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Abstract 

Experimental investigations of materials at high pressures (P) and temperatures (T) provide 

insight into the properties and behaviours expected within the inaccessible interiors of 

planetary bodies. Using a four-wire electrical resistance technique, the electrical resistivity 

(ρ) of 4d transition metal (Ag) and 3d transition metal alloys (Fe-S) were measured in the 

solid and molten states at high P. The thermal conductivity (κ) of these materials is inversely 

proportional to ρ, as described by the Wiedemann-Franz Law. When applied to planetary 

cores, κ is an important parameter that regulates heat transport mechanisms and magnetic 

field production. 

A hypothesis of ‘resistivity invariance’ suggested that for pure d-band filled metals the 

magnitude of ρ along the P- and T-dependent melting boundary is constant. This implied that 

investigations at low P can provide a singular constraint value of ρ and κ at more extreme P 

and T conditions expected for planetary cores, such as the inner-outer core boundary of Earth 

which is a solidification boundary. The ρ of silver (Ag) was measured at P up to 5 GPa and T 

up to ~1650 K. The results showed a decrease in ρ along the P-dependent melting boundary, 

contrary to prediction, and were discussed in terms of increasing energy separation between 

the Fermi level and 4d-band as a function of increasing P. 

The ρ of solid and molten iron sulfide (FeS) and Fe-FeS were measured at T up to ~1750 K 

and ~1350 K, respectively, and P up to 5 GPa. These material compositions are relevant to 

the sulphur (S)-rich core of Ganymede, with the experimental P and T approximating the 

conditions at the top, or outer-most portion, of the core. The dipolar magnetic field of 

Ganymede may be generated by an internal dynamo, implying a molten core that may 

transport heat by thermal convection. The κ and adiabatic conductive heat flow for molten 

FeS and Fe-FeS core models of Ganymede were calculated from the measured ρ. The results 

showed that heat transport by thermal convection is permissible in the core models and may 

act as an energy source to power a dynamo-produced magnetic field. 
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Summary for Lay Audience 

The cores of planetary bodies are inaccessible to direct measurement of their transport 

properties because of extreme pressure (P) and temperature (T) conditions and kilometers-

thick surrounding rock. However, laboratory experiments at high P and T are capable of 

replicating interior conditions and the results of these investigations can be used to estimate 

the properties and behaviours of the cores of these bodies. Electrical resistivity (ρ) and 

thermal conductivity (κ) are important transport properties to estimate for planetary cores 

because they affect thermal evolution and production of magnetic fields. For metals and 

alloys, ρ and κ are related by the Wiedemann-Franz Law, where one transport property can 

be calculated if the other property is known. 

It was hypothesized that ρ of pure metals will have the same value at the melting T at any P. 

This implied that laboratory measurements at low P and high T could be used to indirectly 

determine ρ at significantly higher P and T conditions expected for large planetary cores, 

such as Earth. The ρ of silver (Ag) was measured at P up to 5 GPa and T up to ~1650 K. The 

results showed a decrease in ρ along the melting boundary, contrary to prediction, and were 

discussed in terms of effects on electron energy states with increasing P. 

Ganymede, a moon of Jupiter, is known to have a magnetic field and is expected to have a 

core made predominantly of iron (Fe) with some sulphur (S). The ρ of solid and molten iron 

sulfide (FeS) and Fe-FeS were measured at T up to ~1750 K and ~1350 K, respectively, and 

P up to 5 GPa. These experimental P and T approximate the conditions at the top, or outer-

most portion, of the core. The κ and adiabatic conductive heat flow for molten FeS and Fe-

FeS core models of Ganymede were calculated from the measured ρ. The results showed that 

a molten core could transport heat by thermal convection. If the molten core is thermally 

convecting, this may act as an energy source to power and generate the magnetic field of 

Ganymede. 

 

 



 

v 

 

Co-Authorship Statement 

Main body chapters of this dissertation are comprised of three manuscripts: 

1. Chapter 3: Littleton, J.A.H., Secco, R.A. and Yong, W. 2018. Decreasing electrical 

resistivity of silver along the melting boundary up to 5 GPa. High Pressure Research. 

38(2): 99-106. DOI: 10.1080/08957959.2018.1435786 

2. Chapter 4: Littleton, J.A.H., Secco, R.A. and Yong, W. 2021. Electrical resistivity of 

FeS at High Pressures and Temperatures: Implications of Thermal Transport in the 

Core of Ganymede. Journal of Geophysical Research: Planets. 126(5): 

e2020JE006793. DOI: 10.1029/2020JE006793 

3. Chapter 5: Littleton, J.A.H., Secco, R.A. and Yong, W. 2021. Thermal Convection 

in the Core of Ganymede Inferred from Liquid Fe-FeS Electrical Resistivity at High 

Pressures. Crystals. 11(8): 875. DOI: 10.3390/cryst11080875 

In each of the preceding works, my contributions included: i) pressure cell design; ii) 

fabrications of experimental components; iii) conducting high pressure-temperature 

experiments in a 1000-ton cubic anvil press; iv) post-experiment sample macro-analyses (i.e. 

sample sectioning and microscopy); v) data analysis and interpretation; and vi) writing and 

subsequent revisions of manuscripts. Dr. Richard A. Secco’s contributions included: i) 

project concept; ii) funding for instrumentation, materials, and laboratory facilities; iii) 

discussions related to data interpretation; and iv) feedback and revisions of written 

manuscripts. Dr. Wenjun Yong’s contributions included: i) conducting high pressure-

temperature experiments in a 1000-ton cubic anvil press; ii) discussions related to data 

interpretation; and iii) feedback and revisions of written manuscripts. 

 

 

 



 

vi 

 

Acknowledgments 

First and foremost, I would like to express my sincerest gratitude to my supervisor, Dr. 

Richard A. Secco, whose guidance and support, confidence, and patience have helped me 

achieve success and mature as a scientist and academic. The feedback and ‘word-smithing’ 

during writing of manuscripts was remarkable and helped create exceptional prose of high-

pressure research. Thank you to my Advisory Committee members, Dr. Sean R. Shieh and 

Dr. Roberta L. Flemming, for their advice and suggestions. I would like to thank past and 

present colleagues Dr. Reynold Silber, Dr. Tim Officer, Dr. Innocent Ezenwa and Dr. 

Wenjun Yong for their insight and support, especially during my earliest of years as an 

undergraduate research assistant in the lab, and for being fun and interesting people to whom 

I’ve had the great pleasure of knowing. I want to thank Mr. Jonathan L. Jacobs for his 

incredible machining expertise that allowed my experimental designs to be more than just 

pencil sketches on paper. 

Thank you to my parents, Henry and Cristine Littleton, for their undying support and 

understanding through my entire university career. Thank you to my friends, Paul Milliken, 

Mingzhen Deng, Mauritz van Zyl, Justin Rumney, and Elisa Dong, for their inspiration, 

motivation, and support during my time as a graduate student. 

 

 

 

 

 

 



 

vii 

 

Table of Contents 

Abstract ............................................................................................................................... ii 

Co-Authorship Statement.................................................................................................... v 

Acknowledgments.............................................................................................................. vi 

Table of Contents .............................................................................................................. vii 

List of Figures ..................................................................................................................... x 

List of Tables ................................................................................................................... xiii 

List of Appendices ........................................................................................................... xiv 

List of Symbols ................................................................................................................. xv 

Chapter 1 ............................................................................................................................. 1 

1 Introduction .................................................................................................................... 1 

1.1 General Background ............................................................................................... 1 

1.2 Wiedemann-Franz Law: Relating ρ and κ .............................................................. 2 

1.3 Stacey’s Electrical Resistivity Hypotheses ............................................................. 3 

1.4 Importance of Core Thermal Conductivity ............................................................. 4 

1.5 Ganymede ............................................................................................................... 5 

1.6 Aim of this Thesis ................................................................................................... 5 

1.7 References ............................................................................................................... 6 

2 Experimental Design and Methodology....................................................................... 10 

2.1 General Experimental Details ............................................................................... 10 

2.2 References ............................................................................................................. 13 

Chapter 3 ........................................................................................................................... 14 

3 Decreasing Electrical Resistivity of Silver Along the Melting Boundary up to 5 GPa 14 

3.1 Introduction ........................................................................................................... 14 

3.2 Experimental Details ............................................................................................. 15 



 

viii 

 

3.3 Results ................................................................................................................... 16 

3.4 Discussion ............................................................................................................. 20 

3.5 Conclusion ............................................................................................................ 24 

3.6 References ............................................................................................................. 25 

Chapter 4 ........................................................................................................................... 29 

4 Electrical Resistivity of FeS at High Pressures and Temperatures: Implications of 

Thermal Transport in the Core of Ganymede .............................................................. 29 

4.1 Introduction ........................................................................................................... 29 

4.2 Materials and Methods .......................................................................................... 36 

4.3 Results ................................................................................................................... 39 

4.4 Discussion ............................................................................................................. 45 

4.5 Conclusion ............................................................................................................ 54 

4.6 References ............................................................................................................. 54 

Chapter 5 ........................................................................................................................... 61 

5 Thermal Convection in the Core of Ganymede Inferred from Liquid Eutectic Fe-FeS 

Electrical Resistivity at High Pressures ....................................................................... 66 

5.1 Introduction ........................................................................................................... 66 

5.2 Materials and Methods .......................................................................................... 67 

5.3 Results and Discussion ......................................................................................... 68 

5.4 Conclusion ............................................................................................................ 78 

5.5 References ............................................................................................................. 78 

Chapter 6 ........................................................................................................................... 79 

6 Conclusion ................................................................................................................... 84 

6.1 Silver ..................................................................................................................... 84 

6.2 Iron Sulphides ....................................................................................................... 85 

6.3 Suggested Future Works ....................................................................................... 85 

6.4 References ............................................................................................................. 87 



 

ix 

 

Appendices ........................................................................................................................ 89 

Copyright Permission...................................................................................................... 119 

Curriculum Vitae ............................................................................................................ 127 

  



 

x 

 

List of Figures 

Figure 2.1: Photo of the 1000-ton cubic multi-anvil press ..................................................... 11 

Figure 2.2: A fully assembled three-section cubic P cell resting on an axial anvil ................ 12 

Figure 3.1: Cross-sectional view of the Ag wire sample recovered from an experiment ....... 17 

Figure 3.2: Measured electrical resistivity of Ag at pressures of 2-5 GPa ............................. 18 

Figure 3.3: The natural logarithm of electrical resistivity along the liquid side of the melting 

boundary ................................................................................................................................. 19 

Figure 3.4: Melting temperature of Ag as a function of pressure ........................................... 21 

Figure 3.5: Electronic component of thermal conductivity of Ag at pressure 2-5 GPa .......... 22 

Figure 4.1: Illustration of the cross-section of the cubic pressure cell ................................... 37 

Figure 4.2: Measured electrical resistivity of FeS at pressures of 2 – 5 GPa ......................... 40 

Figure 4.3: Cross-sectional view of the post-experiment 4 GPa pressure cell ....................... 44 

Figure 4.4: Measured electrical resistivity of FeS from this study are compared .................. 46 

Figure 4.5: Calculated adiabatic heat flow at the core-mantle boundary ............................... 52 

Figure 5.1: Measured electrical resistivity of Fe-FeS at pressures of 2-5 GPa....................... 70 

Figure 5.2: Cross-sectional view of the post-experiment 4 GPa pressure cell ....................... 72 

Figure 5.3: Experimentally determined eutectic temperatures of the Fe-FeS system ............ 74 

Figure 5.4: Calculated adiabatic heat flow at the core-mantle boundary ............................... 76 

Figure A.1: Back-scattered electron image of the post-experiment 2 GPa pressure cell ....... 92 

Figure A.2: Back-scattered electron image of the post-experiment 3 GPa pressure cell ....... 92 

Figure A.3: Back-scattered electron image of the post-experiment 5 GPa pressure cell ....... 93 



 

xi 

 

Figure A.4: Electrical Resistivity Interpolation of 5 GPa Data: 1600-1700 K ....................... 94 

Figure B.1: Electrical Resistivity Interpolation of 5 GPa Data: 1250-1450 K ....................... 95 

Figure C.1: Cross-section of an assembled cube using the first cell design ........................... 96 

Figure C.2: Post-experiment view of a pressure cell .............................................................. 97 

Figure C.3: Cross-section of a recovered 4 GPa experiment (~1600 K) ................................ 98 

Figure C.4: Electrical resistivity of Ag as a function of temperature at pressures of 1, 2, 3 and 

4 GPa utilizing the first cubic cell design ............................................................................... 99 

Figure C.5: Plot of melting temperatures of Ag as a function of pressure using the first cubic 

cell design ............................................................................................................................. 100 

Figure C.6: Cross-section of an assembled cube using the second cell design .................... 101 

Figure C.7: Cross-section of a recovered 2 GPa experiment (~1383 K) .............................. 102 

Figure C.8: Electrical resistivity of Ag as a function of temperature at pressures of 2, 3, 4 and 

5 GPa utilizing the second cubic cell design ........................................................................ 103 

Figure C.9: Plot of melting temperatures of Ag as a function of pressure using the second 

cubic cell design .................................................................................................................... 104 

Figure C.10: Image of recovered experiments prepared in epoxy disks for EPMA ............. 105 

Figure C.11: Backscattered electron image of a recovered experiment from 4 GPa ............ 106 

Figure C.12: Second backscattered electron image of a recovered experiment from 4 GPa 107 

Figure C.13: Illustration of the cross-section of the first cubic pressure cell used in iron 

sulphide (FeS) experiments................................................................................................... 108 

Figure C.14: Cross-section of a sample and disks recovered from a 2 GPa experiment ...... 109 

Figure C.15: Electrical resistivity of FeS as a function of temperature at 2 GPa utilizing the 

cell design ............................................................................................................................. 110 



 

xii 

 

Figure C.16: Comparison of the resistivity of FeS at 2 GPa in Fig. C.14 to Pommier (2018)

............................................................................................................................................... 111 

Figure C.17: Cross-section of a recovered 2 GPa experiment (~1671 K) using a modified cell 

design .................................................................................................................................... 112 

Figure C.18: Comparison of the electrical resistivity of FeS at 2 GPa (~1671 K) ............... 113 

Figure C.19: Backscattered electron images of the recovered experiment ........................... 114 

Figure C.20: Back-scattered electron image of the post-experiment 2 GPa (~1671 K) ....... 115 

Figure C.21: Illustration of the cross-section of a multi-anvil octahedral pressure cell used for 

FeS experiments .................................................................................................................... 116 

Figure C.22: Cross-section of a recovered 4 GPa experiment (~1772 K) ............................ 117 

Figure C.23: Electrical resistivity of FeS using the multi-anvil cell design ......................... 118 

 

 

 

 

 

 

 

 

 

 



 

xiii 

 

List of Tables 

Table 5.1: Values of targeted eutectic Fe-FeS sample compositions and post-experiment 

analysis results of sample compositions for each pressure in this study ................................ 68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xiv 

 

List of Appendices 

Appendix A: Supporting Information for Chapter 3............................................................... 89 

Appendix B: Supporting Information for Chapter 4 ............................................................... 95 

Appendix C: Selected Prior Cell Designs and Unsuccessful Results ..................................... 96 

 



 

xv 

 

List of Symbols 

A  Sample cross-sectional area 

CMB  Core-Mantle Boundary 

cp  Isobaric heat capacity 

D  Sample diameter 

EFd  Energy gap between Fermi level and upper-most d-band electrons 

g  Gravitational acceleration 

I  Electrical current 

L  Lorenz number 

L0  Sommerfeld value of Lorenz number 

l  Sample length 

P  Pressure 

Qa  Adiabatic (conductive) heat flow 

r  Core radius 

R  Electrical resistance 

s→d  Transition of s-electron to d-state 

s→s  Transition of s-electron to s-state 

T  Temperature 

TD  Debye Temperature 

TM  Melting boundary temperature 



 

xvi 

 

V  Voltage 

α  Thermal Expansion 

κ   Thermal conductivity 

κe  Electronic component of thermal conductivity 

κph  Phonon component of thermal conductivity 

ρ  Electrical resistivity 

ρL  Liquid state electrical resistivity



1 

 

Chapter 1  

1 Introduction 

In science one tries to tell people, in such a way as to be understood by everyone, 

something that no one ever knew before. But in the case of poetry, it’s the exact opposite. 

- Paul Dirac 

1.1 General Background 

The majority of the interior of terrestrial bodies, including the core, are inaccessible to 

direct measurements of physical properties. Laboratory methods can replicate the high 

pressure (P) and temperature (T) conditions of the interior while also allowing 

experimental investigations of physical properties. These experimental results provide 

insight into how the interior behaves and may provide trends expected for interiors with 

more or less extreme P-T conditions. The physical property investigated in this work is 

electrical resistivity (ρ). For metallic materials, which generally constitute terrestrial 

cores, ρ is related to thermal conductivity (κ). Both ρ and κ are important parameters to 

investigate since they influence the thermal state and magnetic field generation (i.e. 

dynamo process) of terrestrial cores. As core conditions become more extreme (i.e. 

increasing P and T with depth), the experimental challenges of direct measurements of ρ 

and κ also increase. For this reason, reports of these properties of relevant core materials 

at Earth-like conditions (>125 GPa; >2500 K) are scarce; however, experimental 

methodology and instrumentation are improving and results are reported with slightly 

more frequency in recent time. The physical conditions this work focused on is the low-

end (2 – 5 GPa) of the scale of planetary interior P and a relatively large range of T from 

~293 K up to ~1800 K. Experimental results of the low-end P provides two valuable 

contributions: i) anchor points for higher P experiments and theoretical frameworks; and 

ii) information directly relevant to the cores of smaller terrestrial bodies, such as Jupiter’s 

moon Ganymede. 
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1.2 Wiedemann-Franz Law: Relating ρ and κ 

Understanding the relationship between ρ and κ in the context of the free electron model 

requires numerous derivations and introduction of many additional concepts in condensed 

matter physics (e.g. Omar, 1993). For brevity, the following details a simplified 

qualitative description of the Wiedemann-Franz Law (WFL). 

In solids, heat is transferred or carried by lattice vibrations (phonons) and electrons. The 

contribution by each heat carrier is dependent on the material. Thus, κ can be expressed 

as the sum of the two contributions, as shown below: 

κ =  κph + κe                                                      (1.1) 

where κph is the phonon contribution and κe is the electronic contribution to the thermal 

conductivity. In good conductors, such as metals and metallic compounds/alloys, there 

are a significant number of conducting electrons (electrons near the Fermi surface; free 

electrons) and thus are the dominant carriers. In metals, κe is often more than a magnitude 

larger than κph (Klemens and Williams, 1986) and, as a result, it is reasonable to assume 

that κ ≈ κe. As a metal is heated, the free electrons absorb thermal energy and are excited. 

The net diffusive motion of the electronic heat carriers is towards a cooler location. Since 

electrons are intrinsically negatively charged, heat and charge are transferred 

simultaneously. This results in a non-zero net electric current in the direction opposite of 

the electrons and establishes a direct connection to ρ. It was realized in the late 19th 

century that the product value of κ∙ρ was approximately the same value for different 

metals, as well as for different metals at different T (Franz and Wiedemann, 1853). These 

observations when combined with a free electron model gave rise to the WFL, as follows: 

LT

ρ
=  κ ≈  κ𝑒                                                     (1.2) 

where L is the Lorenz number and has a theoretical value, called the Sommerfeld value 

L0, of 2.44(5)∙10-8 W∙Ω∙K-2 (Omar, 1993). Obtaining values of κ by direct measurement 

at high P and T is challenging as it requires a well-controlled temperature gradient to 

cause heat-carrying electrons to flow. Since the materials investigated in this work are 
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metallic, we exploit the WFL as shown in Eqn. (1.2) to determine the dominant 

component κe from the experimental measurements of ρ as a function of T at high P. 

1.3 Stacey’s Electrical Resistivity Hypotheses 

Stacey and Anderson (2001) derived a semi-theoretical expression using a 

thermodynamical framework based on Debye frequencies of lattice vibrations that 

indicated that along the P-dependent melting boundary of a pure metal the ρ is constant. 

If shown to be valid, this hypothesis would offer a highly significant and practical 

approach for laboratory studies to assess ρ at core conditions. Consider a terrestrial core 

that consists of a solid inner core and liquid outer core, such as Earth. For simplicity, we 

will assume the core is entirely Fe. Since the boundary of the inner and outer core is a 

melting (equivalently, and in reality, a solidification) boundary of Fe, laboratory 

measurements of ρ of Fe under any P would serve as a proxy for ρ at the melting 

boundary under core P and T. In other words, experimental investigations of ρ at the 

melting boundary confined to the low-end of the high P scale (e.g., 2 GPa) would provide 

useful information of ρ at the melting boundary at much higher P conditions. Moreover, 

if the proxy value of ρ and T of the core melting boundary are known, then Eqn. (1.2) can 

be exploited to obtain a corresponding value of κ. Since terrestrial cores are generally 

suggested to contain other elements, the hypothesis reduces understanding core resistivity 

effects due to impurities which are expected to increase ρ and decrease κ. In this 

example, the proxy values of ρ and κ for pure Fe at Earth’s inner-outer core/melting 

boundary would represent a lower- and upper-bound anchor points, respectively. Shortly 

thereafter, Stacey and Loper (2007) suggested that invariance of ρ along the melting 

boundary should only be observed for pure metals that have filled d-bands with only 

electrons belonging to the energetically upper-most s-band participating in electrical 

conduction. This revision was due to recognition of innate differences of electronic 

configuration and band structures among metals and, in particular, to account for metals 

that have an unfilled or partially filled d-band. The significance of this, which was briefly 

noted by Stacey and Anderson (2001) but not employed in the initial derivation, is that 

empty electronic states in the d-band may be occupied by conducting s-electrons via s→d 

scattering (Mott, 1964). The effect of this scattering mechanism increases ρ since the s-
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electrons scattered into d-states are less mobile due to experiencing a higher d-state 

effective mass. 

1.4 Importance of Core Thermal Conductivity 

Heat is continually transported through cores of terrestrial bodies outward toward the 

surface of the body. The quantity of heat transported is dependent on the composition and 

physical states of the core. For example, solid Fe has a different κ than liquid Fe or solid 

Fe alloyed with Si (e.g. Silber et al., 2018, 2019; Yong et al., 2019; Berrada et al., 2020). 

Surrounding the core is the mantle, a silicate shell that continually accepts or removes 

heat from the core. The κ of a silicate is typically only 10-20% of the κ of Fe 

(Hofmeister, 1999; Goncharov et al., 2009). Similarly, the quantity of heat removed by 

the mantle at the core-mantle boundary (CMB) is dependent on composition and physical 

states of the mantle. The heat removed from the core at the CMB controls the rate of 

cooling and on-going processes of the core (Buffett, 2007) and has similar effects on the 

mantle (Olson, 2016). 

All cores transfer heat by thermal conduction, which is directly proportional to κ. 

However, if a core is entirely liquid or contains a liquid component, heat may also be 

transferred by thermal convection. If thermal convection of a predominantly Fe liquid 

core occurs, it is possible to generate a magnetic field via dynamo action, such as Earth’s 

geodynamo. The amount of heat extracted on the mantle-side of the CMB must be 

supplied by the core either entirely by conduction in the core if κ is large enough, or by 

conduction and thermal convection in the core. If the heat removed from the core through 

the CMB is greater than the amount of heat that can be conducted to the top of the core 

just below the CMB, thermal convection is required as an additional process to meet the 

additional heat extraction by the mantle. Otherwise, if thermal conduction alone can 

satisfy the heat transfer requirement of the core, thermal convection will not occur 

(Buffett, 2007). Thus, it is crucial to obtain values of κ of molten core materials – either 

by direct measurement of κ, direct measurements of ρ and use of Eqn. (1.2), or via 

Stacey’s hypothesis – to provide information on conducted heat so that comparison can 

be made to estimates of heat flow out of the core through the CMB. This comparison will 

determine the style(s) of thermal transport occurring within the core. 
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There are additional ways in which a liquid core can undergo convection. Since the core 

is continually cooling, portions of the liquid component will eventually solidify. Provided 

it does not occur at the top of the core, solidification or precipitation of these core 

constituents is exothermic and could thermally-drive convection. Additionally, a density 

contrast may exist between the solid and liquid components. The contrast would initiate a 

chemical- or buoyancy-driven style of convection as the less dense material moves 

outwards and the denser material sinks inwards. Buoyancy- and thermally-driven 

convection may occur in tandem in cores of terrestrial bodies and understanding them is 

dependent on knowing values of κ of core constituents (Buffett, 2003, 2007; Christensen, 

2015; Rückriemen et al., 2015; 2018). 

1.5 Ganymede 

Ganymede is the largest and densest satellite in the solar system with an average radius of 

~2632 km and density of 1940 kg/m3 (Spohn, 2015). The satellite is considered to have a 

fully differentiated interior, with a dense metallic core immediately surrounded by a 

rocky mantle that is overlain by a subsurface ocean between layers of ice (Hussmann et 

al., 2015). Spectral analyses of the surface of Ganymede suggest the presence of a variety 

of sulphur (S) bearing molecules, such as sulphur dioxide, hydrogen sulphate, magnesium 

sulphate, and sodium sulphate (McCord et al., 1998; Showman and Malhotra, 1999; 

McCord et al., 2001). Sulphur has also been suggested to be a prominent impurity 

element in the Fe core, and is compatible with internal structure calculations based on 

moment of inertia observations from the Galileo spacecraft (Anderson et al., 1996; Sohl 

et al., 2002). Similar to Earth, Ganymede too has a dipolar magnetic field and it is 

thought to be likely powered by thermally- and buoyancy-driven convection of a liquid or 

partially molten core (Connerny, 2007; Busse and Simitev, 2015). 

1.6 Aim of this Thesis 

The overarching goal of this thesis was to constrain better the transport properties of the 

cores of small terrestrial-like planetary bodies, such as the S-rich metallic core of 

Ganymede with a particular focus on heat transport. An experimental approach of 

measuring the electrical resistivity at high pressures and into the liquid state was used. 
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There were two main objectives of this thesis. The first objective was to test the validity 

of the proposed invariance of ρ at the melting boundary for pure silver (Ag), a transition 

metal with filled d-bands. According to either hypothesis (Stacey and Anderson, 2001; 

Stacey and Loper, 2007), this invariance behaviour is expected to be observed for Ag. By 

measuring ρ directly in both solid and liquid states between 2-5 GPa, the value of ρ along 

the P-dependent melting boundary could be observed and compared to the expectation of 

invariance. 

The second objective was to determine whether thermally-driven convection is possible 

in a liquid S-bearing Fe-rich core of Ganymede, which can act as a power source for 

dynamo action. Two possible core compositions were studied: i) FeS core; and ii) 

eutectic Fe-FeS core. Since our knowledge of ρ of Fe-S is very limited based on scarce 

data, ρ of FeS and Fe-FeS was measured directly in both the solid and liquid states 

between 2-5 GPa. Using the WFL, κ can be calculated from the measured electrical 

resistivity and used to determine the amount of heat carried by conduction to the CMB on 

the core-side. These values may be compared to estimates of heat extracted from the core 

on the mantle-side of the CMB. 
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Chapter 2  

2 Experimental Design and Methodology 

No amount of experimentation can ever prove me right; a single experiment can prove 

me wrong. 

- Albert Einstein 

2.1 General Experimental Details 

Only general details common to all of the experimental works of this thesis will be 

discussed in this section. Specifications of experimental methods can be found in the 

subsequent Chapters 3-5, as well as the Appendices.  

As shown in Figure 2.1a, a 1000-ton cubic anvil press was used to achieve quasi-

hydrostatic pressure by application of an approximately equal magnitude of force 

directed inwards to the center of the sample-containing medium along each face. The 

thrusting of the anvils to the center generates high pressure in that region. There are six 

identical anvils along three opposite directions perpendicular to each other. The shape of 

the anvils is that of a frustum on the top of a cylinder. Each anvil is backed by a hydraulic 

ram that is fixed to a steel frame along the three principle directions. The rams move 

independently and the motion is regulated by oil pressure in a pumping system. The 

anvils are made of fine-grained tungsten-carbide with 6 wt.% cobalt, which is used as a 

binder. Pyrophyllite was used as the material for the cubic pressure-transmitting medium. 

When being compressed, the pyrophyllite flows and forms a gasket between the anvils 

(Figure 2.2b). 

The cubic pressure cell was sectioned into three layers that when stacked form a 3.175 

cm edge length cube (Fig. 2.2a). The middle section contained two thermocouples (TC) 

in contact at opposing ends of a wire or powder sample, establishing a four-wire 

resistance technique, enclosed in boron nitride (BN). The voltage switch operated two 

modes: i) temperature mode; and ii) resistance mode. In temperature mode,  
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Figure 2.1: (a) Photo of the 1000-ton cubic multi-anvil press. 4 of the 6 hydraulic 

rams are shown. A portion of the pumping system appears at the bottom left. (b) On 

the table is a Keysight B2961A Power Source (left box) to provide a constant direct 

current and Keysight 34470A Multi-meter (right box) to measure DC voltages and 

computer to take meter readings. Attached to the left frame of the computer desk is 

a Eurotherm temperature controller and to the right frame is a voltage 

(Resistance/Temperature modes) and current polarity switch.  
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Figure 2.2: (a) A fully assembled three-section cubic P cell resting on an axial anvil 

of a 1000-ton cubic press. The bright red coating is iron (III) oxide. The top square 

face perpendicular to the direction of the upper axial anvil displays one end of the 

graphite furnace ring and two smaller non-coated circles. The latter are faces of 

pyrophyllite pin rods that are inserted through all three component sections of the 

cube to maintain alignment during compression. Within the non-coated square 

regions of the two shown lateral faces are small circular copper foil disks that 

enhance contact between the extruding thermocouple wire arms and the anvils. (b) 

The same cubic pressure cell after an experiment was conducted. During 

compression, the edges of the pyrophyllite cubic pressure cell flows into the 

unoccupied space between the anvils, creating wing-like gaskets. 

measurements of the electromotive force across the thermocouples were taken to 

determine sample T. In resistance mode, measurements of the voltage across the sample 

between the thermocouples were taken. A Keysight B2961A power source (Fig. 2.1b) 

provided a constant current (I) through one pair of opposing TC arms while a Keysight 

34470A data acquisition meter operating at 20 Hz with 1 μV resolution measured the 

sample voltage (V). A current polarity switch was used such that each sample voltage 

measurement involved averaging a minimum of 20 V measurements for current passing 

in two opposing directions at any given T. A high alternating current was passed through 

a segmented graphite cylinder (one cylindrical segment per cubic cell section) to generate 

high T. A cylindrical annulus of zirconia was assembled around the central graphite 

cylinder and two zirconia disks were placed adjacent to the ends of the BN for thermal 
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insulation. The electrical resistance, R, was calculated using Ohm’s law (Eqn. 2.1; middle 

equality). Pouillet’s law (Eqn. 2.1; right-most equality) relates the geometry and electrical 

resistivity of a resistive or conductive material to the resistance as expressed in the 

following: 

R =
V

I
=  ρ

l

A
                                                        (2.1) 

where ρ is electrical resistivity, A is uniform cross-section of the material, and l is length 

of the material. Once recovered from the cubic press and ground down into a cross 

section, the post-experimental sample length and diameter were measured using a Nikon 

SMZ800 microscope under 40× magnification. Because the materials contributing to the 

resistance are cylinders, the cross-sectional area A is the area of a circle. With R, l, and A 

determined, Eqn. 2.1 was rearranged to solve for ρ. 

Errors on ρ (and κ) were assessed from the measured post-experimental sample 

geometries and averaged voltage measurements using standard error propagation 

methods (e.g., Bevington and Robinson, 2003). Voltage measurements of the samples 

were conducted up to P of 5 GPa and T up to ∼1800 K. Chemical compositions of the 

recovered and sectioned samples were analyzed via electron microprobe analysis 

(EMPA) using a JEOL JXA-8530F field-emission microprobe operating with a 20 kV 

accelerating voltage, a 50 nA probe current, and a variable 100 nm – 10 μm spot-size 

beam. 

2.2 References 
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Chapter 3  

3 Decreasing Electrical Resistivity of Silver Along the 
Melting Boundary up to 5 GPa 

There are many hypotheses in science that are wrong. That’s perfectly alright; it’s the 

aperture to finding out what’s right. Science is a self-correcting process. 

- Carl Sagan 

A version of this chapter has been published as: 

Littleton, J.A.H., Secco, R.A. and Yong, W. 2018. Decreasing electrical resistivity of 

silver along the melting boundary up to 5 GPa. High Pressure Research. 38(2): 99-106. 

DOI: 10.1080/08957959.2018.1435786 

3.1 Introduction 

Stacey and Anderson (2001) derived a semi-theoretical expression which indicated that 

along the pressure- and temperature-dependent melting boundary of a pure metal, the 

electrical resistivity is constant. If shown to be correct, this could be a practical approach 

for laboratory studies since the electrical resistivity at the melting boundary under any 

achievable pressure would serve as a proxy for the resistivity along the melting boundary 

under any high pressure and associated melting temperature. In an area of application 

where pressure and temperature conditions present obstacles to resistivity measurements, 

and especially in planetary core physics, the simple expression below derived by Stacey 

and Anderson (2001), could prove very useful: 

(
∂ ln ρ

∂P
)

TM

= 0                                                     (3.1) 

where ρ is electrical resistivity, P is pressure, and TM is melting temperature. 

Stacey and Loper (2007) recognized the electronic configuration and the related electron 

band structure were not appropriately accounted for by Stacey and Anderson (2001) and 

expressed concern about the significance of the innate difference in those two properties 
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among other metals. After revising the previous work, Stacey and Loper (2007) 

concluded that only for simple metals (i.e. metals with conduction electron states of the 

same type, e.g. s-electrons) should the resistivity remain constant along the melting 

boundary. The majority of transition metals, such as iron, have partially filled d-bands. 

Empty electron states within the d-band allow for the occupancy of conducting s-

electrons via s→d scattering. The scattered s-electrons into these states experience a 

higher effective mass and consequently are less mobile leading to higher electrical 

resistivity. 

The purpose of this work is to test the validity of Stacey’s hypothesis against silver (Ag), 

a simple metal following the definition of Stacey and Loper (2007). Resistivity 

measurements of Ag are known at 1 atm up to temperatures of ~1600 K (Matula, 1979). 

3.2 Experimental Details 

All experiments were conducted in a 1000-ton cubic anvil press described by Secco 

(1995). A cubic pressure cell design implementing a four-wire resistance measurement 

technique was used. Resistive heating via passage of a high alternating current through a 

cylindrical annulus of graphite generated high-temperatures in the enclosed Ag wire 

sample encapsulated in boron nitride (BN). A cylindrical sleeve and two disks of zirconia 

effectively confined and thermally insulated the Ag wire sample and the central portion 

of the graphite heater. A more comprehensive description and detailed figure of the cubic 

cell design and experimental methodology is given by Ezenwa and Secco (2017). 

The initial dimensions of the Ag wire sample (99.9985%, Alfa Aesar) were 0.51 mm in 

diameter and 1.78 mm in length. In direct contact with the ends of the Ag wire were two 

Type C (W5%Re-W26%Re) thermocouple junctions (i.e. four wires) to pass current and 

measure voltage across the sample, in addition to measure temperature via thermal 

voltage. A Keysight B2961 power source provided a constant direct current of 0.2 A and 

voltages were measured using a Keysight 34470A data acquisition meter operating at 20 

Hz with 1 μV resolution. A current polarity switch was used so that each four-wire 

resistance measurement at a particular temperature involved averaging the voltages for 

current passing in two opposing directions. Post-experiment cross-sectional length and 
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diameter of the recovered samples after sectioning and grinding were measured using a 

Nikon SMZ2800 microscope. Errors on resistivity were assessed from sample geometry 

measurements and averaged voltage measurements using standard error propagation 

methods. JEOL JXA-8530F field-emission electron microprobe, operating with a 20 kV 

accelerating voltage, 50 nA probe current, and 100 nm spot-size beam, was used to 

determine the composition of the recovered sample and thermocouples. 

3.3 Results 

Successful containment of the liquid sample was important for sample geometry 

preservation so that the recovered sample could be approximated as having maintained 

the shape of a cylinder as shown in Figure 3.1A. Averages of several cross-sectional 

measurements of length and diameter of the recovered Ag sample, as illustrated in Figure 

3.1A, were used to calculate the electrical resistivity. As displayed in Figure 3.1B, 

microprobe analyses after high P,T exposure showed no contamination of the Ag sample 

by thermocouple materials, and vice versa, as well as no contamination by the 

encapsulating BN. This is consistent with expected behavior of the Ag-W and Ag-Re 

binary systems in which no solid phase compounds are known and liquid Ag has no 

known chemical interaction with solid W and Re (Vijayakumar et al., 1988; Karakaya 

and Thompson, 1988; Predel, 2006; SGTE, 2007). 

The electrical resistivity of Ag at pressures of 2-5 GPa as a function of temperature up to 

~300 K above the observed melting temperatures is shown in Figure 3.2. The electrical 

resistivity of Ag at 1 atm from a collection of many previous studies as reported in 

Matula (1979) is also shown for comparison. As expected, increasing pressure was 

observed to decrease the electrical resistivity in the solid and liquid phases, while 

increasing temperature was observed to increase the electrical resistivity in the solid and 

liquid phases. These are well known effects on resistivity of metals due to pressure and 

temperature (Secco and Schloessin, 1989; Ezenwa and Secco, 2017). The discontinuity in 

resistivity at high-temperature indicates the phase change from solid to liquid Ag. Figure 

3.3 shows the natural logarithm of resistivity at the melting boundary as a function of 

pressure, from which the slope of the best-fitted line or the T-coefficient of resistivity 

along the melting boundary, (∂lnρ/∂P)TM, is -0.031 ± 0.003 GPa-1. 
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Figure 3.1: (A) Cross-sectional view of the Ag wire sample recovered from an 

experiment at 3 GPa and 1508 K. Type C (W5%Re-W26%Re) thermocouples (TC) 

were used to measure temperature. TC junctions were in direct contact with the end 

of the Ag wire to act also as electrodes and measure the voltage drop across the 

sample. Example lengths and diameter measurements are shown at several locations 

along the Ag wire sample. Apparent surface lineations of the Ag wire sample and 

surrounding BN are due to sanding and lighting. (B) Back-scattered electron image 

of the sample from (A). Tabulated electron microprobe results of eight locations 

correspond to labeled sites on the image. 
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Figure 3.2: Measured electrical resistivity of Ag at pressures of 2-5 GPa as a 

function of temperature. For comparison, 1 atm data (Matula, 1979 as [3]) are 

shown.  
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Figure 3.3: The natural logarithm of electrical resistivity along the liquid side of the 

melting boundary as a function of pressure (Matula, 1979 as [3]). The best-fitted line 

along the melting boundary is shown was observed to decrease with increasing 

pressure. 

The melting temperature at each pressure was calculated as the average of temperatures 

of the onset and completion of melting, each of which defines the lower and upper limits, 

respectively, of the temperature error. Errors on pressure (±0.25) reflect the error 

associated with pressure calibration of the press and the thermal pressure during high-

temperature experiment, which was indicated by the slight increase in the oil pressure on 

the pressure gauge. As shown in Figure 3.4, our experimental melting temperatures at 2-5 

GPa agree well with many other experimental and theoretical studies (Mitra et al., 1967; 

Akella and Kennedy, 1971; Mirwald and Kennedy, 1979; Errandonea, 2010; Pham et al., 

2010; Hieu and Ha, 2013). 
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At high pressure and temperatures, it is a challenge to establish a well-controlled 

temperature gradient which makes thermal conductivity a difficult property to measure. 

Fortunately, the electronic component of the thermal conductivity of metals, which is the 

dominant component, can be calculated from the electrical resistivity. The electrical 

resistivity of a pure metal is inversely proportional to thermal conductivity and is related 

as such by the Wiedemann-Franz law: 

LT

ρ
=  κe                                                         (3.2) 

where L is the Lorenz number, whose theoretical Sommerfeld value is 2.44·10-8 W∙Ω·K-

2, T is absolute temperature, and κe is the electronic thermal conductivity. Calculated 

electronic thermal conductivity of Ag at pressures of 2-5 GPa as a function of 

temperature up to ~300 K above the observed melting temperatures is shown in Figure 

3.5. The electronic thermal conductivity of Ag at 1 atm calculated from electrical 

resistivity (Matula, 1979) is also shown for comparison. As expected from their effects 

on reciprocal resistivity, increasing pressure increases the thermal conductivity in the 

solid and liquid phases, while increasing temperature decreases the thermal conductivity 

in the solid phase. In the liquid phase, the thermal conductivity decreased on increasing 

temperature, which is a clear and unexpected contrast to thermal conductivity at 1 atm. 

The increase in T-dependence of the resistivity of the liquid at high pressure compared to 

1 atm dominates over the increase in T which results in a net negative dependence of 

thermal conductivity on T as given by Equation (3.2). 

3.4 Discussion 

The Fermi surfaces of the noble metals have been well investigated and in general they 

have a nearly spherical shape with multiply connected necks in contact with the (111) 

hexagonal faces of the first Brillouin zone boundary (Shoenberg, 1960; 1962; Ziman, 

1961; 1967; Roaf, 1962; Mott, 1964; Halse, 1969). The electronic configuration of Ag 

can be written in condensed notation form as [Kr]4d105s1. Filled bands up to the 4d-band 

comprise the core and valence bands below the Fermi level, while a partially filled 5s-

band comprises the conduction band. While the filled 4d-band lies below the Fermi level, 

it interacts with the 5s-band by screening the electrostatic ion core potential and thus 
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Figure 3.4: Melting temperature of Ag as a function of pressure. Melting 

temperatures at each pressure for this study were calculated as the average 

temperatures related to the onset and completion of melting. Prior studies are 

shown for comparison (* indicates theoretical study; others are experimental 

studies). 
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Figure 3.5: Electronic component of thermal conductivity of Ag at pressure 2-5 GPa 

as a function of temperature calculated from electrical resistivity data in Figure 2.2 

and from the resistivity reported at 1 atm (Matula 1979 as [3]) using the 

Wiedemann-Franz law and the Sommerfeld value (2.44∙10-8 W∙Ω∙K-2) of the Lorenz 

number. 

increases mobility of electrons in the 5s-band. Interaction of the upper-most states of the 

4d-band with the 5s-band contributes to the neck and body distortion of the Fermi surface 

via hybridization. In pure non-magnetic transition metals with a partially filled d-band, 

s→d scattering arises from interactions with phonons and, to a lesser extent, other 

electrons. Comparatively, s→d scattering has a higher probability of occurrence than 

s→s scattering because the d-band density of states is higher. Because the d-band is fully 
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occupied in Ag, s→d scattering does not occur, leaving only s→s scattering in the 

conduction band occurring dominantly as a result of electron-phonon interactions. This 

accounts for the lower resistivity of the noble metals compared to all other transition 

metals (Mott, 1964).  

Increasing pressure decreases the volume of the crystal lattice and dampens the 

amplitudes of propagating thermal phonons, resulting in an increased electron mean free 

path and lower electrical resistivity. Based on optical property investigations, the energy 

separation between the Fermi level and 4d-band (EFd) increases with increasing pressure. 

This results in a decrease of the degree of hybridization and an increase in screening of 

the ion cores by the d-band, which contributes a further decrease of resistivity (Zallen, 

1966). These effects are opposed by another pressure-induced effect which is an increase 

in size and distortion of the Fermi surface. The necks in contact with the Brillouin zone 

boundary increase, which increases zone boundary scattering and electrical resistivity. 

However, the pressure effects resulting in a net decrease in resistivity dominate and this 

trend was observed in both solid and liquid phases (Figure 3.2). Temperature effects on 

the resistivity are proportional to the collision rates of electrons with thermal phonons 

and electrons. The collision rate of electrons with thermal phonons increases with 

temperature. The collision rate itself is proportional to the number of thermal phonons. A 

simple Bloch theory approximation predicts that the number of thermal phonons is 

proportional to temperature above the Debye temperature (TD). Consequently, the 

electrical resistivity is proportional to temperature for all temperatures above TD. The TD 

of Ag is approximately 228 K (Matula, 1973), and so a near linear trend of the electrical 

resistivity as a function of temperature was observed in all experiments in the solid and 

liquid phases (Figure 3.2). 

Resistivity in the liquid phase is larger than that of the solid phase due to the increased 

degree of disorder of ion cores and their electrostatic potential (i.e. short-range atomic 

order and ionic core potentials with increased mobility) (Cusack, 1963). The Fermi 

surface in the liquid phase can be approximated as spherical in shape, approximating a 

free electron model, with a volume large enough to contain all valence electrons. For 

metals in general, the resistivity in the solid phase increases more quickly with 
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temperature than in the liquid phase (Cusack, 1963). The opposite was observed at high 

pressure for Ag. However, given the experimental uncertainty, it is possible to ascertain a 

trend in the liquid phase that is less steep than that observed in the solid phase. The slopes 

(∂ρL/∂T)P, where ρL is resistivity in the liquid phase for 2-5 GPa were internally 

consistent, similar to a recent study on Cu (Ezenwa et al., 2017). The most important 

result of our study is the decrease of electrical resistivity along the pressure-dependent 

melting boundary, (∂lnρ/∂P)TM. This result, alongside a similar observation for Cu, calls 

into question Stacey’s hypothesis that predicts invariance of resistivity of a simple metal 

along its melting boundary. Despite the change in the structure of the Fermi surface from 

neck and body distorted shape to a spherical shape, the increase of EFd as a function of 

pressure continues into the liquid phase and is enough to offset the aforementioned 

contributions that increase scattering, resulting in a net decrease of resistivity. We note, 

however, that (∂lnρ/∂P)T on the solid side of the melting boundary is nearly zero within 

uncertainty. 

The trend of increasing electronic thermal conductivity in both solid and liquid phases as 

a function of pressure is expected from the combined effects of pressure on electron 

screening and scattering as explained in the previous section. The decrease of electronic 

thermal conductivity in both solid and liquid phases as a function of temperature is 

consistent with expected increased scattering of electrons by thermal phonons (Klemens 

and Williams, 1986). In terms of the Wiedemann-Franz law, thermal conductivity 

decrease with temperature in the liquid phase can be explained by a rate of increase of 

resistivity that is larger than the rate of temperature increase while the Lorenz number is 

constant. We recognize that use of the Sommerfeld value of the Lorenz number at 

variable temperature and pressure may not be a valid assumption, since the Lorenz 

number for solid Ag varies not only with temperature and is larger than the Sommerfeld 

value (Cusack, 1963; Zallen, 1966), but to our knowledge, no literature data exists for the 

Lorenz number of liquid Ag. 

3.5 Conclusion 

The temperature-dependence of the electrical resistivity of high-purity Ag has been 

experimentally determined at high pressures up to 5 GPa and at temperatures of ~300 K 
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above melting. The results showed a decrease of resistivity along the pressure-dependent 

melting boundary, contrary to a prediction of resistivity invariance, and are interpreted in 

terms of competing pressure and temperature effects on the electronic structure of liquid 

Ag. Linear trends as a function of temperature were observed at each pressure in both the 

solid and liquid phases. The electronic component of the thermal conductivity was 

calculated via the Wiedemann-Franz law using the Sommerfeld value of the Lorenz 

number. Thermal conductivity increased as a function of pressure in both the solid and 

liquid phases. As a function of temperature, electronic thermal conductivity decreased in 

both the solid and liquid phases. Within experimental uncertainty, the high pressure 

melting temperatures agree well with previous experimental and theoretical studies. 
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Chapter 4  

4 Electrical Resistivity of FeS at High Pressures and 
Temperatures: Implications of Thermal Transport in the 
Core of Ganymede 

The electron is a theory we use; it is so useful in understanding the way nature works that 

we can almost call it real. 

- Richard Feynman 

A version of this chapter has been published as: 

Littleton, J.A.H., Secco, R.A. and Yong, W. 2021. Electrical resistivity of FeS at High 

Pressures and Temperatures: Implications of Thermal Transport in the Core of 

Ganymede. Journal of Geophysical Research: Planets. 126(5): e2020JE006793. DOI: 

10.1029/2020JE006793 

4.1 Introduction 

4.1.1 Outer Core Light Elements and the Case for S in Terrestrial-like Cores 

Terrestrial planets and some differentiated moons in our solar system are believed to have 

cores predominantly composed of iron-nickel (Fe-Ni) alloys with some lighter alloying or 

impurity elements, such as sulphur (S), oxygen (O), silicon (Si), hydrogen, and carbon. It 

is generally accepted that there is more than one alloying element present; however, the 

total content and exact proportions of each element in core composition models are not 

well constrained and subject to considerable debate (Poirier, 1994; Allègre et al., 1995; Li 

and Fei, 2003; McDonough, 2003; Rubie et al., 2007; Sohl and Schubert, 2007; Vočadlo, 

2007). A better understanding of core light elements in planets and moons is critical 

because of the constraints that core composition places on interior temperature (T) and 

pressure (P)-dependent phase structures (e.g. solid and liquid portions of the core), heat 

transport mechanisms and related thermal evolution, and magnetic field generation 

(Buffett, 2003; 2007; Labrosse and Macouin, 2003; Sohl and Schubert, 2007; Nimmo, 

2015; Lay et al., 2008). 
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Si and O are considered a somewhat controversial pair of coexisting light alloying 

elements in cores from studies that have suggested they are nearly mutually exclusive 

based on arguments of oxygen fugacity during differentiation and core formation (Rubie 

et al., 2007). S has been indicated as a light alloying element that may accompany either 

Si or O because of its larger and increasing siderophilic tendency over a wide range of 

high P (Li and Agee, 1996; Hirose et al., 2013). S is also expected in Fe-Ni cores because 

of its presence in solar system composition models and in iron meteorites (Li and Fei, 

2003; McDonough, 2003; McSween and Huss, 2010). Chemically balancing the mass 

required in the bulk silicate Earth to the chondritic whole Earth composition constrains 

the S content of the core to ~1-2 wt.% or less (McDonough, 2003; Rubie et al., 2007; 

Wood et al., 2006; Hirose et al., 2013). While theoretical studies investigating binary and 

ternary systems involving Fe and S have predicted S contents up to approximately 14 

wt.% in the core (Helffrich and Kaneshima, 2004; Hirose et al., 2013). However, core S 

content estimates ≥10 wt.% are largely contested as they would produce a significant 

discrepancy of S overabundance compared to the overall volatility trend once the whole 

Earth composition has been corrected (McDonough, 2003). In tandem with geochemical 

arguments, seismological observations of core density deficits and density contrasts 

between Earth’s liquid outer core and solid inner core places geophysical constraints on 

light element abundance (Alfè et al., 2002; Badro et al., 2014) that must be adhered to. 

Estimates of the core S content of other terrestrial bodies and differentiated moons are as 

ill-constrained as that of the Earth, albeit they rely more heavily on theoretical models 

due to fewer observational data. Estimates for the core S content in Mars generally range 

between ~10-20 wt.% (Sanloup et al., 1999; Khan and Connolly, 2008; Khan et al., 2018; 

Wang and Becker, 2017), although a recent estimate suggests 6.6 wt.% S (Yoshizaki and 

McDonough, 2020). In comparison, estimates for Mercury are lower and generally range 

between ~2-6 wt.% (Schubert et al., 1988; Rivoldini et al., 2009; Rivoldini and Van 

Hoolst, 2013). In contrast to the cores of terrestrial planets, estimates of the S content of 

Ganymede are less certain. Under specific thermal history and secular cooling conditions, 

the core of Ganymede may contain S contents between ~3-32 wt.% on the basis of 

magnetic field generation. Additionally, some models have also predicted solid portions 
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of Ganymede’s core to consist of 36.5 wt.% S, the stoichiometric proportion of FeS 

(Hauck et al., 2006; Bland et al., 2008; Kimura et al., 2009). 

4.1.2 Effect of S on the Fe-S Phase Diagram and Aspects of Core Convection 

Light elements can have considerable effects on the physico-chemical properties of Fe 

alloys and therefore the dynamics of planetary cores. Investigations on the Fe-rich side of 

the Fe-S binary system at ambient P have shown liquidus T to decrease with increasing S 

content, with a eutectic T and composition of ~1260 K and 31 wt.% S. A similar trend 

was also observed at high P (Li and Fei, 2003). However, the effect of increasing P on the 

liquidus T as a function of S content is nonlinear and shifts the eutectic composition in 

the Fe-rich direction (Brett and Bell, 1969; Li and Fei, 2003; Chen et al., 2008a; 2008b; 

Buono and Walker, 2011; Saxena and Eriksson, 2015; Mori et al., 2017; Pommier et al., 

2018). 

The importance of freezing point depression by S of an Fe-S core is related to the 

presence and initial nucleation of a solid inner core. The observed nonlinear behaviour of 

the liquidus T has sparked a growing acknowledgement of thermally stratified S-rich 

layers and precipitation of Fe, also called Fe-snowing, in the cooler outer-most regions of 

the outer core of such planetary bodies as Mercury, Mars, and Ganymede. Snow zones 

provide additional density-driven contributions to convective motions in the outer core 

and to power dynamo action that offset hindering effects by the release of latent heat 

caused by precipitation of snow (Hauck et al., 2006; Chen et al., 2008b; Williams, 2009; 

Buono and Walker, 2011; Morard et al., 2011; Zhan and Schubert, 2012; Christensen, 

2015; Rückriemen et al., 2015; 2018; Davies and Pommier, 2018; Pommier, 2018; 

Pommier et al., 2018). Thus, our knowledge of the thermo-dynamical relationships 

between the core and mantle and between the outer and inner core is especially vital for 

our understanding not only of the sources that power and sustain the planetary dynamos 

that produce the persistent magnetic fields in Earth, Mercury and Ganymede (Schubert et 

al., 1988; Labrosse and Macouin, 2003; Buffet, 2003; 2007; Hauck et al., 2006; Nimmo, 

2015; Bland et al., 2008; Lay et al., 2008; Rivoldini et al., 2009; Kimura et al., 2009; 
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Zhan and Schubert, 2012; Christensen, 2015; Rückriemen et al., 2015; 2018;), but also of 

times during which these sources were active and dominant. 

The flow of heat through the core-mantle boundary (CMB) controls the cooling of the 

core. Thus, it controls the rate of inner core and snow zone growth and intensity of both 

thermal convection, arising from super-adiabatic heat flow in the outer core, and 

compositional convection, arising from the growth of the inner core and snow zones 

(Hauck et al., 2006; Olson, 2016). The convective motions of electrically conductive Fe-

rich liquid outer cores are thought to generate the observed magnetic fields. Estimates of 

the quantity of heat extracted from the core through the CMB rely on a number of 

modelled physical parameters, such as temperature, chemical composition, material 

properties of mineral phases in the lower mantle and Dʺ region, and dynamics, of the core 

and lower-most mantle. In the case of Earth, Mercury, and Ganymede, a major constraint 

is the presence of a persistent dynamo (Buffett, 2003; 2007; Labrosse and Macouin, 

2003; Nimmo, 2015; Lay et al., 2008).  

Reported estimates of the heat flux out of the core and through the CMB of Ganymede 

range from ~1-6 mW/m2 (Hauck et al., 2006; Kimura et al., 2009; Rückriemen et al., 

2015; 2018), whereas estimates of the adiabatic heat flux at the top of the core range from 

~4-12 mW/m2 (Bland et al., 2008; Rückriemen et al., 2015; 2018). Poorly constrained 

parameters can propagate large uncertainty such that actual heat fluxes across the CMB 

may be much lower or higher than the heat transported down the core adiabat. If the 

former, excess heat would accumulate in a thermally stratified layer at the top of the outer 

core and obviate the need for thermal convection from below. This would restrict the type 

of convection in the outer core to compositional convection derived from the buoyancy of 

exsolved lighter alloying elements from inner core growth and/or snow production and 

subsequent snow re-melting. If the latter, a much colder and denser boundary at the top of 

the core would develop and thermal convection would be partially driven from the top 

down, in addition to compositional convection (Buffett, 2003; 2007; Rückriemen et al., 

2015). Along with the heat flow through the CMB, evaluating the adiabatic heat flow in 

the outer core is thus a critical step in assessing the style(s) of convection in a liquid outer 

core. 
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The uncertainty of core P and T conditions and S content of Ganymede’s core and non-

linearity of the Fe-FeS eutectic system have led to a number of physico-chemical 

evolution pathways of Ganymede’s core as it cools. Consequently, these may allow for 

different types of composition convection to contribute to thermal transport and dynamo 

power sources (Hauck et al., 2006; Breuer et al., 2015). We will highlight three general 

categories: i) At low S contents (i.e. a few weight percent), it is possible to have an Earth-

like scenario with crystallization of an Fe core surrounded by a molten Fe-FeS outer core. 

Release of latent heat and the lighter element S would aid in convective motions of the 

outer core by thermal and chemical buoyancy; ii) At higher S contents on the Fe-rich side 

of the eutectic, Fe-snowing is permissible to drive convection motions from the top-down 

and settle to form an Fe inner core since solid Fe is expected to be denser than the 

residual liquid. Fe snowing in Ganymede’s core has received significant attention in 

recent years due to on-going debate as to whether or not thermally driven convection is a 

likely driving force to powder a dynamo. The chemically-induced convection of a liquid 

core brought on by snowing layers is an efficient power source and can reliably 

reproduce the magnetic observations of a dipolar field (Christensen, 2015; Rückriemen et 

al., 2015; 2018); iii) On the FeS-rich side of the eutectic, FeS can be precipitated and is 

thought to be less dense than the surrounding residual liquid. As a result, the FeS 

migrates upwards through the core and can drive convective motions from the bottom-up 

and act as a driving force for a dynamo (Rückriemen et al., 2018). It is possible for the 

precipitate to accumulate and form a solid shell of FeS around a molten core. 

4.1.3 Electrical Resistivity, Thermal Conductivity, and the Wiedemann-Franz Law 

The close resemblance of material properties among Ni, Fe and Fe-10 wt.% Ni content as 

expected in terrestrial cores suggests core properties could be adequately approximated 

through investigations of pure Fe (e.g. Jephcoat et al., 1986; Mao et al., 1990; Zhang and 

Guo, 2000; Lin et al., 2002; 2003; Mao et al., 2006; Sakai et al., 2011; Martorell et al., 

2013; 2015; Gomi and Hirose, 2015; Wakamatsu et al., 2018). Regarding electron 

transport properties, the effect due to Ni content weakens as a function of increasing P 

and T (Gomi and Hirose, 2015). However, the presence of a light element such as S, a 

non-metallic and volatile element, is expected to have a non-negligible effect on the 
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electron transport properties of Fe. For example, the end members of the Fe-FeS system 

are classified as an electrical conductor and semiconductor, respectively.  

Investigations of the electrical resistivity (ρ) of the Fe-FeS system are relatively few (e.g. 

Argyriades et al., 1959; Karunakaran et al., 1980; Kobayashi et al., 2001; 2005), with a 

small surge of studies in recent time (Suehiro et al., 2017; Pommier, 2018; Gomi and 

Yoshino, 2018; Wagle et al., 2018; 2019; Manthilake et al., 2019). The majority of recent 

studies are based on the theory of electrical properties at P and T conditions of cores of 

larger planetary bodies, such as Earth and Mars. For instance, Wagle et al. (2018; 2019) 

showed for liquid Fe-S (~16 wt.% S) at P and T conditions corresponding to Earth’s core 

that the criterion for resistivity saturation effects is met and the T-coefficient of ρ changes 

from positive to negative with increasing P. While the presence of S does increase ρ 

compared to that of pure Fe at identical conditions, their results indicated a non-linear 

behaviour with increasing T, as would otherwise be predicted by the Bloch-Grüneisen 

approximation, and places vital constraints on the effect of S as a core light element. 

However, theoretical extrapolations are limited given the lack of available experimental 

data and the capability for comparisons thereof. A large contribution to available 

experimental results was produced by Pommier (2018) who reported direct measurement 

values of ρ of solid and liquid Fe, Fe-5wt.%S, Fe-20wt.%S and FeS at P up to 8 GPa and 

T up to ~2123 K. The results showed that ρ increased as a function of increasing S 

content and increasing T, decreased as a function of increasing P, and exhibited an 

abrupt, large increase in magnitude at T above the eutectic and exceeding the liquidus. 

These are typical behaviours for metals and metallic alloys at high P and T, along with 

the observed impurity content effects and the effect of structural disorder upon melting 

(Faber, 1972; Rossiter, 1987; Poirier, 2000; Mizutani, 2004). Although the P-T 

conditions (Pommier, 2018) are far from the conditions of Earth’s core, these 

measurements are important because the results provide a foundation to which theoretical 

frameworks must be anchored.  

The relevance of ρ to core thermal properties and dynamics is established by use of the 

Wiedemann-Franz Law (WFL): 
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LT

ρ
=  κ                                                            (4.1) 

where κ is thermal conductivity and L is the Lorenz number that normally takes a value 

equal to the Sommerfeld value (2.44∙10-8 W∙Ω∙K-2). The WFL is a semi-empirical 

statement which relates ρ to κ, and this approximation has been shown to be valid for a 

number of metal and metallic alloys (Franz and Wiedemann, 1853; Klemens and 

Williams, 1986). It should be noted that Eqn. (4.1) only calculates an estimate of the 

electronic contribution to κ and does not account for the additive contribution by lattice 

vibrations or phonons to the total thermal conductivity. This is in part why the WFL 

holds relatively well for metals and metallic alloys because the electronic contribution is 

the dominant contributor to κ in those materials (Klemens and Williams, 1986). The 

Sommerfeld value of L is a theoretical value based on the free-electron model of metals. 

Not only is such a model not entirely valid for transition metals such as Fe, the Lorenz 

number also has been shown to exhibit both composition (Secco, 2017) as well as P- and 

T-dependence (Kumar et al., 1993). Thus, the value of L is expected to deviate from the 

Sommerfeld value and, if uncorrected, can lead to either an over- or underprediction of κ 

when compared to measured values. However, it has been demonstrated that the 

Sommerfeld value can be applied to pure Fe at relatively low P (<6 GPa) and T up to 

2100 K (Secco, 2017).    

Manthilake et al. (2019) performed similar measurements of ρ of Fe-FeS alloys at a P of 

8 GPa and T up to 1700 K. Their reported values were significantly larger than values by 

Pommier (2018) by approximately two orders of magnitude, and suggest that the lower 

values of ρ were due to conductive impurities present in the sample and/or partial 

reactions forming more Fe-rich shunt regions within their Fe-S alloys. Calculated κ of 

FeS using the WFL reported by Pommier (2018) showed a span of ~3-5 W/m·K over a P 

range of 4.5 to 8 GPa and increasing T in the solid state. In the liquid state at 4.5 GPa, κ 

decreased from ~2 to ~1 W/m·K with increasing T. In contrast, Manthilake et al. (2019) 

reported a value of κ of ~10-2 W/m·K at 8 GPa and 1300 K using Eqn. (4.1) along with 

the Sommerfeld value of L. After estimating a correction for the phonon contribution, 

their reported total κ was ~4 W/m·K, comparable to values by Pommier (2018). The 

results are not reconciled because the κ values reported by Pommier (2018) represented a 
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lower bound estimate, acknowledging the need for a further phonon contribution 

correction that would produce larger total κ values. The conflicting results of these two 

studies highlight the need to have reliable values of ρ to calculate κ of Fe-FeS alloys. 

In this study, we developed an experimental design to measure directly and produce 

robust results of ρ of solid (powder) and liquid FeS at high P and discuss the implications 

for adiabatic thermal transport in the S-bearing cores of Ganymede. 

4.2 Materials and Methods 

FeS powder was purchased from Alfa Aesar (99.98% purity). Initial attempts were made 

to replicate the in-house powder-to-wire sample preparation method as detailed by 

Berrada et al. (2020) for Fe-Si powders of varying Si contents. Unlike their work, this 

procedure was complicated by the non-negligible T range between the solidus and 

liquidus and volatility of a partially and fully molten FeS sample. However, this served as 

the motivating factor for creating a high P cell design to measure directly the electrical 

resistivity of a powder sample using a 4-wire resistance technique. An illustration of the 

cross-section of the cubic P cell design used for all experiments in this work is shown in 

Figure 4.1. Similar three sectioned cubic P cells have been successfully implemented 

with a 4-wire resistance technique to measure the electrical resistivity of solid and liquid 

transition metals and transition metal alloys (Ezenwa and Secco, 2017a; 2017b; 2017c; 

Ezenwa et al., 2017; Littleton et al., 2018; 2019; Berrada et al., 2018; 2020). All 

experiments were conducted in a 1000-ton cubic anvil press, as described by Secco 

(1995), to generate high quasi-hydrostatic P. Thorough descriptions of the P cell design 

are found in the appendices (Appendix A). 

4.2.1 High Pressure-Temperature Electrical Technique 

Each pair of platinum (Pt) and platinum-rhodium alloy (Pt-Rh) wires housed in the two 

four-hole alumina tubes creates two Type-S thermocouples (TCs) that were used to 

monitor the temperature of the center of the P cell, or the sample temperature. The 

mechanical contact between the FeS powder sample, tungsten (W) disks, and TCs (Figure 

4.1) allows each TC to additionally serve as electrodes. A constant direct current was  
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Figure 4.1: Illustration of the cross-section of the cubic pressure cell used in all 

experiments. 

passed through lateral anvils to the Pt arms of the TCs while the voltage across the 

sample was measured using the Pt-Rh arms – thus employing a 4-wire resistance 

technique. A mechanical switch was employed to enable alternating between a 

measurement of the sample T and voltage drop for resistance measurement. The 

additional use of a polarity switch, while in resistance measurement mode, to sample 

voltage measurements ensured removal of thermoelectric and other parasitic voltage 

effects. Since boron nitride is an electrical insulator (ρ of ~1011 Ω·cm), the contribution to 

the measured sample voltage by the surrounding boron nitride is negligible and can be 

ignored. 

The measured sample voltage (V) and the provided constant direct current (I) were used 

to calculate the sample resistance (R) via Ohm’s Law: 

R = V/I                                                            (4.2) 
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Pouillet’s Law relates the geometry and electrical resistivity (ρ) of a material to the 

resistance: 

 R = (ρ · l)/A                                                        (4.3) 

where l is the length of the sample and A is the cross-sectional area of the cylindrical 

sample. Thus, the equation for ρ of the sample is: 

ρ = R · π · D2/4l                                                    (4.4) 

where D is the diameter of the sample. 

4.2.2 FeS Electrical Resistivity: Experimental Specifications 

The ρ of solid (powder) and liquid FeS were measured at P from 2 to 5 GPa and T up to 

approximately 1785 K. A high alternating current with a typical amplitude of 350 A was 

passed through the segmented graphite sleeve to generate high T. All samples were pre-

heated to and maintained at a T of ~900 K for approximately 10 minutes before 

quenching prior to acquiring voltage measurements for all experiments. Sample voltages 

were measured using a Keysight 34470A data acquisition meter operating at 20 Hz with 1 

µV resolution with a constant direct current of 0.2 A provided by a Keysight B2961 

power source. A minimum of 10 sample T measurements was made immediately before 

and after each sample voltage measurement, which itself consisted of a minimum of 5 

measurements per current polarity. Each data point of ρ reported in this work consists of 

averages of both sample T and voltage measurements. Voltages measured by the Type-S 

TCs were corrected for P effects (Getting and Kennedy, 1970). Calculated P- and T-

dependent contributions to the measured voltages by the W disks were less than 2% 

(Littleton et al., 2019) and were ignored. 

A Nikon SMZ800 microscope operating at 40x magnification was used to measure the 

post-experimental sample D and l after removal from the press and subsequent grinding 

and polishing. The determined sample voltage and geometries were employed to 

calculate ρ via Eqns. (4.2) and (4.4). Errors of ρ arising from geometry uncertainty (0.013 

mm), obtained from calibration of the microscope and integrated software, and sample 
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voltage fluctuations were assessed using standard error propagation methods. Standard 

error propagation methods were used to determine error of T, along with a fixed ±10 K 

additional contribution to account for the thermal gradient established by the distance 

from a TC to the sample center (Schloessin and Lenson, 1989). A JEOL JXA-8530F 

field-emission electron microprobe operating with a 20 kV accelerating voltage, 50 nA 

probe current, and 100 nm spot-size beam was used to determine the composition of the 

recovered sample, W disks, and TCs and the extent of chemical interaction between the 

three components. 

4.3 Results 

4.3.1 Electrical Resistivity and Electronic Thermal Conductivity 

Figure 4.2a shows measured values of ρ of FeS up to 5 GPa and 1785 K from this study, 

while Figure 4.2b shows the same results with several annotations to aid data 

visualization and interpretation. The values of ρ close to room T (~300 K) at 2 and 3 GPa 

are the largest values of solid state FeS and are associated with the troilite (FeS I) phase. 

The largest decrease of ρ within a 50-degree interval was observed between ~325 K and 

~375 K and is interpreted as the phase transition from FeS I to the hexagonal (FeS IV) 

phase. T estimates of this phase boundary by Fei et al. (1995) are shown in Figure 4.2b 

and are in good agreement; however, our inferred results indicate that the phase boundary 

T at 2 and 3 GPa are slightly lower than the shown estimates. Ambient P investigations of 

the magnetic properties of FeS have indicated a transition where the orientation of anti-

ferromagnetic alignment changes from parallel to perpendicular to the c-axis (α-

transition) that coincides with the FeS I-IV transition (Wang and Salveson, 2005). Any 

effect on ρ due to this transition cannot be confidently recognized or at least separated 

from the effects due to the structural transition based on our measurements. 

At 4 and 5 GPa, the room T measurements of ρ are noticeably lower than lower P values 

and show a reduction in magnitude of nearly 25%. At these conditions, the sample is no 

longer in the FeS I phase and is either in the MnP-type (FeS II) phase or FeS IV phase 

(King and Prewitt, 1982; Kusaba et al., 1998; Urakawa et al., 2004). In studies 

investigating phase relationships of FeS, the FeS II phase has not been consistently  
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Figure 4.2: (a) Measured electrical resistivity of FeS at pressures of 2 – 5 GPa as a 

function of temperature; b) Annotated interpretation of phase transitions (solid 

state and melting) and incongruent melting from measured electrical resistivity. 

Temperature estimates of the FeS I-IV and FeS IV-V solid state phase transition 

were taken from Fei et al. (1995). Estimates of the FeS melting boundary were taken 

from Boehler (1992) with an uncertainty of ±50 K. Estimates of eutectic 

temperatures for the Fe-FeS binary system were taken from Morard et al. (2007); c) 

Calculated electronic component of thermal conductivity of FeS at pressures of 2 – 5 

GPa as a function of temperature from the measured electrical resistivity using the 

Wiedemann-Franz law and the Sommerfeld value of the Lorenz number. 

identified (Kusaba et al., 1998; Urakawa et al., 2004). Since there is not a clear indicator 

shown in the results of ρ, we cannot confidently infer a FeS II → FeS IV around room T 

at 4 and 5 GPa. However, the results indicate either: i) FeS II has indistinguishable or 

similar ρ and T-coefficient of ρ as FeS IV; or ii) the sample is in the FeS IV phase at 

room T. Previous high P investigations at low and ambient T have shown that FeS II is a 

more electrically conductive phase than FeS I (Karunakaran, 1980; Kobayashi et al., 

2001; 2005). At ambient P and high T, the FeS I-IV transition was also indicated by an 

increase in electrical conductivity (Karunakaran, 1980). Regardless of the specific room 

T phase of the FeS sample at 4 and 5 GPa in our experiments, the distinctly lower value 

of ρ at these conditions compared to 2 and 3 GPa are supported by these works. 

The T-dependence of ρ of FeS at all experimental P up to ~600 K is negative, indicating 

these phases exhibit semiconductor behaviour. FeS II has been shown to exhibit metallic 

behaviour at low T (<100 K), characterized by a positive quadratic T-dependence 

(Kobayashi et al., 2001; 2005). If FeS II is the starting phase at 4 and 5 GPa at ambient T, 

this confines a metal-semiconductor transition between 100 K to 300 K based on our 

measurements. The T-dependence underwent an abrupt change in sign to an increase with 

increasing T around 600 K for all P, observations that are interpreted as the phase 

transition from FeS IV to the simple NiAs-type (FeS V) phase. T estimates of this phase 

boundary by Fei et al. (1995) are shown in Figure 4.2b and are in good agreement. The T-

dependence shows metallic behaviour with increasing T after this transition, with the 



42 

 

effect of increasing P strongly diminishing or flattening the observed behaviour. The FeS 

IV → FeS V transition coincides with a second magnetic transition from anti-

ferromagnetic to paramagnetic (β-transition) (Wang and Salveson, 2005). As with the 

previous magnetic transition, it remains unclear the magnitude of the individual effects 

on ρ by the structural and magnetic transitions. The ρ of FeS at all P continued to increase 

until a high T peak value around 1200 K, where after there is a sudden decrease in the 

magnitude of ρ. There are no further magnetic transitions expected beyond the β-

transition nor structural phase transitions in the solid state. We are doubtful that this 

represents a change in electronic state, such as a high T reversion to a semiconducting 

solid state. Instead, we interpret it to be the presence of non-stoichiometric variants of 

FeS of the entire sample. 

The T values of these ρ peaks are noteworthy because they fit within the P-T confines of 

the Fe-FeS eutectic T. High P estimates of the eutectic T by Morard et al. (2007) are 

displayed in Figure 4.2b. It has been shown that the eutectic T and eutectic S content of 

the Fe-FeS system both decrease with increasing P up to approximately 17 GPa 

(Kubaschewski, 1982; Fei et al., 1997; Li and Fei, 2003; Morard et al., 2007). While 

some Fe-S phase diagrams (e.g. Kubaschewski, 1982) at ambient P indicate a small high 

T solidus-liquidus region at 36.5 wt.%S, P-T diagrams of FeS do not indicate this and 

instead report FeS V as stable until melting (e.g. Urakawa et al., 2004). The presence of 

non-stoichiometric proportions with S contents slightly below 36.5wt.% would initiate 

incongruent melting above eutectic T, hundreds of degrees below the expected melting T 

of FeS. The melt produced would be enriched in Fe and more electrically conductive, 

resulting in a noticeable decrease in ρ. S content within the melt is expected to increase 

with continued heating, which reduced the negative T-dependence of ρ after the peak T. 

Melting T estimates of FeS by Boehler (1992) are extrapolated to P of this study and 

shown in Figure 4.2b. A distinct feature attributed to melting/liquidus T as in numerous 

previous works (e.g. Silber et al., 2017; 2018; 2019; Ezenwa and Secco, 2017b; 2017c; 

Ezenwa et al., 2017; Littleton et al., 2018; Berrada et al., 2018; 2020) is masked given the 

gradual production of melt over a relatively large T range. The observed P-dependency 

appears to have a larger effect in the partially molten and fully molten states compared to 
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the solid state. Lastly, the effect of increasing T of a fully molten FeS sample decreased 

ρ, indicative of semiconductor-like behaviour. 

The sample voltage measurement rate was increased at ~900 K in each experiment in 

order to reduce the amount of time measurements were made in the partially and fully 

molten state. The heating mechanism in these experiments requires some time before 

heating accelerates. As a result, the measurements appear dense around 900 K, but spread 

out more with increased heating despite the measurement rate remaining the same. For 

context, the time duration for all measurements at 4 GPa from ~888 K to ~1785 K was ~2 

minutes. While in the molten state, chemical contamination (e.g. between sample and 

electrodes) and liquid confinement become complications that can severely burden or 

ruin an experiment. For instance, the last high T values of ρ at 2, 4, and 5 GPa that 

increase abruptly relative to the preceding trends are usual experimental indicators of one 

or both of these obstacles. While contamination and confinement are functions of both T 

and time, we found the latter to be dominant effect and one that is more easily controlled 

in our experimental set up. A fast heating rate that reduces control of T is compensated 

by a reduced measurement time of the sample in the molten states. 

Figure 4.2c shows calculated values of κ of FeS up to 5 GPa and 1785 K from this study 

using the WFL as shown in Eqn (4.1) and the Sommerfeld value of L. The general P and 

T effects are clear: the electronic κ of FeS increased with increasing P and T at all T in 

the FeS V, partially molten and fully molten states. Since these values only represent the 

electronic contribution, the results shown represent a lower bound of the total κ using an 

invariant Lorenz number.  

4.3.2 Post-Experiment Sample Analyses 

Figure 4.3a shows an image of the cross-section of the 4 GPa pressure cell centered on 

the sample after an experiment and Figure 4.3b shows a back-scattered electron image of 

the same sample. Tabulated electron microprobe results of 20 locations correspond to 

labeled sites on the Figure 4.3b image. The analyses showed noticeable contamination of 

the sample limited to a thin portion of the boundary with the W disks that may indicate 

formation of WS2 and Fe1-xS (Štemprok, 1971). The bulk of the sample retained an Fe-S  
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Figure 4.3: (a) Cross-sectional view of the post-experiment 4 GPa pressure cell. 

Apparent surface lineations of the sample, W disks, and surrounding BN are due to 

sanding and lighting. (b) Back-scattered electron image of the sample from a) at a 

different depth due to additional grinding and polishing required for pre-analysis 

sample preparation. Results of the microprobe have been tabulated and normalized. 

Instances of negative normalized values have been set to 0.00 wt.%. 

composition and the results confirmed a non-stoichiometric composition with S contents 

less than 36.5 wt.%. The bulk of the W disks and arms of the Type-S TC wires retained 

high chemical purity. Additional post-experiment back-scattered images and tabulated 

microprobe results for the 2, 3, and 5 GPa experiments are found in the Supporting 

Information section. Since the sample is slightly more Fe-rich than anticipated, which 

implies a more electrically conductive sample than FeS, the measured values of ρ and 

calculated values of κ represent a lower- and higher-bound, respectively, of FeS transport 
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properties at all experimental P and T conditions of this study. However, since there is no 

evidence of Fe phase contiguity which would provide conductive pathways, we suggest 

that any effect on resistivity is small. 

4.4 Discussion 

4.4.1 Comparison to Prior Studies 

Figure 4.4a shows measured values of ρ of FeS up to 5 GPa and 1785 K from this study 

compared to previous studies (Argyriades et al., 1959; Pommier, 2018). Comparison to 

Manthilake et al. (2019) is not shown due to scaling (ρ exceeds 104 μΩ·cm). Our 

measured values of ρ consistently indicate FeS is more electrically conductive compared 

to measurements by Pommier (2018) at similar P and T conditions. Both results clearly 

showed that ρ decreased with increasing P. Without complete datasets, comparisons of 

inferred structural and related magnetic transitions at low T are not possible. 

Measurements in the T range of 650 K to 1200 K show similar trends, namely that ρ 

increased with increasing T. Thus, both studies observed a metallic-like behaviour of FeS 

within this T range. The T-dependent trend of ρ at 4.5 GPa up to ~1630 K closely 

resemble our observations at 4 GPa. Namely, there is an increase in ρ until a peak T that 

marks the onset of a more conductive Fe-rich melt being produced. As more melt is 

produced and S content increases, the decreasing trend of ρ gradually tails off. A peak 

cannot be easily identified at 8 GPa; however, this is consistent with our observation that 

increasing P diminishes or flattens the ρ peaks. 

The most apparent differences are the values of ρ within the perceived melt regions as 

our results do not show an increase of ρ upon melting, let alone values of ρ that are of 

magnitudes comparable to 3.2 and 4.5 GPa. Pommier (2018) defined the observed abrupt 

increases as a transition from a solid- to liquid-dominated regime and noted that the 

transition T occurs slightly higher than the eutectic T of the Fe-FeS system or to the 

liquidus. Similar to the final measurements of our 2, 3 and 5 GPa results, we attribute the 

abrupt increases Pommier (2018) observed to chemical contamination and apparent 

incomplete liquid confinement. In this context, apparent incomplete liquid confinement  
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Figure 4.4: (a) Measured electrical resistivity of FeS from this study are compared 

to two previous studies. The data point by Argyriades et al. (1959) is a measurement 

of FeS in the liquid state. The abrupt increasing trend of values measured by 

Pommier (2018) was reported to be indicative of transitions from a ‘solid- to liquid-
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dominated regime’. Data by Manthilake et al. (2019) are not shown for scaling 

purposes (>104 μΩ∙cm); (b) Calculated electronic components of thermal 

conductivity of FeS from this study are compared to previous three previous studies. 

The data point by Spitzer (1970) is an unpublished report of a measurement of the 

total thermal conductivity, while the data point by Manthilake et al. (2019) is an 

estimated value of the total thermal conductivity. 

refers to the ability of a molten sample to displace outwards from sample container and 

typically move in the direction of the TCs. This can happen by liquid seeping around the 

electrode or diffusing through and mixing with the electrodes. The molten samples are 

then capable of contaminating and mixing with the TCs, which can result in measured 

voltages larger than expected. 

Pommier (2018) made measurements of ρ at ~1620 K at 4.5 GPa and ~1730 K at 8 GPa. 

Estimates of the melting T of FeS extrapolated to 4.5 GPa and 8 GPa is ~1600 K and 

1700 K, respectively (Boehler, 1992). If the sample is interpreted as being entirely 

molten, these measurements and those preceding them at lower T indicate no distinct 

features of ρ upon melting – in agreement with our observations. Instead of W electrode 

disks used in this study, Pommier (2018) used molybdenum (Mo) electrodes for these 

two measurements because the contamination effects on the sample, which act to increase 

electrical resistance, are small. This is supported by sample analyses of the 8 GPa 

experiment that showed electrode contamination of ~20 wt.% with no perceptible 

influence on the T-dependent trend of ρ. Since contamination effects are small, then 

liquid confinement can explain this discrepancy. Contamination by the TCs in the 4.5 

GPa and 8 GPa experiments were ~3 and 0.4 wt.%, respectively. The larger TC 

contamination may be indicative of reduced TC integrity, which can explain the large 

measurements of ρ at 4.5 GPa but not at 8 GPa. 

While post-experiment analyses of the sample were not reported, liquid confinement 

could also explain the measurements at 3.2 GPa that show a very similar increase. The 

estimated melting T at 3.2 GPa is ~1565 K (Boehler, 1992) and is noticeably higher than 

T range of the large values of ρ (~1220 K to 1390 K). If this region represents a transition 
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from a solid- to liquid-dominated regime, it fits within our interpretation that this is 

incongruent melting due to the presence of non-stoichiometric compositions. Moreover, 

if partial melting occurred within this T region, the explanation of liquid confinement 

becomes plausible. A similar trend was reported for a second experiment at 4.5 GPa 

using Fe electrode disks, with an abrupt increase of ρ at ~1380 K. The few measurements 

prior to this T appear in good agreement with the 4.5 GPa experiment using Mo electrode 

disks; however, there is ~300 K difference in the solid-liquid regime transition T that was 

not addressed. 

Manthilake et al. (2019) suggested that the discrepancy between their measured results 

and the results by Pommier (2018) could be explained by the presence of impurities or 

from reactions forming Fe-S alloys with higher Fe contents. Manthilake et al. (2019) also 

reported a melting T between 1400 K and 1500 K at 8 GPa, which is approximately 200-

300 degrees below the estimate based on FeS phase diagram they cited (Urakawa et al., 

2004). This T is well above estimates of the P-dependent eutectic T (Kubaschewski, 

1982; Fei et al., 1997; Li and Fei, 2003; Morard et al., 2007), which suggests that Fe-FeS 

eutectic-related partial melting may not be responsible. If the FeS sample is exceptionally 

consistent with respect to stoichiometry, the observed melting may instead indicate the 

small solidus-liquidus region reported in some binary Fe-S phase diagrams (e.g. 

Kubaschewski, 1982). Alternatively, presence of other impurities could lower the melting 

T. Manthilake et al. (2019) noted their compressed FeS sample oxidized during heating 

based on the emergence of magnetite x-ray diffraction peaks. It is unclear about the total 

extent of reaction on the sample and compound formation, which could affect the melting 

T and transport properties. 

Figure 4.4b shows calculated values of κ of FeS up to 5 GPa and 1785 K from this study 

compared to previous studies (Spitzer, 1970; Pommier, 2018; Manthilake et al., 2019). 

The P- and T-dependent trend in the solid state of values calculated by Pommier (2018) 

agree with our observations: κ increased with increasing P and T. However, the 

magnitude of κ at 3.2 GPa and 4.5 GPa decrease abruptly because of the corresponding 

increase of ρ as explained previously (Figure 4.4a). The value of κ shown by Manthilake 

et al. (2019) is after the addition of their estimate of the phonon contribution and thus 
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represents total κ. Without the additional contribution, the value of electronic κ at 1300 K 

is on the order of ~10-2 W·m-1·K-1. Spitzer (1970) reported a measured value of 3.3 W·m-

1·K-1 of total κ of FeS at ambient P and T. With the value of ρ of FeS exceeding 104 

μΩ·cm (Kobayashi et al., 2001), the electronic κ is a minor contribution (κ < 0.07 W·m-

1·K-1 via (4.1)) to the total κ at the conditions. However, as both Pommier (2018) and our 

results show, the contribution by the electronic κ increased by as much as two orders of 

magnitude as a result of increasing P and T and implies thermal transport becomes 

significantly more reliant on the electronic component.  

The approach taken by Manthilake et al. (2019) provided a comparable estimate to the 

values by Spitzer (1970) and Pommier (2018), although the differences in P and T 

conditions are significant (Figure 4.4b). Calculation of the contribution by phonon 

interactions to the total κ requires knowing the scattering strengths and probabilities of 

phonon-phonon, phonon-electron, and phonon-lattice defects (Klemens and Williams, 

1986). These P- and T-dependent variables may not be adequately estimated through 

their fitting parameters of total κ end-members (Fe, conductor – S2, insulator) and 

stoichiometric compounds (FeS and FeS2, semiconductors) of the Fe-S system simply 

because those detailed interactions are unknown. The approach by Manthilake et al. 

(2019) assumed no P-dependency and applied a T-dependency that has shown reasonably 

good fits for alloys that retain a metallic character (Klemens and Williams, 1986). It is 

unclear whether the same T-dependency holds for FeS and FeS2 that have 

semiconducting behaviour and stronger covalent bonding. While total κ is expected to 

increase with decreasing S content, which is consistent with their approach, we question 

how reliant the estimate by Manthilake et al. (2019) is given the variability of the 

electrical and thermal behaviour of the Fe-S system.  

The ideal situation is for measurements of total κ of FeS to be made at high P and T up to 

and in the liquid state; however, these measurements are more difficult to perform than 

measurements of ρ because of the necessity for stable thermal gradients. If made, the 

measurements would allow for calculation of the phonon contribution to κ, as well as the 

P- and T-dependencies. These measurements may also help constrain the value of L in 

Eqn (4.1) for solid and liquid FeS. For instance, if measurements of total κ are exceeded 
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by calculated estimates of electronic κ, then the Sommerfeld value of L overestimates the 

electronic contribution. 

4.4.2 Implications for Heat Flow in the Core of Ganymede 

Despite the inherent non-uniqueness of solutions, interior structure models using density, 

moment-of-inertia factor and magnetic field measurements as major constraints have 

suggested that Ganymede is differentiated, possessing an Fe-FeS core surrounded by a 

silicate mantle and outer-most layer of ice (Sohl et al., 2002). With assumed internal 

dynamo action in Ganymede, focus is given to the lower mantle and core. Heat flow at 

the CMB and adiabatic heat flow in the core of planetary bodies are dependent on 

temperature, composition, and material properties models of the interiors, all of which are 

prone to large uncertainties (Lay et al., 2008). The mineral phases, grain sizes, water 

abundance, and viscosity of the overlying mantle are not well known nor is the T 

distribution of Ganymede’s interior in the past or present. Similarly, distribution and 

abundance of radiogenic heat sources on either side of the CMB is uncertain because the 

bulk composition of Ganymede is not precisely known (e.g. Hauck et al., 2006; 

Rückriemen et al., 2018).  

Equations of state are used to predict the state of materials under core-like conditions, 

which are useful when specific P-T conditions are imposed that do not have reliable 

measurements. The parameters involved often are taken as values at ambient conditions 

that are then extrapolated. This may lead to over- or under-estimates of the state of a 

material in the absence of reliable measurements, especially for materials that exhibit 

high P-T atomic structural, electronic, and magnetic transitions (e.g. FeS). This 

uncertainty is further complicated since material composition of either side of the CMB is 

not well known. Thermal transport properties of materials expected to be at the CMB are 

strongly dependent on the P-T state conditions, thus affecting the heat flux out of the 

core. Adiabatic conductive heat flow inside the core is dependent on core composition. In 

Ganymede, the composition of the core will affect crucial parameters of the adiabatic 

heat flow, such as the core radius, density, thermal conductivity, thermal expansivity, 

heat capacity, compressibility, and gravitational acceleration. 
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The P conditions of Ganymede’s core are ~5-11 GPa from the CMB to the center of the 

satellite, with estimates of the T of the core ranging from ~1250 K up to ~2100 K at the 

CMB (Sohl et al., 2002; Hauck et al., 2006; Bland et al., 2008; Kimura et al., 2009; 

Rückriemen et al., 2018). The radius of Ganymede’s core (~700 – 1200 km) is dependent 

on S content, with increasing S content associated with larger core radii (Anderson et al., 

1996; Sohl et al., 2002; Rückriemen et al., 2018). We calculated the adiabatic conductive 

heat flow (Qa) on the core side of the CMB for a range of core radii (r) and a narrow span 

of T using Eqn. (4.5) below: 

Qa =  −4πr2κ (
∂T

∂r
)

a
                                           (4.5) 

where (∂T/∂r)a is the adiabatic thermal gradient adopted from Breuer et al. (2015). As 

shown in the Supporting Information section, values of ρ were interpolated from our 

measurements at 5 GPa (Figure 4.2a) for the T range and used to calculate κ via Eqn. 

(4.1). The interpolated values of κ were then substituted in Eqn. (4.5). 

We recognize there are uncertainties on each parameter used to calculate (∂T/∂r)a = 

αgT/cp, where α is the coefficient of thermal expansion, g is gravitational acceleration, 

and cp is isobaric heat capacity, in the core as well as on estimates of the heat flow 

through the CMB. But if we accept values for α, g, T and cp commonly used in the 

literature and as reported in Breuer et al. (2015) to calculate the adiabatic thermal 

gradient, we show in Figure 4.5 Qa for an entirely molten FeS core with a radius between 

700 and 1200 km and a CMB T from 1600 and 1700 K and P of 5 GPa. The T range for 

our calculations was selected because it allows for a liquid FeS core and is based on 

values of ρ contained within our measurements. Lower T calculations are viable for 

compositions near the Fe-FeS eutectic since it will allow for a liquid core instead of a 

solid one as would be the case for pure FeS. Extrapolation of our ρ at 5 GPa to higher T 

(~2000 K; ∆T = 300 K) would be too uncertain and would decrease our confidence in 

those estimates. Our estimates of Qa range from ~18 GW, for a CMB T of 1600 K and 

core radius of 700 km, up to ~31 GW, for a CMB T of 1700 K and core radius of 1200 

km. Estimates of the heat flow through the CMB are shown for comparison. A heat flux 

of 1 mW/m2 through the CMB is too low for thermal convection to be permissible since  
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Figure 4.5: Calculated adiabatic heat flow at the core-mantle boundary (CMB) of 

Ganymede of a fully molten FeS core. The dashed lines represent estimates of the 

heat flow out of the core (Hauck et al., 2006; Kimura et al., 2009; Rückriemen et al., 

2015; 2018). Dark lines represent even-numbered core heat fluxes and light lines 

represent odd-numbered core heat fluxes. The shaded red region represents all 

values of calculated heat flow values on the core-side of the CMB. The CMB 

temperature ranges from 1600 K at the bottom to 1700 K at the top of the shaded 

region of this study. Propagated uncertainty on the calculations range from ~1-1.5% 

of the reported values. 

conductive heat transport can carry the heat load. However, increasing the heat flux to 2 

mW/m2, thermal conduction alone may not be able to transport enough heat to account 

for what escapes the core through the CMB. Thus, for a heat flux of 2 mW/m2, thermal 

convection is a possible active thermal transport mechanism and dynamo power source in 

Ganymede’s core. As the heat flux through the CMB increases to 3 mW/m2, the reliance 
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on thermal convection to transport heat out of the core also increases. In this scenario, our 

estimates show thermal convection could transport up to one-third of the heat that leaves 

the core. Estimates of the heat flux out of the core through the CMB of Ganymede range 

from ~1-6 mW/m2 (Hauck et al., 2006; Kimura et al., 2009; Rückriemen et al., 2015; 

2018), suggesting that thermal convection is permissible for the majority of this range. 

However, we note that with respect to pressure and S contents, our estimates represent a 

lower bound of heat flow within the T ranges used. 

At isothermal conditions with increasing P, it is expected that ρ will continue to decrease, 

and calculated κ and Qa will increase. Thus, for P >5 GPa at the CMB, thermal 

conduction will be a more efficient thermal transport mechanism. For thermal convection 

to be permissible, the heat flux through the CMB would need to tend towards the larger 

estimate values. Given that pure Fe is an electrical conductor and FeS an electrical 

semiconductor, a reasonable expectation is that ρ will decrease as the S content decreases 

towards the Fe-rich end of the system. This general trend was observed by Pommier 

(2018) for the Fe-FeS system. Since Ganymede’s core is expected to have S contents 

below 36.5 wt.%, the same expectation of more efficient core thermal conduction and 

larger heat flux through the CMB is proposed. 

The magnitude of an impurity effect expected for the addition of S to pure Fe (Suehiro et 

al., 2017) and delineation between a particular composition behaving more like an 

electrical conductor (Fe-rich) or semiconductor (FeS-rich) at high P and T are either 

uncertain or unknown. The contributions to ρ via the impurity effect due to S presence in 

pure Fe decreased as a function of P (Suehiro et al., 2017) and measurements of ρ of 

several Fe-Si alloys suggest that that impurity effect may also decrease as a function of 

increasing T (Silber et al., 2019; Berrada et al., 2020). Matthiessen’s rule has often been 

used to model and predict the impurity effect on ρ for metallic alloys. The rule asserts 

that the impurity effect is an additive T-independent contribution to the ρ of a pure metal 

for all T in the solid state. However, this rule is not valid for many systems. For example, 

Berrada et al. (2020) recently showed for Fe-Si alloys with Si up to 17 wt.% that such an 

impurity contribution term is dependent on T and in general showed a negative 

dependence. As well, their results showed that the overall T-dependent trends of ρ 
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increasingly deviated from that of pure Fe with increasing Si content at all experimental P 

in both solid and liquid states. In other words, the Fe-FeS system may not have constant 

T-independent impurity effects on ρ, but may have non-linear impurity content-

dependent effects. Both of these effects make interpolating the values of ρ for all S 

contents relevant to Ganymede’s core between Fe and FeS endmembers problematic until 

investigated further. 

4.5 Conclusion 

The presence of impurity elements, such as S, in the cores of terrestrial planets and 

moons is of considerable interest due to their potentially significant effects on core 

transport properties, which have direct influence over dynamo and thermal evolution. 

This study provides detailed measurements of the ρ of FeS in solid and molten states at 

pressures from 2-5 GPa in a cubic anvil press with well-controlled sample geometry. It 

was observed that ρ is lower than previous works at all similar P and T conditions. The 

electronic κ was calculated via the Wiedemann-Franz Law using the measured values of 

ρ, and in turn used to evaluate the heat flow on the core-side of the CMB of Ganymede’s 

S-rich core. The results, which represent a lower bound estimate of core heat flow, show 

that thermal convection may be permissible and thus act as a geodynamo energy source. 
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Chapter 5  

5 Thermal Convection in the Core of Ganymede Inferred 
from Liquid Eutectic Fe-FeS Electrical Resistivity at 
High Pressures 

The most exciting phrase to hear in science, the one that heralds new discoveries, is not 

‘Eureka!’, but ‘That’s funny…’. 

- Isaac Asimov 

A version of this chapter is currently under peer review: 

Littleton, J.A.H., Secco, R.A. and Yong, W. 2021. Thermal Convection in the Core of 

Ganymede Inferred from Liquid Eutectic Fe-FeS Electrical Resistivity at High Pressures. 

Crystals. 11(8): 875. DOI: 10.3390/cryst11060705 

5.1 Introduction 

The dipolar magnetic field of Ganymede may be produced by internal convection of a 

liquid iron (Fe) outer core, similar to Earth’s geodynamo (Connerney, 2007). Convective 

motions in liquid cores may be derived from two broad sources: i) thermal and ii) 

compositional (Olson, 2016). The former requires heat transfer out of the core exceeding 

the heat transferred by conduction of the core. The latter is related to the gradual cooling 

of the core and consequent inner core formation, and density contrasts between 

precipitated core chemical species and residual liquid (e.g. Fe snow or FeS floatation; 

Hauck et al., 2006; Rückriemen et al., 2015; 2018). While Ganymede is believed to have 

a predominantly Fe core, it has been suggested that the core is comprised of more sulphur 

(S) compared to other terrestrial Fe cores (Schubert et al., 1996; Sohl et al., 2001; Scott et 

al., 2002; Hauck et al., 2006; Bland et al., 2008; Kimura et al., 2009). A significant effect 

due to the presence of S as a core element is freezing-point depression. For instance, the 

eutectic temperature (T) in the Fe-FeS system at 1 atm is ~1260 K, approximately 600 K 

lower than the melting T of Fe (Kubaschewski, 1982). Impurities and more abundant 

elemental constituents may also affect transport properties such as electrical resistivity 

(ρ) and thermal conductivity (κ) (Gomi and Yoshino, 2018), which are two critical 



67 

 

parameters in magnetic field generation via planetary body dynamos. Experimental 

investigations of ρ and κ of Fe (e.g. Konôpková et al., 2016; Ohta et al., 2016; Silber et 

al., 2018; Pommier, 2018; Yong et al., 2019; Hsieh et al., 2020; Ezenwa and Yoshino, 

2021) and FeS (Pommier, 2018; Manthilake et al., 2019; Littleton et al., 2021) at core 

conditions have shown varying agreement and consistency. However, typical estimates of 

the S content in the core of Ganymede, based on internal structure and magnetic field 

generation models, are adjacent to the Fe-FeS eutectic (Kuskov and Kronrod, 2001; 

Hauck et al., 2006; Bland et al., 2008; Kimura et al., 2009; Rückriemen et al., 2015; 

2018). If core S composition is eutectic or eutectic-adjacent (i.e. within a few weight 

percent), this may allow the core of Ganymede to be molten and permit thermally driven 

convection at relatively low core T (<1400 K) that can power a dynamo-produced 

magnetic field. In this work, we measured ρ of eutectic-adjacent Fe-FeS in both solid and 

liquid states at pressures (P) up to 5 GPa. The measured results were used to delineate the 

P-dependent eutectic T and to calculate κ and adiabatic heat flow (Qa) to determine if 

thermal convection is permissible in a molten, eutectic-adjacent S composition core of 

Ganymede constrained to a low core T. 

5.2 Materials and Methods 

Fe and FeS powders were purchased from ESPI Metals (99.95% purity) and Alfa Aesar 

(99.98% purity), respectively, and mixed together to attain an S content close to the 

eutectic composition (Table 5.1) (Buono and Walker, 2015). All experiments were 

conducted in a 1000-ton cubic anvil press, as described by Secco (1995). A three-

sectioned cubic P cell design and four-wire electrical resistance technique using Type S 

(platinum (Pt) and rhodium (Rh) alloy) thermocouples for all experiments were the same 

as those used and described by Littleton et al. (2021). Experimental specifications remain 

largely the same, with two minor alterations: i) the highest T reached was ~1430 K since 

the liquidus T’s are considerably lower for the Fe-FeS system investigated than for FeS; 

and ii) P- and T-dependent contributions to the measured voltage from tungsten (W) 

disks placed between the thermocouple junctions and powder mixture sample were 

accounted for (Littleton et al., 2019) since these contributions were proportionally larger 

and non-negligible compared to measurements of FeS under similar conditions. 
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Table 5.1: Values of targeted eutectic Fe-FeS sample compositions and post-

experiment analysis results of sample compositions for each pressure in this study. 

Post-experiment sample compositions are noted to be either Fe-rich or FeS-rich 

relative to the target pressure-dependent eutectic composition. 

Pressure 

(GPa) 

Target Eutectic 

Composition 

(wt.% S) 

Sample Composition 

(Post-Experiment) 

(wt. % S) 

Relative Location 

Adjacent to Eutectic 

2 28.0 29.56 ± 0.05 FeS-rich 

3 26.5 26.17 ± 0.05 Fe-rich 

4 25.1 25.68 ± 0.07 FeS-rich 

5 23.8 23.76 ± 0.06 Fe-rich 

5.3 Results and Discussion 

Figures 5.1a and 5.1b show measured values of ρ and calculated values of κ of Fe-FeS, 

respectively, up to 5 GPa and ~1430 K from this study. Also shown are ρ and κ values of 

FeS (Littleton et al., 2021), Fe-FeS (20 wt.% S; Pommier, 2018) and Fe (Silber et al., 

2018) from previous studies for comparison. Fe-FeS was observed to have intermediate 

values of ρ compared to the end-members. This result was expected since the addition of 

electrically conductive Fe to FeS should decrease ρ, or equivalently the addition of semi-

conducting FeS to Fe should increase ρ. The Wiedemann-Franz Law (WFL), κ = L·T/ρ, 

using a Lorenz number (L) equal to the theoretical Sommerfeld value (2.445·10-8 

W·Ω·K-2) was used to calculate the electronic component of κ. Similarly, as expected, the 

results showed that Fe-FeS is more thermally conductive than FeS but less so than Fe. 

The results of this study showed the T-coefficient of ρ, (∂ρ/∂T)P, from room T up to a few 

hundred degrees increased as a function of increasing P. The T-coefficient was most 

negative at 2 GPa, which gradually became shallower with each P increment until 5 GPa 

at which a shallow positive T-coefficient was observed. The negative T-coefficient for 2-
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4 GPa is consistent with the trends observed for FeS IV, the hexagonal phase of FeS, at 

similar conditions (Littleton et al., 2021); however, the positive T-coefficient at 5 GPa is 

a behaviour more comparable to a metallic electrical conductor (e.g. Pommier, 2018; 

2020; Silber et al., 2018; 2019; Yong et al., 2019; Berrada et al., 2020). One 

interpretation is that Fe-FeS behaviour changes to become more conductor-like with 

increasing P at low T. Alternatively, as discussed later, this observation may be the result 

of the sample containing the largest proportion of Fe to account for the P-dependency of 

the eutectic composition (Buono and Walker, 2015). Below the eutectic T at our 

experimental P, the binary system exhibits a two-phase solid-state regime (Fe + FeS) 

(Kubaschewski, 1982; Fei et al., 1997). We doubt this observation is related to a solid-

state phase transition since the reported P conditions at which other solid-state phases 

(e.g. Fe3S, Fe3S2) have been observed well exceed ours (>10 GPa) (Fei et al., 1997; 2000; 

Li et al., 2001; Stewart et al., 2007; Morard et al., 2008; Kamada et al., 2010). Two sets 

of low T measurements of Fe-20wt.%S at 4.5 GPa reported by Pommier (2018) are more 

similar to our observations at 5 GPa. Those results show, however, conflicting solid state 

trends as one exhibits a positive T-coefficient while the other is negative. With continued 

heating and increasing T, the T-coefficient of ρ at all P is positive and approaches a 

nearly linear trend at T leading up to the transition from solid to liquid states. These T-

dependencies are also consistent with the trends observed for FeS V (Pommier, 2018; 

Littleton et al., 2021), the Ni-As-type phase of FeS, and Fe (Ohta et al., 2016; Silber et 

al., 2018; Pommier, 2018; Yong et al., 2019; Ezenwa and Yoshino, 2021). 

The T-dependent trends leading up to the eutectic T observed in this study are in good 

agreement with those measured by Pommier (2018) who also showed, in full context of 

that study, that ρ and κ of Fe-FeS had intermediate values of the end-members. With the 

expectation that 20 wt.% S is more electrically conductive than our higher S contents, as 

discussed later, the measured values of ρ and κ are also in good agreement within 

reported error ranges up to the eutectic T. At T above the eutectic, the measured values 

differ considerably, with high T measurements at 4.5 GPa approaching values as large as 

3000 μΩ·cm while values of ρ in this study remain nearly a magnitude less.  
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Figure 5.1: (a) Measured electrical resistivity of Fe-FeS at pressures of 2-5 GPa as a 

function of temperature. Sulphur contents (wt. %) of the samples at each pressure 

are:  29.56 ± 0.05 (2 GPa); 26.17 ± 0.05 (3 GPa); 25.68 ± 0.07 (4 GPa); 23.76 ± 0.06 (5 
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GPa). Results of this study are compared to three previous studies and include end-

member compositions. The dashed line indicates the transition from solid to molten 

states and was used to delineate eutectic temperatures; (b) Electronic components of 

thermal conductivity as a function of temperature of Fe-FeS calculated from the 

electrical resistivity measurements using the Wiedemann-Franz law and the 

Sommerfeld value of the Lorenz number. Results of this study are compared to two 

previous studies. Data of the pure Fe end-member are not shown for scaling 

purposes (>12 W·m-1·K-1). The dashed line indicates the transition from solid to 

partially molten states. 

The corresponding values of κ calculated via the WFL are expectedly low by comparison 

to this work. Similar observations and comparisons to Pommier (2018) were made in the 

FeS investigations by Littleton et al. (2021) in which they suggested that a possible 

explanation for the rapidly increasing values of ρ was apparent incomplete liquid 

confinement and reduced thermocouple/electrode chemical integrity. For the 4.5 GPa 

experiment by Pommier (2018) that utilized molybdenum (Mo) electrodes and Type-C 

(tungsten (W)-rhenium (Re) alloys) thermocouples, a post-experiment cross-section SEM 

image of the same sample clearly showed and annotated liquid migration and complete 

dissolution of the electrodes. We echo the same interpretation as Littleton et al. (2021) for 

these investigations on Fe-FeS. 

A representative post-experiment cross-section is shown in Figures 5.2a and 5.2b. Figure 

5.2a shows an image of the cross-section of the 4 GPa pressure cell centered on the 

sample and Figure 5.2b shows a back-scattered electron image of the same sample. 

Tabulated electron microprobe results of 15 locations correspond to labeled sites on the 

Figure 5.2b image. The bulk of the sample retained an Fe-S composition and the bulk of 

the W disks and arms of the Type-S TC wires retained high chemical purity. After 

normalizing the Fe and S content values, the microprobe analyses were used to determine 

an average S-content (wt.% S) of the samples: 29.56 ± 0.05 (2 GPa); 26.17 ± 0.05 (3 

GPa); 25.68 ± 0.07 (4 GPa); 23.76 ± 0.06 (5 GPa). For comparison, estimates of the P-

dependent eutectic composition of the Fe-FeS system, using the equation reported by  
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Figure 5.2: (a) Cross-sectional view of the post-experiment 4 GPa pressure cell. 

Apparent surface lineations of the sample, TC wires, and surrounding BN are due 

to sanding and lighting. (b) Backscattered electron image of the sample from (a) at a 

different depth due to additional grinding and polishing required for electron 

microprobe analysis. Results of the microprobe are tabulated. 

Buono and Walker (2015), are (wt. % S): 28.0 (2 GPa); 26.5 (3 GPa); 25.1 (4 GPa); 23.8 

(5 GPa) suggesting our sample compositions are eutectic or eutectic-adjacent. 

In this study, the abrupt decrease of ρ following the near linear trends is indicative of T 

exceeding the eutectic T and a state change of the sample from solid to partially liquid. 

The decrease of ρ at the solidus is consistent with other Fe alloys (e.g. Pommier et al., 

2019; Berrada et al., 2020) and FeS (Littleton et al., 2021). Compared to FeS, the 

decrease is significantly sharper. Although fast heating rate and high measurement 

frequency were also used here, the difference of the sharpness of this transition is due to a 
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sample composition in the proximity of the eutectic. An exception, however, are the 2 

GPa results that show a broader and gradual decrease similar to FeS. This could be 

attributed to the composition of the sample being the most S-rich and furthest from the 

eutectic, resulting in a larger partial melting region. In other words, the more gradual 

decrease of ρ reflects the gradual production of liquid with increasing T past the eutectic. 

While previous works have investigated a broader range of S contents (Pommier, 2018; 

Manthilake et al., 2019), our results are the first well constrained experimental data on 

near eutectic compositions in the Fe-FeS system. 

A line was drawn on Figure 5.1a to estimate the eutectic T at each P where the resistivity 

trend began to decrease. Immediately left of and right of the line represent the last solid 

and initial liquid state measurement of the sample, respectively. For the 5 GPa 

experiment, the results do not show an observable partial melting region. This may 

indicate that the S content is either very close to or at the eutectic composition. Thus, the 

measurement immediately to the right of the line represents the initial measurement of a 

completely liquid state sample. Figure 5.3 compares the eutectic T estimates of this study 

to prior works at high P. Our results are in good agreement with several prior studies at 

similar P conditions and indicate that the eutectic T up to 5 GPa does not deviate far from 

the eutectic at 1 atm. Moreover, our results indicated a negative P-dependency of the 

eutectic T, a trend also reported by Fei et al. (1997) and Morard et al. (2007) at higher P. 

However, we note that our P-dependent trend is shallower by comparison. The difference 

of the trends could be related to the methodology used for determining the eutectic T. Fei 

et al. (1997) determined eutectic melting on the basis of quenched textures and chemical 

mapping, while Morard et al. (2007) used in-situ x-ray diffraction. Moreover, Buono and 

Walker (2015) asserted that the presence of hydrogen, from the breakdown of trapped 

water within the sample material and/or sample enclosure, may be responsible for the 

significant eutectic T depression in the Fe-FeS system observed by Fei et al. (1997) and 

Morard et al. (2007). 

Estimates of P within the core of Ganymede’s range from ~5 GPa at the core-mantle 

boundary (CMB) to ~11 GPa at its center and T at the CMB span ~1250-2100 K (Sohl et 

al., 2002; Hauck et al., 2006; Bland et al., 2008; Kimura et al., 2009; Rückriemen et al., 
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2018). We adopted the same procedure to calculate adiabatic heat flow (Qa) at the top of 

Ganymede’s core as Littleton et al. (2021), although for the current study two linear fits 

to interpolate and extrapolate values of ρ at 5 GPa between 1250-1450 K were used, as 

shown in the appendices (Appendix B). A positive linear fit (with (∂ρ/∂T)P > 0 μΩ∙cm/K) 

was used to account for all measurements at T above the estimated eutectic T, while a 

horizontal linear fit (with (∂ρ/∂T)P = 0 μΩ∙cm/K and with ρ = 315 μΩ∙cm) was used to 

account for all measurements excluding the highest two temperatures. These were 

excluded because they may indicate the onset of deteriorating thermocouple integrity and 

W contamination.

 

Figure 5.3: Experimentally determined eutectic temperatures of the Fe-FeS system 

as a function of pressure. The results of this work are compared to several previous 

works. 
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Qa on the core side of the CMB was calculated using Eqn. 5.1 below: 

Qa =  −4πr2κ (
∂T

∂r
)

a
                                           (5.1) 

where (∂T/∂r)a is the adiabatic thermal gradient adopted from Breuer et al. (2015). Figure 

5.4 shows Qa at the top of the core with radius varying between 700 and 1200 km and 

with a CMB T from 1250 to 1450 K and P of 5 GPa alongside estimates of the heat flow 

through the CMB for comparison. The specified T range was chosen to allow for an 

entirely molten core. Our estimates of Qa using a horizontal linear model ranged from ~8 

GW for a CMB T of 1250 K and core radius of 700 km up to ~32 GW for a CMB T of 

1450 K and core radius of 1200 km. These heat flow estimates are similar in magnitude 

to those reported by Littleton et al. (2021) for a molten FeS core, which ranged from ~11 

GW up to ~37 GW. However, it is important to note that the estimates of this study are 

for a significantly cooler molten core allowed by a eutectic-adjacent S composition. For 

instance, if the horizontal linear fit were extrapolated to a core T between 1600 and 1700 

K used by Littleton et al. (2021), the lower-bound and upper-bound Qa in the core would 

be ~13 GW and ~44 GW, respectively. The heat flow in the core using the positive linear 

fit is more constrained than the horizontal linear fit, with estimates of Qa ranging from ~8 

GW up to ~28 GW. This result is due to the competing effects of increasing T and ρ, 

which are directly proportional and inversely proportion to κ, respectively, via the WFL. 

Estimates of the heat flux out of the core and through the CMB of Ganymede range from 

~1-6 mW/m2 (Hauck et al., 2006; Kimura et al., 2009; Rückriemen et al., 2015; 2018). 

Both the linear and horizontal models showed that thermal convection of a molten Fe-

FeS core at relatively low core T is permissible provided the heat flux on the mantle-side 

of the CMB exceeds ~ 1.5 mW/m2. Littleton et al. (2021) showed that thermal convection 

can carry up to one-third of the heat load to the CMB for a heat transfer of 3 mW/m2 

through the CMB in a Ganymede core of liquid FeS. The results of this study for a 

Ganymede core of near eutectic Fe-FeS show a similar heat load proportion that can be 

carried by thermal convection for our core model, especially when the difference in core 

T estimates are taken into account. Thus, our results indicate that thermal convection is 

permissible for the majority of the 1250-1450 K T-range and may be a source of energy  
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Figure 5.4: Calculated adiabatic heat flow at the core-mantle boundary (CMB) of 

Ganymede of a fully molten eutectic-adjacent core at 5 GPa. The differently dashed 

lines each represent different estimates of the heat flow and through the CMB 

(Hauck et al., 2006; Kimura et al., 2009; Rückriemen et al., 2015; 2018). The shaded 

regions represent all values of calculated heat flow values on the core-side of the 

CMB. The lighter blue and darker red shaded regions are calculated values using a 

horizontal and linear fitting trendline, as shown in the Supporting Information 

section. The CMB temperature ranges from 1250 K at the bottom to 1450 K at the 

top of the shaded regions of this study. Propagated uncertainty on the calculations 

range from ~1 to 1.5% of the reported values. 

to power an internal core dynamo to produce the magnetic field of Ganymede. We note 

that with respect to P and T, these estimates of convective heat load represent a lower-

bound. Based on the trends observed in this study and other investigations on the Fe-FeS 

system (Pommier, 2018), increasing P will result in decreased values of ρ and increased 
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values of κ and Qa. Similarly, based on the results of this study, the net effect of 

increasing T will also result in increased values of κ and Qa. Acting singly or together, 

both effects produce a more thermally conductive core and could potentially diminish the 

effectiveness of, or completely shut down, heat transfer by thermal convection. For 

instance, extrapolated core heat flow values (~13-44 GW) of our horizontal linear fit 

applied to a 1600-1700 K liquid core model (Littleton et al., 2021) suggest that the heat 

load carried by thermal convection to the CMB can be reduced to one-fifth for a heat 

transfer of 3 mW/m2 through the CMB. With respect to S content, these estimates provide 

information for a middle-ground core composition between the lower- (FeS) and upper- 

(Fe) bounds. Core thermal conductivity is expected to increase as composition becomes 

more Fe-rich and decrease as composition becomes more FeS-rich in other core 

composition models. 

We note the absence of consensus regarding the P-dependence of the eutectic T in this 

system. A linear or non-linear increase (e.g., Usselman, 1975; Boehler, 1996) or decrease 

(e.g., Fei et al., 1997; Morard et al., 2007; and this study) of the eutectic T can 

significantly change the lowest-bound T that allows for an entirely molten Fe-FeS core of 

Ganymede and, consequently, constrains the effectiveness of thermally driven convection 

as a heat transport mechanism. A higher eutectic T than reported here would result in a 

core that is more thermally conductive since the lower-bound of Qa increases and thus 

decreases reliance on thermally driven convection to power an internal dynamo. 

Conversely, a lower eutectic T would result in a core that is less thermally conductive 

since the lower-bound of Qa decreases and thus increases reliance on thermally driven 

convection. A CMB pressure of 5 GPa is the lowest expected value. If pressure increases 

at the CMB, the eutectic composition shifts towards the Fe-end of the binary system and 

ρ is expected to decrease while κ and Qa are expected to increase. The uncertain behavior 

of the eutectic T implies the lower-bound T for either Fe or FeS crystallization regimes is 

uncertain. Beyond this, it is difficult to precisely describe the extent of the effect of the 

uncertain eutectic T on both crystallization regimes (bottom-up or top-down) and 

chemical- or buoyancy-driven convection. This is due to the non-linearity of the liquidus 

boundaries with increasing P, which marks the onset of crystallization. An increased or 
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decreased eutectic T may widen or shrink the T range between the liquidus and solidus 

but may have little to no significant effect on the liquidus T for some compositions. 

5.4 Conclusion 

The presence of S as an element in the Fe-rich core of Ganymede can allow for an 

entirely molten core at relatively low core T due to freezing-point depression, while also 

affecting core transport properties influencing magnetic field generation via an internal 

dynamo. This study provided measurements of the ρ of Fe-FeS with eutectic-adjacent S-

contents in solid and liquid states at P from 2-5 GPa, where the transition from solid to 

liquid states was inferred from measurements of ρ. The phase transition was used for 

delineation of the eutectic T of the Fe-FeS system, which showed a small negative P-

dependency. Our results are the first well constrained experimental data on near eutectic 

compositions in this binary system. The electronic component of κ was calculated via the 

WFL using the measured values of ρ, and subsequently used to estimate Qa on the core-

side of Ganymede’s CMB. The results showed that both ρ and κ had intermediate values 

between the end-members of the system, and that thermal convection may be permissible 

in the core to transport heat and act as a dynamo energy source. 
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Chapter 6  

6 Conclusion 

To explain all nature is too difficult a task for any one man or even for any one age. ‘Tis 

much better to do a little with certainty, & leave the rest for others that come after you, 

than to explain all things by conjecture without making sure of any thing. 

- Sir Isaac Newton 

The overarching goal of this thesis was to measure the electrical resistivity of solid and 

liquid Ag, FeS and Fe-FeS (~24-30 wt.% S) in order to better constrain the heat transport 

properties of cores of small terrestrial bodies, such as the S-bearing Fe-rich metallic core 

of Ganymede.  

6.1 Silver 

The results on Ag were used to test Stacey’s hypothesis of resistivity invariance along the 

P-dependent melting boundary of d-band filled pure metals. The results were used to 

compare the effect of the electronic configuration and band structure of metals, 

specifically the roles played by filled and partially-filled d-bands, on resistivity 

invariance. Partially filled d-bands contribute to electron scattering in transition metals 

and their effects on ρ along the P-dependent melting boundary need to be understood to 

test either of Stacey’s hypotheses, both of which were intended for application to 

planetary cores. The ρ of Ag in the solid and liquid state decreased as a function of 

increasing P and increased as a function of increasing T. The P- and T-dependent melting 

boundary was inferred from the sharp, large increase in ρ, which gave excellent 

agreement with previous studies. It was shown that liquid Ag resists an electrical current 

greater than solid Ag. Along the melting boundary, ρ was observed to decrease as a 

function of increasing P. This result directly contrasts two hypotheses that suggested 

invariance of the value of ρ along the melting boundary will be observed for a simple 

metal, such as Ag, and the hypotheses as written can be discarded. The results were 

discussed in terms of increasing energy separation between the 4d-band and conducting 

5s-band of Ag in both solid and liquid states, which are not accounted for in both 
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hypotheses that were derived from a macroscopic thermodynamical model. Moreover, the 

possibility for core proxy values obtained at the low-end of the high P scale is not 

supported by our observations. The κe of Ag, calculated using the WFL, increased as a 

function of increasing P and decreased as a function of increasing T. Liquid Ag was 

observed to be a poorer thermal conductor than solid Ag. 

6.2 Iron Sulphides 

This study provides detailed measurements of the ρ of FeS and eutectic-adjacent Fe-FeS 

in solid and molten states at pressures from 2-5 GPa in a cubic anvil press with well-

controlled sample geometry. These resistivity results are the first well constrained 

experimental data on near eutectic compositions in this important terrestrial core binary 

system. Similar to the delineation of the melting T in Chapter 2, eutectic temperatures for 

the Fe-FeS system were inferred from the sharp decrease in ρ and were in good 

agreement with previous works. Using the values of κe obtained from the WFL, the 

calculated values of Qa of FeS and Fe-FeS both indicated that thermal convection is 

permissible in models of a molten core of Ganymede, provided a minimum heat flux out 

of the core, through the CMB, of ~1.5-2 mW/m2. Thus, thermally-driven convection 

could be an on-going process in tandem with chemically- or buoyancy-driven convection 

(i.e. Fe snowing or FeS floatation) to power an internal dynamo that generates the 

satellite’s dipolar magnetic field. 

6.3 Suggested Future Works 

While the description of ρ invariance along the melting boundary given by either of 

Stacey’s hypotheses does not appear to withstand scrutiny by experimental methods and 

observations of this work and others (e.g. McWilliams et al., 2015; Ezenwa and Secco, 

2017; Ezenwa et al., 2017; Silber et al., 2017, 2018; Yong et al., 2019; Berrada et al., 

2018), the concept of ρ invariance still remains a possibility and requires a more accurate 

description of the phenomenon of electron scattering under antagonistic effects of high P 

and T. This statement is justified based on observations of high purity Zn (Ezenwa and 

Secco, 2017), Pt (McWilliams et al., 2015) and Fe (Silber et al., 2018; Yong et al., 2019). 

The results of Zn support both hypothesis of ρ invariance along the melting boundary as 
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described by Stacey and Anderson (2001) and Stacey and Loper (2007). The results of Pt 

support the earlier hypothesis, but not the latter. Lastly, the results of Fe support neither 

hypothesis; however, invariance is observed under certain conditions and may provide 

insight into additional constraints that need to be taken into account in a newer iteration 

of an invariance hypothesis that must be founded in a description of electronic structure 

and electron scattering mechanisms. Specifically, Fe was observed to have ρ invariance 

along the melting boundary only at P where the face-centered cubic phase of Fe was the 

stable solid phase up to melting. It has not been shown whether this behaviour would 

persist with the higher pressure hexagonal-close-packed phase as the stable solid phase 

prior to melting. Much higher P experiments are required. Alternatively, it may not be 

possible to establish a hypothesis with a universal description and instead may require 

descriptions on a metal-by-metal basis. Regardless, more high P-T measurements of ρ on 

both metals previously investigated and metals not yet investigated should be performed 

to address this outstanding issue. There is much to be done in the area of ρ and κ property 

determine for application to thermal modelling of terrestrial-like planetary bodies in our 

solar system. However, an even greater challenge appearing on the horizon is for similar 

studies to be carried out at the even greater P,T conditions of terrestrial-type exoplanets 

where the internal pressures are an order of magnitude larger than in Earth.  

Higher P-T experiments measuring ρ of FeS and Fe-FeS directly are needed to fully 

address the transport properties of Ganymede’s core, and are needed to begin addressing 

cores of larger terrestrial bodies that also contain S, such as Mercury (~2-6 wt.% S) and 

Mars (~10-20 wt.% S). To achieve this while using a relatively large powder sample 

volume, an octahedral cell design for use in a multi-anvil press implementing the same or 

similar four-wire electrical resistance technique (e.g. Yong et al., 2019) needs to be 

developed. Only a few S-content compositions of the Fe-FeS system have been studied 

and therefore, there are many opportunities to contribute to a thorough systematic study 

investigating the effect of increasing (or decreasing) S content on ρ in both the solid and 

liquid states within the Fe-FeS system at high P-T conditions. A sample preparation 

methodology should be developed that results in a sample composition exactly at, or 

closer to, 36.5 wt.% S (FeS). The commercially available FeS powder that was purchased 

for experiments in Chapter 3 had a slightly less than the ideal composition since it was 
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not stoichiometrically FeS, resulting in several hundreds of degrees with a solid+liquid 

sample state. A purer sample, with respect to stoichiometry, would greatly aid in 

constraining ρ of solid and liquid FeS. Lastly, direct measurements of κ would help 

constrain the L value in the WFL, as well as determine whether the WFL is valid to use 

for FeS and Fe-FeS at high P-T conditions. 

For a more realistic evaluation of terrestrial S-bearing Fe-rich cores, experimental 

investigations of ρ and κ at high P-T conditions for other than binary alloying systems are 

required since there is likely more than one lighter impurity element present. A 

reasonable next step is to investigate the ternary alloying systems of Fe-S-X, where X is 

an additional light element candidate. These candidates may include Si, O, C, and H. 

Moreover, investigations of the Fe-S-H system will help constrain the effect of H on 

eutectic melting. Minor amounts of H have been suggested to be responsible for the 

significant freezing/melting-point depression observed at P approaching core conditions 

of larger terrestrial cores (Buono and Walker, 2015). This will also require simultaneous 

investigations of H-free Fe-S at the same conditions. The thermal and physical state of S-

bearing Fe-rich cores may change significantly if H is found to be responsible for 

currently reported Fe-FeS eutectic temperatures at high P. 
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Appendices 

Appendix A: Supporting Information for Chapter 3 

A.1 Pressure Cell Design 

The P transmitting medium was a 3.175 cm edge length pyrophyllite cube that was 

sectioned in to top and bottom components with equivalent cross-sectional thicknesses of 

1.016 cm and a middle component with a cross-sectional thickness of 1.143 cm. The top 

and bottom components contained a graphite sleeve running the thickness of the section 

with an outer and inner diameter of 0.831 cm and 0.699 cm, respectively. Sized to the 

inner diameter of the graphite sleeve were a zirconia disk and pyrophyllite plug with 

thicknesses of 0.102 cm and 0.914 cm, respectively. Similarly, the middle component 

contained a graphite sleeve running the thickness of the section with identical outer and 

inner diameters as those in the top and bottom components. The graphite sleeve was 

tightly enclosed by a cylindrical zirconia annulus with an outer diameter of 1.067 cm. 

Running the thickness of the section and sized to the inner diameter of the graphite sleeve 

was a rod of boron nitride with a 0.279 cm hole drilled through the center length-wise. A 

pair of linear channels orientated perpendicular to each other were milled along the 

square faces of the middle section with one on each side. Each channel was 0.102 cm 

deep by 0.112 cm wide and ran the entire edge length of the square face while cutting 

through the center. 

Two boron nitride cylinders with a diameter of 0.279 cm and length of 0.381 cm had a 

0.157 cm diameter hole drilled through the center of the circular faces. Two four-hole 

alumina tubes with a diameter of 0.157 cm were cut to a length of 0.356 cm. A 0.025 cm 

void space created by length differences between the sheathed alumina tube inside of a 

boron nitride cylinder was intentional and accounted for wire thickness. Specifically, 

0.025 cm diameter platinum (Pt) wires and platinum alloyed with 10 wt.% rhodium (Pt-

Rh) wires were each threaded into both alumina tubes prior to emplacement into the 

boron nitride. At the end corresponding to the anticipated void space, the wires were bent 

into a hook and inserted straight-end first into the alumina tubes. The wires continued to 
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be threaded into the tubes until the end of the hooks aligned into an unoccupied hole. One 

boron nitride cylinder was placed into the boron nitride hole of the middle section and 

pushed into the section until there was a 0.102 cm gap between the cylinder and the 

surface of the square face. One alumina tube containing a pair of Pt and Pt-Rh wires was 

inserted into the cylinder, with the hook-ends deepest in the section. A 0.102 cm 

diameter, single-hole ceramic tube was placed around each straight-end of the Pt/Pt-Rh 

wires that protruded out from the square face. The sheathed wires were bent into edge 

length channels of the same face. Excess sheath material extruding from middle section at 

either end of the channel was removed so that the ends of the sheath truncated at the ends 

of the channel. Alumina cement was next applied to fill the 0.102 cm gap and allowed to 

harden for approximately 30 minutes. 

The middle section was filled from the remaining open-hole boron nitride face. A circular 

tungsten (W) disk with diameter of approximately 0.229 cm and thickness of 0.010 cm 

was dropped into the boron nitride hole and gently hammered upon. The hammering was 

necessary for two reasons: i) ensure the malleable Pt/Pt-Rh wires are flush along the 

boron nitride cylinder surface; and ii) create a level platform and seal for powder 

emplacement, ensuring powder does not fall into the holes of the alumina tubes. FeS was 

poured into the boron nitride and gently pressed upon to ensure as tight packing as 

possible. This process was done incrementally while ensuring minimal amounts of 

powder sticks to the walls of the boron nitride hole. Once approximately 0.178 cm of 

powder was packed, a second W disk was placed on top and level with the FeS sample, 

followed by the insertion of the second boron nitride cylinder into the boron nitride hole. 

Similarly, the cylinder was pushed into the section until there was a 0.102 cm gap 

between the cylinder and the surface of the square face. A gentle stream of compressed 

air was used to blow away any powder that may have been agitated and displaced on top 

of the second W disk during assembly. The second alumina tube bearing Pt/Pt-Rh wires 

was inserted into the boron nitride cylinder, with wire sheathing, bending into channels 

along the square face, and alumina cement procedures the same as for the first tube-wire 

emplacement were applied. 
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Figure 2.2a and 2.2b show a fully assembled cubic P cell placed graphite-face down on 

the bottom axial anvil before and after an experiment. The cube was then rotated such 

that each lateral face aligned parallel to a lateral anvil. Shown in Fig. 2.2a are the square 

face aligned 0.508 cm diameter holes through a pair of opposing pyrophyllite corners of 

each section. Two 3.175 cm long pyrophyllite pin rods, with a diameter to match the size 

of the holes, were inserted to maintain alignment of the three sections. Also shown in Fig. 

2.2a are small, circular copper (Cu) foil pieces (0.010 cm thickness) that have been 

pierced to allow the protruding Pt/Pt-Rh wires to be threaded through. The ends of the 

wires are bent and flattened against the Cu foil. The Cu foils served to enhance the spatial 

contact and maintain electrical continuity between the opposing anvils and each wire 

arm. The perimeter surface area of the cube was coated in iron (III) oxide to increase 

friction between the cube and anvils during compression. 

Compression of the P cell helps establish and improve three important electrical contacts: 

i) three co-axial graphite sleeves; ii) each pair of Pt/Pt-Rh wires and W disks; and iii) W 

disks and the FeS powder sample. The alignment of the three sections maintained by the 

pyrophyllite pin rods, significantly increased the chance of mechanical contact between 

all three graphite sleeves during compression. In turn, a controlled high alternating 

current can be passed through the axial anvils. This allowed graphite to act as a resistor 

and be used to heat the sample via ohmic dissipation. The zirconia annulus and caps 

effectively formed a cylindrical thermally insulating envelope around the sample that 

helped to ensure heat was retained at the center and T remained as homogenous as 

possible (i.e. to help reduce thermal gradient) (Schloessin and Lenson, 1989). The 

chemical and thermal stability of boron nitride was expected to prevent reactions with 

either the sample or Pt/Pt-Rh wires at high T. 
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A.2 Electron Microprobe Analyses of Additional Experiments 

The following figures (Fig. A.1-A.3) show images and elemental analyses of post-

experiment samples of the 2, 3, and 5 GPa experiments, respectively. 

 

Figure A.1: Back-scattered electron image of the post-experiment 2 GPa pressure 

cell. Results of the microprobe have been tabulated and normalized. Instances of 

negative normalized values have been set to 0.00 wt.%. 

 

Figure A.2: Back-scattered electron image of the post-experiment 3 GPa pressure 

cell. Results of the microprobe have been tabulated and normalized. Instances of 

negative normalized values have been set to 0.00 wt.%. 
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Figure A.3: Back-scattered electron image of the post-experiment 5 GPa pressure 

cell. Results of the microprobe have been tabulated and normalized. Instances of 

negative normalized values have been set to 0.00 wt.%. 
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A.3 Electrical Resistivity Interpolation of 5 GPa Data: 1600-1700 K 

The following figure (Fig. A.4) shows the values and function used to interpolate the 

value of electrical resistivity at temperatures between 1600 K and 1700 K. The 

interpolated values were used to calculate the adiabatic conductive heat flow at the top of 

the core of Ganymede. 

 

Figure A.4: A second-order polynomial was fitted to six measurements of the 5 GPa 

experiment. The polynomial fit was used to interpolate the values of electrical 

resistivity for temperatures from 1600 K and 1700 K. The interpolated values were 

used to calculate the adiabatic conductive heat flow for the core of Ganymede 

described in the main text. Estimate of the FeS melting temperature at 5 GPa, 

shown by the shaded region, was taken from Boehler (1992) with an uncertainty of 

±50 K. 
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Appendix B: Supporting Information for Chapter 4 

B.1 Electrical Resistivity Interpolation of 5 GPa Data: 1250-1450 K 

The following figure (Fig. B.1) shows the values and function used to interpolate the 

value of electrical resistivity at temperatures between 1250 K and 1450 K. The 

interpolated and extrapolated values were used to calculate the adiabatic conductive heat 

flow at the top of the core of Ganymede. 

 

Figure B.1: A first-order polynomial (red) was fitted to eight measurements and a 

horizontal line (315 μΩ·cm; blue) was fitted to six measurements of the 5 GPa 

experiment. Both fits were used to interpolate and extrapolate the values of 

electrical resistivity for temperatures from 1250 K and 1450 K. The values obtained 

from these fits were used to calculate the adiabatic conductive heat flow for the core 

of Ganymede described in the main text.  
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Appendix C: Selected Prior Cell Designs and Unsuccessful Results 

C.1 Silver 

 

Figure C.1: Cross-section of an assembled cube using the first cell design. The 

thermocouple is not to scale to emphasize location and shape. 1) Pyrophyllite cube; 

2) Pyrophyllite sleeve; 3) Zirconia sleeve; 4) Niobium furnace; 5) Pyrophyllite plug; 

6) Zirconia cap; 7) Boron nitride cap; 8) Boron nitride sample container; 9) Silver 

wire sample; 10) Rhenium plugs; 11) Ceramic tube; 12) Thermocouple. 
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Figure C.2: a) Post-experiment view of a pressure cell showing well-formed gaskets 

– just prior to cell extraction. b) A cube that has been cut open using a Buehler 

Isomet 1000 Precision Saw. 
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Figure C.3: Cross-section of a recovered 4 GPa experiment (~1600 K) using the cell 

design shown in Fig. C.1: Zirconia sleeve (ZrO2); Niobium furnace (Nb); Boron 

nitride sample container (BN); Silver wire sample (Ag); 10) Rhenium plugs (Re); 

Thermocouple (TC). 
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Figure C.4: Electrical resistivity of Ag as a function of temperature at pressures of 

1, 2, 3 and 4 GPa utilizing the first cubic cell design, compared with 1 atm data. 
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Figure C.5: Plot of melting temperatures of Ag as a function of pressure using the 

first cubic cell design. The lines represent experimental and theoretical melting 

temperatures from the literature compared with the observed melting points of Ag 

from experiments using the first cubic cell design. The bottoms and tops of the error 

bars indicate the highest measured temperature in the solid phase and the lowest 

measured temperature in the liquid phase, respectively. The experimental data from 

this study (indigo circles) are the averages of the bottom and top temperatures. 
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Figure C.6: Cross-section of an assembled cube using the second cell design. The 

thermocouple and Re foils are not to scale to emphasize location and shape. 1) 

Pyrophyllite cube; 2) Pyrophyllite sleeve; 3) Zirconia sleeve; 4) Niobium furnace; 5) 

Pyrophyllite plug; 6) Zirconia cap; 7) Boron nitride cap; 8) Boron nitride sample 

container; 9) Two-hole ceramic tube; 10) Boron nitride capsule; 11) Silver-bearing 

Ceramic tube; 12) Silver wire sample; 13) Re foils; 14) Ceramic Tube; 15) 

Thermocouple. 
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Figure C.7: Cross-section of a recovered 2 GPa experiment (~1383 K) using the cell 

design shown in Fig. C.6: Zirconia sleeve (ZrO2); Niobium furnace (Nb); Boron 

nitride sample container (BN); Silver wire sample (Ag); 10) Rhenium disks (Re); 

Thermocouple (TC). 
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Figure C.8: Electrical resistivity of Ag as a function of temperature at pressures of 

2, 3, 4 and 5 GPa utilizing the second cubic cell design, compared with 1 atm data. 
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Figure C.9: Plot of melting temperatures of Ag as a function of pressure using the 

second cubic cell design. The lines represent experimental and theoretical melting 

temperatures from the literature compared with the observed melting points of Ag 

from experiments using the first cubic cell design. The bottoms and tops of the error 

bars indicate the highest measured temperature in the solid phase and the lowest 

measured temperature in the liquid phase, respectively. The experimental data from 

this study (indigo circles) are the averages of the bottom and top temperatures. 
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Figure C.10: Image of recovered experiments prepared in epoxy disks for EPMA. 
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Figure C.11: Backscattered electron image of a recovered experiment from 4 GPa 

and ~1557 K. Type-S thermocouple (TC), Re foil, Ag wire sample components are 

labeled. Boundaries between metallic components are well-defined and lacking 

diffusion. 
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Figure C.12: Backscattered electron image of a recovered experiment from 4 GPa 

and ~1557 K with Re foil component labeled. The green circle encompasses an area 

of the Re foil that broke under pressure. This allowed liquid Ag (grey) to migrate to 

and contact the Type-S thermocouples (not shown – removed during 

sanding/polishing). Pt diffusion into Ag is observed by the mottled Ag wire sample, 

indicated within the red circles. 
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C.2 Iron sulphide 

 

Figure C.13: Illustration of the cross-section of the first cubic pressure cell used in 

iron sulphide (FeS) experiments. 1) Pyrophyllite cube; 2) Graphite cap; 3) Graphite 

sleeve furnace; 4) Zirconia Cap; 5) Zirconia sleeve; 6) Mullite tube; 7) Type-S 

thermocouple; 8) Pyrophyllite plug; 9) FeS powder sample; 10) Tungsten caps; 11) 

Alumina tube; 12) Large boron nitride sleeve; 13) Small boron nitride sleeve. 
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Figure C.14: Cross-section of a sample and disks recovered from a 2 GPa 

experiment (~1692 K) using the cell design in Fig. C.13: Tungsten (W) plugs/caps; 

iron sulphide (FeS) sample; Type-S thermocouple (TC) arm; boron nitride (BN). 
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Figure C.15: Electrical resistivity of FeS as a function of temperature at 2 GPa 

utilizing the cell design in Fig. C.13.  
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Figure C.16: Comparison of the resistivity of FeS at 2 GPa in Fig. C.14 to Pommier 

(2018). 
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Figure C.17: Cross-section of a recovered 2 GPa experiment (~1671 K) using a 

modified cell design compared to Fig. C.13 embedded in epoxy. The second (upper) 

thermocouple and all other components were lost during grinding and polishing. 

The modification to the previous design includes replacing the single-holed alumina 

tube with boron nitride (BN) and the thick tungsten disks/caps with small platinum 

(Pt) plugs in the center of thin BN caps. Type-C thermocouples (TC) were used. 
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Figure C.18: Comparison of the electrical resistivity of FeS at 2 GPa (~1671 K) from 

the experiment shown in Fig. C.17, to Pommier (2018). 
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Figure C.19: Backscattered electron images of the recovered experiment shown in 

Fig. C.17 focused on the sample. Clearly observed are Fe-S-Pt (light grey) textures 

of the FeS sample (dark grey) due to diffusion of Pt (white). 
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Figure C.20: Back-scattered electron image of the post-experiment 2 GPa (~1671 K) 

pressure cell shown in Fig. C.17. Results of the microprobe are given in the table. 
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Figure C.21: Illustration of the cross-section of a multi-anvil octahedral pressure 

cell used for FeS experiments. 
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Figure C.22: Cross-section of a recovered 4 GPa experiment (~1772 K) using the cell 

design in Fig. C.21 focused on the sample: Rhenium (Re) plugs and furnace; iron 

sulphide (FeS) sample; Type-C thermocouple (TC) arm; boron nitride (BN) 

disks/caps; Zirconia (ZrO2) sleeve; Magnesium oxide (MgO) pressure cell medium. 
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Figure C.23: Electrical resistivity of FeS using the multi-anvil cell design shown in 

Fig. C.21 with comparison to Pommier (2018). 
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