figure 3.12 that the LSTM autoencoder method took the shortest
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Figure 3.11: X1-OutputCurrent Time Series Measurement Analysis
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Figure 3.12: Execution Time Taken Per Window

Figure 3.13: Execution Memory Consumption Per Window
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execution time per window with around 10 ms, followed by the ACLAE-DT shallow method

with around 11.25 ms. The ACLAE-DT full method took around 14 ms, 40% more time than

the LSTM autoencoder method and 24.4% more time than the ACLAE-DT shallow method.

Moreover, it can be drawn from Figure 3.13 that the ACLAE-DT shallow method required

the least amount of memory during execution with around 0.14 MB. ACLAE-DT no-attention

and ACLAE-DT full required the most amount of memory out of all methods, with memory

consumptions of around 0.25 MB and 0.26 MB, respectively. From the drawn observations,

it is evident that the tradeoff of using the full ACLAE-DT method with its superior anomaly

detection performance, root cause detection identification, and short training time, is its greater

execution time and memory consumption. If a method’s execution time and memory consump-

tion is of a higher importance than the method’s anomaly detection performance and training

time during real-life production, then the ACLAE-DT shallow method can be utilized as it per-

formed very closely to the ACLAE-DT full method and required the second least amount of

execution time and the least amount of execution memory out of all methods.

3.7 Conclusion

In this chapter, a novel unsupervised attention-based deep ConvLSTM autoencoder with a dy-

namic thresholding mechanism framework, ACLAE-DT, was proposed to detect anomalies in

a real-life manufacturing multivariate time series data set. The framework first normalized and

enriched the raw time series with contextual information and sliding windows, before con-

structing feature images to capture system statuses across different time steps. The feature im-

ages were then input into an attention-based deep ConvLSTM autoencoder to be reconstructed,

with an aim to minimize the reconstruction errors. The computed reconstruction errors were

then subjected to a dynamic, nonparametric thresholding mechanism that utilized the mean and

standard deviation of the normal reconstruction errors to compute a specific threshold for each
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time series pair, in order to detect and diagnose the anomalies.

Results demonstrated the effectiveness of ACLAE-DT, as it outperformed a classical ap-

proach, an ML approach, and three state-of-the-art DL approaches in detecting anomalous win-

dows, while requiring less time to train than the latter approaches. Results further illustrated

how ACLAE-DT was able to effectively diagnose the anomalies and locate the contributing

features towards the anomalous windows. Moreover, the shallow variation of ACLAE-DT con-

sumed the least amount of execution memory and the second least amount of execution time out

the three state-of-the-art DL methods. All these results indicated the practicality and suitability

of adopting ACLAE-DT in real life smart manufacturing processes. As a future extension to

this work, ACLAE-DT can be applied to another public data set to benchmark its performance

with the conventional anomaly detection algorithms, and a reduction in the execution time and

memory consumption of the full ACLAE-DT model while maintaining the superior anomaly

detection and anomaly root cause identification performances can be explored.
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[31] Barış Bayram, Taha Berkay Duman, and Gökhan Ince. Real time detection of acous-

tic anomalies in industrial processes using sequential autoencoders. Expert Systems,

38(1):e12564, 2021.



76 REFERENCES

[32] Maria V Valueva, NN Nagornov, Pave A Lyakhov, Georgiy V Valuev, and Nikolay I

Chervyakov. Application of the residue number system to reduce hardware costs of the

convolutional neural network implementation. Mathematics and Computers in Simula-

tion, 177:232–243, 2020.

[33] T Jayalakshmi and A Santhakumaran. Statistical normalization and back propagation for

classification. International Journal of Computer Theory and Engineering, 3(1):1793–

8201, 2011.

[34] Yufeng Yu, Yuelong Zhu, Shijin Li, and Dingsheng Wan. Time series outlier detection

based on sliding window prediction. Mathematical problems in Engineering, 2014, 2014.

[35] Manish Gupta, Abhishek B Sharma, Haifeng Chen, and Guofei Jiang. Context-aware

time series anomaly detection for complex systems. In Workshop Notes, 2013, vol. 14.

[36] Cheng Guo and Felix Berkhahn. Entity embeddings of categorical variables. arXiv

preprint arXiv:1604.06737, 2016.

[37] David Hallac, Sagar Vare, Stephen Boyd, and Jure Leskovec. Toeplitz inverse covariance-

based clustering of multivariate time series data. In Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017,

pp. 215–223.

[38] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei

Cheng, Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V Chawla. A deep neural

network for unsupervised anomaly detection and diagnosis in multivariate time series

data. In Proceedings of the AAAI Conference on Artificial Intelligence, 2019, vol. 33, no.

1, pp. 1409–1416.

[39] Sneha Chaudhari, Varun Mithal, Gungor Polatkan, and Rohan Ramanath. An attentive

survey of attention models. arXiv preprint arXiv:1904.02874, 2019.



REFERENCES 77

[40] Marc Claesen, Jaak Simm, Dusan Popovic, Yves Moreau, and Bart De Moor. Easy

hyperparameter search using optunity. arXiv preprint arXiv:1412.1114, 2014.
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Chapter 4

Distance-Based Anomaly Detection for

Industrial Surfaces using Triplet

Networks

4.1 Introduction

Surface quality inspection is an essential part of the production process in all manufacturing

industries around the globe. Scratched, bent, and other imperfect products may result in costly

returns, resulting in financial and operational issues [1]. Quality control tasks rely largely on

human experts who are trained on identifying anomalies, to ensure defective products are fil-

tered out from the non-defective products that are ready to be used or shipped to consumers.

However, as the production rates become faster and products become more complex, it be-

comes infeasible for humans to keep up with the throughput demand while trying to realize a

near-perfect quality inspection. A 1% productivity improvement across the industry can result

in $500 million in annual savings [2]. Furthermore, predicting anomalies on time can decrease
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over scheduled repairs by up to 12%, maintenance costs by up to 30%, and the number of

breakdowns by up to 70% [2]. As a result, machine-based visual inspections have been uti-

lized in recent years to identify defective products, and in particular, Convolutional Neural

Networks (CNNs) [3, 4, 5].

A CNN is a class of deep neural networks that uses convolution in place of general ma-

trix multiplication in at least one of their layers, and reduces the number of parameters very

efficiently without losing out on the quality of models, making it a prime choice for analyzing

visual imagery. A basic requirement for training CNNs efficiently on a classification objective

is the accessibility of an adequately large amount of training data for each class. However,

with well-optimized processes, there is often an abundance of non-defective samples and a

relatively small amount of defective samples. To address this data imbalance challenge, the

training objective can be shifted from defect classification to anomaly detection, eliminating

the need for any defective samples for training [6]. An additional advantage of this approach

is potentially detecting anomalies in novel classes that are not part of the training data set,

providing a general solution to the surface quality inspection task.

Some previous approaches in the literature use defective samples for training, or involve

training the CNN features to assign a lower feature-space distance to similar parts and a higher

feature-space distance to dissimilar parts based on solving a classification task, not solving the

anomaly detection task described in this work. Other approaches involve detecting anomalies

in certain regions of an image, not capturing potential defects across the entire image.

In this chapter, efficient CNNs based on residual networks [7] are trained to explicitly learn

a similarity metric for defective and non-defective patches of surface textures through the use

of a triplet network model [8]. The defective samples used in the triplet network are artificially

augmented exclusively from non-defective samples via random erasing [9] techniques. After

training, a simple prototype pixel-wise subtraction method is performed between the evaluated

surface and the prototype measurement for that particular texture surface in the feature space
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learned by the CNN, producing an array of distance values (see Figure 4.1). A Support Vector

Machine (SVM) with a simple linear kernel is then applied against the mean and maximum

distance values collected, with the intention to maximize the separation between the defective

and non-defective evaluated samples. Anomaly detection for known classes that are part of the

training data set, as well as novel classes that are not part of the training data, are explored

for the industrial surfaces. In addition to the surfaces, the different defect types present in the

testing batch are explored individually to gain a deeper insight into the anomalies perceptibility.

Figure 4.1: Defective surface example. The three images below show the defective patch, the
prototype patch and the resulting pixel-wise anomaly score as learnt by the CNN, respectively.

The remainder of this chapter is structured as follows. Section 4.2 presents the motiva-

tions behind the use of machine learning and the related work in the field of industrial surface

anomaly detection. Section 4.3 contains background information about the data set used. Sec-

tion 4.4 details the methodology and implementation. Section 4.5 discusses the obtained results

and performance evaluation. Finally, Section 4.6 concludes the chapter and discusses opportu-

nities for future work.
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4.2 Motivation and Related Work

The following outlines some of the work being done in the field related to the use of machine

learning in anomaly detection of industrial surface textures.

Haselman, et al. [10] propose a one-class unsupervised learning on fault-free samples by

training a deep CNN to complete images whose center regions are cut out. Results demon-

strate the approach’s suitability for detecting visible anomalies, but fails to accurately detect

weakly contrasted anomalies and focuses on the center regions of an image only. Chai, et

al. [11] propose an approach that utilizes sparse representation to identify anomalies obtained

during image reconstruction. Since sparse representation is a computationally expensive ap-

proach, lower image resolutions are used, which in turn lowers the accuracy of the anomaly

detection task. Natarajan, et al. [12] propose the use of transfer learning and a majority voting

mechanism for image representations and fuse extracted features. This approach still requires

defective samples during training to achieve the anomaly detection objective. Napoletano, et

al. [13] propose a region-based method for detecting and localizing anomalies via evaluating

the degree of abnormality of each subregion of an image compared to an anomaly-free image.

The CNN features are trained to specifically assign a low distance to similar parts and a high

distance to dissimilar parts based on a pre-built dictionary of normal images, followed by a

pre-set anomaly thresholding mechanism rather than a model learnt thresholding mechanism.

The previous work of Staar, et al. [14] tackles the shortcomings of the work mentioned

above, by using Gaussian noise to synthesize defective samples from non-defective images

and utilizing a residual-based [7] triplet network [8]. The network directly learns a similarity

metric for the distance-based surface anomaly detection objective, where same-class samples

have lower feature space distances than out-of-class samples. Defective images are separated

from non-defective images during testing via varying threshold values against the maximum

distance value collected.
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The work presented in this chapter further extends Staar, et al. [14] methodology and

results, while training and testing on a real-world data set with a focus on industrial surfaces

rather than an artificially generated general texture data set.

The main contributions of this chapter include:

• Artificially synthesize defective images exclusively from non-defective samples using

lightweight random erasing data augmentation that do not require any extra memory

consumption or parameter learning.

• Implement a deep, residual-based CNN architecture with very small convolution kernels.

This allows the network to learn more interesting features while having a small number

of trainable parameters.

• Maximize the margin of separation between the defective and non-defective images dur-

ing evaluation by utilizing a hard-margin SVM against both the mean and maximum

feature space distance values collected.

• Evaluate the approach on a real-world data set with a focus on industrial surfaces, where

results demonstrate its performance strength in detecting different types of anomalies for

known surfaces that are part of the training data and unseen novel surfaces.

• Analyze the individual defect types to gain a deeper insight into the anomalies’ percep-

tibility when using the proposed approach.

4.3 Background

The data set used in this chapter is the MVTec Anomaly Detection Dataset (MVTec AD) [15].

It is a modern, comprehensive, real-world data set with over 5000 images, divided into 15

different industrial object and texture category classes. Each class consists of non-defective
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data and a range of different types of defective data, such as bent, broken, and contaminated

surfaces. Image resolutions lie between 700x700 and 1024x1024 pixels. In order to evaluate

anomaly detection for both known and novel classes, 11 classes are used in training and testing,

whereas the remaining 4 classes are only used in testing. The classes are pre-selected randomly.

Of the classes to be trained, half of their non-defective images are used for training, and the

other half are available for testing. Figure 4.2 shows a sample of defective images from the

data set and marks the defective positions in red.

Figure 4.2: Defective Samples from MVTec AD [15] with Defects Marked in Red

4.4 Methodology

The following section details the model’s design, implementation and evaluation metrics.

4.4.1 Model

The triplet network model [8] is utilized in this chapter for training . This architecture allows

an input of three different images to be fed into the same CNN, where the weights are shared.
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The first image is called the anchor (a) image, the second image is called the positive (p)

image, and the third image is called the negative (n) image. The a and p images belong to the

same class, and the n image belong to a different class. Features of each image are computed,

before calculating the Euclidean distance (d1) between the resulted features of a and p and the

Euclidean distance (d2) between the resulted features of a and n. This allows the network to

directly learn a similarity metric via deep metric learning, which is beneficial as the number

of object classes is not specified and could be boundless. The Euclidean distance is used as

initial experiments show better results when it is employed compared to the Manhattan and the

Minkowski distance metrics. Equations 4.1 and 4.2 show the Euclidean distance measurements

for d1 and d2 respectively.

d1 =

√√
n∑

i=1

(ai − pi)2 (4.1)

d2 =

√√
n∑

i=1

(ai − ni)2 (4.2)

Afterwards, the resulting d1 and d2 scores are inserted into a row vector that is then placed

into the softmax function, yielding an output vector who’s sum is equal to one. The output

vector is trained with the target vector [1,0] for each triplet of (a, p, n), ensuring the network

assigns a higher similarity score between images a and p and a lower similarity score between

images a and n. Figure 4.3 visualizes the complete training model.

4.4.2 Data Pre-Processing

Before training the network, all training images are converted to grayscale and normalized via

Min-Max scaling to rescale their values between 0 and 1. Feature scaling eliminates a large
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Figure 4.3: The Training Model

scaled feature to be dominating, as the Euclidean distance measure is sensitive to magnitudes,

while preserving all relationships in the data [16]. Furthermore, it allows gradient descent to

converge much faster.

The CNN implemented in this chapter is only required to learn similarities between patches

of 64x64 pixels. The idea is inspired by previous work of Weimer, et al. [17] where 32x32

pixels is sufficient for defect classification of images of 512x512 pixel resolution. As a general-

ization and for research purposes, 64x64 pixels is deemed as sufficient for images of 1024x1024

pixel resolution. In addition, the use of small image patches extracted from an image enables

the amount of training data to be increased. To keep the patch size of 64x64 fixed and to cap-

ture textural regularities that are expressed on different spatial scales, the input training images

are randomly resized to either 1024x1024, 512x512, 256x256 or 128x128 pixel resolutions. 16

random patches are then extracted from the 1024x1024 and 512x512 pixel resolution images,

and 8 random patches are extracted from the 256x256 and 128x128 pixel resolution images.
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The network is trained without any defective images on an anomaly detection objective, due

to the limited number of defective samples to train the network efficiently on a classification

objective and to further generalize the solution to the surface inspection task. Defective im-

ages used as the n image input into the network are instead artificially synthesized exclusively

from non-defective images using random erasing data augmentation [9]. The random erasing

technique utilized essentially erases a random part of an image of a random size, enhancing

the sensibility to local deviations. Random erasing has the advantage of being a lightweight

method, as it does not require any extra memory consumption or parameter learning. Figure

4.4 visualizes an input sample of (a, p, n) to the triplet network.

Figure 4.4: Triplet Input Sample of (a, p, n)

4.4.3 Network Architecture

The CNN proposed in this chapter is based on deep residual learning [7] and uses very small

convolution kernels, inspired by the work of the widely-known VGG16 network [18]. Residual

networks ease the training and optimization of networks, by enabling layers to learn a residual

function referenced to the input layer as opposed to learning unreferenced functions. More-

over, the skip connections between layers add the outputs from previous layers to the outputs

of stacked layers, allowing networks to become deeper. Deeper networks allow more interest-

ing hierarchical features to be learned and can produce a better generalization [19]. In addition,

the VGG16 network demonstrates how a deeper network with very small 3x3 convolution ker-
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nels produce more accurate results compared to the previous configurations on the ImageNet

Large Scale Visual Recognition Challenge 2014 (ILSCVRC2014) [20] that use larger convo-

lution kernels. Small convolution kernels significantly reduce the number of parameters in the

network, where a single 3x3 convolution kernel has a number of parameters ratio of 1:1.4 with

a 5x5 convolution kernel, and a 1:2 with a 7x7 convolution kernel.

The first 3 layers in the network presented in this work consist of 2D convolutional layers

with Rectified Linear Unit (ReLU) [21] activation functions and kernel sizes of 3x3, followed

by a 2D maxpool layer with a window size of 2x2 and strides 2x2. Afterwards, seven residual

blocks are stacked next to each other. Each block consists of two consecutive 2D convolutional

layers with ReLU activation functions and kernel sizes of 3x3 applied on the input, which

produce an output spatial resolution that is reduced by 4x4. Their output is then added to the

output of a 2D cropping layer, which applies a spatial dimension crop of size 2x2 to the height

and 2x2 to the width of the input. That is required so the output spatial dimension matches that

of the 2D convolutional layers, in order for the learned residual to be added and produce the

final residual block output. Figure 4.5 visualizes the residual block setup and parameters used

in the network, whereas Figure 4.6 visualizes the proposed CNN architecture.

Figure 4.5: The Residual Block Used in the Proposed CNN

Higher-level features are learnt with every layer and residual block. Besides the 3x3 kernel,

all convolutional layers across the network use 16 number of filters, valid padding option, and

the ReLU activation function. ReLU is utilized as it solves the vanishing gradient problem

and is very efficient to compute, as it is linear for positive values and zero for negative values
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Figure 4.6: The Proposed CNN Architecture

[19]. The entire network is built fully convolutional to allow weights to be shared between the

training and testing models, as they process different image pixel resolutions. During training,

64x64 pixels are transformed to tensors with dimensions of 1x1x16, whereas during testing,

1024x1024 pixels are transformed to tensors with dimensions of 481x481x16.

4.4.4 Network Implementation and Hyperparameters

All networks are built and implemented in Python 3.7.4, using the Tensorflow [22] and Keras

[23] libraries. All work is run on a machine which comprises of an NVIDIA GeForce GTX

1650 4GB, a 16GB DDR4 2666MHz RAM, and 9th Generation Intel Core i7-9750H Processor.

For training, the Adam optimizer is utilized with a fixed learning rate of 0.0001 and a

batch size of 256 samples. The Mean Absolute Error (MAE) loss function is utilized, as initial

experiments show much better results with it compared to the Mean Squared Error (MSE) and
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the categorical cross entropy loss functions. The network is trained for 40 epochs.

4.4.5 Evaluation Metrics

As for defect detection evaluation, a class prototype is first created by embedding a large

amount of non-defective data of that class into the CNN to obtain a set of features. Afterwards,

the testing images are embedded into the same CNN and the Euclidean distances between the

prototype and the testing images features are calculated. The resulted maximum and mean

distances are then subjected to an SVM with a linear kernel, with the intention of maximizing

the separation between the defective test images and the non-defective test images. The SVM

is pre-trained with the normal and synthesized defective images used in training. The maxi-

mum and mean Euclidean distances were selected based on recent work which addressed the

setting of working-point decision thresholds for an anomaly detection task [24]. An SVM with

a linear kernel allows the robust classification algorithm to be fast and memory efficient, as it

is a single inner product with a O(d) prediction complexity, where d is the number of input di-

mensions. The regularization parameter (C) is kept constant at 1E8, for a harder-margin SVM

that imposes a larger penalty for wrongly classified examples.

To evaluate how well the proposed approach discriminates between the defective and non-

defective images for each surface and the individual defect types, the Area Under the Curve

(AUC) of the Receiver-Operating Characteristic (ROC) is calculated. The higher the AUC,

the better the model is at predicting true positives and true negatives. True positives in this

work indicate defective images correctly classified as defective and true negatives indicate

non-defective images correctly classified as non-defective. Experiments are repeated three

times and the average AUC score is recorded. As the work presented in this chapter extends

the approach used by Staar, et al. [14], their approach is tested against the MVTec AD [15] for

a comparison of results.
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4.5 Performance Evaluation

Figures 4.7 and 4.8 show the individual and mean AUC scores for Staar, et al.’s [14] approach

and the proposed approach, respectively. Upon examining the table of results, the proposed

approach produces a better AUC score for the majority of the individual class-defect types, and

a better mean AUC score for every single class and defect type. The proposed approach scores

an average class mean AUC of 0.093 higher, and an average defect type mean AUC of 0.097

higher.

Figure 4.7: Staar, et al.’s [14] Anomaly Detection AUC Scores

Furthermore, it can be observed from the class mean scores that the proposed approach

achieves some state-of-art results for both known classes and novel classes. In total, only three

classes achieved a mean AUC score less than 0.90, four classes achieved a mean AUC score

between 0.90 and 0.95, and the remaining eight classes achieved a mean AUC score between

0.95 and 1.0. In particular, three classes achieved a perfect mean AUC score of 1.0, where

only one class was known and two were novel, further demonstrating how well the method

translates to unknown inputs.
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Figure 4.8: The Proposed Approach’s Anomaly Detection AUC Scores

Regarding defect types, it can be seen from their mean scores that the proposed approach

achieves some state-of-art results. Out of the twenty different defect types, only imprint and

scratch defect types achieved a mean AUC score less than 0.90. Contamination, crack, and

thread defect types achieved a mean AUC score between 0.90 and 0.95, and the remaining

fifteen defect types achieved a mean AUC score between 0.95 and 1.0.

Figure 4.9 shows two scatter plot examples with perfect linear SVM separation between

the defective and non-defective samples. The plot at the top shows a separation mainly via

features max distance with the prototype for the hazelnut class with imprint defects, and the

plot at the bottom shows a separation mainly via features mean distance with the prototype for

the transistor class with misplaced defects.

4.6 Conclusion

This chapter demonstrated how deep metric learning can be effectively used for surface anomaly

detection of different defect types without the use of any defective samples. It further showed
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Figure 4.9: Linear SVM Separation Between Defective and Non-Defective Samples
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how this approach translated well to novel classes that were not part of the training data set,

as two of the four novel classes achieved a perfect AUC score of discrimination between the

defective and non-defective images.

As for the methodology, a triplet network model was utilized, which included a deep

residual-based CNN with very small convolution kernels. A modern, comprehensive, real-

world data set with a focus on industrial surfaces was used for training and testing, where

training defective samples were synthesized exclusively from the non-defective samples via

random erasing. Image patches of 64x64 were utilized for training instead of using the entire

image, allowing training to be more efficient.

Results were promising, but they could still be improved for certain classes and defect

types. A potential limitation could be for object classes, where an object comprises a small

area of the entire image and most of the extracted 64x64 patches are of the background rather

than the object itself. That is backed up by the fact that pill and screw object classes were two of

the three classes that achieved a mean AUC score of less than 0.90, where they had the smallest

object to whole image ratio in the entire data set. Furthermore, it can be seen that some classes

had more defective images than others, and some defect types were present in more classes

than others, resulting in an unbalanced comparison of results between the different classes and

defect types.

Future work include exploring the addition of training data from other texture and object

data sets, as that can allow the network to learn more powerful and complex features. In ad-

dition, more testing data could be obtained to gain a deeper understanding and more accurate

defect types evaluations. The results could be further enhanced through the use of batch nor-

malization in the CNN, which reduces internal covariate shifts and can accelerate deep network

training. The use of maxpooling layers and convolutional layers with same padding could be

explored instead of the use of convolutional layers with valid padding. Moreover, the proposed

methodology could be further improved in order to diagnose the detected defects and gain
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more thorough insights into the production process behaviors. Other potential enhancements

include exploring additional loss functions and distance metrics, larger patch sizes, smarter

extraction of object patches for surface images with a small object area coverage, different data

augmentation techniques, and further tuning the network hyperparameters.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

As a way of dealing with the increased system complexities in smart manufacturing, vari-

ous automated and intelligent anomaly detection methods need to be employed to mitigate

any potential system failures. The work presented in this thesis first investigated the domain

of anomaly detection in smart manufacturing, before describing a novel, two-part DL-based

anomaly detection system for robotic processes in smart manufacturing, with an application

focus on robotic surface finishing.

The first part of the presented system proposed the ACLAE-DT framework for anomaly

detection and diagnosis in multivariate time series of robotic surface finishing components.

Results demonstrated the effectiveness of ACLAE-DT, as it outperformed a classical approach,

an ML approach, and three state-of-the-art DL approaches in detecting anomalous windows,

while requiring less time to train than the latter approaches. Results further illustrated how

ACLAE-DT was able to effectively diagnose the anomalies and locate the contributing features

towards the anomalous windows.
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Moreover, the second part of the presented system proposed a deep residual CNN-based

triplet model for anomaly detection in the produced robotic surface finishes, where defective

training samples were synthesized exclusively from non-defective samples via random erasing

data augmentation. Results demonstrated how deep metric learning can be effectively used

for surface anomaly detection of different defect types without the use of any real-life defec-

tive samples in training. Results further illustrated how this approach translated well to novel

classes that were not part of the training data set, as two of the four novel classes during evalu-

ation achieved a perfect AUC score of discrimination between the defective and non-defective

images.

5.2 Future Work

As a future extension to this work, the following could be addressed. Firstly, the proposed

anomaly detection system can be utilized to target other robotic processes in smart manufac-

turing, such as robotic assembling and robotic molding. Moreover, additional real-life manu-

facturing data sets can be utilized in order for the proposed system to learn more interesting

features and produce better anomaly detection and diagnosis results. Employing supplemental

data and data sets further enables the robustness and generalization of the proposed system

to be evaluated, as well as benchmark the system’s performance with conventional anomaly

detection algorithms and methods. Finally, the frameworks utilized in the proposed system can

be further optimized by exploring different pre-processing techniques, deep learning architec-

tures, and model hyperparameter optimization methods.
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