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Abstract

How will hosts and pathogens coevolve in response to multiple types of hosts? I study this

question from three different perspectives. First, I model a scenario in which hosts are catego-

rized as female or male. Hosts invest resources in maintaining their immune system at a cost to

their reproductive success, while pathogens face a trade-off between transmission and duration

of infection. Importantly, female hosts are also able to vertically transmit an infection to their

newborn offspring. The main result is that as the rate of vertical transmission increases, fe-

male hosts will have a greater incentive to pay the cost to invest in their immune system, while

the pathogen will evolve a lower rate of disease-induced mortality in female hosts relative to

male hosts. Second, I study a model where hosts can change their type. Hosts are classified

according to whether they engage or do not engage in prophylactic behaviours that reduce the

transmission rate of an infectious disease and may freely start or stop these behaviours. I study

the evolution of the degree to which the pathogen exploits its host’s resources. The main re-

sult is that, when hosts engage in prophylaxis, I expect pathogens to evolve a lower level of

host exploitation than would otherwise be predicted in the absence of prophylactic behaviours.

Finally, I consider the possibility of multiple pathogen strains in addition to multiple types of

hosts. I develop a general theoretical framework to link ideas from evolutionary epidemiol-

ogy to those from kin selection theory to study the evolution of coinfecting pathogen strains.

The main result is that pathogens will evolve to balance both the direct and indirect benefits

of increased transmission with the associated direct and indirect costs of decreased duration

of infection within each type of host. The more genetically related is a pathogen strain to

its coinfecting group, the more it will reduce its own disease-induced mortality rate for the

benefit of the whole group. Overall, this work shows how standard results from evolutionary

epidemiology change when considering the coevolution of hosts and pathogens in the presence

of multiple types of hosts.

Keywords: disease dynamics, epidemiology, evolution, game theory, inclusive fitness, kin

selection, mathematical model, natural selection, Price equation, sexual selection
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Summary for Lay Audience

Pathogens and their hosts evolve over time. Researchers build mathematical models to

study this evolution and make predictions about the long-term behaviour of host-pathogen sys-

tems. A great deal of work has been done to understand the forces that shape the evolution

of pathogens and the degree to which they harm their hosts. Other researchers have studied

how hosts and pathogens evolve together, as changes in one group will affect the other group.

They have shown that considering the evolution of both groups simultaneously allows us to

make new and different predictions than if we consider only the evolution of one group. An

area of interest which has received less attention is how hosts and pathogens evolve together

when the host population is subdivided into different types. Host populations often have defin-

ing characteristics, such as sex or age, that can be used to distinguish subgroups within that

population. Empirical evidence has shown that pathogens faced with these different types of

hosts can evolve to behave differently in one type of host than in the other, and that this will, in

turn, affect the evolution of the hosts themselves. This thesis addresses this area of research by

building mathematical models and drawing predictions on how we expect hosts and pathogens

to evolve when hosts are grouped into different types. I show that the evolution of hosts and

pathogens together and the existence of different types of hosts are important features that can

generate new evolutionary predictions, which can be used to help explain some of the trends

observed in real host-pathogen systems.
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Chapter 1

Introduction

1.1 Mathematical Models of Infectious Diseases

Some of the earliest models of epidemics are those of Ross [1] and Kermack and McKendrick

[2]. Both used systems of differential equations to describe the progression of an infectious

disease through a population of individuals. One of their main goals was to estimate the num-

ber of individuals who would contract the disease by the end of the epidemic. An important

quantity in the study of such models is the basic reproductive number of the pathogen, which is

defined as the expected number of new infections created by a single infected individual over

the duration of an infection, in an entirely susceptible population [3]. This quantity can be used

to predict if a disease will spread within a population (R0 > 1) or die out (R0 < 1) [4].

Later models expanded on this to consider diseases which are persistent in a population. A

simple model of such endemic diseases compartmentalizes a population of N individuals into

those who are infected with the disease and those who are not infected but are susceptible to

infection [4]. At any time t, there will be S = S (t) individuals susceptible to infection and

I = I(t) individuals infected with the disease. All infected individuals are also infective. New

individuals will be born at a per-capita rate b and all newborns are assumed to be susceptible

to infection. Susceptible and infected individuals will die at a per-capita rate µ due to causes

1



2 Chapter 1. Introduction

unrelated to the disease.

Transmission of the disease will occur at a per-capita rate βS when an infected individual

comes into contact with a susceptible individual. Infected individuals may clear their infection

at a per-capita rate γ and become susceptible to reinfection. Infected individuals will also

experience an additional per-capita disease-induced mortality rate α.

This description can be summarized by the following system of ordinary differential equa-

tions:

dS
dt

= bN + γI − βS I − µS (1.1a)

dI
dt

= βS I − (γ + µ + α)I, (1.1b)

where N = S + I. Numerical iteration can be used to approximate solutions to system (1.1)

and estimate the numbers of susceptible and infected individuals at any given time. Figure 1.1

shows numerical solutions to (1.1) for a given set of parameter values. After a short period of

oscillation, the numbers of susceptible and infected individuals settle to a steady state. This

steady state, or equilibrium, is important from a biological perspective because it tells us how

much of the population we expect to eventually be infected with the disease [4].

In more complicated models, we will only be able to approximate the equilibria. How-

ever, model (1.1) is simple enough that we can derive analytical expressions for all possible

equilibria. An equilibrium of (1.1) is defined as a point at which the numbers of susceptible

and infected individuals are not changing; individuals will still move between compartments,

but as one individual leaves a given compartment it is immediately replaced by another in-

dividual [4]. Mathematically, this is equivalent to simultaneously solving dS/dt = 0 and

dI/dt = 0. Assuming b , µ, solving these equations yields two possible equilibrium states

of (1.1): a disease-free equilibrium (DFE), where there are no individuals infected with the

disease, given by (S̄ DFE, ĪDFE) = (0, 0); and an endemic equilibrium (EE), where there are some

number of individuals infected with the disease, given by (S̄ EE, ĪEE) = (γ+µ+α

β
, b−µ
µ+α−b

γ+µ+α

β
). In
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Figure 1.1: Example solutions to system (1.1). After a transient period, the numbers of suscep-
tible and infected individuals settle at a steady state. Model parameters: b = 4, γ = 5, β = 4,
µ = 2.

the case where b = µ, the DFE no longer coincides with the trivial or extinction equilibrium

(S̄ DFE, ĪDFE) = (0, 0). Instead, there is an infinite number of disease-free equilibria of the form

(S̄ DFE, ĪDFE) = (S̄ , 0), for any non-negative real number S̄ . However, none of these equilibria

are stable since any small perturbation in S̄ will result in a new equilibrium point. Throughout

the remainder of this thesis, it is assumed that parameters are chosen so that there is a unique

DFE which coincides with the trivial or extinction equilibrium (S̄ DFE, ĪDFE) = (0, 0), as well as

a unique EE (S̄ EE, ĪEE) = (γ+µ+α

β
, b−µ
µ+α−b

γ+µ+α

β
).

Of these two possible equilibria, which one will system (1.1) actually move towards? To

answer this, we study the stability of both the DFE and the EE. The stability of a particular

equilibrium is determined by first constructing the Jacobian matrix, the matrix of first partial

derivatives, of (1.1) and evaluating it at the equilibrium. If the eigenvalues of the resulting

matrix are all negative or have negative real parts, then we conclude that the equilibrium is

stable and that solutions of (1.1) will converge towards it over time; otherwise, the equilibrium
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is unstable and solutions of (1.1) will move away from it [4]. The Jacobian matrix J of (1.1) is

given by

J =


∂(dS/dt)
∂S

∂(dS/dt)
∂I

∂(dI/dt)
∂S

∂(dI/dt)
∂I

 =

b − µ − βI b + γ − βS

βI βS − γ − µ − α

 . (1.2)

First, we will determine the stability of the DFE. Evaluating (1.2) at the DFE gives

JDFE =

b − µ b + γ

0 −γ − µ − α

 . (1.3)

Since (1.3) is an upper triangular matrix, the eigenvalues are the entries on the main diagonal.

In particular, the eigenvalues are λ1 = b − µ and λ2 = −γ − µ − α. Since all of the model

parameters are assumed to be positive, we have that λ2 < 0. The stability of the DFE then rests

on the sign of λ1. If λ1 < 0, i.e., b < µ, then both eigenvalues are negative and the DFE is

stable. If λ1 > 0, i.e., b > µ, then the DFE is unstable.

To determine the stability of the EE, we start by evaluating (1.2) at this equilibrium:

JEE =

(b − µ)
(
1 − γ+µ+α

µ+α−b

)
b − µ − α(

b−µ
µ+α−b

)
(γ + µ + α) 0

 . (1.4)

We could proceed as before and find the eigenvalues of (1.4), but the expressions for the eigen-

values will be more mathematically complicated than in the case of the DFE. Alternatively,

we can use the Routh-Hurwitz criteria to determine the stability of the EE. The Routh-Hurwitz

criteria for a 2 × 2 matrix A state that all eigenvalues of A are negative or have negative real

parts if and only if tr(A) < 0 and det(A) > 0 [4]. In this case, the trace and determinant of (1.4)

will be easier to compute and analyze than the eigenvalues. First, the determinant of (1.4) is

given by det(JEE) = (b − µ)(γ + µ + α). This quantity is positive whenever b > µ, which is also

what must be true in order for the DFE to be unstable. Second, the trace of (1.4) is given by

tr(JEE) = (b − µ)
(
1 − γ+µ+α

µ+α−b

)
. Since we already know we must have b > µ, this quantity will

be negative whenever γ+µ+α

µ+α−b > 1. Due to the fact that all model parameters are positive, we
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must have that
∣∣∣∣γ+µ+α

µ+α−b

∣∣∣∣ > 1 so it only remains to establish that γ+µ+α

µ+α−b > 0. This is true as long as

b < µ+α. So, in summary, the EE is stable whenever µ < b < µ+α, and is unstable otherwise.

1.2 Evolution of Pathogens

One limitation of the above model is that it assumes that pathogen traits (e.g., disease-induced

mortality) are fixed. Realistically, pathogens evolve over time. How do we mathematically

study this evolution and make predictions about where natural selection will push pathogen

traits?

The theory of adaptive dynamics [5, 6, 7] was developed to answer questions like this.

Carrying on with the example model developed in the previous section, we start by supposing

that we have some resident population governed by (1.1) and that this resident system has

settled at its EE. We then assume that a rare mutant strain of the pathogen, with a disease-

induced mortality rate α̃ and a transmission rate β̃, is introduced into the equilibrium resident

population. If we use Ĩ = Ĩ(t) to denote the number of hosts infected with the mutant strain,

then we can model its dynamics with

dĨ
dt

= β̃S̄ Ĩ − (γ + µ + α̃)Ĩ, (1.5)

where S̄ represents the number of susceptible hosts at the resident EE. Will this mutant pathogen

strain die out, or will it grow and establish itself in the population?

To answer this, we first need to establish the effects that will cause the pathogen to change

its disease-induced mortality rate. In particular, we must define the benefit gained and the

cost incurred for increased disease-induced mortality. One of the most common approaches is

to assume that the pathogen faces a trade-off between the rate at which it can transmit itself

between hosts and its duration of infection within a host [8]. Biologically, a pathogen will

exploit its host’s resources in order to reproduce. Greater exploitation will result in an increased

number of replicates, making it more likely that the pathogen will transmit itself to another host
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but also making it more likely that the host is killed by the infection [9]. Such a trade-off was

shown by Anderson and May [10] in relation to HIV data, and by Ewald [11] in relation to

vector-transmitted diseases. Mathematically, this means that we treat the transmission rate

β (resp. β̃) as a function of the disease-induced mortality rate α (resp. α̃) of the pathogen

and write β = β(α). As discussed by Alizon and Michalakis [12], data suggests that this

relationship between transmission and disease-induced mortality should be represented by a

saturating function. Increased disease-induced mortality will then confer a benefit of increased

transmission rate, but will come at the cost of a shorter duration of infection 1
γ+µ+α

. Other

authors have assumed trade-offs between the pathogen and the host clearance rate γ, mediated

by disease-induced mortality [10, 11, 13], viral load [14], the degree to which a pathogen

exploits its host’s resources [15], or the pathogen growth rate [16].

We next need to define a measure of the fitness W = W(α̃, α) of the mutant pathogen strain

in order to determine how well the mutant strain performs against the established resident

strain. Two common measures of fitness are the instantaneous growth rate [7, 17] and the basic

reproductive number [12] of the mutant pathogen strain. The instantaneous growth rate can be

found from equation (1.5) to be β̃S̄ −γ−µ−α̃, and when this quantity is positive (resp. negative)

the mutant pathogen population is growing (resp. shrinking). The basic reproductive number,

denoted R0, is defined as the expected number of new infections created by a single infected

individual in an entirely susceptible population [3] and is given in our example by R0 =
βS

γ+µ+α
;

the basic reproductive number for the mutant pathogen strain is then given by R̃0 =
β̃S̄

γ+µ+α̃
. The

mutant pathogen population will grow (resp. shrink) if R̃0 > 1 (resp. R̃0 < 1).

Either of these quantities can be used as a measure of fitness and will yield the same evo-

lutionary results [18]. For our example model here, we will define fitness as the basic repro-

ductive number and write W(α̃, α) =
β̃S̄

γ+µ+α̃
, where β̃ depends on the mutant disease-induced

mortality rate α̃ and S̄ depends on the resident disease-induced mortality rate α. We then look
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for an evolutionary equilibrium α∗ by solving the equation

∂W
∂α̃

∣∣∣∣∣
α̃=α=α∗

= 0, (1.6)

[5, 6, 7]. This condition is equivalent to

β̃′(α∗)
β̃(α∗)

=
1

γ + µ + α∗
, (1.7)

where the prime denotes the first derivative. The left-hand side of (1.7) describes the relative

change in transmission for a change in disease-induced mortality, while the right-hand side

represents the average duration of infection. Equation (1.7), then, captures the trade-off faced

by the pathogen: increased disease-induced mortality will increase transmission but decrease

the duration of infection, and these two effects must balance out at evolutionary equilibrium.

This balance is a common theme, both in theoretical studies [8] and empirical studies [12].

Úbeda and Jansen showed that a similar balance exists in a model of hosts split into female

and male groups, while Alizon [16] showed that an analogous balance must be maintained in

the presence of transmission-recovery trade-offs, as well. If we assume a saturating functional

form for transmission and model it as β(α) = α1/2 (so that β̃ = β(α̃) = α̃1/2), as used by Day

and Burns [19], then we can use (1.7) to derive an explicit expression for the evolutionary

equilibrium: α∗ = γ + µ.

Similar to our treatment of the epidemiological equilibria in the previous section, we can

ask questions about the stability of this evolutionary equilibrium. Under what conditions do

we expect the pathogen population to converge to this evolutionary equilibrium? Since fitness

depends on both the mutant and resident traits, we need to concern ourselves with the stability

of the evolutionary equilibrium from two directions: the mutant direction and the resident

direction. If the evolutionary equilibrium resists invasion from nearby mutant strains, then α∗

must satisfy
∂2W
∂α̃2

∣∣∣∣∣
α̃=α=α∗

≤ 0 (1.8)
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and we say it is evolutionarily stable (sensu [20]). If the evolutionary equilibrium attracts

nearby resident populations, then α∗ must satisfy

d
dα

[
∂W
∂α̃

∣∣∣∣∣
α̃=α

]
α=α∗
≤ 0 (1.9)

and we say it is convergence stable [21]. Strict versions of the inequalities (1.8) and (1.9)

provide sufficient conditions for stability. Both of these stability conditions are important for

establishing an endpoint of natural selection. An equilibrium can be evolutionarily stable but

not convergence stable, in which case nearby mutant strategies cannot invade the population but

nearby resident populations employing a different strategy will not necessarily have a lower fit-

ness than the focal population. Alternatively, an equilibrium can be convergence stable but not

evolutionarily stable, in which case nearby resident populations have a lower fitness than the

focal population but a nearby mutant strategy could invade and replace the equilibrium strat-

egy. We call an evolutionary equilibrium which is both evolutionarily stable and convergence

stable a continuously stable strategy (CSS) [22].

In our example, the partial derivative in (1.8) is given by

∂2W
∂α̃2

∣∣∣∣∣
α̃=α=α∗

= −
1

4(γ + µ)2 , (1.10)

and the partial derivative in (1.9) is given by

d
dα

[
∂W
∂α̃

∣∣∣∣∣
α̃=α

]
α=α∗

= −
1

4(γ + µ)2 . (1.11)

Since both (1.10) and (1.11) are negative, the evolutionary equilibrium α∗ = γ + µ is a CSS

and we expect that natural selection will, over time, push the pathogen population towards this

level of disease-induced mortality.

It is worth noting that in finding the evolutionary equilibrium α∗ and confirming that it is

a CSS, we have maximized the basic reproductive number [3] of the pathogen. Other authors
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have shown that natural selection acts to maximize R0 [10, 12, 19], but this literature often

focuses on the evolution of pathogen virulence. Virulence is defined to be the reduction in host

fitness due to infection with the disease [23]. Host fitness is comprised of two components:

survival and reproduction. In our example model, the pathogen is only able to influence host

survival, through its rate of disease-induced mortality, but has no effect on host reproduction.

In this case, it would be appropriate to refer to disease-induced mortality as pathogen virulence.

However, in more complicated models where the pathogen is potentially able to also influence

host reproduction (e.g., via vertical transmission, as in [15]), virulence will be more than just

the pathogen’s rate of disease-induced mortality.

1.3 Evolution of Hosts

We could also ask about modelling the evolution of changing host traits in (1.1). Doing so

involves a similar adaptive-dynamics approach [5, 6, 7] as with pathogen evolution. In our

example model, we will consider the clearance rate γ to be the host trait that is evolving.

First, we must determine the effects that will influence the evolution of host recovery. As

in the case of pathogen evolution, hosts will also face a trade-off. One of the most common

approaches is to model a trade-off between host clearance and reproduction. Biologically, a

host has only a finite amount of resources and choosing to invest in immune function necessar-

ily takes resources away from other life history traits, such as reproduction [24]. This idea has

been extended to models of hosts categorized into female and male groups to show that differ-

ent sexes are expected to evolve different levels of immune investment [25, 26, 27]. There is

also a distinction made in the literature between modelling host immune maintenance versus

activation. Immune maintenance considers the costs of diverting resources from reproduction

to immune function in order to maintain an immune system at all times [28]; in this framework,

all individuals incur the cost of investing in their immune system, regardless of disease status.

Alternatively, immune activation refers to the act of diverting resources from reproduction to
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immune function in order to combat an active infection [19, 29]; here, the cost of investing in

the immune system is paid only by infected individuals. We will focus here on immune system

maintenance. As in [28], we suppose that there is a maximal birth rate bmax which is reduced

at a cost c for investing resources in immune function, with the level of investment measured

by γ. This allows us to write b = b(γ) and model the birth rate as b(γ) = bmax − cγ [28].

Next, suppose that there is a resident host population governed by (1.1) and that this resident

system has reached the EE previously derived. We then imagine introducing a mutant host

whose clearance rate is given by γ̂. These mutant hosts will create new mutant host offspring

at a per-capita rate b̂ = b(γ̂). If we denote the number of susceptible mutant hosts by Ŝ = Ŝ (t)

and the number of infected mutant hosts by Î = Î(t), then we can approximate the dynamics of

the mutant host population by the following linear system:


dŜ
dt

dÎ
dt

 =


b̂ b̂

0 0

︸ ︷︷ ︸
F

−

βĪ + µ −γ̂

−βĪ γ̂ + µ + α

︸                   ︷︷                   ︸
V


ŜÎ

 , (1.12)

where overbars denote the EE levels of resident hosts. The matrix F describes the per-capita

rate of production of new mutant hosts, while the matrix −V describes transitions of individuals

between disease compartments and the loss of individuals from the population.

As in the case of pathogen evolution, we can define the fitness W = W(γ̂, γ) of the mutant

host in different ways. One way is to use the instantaneous growth rate of the mutant host

population, which is now defined as the largest eigenvalue, in the sense that it is the eigenvalue

which serves as an upper bound on the real parts of all of the other eigenvalues, of the matrix

F − V [17]. When this eigenvalue is positive (resp. negative), the mutant host population will

grow (resp. shrink). Alternatively, we can derive fitness from the next-generation matrix FV−1

[30, 31, 32]. The entries of this matrix describe the expected number of susceptible and infected

mutant hosts that will be created by a single susceptible or infected mutant host, and we can

use its dominant eigenvalue as a measure of fitness [30]. As discussed previously, regardless
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of how we measure fitness, we will arrive at the same evolutionary equilibrium [18].

In our example model, if we choose to measure fitness as the dominant eigenvalue of the

next-generation matrix [30], we get the following expression:

W(γ̂, γ) =
b̂(βĪ + γ̂ + µ + α)

µ(βĪ + γ̂ + µ + α) + αβĪ
. (1.13)

The evolutionary equilibrium γ∗ is then found by solving

∂W
∂γ̂

∣∣∣∣∣
γ̂=γ=γ∗

= 0. (1.14)

Stability conditions can also be derived for this equilibrium, as we did with the evolutionary

equilibrium of the pathogen. We say that the host evolutionary equilibrium γ∗ is evolutionarily

stable (sensu [20]) if
∂2W
∂γ̂2

∣∣∣∣∣
γ̂=γ=γ∗

≤ 0, (1.15)

and that it is convergence stable [21] if

d
dγ

[
∂W
∂γ̂

∣∣∣∣∣
γ̂=γ

]
γ=γ∗
≤ 0. (1.16)

As before, strict versions of these inequalities provide sufficient conditions for stability. An

evolutionary equilibrium which satisfies both (1.15) and (1.16) is called a continuously stable

strategy (CSS) [22].

Using the relationship between birth rate and clearance rate defined above, we can solve

(1.14) to find the evolutionary equilibrium clearance rate

γ∗ =
bmax − (µ + α) +

√
α[(1 − c)(µ + α) − bmax]

c
, (1.17)

where bmax and c are chosen so that γ∗ is both real and positive. We can also find the equilibrium

birth rate b∗ associated with γ∗: b∗ = µ + α −
√
α[(1 − c)(µ + α) − bmax]. To check the stability
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of γ∗, we evaluate conditions (1.15) and (1.16). Condition (1.15) is satisfied if and only if

b∗ > µ, which must be true since we are working under the assumption that the EE of (1.1)

is stable. Condition (1.16) is satisfied if and only if (µ + α − b∗)b∗ + αb∗ > 0, which must be

true because b∗ < µ + α is a necessary condition for the EE of (1.1) to be stable. Thus, the

evolutionary equilibrium clearance rate (1.17) is a CSS. Over time, we expect natural selection

to push the host population towards this clearance rate.

1.4 Host-Pathogen Coevolution

What if both host and pathogen traits are evolving? In our example model, the CSS levels

of disease-induced mortality and clearance depend on each other, so that changes in one will

cause changes in the other. To study the coevolution of hosts and pathogens, we look for a CSS

pair (α∗, γ∗) which simultaneously satisfies conditions (1.6), (1.8), and (1.9) for the pathogen

and conditions (1.14), (1.15), and (1.16) for the host. To find this pair, we would equate the

expressions found above for α∗ and γ∗.

While the adaptive-dynamics approach [5, 6, 7] discussed previously still applies, the trade-

offs faced by hosts and pathogens can become more complicated when the two groups are co-

evolving with one another. For example, if pathogens face at trade-off between transmission

and clearance [15, 16], then hosts balancing their resource investments between reproduction

and immune function can influence pathogen evolution through changing clearance rates. The

outcome of such an interaction was explored by van Baalen [28] in the case of host immune

maintenance. Coevolution, in this case, could lead to two possible stable evolutionary out-

comes: a state in which hosts invest little in their immune systems and pathogens are relatively

avirulent, and a state in which hosts invest heavily in their immune systems and pathogens ex-

press a higher level of virulence [28]. Conversely, the same outcome was not found by Day and

Burns [19] when considering host immune activation instead of maintenance. Day and Burns

[19] also highlight the importance of how virulence is measured. If virulence is measured not
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as disease-induced mortality but as case mortality, the probability of a host dying due to the

disease, then virulence is not affected by coevolutionary dynamics [19].

Coevolution can also be studied in cases where hosts and pathogens evolve on different time

scales. For example, Pharaon and Bauch [33] studied a model in which pathogen evolution re-

sponds to changes in host behaviour. Hosts choose whether or not to engage in prophylactic

behaviour, such as wearing a mask or social distancing. To model the proportion of individuals

engaging in prophylaxis, Pharaon and Bauch [33] use the replicator dynamic [34, 35], a differ-

ential equation which describes how the frequency of individuals adopting a given strategy (in

this case, engaging in prophylaxis) changes due to natural selection. In particular, if x = x(t)

represents the frequency of susceptible individuals engaging in prophylaxis, then the replicator

dynamic says that
dx
dt
∝ x(1 − x)(Wx − W̄), (1.18)

where Wx represents the fitness of a susceptible individual engaging in prophylaxis and W̄ rep-

resents the average fitness of a susceptible individual in the population [34, 35]. This provides

an alternative way of studying evolution than adaptive dynamics [5, 6, 7]. Host behaviour

then evolves on a much faster time scale than pathogen disease-induced mortality, and the

model effectively assumes that hosts reach a quasi-equilibrium before analyzing the evolution

of pathogens [33]. This methodology is in contrast to that described above of using an adaptive-

dynamics approach [5, 6, 7] to study the evolution of both host and pathogen populations.

1.5 Multiple Pathogen Strains

One way in which the previous models on evolution can be extended is by considering the

effects of multiple strains of the pathogen. Coinfection by multiple strains is a feature of many

infectious diseases, such as influenza [36], malaria [37], and dengue [38].

One approach to studying coinfection is to pair an epidemiological model, such as (1.1),

with a model of the within-host dynamics of the pathogen strains [39]. Authors following
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this approach have taken into account such things as pathogen exploitation of host resources

[40], the production of molecules used as a public good by the group of coinfecting pathogens

[41], and the interaction between pathogens and host lymphocytes [42]. Much of this literature

assumes that different pathogen strains compete for resources within the host, and show that

the exact nature of the interactions between strains will determine the evolutionary outcome.

An alternative approach is to use tools from kin selection theory. Instead of explicitly

modelling interactions between pathogen strains within hosts, this approach summarizes those

within-host dynamics by using the coefficient of relatedness between a focal pathogen strain

and its coinfecting group [43, 44]. In doing so, some biological details are sacrificed but the

resulting model yields evolutionary predictions less beholden to specific assumptions about

population dynamics. The guiding principle of this approach is to consider the fitness of a

focal pathogen strain as a function of the genotype of that focal strain [43, 44]. Doing so

shows that, at evolutionary equilibrium, a focal pathogen strain must balance the benefit to

itself of increased transmission against both the direct cost to itself of increased clearance and

the indirect cost to its coinfecting group of decreased duration of infection [43]. One of the

main predictions from this literature is that increased relatedness among coinfecting pathogen

strains will select for reduced virulence [43, 44]. Effectively, the coinfecting pathogen strains

will behave more cooperatively the more related they are to one another, in keeping with the

ideas put forth by Hamilton [45].

One open question in this field of work is: How do these predictions change when multiple

pathogen strains coevolve with hosts, and how do evolution and coevolution proceed when sus-

ceptible and infected hosts can be further subdivided into additional categories? As discussed

previously, host-pathogen coevolution can produce new results and predictions than when con-

sidering pathogen evolution alone. It seems reasonable, then, to hypothesize that allowing hosts

to coevolve with multiple coinfecting pathogen strains could generate predictions not seen in

the above literature on multiple pathogen strains.
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1.6 Multiple Types of Hosts

Another way in which we can build on the models discussed previously is to consider the

effects of multiple types of hosts. Mathematically, in models with multiple types of hosts, the

pathogen will exhibit a different level of virulence and have a different fitness in each type

of host [17]. To make evolutionary predictions, we then look to track the direction in which

natural selection pushes pathogen virulence within each type of host [17].

As an example, many pathogens affect female and male hosts differently, such as those

that cause bacterial meningitis [46] or tuberculosis [47]. In modelling these scenarios, the host

population is split into susceptible and infected females, and susceptible and infected males.

The pathogen expresses a certain disease-induced mortality rate in female hosts and a poten-

tially different disease-induced mortality rate in males, and we look for CSS values of both of

these traits using the adaptive-dynamics techniques discussed previously [17]. The sexes are

typically differentiated based on their level of immune system investment, and models predict

that the pathogen will evolve a higher level of disease-induced mortality in the sex that invests

more heavily in its immune system [48]. Other work has shown that, in the presence of vertical

transmission from female hosts to newborn offspring, pathogens are expected to evolve a lower

level of disease-induced mortality in females due to this additional transmission pathway [15].

Alternatively, we can look at host evolution, where previous authors have shown that sexual

selection can shape sex differences in host immune defense [24, 25, 27] and susceptibility to

infection [26], or differing transmission and disease-induced mortality rates between the sexes

[29]. Notably, all of this work focuses either on pathogen evolution or on host evolution, but

not on the coevolution of both groups. Given that coevolution has been shown to produce

qualitatively different results than considering only the evolution of one group, it is reasonable

to ask how these results on sex-specific differences change when hosts and pathogens evolve

together.

Another example involves classifying hosts according to whether or not they engage in

some prophylactic measure, such as hand washing or social distancing, to protect against an
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infectious disease. Much research has been conducted on hosts choosing to vaccinate against a

disease [49]. In the case of human papillomavirus, for example, theory has predicted that vac-

cination can select for higher levels of pathogen virulence [50]. Other work has shown that the

direction in which natural selection pushes a pathogen population depends on the mechanism

by which the vaccine works [51, 52]. In contrast, we can also model impermanent types of be-

haviour, such as social distancing or wearing a mask, which hosts may choose to start or stop

at any time. Work in this area has derived conditions under which a more virulent pathogen

strain can or cannot successfully invade a resident population containing a less virulent strain

[33]. However, this latter work considers only short-term pathogen competition, and does not

make predictions about evolutionary stability or where natural selection will push a pathogen

population over longer periods of time.

1.7 Contributions of this Thesis

Throughout this chapter, I have explored some of the key literature on evolutionary epidemi-

ology and highlighted some questions that remain unanswered. I propose that coevolution

and multiple types of hosts are important factors governing real host-pathogen systems, and

that accounting for these factors in mathematical models can generate qualitatively different

predictions than previous literature which neglects either of these effects. In the remaining

chapters of this thesis, I provide three examples of original research supporting this claim.

Each example will begin with a review of relevant literature in addition to the literature already

discussed in this chapter. Matlab code used in Chapters 2 and 3 is available on the GitHub

repository located at https://github.com/evanjmitchell/doctoral-thesis.

In Chapter 2, I study a population of hosts split into females and males, and investigate

how coevolution of hosts and pathogens responds to the presence of multiple types of hosts.

Female hosts show a stronger immune response than male hosts across many infectious dis-

eases, while male hosts tend to experience a higher disease-induced mortality rate than female

https://github.com/evanjmitchell/doctoral-thesis
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hosts. Previous evolutionary explanations of this phenomenon have focused exclusively on

either host or pathogen evolution. Here, I build a coevolutionary model where both host and

pathogen populations evolve in response to changes in either population. I also include the

effects of vertical transmission, a crucial selective pressure felt only by female hosts and which

has been neglected in previous theories. For high rates of vertical transmission, I predict that

female hosts will evolve a higher level of immune system investment than male hosts while

pathogens will evolve a higher rate of disease-induced mortality in males relative to females.

By including the effects of vertical transmission and establishing this result in a coevolutionary

setting, I provide a more complete explanation of the trend observed across a wide variety of

infectious diseases.

In Chapter 3, I study a scenario in which hosts are able to change from one type to another.

I build a model of sublethal disease effects where hosts are able to choose to engage in pro-

phylactic measures that reduce the likelihood of disease transmission. This choice is mediated

by utility costs and benefits associated with prophylaxis, and the fraction of hosts engaged in

prophylaxis is also affected by population dynamics. As in [33], I model host behaviour using

the replicator dynamic [34] and assume that it evolves to a quasi-equilibrium before studying

the long-term evolution of pathogens. When prophylactic host behaviour occurs, I find that the

level of pathogen host exploitation is reduced, by the action of selection, relative to the level

that would otherwise be predicted in the absence of prophylaxis. This work emphasizes the

significance of the transmission-recovery trade-off faced by the pathogen and the ability of the

pathogen to influence host prophylactic behaviour.

In Chapter 4, I consider the possibility of multiple pathogen strains in addition to multiple

types of hosts. I develop a general theoretical framework to link ideas from evolutionary epi-

demiology to those from kin selection theory to study the evolution of coinfecting pathogen

strains. The main result is that pathogens will evolve to balance both the direct and indirect

benefits of increased transmission with the associated direct and indirect costs of decreased

duration of infection within each type of host. Importantly, the trait value which achieves this
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balance can differ between host types and is affected by coevolutionary dynamics. Further-

more, the more genetically related is a pathogen strain to its coinfecting group, the more it will

reduce its own disease-induced mortality rate for the benefit of the whole group.

Finally, in Chapter 5, I provide some summarizing remarks and discuss possible directions

for future research work.



Chapter 2

Female Reproduction and the Evolution of

Sex-specific Differences in Immunity

2.1 Introduction

Many clinical studies on infectious diseases show a trend of female hosts maintaining a stronger

immune system and experiencing a lower level of disease-induced mortality than male hosts

[53]. This trend is seen across a wide variety of infectious diseases, such as bacterial meningitis

[46], tuberculosis [47], and infections caused by Staphylococcus aureus [54]. These observa-

tions have been attributed to inherent genetic differences between the sexes [55, 56, 57, 58],

but a full evolutionary explanation is not readily available. What selective pressures could

have pushed females to invest more heavily in their immune system? How did evolution lead

to pathogens that inflict a lower level of disease-induced mortality in females than in males?

Two theories currently exist to address the first of these questions. One theory argues

that differences in immunity between the sexes are the result of females choosing males with

attractive features as reproductive partners [24, 25, 26]. While male sex hormones may enhance

their attractiveness, they also act as immune suppressants [24, 25, 26]. Thus, sexual selection

for attractive males should result in a weaker immune response in males relative to females

19
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[24, 25, 26, 27]. In this case, reduced immune response is simply the cost of being attractive

and this cost is unique to males.

A second theory in shaping patterns of host immunity emphasizes the role of pathogen life-

history traits. Different infection rates or disease-induced mortality rates in female versus male

hosts can select for sex-specific levels of immune investment. In particular, if males experience

a higher infection rate than females, or if females experience a higher disease-induced mortality

rate, then natural selection leads to a greater immune response in females relative to males [29].

In this case, it is the pathogen, not the mating system, that leads selection to shape the host’s

response to infection in a sex-specific manner.

Both of these explanations neglect host-pathogen coevolution. They take, as given, that a

pathogen exhibits a higher level of disease-induced mortality in one sex relative to the other

and predict where this will lead host evolution. The subsequent evolutionary response from the

pathogen is ignored.

In order to develop a more complete explanation of the pattern observed in clinical studies

of increased immunity and decreased disease-induced mortality in females, we investigate the

coevolution of both hosts and pathogens as a result of natural and sexual selection. Further-

more, we also include the possibility of a female infecting her newborn offspring via vertical

transmission. Vertical transmission is observed in many infectious diseases, such as dengue

[59], human papillomavirus [60], and hepatitis B [61], and is experienced exclusively by fe-

males. The possibility of vertical transmission means that a female investing more heavily in

her immune system will reduce the likelihood of infecting her newborn offspring, conferring

to her a fitness benefit. This benefit trades off against a cost to reproductive success. Vertical

transmission adds an extra dimension to the evolutionary pressures felt by females, as there

is now a reproductive benefit for females to invest in their immune system where before there

was only a cost. This extra dimension is crucial to fully understand how selection shapes fe-

male immune investment and has been neglected in previous theories of the evolution of host

immune response.
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Here, we develop a model where female and male hosts can evolve different levels of

immune-system investment (measured by their sex-specific rates of recovery) and pathogens

can evolve sex-specific levels of disease-induced mortality. Asymmetry between the sexes is

introduced via differences in the reproductive cost to immune investment and via the inclusion

of vertical transmission. Our model predicts that sex differences in the reproductive cost to

immune investment select for a stronger immune system and a higher disease-induced mortal-

ity rate in the sex that pays the lower cost, akin to previous non-sex-specific coevolutionary

modelling [28]. Under the influence of vertical transmission, we predict that evolution can

be driven to a state in which female hosts invest little in their immune system and pathogens

exhibit lower levels of disease-induced mortality in female hosts, relative to male hosts. This

result is similar to findings from sex-specific non-coevolutionary models [15]. The novel result

is that the combination of vertical transmission and host-pathogen coevolution can select for a

state in which pathogens exhibit a lower level of disease-induced mortality in heavily-defended

female hosts. In this way, we identify specific evolutionary pressures that could have led to the

previously unexplained trends observed in clinical studies across a wide variety of infectious

diseases.

2.2 Model

2.2.1 Epidemiological Dynamics

We start with a population of N hosts classified according to their sex and disease status. At

time t, there are I f = I f (t) females infected with the pathogen and S f = S f (t) females not

infected. There are also Im = Im(t) males infected with the pathogen and S m = S m(t) males not

infected. All uninfected individuals are susceptible to infection, and all infected individuals are

also infectious.

Following the discussion of various mating functions in [62, 63], we model the host mating
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rate using the harmonic mean of the population sizes of females and males, given by

2(S f + I f )(S m + Im)
N

. (2.1)

The mating function is then multiplied by a per-capita birth rate, b. Assuming a one-to-one

birth sex ratio, the total rate at which new hosts enter either the susceptible female or suscepti-

ble male classes is
b(S f + I f )(S m + Im)

N
. (2.2)

Hosts in every class experience a per-capita background mortality rate µ, and hosts infected

by the pathogen experience an additional per-capita disease-induced mortality rate of α f in

females and αm in males. Infective females and infective males also recover at rates γ f and γm,

respectively, and return immediately to their associated susceptible class.

Horizontal transmission to susceptible sex-i hosts in class S i from infective sex- j hosts in

class I j occurs at a rate S iβi jI j. We also include the possibility of vertical transmission from

infective females to their offspring (as in [15]). If we assume that a proportion v of new hosts

created by infective females are born with the disease, then we now have a flow of newborns

into the infective female and male classes at a rate of

bvI f (S m + Im)
N

. (2.3)

This leaves us with newborns entering the susceptible female and male classes at a rate of

b(S f + (1 − v)I f )(S m + Im)
N

. (2.4)

The model description is summarized schematically in figure 2.1 and mathematically with

the following system of differential equations:
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Figure 2.1: A schematic diagram of the model. B f and Bm represent total birth rates given by
the sum of equations (2.3) and (2.4). Dashed lines indicate routes of horizontal transmission
while solid lines indicate routes of vertical transmission.
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dS f

dt
=

b(S f + (1 − v)I f )(S m + Im)
N

+ γ f I f − S fβ f f I f − S fβ f mIm − µS f (2.5a)

dS m

dt
=

b(S f + (1 − v)I f )(S m + Im)
N

+ γmIm − S mβm f I f − S mβmmIm − µS m (2.5b)

dI f

dt
=

bvI f (S m + Im)
N

+ S fβ f f I f + S fβ f mIm − (γ f + α f + µ)I f (2.5c)

dIm

dt
=

bvI f (S m + Im)
N

+ S mβm f I f + S mβmmIm − (γm + αm + µ)Im. (2.5d)

As discussed in chapter 1 of this thesis, parameters are chosen so that there is a unique disease-

free equilibrium, which coincides with the trivial equilibrium, and a unique endemic equilib-

rium. To achieve this, it is assumed that b/2 , µ. Linear stability analysis of this system shows

that the disease-free equilibrium, where no infected individuals are present, is unstable when-

ever b/2 > µ. It is not possible to analytically find an endemic equilibrium of system (2.5),

i.e., an equilibrium where hosts of all classes are present. Instead, we use numerical simulation

to show that system (2.5) reaches an endemic equilibrium for a range of birth rates satisfying

b/2 > µ. However, if the birth rate becomes too large, the endemic equilibrium becomes un-

stable and the host population grows without bound. This indicates that there is a finite range

of birth rate values to explore in analyzing our model.

2.2.2 Evolutionary Dynamics

To study how pathogen disease-induced mortality and host immune investment respond to

selection, we assume that each faces a trade-off. The pathogen faces a trade-off between how

efficiently it is able to transmit itself and how quickly it kills its host. Following many previous

authors (e.g., [12, 8, 11]), we model the transmission constants βi j as functions of the pathogen

disease-induced mortality rates, α f and αm. In particular, we adapt the saturating functional
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form used in [28] to this sex-specific setting and write

βi j = βi j(α j) =
βmaxα j

α j + d
, (2.6)

where larger values of d > 0 indicate a slower rate of saturation. By making βi j independent of

i, we are assuming that females and males are equally susceptible to infection.

Hosts face a trade-off between investing resources in their immune system and their re-

productive success, as has been modelled by previous authors (e.g., [28, 19]). Hosts’ level of

immune investment is captured here by their sex-specific recovery rate, as in [28]. To relate the

total birth rate b to the recovery rates γ f and γm, we first suppose that the rate at which a female

gives birth decays exponentially with increasing immune investment and write it as bmaxe−k f γ f ,

where bmax is the maximal birth rate. The parameter k f > 0 measures the rate of decay of a fe-

male’s reproductive success due to increased investment in her immune system. For example,

female sex hormones enhance the immune system, which in turn reduces the likelihood of con-

ception and increases the chances of spontaneous abortion [64, 65, 66]. We also suppose that a

male’s probability of successfully mating with a female decays exponentially with increasing

immune investment and express it as e−kmγm . It could be that a male is rejected by a potential

female mate because he is not sufficiently attractive, and this decrease in reproductive success

is captured by the parameter km > 0. The total per-capita birth rate in the population is then

given by the product of the rate at which a female gives birth and the probability that a given

male is successfully able to mate with a female, bmaxe−k f γ f−kmγm . If we take a first-order approx-

imation to this exponential function, we can write bmaxe−k f γ f−kmγm ≈ bmax−bmaxk fγ f −bmaxkmγm.

We then interpret bmaxk f and bmaxkm as sex-specific reproductive costs to immune investment,

and relabel them c f and cm, respectively. We consider host immune system maintenance (as in

[28]) instead of immune system activation (as in [19]) so that hosts pay the reproductive cost to

immune investment regardless of whether they are in a susceptible or infective class. We can
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now relate b to the recovery rates γ f and γm via

b = b(γ f , γm) = bmax − c fγ f − cmγm. (2.7)

Equation (2.7) also generalizes the birth rate function used in [28] to this sex-specific setting.

Using an adaptive-dynamics approach [5, 6, 7], we can investigate how the pathogen and

host traits change over evolutionary time. As in [28] and [19], we apply this approach to both

the pathogen and host populations to study their coevolution. For the pathogen population, we

introduce a rare mutant-type pathogen with disease-induced mortality rates α̃ f in female hosts

and α̃m in male hosts. The numbers Ĩ f and Ĩm of female and male hosts, respectively, infected

with this mutant strain change according to

dĨ f

dt
=

bvĨ f (S̄ m + Īm)
N̄

+ S̄ f β̃ f f Ĩ f + S̄ f β̃ f m Ĩm − (γ f + α̃ f + µ)Ĩ f (2.8a)

dĨm

dt
=

bvĨ f (S̄ m + Īm)
N̄

+ S̄ mβ̃m f Ĩ f + S̄ mβ̃mm Ĩm − (γm + α̃m + µ)Ĩm, (2.8b)

Overbars denote equilibrium levels of the resident host variables. We then apply a next-

generation matrix approach [30] to (2.8) to find a fitness function for the pathogen. In par-

ticular, we write the matrix J of first-order partial derivatives of (2.8) as J = F −V for matrices

F and V . The pathogen’s fitness Wα(α̃ f , α̃m, α f , αm) is then defined as the dominant eigenvalue

of the next-generation matrix FV−1 [30].

We follow a similar procedure for the host population by introducing a rare mutant-type

host with recovery rate γ̂ f in females and γ̂m in males. We denote the numbers of susceptible

and infective female mutant-type hosts as Ŝ f and Î f , respectively, and the numbers of suscep-

tible and infective male mutant-type hosts as Ŝ m and Îm, respectively. To account for the birth

rate of new mutant hosts, we take a first-order approximation by considering only mutant hosts

who are heterozygous for the mutation mating with resident (homozygous) wild-type hosts.

They will produce new offspring at a rate b̂ f for matings between mutant females and resident
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males, and at a rate b̂m for matings between mutant males and resident females. On average,

half of these matings will result in new hosts heterozygous for the mutation, so new susceptible

female or male mutant-type hosts are created at a total rate

b̂ f

2 (Ŝ f + (1 − v)Î f )(S̄ m + Īm) + b̂m
2 (S̄ f + (1 − v)Ī f )(Ŝ m + Îm)

N̄
(2.9)

and new infective female or male mutant-type hosts are created at a total rate

b̂ f

2 vÎ f (S̄ m + Īm) + b̂m
2 vĪ f (Ŝ m + Îm)

N̄
. (2.10)

The numbers of susceptible and infective mutant-type hosts then change according to

dŜ f

dt
=

b̂ f

2 (Ŝ f + (1 − v)Î f )(S̄ m + Īm) + b̂m
2 (S̄ f + (1 − v)Ī f )(Ŝ m + Îm)

N̄
(2.11a)

+ γ̂ f Î f − Ŝ fβ f f Ī f − Ŝ fβ f m Īm − µŜ f

dÎ f

dt
=

b̂ f

2 vÎ f (S̄ m + Īm) + b̂m
2 vĪ f (Ŝ m + Îm)

N̄
+ Ŝ fβ f f Ī f + Ŝ fβ f m Īm − (γ̂ f + α f + µ)Î f (2.11b)

dŜ m

dt
=

b̂ f

2 (Ŝ f + (1 − v)Î f )(S̄ m + Īm) + b̂m
2 (S̄ f + (1 − v)Ī f )(Ŝ m + Îm)

N̄
(2.11c)

+ γ̂m Îm − Ŝ mβm f Ī f − Ŝ mβmm Īm − µŜ m

dÎm

dt
=

b̂ f

2 vÎ f (S̄ m + Īm) + b̂m
2 vĪ f (Ŝ m + Îm)

N̄
+ Ŝ mβm f Ī f + Ŝ mβmm Īm − (γ̂m + αm + µ)Îm. (2.11d)

We then apply a next-generation matrix approach [30], as described above, to (2.11) to find a

fitness function Wγ(γ̂ f , γ̂m, γ f , γm) for the host.
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2.2.3 Methods of Analysis

Selection will move the pathogen’s disease-induced mortality in a direction given by the sign

of ∂Wα/∂α̃ f |α̃ f =α f in female hosts and ∂Wα/∂α̃m|α̃m=αm in male hosts. An endpoint of evolution

will take the form of a pair (α∗f , α
∗
m) satisfying

∂Wα

∂α̃i

∣∣∣∣∣
(α̃ f ,α̃m)=(α f ,αm)=(α∗f ,α

∗
m)

= 0, (2.12)

for i = f ,m. We then look for a continuously stable strategy (CSS) [22] of this process: an end-

point of evolution that both attracts nearby resident pathogen populations and resists invasion

by nearby mutant pathogen populations. If such a point attracts nearby resident populations,

then the matrix of first-order partial derivatives of the selection gradients of Wα must be neg-

ative definite. If this condition holds, we say the point is convergence stable [67, 68]. If the

point resists invasion by nearby mutant populations, then the matrix of second-order partial

derivatives of Wα must be negative definite. If this condition holds, we say the point is evolu-

tionarily stable [67, 68]. We can also define analogous conditions on the host fitness function,

Wγ. Ultimately, we look for a quadruple (γ∗f , γ
∗
m, α

∗
f , α

∗
m) that simultaneously satisfies the above

conditions on Wα and Wγ. Such a quadruple we call a coevolutionary continuously stable

strategy (coCSS) [28, 19].

In general, finding this quadruple cannot be done analytically. Instead, we use a Mat-

lab (version R2019a) algorithm, the code for which is available on the GitHub repository

at https://github.com/evanjmitchell/doctoral-thesis, to find the coCSS levels of

host recovery and pathogen disease-induced mortality numerically. This algorithm is based on

the observation that locally asymptotically stable equilibrium solutions to the system

https://github.com/evanjmitchell/doctoral-thesis
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dγ f

dt
=
∂Wγ

∂γ̂ f

∣∣∣∣∣
(γ̂ f ,γ̂m)=(γ f ,γm)

(2.13a)

dγm

dt
=
∂Wγ

∂γ̂m

∣∣∣∣∣
(γ̂ f ,γ̂m)=(γ f ,γm)

(2.13b)

dα f

dt
=
∂Wα

∂α̃ f

∣∣∣∣∣
(α̃ f ,α̃m)=(α f ,αm)

(2.13c)

dαm

dt
=
∂Wα

∂α̃m

∣∣∣∣∣
(α̃ f ,α̃m)=(α f ,αm)

(2.13d)

will be convergence-stable evolutionary equilibria in the sense described above. We numer-

ically iterate this system until equilibrium has been reached to generate a candidate coCSS.

Finally, we use a centred finite-difference approximation to compute the matrices of second-

order partial derivatives of Wα and Wγ, evaluated at the candidate coCSS, and check that they

are negative definite. This is done by computing the eigenvalues of these matrices and con-

firming that they are all negative.

2.3 Results

2.3.1 No Sex-Specific Differences

Before exploring the full model (2.5), we consider two special cases. The first case is when

we strip away the sex differences from our model. In particular, we assume (i) that there is no

vertical transmission, (ii) that females and males pay the same reproductive cost of immune

investment (i.e., c f = cm = c), and (iii) that there are no sex-specific levels of recovery or

disease-induced mortality so that γ f = γm = γ and α f = αm = α and β f f = β f m = βm f =

βmm = β. We introduce new state variables S = S f + S m for the total number of susceptible

hosts and I = I f + Im for the total number of infective hosts. When this system is at the

endemic equilibrium, under these assumptions, we would expect to have S f = S m = S/2 and

I f = Im = I/2. Since the evolutionary analysis is performed when the resident system is at
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equilibrium, we can reduce (2.5) to

dS
dt

=
b
2

(S + I) + γI − S βI − µS (2.14a)

dI
dt

= S βI − (γ + α + µ)I, (2.14b)

where b = bmax−2cγ. We can then solve (2.14) to find a disease-free equilibrium (S , I) = (0, 0)

and an endemic equilibrium given by

S =
γ + α + µ

β
and I =

(γ + α + µ)(b − 2µ)
β[2(α + µ) − b]

. (2.15)

Linear stability analysis of the associated Jacobian matrix shows that the disease-free equilib-

rium is unstable when b/2 > µ, in which case the system moves towards the endemic equilib-

rium (2.15), and that the endemic equilibrium remains stable as long as b/2 < α + µ.

The evolutionary analysis proceeds as outlined above. Detailed calculations, presented in

Appendix A, show that we can analytically find the coCSS level of pathogen disease-induced

mortality to be α =
√

d(γ + µ), which matches the result found in the model used in [28]

(and in the Discussion of [19]) to analyze host-pathogen coevolution in the absence of host

sex differences. Solving for the coCSS level of host recovery is not possible analytically, but

numerical simulation suggests that there are two possible outcomes: an unstable equilibrium

characterized by an intermediate level of recovery, and a stable equilibrium characterized by

a higher level of recovery. Selection, then, will push the host-pathogen system towards this

stable equilibrium, corresponding qualitatively with predictions made in previous work [28].

We now relax the restriction that γ f = γm and α f = αm, and allow for sex-specific levels

of recovery and disease-induced mortality. We continue to assume that there is no asymmetry

between the sexes, i.e., both sexes pay the same reproductive cost of immune investment (c f =

cm = c) and there is no vertical transmission (v = 0). Under these assumptions, model (2.5)

reduces to
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dS f

dt
=

b(S f + I f )(S m + Im)
N

+ γ f I f − S fβ f f I f − S fβ f mIm − µS f (2.16a)

dS m

dt
=

b(S f + I f )(S m + Im)
N

+ γmIm − S mβm f I f − S mβmmIm − µS m (2.16b)

dI f

dt
= S fβ f f I f + S fβ f mIm − (γ f + α f + µ)I f (2.16c)

dIm

dt
= S mβm f I f + S mβmmIm − (γm + αm + µ)Im, (2.16d)

where b = bmax − c(γ f + γm).

Analysis again proceeds as described above, with detailed calculations presented in Ap-

pendix A. We are able to show that the coCSS level of pathogen disease-induced mortality

is α f =
√

d(γ f + µ) in female hosts and αm =
√

d(γm + µ) in male hosts. This corresponds

qualitatively with results from previous authors that show that, in the presence of multiple

types of hosts, we expect the pathogen to evolve levels of disease-induced mortality specific

to each host type [15, 17]. The coCSS levels of host recovery cannot be found analytically,

and we instead use the numerical procedure described previously. Numerical results confirm

that the pathogen’s level of disease-induced mortality evolves towards that found analytically.

Moreover, the pathogen evolves the same level of disease-induced mortality in both female

and male hosts (i.e., α f = αm) and this matches the disease-induced mortality level predicted

in the previous result in the absence of any sex differences. This trend is also seen in the host

population, as our numerical results suggest that female and male hosts will evolve the same

level of recovery and that this communal level matches that found in the previous case with no

sex differences.
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Figure 2.2: Results from numerical simulation of the full model (2.5) across a range of repro-
ductive cost differences and vertical transmission rates. Solid black curves indicate boundaries
between regions containing qualitatively different evolutionary patterns, interpolated using nu-
merical results. Each point is split into two half-circles, with the area of the left half propor-
tional to the sex difference in disease-induced mortality rates and the right half proportional
to the sex difference in recovery rates. Red indicates a positive parameter difference, so that
higher values of the given parameter are found in females relative to males. Blue indicates a
negative parameter difference, so that higher values of the given parameter are found in males
relative to females.
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2.3.2 General Case

To analyze the full model with sex-specific differences, we use the numerical method described

above. The results of this method are summarized in figure 2.2 and various aspects of this figure

will be discussed in the following paragraphs. We used a range of parameter values chosen to

satisfy the stability conditions presented previously, i.e., b/2 > µ but b cannot be so large that

the endemic equilibrium becomes unstable and the population grows without bound (see table

2.1).

Table 2.1: Ranges tested for the various model parameters, along with the qualitative effect of
an increase in a given parameter value on the results in figure 2.2.

Paramater Range Effect on Fig. 2.2 of Increasing Parameter Value
bmax {5, 10, 20} boundary curves pulled towards vertical axis
µ {1, 2, 4} boundary curves pulled towards horizontal axis
βmax {10, 20, 50} no noticeable effect

d {1, 2, 5, 10} right boundary curve pulled towards horizontal axis

The vertical axis of figure 2.2 has been partially explored in previous work on pathogen

evolution in response to vertical transmission in hosts [15], and our results on disease-induced

mortality evolution along this axis match those predictions. In particular, along the entire

vertical axis our model predicts that pathogens will evolve a lower level of disease-induced

mortality in female hosts relative to male hosts (figure 2.2). Our results also build on these pre-

dictions by including the coevolution of host recovery. For low rates of vertical transmission,

we see female hosts evolve a lower level of recovery than male hosts. However, for sufficiently

large rates of vertical transmission, the trend changes and we observe female hosts evolving a

higher recovery rate than male hosts.

Restricting attention to the horizontal axis of figure 2.2, there is no vertical transmission

and hosts pay a sex-specific reproductive cost to immune investment. Here, we find that the

host sex that pays the lower cost to immune investment will evolve the higher recovery rate.

Since the pathogen is now being cleared more quickly in this sex, there is selective pressure to

evolve a higher level of disease-induced mortality in this sex relative to the other.
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Figure 2.3: Evolutionary trends within each sex. Solid black curves are the same numerically
interpolated boundaries identified in figure 2.2. Panel A: The area of the left half-circle is
proportional to the coCSS level of female host disease-induced mortality, while the area of
the right half-circle is proportional to the coCSS level of male host disease-induced mortality.
Panel B: The area of the left half-circle is proportional to the coCSS level of female host
recovery, while the area of the right half-circle is proportional to the coCSS level of male host
recovery.

Finally, we investigate what happens when we move off of the axes and include both ver-

tical transmission and sex-specific reproductive costs to immune investment. Here, we see

the emergence of a region in which female hosts evolve a higher level of recovery while the

pathogen evolves a lower level of disease-induced mortality than it does in male hosts (upper-

left region in figure 2.2). This is a novel pattern not found in previous literature, and matches

the observations from clinical research showing a stronger immune system and lower level of

disease-induced mortality in female relative to male hosts across a wide range of infectious

diseases. Of particular note is that both vertical transmission and host-pathogen coevolution

are necessary conditions for the emergence of this pattern in our model.

In addition to looking at the evolutionary trends in one sex relative to the other, we can

also look at how disease-induced mortality and recovery rates are changing in each sex in-

dependently. These results are shown in figure 2.3. Panel A of this figure shows that as we
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increase the degree of sexual asymmetry via an increase in the vertical transmission rate, we

expect the pathogen’s disease-induced mortality rate to decrease in females while remaining

relatively unchanged in males. Increasing the degree of sexual asymmetry via an increase in

the reproductive cost difference, conversely, has a less noticeable effect on disease-induced

mortality rates in either sex. Panel B of figure 2.3 shows that we expect recovery rates in

both sexes to increase when we increase the vertical transmission rate. Furthermore, increas-

ing the reproductive cost difference has a more noticeable effect on recovery rates than it does

on disease-induced mortality rates. In particular, as we magnify the cost difference in favour

of one sex over the other, recovery rates will increase in the sex that pays the lower cost and

decrease in the sex that pays the higher cost.

Lastly, we can also recast these results in terms of more easily measurable quantities of

potential interest to public-health officials. In particular, we look at the effects on both the case

mortality rates, χ f in females and χm in males, and the expected lifetime of a host, defined as

the sum of the average amount of time for which they are in either the susceptible or infected

classes (see figure 2.4). Panel A of figure 2.4 shows that we expect the case mortality rate to be

lower in females than males for almost all parameter values explored, with a greater difference

for larger vertical transmission rates. As vertical transmission rates increase, we expect females

will invest more in their immune system which should lower their case mortality relative to

males. Panel B of figure 2.4 shows that females will have a longer expected lifetime than

males for almost all parameter values explored, with this difference being amplified by larger

rates of vertical transmission. Again, this is expected given our previous result of females

investing more in their immune system for higher rates of vertical transmission, as they will be

less likely than males to die prematurely due to the disease.
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Figure 2.4: Results from numerical simulation of the full model (2.5) recast in terms of more
easily measurable quantities of potential interest to public-health officials. Solid black curves
are the same numerically interpolated boundaries identified in figure 2.2. Panel A: The area of
each circle is proportional to the difference between female and male case mortality rates. Red
indicates a positive difference, so that case mortality is higher in females than in males. Blue
represents a negative difference, so that case mortality is higher in males than in females. The
black dashed line indicates where the case mortality rate is the same in both sexes, interpolated
using numerical results. Panel B: The area of each circle is proportional to the difference
between the expected lifetime of females and males. Red indicates a positive difference, so
that females have a longer expected lifetime than males. Blue indicates a negative difference,
so that males have a longer expected lifetime than females. The black dashed line indicates
where the expected lifetimes of both sexes are the same, interpolated using numerical results.
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2.4 Discussion

We have considered a model in which asymmetry was introduced between host sexes via a

difference in the reproductive cost to immune investment and the possibility of vertical trans-

mission in female hosts. The former is a direct cost to hosts, while the latter can be viewed

as an indirect cost to female hosts. In this way, we are treading on well-travelled ground, but

we place these effects in a coevolutionary setting in order to develop a more complete explana-

tion for the evolution of a greater immune response in females and increased disease-induced

mortality in males.

If we consider only the effects of sex-specific reproductive costs to immune investment,

our results predict that hosts and pathogens will coevolve to a state in which the sex that incurs

the lower cost will invest more heavily in their immune system and experience a higher rate

of disease-induced mortality. If a female host increases her immune investment due to a lower

reproductive cost, this reduces the pathogen’s fitness in female hosts relative to male hosts.

This puts selective pressure on the pathogen to increase its disease-induced mortality rate in

female hosts, which in turn puts pressure on female hosts to further increase their immune

investment. Eventually, this process will settle into a state where female hosts invest more

heavily in their immune system and the pathogen exhibits a higher disease-induced mortality

rate in female hosts. The same argument holds if male hosts instead pay the lower reproductive

cost to immune investment, mutatis mutandis. This result echoes previous work that studied

host or pathogen evolution in isolation. For example, [48] found that higher host immune

investment can select for higher pathogen disease-induced mortality, while [29] found that

higher pathogen disease-induced mortality can select for an increased host immune investment.

Our work establishes these outcomes as possible endpoints for host and pathogen populations

evolving in tandem.

When we include vertical transmission, we change the nature of the trade-off felt by fe-

male but not male hosts. For female hosts, immune investment now benefits both survival and

fecundity, where before it could only benefit survival. For low rates of vertical transmission,



38 Chapter 2. Sex-specific Differences

we predict decreased female immune investment since this added benefit is not yet enough

to outweigh the reproductive cost of immune investment. However, as the rate of vertical

transmission increases, the reproductive benefit to female immune investment increases. There

is then a threshold rate of vertical transmission past which female hosts will invest more in

their immune system than male hosts. Such a pattern is noted in [29], but is described as a

result of male immunity being more sensitive to changes in disease-induced mortality than fe-

male immunity. Here, we show that this outcome is not only a viable endpoint of selection via

coevolution of both hosts and pathogens, but also that this can be obtained as a result of consid-

ering the effects of female reproduction. Furthermore, this prediction matches the trend seen

in clinical studies across a wide range of infectious diseases, and provides a more complete

evolutionary explanation for this trend if the disease is able to be vertically transmitted.

Ewald [69] discusses the idea that vertical transmission should shift a host-pathogen pop-

ulation away from parasitism and towards a state of mutualism, similar to how beneficial mi-

crobes can evolve to increase their own fitness through increasing their host’s fitness [70]. Our

results support this hypothesis in female hosts for sufficiently large rates of vertical transmis-

sion. In our model, vertical transmission offers an additional transmission route to pathogens in

a female host, so that it would be a fitness benefit to the pathogen to reduce its level of disease-

induced mortality in order to survive longer inside a female host. This is a trend that has been

shown in previous work on non-sex-specific models [71] and non-coevolutionary sex-specific

models [15]. A reduction in disease-induced mortality will also confer a fitness benefit to fe-

male hosts. However, our results also suggest that this shift towards mutualism can be disrupted

by the effects of differential reproductive costs to immune investment between host sexes. In

particular, if female hosts incur a significantly smaller reproductive cost to immune investment

than male hosts, then evolution can maintain a parasitic relationship between pathogens and

female hosts for low levels of vertical transmission.

Our results also have potential implications for public health and personalized medicine.

First, selection favours higher levels of immune investment in both sexes as the vertical trans-
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mission rate grows. Second, regardless of which sex is investing more in their immune system

or has a higher disease-induced mortality rate, we generally expect females to experience a

lower level of case mortality than males. The sex-related difference in case mortality is most

apparent in the presence of large rates of vertical transmission, but we only ever predict in-

creased case mortality in females if they simultaneously incur a higher reproductive cost to im-

mune investment and the rate of vertical transmission is low. Finally, the pattern of increased

immune investment and decreased disease-induced mortality in female hosts could, in turn, ex-

plain the observed pattern of greater prevalence of autoimmune diseases in females [72, 73, 74].

If females mount a strong immune response even when a pathogen exhibits a relatively weak

rate of disease-induced mortality, due to the presence of strong vertical transmission, then they

may have a higher likelihood of mistakenly attacking their own cells instead of those of the

pathogen. If this is the case, we can speculate based on our model that implementing policies

aimed at reducing the rate of vertical transmission could lower the risk of autoimmune disease

in females, while still maintaining a lower level of case mortality than in males. More broadly,

our work contributes to a growing body of research (e.g., [24, 25, 26, 27, 15]) that shows that

host sex is an important component of conversations on infectious diseases.
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Prophylactic Host Behaviour Discourages

Pathogen Exploitation

3.1 Introduction

Mathematical study of infectious diseases has a long history that predates even the well-known

contributions of [1] and [2]. Mathematical study of the evolution of pathogens, however, is rel-

atively recent. One avenue of inquiry has explored the ways in which natural selection shapes

the virulent effects pathogens inflict on their hosts. Models have provided insight into the ways

in which various factors—such as parasite reproductive rates [75], host density [76], related-

ness among co-infecting pathogen strains [43], and multiple types of hosts [17]—modulate the

expressed level of virulence. A key prediction emerging from this body of work is that, in

many cases, selection acts to maximize the basic reproduction number [10, 19], i.e., the ex-

pected number of new infections caused by a single infective host [3]. In particular, adaptive

levels of pathogen virulence balance a trade-off between the average duration of infection and

the rate of disease transmission [12, 8]. As disease transmission rates slow, then, standard the-

ory predicts selection will respond by shaping virulence in a way that decreases the duration of

infection.

40
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Mathematics has also contributed to our understanding of the ways in which host traits

impact the evolution of pathogen virulence. Here, models have explored the effects of co-

evolution with innate host defences [19, 28], use of antibiotics [77], vaccines and vaccination

behaviour [49, 50], and other social factors related to hosts themselves [78]. It is this last

item—namely, the effect of host social behaviour on pathogen evolution—on which we focus

our attention in this paper. [79] discusses the idea of a “behavioural immune system” that

complements the standard physiological immune system in humans. This behavioural immune

system is comprised of various prophylactic measures, such as social distancing (e.g., avoiding

handshakes when greeting) or improved personal hygiene (e.g., hand washing), that individuals

may adopt to reduce the likelihood of infection [79]. Importantly, individuals can start and stop

these behaviours as often as desired (e.g., as in [33]), as opposed to measures like vaccination

that are, in a sense, irreversible.

Unfortunately, little is known about how hosts’ behavioural immune system impacts the

evolution of pathogens. What work has been done in this area predicts that prophylactic be-

haviour exhibited by hosts can select for higher pathogen virulence, assuming that the per-

ceived severity is higher for the more virulent strain and that the prophylactic measures are

more effective against the less virulent strain [33]. This work, however, considers short-term

evolutionary outcomes only, and does not consider the effects on host behavioural changes of

factors outside of social learning. In particular, the model of host behavioural dynamics in

[33] does not account for all the ways in which host demographics and disease dynamics could

affect the proportion of susceptible individuals engaging in prophylaxis. In order to assess

additional risks posed by pathogen evolution, then, different models are required.

We devise a model that tightly couples changes in the host’s behavioural immune system,

host demographics, and disease dynamics, in a way that allows us to make predictions about

the long-term evolution of pathogen host exploitation. We focus on pathogen exploitation in-

stead of virulence as we are considering sublethal disease effects and low-risk host behaviours

(e.g., hand washing). An important aspect of the host behaviours studied here is the relation
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between the utility cost associated with engaging in that behaviour, which may take many dif-

ferent forms, and the benefit in terms of a reduced likelihood of pathogen transmission. A

simple example would be more frequent hand washing, where an individual engaging in this

behaviour will benefit from a lower risk of contracting the disease at the cost of some extra time

out of their day and having to spend more money on soap than they would otherwise. Another,

more compelling, example is social distancing, which again reduces disease transmission but

can have much more severe social and economic costs as can be seen in the current COVID-19

pandemic [80]. We find that prophylactic behaviour uniformly reduces the pathogen’s exploita-

tion below the level expected in the absence of such behaviour. Furthermore, we argue that the

driving force behind our result is the modified nature of the transmission-recovery trade-off

faced by the pathogen as a result of the inclusion of host prophylactic behaviour.

3.2 Model

3.2.1 Disease Dynamics

We begin with a version of an endemic SIR model of infectious-disease dynamics [4] modified

in a way that separates a host population of total size N into two groups. Individuals in group

i = 0 are those who do not take prophylactic measures that limit (but do not completely prevent)

disease transmission, whereas those in group i = 1 do take such measures. Individuals in each

group are further subdivided according to their disease status. Let S i, Ii, and Ri denote the

number of individuals in group i who are susceptible to infection, infective, and recovered

from infection, respectively.

We assume that transmission is frequency-dependent. This is a common assumption when

modelling sexually transmitted diseases (STDs) since contacts between individuals in those

cases are generally not the result of random mixing [81, 82]. While we are not considering

STDs here, some prophylactic behaviours may create similar contact patterns within the popu-

lation. For example, in the case of social distancing, individuals intentionally limit their contact
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with others, and adding more people to the population may not greatly affect the average con-

tact rate. This would make frequency-dependent transmission a more appropriate model.

Each individual encounters another at a fixed rate and, given that an encounter is between

a susceptible and an infective, the likelihood of disease transmission depends on the groups to

which individuals belong. If βi j denotes the product of the probability of disease transmission

from a j-infective to an i-susceptible and the per-capita encounter rate, then S iβi jI j/N gives us

the total rate at which new infections are created in group i. Infective individuals recover at

a fixed per-capita rate, γ, independent of their group. As a result of recovery, individuals are

imbued with life-long immunity to future infection. Since we are considering sublethal disease

effects, we do not include disease-related mortality (virulence) in our model.

Individuals can also switch groups. For now, we use the constants τi j, φi j and ηi j to represent

the per-capita rates at which susceptible, infective, and recovered individuals, respectively,

switch from group j to i. We expand on the details surrounding group switching later. We can

summarize the description above using a system of differential equations. Scaling time so that

the background death rate is unity (i.e., one time unit is equivalent to the average lifetime of an

individual in the population), and matching birth and death rates, we get

dS 0

dt
= N − S 0

β00

N
I0 − S 0

β01

N
I1 − S 0 + τ01S 1 − τ10S 0 (3.1a)

dS 1

dt
= −S 1

β10

N
I0 − S 1

β11

N
I1 − S 1 − τ01S 1 + τ10S 0 (3.1b)

dI0

dt
= S 0

β00

N
I0 + S 0

β01

N
I1 − (1 + γ)I0 + φ01I1 − φ10I0 (3.1c)

dI1

dt
= S 1

β10

N
I0 + S 1

β11

N
I1 − (1 + γ)I1 − φ01I1 + φ10I0 (3.1d)

dR0

dt
= γI0 − R0 + η01R1 − η10R0 (3.1e)

dR1

dt
= γI1 − R1 − η01R1 + η10R0. (3.1f)

Here, we make the assumption that all newborns enter the S 0 compartment. While realistically

we might expect a fraction to enter the S 1 compartment (e.g., through cultural vertical trans-
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mission of prophylactic behaviours), the presence of the switching terms allows individuals in

the S 0 compartment to immediately move into the S 1 compartment if they choose to do so,

justifying our choice of modelling births as entering only the S 0 compartment.

Note that the differential equations in (3.1) sum to zero, and so total population size N is

constant. This, along with the fact that group membership among recovered individuals is of

no consequence, allows us to omit (3.1e) and (3.1f). We now use ui = S i/N and vi = Ii/N to

denote the fraction of susceptible and infective individuals, respectively, in group i. Similarly,

we use u = u0 + u1 and v = v0 + v1 to denote the total fraction of susceptible and infective

individuals, respectively. The dynamics of u and v can then be modelled by the following set

of differential equations:

du
dt

= 1 −
[
y(β01(1 − x) + β11x) + (1 − y)(β00(1 − x) + β10x)

]
uv − u (3.2a)

dv
dt

=
[
y(β01(1 − x) + β11x) + (1 − y)(β00(1 − x) + β10x)

]
uv − (1 + γ)v. (3.2b)

We also track the fraction of susceptible and infected individuals taking prophylactic mea-

sures using x = u1/u and y = v1/v, respectively. Given this definition of x, we can derive

the following differential equation to describe how the proportion of susceptible individuals

engaging in prophylaxis changes due to various factors:

dx
dt

= −

births︷︸︸︷
x
u
−

group switching︷               ︸︸               ︷
τ01x + τ10(1 − x) +

infection of hosts not engaged in prophylaxis︷                               ︸︸                               ︷
(β00(1 − y)v + β01yv)(1 − x)x

− (β10(1 − y)v + β11yv)x(1 − x)︸                               ︷︷                               ︸
infection of hosts engaged in prophylaxis

. (3.2c)

The first term represents the fact that births increase the pool of individuals not engaging in

prophylactic measures, which in turn reduces the relative proportion of susceptible individuals

engaging in prophylactic measures. The τi j terms capture the effects of susceptible individuals

switching between engaging and not engaging in prophylaxis. The final two terms correspond

to infection. In one case, infection reduces the pool of individuals not engaging in prophylaxis
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and subsequently increases the relative proportion of individuals engaging in prophylaxis. Con-

versely, the proportion of susceptible individuals engaging in prophylaxis is directly reduced

by infection of these individuals. Similarly, we can define the differential equation for y as:

dy
dt

= −

group switching︷               ︸︸               ︷
φ01y + φ10(1 − y)−

infection of hosts not engaged in prophylaxis︷                              ︸︸                              ︷
(β00(1 − y) + β01y)(1 − x)uy

+ (β10(1 − y) + β11y)xu(1 − y)︸                              ︷︷                              ︸
infection of hosts engaged in prophylaxis

. (3.2d)

The first term represents the effects of infective individuals switching between engaging and

not engaging in prophylaxis. The latter two terms correspond to infection in the same vein as

in equation (3.2c).

Equations (3.2c) and (3.2d) capture dynamic features of the proportion of hosts engaged

in prophylaxis not found in previous work. The switching terms in the modelling undertaken

by [33] account for utility costs and benefits of prophylaxis, but neglect changes due to de-

mographics (births) and infection. Our equations, therefore, combine multiple processes to

establish a more realistic model of changing host behaviour.

We now return to the issue of group switching and the details surrounding the switching

terms τi j and φi j, ultimately replacing these constants with functions of x, y, and v. Individuals

do not always adhere to beneficial measures such as taking medications [83], exercise regimes

[84], or dietary restrictions [85], so we include group switching in our model to account for

these types of effects. Following [33], we use the replicator dynamic [34] to model the total

rate at which individuals move from one group to another. We assume that the decision to

switch groups is driven by utility, as discussed in [86]. Specifically, an individual’s utility will

be determined by their risk of infection less the utility cost of taking prophylactic measures.

For an i-susceptible, the risk of infection it faces will be quantified by the force of infection,

∑
j

−
βi jI j

N
= − (βi0(1 − y) + βi1y) v.
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Consequently, the utility of a susceptible individual adopting prophylactic measures is

− (β10(1 − y) + β11y) v − χ

where χ is the utility cost to engaging in prophylaxis. Infective individuals have no risk of

infection, so they only pay the utility cost of the prophylactic measure should they choose to

engage in it. Thus, −χ represents the utility of an infective individual engaging in prophylaxis.

A susceptible (resp. infective) individual will then choose to switch into a given group when

the utility of an individual in that group exceeds the utility of the average susceptible (resp.

infective) in the population. This replicator-dynamics model of switching gives us

− τ01x + τ10(1 − x) = kx(1 − x)[y(β01 − β11) + (1 − y)(β00 − β10)]v − kχx (3.3)

and

− φ01y + φ10(1 − y) = −kχy (3.4)

where k is a constant that reflects the rate at which individuals change their behaviour based

on the behaviour of others in the population (see Appendix B for a more detailed derivation of

equations 3.3 and 3.4). We note that our model of switching makes the simplification (made in

[33]) of assuming individuals have up-to-date information about the global state of the popula-

tion. Our final model of disease dynamics can now be stated as,

du
dt

= 1 −
[
y(β01(1 − x) + β11x) + (1 − y)(β00(1 − x) + β10x)

]
uv − u (3.5a)

dv
dt

=
[
y(β01(1 − x) + β11x) + (1 − y)(β00(1 − x) + β10x)

]
uv − (1 + γ)v (3.5b)

dx
dt

=
−x
u

+ (k + 1)x(1 − x)
[
y(β01 − β11) + (1 − y)(β00 − β10)

]
v − kχx (3.5c)

dy
dt

= −
[
y(β01(1 − x)y − β11x(1 − y)) + (1 − y)(β00(1 − x)y − β10x(1 − y))

]
u − kχy. (3.5d)

A sample trajectory of this system is shown in figure 3.1, panel A.
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Figure 3.1: Panel A shows a sample trajectory for the resident system (3.5). As described in the
main text, time has been rescaled so that one time unit is equivalent to the average lifetime of
an individual in the population. Panel B shows a bifurcation plot indicating the cost threshold
(dotted red line) at which the endemic equilibrium without prophylaxis (dashed blue line) and
the endemic equilibrium with prophylaxis (solid black line) undergo an exchange of stability.
Parameter values are: κ = 5, βmax = 70.4721, k = 5.1745, and ε = 0.5951. The initial condition
used in panel A was: u = 0.7, v = 0.3, x = 0.01, and y = 0.01.

Note that, if no individual in the population takes prophylactic measures, then x = y = 0

and we recover the standard endemic SIR model (Appendix C). When some fraction of the

population takes prophylactic measures, however, standard predictions of the SIR model may

or may not hold. The linear stability analysis presented in Appendix C shows that the endemic

equilibrium without individuals engaging in prophylaxis remains stable as long as

χ > R0 −

(
k + 1

k

) (
β10

β00
(R0 − 1) + 1

)
∆
= χc, (3.6)

where R0 = β00/(1 + γ) is the basic reproductive number [3] of the system in the absence of

prophylactic measures. Below this threshold, the cost to taking prophylactic measures is low

enough that the system moves towards a new endemic equilibrium (û, v̂, x̂, ŷ) at which some

non-zero fractions of susceptible and infective individuals adopt prophylactic measures (figure

3.1, panel B). It is this new endemic equilibrium that will frame the evolutionary model we
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pursue in the next section.

3.2.2 Evolutionary Dynamics

We consider the evolution of the level of pathogen exploitation of its host, denoted ξ > 0.

Exploitation affects disease transmission, with a greater ξ value corresponding to a greater βi j.

To reflect this, we now write βi j(ξ) where

βi j(ξ) =
βmax (1 − ε)i+ jξ

κ + ξ
. (3.7)

In words, we are treating βi j as an increasing function of ξ that saturates at a value of βmax(1 −

ε)i+ j, where ε is the probability that the prophylactic measures prevent disease transmission.

We assume that prophylactic measures taken by individuals fail independently, so (1−ε)2 gives

the probability that the disease is transmitted between two individuals engaging in prophylaxis.

The rate at which transmission saturates is controlled by κ > 0, with larger values of this

constant corresponding to a reduced rate of saturation.

Exploitation also affects recovery. To reflect this assumption, we write γ(ξ), where γ(ξ) =

cξ for a constant c with units of inverse time (the exploitation level ξ is dimensionless). Without

loss of generality, we take c = 1. Here, increased exploitation acts to reduce the expected

duration 1/(1 + γ(ξ)) of an infection. This penalty of larger ξ, then, trades off against the

transmissibility benefits described above. Previous authors have either assumed (or shown) that

such trade-offs exist, though they are often mediated by disease-related mortality [10, 13, 11] or

viral load [14]. Here, we follow [15] and [16] by assuming the trade-off faced by the pathogen

involves recovery. For example, through increased viral load making it more likely that the

pathogen is detected by the host’s immune system, or increased exploitation leading to more

antigens presented on the surfaces of target cells.

We use an adaptive dynamics approach to model the evolution of pathogen exploitation

under the primary influence of natural selection ([5, 6, 7]; and see [19, 15, 30] for examples
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specifically related to virulence evolution). We introduce a rare mutant pathogen with exploita-

tion trait ξm into a resident pathogen population with exploitation trait ξ. It is assumed that the

resident system has reached equilibrium prior to introducing the mutant, that there is no co-

infection, and that the prophylactic measures are equally effective at preventing transmission

of both strains.

Let vm denote the fraction of individuals in the population infected with the mutant strain.

While the mutant is rare, its dynamics are well approximated by

dvm

dt
= [ym(β01(ξm)(1 − x̄) + β11(ξm)x̄) + (1 − ym)(β00(ξm)(1 − x̄) + β10(ξm)x̄)]ūvm

− (1 + γ(ξm))vm, (3.8a)

where overbars denote equilibrium values of the respective variables. As we do with the resi-

dent population, we can also track the proportion of individuals infected with the mutant strain

engaging in prophylaxis. Denoting this proportion by ym, we can describe its dynamics by

dym

dt
= −[ym(β01(ξm)(1 − x̄)ym − β11(ξm)x̄(1 − ym))

+ (1 − ym)(β00(ξm)(1 − x̄)ym − β10(ξm)x̄(1 − ym))]ū − kχym. (3.8b)

If the mutant strain becomes common and the mutant-free equilibrium becomes unstable, we

say that the mutant has successfully invaded the resident population. Provided the system

is sufficiently close to an evolutionarily steady state, a mutant who successfully invades will

become the new resident [5].

Since vm does not appear in (3.8b), we can first solve for the equilibrium value ȳm of ym,

substitute that value into (3.8a), and study (3.8a) alone. If the right-hand side of (3.8a) is

positive (resp. negative), the mutant invades (resp. is eliminated) because it is favoured (resp.

disfavoured) by natural selection. The sign of the right-hand side of (3.8a) is the same as the
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sign of the difference between

W(ξm, ξ) =
βavg(ξm, ξ) ū(ξ)

1 + γ(ξm)
(3.9)

and unity, where

βavg(ξm, ξ) =

[
1 − x̄(ξ) x̄(ξ)

] β00(ξm) β01(ξm)

β10(ξm) β11(ξm)


1 − ȳm(ξm)

ȳm(ξm)


represents an average transmission rate taking into account the different groups of susceptible

and infective individuals. W then has a clear biological interpretation, made in previous work

[19], in terms of the basic reproductive number of the mutant strain. In particular, an infection

with the mutant strain lasts an average of 1/(1 + γ) time units and an average of βavgū new

infections are created during this time. If this quantity is larger than one (resp. smaller than

one), then the mutant population will grow (resp. shrink). Writing W as we have done in

equation (3.9) also highlights the transmission-recovery trade-off described above, captured

through the βavg and γ terms. Through the ȳm terms, the pathogen is also able to influence

whether a new infection occurs in an individual engaging or not engaging in prophylaxis. We

can, therefore, use W as an invasion fitness function in the adaptive dynamics analysis, even

though the derivation of the function proceeded in a non-standard way.

Following the discussion above, the direction of evolution of ξ that is favoured by nat-

ural selection is given by the sign of ∂W/∂ξm|ξm=ξ. Consequently, the selective process is at

equilibrium whenever ξ = ξ̄ where ξ̄ satisfies

∂W
∂ξm

∣∣∣∣∣
ξm=ξ=ξ̄

= 0. (3.10)

An equilibrium value ξ̄, i.e., one that satisfies condition (3.10), may or may not be stable. If
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the equilibrium value ξ̄ attracts nearby resident populations, then

d
dξ

[
∂W
∂ξm

∣∣∣∣∣
ξm=ξ

]
ξ=ξ̄

≤ 0 (3.11)

and we say that ξ̄ is convergence stable [21]. If the equilibrium ξ̄ resists invasion from nearby

mutants, then
∂2W
∂ξ2

m

∣∣∣∣∣
ξm=ξ=ξ̄

≤ 0 (3.12)

and we say that ξ̄ is evolutionarily stable (sensu [20]). A sufficient condition for either type of

stability is obtained by replacing the weak inequality with a strict one. It is the strict sufficient

versions that we use here. When ξ̄ is both convergence stable and evolutionarily stable, we say

it is a continuously stable strategy (CSS) [22].

3.3 Results

3.3.1 Simple Cases

There are two special cases that can be analyzed with relative ease. The first special case

assumes the cost of prophylaxis exceeds the threshold χc. In this case, no one in a population

supporting the resident endemic disease is adopting prophylactic measures and so x̄ = ȳ = 0.

The equilibrium value of ym can be shown to be ȳm = 0 (see Appendix D) and so the fitness

function simplifies to

W(ξm, ξ) =
β00(ξm)ū(ξ)
1 + γ(ξm)

=
R0(ξm)
R0(ξ)

. (3.13)

The mutant strain is then able to invade (resp. is eliminated) if W(ξm, ξ) exceeds (resp. is less

than) unity; equivalently, if R0(ξm) exceeds or is less than R0(ξ). More importantly, the CSS

level of exploitation, ξ̄, will maximize R0(ξ) and so ξ̄ =
√
κ. This will serve as a benchmark

against which more general results will be compared.

The second special case assumes that prophylactic measures are cost-free, i.e., χ = 0. Since
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χ < χc, the system moves towards an endemic equilibrium where some non-zero proportions

of susceptible and infective individuals are engaging in prophylaxis. While the replicator dy-

namics predict that all individuals will begin adopting prophylactic measures in the absence

of cost, the terms noted in equations (3.2c) and (3.2d) relating to demographics and disease

dynamics counteract this effect. This will result in the evolution of intermediate levels of the

proportions of susceptible and infective individuals engaging in prophylaxis. Under the as-

sumption of zero cost, the distribution of the mutant strain, captured by ȳm, does not depend on

the mutant exploitation level and so the pathogen is not able to influence whether new infec-

tions occur in individuals engaging or not engaging in prophylaxis. In this case, the selection

gradient simplifies and results in a CSS of ξ̄ =
√
κ (see Appendix D). This is the same result as

the benchmark established in our first special case, despite the presence of individuals taking

prophylactic measures. Absence of cost, it seems, decouples the pathogen’s evolution from the

evolution of host behaviour due to the pathogen no longer being able to influence the relative

proportions of infections in individuals engaged or not engaged in prophylaxis.

3.3.2 Evolution Near the Critical Cost

In general, the model cannot be explored analytically. However, there are certain analytical

results we can derive for cost values other than those discussed in the previous section. In

particular, we can show that for any cost value, there is a unique stable equilibrium value of ym

on the interval [0, 1]. Moreover, we can show that the derivative of this equilibrium value with

respect to the mutant exploitation ξm is always positive, and that this complicates the relation-

ship between pathogen exploitation and transmissibility (see Appendix E for a derivation of

these results). This leads to a change in the evolutionarily stable level of pathogen exploitation

away from that which would be expected in the absence of prophylaxis.

If we are near the critical cost χc we can derive quasi-analytic results to predict the direction

of this change in the CSS value of ξ. When the cost χ is slightly below its critical threshold χc,

we can approximate the CSS exploitation level as ξ̄ ≈
√
κ + σ(χ − χc) where χ − χc < 0 and σ
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is a constant such that

σ ∝ −
∂

∂x̄

[
∂W
∂ξm

∣∣∣∣∣
ξm=ξ

]
χ = χc

ξ =
√
κ

. (3.14)

If σ is positive (resp. negative), then ξ̄ is below (resp. above) the benchmark value of
√
κ. As

equation (3.14) shows, whether we are above or below this benchmark depends on how small

changes in cost lead to small changes in the proportion of susceptible individuals engaged in

prophylaxis which, in turn, lead to changes in the selection gradient acting on exploitation (see

Appendix F for a derivation of equation 3.14).

We can show with a quasi-analytic approach that equation (3.14) is always positive. Our

evidence relies on first choosing feasible values of our parameters. In particular, we need

R0 > 1. If R0 > 1, then we need also to choose the probability ε > 1
k+1

R0
R0−1 , thus ensuring that

χc > 0. To ensure that ε < 1, we then need to choose k > 1
R0−1 .

Using feasible parameters and working to zeroth order in χ − χc, we use the computer

algebra software (CAS) Maple (version 2019.1) to investigate the sign of σ as described in

equation (3.14). We find that the requirement that R0 > 1 necessarily restricts our choices

of maximal transmissibility, βmax, to values that lie above the curve traced out by (1 +
√
κ)2

(figure 3.2, panel A). The CAS shows that nullclines of the partial derivative in (3.14) never

exceed the (1 +
√
κ)2 curve for the wide range of feasible parameters we investigated (figure

3.2, panel B). Thus, the sign of σ does not change provided the R0 > 1 restriction is met.

Moreover, test points show that the sign of σ itself is positive when feasible model parameters

are chosen. Based on CAS investigations described in Appendix G, then, we conclude that,

just below the critical cost, selection acts to reduce the CSS level of host exploitation exhibited

by the pathogen.

3.3.3 Evolution for Arbitrary Cost

Our results can be extended numerically for costs that are possibly much smaller than the

critical value, χc, using a Matlab (version R2019a) procedure available on the GitHub repos-
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A B

Figure 3.2: Panel A shows the curve χc = 0 (dashed grey) overlaying the curve R0 = 1 (solid
black), and the region of parameter space where χc > 0 and R0 > 1. Dotted grey curves
represent the roots of the partial derivative on the right-hand side of equation (3.14) and panel
B shows that these all occur on or below the black and dashed grey curves (note that vertical
dotted grey lines are an artifact of jump discontinuities). Choosing parameter values in the
region above the curves in panel A results in the partial derivative on the right-hand side of
equation (3.14) being negative, as noted in panel B. The implication is that the parameter σ is
positive and so pathogen exploitation will decrease relative to the benchmark level of

√
κ close

to the cost threshold χc.
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itory at https://github.com/evanjmitchell/doctoral-thesis. We build the proce-

dure around the observation that locally asymptotically stable equilibrium solutions to dξ/dt =

(∂W/∂ξm)|ξm=ξ are also convergence-stable evolutionary equilibria as defined by conditions

(3.10) and (3.11), respectively. As a result, numerical iteration of this differential equation

can be used to find candidate CSS strategies. The evolutionary stability of candidate CSS

strategies can be confirmed with a centred finite-difference approximation of (3.12). Since the

error is on the order of the square of the distance between ξ values used in the approximation,

we consider any value within this error to satisfy the ESS condition (3.12).

The results of our numerical procedure confirm that the benchmark CSS level of ξ̄ =
√
κ

is obtained when χ = 0 and χ = χc. Second, numerical results confirm the reduction in the

CSS level of pathogen exploitation for χ slightly smaller than χc. Third, and most important,

numerical results indicate that the CSS exploitation level ξ̄ changes in a simple way as cost is

reduced from its critical value to its natural lower limit at zero (figure 3.3). In particular, as

cost is reduced ξ̄ decreases monotonically from the benchmark value until it reaches a mini-

mum. Once at the minimum, the direction of selection changes and ξ̄ increases monotonically,

ultimately returning to the benchmark when cost disappears.

This pattern holds for a wide range of parameter values chosen to satisfy the conditions

described in the previous section. Specifically, we investigate four different values of κ: κ = 0.1,

κ = 1, κ = 10, and κ = 100. For each of these values, we choose five values of βmax above the

(1 +
√
κ)2 threshold: βmax = (1 +

√
κ)2 + 5, βmax = (1 +

√
κ)2 + 10, βmax = (1 +

√
κ)2 + 50,

βmax = (1 +
√
κ)2 + 100, and βmax = (1 +

√
κ)2 + 500. We then choose five values of k

(k = 1/(R0 − 1) + 5, k = 1/(R0 − 1) + 10, k = 1/(R0 − 1) + 50, k = 1/(R0 − 1) + 100, and

k = 1/(R0−1)+500) and five values of ε spread evenly between the thresholdR0/((k+1)(R0−1))

and 1, for a total of 500 combinations of parameter values.

Although the decline in the CSS value of exploitation shown in figure 3.3 appears modest,

recall that one time unit is equivalent to the average lifetime of an individual in the population.

This means that the change in the duration of infection as ξ̄ changes is on the order of years. For

https://github.com/evanjmitchell/doctoral-thesis


56 Chapter 3. Host Prophylactic Behaviour

A B

C D

0 5 10 15 20
0.285

0.29

0.295

0.3

0.305

0.31

0.315

0 10 20
0

0.5

1

0 10 20
0

0.2

0.4

0.6

0 10 20
0

0.5

1

0 10 20
0

0.5

1

0 1 2 3 4 5 6 7 8 9 10
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 5 10
0

0.5

1

0 5 10
0

0.2

0.4

0 5 10
0

0.5

1

0 5 10
0

0.2

0.4

0.6

0 0.5 1 1.5 2
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

0 1 2

0.4

0.6

0.8

1

0 1 2
0

0.1

0.2

0 1 2
0

0.5

1

0 1 2
0

0.2

0.4

0 0.5 1 1.5 2 2.5 3

5

6

7

8

9

10

0 1 2 3
0

0.5

1

0 1 2 3
0

0.02

0.04

0.06

0 1 2 3
0

0.5

1

0 1 2 3
0

0.2

0.4

Figure 3.3: Plots of the CSS level of pathogen exploitation found using the numerical procedure
described in the main text. Panel A contains sample results for κ = 0.1, panel B for κ = 1,
panel C for κ = 10, and panel D for κ = 100. Inset figures show the equilibrium values of the
epidemiological variables u, v, x, and y. The cost values presented are all below the critical
cost threshold χc. In all cases, the CSS level of exploitation is lower than the benchmark value
ξ̄ =
√
κ, plotted as a dashed black line, observed in the absence of prophylaxis.
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example, if the average lifespan of an individual in the population is 79 years, then a decrease

from ξ̄ = 1 to ξ̄ = 0.86 (as seen in figure 3.3, panel B) corresponds to an increase in the duration

of infection of approximately three years.

3.4 Discussion

We study the impact of measures taken by hosts to limit disease transmission. Here, the will-

ingness among hosts to engage in these prophylactic behaviours responds to changing utility

costs and benefits. We focus on long-term evolution of a pathogen, defined by successive muta-

tions until an equilibrium state is reached [86], alongside the rapid evolution of host behaviour.

We find that when prophylactic behaviour among hosts occurs, pathogen host exploitation is

always lower than it is in the absence of prophylaxis. Moreover, we find that stable exploita-

tion is lowest for an intermediate frequency of prophylactic behaviour among hosts (indirectly,

intermediate cost of prophylaxis).

This study contributes to the growing body of work that shows host behaviour, in general,

influences pathogen evolution. Much of this work has considered vaccination behaviour, in

particular, and has described both beneficial and detrimental evolutionary outcomes. In the case

of human papillomavirus (HPV), for example, theoretical work predicted HPV vaccination

will select for higher levels of virulence [50]. By contrast, empirical evidence suggests that

vaccination can actually limit the ecological opportunity open to certain HPV types [87]. In

keeping with the mixed nature of results, [51, 52] find that the direction of selection acting on

pathogen virulence depends on the mechanism by which vaccination works.

More closely related to the current study are the conclusions of [33]. They show that

host prophylactic behaviour in response to an endemic disease can allow for the invasion of a

pathogen strain that is more virulent than the resident, and that the conditions for such a result

are an increased perceived severity for the more virulent strain and more effective prophylactic

measures against the less virulent strain. While our model considers sublethal disease effects
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and does not explicitly include virulence, the positive relationship between pathogen exploita-

tion and virulence allows us to predict that such an outcome cannot occur in our model. This

is a result of the fact that our benchmark result, established in the absence of prophylactic

behaviour, is our worst case scenario. For example, consider a mutant pathogen with an ex-

ploitation level ξ >
√
κ. When the cost is above its critical value so that no one is engaging

in prophylaxis, then this mutant cannot invade a resident population at the CSS ξ̄ =
√
κ. If

we then decrease the cost below its critical value so that individuals begin to take prophylactic

measures, the CSS exploitation level decreases away from ξ̄ =
√
κ and so the mutant is still

unable to invade the resident population.

The discrepancy between our prediction and those of [33] is due to the differences in how

we model the dynamics of host behaviour. In addition to looking at actual risk instead of

perceived risk (as in [33]), the evolution of host behaviour in our work is not governed solely by

the replicator dynamics. Our model consists of additional terms to represent the effects of births

and infection on the proportion of individuals engaging in prophylactic behaviour. Moreover,

we track the proportion of infective individuals taking prophylactic measures, which adds an

extra layer of complexity to the relationship between pathogen exploitation and transmissibility

(Appendix E). These key differences are missing from previous work [33] and lead us to the

conclusion that, for all feasible sets of parameter values, we expect a decrease in pathogen

exploitation away from the benchmark value found in the absence of prophylactic behaviour.

To obtain a more direct comparison to previous work, future iterations of our model should

explicitly include virulence and explore the subsequent predictions on pathogen evolution.

To get some intuition into the decrease in exploitation that we find in this paper, we need

to understand two things. In the absence of prophylaxis, standard theory (e.g., [19, 15, 16])

predicts that increased pathogen exploitation results in a decrease in the duration of infection

and an increase in transmission, leading to a balance between these two competing effects

at evolutionary equilibrium. In our model, increasing exploitation still reduces the duration

of infection, but it affects transmission in a more complicated way. This more complicated
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effect on tranmissibility disrupts the balance that would be achieved in standard models. As

we show in Appendix E, there is a benefit to increased exploitation through a direct increase

in transmission, but also a marginal cost through increased exposure to the host behavioural

immune system. In fact, the marginal cost is indirect as it results in fewer mutant infections

in hosts not engaging in prophylaxis (i.e., smaller 1 − ȳm). Ultimately, this added cost tips the

scales in favour of lower pathogen exploitation.

We have already pointed to specific differences between our work and similar work of

others [33]. While those differences will undoubtedly affect the model predictions, the intuition

developed above suggests a more concrete explanation for the contrast is possible. In particular,

[33] do not expose mutant infectives to host prophylactic behaviour in a way that differs from

resident infectives. Granted, [33] do allow for the efficacy of prophylaxis to differ between

resident and mutant strains, but the host landscape looks the same from both resident and

mutant perspectives in that model. In our model, mutant infections in individuals engaging in

prophylaxis happen in different proportions than resident infections (i.e., ȳm , ȳ in general).

Simply put, the host landscape in our model differs meaningfully between resident and mutant

infectives.

Arguably, our main result is reminiscent of other pathogens that control host behaviour for

their own gain. While our model pathogens are not directly controlling hosts like the pathogen

Ophiocordyceps unilateralis does with the ant Camponotus leonardi [88] (or Schistocephalus

solidus with the stickleback fish Gasterosteus aculeatus [89], or Leucochloridium paradoxum

with the snail Succinea putris [90]), one might speculate that ours indirectly manipulate the

hosts’ economic agency. This suggests that there may be some cryptic parasite manipulation

to further investigate.

As with any modelling endeavour, we have made some simplifying assumptions to reduce

the mathematical complexity of our model. For example, we have assumed that individuals

instantly update their behaviour when receiving new information about the progression of the

disease. In reality, there is a time delay between receiving information and deciding to modify
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behaviour. Previous work has studied the effects of including a delay in the form of waning

immunity either independently [91] or together with a delay in the form of a latent period fol-

lowing infection [92], and found that this can create periodicity in the model solutions. Other

work has also investigated the effects of these delays on effective vaccination strategies [93].

Future work could extend our model to include the lag in information gain and behaviour mod-

ification, with the expectation that this would cause oscillations in the predicted exploitation

level.

One could also relax the assumption that individuals sample from all other individuals in the

population when deciding whether or not to take prophylactic measures. Epidemic models have

previously been extended to include spatial structure through the use of networks, with different

types of networks providing qualitatively different predictions [94]. Others have studied the

interaction between network models and host heterogeneities in the case of sexually transmitted

diseases [95], and the effects of adaptive networks where individuals may build and sever

connections during the progression of a disease [96]. Networks could be incorporated here to

explore the decoupling of social interactions related to disease transmission and those related

to information transmission. Based on previous work [97], it is expected that this decoupling

could lead to a lower level of pathogen exploitation.

It is tempting to use our evolutionary predictions to inform public-health policy. While

pathogen exploitation does reach a minimum value for an intermediate level of cost of pro-

phylaxis, our results (figure 3.3) also show that lowering the cost even farther below this level

leads to fewer infections even if those infections are from a more exploitative pathogen strain.

Moreover, the pathogen’s exploitation is always below the level predicted in the absence of

individuals engaging in prophylactic behaviour. There is a balance, then, between the level of

cost that is optimal for minimizing prevalence and the level optimal for minimizing pathogen

exploitation. It is important to recognize that efforts to minimize the cost of prophylaxis will

result in a pathogen strain that is more exploitative of its host than it otherwise might be. More

broadly, our work suggests that conversations about disease management and infection should
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be more inclusive towards the effects of human behaviour.



Chapter 4

Cooperation between Related Coinfecting

Pathogen Strains in Multiple Types of

Hosts

4.1 Introduction

A theoretical framework was presented in [43] for studying the evolution of disease-induced

mortality among groups of coinfecting pathogen strains. This framework has its underpinnings

in the Price equation [98, 99], and links tools from evolutionary game theory and kin selection

theory in an epidemiological setting. Starting with a definition of fitness as the basic reproduc-

tive number R0 [3] of a focal pathogen strain, the disease-induced mortality rates of both the

focal pathogen and its group are assumed to depend on the genotype of the individual pathogen

strains [43, 44]. From this interpretation, the evolutionary equilibrium level of disease-induced

mortality of a focal pathogen strain will depend on its genetic relatedness to its coinfecting

group. The more related is a group of coinfecting pathogens, the greater is the incentive to

reduce their individual disease-induced mortality rate to prolong the duration of infection of

the whole group [43]. However, this framework is only developed in epidemiological models

62
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with a single type of host. How do these ideas extend to situations where multiple types of

hosts are present, in which fitness is not defined in such a straightforward way?

Analyses of models with multiple types of hosts usually follow an adaptive-dynamics ap-

proach [5, 6, 7]. A resident host-pathogen system is assumed to have reached an equilibrium

state, after which a mutant pathogen strain is introduced and tracked in the population. The

fitness of this mutant strain can be defined as the instantaneous growth rate of the host popu-

lation infected with the mutant strain [17] or, equivalently, as the basic reproductive number

[3] of the mutant strain, which must take into account all types of hosts and is defined as the

dominant eigenvalue of the next-generation matrix [17, 30, 31, 32]. Fitness is then maximized

within each type of host, striking a balance between the pathogen’s rate of transmission and its

duration of infection [17].

Here, we investigate how these tools and ideas on pathogen evolution in multiple types of

hosts connect to those from kin selection theory discussed in a single-host setting in [43, 44].

To do this, we present a theoretical framework for studying the evolution of disease-induced

mortality among groups of related coinfecting pathogen strains in multiple types of hosts (e.g.,

females and males; large and small; juveniles, young adults, and adults). We discuss how

fitness can be defined as either the instantaneous growth rate of a focal pathogen lineage or

as the basic reproductive number R0 [3] of that focal lineage, and establish the equivalence

between these two measures. We then study how the inclusion of genetic relatedness [43, 44]

affects fitness and provide a biological interpretation of the resulting evolutionary equilibrium

conditions. In general, we find that pathogens must balance the direct individual and indirect

group benefits of increased transmission against the associated direct individual and indirect

group costs of shorter duration of infection, within each type of host. This reflects the ideas of

Hamilton [45] that greater relatedness should push for greater cooperation among a group of

individuals.

Following the presentation of the theoretical framework, we work through two examples

to illustrate using these ideas in practice. The first example considers a model of an infectious
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disease circulating in a population of juvenile and adult hosts. The second example extends

the framework to a model in which hosts coevolve with pathogens, in the setting of a sexually

transmitted infection circulating in a population of female and male hosts. We then conclude

with some summarizing remarks.

4.2 Theoretical Framework

Suppose we have a population of hosts categorized into n different types. Hosts are further clas-

sified according to their disease status. Individual hosts are infected by a group of pathogens

made up of various genetically related strains. The disease-induced mortality rate of an in-

dividual pathogen strain will be expressed as a vector α, where each element αi represents

the pathogen’s disease-induced mortality rate in a host of type i. The average disease-induced

mortality rate of a group of infecting pathogens will be expressed as a vector αg, where each

element αgi represents the average disease-induced mortality rate of a group of pathogens in-

fecting a host of type i. In what follows, we assume that pathogens face a trade-off between

transmission and disease-induced mortality, whereby increased disease-induced mortality will

result in increased transmission but also a decreased duration of infection. This is a common

trade-off modelled by other authors in the case of multiple pathogen strains [43], coevolution

with hosts [28, 19], and vector-transmitted diseases [11]. The trade-off faced by pathogens

need not involved disease-induced mortality, though, and could instead involve other traits

such as the degree to which pathogens exploit their host’s resources [15], viral load [14], or

pathogen growth rate [16].

To study the evolution of pathogen disease-induced mortality, we begin by assuming that

there is a host-pathogen system that has reached equilibrium. We then fix attention on a spe-

cific pathogen strain and track its lineage in the population. The disease-induced mortality rate

of this focal strain can be expressed as the vector α̃. As before, the elements α̃i of this vector

represent the disease-induced mortality rate of the focal strain in a host of type i. An infecting
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pathogen group containing this focal strain will have an average group disease-induced mor-

tality rate expressed as the vector α̃g, where each element α̃gi represents the average disease-

induced mortality rate of a pathogen group infecting a host of type i and containing the focal

strain. We can express the densities of all types of hosts infective with a pathogen group con-

taining the focal strain, at time t, as the n× 1 column vector Ĩ = Ĩ(t). The dynamics of the focal

pathogen strain are then approximated by the linear system

dĨ
dt

= [F(α̃, α̃g,α,αg) − V(α̃, α̃g,α,αg)]Ĩ, (4.1)

where F and V are n × n matrices.

The matrix F contains all terms related to the production of new pathogens (e.g., transmis-

sion). In particular, the entry fi j in the ith row and jth column of F represents the rate at which

hosts of type j infective with the focal pathogen strain create new infections in hosts of type i

susceptible to infection. By this definition, all entries of F must be non-negative, i.e., F must

be a non-negative matrix.

The matrix −V contains all terms related to transitions between infective classes of hosts

infective with the focal pathogen strain (e.g., juvenile infective hosts maturing into adult infec-

tive hosts), as well as terms related to loss of hosts infective with the focal strain (e.g., recovery,

natural mortality, disease-induced mortality). In particular, the entry vi j in the ith row and jth

column of −V represents the sum of the rate at which hosts of type j infective with the focal

strain transition to hosts of type i infective with the focal strain, and the rate at which hosts

of type i leave their corresponding infective class. If Ĩi represents the density of hosts of type

i infective with the focal pathogen strain, then loss of individuals from class Ĩi will occur, to

first-order in the frequency of the focal strain, at a rate proportional to Ĩi. Terms representing

the loss of hosts infective with the focal strain, then, will appear only on the main diagonal of

the matrix −V . Entries off the main diagonal of −V must represent only transitions into class Ĩi

from class Ĩ j, j , i, and so must be non-negative. Such a matrix, where all entries off the main
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diagonal are non-negative, is called a Metzler matrix. Since F is non-negative, the entries off

the main diagonal of the matrix F − V must be non-negative and so F − V is also a Metzler

matrix.

We can then find a positive constant c such that (F − V) + cI is a non-negative matrix,

where I is the n × n identity matrix. Specifically, we can choose any c > |min
i

vii|, where vii

represents the ith entry on the main diagonal of −V . For any such c, the entries on the main

diagonal of (F − V) + cI will be strictly positive, and so (F − V) + cI is a non-negative matrix.

We now consider the graph associated with the matrix (F − V) + cI. Nodes in this graph

represent the densities of hosts of each type infective with a pathogen group containing the

focal strain. The entries of (F − V) + cI represent directed connections between these nodes,

with the i jth entry describing the creation of new infections in type-i hosts by infected type- j

hosts (e.g., transmission) and the transition of infected type- j hosts to infected type-i hosts

(e.g., maturation). Assuming that a host of type i can either be infected by a host of type j or

by a host of type k, who can themselves be infected by a host of type j (or possibly by a host of

some other type, forming an “infection chain” that eventually links to a host of type j), there

will always be a path leading from node j to node i in the graph of (F − V) + cI. Hence, the

graph of (F − V) + cI is irreducible [100]. Furthermore, since the entries on the main diagonal

of (F − V) + cI are strictly positive, loops (i.e., paths of length one) will exist from node i to

itself. This means that the greatest common divisor of the lengths of the paths of (F − V) + cI

must be one. Together with the fact that the graph is irreducible, this allows us to say that

(F − V) + cI is a primitive matrix [100].

The Perron-Frobenius Theorem for primitive non-negative matrices tells us that (F−V)+cI

has a dominant real eigenvalue Λ+c > 0 with associated real positive left and right eigenvectors

wT and u, respectively [100]. Moreover, all other eigenvectors of (F −V) + cI must be negative

[100]. In other words, the spectrum of the matrix (F − V) + cI, defined as the set of all

eigenvalues of the matrix, is contained within the circle of radius Λ + c centred at the origin in

the complex plane. It has been shown [101] that shifting a matrix by a constant multiple c of the
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identity matrix preserves the eigenvectors of that matrix, but shifts the spectrum of the matrix

by the constant c. This means that the spectrum of the matrix F−V is contained within the circle

of radius Λ + c centred at the point (−c, 0) in the complex plane. Importantly, the dominant

eigenvalue of the matrix F −V is Λ, with associated positive left and right eigenvectors wT and

u, respectively.

We express the evolutionary equilibrium of (4.1) as a vector α∗, where each element α∗i

represents the equilibrium level of the trait in a type-i host. At evolutionary equilibrium, all

pathogen strains must exhibit the same disease-induced mortality rate in each type of host,

i.e., α̃ = α = α∗. If all pathogens exhibit the same rate of disease-induced mortality, then

the average disease-induced mortality rate of a group of infecting pathogens will match this

equilibrium level, i.e., α̃g = αg = α∗. By definition, at this evolutionary equilibrium, the focal

pathogen population must not be changing and so

0 = (F∗ − V∗)Ī, (4.2)

where 0 represents the n × 1 zero column vector, Ī represents the vector of equilibrium den-

sities of infective hosts of each type evaluated at the evolutionary equilibrium, and F∗ and V∗

represent the matrices F and V evaluated at the evolutionary equilibrium, respectively.

Equation (4.2) shows that I is a positive right eigenvector for the matrix F − V . Since the

only positive eigenvectors of (F − V) + cI are those associated with the dominant eigenvalue,

and since eigenvectors are preserved by shifting the matrix by cI, we can conclude that u = I

is a right eigenvector associated with the dominant eigenvalue Λ of F − V . The positive left

eigenvector wT associated with Λ must satisfy wT (F − V) = ΛwT . As long as the densities

of infected hosts are still changing (i.e., Λ , 0), we can rewrite this as wT = (wT/Λ)(F − V).

Since the i jth entry of F − V represents the net number of new type-i infected hosts created by

a type- j infected host, this allows us to interpret the ith element of wT as the reproductive value

of a type-i infected host in the sense that wT
i represents the average number of infected hosts of
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any type created by a type-i infected host, discounted by the growth rate Λ of the infected host

population.

We can then define a fitness function for the focal pathogen lineage in one of two ways.

The first is to define it as the growth rate of the infected host population, given by the dominant

eigenvalue Λ of the matrix F − V . Equivalently, we can express this in terms of the associated

left and right eigenvectors and define fitness as W1(α̃, α̃g,α,αg) = wT (F − V)u. The second

way is to follow a standard adaptive-dynamics approach [5, 6, 7] and define fitness as the

average number of new infections created by a host infected with the focal pathogen strain.

This can be expressed as the dominant eigenvalue ΛNGM of the next-generation matrix FV−1 or,

equivalently, in terms of the associated left and right eigenvectors wT
NGM and uNGM, respectively

[30]. The left eigenvector associated with the dominant eigenvalue of the next-generation

matrix is the same as the left eigenvector of the dominant eigenvalue of the matrix F − V ,

i.e., wT
NGM = wT , while the right eigenvector associated with the dominant eigenvalue of the

next-generation matrix is given by uNGM = Fu. We can then express the fitness of the focal

pathogen strain as W2(α̃, α̃g,α,αg) = wT FV−1(Fu).

While these two fitness functions have different interpretations, they are related to one

another [18]. In particular, if we multiply W1 by the dominant eigenvalue ΛNGM of the next-

generation matrix and use the fact that the left and right eigenvectors of the next-generation

matrix associated with ΛNGM are wT and Fu, respectively, we get:

ΛNGMwT (F − V)u = wT FV−1(F − V)u = wT FV−1(Fu) − wT (Fu) = W2 − 1, (4.3)

where we have assumed that the eigenvectors wT and Fu have been rescaled so that wT (Fu) =

1. Dividing both sides of (4.3) by ΛNGM , 0 and using the fact that W2 can be equivalently

expressed as ΛNGM, we have that

W1 = 1 −
1

W2
. (4.4)

Equation (4.4) shows that W1 is positive (resp. negative) if and only if W2 is greater than one
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(resp. less than one).

To find the evolutionary equilibrium α∗, we adapt the procedure used in [43, 44] and con-

sider the genotypic values xi and x̃i of a typical pathogen strain and the focal strain, respectively,

in a host of type i. We write the genotypic value of a typical pathogen strain as the vector x and

that of the focal pathogen strain as the vector x̃. The disease-induced mortality rate of a typical

strain, α, will depend on the pathogen’s genotype in each type of host, x. Similarly, the disease-

induced mortality rate of the focal strain, α̃, will depend on the focal pathogen’s genotype in

each type of host, x̃. One can translate the genotypic value into a continuous phenotype by

assuming that the latter is a product of the presence of a genetic allele and the rate at which that

allele changes the phenotype, as is done in [43]. The equilibrium α∗ is then found by solving

the system dWi/dx̃|x̃=x=x∗ = 0, where x∗ represents the genotype of a pathogen strain at the evo-

lutionary equilibrium α∗ [43, 44]. From equation (4.4), we have dW1/dx̃ = (1/W2
2 )(dW2/dx̃)

and so dW1/dx̃ = 0 if and only if dW2/dx̃ = 0. This means that we can analyze either W1 or

W2 and arrive at the same evolutionary equilibrium. Using W1, and the fact that the dominant

eigenvalue of F − V is zero at equilibrium, the ith equation in the system dW1/dx̃ = 0 is

0 =
∂W1

∂x̃i
= wT

(
∂F
∂α̃i

∂α̃i

∂x̃i
+
∂F
∂α̃gi

∂α̃gi

∂x̃i

)
u − wT

(
∂V
∂α̃i

∂α̃i

∂x̃i
+
∂V
∂α̃gi

∂α̃gi

∂x̃i

)
u, (4.5)

where all terms are evaluated when α̃i = αi = α̃gi = αgi = α∗i . If we divide both sides of

equation (4.5) by ∂α̃i/∂x̃i, we can rewrite this equation as

wT

(
∂F
∂α̃i

+ ri
∂F
∂α̃gi

)
u︸                   ︷︷                   ︸

I

= wT

(
∂V
∂α̃i

+ ri
∂V
∂α̃gi

)
u︸                   ︷︷                   ︸

II

, (4.6)

where ri =
∂α̃gi/∂x̃i

∂α̃i/∂x̃i
is the genetic relatedness of the focal pathogen strain to the infecting group

of pathogens to which it belongs [43, 44].

To interpret equation (4.6) biologically, we identify two terms. Term I measures the change

in two types of benefits conferred to the focal pathogen for increasing its disease-induced mor-
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tality rate: a direct benefit of increased personal transmission and an indirect benefit, weighted

by the focal pathogen’s relatedness to its group, of increased group transmission. Similarly,

term II measures the change in two types of costs incurred by the focal pathogen for increas-

ing its disease-induced mortality rate: a direct cost of decreased personal duration of infection

and an indirect cost, weighted by the focal pathogen’s relatedness to its group, of decreased

group duration of infection. Equation (4.6) then says that, at evolutionary equilibrium, these

benefits and costs must balance out within each type of host. Moreover, the more related is

the focal pathogen to its infecting group, the more the indirect benefit and cost will affect the

evolutionarily stable trait value α∗.

4.3 Illustrative Examples

4.3.1 Example 1: Infections in Age-structured Host Populations

Our first example considers an infectious disease circulating in a population of hosts classified

according to their age. Such models have been studied in the cases of tuberculosis [102] and

pertussis [103], and have been used to explore the effects on evolution of different contact

patterns between susceptible and infected individuals [104]. At time t, there will be I j = I j(t)

juvenile hosts infected with the disease and S j = S j(t) juvenile hosts susceptible to infection.

There will also be Ia = Ia(t) adult hosts infected with the disease and S a = S a(t) adult hosts

susceptible to infection. All infected hosts are also infective.

Adult hosts will produce juvenile offspring at a per-capita rate b. We assume that juvenile

hosts cannot reproduce, but they will mature into adults at a per-capita rate m. Both juveniles

and adults will experience a natural mortality rate µ.

Infected juvenile hosts will transmit the disease to susceptible juveniles at a per-capita rate

S jβ j and to susceptible adults at a per-capita rate S aβ j. Infected adult hosts will transmit the

disease to susceptible juveniles at a per-capita rate S jβa and to susceptible adults at a per-capita

rate S aβa. Juvenile hosts will recover from infection at a per-capita rate γ j and they will die
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due to the infection at a per-capita rate αg j , where αg j is an average disease-induced mortality

rate across the group of infecting pathogen strains. Similarly, adult hosts will recover from

infection at a per-capita rate γa and they will die due to the infection at a per-capita rate αga ,

where αga is an average disease-induced mortality rate across the group of infecting pathogen

strains.

The model is summarized by the following system of differential equations:

dS j

dt
= b(S a + Ia) + γ jI j − S j

(
β jI j + βaIa

)
− (m + µ)S j (4.7a)

dS a

dt
= mS j + γaIa − S a

(
β jI j + βaIa

)
− µS a (4.7b)

dI j

dt
= S j

(
β jI j + βaIa

)
− (γ j + m + µ + αg j)I j (4.7c)

dIa

dt
= mI j + S a

(
β jI j + βaIa

)
− (γa + µ + αga)Ia. (4.7d)

To study the evolution of disease-induced mortality, we assume pathogens face a trade-

off between transmission and recovery, as previous authors have done [43, 11, 10, 13]. To

capture this, we follow [43] and treat transmission and recovery as functions of the focal

pathogen’s disease-induced mortality rate in juvenile hosts, α j, and adult hosts, αa. We then

write β j = β j(α j), βa = βa(αa), γ j = γ j(α j), and γa = γa(αa). We suppose that (4.7) has

reached an endemic equilibrium. While it is not possible to find and analyze the stability of

this equilibrium analytically, numerical simulation suggests that an endemic equilibrium exists

and is stable for some sets of parameter values. We then track a focal pathogen lineage with

disease-induced mortality rates α̃ j and α̃a in juvenile and adult hosts, respectively. An infect-

ing group of pathogens containing this focal strain will have an average group disease-induced

mortality rate of α̃g j in juvenile hosts and α̃ga in adult hosts. If we use the vector Ĩ = (Ĩ j, Ĩa)T to

denote the densities of juvenile and adult hosts infected with a group of pathogens containing

the focal strain, then we can approximate the dynamics of the focal strain with the following
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linear system:

dĨ
dt

=


S̄ jβ̃ j S̄ jβ̃a

S̄ aβ̃ j S̄ aβ̃a

︸          ︷︷          ︸
F

−

γ̃ j + m + µ + α̃g j 0

−m γ̃a + µ + α̃ga

︸                                     ︷︷                                     ︸
V


Ĩ, (4.8)

where β̃ j = β j(α̃ j), β̃a = βa(α̃a), γ̃ j = γ j(α̃ j), γ̃a = γa(α̃a), and overbars denote equilibrium

densities hosts. Given that all model parameters are positive, the entries off the main diagonal

of F − V will be non-negative and so F − V is a Metzler matrix.

In order to investigate the evolutionary equilibrium condition given in (4.6), we first need

to find the left and right eigenvectors wT and u, respectively, associated with the dominant

eigenvalue of the matrix F − V . As discussed previously, at evolutionary equilibrium, the left

eigenvector wT can be interpreted as the reproductive value of infected juvenile and adult hosts,

while the right eigenvector u can be interpreted as the equilibrium numbers of infected juvenile

and adult hosts. The left eigenvector wT is found by solving

0 = wT (F − V), (4.9)

where F and V are evaluated at the evolutionary equilibrium α∗ = (α∗j, α
∗
a). From this, we get

that the left eigenvector is given by

wT =

[
β∗j S̄ a+m

γ∗j+µ+α∗j+m−β∗j S̄ j
wa wa

]
, (4.10)

where wa is the reproductive value of a focal pathogen in an infected adult host, asterisks denote

traits evaluated at the evolutionary equilibrium α∗, and overbars denote equilibrium numbers

of hosts. The right eigenvector u is found by solving

0 = (F − V)u (4.11)
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where F and V are evaluated at α∗, and is given by

u =


β∗aS̄ j

γ∗j+µ+α∗j+m−β∗j S̄ j
Īa

Īa

 , (4.12)

where Īa is the equilibrium number of adult hosts infected with the focal pathogen strain.

We can now use these eigenvectors to analyze the evolutionary equilibrium condition (4.6).

In juvenile hosts, this equilibrium condition becomes

β′j

β∗j
=

γ′j + r j

γ∗j + µ + α∗j + m



1 +

I︷︸︸︷
m
β∗jS̄ a

1 +

m
γ∗j+µ+α∗j+m S̄ j

S̄ a︸        ︷︷        ︸
II


, (4.13)

where primes denote first derivatives and r j represents the relatedness of the focal pathogen

strain to its coinfecting group in a juvenile host. On the left-hand side of (4.13), we have

the benefit to the focal pathogen for increasing its disease-induced mortality, measured as the

rate of change of transmission relative to the transmission rate itself. On the right-hand side

of (4.13), we have the cost, both direct and indirect, to the focal pathogen for increasing its

disease-induced mortality rate, measured as the rate of change of the duration of infection

relative to the duration of infection itself. This cost has a compounding effect attached to it to

capture the fact that if the focal pathogen increases its disease-induced mortality in a juvenile

host to the point where it kills the juvenile host before it is able to mature into an adult, it will

miss out on all of the possible infections it could have created in that matured juvenile host.

Term I in (4.13) measures the rate at which an infected juvenile host matures into an infected

adult host relative to the rate at which an infected juvenile host is able to create infections in

susceptible adults. If a juvenile host infected with the focal pathogen is able to create new

infections in susceptible adults much faster than it matures into an infected adult itself, then
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this decreases the compounding effect on the cost to the focal pathogen. Term II in (4.13)

measures the potential number of adult infections that could be created by infecting juveniles

and waiting for them to mature relative to the potential number of adult infections that could be

created in susceptible adults. If there are fewer juvenile hosts who will survive to mature into

adults after being infected by the focal pathogen strain, then this will increase the compounding

effect on the cost to the focal strain for increasing its disease-induced mortality rate.

The effect of increased relatedness can be seen analytically in (4.13). In particular, if the fo-

cal pathogen strain is more related to its coinfecting group in a juvenile host, this will increase

the cost associated with increased disease-induced mortality. To maintain the equilibrium bal-

ance, (4.13) then says that evolution will push for reduced disease-induced mortality in order

to reduce the transmission rate β∗j. This effect is depicted graphically in figure 4.1. The slope of

the solid curve is the ratio of the rate of change of transmission to the rate of change of duration

of infection, while the slope of the dashed and dotted lines is given by the ratio of transmission

to duration of infection, multiplied by the compounding effect in brackets in (4.13). These

slopes are equal at the intersection point marked by the black square. The dotted line shows

that, for increased relatedness, the evolutionary equilibrium occurs at a lower rate of transmis-

sion and a higher duration of infection, both of which are achieved by reducing disease-induced

mortality.

In adult hosts, the equilibrium condition is given by

β′a
β∗a

=
γ′a + ra

γ∗a + µ + α∗a


1 −

β∗j S̄ j

γ∗j+µ+α∗j+m

1
γ∗a+µ+α∗a

(
β∗aS̄ a + m

γ∗j+µ+α∗j+mβ
∗
aS̄ j

)
 , (4.14)

where ra is the relatedness of the focal pathogen to its coinfecting group in an adult host.

The numerator of the fraction in the brackets in (4.14) can be simplified slightly by making the

observation that, at equilibrium, neither the infected juvenile nor infected adult populations can

be growing or shrinking. In particular, when one juvenile host leaves the infected compartment

at the end of the duration of infection of a juvenile host, it must be replaced simultaneously by
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Figure 4.1: Graphical depiction of the effect of increasing relatedness between the focal
pathogen strain and its coinfecting group. The slope of the solid curve is given by β′j/D

′
j,

where D j is the duration of infection of a juvenile host. The slope of the dashed and dotted
lines is given by β j/D j multiplied by the compounding effect given in brackets in (4.13). Equa-
tion (4.13) is satisfied when these two slopes are equal in magnitude, which occurs at the point
of intersection marked by the black square. Increasing relatedness r j will increase D′j, which
will drag the intersection point farther right along the horizontal axis. This new intersection
point is characterized by reduced transmission and increased duration of infection, achieved
via a reduction in disease-induced mortality.



76 Chapter 4. Related Coinfecting Pathogen Strains

a new infected juvenile host. This replacement infected juvenile can be created either by an

infected juvenile host or by an infected adult host. The total number of new juvenile infections

created by an infected juvenile host over the duration of infection of a juvenile host is given by
β∗j S̄ j

γ∗j+µ+α∗j+m . Similarly, the total number of new juvenile infections created by an infected adult

host over the duration of infection of a juvenile host is given by β∗aS̄ j

γ∗j+µ+α∗j+m . The total number of

new juvenile infections created over the duration of infection of a juvenile host is then given by

the sum of these two terms and must be equal to one at evolutionary equilibrium. This allows

us to replace the numerator of the fraction inside the brackets in (4.14) and write the adult host

equilibrium condition as

β′a
β∗a

=
γ′a + ra

γ∗a + µ + α∗a



I︷              ︸︸              ︷
β∗aS̄ j

γ∗j + µ + α∗j + m

1
γ∗a + µ + α∗a

β∗aS̄ a +
m

γ∗j + µ + α∗j + m
β∗aS̄ j

︸                                                   ︷︷                                                   ︸
II


. (4.15)

As in the juvenile equilibrium condition, the left-hand side of (4.15) measures the benefit to

the focal pathogen for increasing its disease-induced mortality rate and the right-hand side

measures the associated cost. Term I in (4.15) measures the total number of new infected

juvenile hosts created by an infected adult host over the duration of infection of a juvenile

host. Term II in (4.15) measures the total number of new infected adult hosts created by an

infected adult over the duration of infection of an adult host, both from direct infection of

susceptible adults and maturation of infected juveniles into infected adults. As with juvenile

hosts, increased relatedness of the focal pathogen strain to its coinfecting group in adult hosts

will push for reduced disease-induced mortality.



4.3. Illustrative Examples 77

4.3.2 Example 2: Sexually Transmitted Infections

For our second example, we study a system where hosts and pathogens are allowed to coevolve.

We consider a sexually transmitted infection (STI) circulating in a population of female and

male hosts. Hosts are further classified according to their disease status. At time t, there are

I f = I f (t) female hosts infected with the disease and S f = S f (t) female hosts susceptible to

infection. Similarly, there are Im = Im(t) male hosts infected with the disease and S m = S m(t)

male hosts susceptible to infection. All infected hosts are also infective.

Females will have an average of M = M(N f ,Nm) mating events with males, where N f is

the total number of female hosts and Nm is the total number of male hosts. As discussed in

[62, 63], a common functional form for M uses the harmonic mean of the numbers of female

and male hosts, i.e.,

M(N f ,Nm) =
2N f Nm

N f + Nm
. (4.16)

Mating events will lead to the production of new offspring at a per-capita rate b. Assuming a

one-to-one birth sex ratio, the total birth rate of both female and male hosts is given by

bN f Nm

N f + Nm
. (4.17)

Female and male hosts will also experience a per-capita natural mortality rate µ.

As in previous models of STIs (e.g., [62, 105, 106]), transmission of the disease between

females and males will occur at a rate proportional to the average number of mating events

M. Infected males will transmit the disease to susceptible females at a frequency-dependent,

per-capita rate
S f

N f

βm

Nm
M(N f ,Nm) = S f

2βm

N f + Nm
. (4.18)

Similarly, transmission from infected females to susceptible males will occur at a frequency-
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dependent, per-capita rate

S m

Nm

β f

N f
M(N f ,Nm) = S m

2β f

N f + Nm
. (4.19)

Female hosts can then recover from infection at a rate γ f , in which case they are again suscep-

tible to infection, or die due to the disease at a rate αg f . Similarly, male hosts can recover at a

rate γm, in which case they are again susceptible to infection, or die due to the disease at a rate

αgm . As discussed previously, we assume that hosts are infected by a group of pathogens and

so the disease-induced mortality rates αg f and αgm represent averages across infecting pathogen

groups.

The mathematical model is summarized by the following system of differential equations:

dS f

dt
=

bN f Nm

N f + Nm
+ γ f I f − S f

2βm

N f + Nm
Im − µS f (4.20a)

dS m

dt
=

bN f Nm

N f + Nm
+ γmIm − S m

2β f

N f + Nm
I f − µS m (4.20b)

dI f

dt
= S f

2βm

N f + Nm
Im − (γ f + µ + αg f )I f (4.20c)

dIm

dt
= S m

2β f

N f + Nm
I f − (γm + µ + αgm)Im. (4.20d)

To study host evolution, we first suppose that female and male hosts have some level η f and

ηm, respectively, of investment in their immune system. A host’s level of immune investment

will affect both the rate at which it clears an infection, γ f or γm, and their birth rate, b. To reflect

this, we now write γ f = γ f (η f ), γm = γm(ηm), and b = b(η f , ηm). In general, increased immune

investment will result in a faster rate of clearance at the cost of a lower birth rate, as has been

modelled by previous authors [19, 28]. Our goal is then to find the evolutionary equilibrium

level of female and male host immune investment η∗f and η∗m, respectively.

We start by assuming that system (4.20) has reached an endemic equilibrium where hosts of
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all classes are present in some numbers. As with the previous example, finding this equilibrium

is not possible analytically, but numerical simulation suggests that it exists and is stable for

some sets of parameter values. We then consider a host lineage where females and males have

a level of immune investment η̂ f and η̂m, respectively, different from that of the equilibrium

host population. Female hosts of the focal lineage will clear an infection at a rate γ̂ f = γ f (η̂ f ),

while male hosts of the focal lineage will clear an ifnection at a rate γ̂m = γm(η̂m). All hosts

of the focal lineage will have a per-capita birth rate given by b̂ = b(η̂ f , η̂m). The numbers

of susceptible and infected female hosts of this focal lineage will be denoted by Ŝ f and Î f ,

respectively. Similarly, the numbers of susceptible and infected male hosts of this focal lineage

will be denoted by Ŝ m and Îm, respectively. If we use the vector Ĥ = (Ŝ f , Ŝ m, Î f , Îm) to denote

the number of hosts of the focal lineage in each disease category, then the dynamics of the

focal lineage can be approximated by the linear system

dĤ
dt

=



Fh︷                                  ︸︸                                  ︷

b̂N̄m
N̄ f +N̄m

b̂N̄ f

N̄ f +N̄m

b̂N̄m
N̄ f +N̄m

b̂N̄ f

N̄ f +N̄m

b̂N̄m
N̄ f +N̄m

b̂N̄ f

N̄ f +N̄m

b̂N̄m
N̄ f +N̄m

b̂N̄ f

N̄ f +N̄m

0 0 0 0

0 0 0 0


(4.21)

−



2βm Īm
N̄ f +N̄m

+ µ 0 −γ̂ f 0

0 2β f Ī f

N̄ f +N̄m
+ µ 0 −γ̂m

2βm Īm
N̄ f +N̄m

0 γ̂ f + µ + αg f 0

0 2β f Ī f

N̄ f +N̄m
0 γ̂m + µ + αgm

︸                                                                 ︷︷                                                                 ︸
Vh


Ĥ,

where overbars denote equilibrium levels of the respective variables. Finding the dominant

eigenvalue of the matrix Fh − Vh is computationally intensive, so we instead work with the

dominant eigenvalue ΛNGMh of the next-generation matrix FhV−1
h [30] and define host fitness
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was Wh(η̂ f , η̂m, η f , ηm) = ΛNGMh . Differentiating Wh with respect to the level of female host im-

mune investment η̂ f , and evaluating at η̂ f = η f = η∗f and η̂m = ηm = η∗m, gives the evolutionary

equilibrium condition that must be satisfied by female hosts:

∂b̂/∂η̂ f

b̂
=

∂γ̂ f /∂η̂ f

G f (γ̂ f , γ̂m, β f , βm, αg f , αgm)
, (4.22)

for a function G f . Similarly, we can differentiate Wh with respect to male host immune invest-

ment η̂m, evaluate at η̂ f = η f = η∗f and η̂m = ηm = η∗m, and find the evolutionary equilibrium

condition that must be satisfied by male hosts:

∂b̂/∂η̂m

b̂
=

∂γ̂m/∂η̂m

Gm(γ̂ f , γ̂m, β f , βm, αg f , αgm)
, (4.23)

for a function Gm. Equations (4.22) and (4.23) show that, at evolutionary equilibrium, hosts

must balance the benefit of increased clearance rate against the cost of decreased reproduction.

Importantly, pathogen evolution will affect host evolution through the functions G f and Gm.

To study the evolution of pathogen disease-induced mortality, we first assume that sys-

tem (4.20) has reached an endemic equilibrium where hosts of all classes are present in some

numbers. Furthermore, as in the previous example, we assume that pathogens face a trade-off

of increased transmission and decreased duration of infection for increased disease-induced

mortality. To capture this, as in [43], we treat transmission and recovery as functions of indi-

vidual pathogen disease-induced mortality, i.e., β f = β f (α f ), βm = βm(αm), γ f = γ f (α f ), and

γm = γm(αm), where α f and αm are the disease-induced mortality rates of a pathogen strain

in female and male hosts, respectively. We then track a focal pathogen lineage with disease-

induced mortality rate expressed as the vector α̃ = (α̃ f , α̃m), where α̃ f and α̃m are the focal

pathogen’s disease-induced mortality rates in female and male hosts, respectively. A group

of infecting pathogens containing this focal strain will have an average group disease-induced

mortality rate expressed as the vector α̃g = (α̃g f , α̃gm), where α̃g f and α̃gm are the average group

disease-induced mortality rates in female and male hosts, respectively. If we use the vector
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Ĩ = (Ĩ f , Ĩm)T to denote the densities of hosts infected with a group of pathogens containing the

focal strain, then the dynamics of the mutant strain are approximated by the linear system

dĨ
dt

=


 0 S̄ f

2β̃m
N̄ f +N̄m

S̄ m
2β̃ f

N̄ f +N̄m
0

︸                     ︷︷                     ︸
Fp

−

γ̃ f + µ + α̃g f 0

0 γ̃m + µ + α̃gm

︸                                ︷︷                                ︸
Vp


Ĩ, (4.24)

where β̃ f = β f (α̃ f ), β̃m = βm(α̃m), γ̃ f = γ f (α̃ f ), γ̃m = γm(α̃m), and overbars denote equilibrium

densities of hosts.

To analyze the evolutionary equilibrium condition (4.6), we first need to find the left and

right eigenvectors wT and u, respectively, associated with the dominant eigenvalue of the ma-

trix Fp − Vp. As discussed previously, at equilibrium, this dominant eigenvalue is zero and

the associated left and right eigenvectors can be interpreted as reproductive value and equi-

librium numbers of individuals infected with the focal pathogen strain, respectively. The left

eigenvector wT is found by solving

0 = wT (Fp − Vp) (4.25)

and is given by

wT =

[ 2β∗f
N̄ f +N̄m

S̄ m

γ∗f +µ+α∗f
wm wm

]
, (4.26)

where asterisks denote traits evaluated at the evolutionary equilibrium α∗ = (α∗f , α
∗
m) and wm

is the reproductive value of the focal pathogen strain in a male host. The right eigenvector u is

found by solving

0 = (Fp − Vp)u (4.27)

and is given by

u =


2β∗m

N̄ f +N̄m
S̄ f

γ∗f +µ+α∗f
Īm

Īm

 , (4.28)
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where Īm is the equilibrium number of male hosts infected with the focal pathogen strain.

We can then construct the evolutionary equilibrium conditions from (4.6). The equilibrium

condition for female hosts is given by

β′f

β∗f
=

γ′f + r f

γ∗f + µ + α∗f
, (4.29)

where primes denote first derivatives and r f is the relatedness of the focal pathogen strain to

its coinfecting group in a female host. As in the previous example, the left-hand side of (4.29)

represents the benefit to the focal pathogen strain for increasing its disease-induced mortality,

while the right-hand side represents the associated direct and indirect costs. The more related

is the focal pathogen strain to its coinfecting group, the higher will be the cost and so evolution

will push for reduced disease-induced mortality to maintain the benefit-cost balance.

The equilibrium condition for male hosts is given by

β′m
β∗m

=
γ′m + rm

γ∗m + µ + α∗m

γ∗f + µ + α∗f
2β∗m

N̄ f +N̄m
S̄ f

︸           ︷︷           ︸
I

γ∗m + µ + α∗m
2β∗f

N̄ f +N̄m
S̄ m

︸            ︷︷            ︸
II

, (4.30)

where rm is the relatedness of the focal pathogen strain to its coinfecting group in male hosts.

Term I represents the inverse of the number of new infections created in female hosts over the

duration of infection of a female host, while term II represents the inverse of the number of new

infections created in male hosts over the duration of infection of a male host. At equilibrium,

both of these quantities must be one so that the infected host population is neither growing nor

shrinking. This allows us to simplify (4.30) to

β′m
β∗m

=
γ′m + rm

γ∗m + µ + α∗m
. (4.31)

As with female hosts, male hosts must balance the benefits of increased disease-induced mor-

tality against the associated direct and indirect costs. The more related is the focal pathogen to
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its coinfecting group, the lower will be the equilibrium disease-induced mortality rate. Unlike

in the previous age-structured model example, here, the evolutionary equilibrium conditions

are symmetric between the two host types.

4.4 Discussion

Here, we have presented a general framework for studying the evolution of disease-induced

mortality among groups of related coinfecting pathogen strains in a host population classified

into different types. Two examples were discussed to show how this general framework can be

used in practice.

The first example considers an infectious disease circulating in a population of hosts split

into juveniles and adults. Our theoretical framework shows that the evolutionary equilibrium

conditions are asymmetric between host types. Pathogens in adult hosts must balance their

direct benefit with their direct and indirect costs. However, in juvenile hosts, pathogens have

an extra risk of killing their host before it matures into an adult, missing out on any infections

it could have caused in the matured juvenile host. This creates an asymmetry between the

equilibrium conditions of juvenile and adult hosts.

The second of these examples explores host-pathogen coevolution in the case of a STI cir-

culating in a population of female and male hosts. A pathogen strain that increases its disease-

induced mortality rate will gain a direct benefit of increased personal transmission, but it will

also incur both a direct cost of a higher likelihood of being cleared by the host’s immune sys-

tem and an indirect cost of a reduced duration of infection for the entire coinfecting pathogen

group. As in [43], these benefits and costs must balance out at evolutionary equilibrium. In

this scenario, the equilibrium conditions are symmetric between host types. Furthermore, the

degree of relatedness between coinfecting pathogen strains will also influence the coevolution

of host immune investment.

In both examples, we find that increased relatedness among a group of coinfecting pathogen



84 Chapter 4. Related Coinfecting Pathogen Strains

strains will select for cooperation as individual strains reduce their disease-induced mortality

rate in order to prolong the duration of infection of the group, in keeping with the ideas put

forth by Hamilton [45] on inclusive fitness. Such an effect of relatedness has been shown by

Frank [43] in single-host models. Experimental studies on the Microbotryum violaceum [107]

and Microbotryum lychnidis-dioicae [108] plant fungi have shown that competition to infect a

host is fiercer between less related strains. Theoretical work on spatially structured populations

[97] has shown that increased pathogen dispersal will result in lower relatedness among strains

on a given patch of hosts, which will, in turn, select for greater virulence. While our framework

does not include spatial structure, it does confirm that reduced relatedness among strains should

select for higher disease-induced mortality.

Our theory has its underpinnings in the Price equation [109, 110], which provides a general

mathematical framework for understanding the effects associated with natural selection. The

Price equation has been extended previously to describe problems in evolutionary epidemi-

ology concerning the evolution of multiple pathogen strains [98], the evolutionary effects of

demographic stochasticity [99], and relatedness among coinfecting pathogen strains [43, 44].

In each of these cases, a methodology based on the Price equation provides an interpretation

of the biological forces governing pathogen evolution under natural selection. Our work adds

to this literature by extending these ideas to situations involving multiple types of hosts and,

potentially, coevolution between hosts and pathogens.

One important limitation of this framework is that we are not able to make any conclusions

about evolutionary stability [20, 22] or convergence stability [21]. Doing so would require

specifying the functional relationship between transmission and clearance and disease-induced

mortality, as well as establishing the dependence of pathogen relatedness to disease-induced

mortality. However, by sacrificing the ability to determine stability criteria, we are able to

make conclusions about the biological forces shaping evolutionary equilibria in more general

settings.

Our work also provides a more straightforward approach to studying pathogen coinfec-
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tion. Most analyses of coinfecting strains involve explicitly modelling complex within-host

pathogen dynamics [39]. They take into account such things as pathogen exploitation of host

resources [40], the production of molecules used as a public good by the group of coinfecting

pathogens [41], and the interaction between pathogens and host lymphocytes [42], to make

predictions about the evolution of disease-induced mortality. Our framework gives up some

of these details by capturing the within-host dynamics by the genetic relatedness of coinfect-

ing pathogen strains, but this allows us to make more general predictions about how pathogen

strains should interact with one another without the need for additional modelling assumptions.

Much of this previous work on coinfecting pathogen strains has also focused on the evo-

lution of pathogen virulence. Throughout this paper, we have been careful to refer to the

evolution of pathogen disease-induced mortality instead of virulence. Virulence is generally

defined to be the reduction in host fitness due to infection by the pathogen [10, 11, 111, 23].

Host fitness is comprised of two components: reproduction and survival. In our first example

on an age-structured model, pathogens only affect host survival and not host reproduction, so

it would be appropriate to refer to disease-induced mortality as virulence. However, in the

second example, pathogens affect both host survival and reproduction. Host survival is af-

fected directly by pathogen disease-induced mortality. Host reproduction is affected indirectly

through the effect of disease-induced mortality on host clearance. Higher disease-induced mor-

tality will push for hosts to invest more in their immune systems, taking away resources from

reproduction and lowering their reproductive success. This adds an additional dimension to

the effect of the pathogen on host fitness, and means that pathogen virulence is not necessarily

equivalent to pathogen disease-induced mortality. Depending on the model under study, then,

the evolutionary consequences of pathogen relatedness on virulence may be more complex

than just the consequences of relatedness on disease-induced mortality alone.
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Conclusion

5.1 Summary

In this thesis, I have provided three pieces of evidence to support the claim that host-pathogen

coevolution and multiple types of hosts are important forces governing real-world populations

and that they lead to theoretical predictions not found in research that excludes either of these

effects. From a practical point of view, these new predictions can provide additional perspective

for conversations on the spread and management of infectious diseases.

I began, in Chapter 2, with a model of host-pathogen coevolution in a scenario where hosts

are categorized into female and male groups. The goal was to develop a theoretical explanation

of the differences in immune investment and disease-induced mortality observed between the

sexes across a wide variety of infectious disease data. Previous authors have studied how

differences in host immune investment [24, 25, 27] or pathogen disease-induced mortality [15]

could have evolved, but without considering the effects of coevolution this does not provide a

complete explanation for how both hosts and pathogens could have evolved to the point that is

observed in clinical data. I have contributed to this discussion by showing that coevolutionary

forces, responding to inherent differences between types of hosts due to vertical transmission

and sex-specific costs to immune investment, can lead to a state in which female hosts invest

86
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heavily in their immune systems while pathogens exhibit increased disease-induced mortality

in male hosts.

One feature of the model used in Chapter 2 is that host type is fixed. In Chapter 3, I

relax this assumption by instead considering a model where hosts are able to change their

type. In particular, hosts are categorized according to whether or not they choose to engage

in prophylactic behaviour (e.g., hand washing, social distancing) to reduce their likelihood of

transmitting an infectious disease. While both hosts and pathogens are evolving in this sce-

nario, they are doing so on different time scales. I modelled host evolution using the replicator

dynamic [34] and assumed that host behaviour reached a quasi-equilibrium before considering

the evolution of the pathogen. The main finding was that accounting for these multiple types

of hosts and their coevolution with pathogens gives rise to the prediction that the level of the

pathogen’s exploitation of its host will be lower than it would be in the absence of these effects.

Both of the models in Chapters 2 and 3 considered only a single pathogen strain. In Chapter

4, I relax this assumption and instead consider coinfection of hosts by multiple, genetically

related pathogen strains. Much of the literature on coinfecting pathogen strains uses complex

models of within-host pathogen dynamics [39] to take into account such things as pathogen

exploitation of host resources [40], the production of molecules as a public good used by

pathogens [41], and interactions between pathogens and host immune cells [16]. Instead, I

provide a framework based on kin selection theory [43] for analyzing these kinds of models

in the presence of multiple types of hosts. As an illustrative example, I consider a scenario in

which hosts are coevolving with pathogens, and show how the relatedness between coinfecting

pathogen strains can affect the evolution of host immune investment and how this, in turn, feeds

back into affecting pathogen evolution.

The nature of the topics under investigation in this thesis makes it challenging to compare

results to empirical observations. Data sets on costs and levels of immune investment, on the

proportion of a population engaging in prophylactic behaviours at any given time, or on the

relatedness among a group of coinfecting pathogen strains are not readily available or easily
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measured. Instead, I have chosen to focus on theoretical predictions. Experimental studies

could be designed, though, to test these predictions. For example, one could survey groups of

individuals over the course of a flu season and ask them to report on how often they engaged

in some prophylactic behaviour, such as hand washing or wearing a mask. This could give a

sense of the prevalence of these behaviours in the larger population, but care would need to be

taken to account for the fact that individuals knowing they will be surveyed could cause them to

engage in those behaviours more often and artificially inflate the observed rate of engagement

in prophylaxis.

5.2 Future Directions

Part of the goal in Chapter 2 was to develop an evolutionary explanation for the trend ob-

served across a wide variety of infectious diseases of increased immune investment in females

and increased pathogen disease-induced mortality in males. Previous literature, which ne-

glected host-pathogen coevolution, only addressed half of this trend. Authors have explained

sex differences in host immune investment as resulting from sexual selection acting on males

[24, 25, 26], sex differences in pathogen life history traits [29], and female reproduction (Chap-

ter 2 of this thesis). Other authors have provided explanations of the evolution of sex-specific

levels of pathogen disease-induced mortality as a result of inherent differences in host immune

investment [48] or vertical transmission [15]. While the coevolutionary model I have investi-

gated is able to provide a more complete explanation of the trend observed in clinical data, it

hinges on the possibility of vertical transmission. One open question that remains in this area,

then, is: How could hosts and pathogens have coevolved to a state of high female immune in-

vestment and high male disease-induced mortality, for diseases in which vertical transmission

does not occur? In their work on pathogen evolution in response to sex-specific differences in

hosts, Cousineau and Alizon [48] show how changing the structure of the transmission rate can

influence the level of virulence to which natural selection pushes the pathogen. In particular,
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they show how allowing a particular sex to infect only the same sex, only the opposite sex,

or a mixture of both sexes can select for different levels of virulence [48]. However, this is

only done in the case of pathogen evolution, so the coevolutionary consequences of this are not

clear. Investigating the role of contact patterns between the sexes on host-pathogen coevolution

could provide an alternate explanation for patterns of immune investment and disease-induced

mortality that does not rely on vertical transmission.

One of the assumptions made in Chapter 3 is that hosts have information on the entire

population when deciding whether or not to engage in prophylactic behaviour. In human popu-

lations, though, we know that hosts will make decisions based on their interactions with only a

subset of the population. Modelling such structure within the host population typically involves

using networks. In the case of epidemic models, previous authors have studied the effects of

different types of networks [94], sexually transmitted diseases spreading on networks of fe-

male and male hosts [95], and adaptive networks where individual hosts can change who they

are connected to over time [96]. Networks have been discussed as a way to model not only

infectious diseases but also the spread of information between individuals [78], or as a way

to explain pathogen adaptation from an inclusive-fitness perspective [97]. While this literature

links the ideas of spatial structure and infectious diseases, it is still unknown how this affects

predictions in scenarios where hosts are able to switch between different types. The model

presented in Chapter 3 of this thesis could be extended to study the consequences of a net-

work structure on predictions of the coevolution of host behaviour and pathogen exploitation.

For example, Wild, Gardner, and West [97] show that limited pathogen dispersal in a spatially

structured population can select for lower levels of virulence. However, in a spatially struc-

tured host population split into those engaging and not engaging in prophylactic behaviours,

pathogens with limited dispersal that find themselves in a group of hosts engaging in prophy-

laxis may no longer be at a selective advantage for lowering their virulence. Conversely, if

the pathogen reduces its virulence within a group of hosts, that creates less incentive for those

hosts to engage in prophylactic behaviours. If the fraction of hosts engaging in prophylaxis
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drops too low, the results presented in Chapter 3 suggest that natural selection will push for

increased pathogen virulence. Predicting the exact endpoint of host-pathogen coevolution in

such a setting requires further study of spatially structured coevolution models.

This idea of spatial structure can also be extended to scenarios like those discussed in

Chapter 4. Here, I have considered the effects of relatedness among pathogen strains on the

coevolution of hosts and pathogens, but I have not considered the effects of relatedness among

hosts. Hamilton’s [45] ideas on inclusive fitness pertain to hosts, as well, and so we would

expect to see closely related hosts cooperating with each other. In particular, if hosts are clus-

tered into groups and are closely related to those within their group, we would expect them

to invest more heavily in their immune systems in order to protect not only themselves but

also those around them. As seen in the sex-specific modelling of Cousineau and Alizon [48],

this increased immune investment could then select for higher pathogen virulence within that

host group. Understanding the interplay between host relatedness, pathogen relatedness, and

host-pathogen coevolution would involve extending the framework developed in Chapter 4 to

include spatially clustered and genetically related host groups.
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Manfrinato, V. Tisato, A. Carè, and T. Bellini. “Bridging the Gap” Everything that

could have been avoided if we had applied gender medicine, pharmacogenetics and

personalized medicine in the gender-omics and sex-omics era. Int. J. Mol. Sci.,

21(1):296, 2020. https://doi.org/10.3390/ijms21010296.



BIBLIOGRAPHY 97

[54] J. Fischer, N. Jung, N. Robinson, and C. Lehmann. Sex differences in immune

responses to infectious diseases. Infection, 43:399–403, 2015.

https://doi.org/10.1007/s15010-015-0791-9.

[55] E. N. Fish. The X-files in immunity: sex-based differences predispose immune

responses. Nat. Rev. Immunol., 8:737–744, 2008. https://doi.org/10.1038/nri2394.

[56] M. A. Ingersoll. Sex differences shape the response to infectious diseases. PLoS

Pathog., 13(12), 2017. https://doi.org/10.1371/journal.ppat.1006688.

[57] S. L. Klein. The effects of hormones on sex differences in infection: from genes to

behavior. Neurosci. Biobehav. Rev., 24(6):627–638, 2000.

https://doi.org/10.1016/S0149-7634(00)00027-0.

[58] C. W. Roberts, W. Walker, and J. Alexander. Sex-associated hormones and immunity to

protozoan parasites. Clin. Microbiol. Rev., 14(3):476–488, 2001.

https://doi.org/10.1128/CMR.14.3.476–488.2001.

[59] J. K. Chye, C. T. Lim, K. B. Ng, J. M. H. Lim, R. George, and S. K. Lam. Vertical

transmission of dengue. Clin. Infect. Dis., 25(6):1374–1377, 1997.

https://doi.org/10.1086/516126.

[60] A. C. Freitas, F. C. Mariz, M. A. R. Silva, and A. L. S. Jesus. Human papillomavirus

vertical transmission: review of current data. Clin. Infect. Dis., 56(10):1451–1456,

2013. https://doi.org/10.1093/cid/cit066.

[61] I. Gentile and G. Borgia. Vertical transmission of hepatitis B virus: challenges and

solutions. Int. J. Womens Health, 6:605–611, 2014. https://dx.doi.org/10.2147

[62] L. Berec. Mate search and mate-finding Allee effect: on modeling mating in

sex-structured population models. Theor. Ecol., 11:225–244, 2018.

https://doi.org/10.1007/s12080-017-0361-0.



98 BIBLIOGRAPHY

[63] H. Caswell and D. E. Weeks. Two-sex models: chaos, extinction, and other dynamic

consequences of sex. Am. Nat., 128(5):707–735, 1986. https://doi.org/10.1086/284598.

[64] K. W. Beagley and C. M. Gockel. Regulation of innate and adaptive immunity by the

female sex hormones oestradiol and progesterone. FEMS Immunol. Med. Microbiol.,

38(1):13–22, 2003. https://doi.org/10.1016/S0928-8244(03)00202-5.

[65] M. Cutolo, A. Sulli, S. Capellino, B. Villaggio, P. Montagna, B. Seriolo, and R. H.

Straub. Sex hormones influence on the immune system: basic and clinical aspects in

autoimmunity. Lupus, 13(9):635–638, 2004. https://doi.org/10.1191

[66] I. J. Tan, E. Peeva, and G. Zandman-Goddard. Hormonal modulation of the immune

system - A spotlight on the role of progestogens. Autoimmun. Rev., 14:536–542, 2015.

http://dx.doi.org/10.1016/j.autrev.2015.02.004.

[67] T. Day and P. D. Taylor. Evolutionary dynamics and stability in discrete and continuous

games. Evol. Ecol. Res., 5:605–613, 2003.

[68] O. Leimar. Multidimensional convergence stability. Evol. Ecol. Res., 11:191–208,

2009.

[69] P. W. Ewald. Transmission modes and evolution of the parasitism-mutualism

continuum. Ann. N. Y. Acad. Sci., 503(1):295–306, 1987.

https://doi.org/10.1111/j.1749-6632.1987.tb40616.x.

[70] J. S. Ayres. Cooperative microbial tolerance behaviors in host-microbiota mutualism.

Cell, 165(6):1323–1331, 2016. https://doi.org/10.1016/j.cell.2016.05.049.

[71] M. Lipsitch, M. A. Nowak, D. Ebert, and R. M. May. The population dynamics of

vertically and horizontally transmitted parasites. Proc. R. Soc. B, 260(1359):321–327,

1995. https://doi.org/10.1098/rspb.1995.0099.



BIBLIOGRAPHY 99

[72] D. Fairweather and N. R. Rose. Women and autoimmune diseases. Emerg. Infect. Dis.,

10(11):2005–2011, 2004. https://dx.doi.org/10.3201

[73] N. Gleicher and D. H. Barad. Gender as risk factor for autoimmune diseases. J.

Autoimmun., 28(1):1–6, 2007. https://doi.org/10.1016/j.jaut.2006.12.004.

[74] S. T. Ngo, F. J. Steyn, and P. A. McCombe. Gender differences in autoimmune disease.

Front. Neuroendocrinol., 35(3):347–369, 2014.

https://doi.org/10.1016/j.yfrne.2014.04.004.

[75] H. J. Bremermann and J. Pickering. A game-theoretical model of parasite virulence. J.

Theor. Biol., 100(3):411–426, 1983. https://doi.org/10.1016/0022-5193(83)90438-1.

[76] H. Knolle. Host density and the evolution of parasite virulence. J. Theor. Biol.,

136(2):199–207, 1989. https://doi.org/10.1016/S0022-5193(89)80226-7.

[77] T. C. Reluga. Simple models of antibiotic cycling. Math. Med. Biol., 22(2):187–208,

2005. https://doi.org/10.1093/imammb/dqi002.

[78] C. T. Bauch and A. P. Galvani. Social factors in epidemiology. Science, 342:47–49,

2013. https://doi.org/10.1126/science.1244492.

[79] M. Schaller. The behavioural immune system and the psychology of human sociality.

Philos. Trans. R. Soc. B, 366:3418–3426, 2011. https://doi.org/10.1098/rstb.2011.0029.

[80] R. M. Anderson, H. Heesterbeek, D. Klinkenberg, and T. D. Hollingsworth. How will

country-based mitigation measures influence the course of the covid-19 epidemic?

Lancet, 395(10228):P931–P934, 2020.

https://doi.org/10.1016/S0140-6736(20)30567-5.

[81] J. Antonovics, Y. Iwasa, and M. P. Hassell. A generalized model of parasitoid,

venereal, and vector-based transmission processes. Am. Nat., 145(5):661–675, 1995.

https://doi.org/10.1086/285761.



100 BIBLIOGRAPHY

[82] H. McCallum, N. Barlow, and J. Hone. How should pathogen transmission be

modelled? Trends Ecol. Evol., 16(6):295–300, 2001.

https://doi.org/10.1016/S0169-5347(01)02144-9.

[83] L. Osterberg and T. Blaschke. Adherence to medication. N. Engl. J. Med.,

353(5):487–497, 2005. https://doi.org/10.1056/NEJMra050100.

[84] J. Robison and M. A. Rogers. Adherence to exercise programmes. Sports Med.,

17(1):39–52, 1994. https://doi.org/10.2165/00007256-199417010-00004.

[85] S. R. Patton. Adherence to diet in youth with type 1 diabetes. J. Am. Diet. Assoc.,

111(4):550–555, 2011. https://doi.org/10.1016/j.jada.2011.01.016.

[86] C. Matessi and C. Di Pasquale. Long-term evolution of multilocus traits. J. Math.

Biol., 34:613–653, 1996. https://doi.org/10.1007/BF02409752.

[87] E. M. Poolman, E. H. Elbasha, and A. P. Galvani. Vaccination and the evolutionary

ecology of human papillomavirus. Vaccine, 26:C25–C30, 2008.

https://doi.org/10.1016/j.vaccine.2008.04.010.

[88] D. P. Hughes, S. B. Andersen, N. L. Hywel-Jones, W. Himaman, J. Billen, and J. J.

Boomsma. Behavioral mechanisms and morphological symptoms of zombie ants dying

from fungal infection. BMC Ecol., 11, 2011. https://doi.org/10.1186/1472-6785-11-13.
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Appendix A

Chapter 2 - Evolutionary Analysis for

Simple Cases

This appendix provides more details on the evolutionary analysis conducted in the absence of

sex-specific differences, as discussed in the Results of the main text.

For the first case, where all sex differences are stripped away, we start our evolutionary

analysis by introducing a rare mutant-type pathogen with disease-induced mortality α̃. Trans-

mission from hosts infected with this mutant pathogen strain to susceptible hosts occurs at a

rate β̃, so the total number Ĩ of hosts infected by the mutant strain changes according to

dĨ
dt

= S̄ β̃Ĩ − (γ + α̃ + µ)Ĩ = [β̃S̄ − (γ + α̃ + µ)]Ĩ, (A.1)

where S̄ represents the equilibrium level of susceptible hosts in (2.15). From (A.1), we see that

the mutant pathogen population grows if β̃S̄ − (γ + α̃ + µ) > 0 and shrinks otherwise. This

allows us to define a fitness function for the mutant pathogen strain:

Wα(α̃, α) =
β̃S̄

γ + α̃ + µ
=
β̃(γ + α + µ)
β(γ + α̃ + µ)

. (A.2)

We can recognize β/(γ + α + µ) as the resident pathogen’s basic reproductive number, R0 [3]
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and similarly for the mutant pathogen. This allows us to interpret Wα as

Wα(α̃, α) =
R̃0

R0
, (A.3)

and so maximizing the mutant pathogen’s fitness equates to maximizing its basic reproductive

number, R̃0, as is a common theme in previous pathogen evolution literature (e.g., [10, 13]). If

we substitute in β = βmaxα̃/(α̃ + d), then R̃0 is maximized when

α̃ =
√

d(γ + µ). (A.4)

To study the evolution of hosts’ immune investment, we then introduce a rare mutant-type

host with recovery γ̂. If new mutant hosts are born at a rate b̂ = bmax − c(γ̂ + γ), then the total

numbers Ŝ and Î of susceptible and infective mutant hosts, respectively, will change according

to

dŜ
dt

=
b̂
2

(Ŝ + Î) + γ̂Î − Ŝ βI − µŜ (A.5a)

dÎ
dt

= Ŝ βĪ − (γ̂ + α + µ)Î, (A.5b)

where Ī represents the equilibrium level of infective resident hosts given in (2.15). The Jaco-

bian matrix of this subsystem, evaluated at the mutant-free equilibrium Ŝ = Î = 0, is

J =


b̂
2 − βĪ − µ b̂

2 + γ̂

βĪ −(γ̂ + α + µ)

 . (A.6)

If we then write J = F − V , where

F =


b̂
2

b̂
2

0 0

 and V =

βĪ + µ −γ̂

−βĪ γ̂ + α + µ

 , (A.7)
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we can use a next-generation matrix approach [30] to define a fitness function Wγ for the

mutant-type host as the dominant eigenvalue of the matrix FV−1. Computing this eigenvalue

gives us the following fitness function:

Wγ(γ̂, γ) =
b̂[(b − 2µ)(γ − γ̂) + 2α(γ̂ + α + µ)]

2µ[b − 2(α + µ)](γ − γ̂) + 2bα(γ + α + µ)
. (A.8)

From this, we can find the selection gradient (∂Wγ/∂γ̂)|γ̂=γ and substitute in the expression

(A.4) for the evolutionarily stable level of pathogen disease-induced mortality.

We next consider the case where there are sex-specific levels of host recovery and pathogen

disease-induced mortality, but no inherent asymmetry between host sexes (i.e., no vertical

transmission, and female and male hosts incur the same reproductive cost to immune invest-

ment). As before, we start by introducing a rare mutant-type pathogen with disease-induced

mortality α̃ f in female hosts and α̃m in male hosts. If β̃i j represents the rate of transmission

from a sex- j host infected with the mutant strain to a susceptible sex-i host, then the number

of female hosts infected with the mutant strain, Ĩ f , and the number of male hosts infected with

the mutant strain, Ĩm, change according to

dĨ f

dt
= S f β̃ f f Ĩ f + S f β̃ f m Ĩm − (γ f + α̃ f + µ)Ĩ f (A.9a)

dĨm

dt
= S mβ̃m f Ĩ f + S mβ̃mm Ĩm − (γm + α̃m + µ)Ĩm. (A.9b)

We can then evaluate the Jacobian matrix of this subsystem at the mutant-free equilibrium (i.e.,

when Ĩ f = Ĩm = 0) to find

J =

S f β̃ f f − γ f − α̃ f − µ S f β̃ f m

S mβ̃m f S mβ̃mm − γm − α̃m − µ

 . (A.10)
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Again using a next-generation matrix approach [30], we write (A.10) as J = F − V where

F =

S f β̃ f f S f β̃ f m

S mβ̃m f S mβ̃mm

 and V =

γ f + α̃ f + µ 0

0 γm + α̃m + µ

 . (A.11)

A fitness function Wα for the mutant pathogen strain can then be defined as the dominant

eigenvalue of the matrix FV−1. To find the evolutionarily stable levels of disease-induced

mortality in female and male hosts, we look for roots of the selection gradients (∂Wα/∂α̃ f )|α̃ f =α f

and (∂Wα/∂α̃m)|α̃m=αm . While unwieldy to write out in their entirety, these selection gradients

do possess a simple structure. In particular,

∂Wα

∂α̃ f

∣∣∣∣∣
α̃ f =α f

=
A(α2

f − d(γ f + µ))

B
(A.12)

and
∂Wα

∂α̃m

∣∣∣∣∣
α̃m=αm

=
C(α2

m − d(γm + µ))
D

, (A.13)

for positive constants A, B,C, and D. This allows us to find the evolutionarily stable lev-

els of pathogen disease-induced mortality to be α f =
√

d(γ f + µ) in female hosts and αm =√
d(γm + µ) in male hosts, which are of a similar form to the evolutionarily stable level of

pathogen disease-induced mortality (A.4) found in the absence of any sex differences.

Next, we introduce a rare mutant-type host with recovery levels γ̂ f in females and γ̂m in

males. As discussed in the main text, new mutant hosts are born when a host heterozygous

for the mutation mates with a resident (homozygous) host. System (2.11) describes how the

numbers of susceptible and infective mutant female hosts, Ŝ f and Î f , change over time. Under

the simplifying assumptions made here of no vertical transmission and no sex-specific repro-

ductive costs to immune investment, this system reduces to
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dŜ f

dt
=

b̂ f

2 (Ŝ f + Î f )(S m + Im) + b̂m
2 (S f + I f )(Ŝ m + Îm)

N
+ γ̂ f Î f − Ŝ fβ f f I f − Ŝ fβ f mIm − µŜ f

(A.14a)

dÎ f

dt
= Ŝ fβ f f I f + Ŝ fβ f mIm − (γ̂ f + α f + µ)Î f , (A.14b)

where b̂ f = bmax−c(γ̂ f +γm) and b̂m = bmax−c(γ f + γ̂m). An analogous set of equations governs

the dynamics of the numbers of susceptible and infective mutant male hosts, Ŝ m and Îm. The

Jacobian matrix of this four-dimensional subsystem, evaluated at the mutant-free equilibrium

Ŝ f = Ŝ m = Î f = Îm = 0, can be written as J = F − V where

F =



b̂ f
2 (S m+Im)

N

b̂m
2 (S f +I f )

N

b̂ f
2 (S m+Im)

N

b̂m
2 (S f +I f )

N
b̂ f
2 (S m+Im)

N

b̂m
2 (S f +I f )

N

b̂ f
2 (S m+Im)

N

b̂m
2 (S f +I f )

N

0 0 0 0

0 0 0 0


(A.15)

and

V =



β f f I f + β f mIm + µ 0 −γ̂ f 0

0 βm f I f + βmmIm + µ 0 −γ̂m

−β f f I f − β f mIm 0 γ̂ f + α f + µ 0

0 −βm f I f − βmmIm 0 γ̂m + αm + µ


. (A.16)

The dominant eigenvalue of the matrix FV−1 can then be used as a fitness function Wγ for the

mutant host [30]. While this fitness function can be computed analytically, finding the roots

of the associated selection gradients to compute the evolutionarily stable level of host immune

investment must be done numerically.



Appendix B

Chapter 3 - Details of the Replicator

Dynamics

Here, we present the details of the derivation of equations (3.3) and (3.4). The replicator

dynamic tells us that an individual’s decision to start or stop engaging in prophylaxis is propor-

tional to the utility difference between the focal susceptible (resp. infective) individual and the

average susceptible (resp. infective) individual in the population, taking into account the utility

cost that the focal individual must pay to engage in the prophylactic behaviour. Specifically, the

replicator dynamic equation allows us to replace the τi j terms in our model with the following:

− τ01x + τ10(1 − x) = kx((Ufoc − χ) − Uavg), (B.1)

where Ufoc represents the utility of the focal susceptible individual, Uavg represents the utility

of the average susceptible individual in the population, and k is a constant that reflects the rate

at which individuals change their behaviour based on the behaviour of others. As described

in the main text, we measure utility by the force of infection so that the benefit gained by

an individual choosing to engage in prophylaxis is a reduced force of infection relative to the

average individual. The utility of a focal susceptible individual engaging in prophylaxis, then,
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is given by

Ufoc = −(β10(1 − y) + β11y)v, (B.2)

while the utility of the average susceptible individual in the population is given by

Uavg = −[x(β10(1 − y) + β11y) + (1 − x)(β00(1 − y) + β01y)]v. (B.3)

Substituting these into the replicator dynamic equation gives

− τ01x + τ10(1 − x) = kx(1 − x)[y(β01 − β11) + (1 − y)(β00 − β10)]v − kχx, (B.4)

which is equation (3.3) in the main text.

We can derive equation (3.4) in a similar way. Since there is no force of infection acting on

an infective individual, the utility of both a focal infective individual engaging in prophylaxis

and an average infective individual in the population is zero. However, an infective individual

who decides to engage in prophylaxis must still pay the cost of that behaviour. In this case,

then, the replicator dynamic equation gives

− φ01y + φ10(1 − y) = −kχy. (B.5)



Appendix C

Chapter 3 - Linear Stability Analysis

The full resident system of our model (3.5) in the main text is built on the standard two-

dimensional SIR model. This standard two-dimensional model has a Jacobian matrix of

J =

−β00v − 1 −β00u

β00v β00u − 1 − γ

 . (C.1)

which, when evaluated at the disease-free equilibrium (DFE) (ū, v̄) = (1, 0), has eigenvalues

λ1 = −1 and λ2 = β00 − 1 − γ. The DFE is stable when both eigenvalues are negative, which

leads us to the condition that R0 = β00/(1 + γ) < 1 for stability.

WhenR0 exceeds this threshold, the DFE becomes unstable and the standard two-dimensional

system moves towards an endemic equilibrium (ū, v̄) = (1/R0, (1−1/R0)/(1+γ)). To determine

the region in which this equilibrium remains stable after we incorporate the host behavioural

dynamics, we need to consider the Jacobian matrix of our four-dimensional system (3.5) eval-

uated at (ū, v̄, x̄, ȳ) = (1/R0, (1 − 1/R0)/(1 + γ), 0, 0):



−β00v̄ − 1 −1 − γ ∗ ∗

β00v̄ 0 ∗ ∗

0 0 k(χc − χ) 0

0 0 β10(1+γ)
β00

−1 − γ − kχ


, (C.2)
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where χc = R0 −
(

k+1
k

) (
β10
β00

(R0 − 1) + 1
)

and asterisks denote entries that are possibly non-zero.

Since this matrix is block upper triangular, the eigenvalues are given by the eigenvalues of

the 2 × 2 matrices on the diagonal. The 2 × 2 matrix in the upper left is the Jacobian matrix

of the standard two-dimensional SIR model evaluated at the endemic equilibrium (ū, v̄, x̄, ȳ),

which we know has negative eigenvalues whenever R0 > 1. The 2 × 2 matrix in the bottom

right is lower triangular, so its eigenvalues are the entries on the main diagonal. The second

of these entries is always negative, while the first is negative as long as χ > χc. This defines a

critical cost threshold where for χ > χc the endemic equilibrium (ū, v̄, x̄, ȳ) is stable, while for

χ < χc our system tends towards an endemic equilibrium that contains individuals engaging in

prophylaxis in some non-zero quantities.



Appendix D

Chapter 3 - Evolutionary Analysis of

Simple Cases

Two simple cases, where evolutionary analysis is possible analytically, were discussed in Chap-

ter 3 of the main text. Here, we outline the details of that analysis.

The first special case is when the cost of prophylaxis exceeds the threshold χc. In this

case, our linear stability analysis shows that the stable endemic equilibrium is (ū, v̄, x̄, ȳ) =

(1/R0, (1 − 1/R0)/(1 + γ), 0, 0), where R0 = β00/(1 + γ). We can then solve equation (3.8b) to

find two possible equilibria for ym: ȳm = 0 or ȳm = 1/ε + (kχ/(ε(1 + ξm)). Since ε ≤ 1, the

second of these values is always larger than one and so is not biologically sensible, as ym is

defined to be a proportion. Checking the sign of d/dym(dym/dt) at the first of these equilibrium

values shows that ȳm = 0 is the stable equilibrium. From this, the fitness function in equation

(3.9) reduces to

W(ξm, ξ) =
β00(ξm)ū(ξ)
1 + γ(ξm)

=
R0(ξm)
R0(ξ)

, (D.1)

and so to find the CSS we need to solve the equation

∂W
∂ξm

∣∣∣∣∣
ξm=ξ=ξ̄

=
dR0(ξm)

dξm

∣∣∣∣∣
ξm=ξ̄

= 0. (D.2)
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This results in a CSS value of ξ̄ =
√
κ.

The second special case is when the prophylactic measures are cost-free, i.e., χ = 0. As

noted in the main text, the system moves towards an endemic equilibrium where some non-

zero proportions of susceptible and infective individuals are engaging in prophylaxis. While

we do not have exact analytic expressions for these equilibrium values, we can still solve for

ȳm analytically. Under the assumption of zero cost, solving equation (3.8b) gives two possible

equilibrium values for ym: ȳm = 1/ε and ȳm = (εx̄− x̄)/(εx̄− 1). Since ε ≤ 1 and x̄ ≤ 1, the first

of these is always larger than one and the second is always on the interval [0, 1]. Substituting

the second of these values into (d/dym)(dym/dt) shows that ȳm = (εx̄ − x̄)/(εx̄ − 1) is the stable

equilibrium. Notably, this equilibrium value is independent of the mutant exploitation ξm and

so the fitness function has the form

W(ξm, ξ) =
ξm

(κ + ξm)(1 + γ(ξm))
B(ξ)ū(ξ), (D.3)

where B(ξ) represents what remains from βavg(ξm, ξ) after factoring out the terms involving ξm.

To find the CSS value, we then solve

∂W
∂ξm

∣∣∣∣∣
ξm=ξ=ξ̄

=
κ − ξ̄2

(κ + ξ̄)2(1 + ξ̄)2
B(ξ̄)ū(ξ̄) = 0. (D.4)

This results in a CSS value of ξ̄ =
√
κ.



Appendix E

Chapter 3 - Evolutionary Analysis in the

Case of Arbitrary Cost

While a full evolutionary analysis of the model in the case of an arbitrary cost value is possible

only numerically, we expand here on some analytical details of this case discussed in the main

text. In particular, we show that there is a unique stable equilibrium value of ym on the interval

[0, 1], and that the derivative dȳm/dξm evaluated at ξm = ξ is always positive and discuss the

implications of this on the fitness function.

In order to numerically perform the evolutionary invasion analysis, we first need to know

that there is a unique equilibrium value of ym on the interval of [0, 1] and that this value is stable.

To find the equilibrium values of ym, we need to solve equation (3.8b). The right-hand side of

this equation is a quadratic polynomial in ym, so we know there are two possible equilibrium

values for ym. Evaluating (3.8b) at ym = 0 gives

dym

dt
=
βmax(1 − ε)ξm x̄ū

κ + ξm
, (E.1)

which is positive since ε ∈ [0, 1]. If we then evaluate (3.8b) at ym = 1, we find that

dym

dt
= −

ū(1 − ε)(1 − x̄)βmaxξm + kχξm + kχκ
κ + ξm

, (E.2)
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which is negative since ε ∈ [0, 1] and x̄ ∈ [0, 1]. By the Intermediate Value Theorem and the

fact that the right-hand side of (3.8b) is quadratic in ym, this then shows that there is a unique

equilibrium value of ym in the interval [0, 1]. Moreover, since the derivative dym/dt is positive

at ym = 0 and negative at ym = 1, this equilibrium value is stable.

With this knowledge, we are able to solve (3.8b) and get an explicit expression for the

equilibrium value ȳm. To understand how this value interacts with the fitness function (3.9),

we need to understand how ȳm changes with ξm. Differentiating with respect to ξm, we are able

to get an explicit expression for dȳm/dξm and evaluate when ξm = ξ. Doing so results in an

expression of the form
dȳm

dξm

∣∣∣∣∣
ξm=ξ

=
a −
√

a2 − b
c

, (E.3)

where a = kχ(κ + ξ) + βmax(1 − ε2 x̄)ū, b = 4β2
maxε(1 − ε)(1 − εx̄)ξ2ū2 x̄, and c = 2βmaxε(1 −

εx̄)ξ2ū
√

a2 − b/kχκ. The fact that ε ∈ [0, 1] and x̄ ∈ [0, 1] allows us to conclude that a, b,

and c are all positive. Some simplification of the radicand also shows that a2 − b ≥ 0, so

we are guaranteed that equation (E.3) is real-valued. This proves that
√

a2 − b ≤ a and, thus,

(dȳm/dξm)|ξm=ξ ≥ 0.

To see how this affects the evolution of pathogen exploitation, we need to pull apart the

fitness function in equation (3.9). Finding a potential CSS value of ξ involves first solving

(∂W/∂ξm)|ξm=ξ=ξ̄ = 0. Using equation (3.9), this gives

0 =
∂W
∂ξm

∣∣∣∣∣
ξm=ξ=ξ̄

=
(β′avg(1 + γ) − βavgγ

′)ū

(1 + γ)2 , (E.4)

where primes denote derivatives with respect to ξm evaluated when ξm = ξ = ξ̄. This further

reduces to solving the equality

β′avg

βavg
=

γ′

1 + γ
=

(1 + γ)′

1 + γ
. (E.5)

In the absence of individuals engaging in prophylaxis, βavg = β00 and so solving for the CSS
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value ξ̄ amounts to balancing the standard trade-off between transmission and recovery. How-

ever, when individuals take prophylactic measures, βavg becomes more complicated. To under-

stand how βavg responds to changes in exploitation in this case, we take a closer look at β′avg.

Using the definition of βavg given in the main text, we have that

β′avg =

[
1 − x̄ x̄

]

β
′
00 β′01

β′10 β′11


1 − ȳm

ȳm

︸                 ︷︷                 ︸
I

− ȳ′m

β00 − β01

β10 − β11

︸          ︷︷          ︸
II


. (E.6)

It follows from the fact that β00 ≥ β01 = β10 ≥ β11 and the above proof that ȳ′m ≥ 0 that

terms I and II in equation (E.6) are non-negative. Accounting for individuals engaging in

prophylaxis—in particular, infective individuals engaging in prophylaxis—reduces β′avg below

the level we would expect in the absence of those measures. If the pathogen increases its

exploitation, it leads to an increase in the proportion of infective individuals engaging in pro-

phylactic measures due to the fact that ȳ′m ≥ 0. This increases the likelihood that the rate of

transmission between a susceptible individual and an infective individual will be one of β01 or

β11, instead of β00 or β10. Since β01 and β11 are always smaller than β00 and β10, this leads to a

reduction in the rate of change of the average transmission rate in the population. This influ-

ence on the rate of change of transmission intertwines with the more standard trade-off between

transmission and recovery, and reduces the evolutionarily stable level of pathogen exploitation

below what we would expect in the absence of prophylaxis.
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Chapter 3 - Perturbation Analysis

Letting r = (u, v, x, y) and s = ξ, we can express the four equations governing the epi-

demiological dynamics of our system as the vector-valued function F(r, s; χ) and the equa-

tion describing the evolutionary dynamics of pathogen exploitation as the scalar-valued func-

tion G(r, s; χ). We know that below the critical cost threshold χc the endemic equilibrium

(r̂, ŝ) = (û, v̂, x̂, ŷ, ξ̂) is stable, while above this threshold our system tends towards the endemic

equilibrium (r̄, s̄) = (ū, v̄, 0, 0, ξ̄) where individuals engaging in prophylaxis are absent. The

critical cost level represents a bifurcation point where these two equilibria coincide and un-

dergo an exchange of stability. To study how our system reacts as we decrease the cost away

from this threshold, we introduce a perturbation parameter δ = χ − χc and take a first-order

approximation to our new equilibrium point (r̂, ŝ) = (ū + ρ1δ, v̄ + ρ2δ, ρ3δ, ρ4δ, ξ̄ + σδ). Know-

ing that this equilibrium point must satisfy F(r̂, ŝ; χ) = 0 and G(r̂, ŝ; χ) = 0, our goal is to find

expressions for the perturbation coefficients ρ1, ρ2, ρ3, ρ4, and σ.

If we treat (r̂, ŝ) as a function of χ, we can make a first-order Taylor series approximation

centred around χc:

F(r̄, s̄; χc) + δ[Dr̂F(r̄, s̄; χc)dr̂ + Fŝ(r̄, s̄; χc)dŝ + Fχ(r̄, s̄; χc)] = 0 (F.1a)

G(r̄, s̄; χc) + δ[Gr̂(r̄, s̄; χc)dr̂ + G ŝ(r̄, s̄; χc)dŝ + Gχ(r̄, s̄; χc)] = 0, (F.1b)
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where subscripts denote partial derivatives and dr̂ = (ρ1, ρ2, ρ3, ρ4) and dŝ = σ are the deriva-

tives with respect to χ of r̂ and ŝ, respectively. We know that (r̄, s̄) is an equilibrium point, so

the first term in equations (F.1a) and (F.1b) evaluates to zero. We also observe that every term

in F and G involving χ is multiplied by at least one of x or y, and so the partial derivatives with

respect to χ vanish when we evaluate at (r̄, s̄). This simplifies (F.1) to:

Dr̂F(r̄, s̄; χc)dr̂ + Fŝ(r̄, s̄; χc)dŝ = 0 (F.2a)

Gr̂(r̄, s̄; χc)dr̂ + G ŝ(r̄, s̄; χc)dŝ = 0. (F.2b)

We can write (F.2) more succinctly as J
[ dr̂

dŝ
]

= 0 where the matrix J has the following

structure:

J =



∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ 0

0 0 0 0 0

0 0 ∗ ∗ 0

0 0 ∂
∂x̄

[
∂W
∂ξm

∣∣∣
ξm=ξ

]
χ = χc, ξ =

√
κ

0 ∂
∂ξ

[
∂W
∂ξm

∣∣∣
ξm=ξ

]
χ = χc, ξ =

√
κ


, (F.3)

with asterisks denoting entries that are possibly non-zero. Since J is a block triangular matrix,

the eigenvalues are given by the eigenvalues of the matrices on the main diagonal. The 2 × 2

matrix in the upper left is the Jacobian matrix arising from the linearization of the standard

SIR model around the endemic equilibrium (r̄, s̄). Since the lower-right 3 × 3 block is lower

triangular and has a zero entry on its main diagonal, we can see that zero is an eigenvalue of J.

This allows us to interpret
[ dr̂

dŝ
]

as the eigenvector of J associated with the zero eigenvalue, and

so shows that there is a non-trivial solution for our perturbation coefficients.

While an analytic expression for this eigenvector can be found, it is unwieldy. Of more

interest is the sign of the perturbation coefficient σ, as this tells us in which direction ξ̄ moves

as we decrease the cost below its critical value. The third row of (F.3) tells us that x̄ is a free

variable, and the last row tells us that there is a simple relationship between this free variable
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and ξ̄. In particular, if we consider finding the eigenvector
[ dr̂

dŝ
]

by solving the expression

J
[ dr̂

dŝ
]

= 0, then the last row of (F.3) tells us that

σ = −

∂
∂x̄

[
∂W
∂ξm

∣∣∣
ξm=ξ

]
χ = χc, ξ =

√
κ

∂
∂ξ

[
∂W
∂ξm

∣∣∣
ξm=ξ

]
χ = χc, ξ =

√
κ

ρ3. (F.4)

We know that the denominator of (F.4) is always negative since ξ̄ =
√
κ is convergence stable

(see (3.11)). Furthermore, the proportion of susceptible individuals engaging in prophylaxis

increases as the cost is decreased below its critical value and δ = χ − χc < 0 below this cost

threshold, so we must have that ρ3 < 0. It follows, then, that the sign of σ is controlled only by

the numerator of (F.4) and so we arrive at equation (3.14) in the main text.
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Chapter 3 - Maple Code

Here, we present the Maple code, described in Chapter 3 of the main text, used to check the sign

of the perturbation coefficient σ for a range of parameter values near the critical cost threshold.

Using δ = χ − χc as our perturbation parameter, we first define the differential equation for ym

in (3.8b) and solve for the equilibrium value:

restart:

with(LinearAlgebra): with(VectorCalculus): with(plots):

dymdt := -(y[m]*(beta[max]*(1 - epsilon)*xi[m]*(1 - x)*

y[m]/(kappa + xi[m]) - beta[max]*(1 - epsilon)ˆ2*xi[m]*

x*(1 - y[m])/(kappa + xi[m])) + (1 - y[m])*(beta[max]*

xi[m]*(1 - x)*y[m]/(kappa + xi[m]) - beta[max]*

(1 - epsilon)*xi[m]*x*(1 - y[m])/(kappa + xi[m])))*u

- k*(chi[c] + delta)*y[m]:

Solving this equation returns two possible equilibrium values:

ym := solve(dymdt, y[m]):

simplify(subs(delta = chi - chi[c], ym[1])):

simplify(subs(delta = chi - chi[c], ym[2])):

These equilibrium values are of the form (a ±
√

b)/c. Knowing that 0 ≤ ε ≤ 1 and 0 ≤ x̄ ≤ 1
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allows us to conclude that a ≤ 0, b ≥ 0, and c ≤ 0. Furthermore, some algebra shows that

b ≤ a2 and so
√

b ≤ |a|. This allows us to conclude that 0 ≤ ym[1] ≤ ym[2]. We now check

the derivative of the differential equation to find the stable equilibrium:

simplify(subs(y[m] = ym[1], diff(dymdt, y[m]))):

simplify(subs(y[m] = ym[2], diff(dymdt, y[m]))):

Since the first of these quantities is negative and the second is positive, this shows that the first

root ym[1] is the stable equilibrium. The proof in Appendix E shows that there is a unique

stable equilibrium on the interval [0, 1], and so we are guaranteed that ym[1] is on [0, 1]. Thus,

we define this as the equilibrium value of ym:

ym := ym[1]:

We now define the differential equations for u, v, x, and y in (3.5), as well as the partial deriva-

tive of the fitness function with respect to the mutant pathogen exploitation level ξm:

dudt := 1 - (beta[max]*xi*(1 - x)*(1 - y)/(kappa + xi)

+ beta[max]*(1 - epsilon)*xi*(1 - x)*y/(kappa + xi)

+ beta[max]*(1 - epsilon)*xi*x*(1 - y)/(kappa + xi)

+ beta[max]*(1 - epsilon)ˆ2*xi*x*y/(kappa + xi))*u*v - u:

dvdt := (beta[max]*xi*(1 - x)*(1 - y)/(kappa + xi)

+ beta[max]*(1 - epsilon)*xi*(1 - x)*y/(kappa + xi)

+ beta[max]*(1 - epsilon)*xi*x*(1 - y)/(kappa + xi)

+ beta[max]*(1 - epsilon)ˆ2*xi*x*y/(kappa + xi))*u*v - (1 + xi)*v:

dxdt := -x/u + (k + 1)*x*(1 - x)*(y*(beta[max]*(1 - epsilon)*

xi/(kappa + xi) - beta[max]*(1 - epsilon)ˆ2*xi/(kappa + xi))

+ (1 - y)*(beta[max]*xi/(kappa + xi) - beta[max]*(1 - epsilon)*

xi/(kappa + xi)))*v - k*(chi[c] + delta)*x:

dydt := -(beta[max]*xi*(1 - x)*y*(1 - y)/(kappa + xi)

+ beta[max]*(1 - epsilon)*xi*(1 - x)*yˆ2/(kappa + xi)

- beta[max]*(1 - epsilon)*xi*x*(1 - y)ˆ2/(kappa + xi)
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- beta[max]*(1 - epsilon)ˆ2*xi*x*y*(1 - y)/(kappa + xi))*u

- k*(chi[c] + delta)*y:

W := (beta[max]*xi[m]*(1 - x)*(1 - ym)/(kappa + xi[m]) + beta[max]*

(1 - epsilon)*xi[m]*(1 - x)*ym/(kappa + xi[m]) + beta[max]*

(1 - epsilon)*xi[m]*x*(1 - ym)/(kappa + xi[m]) + beta[max]*

(1 - epsilon)ˆ2*xi[m]*x*ym/(kappa + xi[m]))*u/(1 + xi[m]):

dWdxi := subs(xi[m] = xi, diff(W, xi[m])):

Using this, we put together the matrix J described in Appendix F:

J1 := Jacobian([dudt, dvdt, dxdt, dydt], [u, v, x, y] =

[(1 + sqrt(kappa))*(kappa + sqrt(kappa))/(beta[max]*sqrt(kappa)),

(1 - (1 + sqrt(kappa))*(kappa + sqrt(kappa))/(beta[max]*

sqrt(kappa)))/(1 + sqrt(kappa)), 0, 0]):

J2 := <0, 0, subs(u = (1 + sqrt(kappa))*

(kappa + sqrt(kappa))/(beta[max]*sqrt(kappa)),

x = 0, delta = 0, diff(dWdxi, x)), 0>ˆ%T:

J3 := subs(u = (1 + sqrt(kappa))*(kappa + sqrt(kappa))/

(beta[max]*sqrt(kappa)), v = (1 - (1 + sqrt(kappa))*(kappa

+ sqrt(kappa))/(beta[max]*sqrt(kappa)))/(1 + sqrt(kappa)),

x = 0, y = 0, delta = 0, Jacobian([dudt, dvdt, dxdt, dydt, dWdxi],

[xi] = [sqrt(kappa)])):

J4 := <J1, J2>:

J5 := <J4 | J3>:

J := subs(chi[c] = beta[max]*sqrt(kappa)/((1 + sqrt(kappa))*(kappa

+ sqrt(kappa))) - (k + 1)*((1 - epsilon)*(beta[max]*sqrt(kappa)/((1

+ sqrt(kappa))*(kappa + sqrt(kappa))) - 1) + 1)/k, xi = sqrt(kappa),

delta = 0, J5):

We then extract the entry of J corresponding to the partial derivative in (3.14). We also define
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the critical cost threshold χc in (3.6):

sigmanum := simplify(J[5, 3]):

costthresh := beta[max]*sqrt(kappa)/((1 + sqrt(kappa))*(kappa

+ sqrt(kappa))) - (k + 1)*((1 - epsilon)*(beta[max]*

sqrt(kappa)/((1 + sqrt(kappa))*(kappa + sqrt(kappa))) - 1) + 1)/k:

If we choose βmax and κ values so that R0 > 1, we get the following curve (where above the

curve R0 > 1 and below the curve R0 < 1):

R0plot := plot((1 + sqrt(kappa))ˆ2, kappa = 0 .. 5,

color = BLACK, thickness = 3, view = [0 .. 5, 0 .. 10],

labels = [kappa, beta[max]]):

If we also choose ε values so that χc > 0 and k values so that ε < 1, we can generate a series

of βmax-κ curves and plot them together with the previous curve for R0:

expressions := [seq(seq(subs([epsilon = beta[max]/(((1

+ sqrt(kappa))ˆ2/(beta[max] - (1 + sqrt(kappa))ˆ2) + 10ˆn

+ 1)*(beta[max] - (1 + sqrt(kappa))ˆ2)) + m*(((1

+ sqrt(kappa))ˆ2/(beta[max] - (1 + sqrt(kappa))ˆ2) + 10ˆn)

- (1 + sqrt(kappa))ˆ2/(beta[max] - (1 + sqrt(kappa))ˆ2))/

(10*((1 + sqrt(kappa))ˆ2/(beta[max] - (1 + sqrt(kappa))ˆ2)

+ 10ˆn + 1)), k = (1 + sqrt(kappa))ˆ2/(beta[max]

- (1 + sqrt(kappa))ˆ2) + 10ˆn], costthresh), m = 1 .. 9),

n = -2 .. 2)]:

for i to 45 do

p[i] := plot({solve(expressions[i], beta[max])},

kappa = 0 .. 5, color = GREY, linestyle = DASH):

end do:

display({R0plot, seq(p[i], i = 1 .. 45)},

view = [0 .. 5, 0 .. 10], labels = [kappa, beta[max]]):
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This generates the plot in panel A of figure 3.2 and suggests that all of the χc = 0 curves

overlap with the R0 = 1 curve, meaning that the region in which R0 > 1 coincides with the

region in which χc > 0. We can confirm this by looking at the difference between these two

curves; running the following line of code will show that this difference is always exactly zero:

for i to 45 do

simplify((1 + sqrt(kappa))ˆ2 - solve(expressions[i],

beta[max])[2]):

end do:

If we use the ε and k values chosen above, we can also look at the value of the partial derivative

in equation (3.14). This gives a second set of βmax-κ expressions that we can plot over top of

the expressions for χc and R0 above:

expressions2 := [seq(seq(subs([epsilon = beta[max]/(((1

+ sqrt(kappa))ˆ2/(beta[max] - (1 + sqrt(kappa))ˆ2) + 10ˆn

+ 1)*(beta[max] - (1 + sqrt(kappa))ˆ2)) + m*(((1

+ sqrt(kappa))ˆ2/(beta[max] - (1 + sqrt(kappa))ˆ2) + 10ˆn)

- (1 + sqrt(kappa))ˆ2/(beta[max] - (1 + sqrt(kappa))ˆ2))/(10*

((1 + sqrt(kappa))ˆ2/(beta[max] - (1 + sqrt(kappa))ˆ2)

+ 10ˆn + 1)), k = (1 + sqrt(kappa))ˆ2/(beta[max] - (1

+ sqrt(kappa))ˆ2) + 10ˆn], sigmanum), m = 1 .. 9),

n = -2 .. 2)]:

for i to 45 do

p2[i] := plot({solve(expressions2[i], beta[max])},

kappa = 0 .. 5, color = GREY, linestyle = DOT):

end do:

display({R0plot, seq(p[i], i = 1 .. 45), seq(p2[i], i = 1 .. 45)},

view = [0 .. 5, 0 .. 10], labels = [kappa, beta[max]]):

This produces the plot shown in panel B of figure 3.2 and shows that all of these curves that
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represent the roots of the partial derivative in (3.14) lay below the curve for R0 = 1. So for

all sensible sets of parameter values (i.e., all parameter values that satisfy χc > 0 and R0 > 1),

(3.14) has the same sign. We can take a test point in this region of parameter space to show

that this sign is always positive, meaning that in a neighbourhood below the critical cost value

the CSS pathogen exploitation level will decrease below its benchmark value.
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