
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-12-2021 1:45 PM

Generative Learning in Smart Grid Generative Learning in Smart Grid

Samer M. El Kababji, The University of Western Ontario

Supervisor: Srikantha, Pirathayini, The University of Western Ontario

Joint Supervisor: McIssac, Ken, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Electrical and Computer Engineering

© Samer M. El Kababji 2021

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Computational Engineering Commons, and the Power and Energy Commons

Recommended Citation Recommended Citation
El Kababji, Samer M., "Generative Learning in Smart Grid" (2021). Electronic Thesis and Dissertation
Repository. 7989.
https://ir.lib.uwo.ca/etd/7989

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7989&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=ir.lib.uwo.ca%2Fetd%2F7989&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=ir.lib.uwo.ca%2Fetd%2F7989&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7989?utm_source=ir.lib.uwo.ca%2Fetd%2F7989&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

If a smart grid is to be described in one word, that word would be ’connectivity’. While

electricity production and consumption still depend on a limited number of physical connec-

tions, exchanging data is growing enormously. Customers, utilities, sensors, and markets are

all different sources of data that are exchanged in a ubiquitous digital setup. To deal with data

complexity, many researchers recently focused on machine learning (ML) applications in smart

grids. Much of the success in ML is attributed to discriminative learning where models define

boundaries to categorize data. Generative learning, however, reveals how data is generated by

learning the underlying distribution functions. In the past few years, generative models brought

new dimensions to various domains. Computers became painters and composers.

This thesis identifies three applications in the smart grid where generative learning has great

potential. On the demand side, residential loads such as dishwashers and clothes driers are sim-

ulated using generative models. In specific, the latest developments in generative adversarial

networks and kernel density estimators are levered to learn the underlying distributions of in-

dividual loads for both power consumption patterns and usage habits. Being data-driven, the

learning process eliminates any biases introduced by rule-based models where predetermined

fixed formulas describing each load are considered. The study demonstrates the flexibility,

viability, and remarkable accuracy of the proposed framework. The resulting synthetic power

consumption patterns and usage habits for individual loads are valuable sources for researchers

to build or improve their data-driven models for demand-side studies.

Non-intrusive load monitoring (NILM) is the second topic researched on the demand side.

The goal in NILM is to identify the status of individual loads in a household by merely relying

on a smart meter’s measurements without any hardware installations. The research focuses

on identifying the operational condition of individual loads by developing a novel hybrid al-

gorithm that combines the widely used generative technique, namely, hidden Markov model,

with k-means clustering. The hybrid model is demonstrated to accurately identify the operation

conditions of individual loads based on the ingested aggregate signal.

ii

Finally, for power transmission, a combination of generative models is proposed to estimate

power states from a set of redundant measurements. Power state estimation is a fundamental

technique in shedding light on the operational condition of the grid. A traditional state esti-

mator is typically executed online and, in its non-linear formulation, involves a high level of

computational complexity. Generative models shift that burden to the offline learning process.

On the other hand, bad data detection and identification is a central feature in traditional es-

timators. As such, the developed framework integrated that feature in the data-driven state

estimator by incorporating forward and backward generative adversarial networks. Simple

domain knowledge is further incorporated in the model to improve its accuracy against the

benchmark data-driven model. The proposed framework remarkably detected tampered mea-

surements including false data injection.

Keywords: Non-intrusive load monitoring, load simulation, power state estimation, ma-

chine learning, generative adversarial network, false data injection

iii

Summary for Lay Audience

As per Hegel, ontological categorizations are concepts that a simple person uses to rec-

ognize the world [1]. Indeed, classification is a fundamental rational activity that scientists

brought to machines in the era of ”machine learning”. Artificial neural networks made this

possible through discriminative learning, e.g. machines learn to discriminate dogs from cats.

But this is not the end of the story. People’s mental power extends to more than a mere classifi-

cation of objects. People can extract common features among a set of objects and generate new

ideas. While architects can discriminate between good and bad designs, they can learn from

these historical records to come up with novel designs. This is why it is widely accepted among

researchers that brains learn generative models [2]. To mimic human intelligence, generative

learning is considered an essential part of artificial intelligence.

This thesis applies recent developments in generative modelling by tackling three problems

in the modern electrical grid. First, a model is developed to simulate the operation of electrical

loads in the residential sector. The generative model eventually learns how to behave like a

dishwasher, a cloth dryer, and so on. If the model is instructed to simulate a dishwasher, it

will generate a signal that looks similar to that generated by a real dishwasher in terms of

both signal’s shape and its occurrence in time. The generated synthetic data is a valuable

tool that can be used by researchers in further studies such as non-intrusive load monitoring

(NILM). This is the second area where generative modelling is applied. In simple words, NILM

is the process of identifying the operational status of individual loads inside a house by just

reading the measurements recorded by a modern electric meter. The recorded aggregate power

consumption for a household is passed to the developed generative model that will, in turn,

identify which individual appliances were operating during that time. One of the advantages of

NILM is to help consumers to have a better planning of their power consumption and, hence,

reduce electricity bills.

Finally, generative techniques are leveraged to assist in quickly monitoring the status of

the power grid. Typically, in an electrical grid, measurements (e.g. power values) are taken at

iv

various locations along the grid and sent back to a control centre. These measurements are fed

to the pre-trained generative model which will instantly provide the operator with a snapshot of

the voltage complex values at different buses, i.e. common connections. These values can be

used to determine the status of the whole grid. In addition, the generative model can identify

any bad measurements that do not seem to be within the acceptable range of error that is usually

associated with the measuring process. The developed framework reflects the great benefit that

generative models bring to the industry.

v

Dedicated

To the memory of my mother, Feryal, who was long awaiting this

moment, but could not make it in time.

To my father, Maher, a great unique man, who always shows up

to push me forward.

&

To my wife, Serin, the only person that can draw a smile on my

face with her magical brush of serenity and love.

vi

Acknowledgments

I would like to express my deep gratitude to my advisor, Dr. Pirathayini Srikantha for her

support, encouragement, guidance, and patience throughout my Ph.D. journey. I met many

people in my life, but not too many with Dr. Srikantha’s dedication. Her vision has always

inspired me. Her invaluable directions paved the road for me to explore the world of academia.

I was privileged to work under her supervision.

Also, I would like to thank my supervisory committee Dr. Firouz Ajaei and Dr. Katarina

Gronlinger for their insightful comments and valuable suggestions.

Finally, I extend my thanks to the ECE department at Western University for their financial

and administrative support.

vii

Contents

Abstract ii

Summary for Lay Audience iv

Dedication vi

Acknowledgments vii

List of Figures xi

List of Tables xii

1 Introduction 1
1.1 Machine learning in smart grid . 1
1.2 Generative vs. discriminative models . 3
1.3 State-of-the-art . 3

1.3.1 Residential load simulation . 4
1.3.2 Non-intrusive load monitoring . 6
1.3.3 Power system state estimation . 9

1.4 Research motivations . 12
1.4.1 Residential load simulation . 12
1.4.2 Non-intrusive load monitoring . 13
1.4.3 Power system state estimation . 14

1.5 Research objectives . 15
1.6 Thesis outline . 16

2 Residential load simulation 18
2.1 Background . 18

2.1.1 Neural networks . 18
2.1.2 Generative adversarial networks . 21
2.1.3 Maximum-mean discrepancy . 25

viii

2.1.4 Kernel density estimator . 26
2.1.5 Matched-filter . 28
2.1.6 Cross validation . 30

2.2 Problem definition . 31
2.3 Proposed framework . 35
2.4 Experimental studies . 40

2.4.1 Preprocessing . 40
2.4.2 Generating patterns . 43
2.4.3 Generating habits . 48

2.5 Summary . 54

3 Non-intrusive load monitoring 56
3.1 Background . 56

3.1.1 Hidden Markov model . 56
3.1.2 k-means clustering . 58
3.1.3 Quality metrics . 59

3.2 Problem definition . 60
3.3 Proposed framework . 62
3.4 Experimental studies . 67
3.5 Summary . 71

4 Power state estimation 74
4.1 Background . 74

4.1.1 Power state estimation . 74
4.1.2 Bad data detection . 77
4.1.3 Cycle GAN . 79
4.1.4 Embedding . 80

4.2 Problem definition . 81
4.3 Proposed framework . 82

4.3.1 Vanilla cycle GAN . 82
4.3.2 Grid-aware cycle GAN . 85
4.3.3 Evaluating cycle GAN for state estimation 86
4.3.4 Tampered data identification (TDI) . 87

4.4 Experimental studies . 88
4.4.1 Generating load scenarios . 88
4.4.2 Training cycle GAN . 88
4.4.3 Benchmarking . 89

ix

4.4.4 Identifying bad measurements . 92
4.5 Summary . 94

5 Conclusions 95
5.1 Summary . 95
5.2 Contributions . 96
5.3 Future works . 98

Bibliography 100

A Public datasets 109

Curriculum Vitae 111

x

List of Figures

1.1 NIST smart grid conceptual model [3] . 2

1.2 Thesis outline including the main tasks in the research 17

2.1 Examples of activation functions . 20

2.2 Neural Network . 21

2.3 Generative Adversarial Network . 22

2.4 Conditional Generative Adversarial Network 25

2.5 Typical kernels used Kernel Density Estimation 27

2.6 Varying the bandwidth while using Gaussian kernel in KDE 28

2.7 Repetitive patterns detected using matched filer 29

2.8 Power demand patterns for different residential individual loads 32

2.9 Power demand patterns for the same individual load at different times 33

2.10 Power demand habits for the same individual load at different times 34

2.11 Proposed framework for learning patterns and habits of residential individual
loads. 35

2.12 Typical example used for training patterns . 37

2.13 Typical example used for training habits . 38

2.14 Trained frameowrk for simulating residential loads 41

2.15 Raw patterns for different loads . 42

2.16 Impact of reducing granularity (Tg) on the training samples for cloth dryer . . . 42

2.17 Raw usage habits of different loads for around 11 days. 43

2.18 Evolution of the inverted loss during training. 44

2.19 Synthetic patterns from proposed GAN. 45

2.20 Comparison of real versus synthetic patterns. 46

2.21 Mode collapse in CGAN-Patterns for Cloth Dryer [4]. 47

2.22 Training and synthesis of the GAN system. 47

2.23 Normalized confusion matrix for synthetic data. 48

2.24 Synthetic (triangles) vs. real distribution (circles) while training CGAN-Habits. 50

2.25 Loss while training CGAN-Habits . 50

xi

2.26 Correlation among engineered features for all loads. 51

2.27 Histograms for usage habits of Cloth Dryer (CDE). 52

2.28 Histograms for usage habits of Dishwasher (DWE). 52

2.29 Histograms for usage habits of Fridge (FGE). 53

2.30 Histograms for usage habits of Heat pump (HPE). 53

2.31 MMD for training CGAN-Habits . 54

3.1 Hidden Markov Model . 57

3.2 Factorial hidden Markov model where the aggregate power oA
t at any point in

time t is dependent on the internal states of all the connected loads at that time
instance. 61

3.3 Hidden Markov chain for load l with univariate emission distribution such for
observed power. 61

3.4 Hybrid Algorithm for NILM . 64

3.5 Illustration of steps 4 and 5 in HTA algorithm. Clean observations ol (left) for
load l are converted to sequence of states ql (right) by applying a threshold τ
(red dotted line). The four transition frequencies between states are calculated
and the load’s transition matrix Al is updated accordingly. 65

3.6 Illustration of step 10 in HTA algorithm. Clean observations ol (left) for load l

are converted to sequence of lables yl (middle) using kl-Means algorithm.The
distribution of data is found (right) and the load’s emission matrix Bl is updated
accordingly. 67

3.7 Raw whole house active power signal . 68

3.8 Removing outliers from training signals . 68

3.9 Conversion of observed power values for various appliances to two-state se-
quence. 69

3.10 k-Means clustering of various load signals. 70

3.11 Converting aggregate power signal to labels 72

3.12 Inferring states of aggregate signal . 72

3.13 Decoding states of aggregate signal into individual loads 73

4.1 Main blocks of a cycle GAN. 80

4.2 Cycle GAN setup for state estimation. Load scenario indices i and j are omitted
for clarity. 83

4.3 A benchmark MLP is used to evaluate the cycle GAN accuracy for estimating
states. Unlike cycle GAN, labelled input data is used and predicted states are
measured against the paired ground truth states. 87

xii

4.4 Proposed cycle GAN in inference mode used fr tampered data identification . . 87
4.5 Constructing Training and Testing Datasets for cycle GAN 89
4.6 Adversarial losses for vanilla cycle GAN. The forward generator (G) and its

adversary Dy are trained to estimate states, while the backward generator (F)
and its adversary (Dx) are trained to cycle measurements. 91

4.7 Adversarial losses for grid-aware cycle GAN. 91
4.8 Loss of benchmark MLP for both train and test datasets 92
4.9 F1 and Accuracy scores against threshold in grid-aware cycle GAN. 94

xiii

List of Tables

1.1 Accuracy comparison of various data-driven state estimators 10

2.1 Architecture of CGAN-Patterns [4] . 44
2.2 Evaluator net architecture [4]. 48
2.3 KDE optimized parameters using 10-fold cross-validation [4]. 49
2.4 Architecture of CGAN-Habits [4]. 49
2.5 MMD comparison of usage habit synthesis. 54

3.1 Results of proposed non-intrusive load monitoring showing remarkable disag-
gregation power. 71

4.1 Cycle GAN Architecture . 90
4.2 Benchmark MLP Architecture . 90
4.3 Mean squared-error for various models where the MLP is used only for bench-

marking purposes. 91
4.4 Accuracy and F1 scores for various types of losses against different attacks. . . 93

xiv

Chapter 1

Introduction

In the past few years, several industries witnessed breakthroughs in artificial intelligence by
employing generative learning. Computers started to generate paints [5] and turn design mock-
ups into running codes [6]. Generative models will play a fundamental role in the future de-
velopment of machine learning. This chapter presents the importance of machine learning and
highlights the differences between discriminative and generative models. The next sections
identify three smart grid applications where generative learning is of special interest. Each cor-
responding state-of-the-art is thoroughly discussed. Finally, research motivations, objectives
and thesis outline are presented.

1.1 Machine learning in smart grid

The electrical power grid has evolved from a one-way electromechanical grid to a two-way
smart grid. In their latest release, the National Institute of Standards and Technology (NIST)
lays down a conceptual model of smart grid (Figure 1.1) [3]. While energy production and
consumption remain straightforward, information exchange has grown into high complexity.
As clearly depicted by the conceptual model, connectivity is a major aspect of a smart grid. It is
even anticipated that a smart grid will eventually evolve into a neural grid wherein ubiquitous
connectivity and cloud-based artificial intelligence will play major roles [7].

The large volume of data brought by connectivity motivates advanced techniques for plan-
ning and control. On the other hand, the emerging complexity is accompanied by cybersecurity
concerns. The need for machine learning techniques to deal with data volume, variety, and cy-
bersecurity becomes inevitable.

Machine learning (ML) is the science of programming computers so they can learn from
data [8]. So, typically, machine learning does not entail the knowledge of physics. In its basic
form, training data is ingested into the model’s function or hypothesis, the output is evaluated

1

2 Chapter 1. Introduction

against ground truth and the function is updated to minimize the error. ML becomes very useful
when the system under consideration is complex, i.e. a long list of physical rules is required
to describe the system. In general, rule-based systems are inconvenient to address complex
problems. Further, they lack the flexibility to adapt to new requirements [9].

Figure 1.1: NIST smart grid conceptual model [3]

ML is usually classified based on the amount of supervision required during training. In
supervised learning, the training data includes the target i.e. labels. Consider a classification

problem where an image is needed to be identified whether it is for a dog or cat. The train-
ing dataset will include different images of dogs and cats (i.e. observations) along with their
proper labels. If the targets are numeric values (e.g. load forecasting) rather than labels, the
problem is categorized as regression problem. Alternatively, observations may be referred to as
examples or, simply, samples. Some common ML algorithms for supervised learning include
logistic regression, k-nearest neighbours, support vector machines, decision trees, and neural
networks. In unsupervised learning, the training dataset is unlabelled. The ML algorithm de-
tects patterns among the training examples based on their input features. Clustering is a typical
example of unsupervised learning. For example, a person may need the ML algorithm to group
various songs in few playlists based on their audio features such as speechiness, loudness,
instrumentalness,..etc [10]. Several algorithms for clustering are developed such as k-means
and Gaussian mixture. When true cluster labels are available, the model’s performance can be
validated against these labels.

1.2. Generative vs. discriminative models 3

ML has several applications in the smart grid such as load forecasting, price prediction,
fault detection, detection of malicious attacks, and others. References [11, 12, 13] review
various contemporary applications of ML in smart grid.

1.2 Generative vs. discriminative models

The previous section mentioned that ML models are broadly classified as either supervised
or unsupervised. ML models may be also classified as either discriminative or generative.
Discriminative models are synonymous with supervised models where labelled datasets need
to be used for training. Given a specific training example, a discriminative model estimates the
probability of a specific label. For instance, consider a discriminative model that is trained to
discriminate the paintings of Oscar-Claude Monet from others. If a new painting is fed to the
model, the output will be the probability that the input sample is painted by Monet. However,
unlike generative models, the discriminative model will not able to generate a painting that
seems to be painted by Monet. Hence, generative models, estimate the probability of observing
a training example. Generative models will be discussed further in 2.1.2.

On the demand side of the smart grid, generative models are quite useful. In this thesis,
generative models are used to simulate residential electrical loads such as dishwashers, cloth
dryers..etc. Further, a generative model is used to disaggregate the smart meter readings to
identify the status of individual loads (i.e. whether on or off) without any hardware installa-
tions. This is also known as non-intrusive load monitoring. On the transmission side, power
state estimation and bad data detection is another area where generative models can be ex-
ploited. State-of-the-art related to these three topics are discussed in subsequent sections.

1.3 State-of-the-art

The following subsections present a review of the literature and state-of-the-art proposals re-
lated to the three core topics, namely, residential load simulation, non-intrusive load monitoring
and power state estimation. While the focus of this thesis is on data-driven models, traditional
techniques are occasionally presented for comparison purposes. When discussing the literature
related to state estimation, state-of-the-art data-driven proposals for bad data detection are also
included.

4 Chapter 1. Introduction

1.3.1 Residential load simulation

Broadly speaking, residential load simulation (RLS) can be classified into two categories: rule-
based and data-driven. The rule-based approach involves the representation of a certain load
using a set of electrical components with known physical behaviours (e.g. resistors, induc-
tors..etc.). Measurement-based modelling is another common form of data-driven technique.
In this case, measurements are taken for a specific load and a statistical model (e.g. polynomial)
is fitted with the measured quantities in order to find the model’s parameters (e.g. polynomial’s
coefficients). Although it is built on statistics, measurement-driven techniques involve a cer-
tain level of expert knowledge since the model structure needs to be pre-determined (e.g. an
expert shall decide the type and order of the function to be used). With loads becoming more
sophisticated and with the necessity to model the temporal behaviour of the load in addition to
its electrical characteristics, more complex expert-free data-driven techniques are devised [14].

When the temporal dimension is not considered, this is usually called ’load modelling’.
Here, the overall goal is to develop a mathematical representation of the electrical charac-
teristics. A common example is ZIP model where the model includes a constant impedance
(Z), current (I) and power (P). In some literature, the same model structure can be applied to
both individual loads and aggregate loads. For instance, the Electric Power Research Institute
(EPRI) proposes a model that combines ZIP, exponential and frequency-dependent models. If
the model is used to represent an individual load rather than an aggregate load, then the initial
operating conditions stated in the devised model equation shall be replaced by the ratings of
the individual load under consideration [14].

RLS involves modelling both the electrical characteristics and the consumer’s behaviour.
Occasionally, literature refers to RLS as the process of generating load profiles. Once again,
the word ’load’ may be used for both the individual and the aggregate loads. However, it is
common to use the term ”load profile” to refer to modelling the aggregate signal at the bus
level in the distribution network rather than modelling an individual load.

A comprehensive RLS model was early proposed by [15]. The proposal includes models to
capture both electrical characteristics and consumer behaviour. The model is meant to be used
by utilities to predict the temporal magnitude variations of the aggregate residential loads for
better power generation planning. The author follows a bottom-to-top approach by modelling
the individual loads in a residence, then sums them up to reach the model for the ’residen-
tial load’. By the same token, an ’area load’ is the summation of all ’residential loads’. The
author had to classify individual loads into types, then model each single expected function
corresponding to each type. Each specific function is thoroughly studied. For instance, the
switching function is impacted by the availability (i.e. probability that someone is available),
the proclivity (i.e. the probability that someone will operate the load’s switch) and the normal-

1.3. State-of-the-art 5

cycle which is impacted by the internal automatic switching mechanism of the load. The avail-
ability is further impacted by a consumer’s sleeping hours and so forth. Similarly, proclivity is
impacted by consumer’s convenience and so forth. For every load, a probabilistic model with
many random variables (e.g. breakfast length, travel time to work, ..etc.) is constructed. This
results in a highly sensitive complex model for each individual load. Moreover, if a new load
needs to be added, the whole design process shall start over. This complex process makes it
impractical to cope with the pace of introducing new appliances to the consumers’ market.

Reference [16] proposes and develops Smart Residential Load Simulator using MATLAB’s
Simulink toolbox. The modelled loads included: smart thermostat, air conditioner, furnace,
water heater, dishwasher, clothes washer, dryer, light, pool pump and fridge. In addition, wind
and solar power generation, as well as battery sources, are modelled. The user selects his loads
of interest and enters the current ambient temperature, the number of family members and their
ages. Appliances may be simulated individually or as a group. The simulation result outputs
the consumed and generated power by each appliance and source. Consumption/Generation
profiles may be plotted individually or as a group. Other useful information is provided such
as cost and gas consumption. The underlying models are rule-based where various loads are
represented in terms of electrical components. The framework lacks the flexibility of easily
adding new loads. Further, the consumers’ habits are manually entered by consumers rather
than being learnt from consumers’ historical behaviours.

Reference [17] categorizes individual loads into load types. For each type, three variables
are modelled: pre-set power demand per day per operation, probability of operation and the
number of appliances of each type per country. The model uses historical data without availing
the advancement in machine learning. The complexity of the model is not far from what was
proposed by [15] and, hence, it makes it difficult to add any new loads.

Some researchers focused on simulating special types of loads. For instance, [18] uses
physical measurements for an AC and reproduces these measurements without employing
any probabilistic model. The procedure is load-specific and can not be extended to other
loads. Reference [19] provides an overview of HVAC simulation techniques and highlights
the complexity-uncertainty trade-off.

Instead of tackling individual loads, reference [20] categorizes consumers based on dwelling
type and constructs a load profile for each type. A probabilistic mathematical model is pro-
posed. Each dwelling type is assumed to comprise a set of appliances. Each appliance is
represented by its average power consumption rather than a consumption pattern. This level of
abstraction makes the model ineffective for detailed studies on the demand side such as NILM.

Reference [21] uses MATLAB’s Simulink library to model and simulate several appliances.
The authors combine both finite-state and state-space modelling techniques to simulate the

6 Chapter 1. Introduction

appliances. The models incorporated many parameters that increased error margins.

In data-driven approaches, the operational characteristics of loads are not imposed by the
designer; rather, they are learnt from historical operational data. This reduces complexity while
achieving a high level of accuracy. However, both rule-based and data-driven models perform
better if more features (such as the weather condition) are incorporated in modelling the system.
A comprehensive review of data-driven approaches is given by [14]. Gaussian Mixture and
Markov Models are used in references [22] and [23]. Recurrent neural networks are used by
[24] to learn the power-voltage functions of various loads. [25] uses an unsupervised learning
technique to model loads. Another ML-based solution is proposed by [26].

Following the success of Generative Adversarial Networks (GANs) in generating synthetic
images, researchers tried to carry that success to other disciplines. References [27] and [28]
applied GANs to generate residential load profiles. In both cases, the load profiles simulate the
aggregate load at the household level. Such models may be used by utilities for planning and
load forecast purposes; however, they remain very limited for other demand-side studies such
NILM.

In its basic form, a GAN consists of two neural networks (namely the generator and the
discriminator) playing a min-max game. The vanilla GAN was first proposed by [29] and it
will be thoroughly discussed in section 2.1.2. Later, several types of GANs (e.g. DCGAN,
Wasserstein, ..etc.) emerged as presented by [30]. Evaluation of GAN’s performance is a
topic of research by itself. Since a major application of GANs is to generate synthetic images,
inception score (IS) is occasionally used for evaluating a GAN’s performance. IS measures
the KL-divergence between the response produced by the generated image and the average
response of all generated images [31]. Alternatively, some distance measures between the
real and synthetic data are calculated. Among the divergence scores used are Jensen-Shannon
Divergence, f-divergence, Wasserstein distance and Maximum-Mean Discrepancy [32].

1.3.2 Non-intrusive load monitoring

Non-intrusive load monitoring (NILM) is a technique used to identify both power consump-

tion and operational schedule of individual loads from the measurements of aggregated power
consumption data [33]. NILM does not involve any hardware installations; rather it involves
an algorithm to identify individual loads based on measurements recorded by the smart meter.
Historical data about the consumption patterns of individual loads along with the aggregate
load are typically necessary to train NILM algorithms. Reference [34] lists some of the most
common datasets used in NILM studies. NILM is mainly used to propose demand response
programs to consumers based on their power consumption patterns. For instance, if a consumer

1.3. State-of-the-art 7

operates an appliance during on-peak hours, a utility may send a notification message about
the savings that can be made if that appliance is operated during off-peak hours. Detailed bill
information may be also sent to improve the usage habits of consumers. Other benefits include
occupancy detection and illegal load detection [35].

Reference [36] proposes a classifier that classifies appliances into three distinct units: mo-
tor, resistance and electronic. Appliances are then identified using both steady-state and tran-
sient responses. A high sampling rate of 10 Hz is needed for that purpose. Besides, the algo-
rithm heavily depends on power factor measurement.

Hidden Markov Model (HMM) is widely used to disaggregate the main feed power signal
into individual loads. In general, HMM for NILM involves both steps of structure modelling
and parameter estimation. This will be described in details in section 3.1.1. In [37], power
consumption of selected appliances is sampled at a rate of 0.1Hz. The profile for each load
is pre-processed for edge detection. After that, HMM is used to solve the load identification
problem. While the proposed sampling rate is considered low, it is still not favourable to many
utilities. In general, NILM algorithms that are intended to be applied to smart meters from all
over the world need to be built based on a low sampling rate of active power only [38]. In
practice, a sampling interval of few minutes of active power is well entertained by utilities.

In [39], the number of loads is identified manually. Dataset is preprocessed and HMM
is built for each load. Gaussian distribution is considered to relate the hidden states with the
power emitted by each state. Once transition and emission matrices are calculated for each
load, the model for the aggregated signal may be obtained. Viterbi algorithm is finally used
to determine the likely states for specific emissions. Gaussian distribution is associated with
restrictive assumptions that do not capture all nuances and relationships between hidden states
and observations for all types of loads. When there is a large number of loads, the process
of combining such loads becomes cumbersome. The sparsity of HMM is capitalized in [39]
to increase computational efficiency. Factorial HMM is utilized in [40] to develop separate
Markov chains for each appliance. However, these do not capture inter-dependencies between
loads.

On the other hand, neural networks are frequently used in NILM. For instance, [41] disag-
gregates Air Conditioning load. Training Data of one-minute granularity is taken from houses
in Austin Texas for one month. The next month is used for validation. Both Feed Forward
Multi-Layer Perceptron (MLP) network and Long Short-Term Memory (LSTM) Recurrent
Neural Network (RNN) are explored. MLP outperformed LSTM. The study is limited to one
load which makes it less attractive as an overall solution for NILM.

Reference [42] suggests modelling the individual loads using HMM while modelling the
aggregated signal using Deep Neural Network (DNN). The model is experimented on REDD

8 Chapter 1. Introduction

dataset, which is a public dataset for energy disaggregation research [43]. The framework
calculates the most likely state sequence of each load. Viterbi algorithm is used to estimate the
underlying state sequence. Finally, the most likely observation sequence of the aggregate signal
is estimated by maximizing the conditional distribution given the estimated state sequence. In
addition to being computationally intensive, deep learning requires large volumes of data to be
processed for learning purposes.

Integer Programming Optimization is also used to tackle the NILM problem [44]. Appli-
ances are assumed to attain one or more states when they are ON, i.e. Non-Off states. The
aggregated power is a summation of these non-off states. A binary vector (0 or 1) is used to
indicate the current state of the appliance at time instance k. Basically, these are the unknown
decision variables for each appliance. The aggregated power at the kth time instance, which is
known for us, is equal to the combination of all loads with their corresponding power values
multiplied by their unknown binary vectors. The objective is to find the current binary values
for each load that minimizes the squared difference between the known aggregated value and
the said equation. The constraints added to the optimization problem include fine details of the
load patterns that may not be simply obtained from appliances’ data sheets.

Reference [35] lists other techniques such as Denoising Autoencoders, Convolution 1-
Dimensional Neural Networks and LSTM. Reference [45] extensively researched neural net-
works for NILM. Three architectures of neural networks are investigated: LSTM, Denoising
Autoencoders and Regression Network. For each architecture, a separate network is trained
for each load. This makes it a costly solution. Five appliances are considered in this study.
Hence, five neural networks is constructed for each of the architectures above. The input to
every NN is a window of aggregated power. The output is the power consumed by the appli-
ance pertaining to that NN. In case of the regression network, the output consists of three nodes
standing for average power consumed by the pertaining appliance, start time and end time of
the appliance’s cycle relevant to the aggregated input window. The sampling time considered
is 6 seconds. As discussed earlier, granularity in the range of minutes is usually more attractive
to utilities.

LSTM is also proposed by [46]. The architecture is meant to estimate the ON/OFF state of
each appliance without an estimation of the average power consumed. The number of output
nodes is equal to the number of appliances with each assuming either 1 (ON) or 0(OFF). Typ-
ically, the input is only the aggregated power. An ensemble model that combines both LSTM
and Feed Forward Neural Network is proposed by [47].

Reference [48] extensively explores various methods used in NILM. The parametric ap-
proach assumes probabilistic distribution while the non-parametric approach induces the model
from the data. Researchers propose Multi-Label Classification as an effective solution for the

1.3. State-of-the-art 9

problem. However, when evaluated against Factorial Hidden Markov Chain (FHMM), Multi-
Label kNN approach (MLkNN) was superior only for selected appliances [48]. It is imperative
that the importance of multi-labelling stems from the fact that the aggregated signal is dealt
with as a summation of independent individual signals representing each load. This concept of
superposition is fundamental in building the model.

1.3.3 Power system state estimation

Power system state estimation (PSSE) is a fundamental tool used to monitor the operation of a
power grid [49, 50]. A set of redundant measurements acquired by various measuring instru-
ments is used to estimate the network’s states i.e. voltage phasor of each bus [51]. Power state
estimation will be discussed in details in section 4.1.1. Traditionally, model-based techniques
to estimate states such as Weighted least-squares (WLS) are well established [52, 53, 54]. WLS
estimates states by minimizing the measurement error which involves iterative calculations of
non-linear equations. Occasionally, decoupled formulation and DC approximation may be
used to reduce complexity [55, 56, 57]. WLS is further developed to detect bad data and
identify tampered measurements. Some assumptions are typically made about the probability
distributions and correlations among measurement errors. Since WLS is executed online and
due to its high computational complexity, researchers investigated data-driven models to esti-
mate states. In their inference mode and once trained, data-driven models substantially reduce
computational complexity.

Data-driven techniques utilize machine learning constructs to extract underlying patterns
from grid measurement and state data logs for PSSE. Reference [58] proposes Multilayer Per-
ceptron Neural Network (MLP) to estimate states. Power flows and voltages are used as inputs
without adding any noise. Estimated states are restricted to voltage magnitudes. The proposal
was tested only on IEEE-14 bus system and resulted in 2.18% of mean absolute error.

An MLP is also used by [59] to estimate states. The input includes both voltage angles and
magnitudes as recorded by phasor measurement units (PMUs). When a combination of power
flow measurements and four PMU measurements were considered in 47-bus system, an average
estimation error of 1-4% was achieved. The error of estimating angles was substantially higher
than that of estimating magnitudes.

Reference [60] proposes MLP with initial states included in the input vector in addition to
flow measurements. The authors focused on optimizing the hyper-parameters and exploring
the best back-propagation algorithm. On IEEE-118 bus system, the best-proposed architecture
scored 0.178 RMSE for magnitude estimation and 0.164 RMSE for angle estimation.

A physics-aware data-driven framework is proposed by [61] by unrolling the prox-linear it-

10 Chapter 1. Introduction

erative solution developed by [62] for least-absolute-value estimation. The proposal comprised
a prox-linear Deep Neural Network (DNN) for state estimation. The proposed DNN is a com-
bination of vanilla Feed Forward Neural Network with skip-connections that connect the input
(i.e. measurements) to intermediate layers of the network. Tested on IEEE-118 bus system, the
prox-linear DNN achieved 2.97× 10−4 of RMSE normalized by the number of buses. The pro-
posal is further extended by the same authors in [63] to count for pseudo-measurement. RNN
is directly used to generate pseudo-measurements based on historical data. Then, the output
of the RNN is concatenated with the real measurements to estimate states using the previously
developed prox-linear DNN estimator. While the paper shows a competitive performance of
the proposed DNN for estimating states, it does not discuss the topic of bad data detection.
Further, it is assumed that historical measurement-state pairs are readily available for training
purposes.

Reference [64] approached the state estimation problem by partitioning it into smaller prob-
lems. The partitioning is based on the installation of µPMU at various locations. The location
is optimized by minimizing the size of the resulting block partitions. A neural network is used
to estimate the states within a block. The number of layers of the NN is determined by the
optimization problem of locating the µPMUs. The proposed estimator scored a normalized
MSE of 1.273 × 10−3 when simulated for IEEE-37 network.

To compare various proposals, we consider normalized RMSE. By normalization, we mean
dividing the resulting RMSE by the number of buses in the test system. Table 1.1 summarizes
the results of the reviewed data-driven based proposals.

Reference
Normalized RMSE%

(Magnitudes)
Normalized RMSE%

(Angles)
Identifying individual

bad measurements
Paired Measurement/State

vectors for training

[60] 0.1508 0.139 No Yes
[61] 0.0297 0.0297 No Yes
[64] 0.1273 0.1273 No Yes

Table 1.1: Accuracy comparison of various data-driven state estimators

In general, all reviewed data-driven models for estimating states assume that measurements
are authentic. The models perform a direct mapping between measurements and states and no
inherent mechanism is provided to detect bad measurements. This is no practical since the
resulting estimated states are assumed to be correct, which is not always the case since the
input measurement vector may include some bad measurements that result in incorrect states.
Further, the proposed models assume the availability of paired measurement/state vectors at
various load conditions of the grid. In other words, at a given time instance (aka load scenario
or snapshot), the set of observed measurements and the corresponding (paired) set of states
shall be available for training the model.

1.3. State-of-the-art 11

The detection of bad measurements is separately tackled using machine learning (ML) al-
gorithms such as multidimensional scaling [65], support vector machine [66], k-nearest neigh-
bour [67] and others. Some approaches combine traditional methods for detecting bad data via
Chi-squared test with ML algorithms [68]. The performance of an algorithm depends on the
type of the launched attack. In [69], a comparative study is conducted to evaluate common
ML algorithms against different types of attacks. In all these studies, bad data detection is
approached apart from power state estimation. This involves additional training overhead after
state estimation.

Reference [70] proposes a combination of GAN and adversarial auto-encoder (AAE) to
detect the unobservable FDI. The AAE is trained to encode the labelled and unlabelled mea-
surements into two hidden representations. The two hidden representations are used in the
GAN as conditions added to the GAN generator’s noise input. The paper has several vague
points with some typos. For instance, the authors assumed that hidden representations follow
Gaussian distribution without any justification. In summary, unlike our proposal, the proposed
model is based on the availability of labelled measurements. In practice, attack-labelled mea-
surements are not readily available. Another limitation is the fact that, once an FDI is detected,
the model is not capable to identify and eliminate the individual tampered measurements. The
highest reported classification accuracy for 123-bus distribution system is 96.7%.

Reference [71] focuses on Synchrophasor data attacks when PMUs are deployed. Several
types of attacks are defined. The proposed model detects the type of attack. The input is
the PMU data collected for a window length of half a minute with an adjustable step from
1 to 10 seconds. The model comprises feature extraction block, modified CNN and a multi-
class classifier. Clearly, the model is trained on labelled data. The actual synchrophasor data is
provided by FNET/GridEye which monitors the power grid in North America [72]. The attacks
are not real; they are generated by the authors.

Reference [73] proposes a framework that detects bad data and re-constructs the contam-
inated states. The classification part is achieved using an ensemble of ELMs. ELM is a sin-
gle hidden layer feed-forward neural network that eliminates the need for back prorogation.
However, it is quite sensitive to initialization and hence, the authors proposed an initialization
scheme. In any case, the proposed classifier needs to be trained on labelled data that include
both authentic and compromised samples. On the other hand, the exact compromised (i.e.
tampered) measurements are further identified. This is achieved by replacing the contaminated
states with forecasted values. The measurement matrix is used to work out the corresponding
measurements. Then the normalized residuals are calculated in the same traditional way of
state estimation. Finally, the corrupted measurements are eliminated and the new states are
re-calculated. Using the forecast states involves forecasting errors. The paper considers 726

12 Chapter 1. Introduction

measurements for the 118 bus system. They reported detection accuracy of 81.94%.
In summary, and to the best of our knowledge, no model is yet proposed to integrate both

state estimation and bad data detection.

1.4 Research motivations

In the following three sections, we present some challenges encountered in the industry and
the motivations behind our research.

1.4.1 Residential load simulation

Today, utilities, like London Hydro [74], actively engage customers in maintaining a healthy
power grid. Incentives are provided to encourage more economical and sustainable energy
consumption patterns [75]. To encourage the active participation of consumers in demand
response programs, further research needs to be advanced at the demand side. For instance,
load disaggregation studies require data for training and testing. Several datasets are available
[34] in different countries with some variations in the quantities being measured and their
granularity. Locked datasets need special permission for access. Some public datasets, e.g.
PLAID, comprise measurements for a short duration with high sampling rates. Others, e.g.
ECO, do not record time stamps. Data acquired on an hourly basis is not that useful since
operating cycles of appliances are usually less than one hour. Occasionally, data is acquired on
the branch circuit level and not for individual loads. Reference [76] provides a comparison of
household energy datasets.

For demand-side studies such as load disaggregation, we define the following criteria to
develop useful disaggregation models that can be adopted by utilities :

– Dataset shall include Energy measurements for both individual appliances and the corre-
sponding aggregated smart meter readings.

– Dataset shall indicate the timestamp of each measurement.

– Dataset shall not include erratic readings resulting from power outage or any other rea-
son.

– Dataset shall include various loads and households throughout the year.

– Granularity shall be in minutes. For instance, a common one-hour granularity can not be
used in disaggregation studies.

Obtaining physical measurements, i.e. intrusive monitoring, is a challenging process. It in-
volves getting the consent of various consumers to install measuring instruments on their

1.4. Research motivations 13

premises. As such, only a few public datasets meet the above criteria. In general, the available
public data is quite limited in terms of the number of intrusively monitored houses, the logging
duration, and the sampling rates.

We are motivated by the lack of data volume and versatility to design a data-driven gen-
erative simulator that learns the physical data distribution from datasets that meet the criteria
above (e.g. appendix A) and generates synthetic data from the learnt distribution. As discussed
earlier in 1.3.1, rule-based models lack the flexibility of easily adding new loads and learning
consumers’ habits. On the other hand, among various data-driven solutions, GAN performs
well on reduced datasets as demonstrated by reference [77]. The synthetic patterns and habits
generated by GANs resemble real-life data. The generated synthetic data is a valuable source
for researchers in the fields of demand response and load disaggregation. Reference [78] sum-
marizes the benefits of synthetic data and their applications in various industries.

1.4.2 Non-intrusive load monitoring

As part of Demand Response (DR) programs, utilities encourage consumers to level out their
power consumption and avoid peak hours. This has the direct benefit of producing energy
at higher efficiency. For instance, a customer may use his cell phone to track his hourly ag-
gregate consumption and manage his appliances in a way to avoid peak hours. However, the
consumption of individual appliances is not usually readily available. Providing disaggregate
consumption has several advantages:

– Provides energy consumers with almost instant feedback (e.g. using text messaging)
when operating an appliance during peak hours. Instant low-level feedback even be-
comes more important for prosumers (producers/consumers) who use Distributed Energy
Resources (DERs) such as solar Photovoltaic to produce energy.

– Collects information about the usage of certain appliances. Such information may be
used to identify inefficient appliances, predict failures and propose the replacement of
appliances ahead of time.

– Collects information about customers’ usage habits of various electrical loads. With such
information, optimal schedules to operate electrical loads are proposed to customers to
minimize cost while maximizing convenience.

– With minimal hardware installations (e.g. smart hub and smart plugs for selected ap-
pliances), automated schedules based on disaggregate data can be used to automatically
turn on or off certain appliances.

14 Chapter 1. Introduction

In brief, smart meters allow customers to be more informed about their aggregated energy
consumption. NILM studies go a step further and identify the usage pattern of individual loads
without the need to install any additional hardware. In this research, a well-established model
used in NILM, i.e. HMM, is combined with another machine learning algorithm, i.e. k-means,
to propose a hybrid algorithm that reduces computational cost during training.

1.4.3 Power system state estimation

Electric utilities made substantial investments in the installation of supervisory control and data
acquisition (SCADA) systems. The master station or control center processes the gathered data.
The main elements of SCADA system include Human Machine Interface (HMI), application
servers, communication front-end and external communication servers for data exchange with
other control centres. The application servers support Energy Management System (EMS) and
historical databases besides other functions [79]. Remote terminal units (RTUs) send back
various measurements to the master control center through communication links. Reliable
estimation of states needs to be done by the application servers for system monitoring and
other applications.

In practice, the transmitted measurements may not comprise the active and reactive power
injections. Recall that, for PQ buses, power injections are necessary inputs to conduct power
flow analysis. If any of the inputs is missing, traditional power flow analysis cannot be used to
estimate states. Moreover, the transmitted measurements are prone to various types of errors
such as large measurement and telecommunication errors [80]. Bad data maybe even injected
as stealthy attacks in both transmitted measurements and control signals. As such, researchers
closely studied the problem of power state estimation which is an important topic in power
engineering.

State estimation was first proposed by [55]. After that, traditional state estimators (e.g.
WLS estimator) were extensively researched. Typically, state estimators comprise several
functions such as topology processing (i.e gather the states of circuit breakers and switches),
observability analysis (i.e. determining if a state estimation solution can be obtained from the
available observed measurements), bad data processing and network parameter data processing
[80]. Yet, in its non-linear formulation, WLS has high computational complexity [81] and oc-
casionally encounters ill-conditioning and non-convergence [82]. As per [83], ill-conditioning
can occur in the presence of a large number of injection measurements or due to other factors.
Another challenge is the assumption made by WLS about the error distribution. Reference
[84] indicates that a least-squares estimator is an unbiased estimator if and only if the model is
accurate and the measurement error is statistically distributed. In practice, both conditions may

1.5. Research objectives 15

not be true. Finally, traditional estimators may fail to detect all types of attacks. For instance,
reference [57] shows that an attack designed as a linear combination of the column vector of
the measurement matrix will not be detected by WLS estimator. The measurement matrix will
be discussed in details in 4.1.1. Data-driven models are recently researched to tackle these
problems. We are motivated to investigate and propose a generative data-driven framework
that will estimate power states. The framework will learn the mapping functions and the un-
derlying distribution from the grid’s historical data during normal operation. Our proposal shall
integrate both states estimation and bad data identification. The topics of topology processing,
network parameter estimation and network observability are beyond the scope of this thesis.

1.5 Research objectives

Machine learning (ML) techniques are penetrating various aspects of life and bringing great
benefits to users. The application of ML in the smart grid is rapidly evolving. The vast majority
of ML applications focus on discrimination-based models. In our thesis, we investigate the
applications of generative models on both sides of power demand and power transmission. In
the light of the motivations discussed in 1.4, objectives are defined as follows:

– Propose data-driven generative framework to simulate electrical loads that are usually
present in households such as dishwashers, cloth dryers and others. The framework
shall learn loads’ patterns and usage habits. Usage habits include user’s availability,
proclivity (i.e. tendency to operate the load) and the load’s internal automatic cycle.
Being generative, the data-driven model will learn the underlying distribution of the
habits associated with each load.

– Investigate the application of hidden Markov models in disaggregating the smart meter
signal into individual loads. Given the discrete-time sequence of power samples, the
proposed model shall identify the on/off status of individual loads (e.g. dishwasher,
dryer..etc.) at each time instance.

– Propose a generative data-driven framework to map a set of redundant measurements
into a grid’s power states. Besides, state estimation, the proposed framework shall be
capable of identifying tampered measurements.

The next section presents the thesis outline with the main tasks necessary to accomplish the
objectives.

16 Chapter 1. Introduction

1.6 Thesis outline

Figure 1.2 shows the outline of this thesis. The research focuses on the application of data-
driven generative models in the smart grid. Generative frameworks are developed for specific
applications in two areas, namely, power demand and power transmission. On the demand
side, we focus on two problems: simulation of residential loads and secondly non-intrusive
load monitoring. In the area of power transmission, we focus on power state estimation and
the associated bad data identification.

Chapter 2 begins with a necessary technical background that is also important for chapter
4. The problem is defined and the proposed framework is presented. Experimental studies then
follow with model’s training and ending with model’s evaluation. A brief description of the
public datasets that are used in training and testing the model is given in the appendix.

Chapter 3 begins with a necessary technical background related to the disaggregation prob-
lem. The problem is defined and the proposed algorithm is presented. Experimental studies
then follow with models’ training and evaluation. The same dataset used in chapter 2 is used
in this chapter.

Chapter 4 begins with a necessary technical background including an overview of the
widely adopted traditional state estimation method. The problem is defined and the proposed
framework is presented. Experimental studies start with constructing the necessary dataset that
is used in training and testing the proposed model. This is followed by the model’s training and
evaluation. The model’s performance is tested for both state estimation and bad measurement
identification.

Chapter 5 concludes with a brief summary and thesis contribution. Possible future work is
also discussed.

1.6. Thesis outline 17

Figure 1.2: Thesis outline including the main tasks in the research

Chapter 2

Residential load simulation

This chapter begins with background about Machine Learning (ML) tools and statistical meth-
ods that are used to develop our framework. First neural networks (NNs) are introduced as
the basic building blocks in the subsequent discussion about generative adversarial networks
(GANs). Vanilla GAN and its variations are generative models that we use in both this chapter
and chapter 4. As a quality measure of GANs, Maximum Mean Discrepancy (MMD) is then
discussed. Kernel Density Estimator (KDE), as a statistical non-parametric density estimation
tool, follows. The background section is concluded by a discussion about matched-filers that
are normally encountered in the literature of digital signal processing.

Following the background, the problem entailing load simulation is defined and followed
by the proposed framework. Experimental studies applying the proposed framework are then
presented and discussed. Finally, the chapter concludes with a summary.

2.1 Background

2.1.1 Neural networks

The basic block of a neural network is a neuron or a node. The node computes the weighted
sum of its inputs and applies an activation function f to the output. A neural network consists
of many connected nodes arranged in layers. Since each node is a mathematical function
mapping inputs into an output, the neural network is essentially a nested mathematical function
[85]. Consider the neural network in figure 2.2. The network consists of four inputs, two
hidden layers and two outputs. The layers are fully connected as depicted by the arrows.
This is typically called Multilayer Perceptron (MLP) neural network. The input vector is x =

[x1 x2 x3 x4]T . The output vector is y = [y1 y2]T . Each node is represented by the gray rectangle.
For the ith node in lth layer, its input xl

i is the weighted sum of all the outputs of the previous

18

2.1. Background 19

layer, i.e. al−1. Assume the number of nodes in the lth layer is M and the number of nodes in
the l − 1th layer is N, then we can write:

zl = W lal−1 (2.1)

al = f l(zl) (2.2)

where

zl = [zl
1 zl

2 . . . z
l
M]T

al−1 = [1 al−1
1 al−1

2 . . . al−1
N]T

W l =

wl

10 wl
11 wl

12 . . . wl
1 N

wl
20 wl

21 wl
22 . . . wl

2 N
...
. . .

wl
M0 wl

M1 wl
M2 . . . wl

M N

Note that W l is M × (N + 1) matrix since its first column corresponds to biases added to

nodes. For the first hidden layer, the input to the nodes is x = [1 x1 x2 . . . xNx]
T . Clearly, this can

fit in equation 2.1 by setting a0 = x. Similarly, the output y may be thought of as zL+1 where L

is the number of hidden layers.
Given an input x, the neural network is optimized to predict an output y. For a neural

network with L hidden layers, the optimization process finds all weight matrices i.e. W l ∀l =

1 . . . L + 1. Due to the non-linearity introduced by the activation functions f l ∀l = 1 . . . L in
equation 2.2, no global optimization is guaranteed. Optimization is carried out using a training
dataset. Three main processes are involved during optimization. When the training dataset
is ingested to the input of the neural network, a forward propagation according to equation
2.1 and 2.2 takes place. The output resulting from the forward pass is compared with ground

truth using a cost or loss function C. The cost function is chosen to match the problem under
consideration. For instance, mean-squared error may be used in problems where an input vector
needs to be mapped to an output vector. In this case, the squared errors between the resulting
output components and their ground truth values are averaged. If a problem is related to binary
classification, cross-entropy may be used as a loss function.

Each component wi j in all weight matrices is adjusted in a way to minimize the loss C. The
is typically achieved by gradient descent algorithm which is summarized by equation 2.3.

wi j ← wi j − ε
∂C
∂wi j

(2.3)

20 Chapter 2. Residential load simulation

To calculate the gradients in equation 2.3, the back propagation algorithm uses the chain
rule. For instance, in figure 2.2 and given the loss function C = f (y), we can write:

∂C
∂w2

13

=
∂C
∂z2

1

·
∂z2

1

∂w2
13

=
∂C
∂a2

1

·
∂a2

1

∂z2
1

· a1
3 =

∂C
∂a2

1

· f 2′
(
z2

1

)
· a1

3 (2.4)

Clearly, a1
3 = ∂z2

1/∂w2
13 follows from equation 2.1. Further, f 2′ is the derivative of the ac-

tivation function f 2. Usually, activation functions are differentiable. Some examples include
rectified linear (ReLU), leaky ReLU and Sigmoid as shown in figure 2.1 1. The sigmoid func-
tion is quite useful as it maps its input between 0 and 1 so it can be used in the output node for
a binary classification problem.

Figure 2.1: Examples of activation functions

In summary, weights are first initialized with random values, forward propagation is exe-
cuted, the loss function is calculated, and backpropagation is executed to calculate the gradients
and update them according to gradient descend. This is iterated until the desired accuracy is
achieved.

For neural networks that are used for multi-class classification (e.g. classify an image if it
is for dog, cat or others), the soft-max function given in equation 2.5 is typically used at the
output of the classifier [8].

p̂k =
exp (sk(x))∑K
j=1 exp

(
s j(x)

) (2.5)

where:

• p̂k is the estimated probability of class k given the sample x.

1Image courtesy of reference [86]

2.1. Background 21

• K is the number of classes.

• s(x) is a vector containing the scores of each class for the sample x.

A widely used loss function in multi-classification problem is the categorical cross entropy
given in equation 2.6 [8].

J = −
1
m

m∑
i=1

K∑
k=1

y(i)
k log

(
p̂(i)

k

)
(2.6)

where:

• m is the number of training samples.

• y(i)
k equal to 1 if the ground-truth class for the ith sample is k; otherwise, it is equal to 0.

Figure 2.2: Neural Network

2.1.2 Generative adversarial networks

Statistical models can be classified as discriminative or generative. Discriminative models
are typically encountered in classification problems. For instance, a model that classifies an
image as being for ’dog’ or ’cat’ is a discriminative model. The model’s training set comprises
several observations and their corresponding labels. Observation is typically multi-dimensional
since it includes a number of features. Discriminative models estimate conditional probabilities
while generative models learn distributions. Let an observation be denoted x and its label

22 Chapter 2. Residential load simulation

y. A discriminative model is trained to estimates p(y|x) while a generative model is trained
to estimate p(x) [86]. Occasionally, generative models estimate distributions conditioned on
labels i.e. p(x|y).

Discriminative models have more applications than generative models[86]. For instance,
we are more interested to classify tweets as positive or negative than generating tweets. Further,
evaluating generative models is more challenging. In discriminative models, estimated labels
are tested against ground truth labels. On the other hand, consider a generative model that
produces fake paints for Vincent van Gogh. These synthetic images have no real pairs painted
by Gogh in order to make a one-to-one comparison. Accordingly, when developing generative
models, special care needs to be given to the model’s evaluation.

A Generative Adversarial Network (GAN) has many variations such as Deep Convolutional
GAN (DCGAN), Stack GAN, Info GAN, Wasserstein GAN and others. These variations are
typically used in the context of generating images [87]. In its basic form, a vanilla GAN con-
sists of two multi-layer perceptron networks (MLPs) namely the generator (G) and discrimi-

nator (D) (figure 2.3. The generator’s input is noise (z ∼ p(z)) and its output G(z) is synthetic
or fake data. In other words, the generator’s target is to learn the underlining distribution of
the training data pdata. On the other hand, the discriminator accepts two inputs: the first is
the ’real’ training data (x ∼ pdatat(x)) and the second is ’fake’ synthetic data generated by the
generator. The discriminator outputs a single scalar indicating whether the input samples are
real or fake. The discriminator’s output plays a vital role in optimizing the parameters of both
the discriminator and the generator (dotted lines in figure 2.3).

Figure 2.3: Generative Adversarial Network

2.1. Background 23

Refer to equation 2.7 which is first proposed by [29]. The generator (G) is trained to
minimize log(1−D(G(z))) or essentially maximize D(G(z)). On the contrary, the discriminator
is trained to maximize (log(1 − D(G(z))) or essentially minimize D(G(z)). This means that
the generator and the discriminator are playing a min-max game. GAN is a zero-sum non-
cooperative game. If one player wins, the other loses. Zero-sum game converges when Nash
equilibrium is reached. This is the state reached when the first player will not change action
regardless of the second player and vice versa.

min
G

max
D

V(D,G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (2.7)

The generator tries to generate samples that will not be labelled by the discriminator as fake,
while the discriminator tries to label all samples generated by the generator as fake. Further, the
discriminator is trained to maximize D(x), i.e. labelling true samples as real. In other words,
the generator learns the distribution pg over data G(z) where z ∼ pz.

Consider training G till it learns the distribution pg and fix it. Then train D to attain op-
timality, i.e. reach the best D that can discriminate pdata from pg. Reference [29] shows that
such optimal discriminator is given by equation 2.8 below.

D∗G(x) =
pdata (x)

pdata (x) + pg(x)
(2.8)

Note that in equation 2.8, the less that G learns the data distribution, the closer D is to 1,
i.e. D can easily discriminate real and fake samples. Substituting equation 2.8 in equation 2.7,
we reach equation 2.9 below.

C(G) = max
D

V(G,D) = Ex∼pdata

[
log

pdata (x)
Pdata (x) + pg(x)

]
+ Ex∼pg

[
log

pg(x)
pdata (x) + pg(x)

]
(2.9)

Divergence scores measure the difference between two probability distributions and can be
used to evaluate GAN’s performance. The min-max game illustrated by equation 2.7 attempts
to learn the underlying distribution from which the real samples were drawn. In essence, this
reduces the min-max game to the problem of minimizing a divergence score between the syn-
thetic data and the real data distribution. As per [29], it is shown that his proposed objective
function in equation 2.7 approaches a problem of minimizing the Jensen-Shannon divergence
(JSD).

JSD is based on Kullback-Leibler (KL) divergence which is also called relative entropy.
Let P and Q be the probability mass functions with the same support χ, then the entropy,
cross-entropy and KL divergence are given receptively by [88]:

24 Chapter 2. Residential load simulation

H(P) = −
∑
x∈X

P(x) log P(x) (2.10)

H(P,Q) = −
∑
x∈X

P(x) log Q(x) (2.11)

KL(P‖Q) = H(P,Q) − H(P) (2.12)

JSD is a symmetric version of KL divergence above and given by:

JSD(P‖Q) =
1
2

KL(P‖M) +
1
2

KL(Q‖M) (2.13)

where M = 1
2 (P + Q)

Setting P = pdata and Q = pg in equation 2.13, and as showed by [29], we can write 2.9 as
follows :

C(G) = − log(4) + 2 · JS D
(
pdata ‖pg

)
(2.14)

Hence, the min-max problem defined in 2.7 approaches a problem of minimizing the
Jensen-Shannon divergence (JSD).

In conditional generative adversarial networks, proposed by [89], both generator and dis-
criminator are conditioned on extra information such as class label. For instance, instead of
having a GAN trained to generate any fake paint of Vincent van Gogh, a conditional GAN may
be constructed to generate a fake paint exclusively for natural scenes. The conditional GAN is
illustrated in figure 2.4. The difference is mainly due to the addition of a label (i.e. condition)
to the inputs of both the generator and the discriminator. It is imperative that the training set
shall be labelled. Consider labels yi ∀i : 1, . . . ,N where N is the number of labels associated
with M number of data points (i.e. examples). If the first training example has label yi , then yi

shall be concatenated to the noise vector z and the generated fake example G(z). Embedding
may be used alternatively with concatenation.

The min-max game between the generator G and the discriminator D in a conditional GAN
is described by equation 2.15.

min
G

max
D

V(D,G) = E(x,y)∼pdata(x,y)[log D(x|y)] + Ez∼pz(z)[log(1 − D(G(z|y)|y))] (2.15)

where (x, y) is a pair of real example x and its corresponding class label y drawn from the
distribution pdata(x, y), and z is the input noise vector drawn from the random noise pz(z). The

2.1. Background 25

same min-max game applies for both equations 2.7 and 2.15.

Figure 2.4: Conditional Generative Adversarial Network

Equation 2.7 is the loss function used in vanilla GAN. In general, GAN is notoriously diffi-
cult to train [90]. As such, other variations of vanilla GAN are introduced such as Wasserstein
GAN [91], least-square GAN [92] and others. In this chapter, we focus on the conditional
GAN. While the addition of a label (i.e. condition) affects the architecture of the generator and
the discriminator, it has no impact on the objective function as defined by the vanilla GAN in
equation 2.7. Hence, we alternately refer to the conditional GAN as vanilla GAN.

In addition, several problems are encountered. Non-convergence occurs when the training
parameters (i.e. weights and biases) fail to converge. Model collapse occurs when the generator
keeps generating the same set of samples. Over-fitting occurs when the generator produces
outputs indistinguishable from the training set [93]. Last, but not least, GAN is quite sensitive
to the selection of the hyper-parameters such as the number of nodes in a certain layer.

2.1.3 Maximum-mean discrepancy

Divergence scores measure the difference between two probability distributions and can be
used to evaluate GAN’s performance. As per [29], when the discriminator is optimized, GAN
reduces to a generative model that minimizes the Jensen-Shannon divergence (JSD). JSD is
based on Kullback-Leibler (KL) divergence which is also called relative entropy.

26 Chapter 2. Residential load simulation

Recall that in GAN, the generator is trying to learn a distribution Q that is as close as possi-
ble to the underlying distribution P from which the training examples were drawn. Both P and
Q are defined on the same probability spaceX. Since we only have samples from both distribu-
tions (i.e. distribution of real data and distribution of fake data), we need to use a two-sample
test as a quality metric. Maximum Mean Discrepancy (MMD) has a lower computational cost
when compared with other two-sample tests [32]. MMD is used to test whether two distribu-
tions are different by finding a well-behaved function that is large on the points drawn from the
first distribution and small on the points drawn from the second distribution. The difference
between the mean function values on the two samples is called MMD. When MMD is large,
the samples are likely from different distributions.

Let the features vector for ith real example be {xi}
m
i=1 ∼ p(x) and the features vector for ith

fake example be {yi}
n
i=1 ∼ q(y) . Also, let F be a class of functions f : X → R, then MMD is

defined as:

MMD[F , p, q] := sup
f∈F

(
Ex[f (x)] − Ey[f (y)]

)
(2.16)

The is found to reduce to [32]:

MMD =
(1
m(m − 1)

m∑
i=1

m∑
j,i

k
(
xi, x j

)
+

1
n(n − 1)

n∑
i=1

n∑
j,i

k
(
yi, y j

)
−

2
mn

m∑
i=1

n∑
j=1

k
(
xi, y j

)) 1
2

(2.17)

where k(.) is a kernel and typically chosen to be Gaussian radial kernel defined as:

k(xi, y j) = exp

−
∥∥∥xi − y j

∥∥∥2

2σ2

 (2.18)

where σ is a free parameter.

2.1.4 Kernel density estimator

In parametric estimation, the sample is assumed to be independent and identically distributed
drawn from a distribution family (e.g. Gaussian) with unknown parameters (e.g. mean and
standard deviation). We find the unknown parameter by maximizing the product of the likeli-
hoods of the sample points. This is called maximum likelihood estimation. In non-parametric
estimation, no assumption is made about the distribution family that the sample was drawn
from. Rather, estimation is made exclusively based on the available training data points.

A histogram is typical non-parametric estimator. Consider a histogram with a bin width of
h and a sample X = {xt}

N
t=1 where N is the number of sample points., the histogram estimator is

[94]:

2.1. Background 27

−2 −1 0 1 2
0.0

0.5

1.0

1.5
Gaussian

−2 −1 0 1 2
0.0

0.5

1.0

1.5
Exponential

−2 −1 0 1 2
0.0

0.5

1.0

1.5
Tophat

−2 −1 0 1 2
0.0

0.5

1.0

1.5
Epanechnikov

−2 −1 0 1 2
0.0

0.5

1.0

1.5
Linear

−2 −1 0 1 2
0.0

0.5

1.0

1.5
Cosine

Figure 2.5: Typical kernels used Kernel Density Estimation

p̂(x) =
{xt in the same bin as x}

Nh
(2.19)

If we take x to be always the center of the bin, we can write 2.19 as:

p̂(x) =
{x − h/2 < xt ≤ x + h/2}

Nh
(2.20)

As presented in [94], equation 2.20 can be rewritten as :

p̂(x) =
1

Nh

N∑
t=1

w
(x − xt

h

)
(2.21)

where the weight function is:

w(u) =

 1 if |u| < 1/2
0 otherwise

Apparently, the weight w makes 2.21 discontinuous at x = yi ± h/2; hence it is replaced by
a smooth weight function, i.e. the kernel function. This takes us to the kernel density estimator.
We further extend the univariate case in 2.21 to d-dimensional case. As such, we can write the
Kernel Density Estimator (KDE) as:

p̂(x) =
1

Nhd

N∑
t=1

K
(x − xt

h

)
(2.22)

28 Chapter 2. Residential load simulation

−2 0 2
0.0

0.1

0.2

0.3

0.4

0.5
h=1

−2 0 2
0.0

0.1

0.2

0.3

0.4

0.5
h=0.5

−2 0 2
0.0

0.1

0.2

0.3

0.4

0.5
h=0.25

Figure 2.6: Varying the bandwidth while using Gaussian kernel in KDE

where x , xt ∈ R
d, h is a hyperparameter and K is the Kernal function. The most popular

kernel is Gaussian. It is given as [95]:

K(u) =
1
√

2π
e−u2/2 (2.23)

Other functions such as exponential, rectangular (tophat), Epanechnikov, triangular (lin-
ear), and cosine are also available. Figure 2.5 shows these kernels.

By combining both 2.35 and 2.23, we notice that two important parameters impact KDE.
These are the selected kernel function k and the bandwidth h. Figure 2.6 shows the impact of
the bandwidth on the Gaussian kernel.

The bandwidth h is occasionally called the smoothing parameter. As h increases, the esti-
mated density function becomes smoother; however, this may risk capturing the variation in the
underlying distribution function which we are trying to estimate. This is called oversmoothing.
Conversely, smaller h leads to undersmoothing.

2.1.5 Matched-filter

A matched filter is used to extract a known pattern (a.k.a. template) from signals corrupted
with noise. It has several applications in communication such as radar. For example, a radar
station may transmit a known signal (template) toward an object and decide how far the object
is by detecting the reflected signal. Typically, the reflected signal is corrupted with noise, so
a matched filter is used to extract the original template and correctly estimate the distance
from the object. A matched filter may be also used to classify the body’s activities that are
recorded by body-worn sensors as discussed in the paper [96]. Matched filters are also used in
communication over power lines [97].

Define:

2.1. Background 29

0 10 20 30 40 50 60 70 80
0

2

4

6

8
Input signal: x[n]

0 10 20 30 40 50 60 70 80
0

2

4

6

8
Template: s[n]

0 10 20 30 40 50 60 70 80
0

2

4

6

8
Matched Filter: h[n] = s[T− n]

0 10 20 30 40 50 60 70 80
0

50

100

150

200
Output: y[n] = x[n]⊛h[n]

Output
Theshold

Figure 2.7: Repetitive patterns detected using matched filer

x[n]: Discrete signal embedded in noise while n is an independent variable representing the
time step.

s[n]: Template signal which needs to be extracted from p[n].

T : A scaler representing the time steps occupied by the template and indicated as template’s
window size.

30 Chapter 2. Residential load simulation

h[n]: The impulse response of the matched filter.

y[n]: Filtered output signal.

The matched filter is the optimal linear filter that maximizes the output signal-to-noise ratio.
In other words, in order to find the impulse response h[n] of the matched filter, the signal-to-
noise ratio needs to be formulated and maximized. Upon solving the optimization problem,
the impulse response of the matched filer is found to be [98]:

h[n] = s[T − n] (2.24)

To find the filtered signal y[n], the noisy signal x[n] is convolved with the filter’s impulse
response h[n] as per equation 2.25.

y[n] = x[n] ~ h[n] =

∞∑
k=−∞

x[k]h[n − k] (2.25)

Combining 2.24 and 2.25, we can write:

y[n] =

∞∑
k=−∞

x[k]s[T − (n − k)] (2.26)

y[n] =

∞∑
k=−∞

x[k]s[T − n + k] (2.27)

Figure 2.7 clarifies the filtering process. In the figure, the input signal x[n] has three patterns
embedded in noise. The patterns occur at around 30 and 47 time steps. The first pattern
extending in time from 0 to 10 is used as a template s[n]. The matched filter h[n] is constructed
from the template. Finally, the input signal is convolved with the matched filter to produce
the output y[n]. The output has three peaks that occur at the end of each detected pattern.
These peaks can be easily detected by applying a threshold (the red dotted line) and the three
embedded patterns can be retrieved. In general At time step n = T , the output reaches the
maximum value of

∑
x[k]s[k]. In general, the output y[n] of the matched filter is compared

with a threshold λ to decide whether a pattern exists (i.e. whenever y[n] ≥ λ) or not.

2.1.6 Cross validation

Neural networks and machine learning algorithms usually involve parameters (e.g. weights of
neural network) that are optimized during training. In addition, hyperparameters are usually
encountered and need to be optimized or tuned. For instance, for a neural network, hyper-

2.2. Problem definition 31

parameters include the number of hidden layers, number of nodes in each layer and others.
Tuning hyperparameters may be accomplished using grid search. For instance, a researcher
may assign a different number of hidden layers and check the results using the pre-defined
quality metric. For the purpose of comparing models and deciding the best hyperparameters,
other than the training set shall be used. This is usually called the validation set. The testing set
is reserved for the final testing of the model after all its hyperparameters are selected. Instead
of isolating a specific set of data samples for validation purposes, k-fold cross-validation is
usually adopted.

In k-fold cross-validation, the set of available training examples are divided into k partitions
(i.e. folds) of equal sizes. The first fold is held out for testing while training is carried out using
the remaining k-1 folds. This is repeated k times with each one of the k partitions being held
out for testing. The resulting k scores are averaged. k-fold cross-validation is performed with
different values of the hyperparameter to be tuned. Finally, the hyperparameter resulting in the
best score is chosen. Clearly, an increased number of folds will result in fewer testing samples.
Widely used values of k are 5 and 10.

2.2 Problem definition

It is quite challenging to gather physical measurements for electrical loads in occupied houses.
Assume we need to measure the current consumptions of loads in a house for a whole year. This
means that we need to keep the measuring instruments (e.g. current transformers) connected to
the loads throughout that year. Installing such instruments causes a great deal of inconvenience.
Clearly, it is not a matter of accessing the main electrical panel and installing these measuring
instruments at the branch circuits; rather each specific load (e.g. dishwasher, furnace, toaster,
etc.) needs to be plugged into a standalone local meter. Even if smart plugs are used to
sense the currents and wirelessly transmit the data to a central hub, it is still expensive and
inconvenient. For instance, a smart plug connected to an electric range may be bulky due to
power requirements. To install it, either an electrician needs to be hired to install a recessed
receptacle that can accommodate the smart plug, or the house owner needs to live with his
range misaligned with the rest of the kitchen cabinets. On the other hand, to ensure variety
in data, measuring instruments need to be deployed in several houses of different sizes and in
different areas. In practice, it is unlikely that consumers keep eye on the measuring instruments
to ensure that they are functional throughout the year. Data may end up being inconsistent and
inadequate.

Despite the challenges, there were several decent attempts to gather physical measurements
for residential electrical loads [99]. However, these datasets differ in granularity, the number of

32 Chapter 2. Residential load simulation

houses considered, the number of individual loads and duration. Many of the datasets are for
a single home only. Others provide data for multiple homes but at very low granularity which
will not allow testing non-intrusive load monitoring algorithms. In this chapter, a framework
based on state-of-the-art generative adversarial networks is developed to generate synthetic
data for residential individual loads.

0 20 40 60 80 100
Time (Mins)

0

1000

2000

3000

4000

5000

Po
w
er
 (W
at
ts
)

Cloth Dryer

0 20 40 60 80 100
Time (Mins)

0

250

500

750

1000

1250

1500

1750

2000

Po
w
er
 (W
at
ts
)

Heat Pump

Figure 2.8: Power demand patterns for different residential individual loads

Figure 2.8 shows the power demand of two individual loads in a house when they are
switched on. We can see that patterns differ in several aspects including cycle duration and
power amplitude. However, for a specific load l, its pattern is not consistent whenever it is
switched on. For example, consider the patterns for the same cloth dryer in figure 2.9. The x-
axis shows the time steps in minutes starting from the date stamped at the origin. In the upper
figure, the dryer was turned on twice on the 4th of April 2012. Both patterns seem similar.
However, the patterns on 5th of April (lower figure) seem quite different. As such, modelling
the dryer with a set of circuit elements (e.g. resistors, inductors, etc.) with deterministic values
will result in erratic conclusions. Incorporating randomness in the physics-aware model is

2.2. Problem definition 33

ineffective as each individual load shall be studied separately to model the stochastic process.

2012-04-04 19:20:00 100.0 200.0 300.0 2012-04-05 01:59:00
Time (Mins)

0

2000

4000

Po
w
er
 (W
at
ts
)

Cloth Dryer

2012-04-05 23:40:00 50.0 100.0 150.0 2012-04-06 02:58:00
Time (Mins)

0

2000

4000

Po
w
er
 (W
at
ts
)

Cloth Dryer

Figure 2.9: Power demand patterns for the same individual load at different times

In addition to patterns, each individual load exhibits differences in usage habits throughout
time. Consider the dryer in figure 2.10. The long bars represent the time when the dryer was
switched on. The upper figure shows the usage habits in April while the lower figure shows the
habits in May.

In summary, both patterns and usage habits for individual loads incorporate randomness.
Patterns are decided by the internal characteristics of the equipment and the applied load. For
instance, a cloth dryer may not be loaded with the same weight of clothes every time. Usage
habits, on the other hand, are decided by three functions: user’s availability, user’s tendency to
switch the load and any built-in automatic control [15]. A furnace is a good example where it
is usually controlled by a thermostat, however, occupants can interfere any time to switch it on
or off. Accordingly, we can think about patterns and habits as two separate random variables.
In this chapter, a framework to learn the underlying distributions of these random variables is
proposed. Once learnt, simulation is conducted by sampling from the learnt distributions.

Consider residential individual load l ∈ {1, . . . , L} as any electrical load in a house of L

number of load whereas l can be switched on or off by an occupant, automatic control or
both. In practice, l may be a combination of loads, e.g. a single switch that controls several

34 Chapter 2. Residential load simulation

2012-04-04 19:20:00 200.0 400.0 600.0 2012-05-04 18:20:00
Time (Hours)

0

2000

4000
Po
w
er
 (W

at
ts
)

Cloth Dryer

2012-05-04 19:20:00 100.0 200.0 300.0 400.0 500.0 600.0 700.0 2012-06-04 18:20:00
Time (Hours)

0

2000

4000

Po
w
er
 (W

at
ts
)

Cloth Dryer

Figure 2.10: Power demand habits for the same individual load at different times

light fixtures. Define discrete random power sequence for any load l over a period T as ol =

{ol
1 . . . o

l
t . . . o

l
T }, we need to:

• Extract from ol the set of pattern examples {xl
i}

M
i=1 where M is the number of extracted

examples and xl
i ∈ R

d such that d is the dimension of the extracted pattern.

• Find the underlying pattern distribution for load l, i.e. p(xl|l).

• Extract from ol the set of habit examples {yl
i}

M
i=1 where yl

i ∈ R
3 such that the extracted

dimension of a habit example represent month of year, day of week and hour of day.

• Find the underlying habit distribution for load l, i.e. p(yl|l).

• Generate synthetic pattern and habits from the learnt distributions above, i.e. simulate
load l.

As we will see in the following sections, we use generative models to construct both pattern
and habit distributions.

2.3. Proposed framework 35

2.3 Proposed framework

The proposed framework in this chapter is based on the author’s work published in reference
[4]. As explained in 2.2, our main goal is to construct a framework that can estimate both
p(xl|l) and p(yl|l). The proposal is based on the author’s work published in reference [75].

Figure 2.11: Proposed framework for learning patterns and habits of residential individual
loads.

Figure 2.11 shows the main blocks in our proposal. Estimating distributions for patterns
and habits involves three stages: preprocessing, training and evaluation. The raw data used

36 Chapter 2. Residential load simulation

for training is typically provided as a discrete sequence of real power measurements for each
load l ∈ {1, 2, . . . , L} where L is the number of loads processed by the proposed model. First,
the sequences shall be preprocessed to clean time inconsistency and remove outliers. Time
inconsistency, if any, is corrected using interpolation. Outliers are replaced by the mean of
adjacent sample points. Once cleaned, the matched filter is used to extract all available patterns
and the associated timestamps when patterns start. Templates that the matched filter uses to
extract the patterns are either manually extracted from the input power sequence or provided
by the manufacturer of that electrical load or appliance.

The proposed model in figure (2.11) allows power measurements to be received from differ-
ent datasets and for different loads. Datasets may have different sampling rates. For the model
to process data from different datasets, a unified granularity interval Tg (in seconds) shall be
defined for all datasets used in training. If the sampling interval of a dataset Ts (in seconds)
is less than Tg, the corresponding power measurements ol shall be down-sampled. The load
template shall be down-sampled as well and the adjusted load cycle window (i.e. number of
sample points in the template) W l is calculated.

Loads have different cycle windows W l. For instance, a dishwasher may have a maximum
operational cycle window of 2 hours while a toaster may not exceed 5 minutes. A master
window W for all loads shall be calculated. This is typically taken as the maximum cycle
window among all loads. Algorithm 1 summarizes the calculation of W l and W. Note that
these are unitless scalar quantities as they represent counts of samples. W is important for
designing the conditional generative adversarial network of patterns while W l is used in the
matched filter.

Algorithm 1 Computation of W and W l

Input:
Unified granularity interval in seconds (Tg)
Dataset sampling interval in seconds (Ts)
Cleaned load templates sl for all loads l ∈ 1 . . . L

Output:
Adjusted load cycle window (W l) ∀l = 1 . . . L
Master window (W)

1: for l=1 to L do
2: W l ← ceiling(Ts/Tg × length(sl))
3: end for
4: W ← max{W l} ∀l = {1, 2, . . . , L}

The matched filter in figure 2.11 receives two inputs: the cleaned and re-sampled power
sequence ol for each load and its respective template sl. The matched filter is constructed
as per equation 2.27 and convolved with the input signal ol. Substituting the obtained W l in

2.3. Proposed framework 37

algorithm 1, we can re-write equation 2.27 for each load l as:

yl[n] =

∞∑
k=−∞

ol[k]s[W l − n + k] (2.28)

The indices of the peaks are detected by applying a threshold to yl. The indices represent
timestamps when a pattern in ol is detected. In specific, the SNR is maximized when the end

of each pattern is detected. Hence, W l number of samples that occur before the detected index
is extracted. If W l < W, the extracted pattern is padded with zeros to have a dimension of W.
The extracted power values are saved as the ith example of pattern which is concatenated with
the load’s label, l. This is repeated for all detected patterns to end up with the set of training
examples {xl}Mi=1 ∀l such that xl

i ∈ R
W+1. Figure 2.12 shows a typical example of the dataset to

be used for training patterns using conditional GAN.

Figure 2.12: Typical example used for training patterns

On the other hand, the time stamp when the patterns are detected is passed on to the feature
engineering module shown in figure 2.11. The module extract from the timestamps the three
features mentioned in 2.2, i.e. week-of-year, day-of-week and hour-of-day. The engineered
features are concatenated with the load’s label l. This is repeated for all detected time stamps
to end up with the set of training examples {yl}Mi=1 ∀l such that yl

i ∈ R
4. Figure 2.13 shows a

typical example of the dataset to be used for training the habits.
The above assumes that loads are encoded using integer numbers. This is usually known as

label encoding and it is used throughout our discussion for simplicity. However, using integer
numbers implies that loads are ordinal. i.e. load encoded 1 is less than load encoded 2 and so
forth. However, this is not true, so a better way to encode loads is to use one-hot-encoding. In
such a case, each load is represented by a unit vector. For instance, if we have 3 loads, the first
load will be encoded as [0 0 1], the second as [0 1 0] and so forth. Hence, one-hot-encoding
will increase the dimension of the datasets shown in figure 2.12 and 2.13 by the number of
loads less 1. The one is subtracted since the one-hot-encoding will replace integer encoding.
Accordingly, the dataset used for patterns can be expressed as {xl}Mi=1 ∀l such that xl

i ∈ R
W+L

38 Chapter 2. Residential load simulation

where L is the number of loads. Similarly, the dataset used for habits can be expressed as
{yl}Mi=1 ∀l such that yl

i ∈ R
3+L.

Figure 2.13: Typical example used for training habits

In practice, the datasets {xl}Mi=1 ∀l and {yl}Mi=1 ∀l are usually split into training and testing.
Further, the batch size is defined so training examples can be ingested into generative adver-
sarial networks in batches. For clarity, in subsequent discussions, we will refer to a batch of
patterns as x and to a batch of habits as y. The bold symbol indicates that each example in
the batch is multi-dimensional. Recall that loads’ labels are already concatenated in x and y as
explained in figures 2.12 and 2.13. Further, z refers hereafter to the batch compromising noise
vectors concatenated with labels matching these concatenated in the real examples. In other
words and without loss of generality, although our model involves conditional generative ad-
versarial networks as demonstrated by figure 2.4, we will treat these as generative adversarial
networks as per figure 2.3. The conditional GAN for patterns is abbreviated CGAN-Patterns,
while the conditional GAN for habits is abbreviated CGAN-Habits.

In figure 2.11, CGAN-Patterns receives x. Initially, the loss defined by 2.7 is used. How-
ever, during experimental trials, we encountered instability using the vanilla loss, so we intro-
duced inverted vanilla loss that resulted in substantial improvement in the performance. The
introduced loss is given in 2.29 below.

min
G

max
D

L(D,G) = Ex∼pdata (x)[log(1 − D(x))] + Ez∼pz(z)[log D(G(z))] (2.29)

Following the steps of [29] and as discussed in 2.1.2, we write our inverted vanilla optimal
discriminator (for fixed G) as:

D∗G(x) =
pg(x)

pg(x) + pdata(x)
(2.30)

The proof is straight forward and follows the same steps of [29] with 2.29 used instead of
2.7. We may simplify 2.29 by showing that we are sampling from pg instead of sampling from

2.3. Proposed framework 39

pz. Accordingly, we write our objective as:

min
G

max
D

L(D,G) = Ex∼pdata (x)[log(1 − D(x))] + Ex∼pg[log D(x)] (2.31)

Substituting the optimal discriminator in 2.31, we obtain the virtual training criterion:

C(G) = max
D

L(G,D) = Ex∼pdata

[
log

pdata (x)
Pdata (x) + pg(x)

]
+ Ex∼pg

[
log

pg(x)
pdata (x) + pg(x)

]
(2.32)

which is identical to the equation derived by [29]. Similarly, our training criterion will simi-
larly reduce to:

C(G) = − log(4) + 2 · JS D
(
pdata ‖pg

)
(2.33)

where JSD is the Jensen-Shannon divergence between the real and model distributions. Hence,
our inverted vanilla GAN is related to JSD in exactly the same way the vanilla GAN is related
to JSD.

While the parameters (i.e. weights and biases) of CGAN-Patterns are learnt during the
training process, hyperparameters need to be optimized (i.e. tuned) as well. Below is the list
of the hyperparameters for CGAN-Patterns.

1. Batch size.

2. Number of epochs.

3. Number of iterations within an epoch for the discriminator.

4. Number of iterations within an epoch for the generator.

5. Weight initializers for both generator and discriminator.

6. Number of hidden layers for the discriminator.

7. Number of nodes in each layer for the discriminator.

8. Type of activation functions used in each layer for the discriminator.

9. Applied node drop-out percentage for the discriminator.

10. Input noise type for generator.

11. Input noise dimension for generator.

12. Number of hidden layers for generator.

13. Number of nodes in each layer for generator.

14. Type of activation functions used in each layer for generator.

15. Applied node drop-out percentage for generator.

16. Type of loss for both generator and discriminator.

For learning habits distribution, two methods are used for further comparison. First, CGAN-

40 Chapter 2. Residential load simulation

Habits is constructed using the inverted vanilla loss as shown in equation 2.34 below.

min
G

max
D

L(D,G) = Ey∼pdata (y)[log(1 − D(y))] + Ez∼pz(z)[log D(G(z))] (2.34)

where y ∈ R4 with an individual example as shown in figure 2.13. Recall that z represents noise
vectors concatenated with labels paired with labels that are concatenated with the engineered
features. Clearly, likewise CGAN-Patterns, in CGAN-Habits only one conditional GAN is
used for all loads l ∈ {1, 2, . . . , L} where L is the number of loads. The hyperparameters of
CGAN-Habits are similar to those listed previously for CGAN-Patterns.

Secondly, the engineered features are passed to kernel density estimators as given in 2.35.
Unlike CGAN-Habits, a separate kernel density estimator (KDE) has to be established for each
load. Let {vl}Mi=1 such that vl ∈ R3 be the set of engineered features extracted from ol for for
load l. Then for each load l = {1, 2, . . . , L}, a KDE shall be constructed as given in the equation
below.

p̂(x) =
1

Mh3

M∑
i=1

K
(x − vi

h

)
(2.35)

Once constructed for each load, any number of samples may be drawn from the distribu-
tion to reflect learnt usage habits for load l. Both kernel K and bandwidth h are treated as
hyperparameters and shall be optimized.

Ultimately, and once models are trained, the framework is used to generate patterns and
habits based on the given load. For instance, a user may be interested in simulating a cloth
dryer. The name of the load and the duration of the simulation are ingested into the framework.
The user, in return, receives a specified number of patterns and habits. Figure 2.14, shows
the trained framework in the simulation mode where the blue ovals represent the output of the
proposed framework. The user may choose to randomly combine habits and patterns if needed.
Note that, for habits, the best of the two trained models (i.e. CGAN-Habits and KDEs) is used.

2.4 Experimental studies

2.4.1 Preprocessing

The experiment is conducted using four loads that are selected from the dataset described in
appendix A. The loads include cloth dryer (CDE), dishwasher (DWE), fridge (FGE) and heat
pump (HPE). Figure 2.17 shows the patterns of various loads before any preprocessing. The
signals differ in both shapes and amplitudes.

2.4. Experimental studies 41

Figure 2.14: Trained frameowrk for simulating residential loads

The data is provided in granularity of both one minute (AMPd dataset) and one second
(RAE dataste). Reducing granularity by down-sampling the training patterns directly impacts
the dimension of the input to the conditional GAN (CGAN-Patterns) which, in turn, leads to
less computational complexity. However, further reduction of granularity may lead to los-
ing important features of the patterns. Figure 2.16 shows how some features are lost when
granularity is reduced to 5 minutes for a cloth dryer. Reduced granularity causes the learnt
distribution for synthetic patterns to deviate from the distribution of real patterns. We found
a three-minute granularity to be a good compromise between dimensionality and maximum
mean discrepancy, which is the quality metric used to measure the distance between the learnt
distribution and the underlying real distribution.

The usage habits of various loads differ widely. Figure 2.17shows that the usage frequency
of a cloth dryer is far less than that of a heat pump. Clearly, the fridge has the highest frequency,
which is dictated by the automatic start-ups of the compressor.

As per figure 2.11, the dataset is cleaned by the basic removal of outliers. Data for all
four loads are imported from AMPd dataset. Further data for CDE and HPE is imported from
RAE dataset. The unified granularity Tg indicated in algorithm 1) is defined as 180 seconds

42 Chapter 2. Residential load simulation

0 20 40 60 80 100
Time (Mins)

0

1000

2000

3000

4000

5000
Po
w
er
 (W

at
ts
)

Cloth Dryer (CDE)

0 20 40 60 80 100
Time (Mins)

0

200

400

600

800

Po
w
er
 (W

at
ts
)

Dishwasher (DWE)

0 20 40 60 80 100
Time (Mins)

0

25

50

75

100

125

150

175

Po
w
er
 (W

at
ts
)

Fridge (FGE)

0 20 40 60 80 100
Time (Mins)

0

500

1000

1500

2000

Po
w
er
 (W

at
ts
)

Heat Pump (HPE)

Figure 2.15: Raw patterns for different loads

Figure 2.16: Impact of reducing granularity (Tg) on the training samples for cloth dryer

(3 minutes). The resulting lengths of templates (i.e. length(sl) for CDE, DWE, FGE, HPE
are 23,42,29 and 16 respectively. This corresponds to lengths of 69, 126, 87 and 48 minutes
receptively. Clearly, the window size W is the largest, i.e. 42. The matched filter is then applied
to each load to extract all the patterns and their corresponding time stamps. The timestamps are
further processes and three features are extracted, i.e. week-of-year, day-of-week and hour-of-
day. The datasets for both CGAN-Patterns and CGAN-Habits are finally arranged in the forms
of figures 2.12 and 2.13.

2.4. Experimental studies 43

0 100 200 300 400 500 600 700
Time (Hours)

0

1000

2000

3000

4000

5000

Po
w
er

 (W
at
ts
)

Cloth Dryer (CDE)

0 100 200 300 400 500 600 700
Time (Hours)

0

200

400

600

800

Po
w
er

 (W
at
ts
)

Dishwasher (DWE)

0 100 200 300 400 500 600 700
Time (Hours)

0

25

50

75

100

125

150

175

Po
w
er

 (W
at
ts
)

Fridge (FGE)

0 100 200 300 400 500 600 700
Time (Hours)

0

500

1000

1500

2000

Po
w
er

 (W
at
ts
)

Heat Pump (HPE)

Figure 2.17: Raw usage habits of different loads for around 11 days.

2.4.2 Generating patterns

The processed dataset for patterns is split 80/20 for training and testing datasets. The training
dataset is used to train CGAN-Patterns. The architecture of CGAN-Patterns is given in table
2.1. Since we have four loads for our experiment, their labels are encoded as unity vectors of
dimension 4. For the generator, the encoded label is concatenated as a condition to a normally
distributed noise vector of dimension 100, ending with a generator’s input nodes of 104. Leaky
ReLU activation functions are used in the hidden layers while the output layer is Tanh. The
output of the generator has a dimension of 42 standing for a synthetic pattern corresponding to
the encoded input condition. On the other hand, the encoded label of dimension 4 is concate-
nated to either the real or synthetic patterns, ending up with 46 input nodes. The discriminator
has a binary output representing the probability of an input being real or fake. A sigmoid acti-
vation function is used at the discriminator’s output which will limit the output between 0 and
1.

Three types of losses are tested: the vanilla loss (equation 2.7), the inverted vanilla (equa-
tion 2.29) and the Wasserstein loss proposed by reference [91]. When using the vanilla loss,
the model did not converge. Figure 2.22 shows the evolution of the loss functions for both gen-
erator and discriminator during training. Clearly, the losses reach equilibrium in the min-max
game.

44 Chapter 2. Residential load simulation

Master Window W 42

Conditions (loads) 4 (One-hot Encoded)

Generator 5 Layers

Nodes/layer: L1: 104, L2: 100, L3: 150, L4: 100, L5: 42

Activation/layer Leaky ReLU, Leaky ReLU, Leaky ReLU, Tanh

Discriminator 5 Layers

Nodes/layer L1: 46, L2: 100, L3: 150, L4: 100, L5: 1

Activation/layer Leaky ReLU, Leaky ReLU, Leaky ReLU, Sigm

Table 2.1: Architecture of CGAN-Patterns [4]
.

Figure 2.18: Evolution of the inverted loss during training.

Figure 2.22 shows random samples of the synthetic patterns generated by the CGAN-
Patterns with the inverted loss function. The patterns look similar to the real patterns provided
in the testing dataset. No over-fitting is experienced as the synthetic patterns are similar but
not identical to the training dataset. This indicates that the CGAN-Patterns has successfully
learned the distribution of the real data and managed to generate patterns that are drawn from
the learnt distribution.

When Wasserstein loss was used, CGAN-Patterns did not learn the underlying distribution
properly. Figure 2.20 clearly shows the difference between the inverted vanilla GAN and the
Wasserstein GAN vs. samples drawn from the real distribution. Both vanilla and Wasserstein
were excluded from further testing and the inverted vanilla was used for optimizing CGAN-
Patterns.

2.4. Experimental studies 45

Figure 2.19: Synthetic patterns from proposed GAN.

46 Chapter 2. Residential load simulation

(a) Real Patterns

(b) Synthetic Patterns using inverted vanilla loss

(c) Synthetic Patterns using Wasserstein loss

Figure 2.20: Comparison of real versus synthetic patterns.

2.4. Experimental studies 47

While training CGAN-Patterns, we faced a common phenomenon called mode collapse.
This is when the generator replicates the same output every time as depicted in figure 2.21.
The problem was eliminated by optimizing the number of iterations that the generator needs to
be trained before the discriminator gets updated and vice versa.

(a) Random real patterns. (b) Collapsed synthetic patterns.

Figure 2.21: Mode collapse in CGAN-Patterns for Cloth Dryer [4].

For qualitative evaluation of the results, the maximum mean discrepancy (MMD) is plotted
throughout the training process. Clearly, MMD for each load decreases reflecting successful
learning of the underlying distribution from which the real samples were drawn.

Figure 2.22: Training and synthesis of the GAN system.

For further objective evaluation, a classifier neural network is constructed to resemble a
person’s eye in judging whether a generated pattern is good or bad. We call this classifier
Evaluator and its architecture is given in table 2.2. In this case, the encoded labels are used as

48 Chapter 2. Residential load simulation

output and not input. The evaluator has an input of 42 nodes corresponding to the input pattern
for any load. The evaluator is trained to identify the load associated with the input pattern.
The evaluator is trained using categorical cross-entropy function given in 2.6. The evaluator is
trained using 80% of the real patterns dataset. Once trained the synthetic patterns are passed
to the evaluator to check if the evaluator fails to recognize the label of any of the ingested
synthetic patterns.

Cost Function Categorical Cross Entropy

Features 42

Classes 4 (One-Hot Encoded)

Layers 6

Nodes/layer L1: 42, L2: 8, L3: 10, L4: 10, L5: 10, L6: 4

Activation/layer ReLU, ReLU, ReLU, ReLU, Softmax

Table 2.2: Evaluator net architecture [4].

Figure 2.23 shows that the evaluator identified the correct labels for almost all the ingested
synthetic examples generated by CGAN-Patterns.

Figure 2.23: Normalized confusion matrix for synthetic data.

2.4.3 Generating habits

The prepared dataset of engineered features is used to develop models using two generative
techniques, namely Kernel Density Estimator (KDE) and CGAN-Habits.

2.4. Experimental studies 49

KDE is established for each load using equation 2.35. In training phase, the kernel K and
the bandwidth h are selected using 10-fold cross validation. Table 2.3 shows the optimized
parameters for all four loads.

Load Cloth Dryer Dishwasher Fridge Heat Pump
K Gaussian Gaussian Exponential Gaussian
h 0.177827941 0.177827941 0.177827941 0.177827941

Table 2.3: KDE optimized parameters using 10-fold cross-validation [4].

The same engineered dataset is split 80/20 to train the CGAN-Habits. Table 2.4 shows the
architecture of the network. The input of the discriminator is the three engineered features
concatenated with the one-hot-encoded label as a condition. This results in 7 input nodes with
one output node representing the probability of the input data being real or fake. The input of
the generator is a noise vector of dimension 50 concatenated with the condition resulting in 54
input nodes. The output of the generator is the synthetic habits, i.e. synthetic week-of-year,
day-of-week and hour-of-day.

Features 3

Conditions (loads) 4

Discriminator 5 Layers

Nodes/Layer 7, 100, 200, 2, 1

Activation/Layer Leaky ReLU, Leaky ReLU, Leaky ReLU, Sigm

Generator 5 Layers

Nodes/Layer 54, 120, 240, 120, 3

Activation/Layer Leaky ReLU, Leaky ReLU, Leaky ReLU, Tanh

Table 2.4: Architecture of CGAN-Habits [4].

While training, snapshots of the distribution of the three features are taken. In figure 2.24,
the real training samples for all loads are plotted in blue (circles) while the synthetic sam-
ples are in orange (triangles). The real samples maintain the same distribution throughout the
training process. Initially, the generator in CGAN-Habits constructs synthetic samples from
the input random noise. Since the network’s parameters are not yet optimized, the distribution
generated samples (iteration 0) is completely different from that of the real samples. After 1000
iterations, the difference between the two distributions becomes smaller. The learnt distribution
keeps oscillating about the target distribution until it reaches equilibrium in the min-max game
between the generator and discriminator. This is further illustrated in figure 2.25 which shows
the fluctuating losses of both adversaries.

50 Chapter 2. Residential load simulation

Figure 2.24: Synthetic (triangles) vs. real distribution (circles) while training CGAN-Habits.

Figure 2.25: Loss while training CGAN-Habits

2.4. Experimental studies 51

Figure 2.24 does not allow us to clearly see the final distribution of synthetic data com-
pared to that of the real data. To simplify representation, we need to plot the final distribution
of each feature for each load. However, this representation of features assumes that features
are correlated. For that purpose, we investigate the correlation among the three features for
each load. The correlations are shown in figure 2.26. Since correlations among the engineered
features are relatively small, we can plot the distributions per load per feature. Distributions
of the synthetic features generated by both CGAN-Patterns and KDE are plotted against the
distribution of real samples. This is shown in figures 2.27, 2.28, 2.29 and 2.30. In general,
the plots indicate that both KDE and CGAN=Habits successfully learnt the underlying dis-
tributions of the real engineered features. In some loads, the day-of-week exhibit the largest
discrepancy. This discrepancy shall not be fully attributed to the error in learning the target
distribution since features are correlated as mentioned earlier.

(a) Cloth Dryer (CDE) (b) Dishwasher (DWE)

(c) Fridge (FGE) (d) Heat pump (HPE)

Figure 2.26: Correlation among engineered features for all loads.

Figure 2.31 shows that MMD for each load is decreasing along the training steps. This
quality metric shows that CGAN-Habits successfully approached the target distribution of the

52 Chapter 2. Residential load simulation

0 10 20 30 40 50
Week of Year

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

0 1 2 3 4 5 6
Day of Week

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

0 5 10 15 20 25
Hour of Day

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

(a) Real

0 10 20 30 40 50
Week of Year

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

0 1 2 3 4 5 6
Day of Week

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

0 5 10 15 20 25
Hour of Day

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

(b) KDE

0 10 20 30 40 50
Week of Year

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

0 1 2 3 4 5 6
Day of Week

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

0 5 10 15 20 25
Hour of Day

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

(c) GAN

Figure 2.27: Histograms for usage habits of Cloth Dryer (CDE).

0 10 20 30 40 50
Week of Year

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

0 1 2 3 4 5 6
Day of Week

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

0 5 10 15 20 25
Hour of Day

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

(a) Real

0 10 20 30 40 50
Week of Year

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

0 1 2 3 4 5 6
Day of Week

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

0 5 10 15 20 25
Hour of Day

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

(b) KDE

0 10 20 30 40 50
Week of Year

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

0 1 2 3 4 5 6
Day of Week

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

0 5 10 15 20 25
Hour of Day

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

(c) GAN

Figure 2.28: Histograms for usage habits of Dishwasher (DWE).

2.4. Experimental studies 53

0 10 20 30 40 50
Week of Year

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

0 1 2 3 4 5 6
Day of Week

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

0 5 10 15 20 25
Hour of Day

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

(a) Real

0 10 20 30 40 50
Week of Year

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

0 1 2 3 4 5 6
Day of Week

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

0 5 10 15 20 25
Hour of Day

0.00

0.05

0.10

0.15

0.20

0.25
D
en

si
ty

(b) KDE

0 10 20 30 40 50
Week of Year

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

0 1 2 3 4 5 6
Day of Week

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

0 5 10 15 20 25
Hour of Day

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

(c) GAN

Figure 2.29: Histograms for usage habits of Fridge (FGE).

0 10 20 30 40 50
Week of Year

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

0 1 2 3 4 5 6
Day of Week

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

0 5 10 15 20 25
Hour of Day

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

(a) Real

0 10 20 30 40 50
Week of Year

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

0 1 2 3 4 5 6
Day of Week

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

0 5 10 15 20 25
Hour of Day

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

(b) KDE

0 10 20 30 40 50
Week of Year

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

0 1 2 3 4 5 6
Day of Week

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

0 5 10 15 20 25
Hour of Day

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

(c) GAN

Figure 2.30: Histograms for usage habits of Heat pump (HPE).

54 Chapter 2. Residential load simulation

real samples.

Figure 2.31: MMD for training CGAN-Habits

Finally, per load MMDs are calculated for both KDE and CGAN-Patterns. Table 2.5 sum-
marizes the results. KDE surpasses CGAN-Habits in all four loads. However, KDE inherits
the limitation of a non-parametric estimator. Hence, for each load, the training dataset shall
be always saved to estimate the target distribution in real-time as per equation 2.35. On the
other hand, for CGAN-Habits only the model’s optimized need to be saved and a simple feed-
forward operation takes place whenever a synthetic sample needs to be generated.

Cloth Dryer Dishwasher Fridge Heat Pump
GAN 0.08 0.13 0.20 0.10

KDE 0.03 0.04 0.06 0.03

Table 2.5: MMD comparison of usage habit synthesis.

2.5 Summary

In this chapter, we used the latest advancements in generative modelling to develop a novel
framework for simulating residential electrical loads. The developed framework is a valuable
tool for demand-side studies. Traditionally, simulating the power consumption of electrical
loads depends on physics-driven models. In our case, data-driven models are used. In specific,

2.5. Summary 55

generative models learn from historical measurements their underlying distributions. Once a
distribution is learnt, synthetic data is generated by simply sampling from that distribution.

In the off-line training mode, the framework incorporates three stages: pre-processing the
raw power measurements, training the generative models and finally evaluating the results.
Once trained, the framework is used to simulate both power consumption patterns and usage
habits of the modelled electrical loads.

The framework included conditional Generative Adversarial Network (GAN) as a major
building block in addition to Kernel Density Estimator (KDE). Other novel contributions in-
cluded the automatic extraction of training samples using matched filter and the elimination of
GAN divergence problem by inverting the vanilla loss function.

The experimental study was conducted for four electrical loads. The framework success-
fully learnt the target distributions for both habits and patterns.

Chapter 3

Non-intrusive load monitoring

This chapter first discusses the basic theoretical background of the ML methods used in devel-
oping our proposed framework. These methods include hidden Markov model (HMM) and k-
Means clustering. HMM is a generative modelling technique mainly used to model a sequence
of random variables including time series. In specific, our discussion is limited to Markov
models with discrete time steps and first-order Markov property as will be explained later. k-
Means clustering is an unsupervised learning technique where no labelled data is present. We
only provide general discussion about both HMM and k-Means without discussing the details
of their underlying algorithms.

Next, the problem is defined while highlighting the computational complexity involved and
assumptions that are usually made about emission distributions. Such assumptions are unlikely
to hold for various types of loads and states. In the next section, we tackle these shortfalls by
proposing a framework that takes advantage of ML techniques to bypass these assumptions.
Finally, the numerical results are presented and the chapter concludes with a summary.

3.1 Background

3.1.1 Hidden Markov model

Hidden Markov Models (HMMs) is a widely used technique in sequence modelling. It has
many applications. For instance, a sequence may be a set of words comprising a sentence or a
times series data such as the active power consumption recorded by a smart meter.

A sequence is generated by a random process. Unlike random variables, where we may
model the variable by a probability distribution, a sequence carries dependency among its suc-
cessive instances. Each instance is considered as a random variable, i.e state, that is dependent
on all previous states. Markov property tightens that dependency by assuming that the distri-

56

3.1. Background 57

bution of the current state depends only on the distribution of the previous state. Let S t be the
state at time t, then Markov property may expressed as P(S t|S t−1, S t−2, ..., S 0) = P(S t|S t−1).
The is called a first-order Markov chain. If the current state distribution depends on the previ-
ous two states’ distributions, it is called a second-order Markov chain and so forth. To model
the whole sequence of states in a first-order Markov chain, we can simply use the chain rule to
find their joint distribution.

Figure 3.1: Hidden Markov Model

In Hidden Markov Models, states are not observable. Rather, we observe a sequence of
emissions or observations caused by these hidden states. For example, for Part-of-Speech
tagging, we can think about the sequence of words as the emissions and the underlying part-
of-speech (i.e. noun, verb, etc.) as the hidden states.

Consider figure 3.1, the system assumes two states. At any time instance, we can only
observe one of three discrete emissions. The probability of transitioning from State 1 to State 2
is T12. The probability of observing Emission 2 while in State 2 is E22 and so forth. Extending
the number of states to N and the number of discrete emissions to M, we define [94]:

• S = {S 1, S 2, . . . , S N} is the set of hidden states that may be assumed by the system

• V = {v1, v2, . . . , vM} is the set of emissions that can be observed

• q = {q1q2 · · · qT } is the sequence of states assumed by the system at time instances
1, 2, ...,T

• o = {o1o2 · · · oT } is the sequence of observations at time instances 1, 2, ...,T

Accordingly, HMM involves two levels of randomness: probabilities associated with state-to-
state transition and probabilities associated with state-to-observation emission. If we know the

58 Chapter 3. Non-intrusive load monitoring

initial probabilities of the states, we can fully describe the model by :

λ = (A, B, π) (3.1)

where:

• B =
[
b j(m)

]
is N × M emission probability matrix where b j(m) ≡ P

(
ot = vm|qt = S j

)
is

probability of observing vm at time t given that the system is in state S j

• A =
[
ai j

]
is N × N transition probability matrix where ai j ≡ P

(
qt+1 = S j|qt = S i

)
is

probability of assuming state S j at time t + 1 given that the system is currently in state S i

• π = [πi] is initial state probability vector of N dimension where πi ≡ P (q1 = S i)

Based on the above, we can define the three common problems typically encountered in
HMM [94]:

• Problem #1: Given an emission sequence o and the model’s parameters λ, find the proba-
bility of that given sequence i.e. P(o|λ). This is typically solved using forward-backward
algorithm which has a complexity of O

(
N2T

)
• Problem #2: Given an emission sequence o and the model’s parameters λ. find the

most likely underlying sequence of hidden states, i.e. find q∗ that maximizes P(q/O, λ).
Viterbi algorithm is typically used to solve this problem which also has a complexity of
O

(
N2T

)
.

• Problem #3: Find the model’s parameters λ by fitting it to K training examples of emis-
sion sequences X = {o1, o2, . . . , oK}, i.e. find λ∗ that maximizes P(X|λ). A variation of
expectation-maximization algorithm, namely Baum-Welch algorithm, is used to solve
this problem.

3.1.2 k-means clustering

k-Means is a clustering algorithm used in unsupervised learning when no labelled data is avail-
able. For example, while analyzing customer’s spending behaviours, we may be interested to
classify a customer as either a low spender or a high spender. In this case, we do not need his-
torical labelled data classifying a customer as a low or high spender. Rather, we need to detect
similarities in shopping habits among all the customers in the sample. k-Means clustering can
be used to detect such similarities.

Assume a sample X with N sample points X = {xt}
N
t=1. Let us pick k reference vectors

or centroids, m j, j = 1, . . . , k. Note that m j has the same dimension of xt. We can measure

3.1. Background 59

the distance (e.g Euclidean distance) between each of the picked reference vectors and every
sample point. Each sample point will be allocated to the cluster that minimizes ‖xt −m j‖. We
need to find the optimized values of m j across all the sampling points. The best centroids will
be the ones that minimize the reconstruction error defined as [94]:

E
({

mi
}k

i=1
| X

)
=

∑
t

∑
i

bi
t

∥∥∥xt −mi
∥∥∥2

(3.2)

where i : 1, . . . , k is the index for reference vectors and t : 1, . . . ,N is the index for sample
points and bi

t are the estimated labels given as:

bi
t =

 1 if
∥∥∥xt −mi

∥∥∥ = min j

∥∥∥xt −m j
∥∥∥

0 otherwise
(3.3)

The first line in 3.3 means that a sample point is allocated to the centroid mi which is nearest
to that sample point among all available k centroids m j ∀ j : 1..k. The optimization problem
given in 3.2 is solved iteratively. First, we set the values of mi randomly and calculate bi

t for all
sample points. Finally, the algorithm converges to an optimized k number of centroids mi to
which each set of sample points are allocated. The returned centroid is the center point of the
cluster.

In summary, if the input of the k-Means algorithm is sequence vector o = {o1o2ot . . .}, we
can obtain the corresponding sequence vector of estimated labels y = {y1y2yt . . .} such that
∀t, yt ∈ {1, 2, . . . , k}.

3.1.3 Quality metrics

Accuracy is a widely used metric to evaluate the performance of a classifier. For instance, a
classifier may be used to predict if a certain load is ’on’ or ’off’. This is a binary classier.
Usually, in supervised machine learning algorithms, a labelled dataset is provided. The dataset
is divided into training and testing. The data samples used for training are not used for testing.
After constructing the classifier, the true labels provided in the testing dataset are compared
with labels predicted by the classifier. Since classification is binary, we may define one label
as positive (e.g. 1 or ’on’ state of an electrical load) and the other label as negative (e.g. 0 or
’off’ state). If a sample is correctly labelled as positive, we count this as true positive (TP).
If a sample is incorrectly labelled as positive, we count this as (FP). Similarly, if a sample is
correctly labelled as negative, we count this as true negative (TN). If a sample is incorrectly
labelled as negative, we count this as false negative (FN). Accordingly, the model accuracy can

60 Chapter 3. Non-intrusive load monitoring

be calculated using equation 3.4 [100].

Accuracy =
T P + T N

T P + FP + T N + FN
(3.4)

When the dataset includes unbalanced samples from both labels, accuracy becomes insuf-
ficient to judge the soundness of the model. The two metrics given in equations 3.5 and 3.6
expose that problem.

Precision =
T P

T P + FP
(3.5)

Recall =
T P

T P + FN
(3.6)

Usually, any improvement in the model’s precision will be at the expense of recall and vice
versa. As such, a single metric (F1) score is used to describe the classifier’s performance. The
F1 score is given in 3.7.

F1 = 2 ×
Precision × Recall
Precision + Recall

(3.7)

3.2 Problem definition

In general, an electricity meter records the aggregate energy consumption of a household in
kW.h. Smart meters make such readings available at fixed time intervals with relatively high
granularity. For instance, smart meters installed by London Hydro may provide aggregate
energy consumption of a household every 4 minutes. Given that power is the rate of change of
energy, we can convert energy readings into power at fixed sampling intervals. Let ∆E be the
kW.h change in energy in the sampling interval Ts in seconds. The estimated power in Watts
at Ts is ∆E × 1000 × 3600 × 1

Ts
. Accordingly, given the energy readings at fixed time intervals

Ts, we can obtain a sequence of power values for the aggregate load of a household. Consider:

oA =
{
oA

1 oA
2 · · · o

A
T

}
: the observed aggregate power measurements at time instances 1, 2, . . . ,T .

Alternatively, this may be the estimated power from the recorded energy samples as
discussed above.

ql =
{
ql

1ql
2 · · · q

l
T

}
: the sequence of states assumed by the electrical load l at time instances

1, 2, ...,T .

L: number of connected electrical loads to the smart meter.

At any point in time, a load is operating in one of its states. For instance, if load l is charac-
terized by K states, then ql

t ∈ {S 1, S 2, . . . , S K}. In general, different loads may have a different

3.2. Problem definition 61

Figure 3.2: Factorial hidden Markov model where the aggregate power oA
t at any point in time

t is dependent on the internal states of all the connected loads at that time instance.

number of states. This is slightly different than what was explained in 3.1.1 where the obser-
vation herein is dependent on a collection of states of independent systems (i.e. loads) instead
of being dependent on the states of only one system or chain. This is called Factorial Hid-
den Markov Model (FHMM) and is illustrated in figure 3.2. In FHMM, we may think about

Figure 3.3: Hidden Markov chain for load l with univariate emission distribution such for
observed power.

the combination of loads as one single virtual load. The virtual load will have a number of
states which is equal to the sum of all states associated with the individual loads. For instance,

62 Chapter 3. Non-intrusive load monitoring

consider an aggregate power observation comprising only two loads. If load #1 has 3 states
and load #2 has 5 states, then the virtual load may be considered as having a total of 8 states.
However, the transition probabilities associated with transitions between the states of the indi-
vidual loads are all set to zero. In the other words, transitions are only allowed between states
belonging to the same individual load.

We can generalize further if we assume oA to be multivariate. For instance, the smart
meter may be sampled for both the active power and power factor. In this case, oA

t will have a
dimension of two, each impacted by the same combination of states at time t.

The objective is to find the underlying states for all connected loads. First, the model pa-
rameters need to be found (problem #3 in 3.1.1). However, a certain emission distribution
needs to be assumed. Consider the hidden Markov chain for load l in figure 3.3. Given the
training dataset, transition probabilities among all states from 1 to N shall be estimated. Fur-
ther, emission distribution parameters conditioned on each state shall be estimated. For that
purpose, the emission is assumed to follow a certain distribution (e.g. Gaussian in figure 3.3).
Then the corresponding parameters conditioned on each state shall be estimated. Note that if
an observation is multivariate (e.g. both active and reactive power), a covariance matrix con-
ditioned on each state rather than variance needs to be estimated. In the FHMM set-up (figure
3.2), the parameters shall be estimated for all loads. The assumption that all emission distri-
butions follow the same type introduces errors in the model. Further, considering all loads
and their underlying states, the estimation process becomes computationally expensive. In our
proposal, we try to simplify the modelling procedure by eliminating the assumption about the
type of emission distribution. Another question we answer is that how many states shall we
consider for each load. Indeed, this will impact the complexity of the Markov chain and reflect
on the computational complexity.

Once the parameters are estimated, Viterbi algorithm (problem #2 in 3.1.1) is used to de-
code the hidden states.

3.3 Proposed framework

The proposed framework in this chapter is related to the author’s work published in reference
[75]. As discussed in 3.2, exiting HMM-based solutions for the NILM problem have high
computational complexity. Besides, they make assumptions about emission distributions con-
ditioned on various states.

Typically, in FHMM, given the emission sequence, we can find the underlying model (equa-
tion 3.1) using Baum-Welch algorithm. However, we eliminate that by proposing a hybrid
model that combines both HMM and k-Means clustering to estimate the model parameters.

3.3. Proposed framework 63

In our proposed framework, we focus on simplicity. As such, we make the assumption that
for any individual load l, only two states are considered: low power (S 0) and high power (S 1).
This is a reasonable assumption since our interest in NILM is just to know if a load is OFF
or ON at any instant. Let ql =

{
ql

1qt
2 · · · q

l
T

}
be the sequence of hidden states for load l for a

duration of T . For any sequence instant ql
t, we can state our assumption as: ql

t ∈ {S
0, S 1}. We

further assume that our observed aggregate quantity is univariate (e.g only active power). If
ol =

{
oA

1 oA
2 · · · o

A
T

}
is the sequence of observed aggregate signal for a duration of T , then for

any sequence instant oA
t , we can state our assumption as: oA

t ∈ R. These two assumptions will
substantially reduce computational complexity since it is dependent on the number of states
as explained earlier in 3.1.1. On the other hand, we do not make any assumptions about the
emission distributions that are conditioned on various load states.

Figure 3.4 shows the main blocks of the proposal. First, physical measurements of indi-
vidual electrical loads are used for training. Consider L number of loads with physical mea-
surement samples for a duration of T such that pl = {pl

1, pl
2, . . . , pl

T } ∀ l : 1, . . . , L. The phys-
ical measurements are cleaned and preprocessed by removing noise and outliers to obtain the
corresponding observation sequences ol = {ol

1, o
l
2, . . . , o

l
T } ∀ l : 1, . . . , L. The proposed Hy-

brid Training Algorithm (HTA) uses the input observations to estimate the parameters of the
FHMM model. The parameters include the transition matrix of the aggregate signal (AA) and
the emission matrix of the aggregates signal (BA). Further, the resulting centroids for the ag-
gregate model are passed for clustering the aggregate observations oA into a sequence of labels
yA.

During production, the input aggregate signal (pA), typically acquired by the smart meter,
is first processed to eliminate any outliers or temporal inconsistency in the sampling interval.
The inconsistent sampling rate can be easily treated using interpolation. The obtained clean
sequence of observations of the aggregate signal (oA) is converted into a sequence of labels
(yA). This is achieved by measuring the Euclidean distance between each observation point and
each centroid calculated by HTA. The observation point is assigned to the label of the centroid
with the nearest distance. Equation 3.8 describes the process of converting the sequence of
observations to a sequence of labels.

yA
t = argmin

j

∥∥∥oA
t − cA

j

∥∥∥ (3.8)

where:

oA
t is an observation point (e.g.clean active power) at instant t in the observation sequence

oA = {oA
1 . . . o

A
t . . . o

A
T }.

yA
t is a label assigned to the observation point oA

t at instant t in the label sequence yA =

64 Chapter 3. Non-intrusive load monitoring

{yA
1 . . . , y

A
t . . . y

A
T }.

cA
j is the jth component of the centroid vector cA corresponding to the aggregate signal as

calculated by HTA such that cA ∈ RkA
.

Figure 3.4: Hybrid Algorithm for NILM

The number of centroids kA calculated by HTA is dependent on the number of centroids
associated with each individual model. Let the number of centroids associated with the lth indi-
vidual model be kl, then for L individual models comprising the aggregate signal, the number
of centroids corresponding to the aggregate signal is calculated as:

kA =

L∏
l=1

kl (3.9)

The Viterbi algorithm in figure 3.4 uses the saved model parameters (AA, BA) to process the
input sequence of labels yA. The algorithm predicts qA which is the likely underlying hidden
state sequence of the aggregate signal. Further decoding is necessary to obtain the sequence
of hidden states for every load i.e. Ql ∀ l : 1, . . . , L. The number of hidden states for the
aggregate signal is a combination of the states in the individual loads. Since each individual
load is assumed to have two states only, the number of states in the aggregate signal is 2L where
L is the number of individual loads. In general, the number of states in the aggregate signal
equals the product of the number of states for the individual loads. Hence, we can write:

3.3. Proposed framework 65

NA =

L∏
l=1

N l (3.10)

where:

L: no. of individual loads

N l: No. of states of the lth load.

NA: No. of states of the aggregate load.

Our proposed HTA is described in algorithm 2. As input, the algorithm receives clean dis-
crete sequences (ol = {ol

1 . . . o
l
t . . . o

l
T } ∀l ∈ {1, . . . , L}) representing the processed measured ac-

tive power values at fixed time intervals throughout a period of T for various loads l : 1, . . . , L
connected in a house. The received observations are clean and have consistent sampling in-
tervals. The input signals are used by HTA to estimate the transition and emission matrices
(AA, BA) for the aggregate clean observation sequence (oA) as shown in figure 3.4. Further
HTA returns the centroid vector cA that is needed during the real-time disaggregation process
to convert the aggregate signal oA to the corresponding labelled sequence yA as per equation
3.8.

The algorithm starts by initializing a transition matrix Al for each load l with a size of 2×2.
The size stems from the fact that we only consider in our model two states corresponding to
low power S 0 (first row in the emission matrix) and high power S 1 (second row in the emission
matrix) as explained earlier. The transition matrix will be filled with transition probabilities
between states as explained in 3.1. The algorithm also initializes an emission matrix Bl for
each load l with a size of 2× kl. The emission matrix summarizes the distributions conditioned
on every single state. The first row corresponds to emission probabilities conditioned on the
low power state S 0 while the second row is conditioned on the high power state S 1.

Figure 3.5: Illustration of steps 4 and 5 in HTA algorithm. Clean observations ol (left) for load
l are converted to sequence of states ql (right) by applying a threshold τ (red dotted line). The
four transition frequencies between states are calculated and the load’s transition matrix Al is
updated accordingly.

Once Al and Bl are initialized, ol is converted to a sequence of states ql by applying a
threshold (τ). The threshold is very low power value (e.g. 10 Watts) to distinguish S0 states

66 Chapter 3. Non-intrusive load monitoring

Algorithm 2 Hybrid Training Algorithm

Input: ol ∀l : 1, . . . , L where L is no. of loads
kl: No. of clusters ∀l : 1, . . . , L

Output: AA = [aA
i, j]: Transition matrix for aggregate signal

BA = [bA
i, j]: Emission matrix for aggregate signal

cA: Centroid vector for aggregate signal
1: for l=1 to L do
2: Initialize zero transition matrix Al = [al

i, j] for load l with size 2 × 2
3: Initialize zero emission matrix Bl = [bl

i, j] for load l with size 2 × kl

4: ql ← convert ol to state sequence by applying a threshold τ
5: al

0,0, a
l
0,1, a

l
1,0, a

l
1,1 ← calculate frequency of transitions between states in ql

6: cl, yl ← apply kl-Means clustering to ol and obtain corresponding centroids and labelled
sequence

7: c̃, k̃ ← min (cl): find lowest power centroid c̃ and its label k̃

8: bl
1,k̃
← 1: update element corresponding to lowest power in the first row which corre-

sponds to the low power state
9: for k=1 to kl do

10: bl
2,k ← calculate the frequency of label k in yl

11: end for
12: bl

2,k̃
← 0: update element corresponding to lowest power in the second row which

corresponds to the high power state
13: bl

2,k ←
bl

2,k∑kl
k=1 bl

2,k

: normalize second row

14: end for
15: for l=1 to L do
16: AA ←

⊗L
l=1 Al: Kronecker product

17: BA ←
⊗L

l=1 Bl: Kronecker product
18: cA ←

⊕L
l=1 cl: Outer summation

19: end for

from S1 states. Then transitions between different states are counted and divided by total
number of samples to calculate the corresponding frequencies. These will be the estimated
transition probabilities and the Al is updated accordingly. Figure 3.5 illustrates lines 4 and 5 in
algorithm 2.

The sequence of observations ol is passed to the k-Means algorithm. The number of clusters
is determined by the input kl. k-Means basically maps each observation sample to the label
corresponding to the nearest centroid (i.e. center of cluster) to that observation as explained in

3.4. Experimental studies 67

3.1.2. Hence, the sequence of power observations for each load ol is converted into a sequence
of labels yl and the set of centroids are returned as the centroid vector cl (line 6 in algorithm 2).

The low power state can not be assumed to emit zero emissions. Such an assumption will
result in the cancellation of many load combinations due to multiplication by zero. Hence, we
assign a probability of 1 to be associated with the centroid having the lowest power (line 8
in the algorithm 2). This probability is forced to zero (line 12 in the algorithm 2) when it is
conditioned on the high power state (row 2). The value and index of the centroid that resulted
in the lowest power is obtained in line 7.

The rest of emission probabilities conditioned on S 1 are obtained by finding the frequency
pertaining to each cluster or label (line 10 in algorithm 2). Finding frequencies is equivalent to
finding the histogram of yl as depicted by figure 3.6. However, since the probability pertaining
to the lowest power and conditioned on S 1 is forced to be zero, the rest of the probabilities
conditioned on S 1 shall be normalized so they sum up to 1 (line 13).

Finally, the transition matrix AA for the aggregate signal is found by Kronecker multipli-
cation of the component transition matrices. The same applies for the emission matrix BA

as depicted by lines 16 and 17 in algorithm 2. The centroids for the aggregate signal cA are
calculated using outer summation of all the individual loads. As an example, consider load
1 with centroid vector c1 = {c1

1, c
1
2, c

1
3} and load 2 with centroid vector c2 = {c2

1, c
2
2}, then

c1
⊕

c2 = {c1
1 + c2

1, c
1
1 + c2

2, c
1
2 + c2

1, c
1
2 + c2

2, c
1
3 + c2

1, c
1
3 + c2

2}.

Figure 3.6: Illustration of step 10 in HTA algorithm. Clean observations ol (left) for load l are
converted to sequence of lables yl (middle) using kl-Means algorithm.The distribution of data
is found (right) and the load’s emission matrix Bl is updated accordingly.

3.4 Experimental studies

We use the dataset described in appendix A for our experiment. Given the aggregate whole
house power signal (WHE), we define our objective to disaggregate the signal and identify the
status of three appliances namely: the cloth dryer (CDE), the fridge (FGE) and the heat pump
(HPE). Figure 3.7 shows the aggregate active power signal for 450 hours.

68 Chapter 3. Non-intrusive load monitoring

0 50 100 150 200 250 300 350 400 450
Time (Hours)

0

5000

Po
w
er
 (W

at
ts
) Aggregate Signal

Figure 3.7: Raw whole house active power signal

For training purposes, we use the physical measurement of power for the three appliances
under consideration i.e CDE, FGE and HPE. Data is provided at a granularity of 1 minute. The
physical measurements are relatively clean, so only basic detection of outliers is performed.
We detect outliers by excluding samples that are substantially above the standard deviation.
For both HPE and CDE no outliers were detected while 80 outliers were detected for FGE.
Figure 3.8 shows three signals.

Figure 3.8: Removing outliers from training signals

It is unlikely that utilities provide customers’ data at that granularity. Hence, the three
signals are down-sampled to 3 mins intervals to resemble real-life situations. The three signals
are ingested to the hybrid training algorithm (HTA) shown in figure 3.4.

HTP converts the signals to sequences of states. Figure 3.9 shows the resulting sequences
for the three individual loads. The red dotted line indicates the applied threshold. Note that

3.4. Experimental studies 69

0 15 30 45 60 75 90 105 120 135
Time (Mins)

0

1000

2000
Po
w
er
 (W

at
ts
) Heat Pump

0

1

St
at
e

0 15 30 45 60 75 90 105
Time (Mins)

0

2000

4000

Po
w
er
 (W

at
ts
) Cloth Dryer

0

1

St
at
e

0 15 30 45
Time (Mins)

0

100

Po
w
er
 (W

at
ts
) Fridge

0

1

St
at
e

Figure 3.9: Conversion of observed power values for various appliances to two-state sequence.

for the cloth dryer (CDE), its low power consumption (trailing edge) is converted to a state of
’1’ since the load is still operational. As discussed earlier, our objective is not to identify the
internal states of a load, rather it is to identify whether that load is on or off. The transition
matrix for each load is obtained by counting the 0 − 1 transitions as explained in 3.3.

Next, HTP performs k-Means clustering on observed sequences and converts them to la-
bel sequences as depicted by figure 3.10. The figures on the left represent the observation
sequences (cleaned active power) for the three loads. The observations are converted to se-
quences of discrete labels (figures in the middle). Labels are indices of centroids. The labels
and their respective centroids are given in tabular format on the right top of each figure. While
we clustered each load into three clusters (i.e. k = 3 for all loads, we show only two centroids.
This is because in our algorithm 2, we dedicate the centroid with the lowest power with S 0 and
here we are interested only with the clusters pertaining to S 1, i.e. the state that emits higher
power. Note that these centroids are not sorted. As such, a smaller label may be associated

70 Chapter 3. Non-intrusive load monitoring

with a higher value centroid. For instance, for a cloth dryer, if a sample point is labelled ’1’,
it means that the point has a relatively higher power value than a point labelled ’2’, since label
’1’ is associated with a power of 4727 Watts while label ’2’ is associated with a power of just
266 Watts. Accordingly, the sequences of labels (figures on the middle) do not follow the same
waveforms of observations (figures on the left). The column on the right represents the distri-
bution of centroids across the observation sequences. For instance, the heat pump has most of
the observed points clustered around 1778 Watts and so forth.

0 300 600 900 1200
Time (Mins)

0

500

1000

1500

2000

Po
w

er
 (W

at
ts

)

Label 1 2
Centroid 17782386

0 300 600 900 1200
Time (Mins)

1

2
La

be
l

1778 2386
Centorid (Watts)

0.00

0.25

0.50

0.75

Pr
ob

ab
ili

ty

Heat Pump

0 30 60 90 120 150
Time (Mins)

0

2000

4000

Po
w

er
 (W

at
ts

)

Label 1 2
Centroid 4727 266

0 30 60 90 120 150
Time (Mins)

0

1

2

3

La
be

l

4727 266
Centorid (Watts)

0.0

0.2

0.4

0.6
Pr

ob
ab

ili
ty

Cloth Dryer

0 90 180 270
Time (Mins)

0

50

100

150

Po
w

er
 (W

at
ts

)

Label 1 2
Centroid 131 498

0 90 180 270
Time (Mins)

0

1

2

La
be

l

131 498
Centorid (Watts)

0.0

0.5

1.0

Pr
ob

ab
ili

ty

Fridge

Figure 3.10: k-Means clustering of various load signals.

Once the model is trained according to algorithm 2, it is implemented to disaggregate the
smart meter signal. The aggregate observations (figure 3.11) is converted to sequence of labels
as explained in 3.3. Since we have three loads and each is clustered into three clusters, we end

3.5. Summary 71

up with 33 = 27 centroids that are used to convert the aggregate signal to a sequence of labels
(equation 3.9). Given both aggregate transition and emission matrices as estimated by HTA,
Viterbi algorithm is used to predict the hidden states of the aggregate signal. Since each load
has two hidden states, the number of states for the aggregate signal is 23 = 8 as per equation
3.10. These represent the combination of states of the three loads as shown on the y-axis of
figure 3.13.

The inferred state sequence for the aggregate signal is further decoded to identify the hid-
den state sequence for each individual load. The resulting state sequence train for load has a
duration that is equal to the ingested aggregate signal as depicted by figure 3.10. This concludes
the disaggregation process.

The AMPd dataset provides physically measured data for both the whole house signal (i.e.
aggregate) and the individual loads. This allows us to split the data into training and testing
datasets. We use the training dataset for constructing the model parameters for the aggregate
signal using HTA. Once trained, the model’s performance is tested using the testing dataset.
The resulting individual states are compared to those given in the testing dataset as per AMPd.
Table 3.1 summarizes both accuracy and F1 for each load. The cloth dryer scored the lowest
F1 score, yet the value is considered satisfactory in the NILM literature. For instance, [101]
reports an enhanced F1 score of 83.5% for one of the tested appliances compared with 66.7%
when using Bayesian classifier.

Load
No. of

Centroids Accuracy (%) F1 (%)

Cloth Dryer (CDE) 3 99.2 81.7
Fridge (FGE) 3 98.1 97.4
Heat Pump 3 99.9 99.4

Table 3.1: Results of proposed non-intrusive load monitoring showing remarkable disaggrega-
tion power.

3.5 Summary

In this chapter, a framework to perform non-intrusive load monitoring is proposed. At its
core, the framework adopts hidden Markov chains, being one of the widely used generative
modelling techniques. Further, a novel hybrid training algorithm (HTA) is proposed. HTA
eliminates the need to make assumptions about the emission distribution associated with var-
ious electrical loads by incorporating k-Means unsupervised learning algorithm. Instead of
restricting its output to both transition and emission distributions for the aggregate signal, HTA

72 Chapter 3. Non-intrusive load monitoring

0 5 10 15 20 25 30
Time (Hours)

0

1000

2000

3000

4000

5000
Po

w
er

 (W
at

ts
)

Cleaned Aggregte Signal (oA)

0 5 10 15 20 25 30
Time (Hours)

0

10

20

La
be

l

Label Sequence for Aggregte Signal (yA)

Figure 3.11: Converting aggregate power signal to labels

0 5 10 15 20 25 30
Time (Hours)

0|0|0

0|0|1

0|1|0

0|1|1

1|0|0

1|0|1

1|1|0

1|1|1

St
at
e

Inferred State Sequence for Aggregte Signal (qA)

Figure 3.12: Inferring states of aggregate signal

outputs a list of all centroids that can be used to convert the aggregate signal to a sequence of
labels. This eliminates the need to use Baum-Welch algorithm to solve for HMM’s parameters.
When implementing and tested using the dataset described in A, the model scored remarkably

3.5. Summary 73

0 5 10 15 20 25 30
Time (Hours)

S0

S1

St
at
e

Inferred States for Cloth Dryer (qCDE)

0 5 10 15 20 25 30
Time (Hours)

S0

S1

St
at
e

Inferred States for Fridge (qFGE)

0 5 10 15 20 25 30
Time (Hours)

S0

S1

St
at
e

Inferred States for Heat Pump (qHPE)

Figure 3.13: Decoding states of aggregate signal into individual loads

high accuracies.

Chapter 4

Power state estimation

This chapter focuses on the application of generative models to Power System State Estimation
(PSSE). First, the necessary background for estimating power states is presented using the
widely adopted method namely Weighted Least Squares (WLS). In addition to state estimation,
traditional bad data detection (BDD) is discussed in a separate section. This is followed by
a background about cycle Generative Adversarial Networks which is based on the material
discussed in 2.1.1, 2.1.2 and 3.1.3.

Once the necessary background is discussed, the problem is stated followed by our pro-
posed generative data-driven framework for state estimation and bad data detection.

Finally, experimental results using IEEE-118 test case are discussed and followed by the
chapter’s summary.

4.1 Background

4.1.1 Power state estimation

Power state estimation refers to the statistical estimation of voltage phasors at all buses using
a redundant set of measurements. The IEEE task force [102] defines two distinct operating
conditions of a power grid: quasi-state and transient. In quasi-steady-state operating condi-
tions, the system operating point changes due to slow and smooth load/renewable generation
changes. For that purpose, a Static State Estimator (SSE) that processes measurement snap-
shots is used. In SSE, conventional measurements that are acquired by the remote terminal
units in SCADA system are sufficient. Unlike, dynamic state estimators, synchrophasor mea-
surements (like these acquired by phasor measurement units) are not necessary for SSE. In
general, system dynamics are not tracked by SSE. It has no memory of the states in the previ-
ous time steps. It requires that all states are observable given the measurement vector. In this

74

4.1. Background 75

chapter, we focus on SSE.

Weighted least-squares (WLS) is a commonly used criterion for SSE. Consider a system
of N buses, the number of unknown states n is equal to 2N − 1. This includes all voltage
magnitudes and phase angles excluding the reference bus whose phase angle is typically set to
zero. A non-linear measurement model is described in [80], [54] and [53] as per equation 4.1.

y = h(x) + e (4.1)

where: yT =
[
y1, y2, . . . , ym

]
is the vector of observed set of measurements.

xT = [x1, x2, . . . , xn] is the vector of true system states which we need to estimate.
hT (x) = [h1(x), h2(x), . . . , hm(x)] is the measurement function where hi(x) is a scalar function
relating the ith measurement yi to all real states x.
eT = [e1, e2, . . . , em] is the vector of measurement errors.
The error given in 4.1 is usually weighted to reflect the accuracy associated with each measuing
instrument. WLS provides an estimate of x, namely x̂, by minimizing the sum of weighted error
given below:

J(x) =

m∑
i=1

wie2
i (4.2)

where wi is weight associated with the ith measurement. The weight is typically taken to be
the inverse of the variance that reflect the accuracy of the corresponding measuring instrument
i.e. wi = 1/σ2

i . Further, the following assumptions are commonly made regarding the error:

– Any measurement error has an expected value of zero, i.e. E (ei) = 0, i = 1, . . . ,m

– Measurement errors are independent, i.e. E
[
eie j

]
= 0 for i , j.

Defining the measurement error covariance matrix as R = E[e.eT], then based on the above
assumptions, R = diag

{
σ2

1, σ
2
2, · · · , σ

2
m

}
. Accordingly, we can write the objective function

(4.2) in matrix form:
J(x) = [y − h(x)]T R−1[y − h(x)] (4.3)

Applying the first-order optimality condition, the iterative solution based on Gauss-Newton
method is given as [80], [103]:[

G
(
xk

)]
∆xk = HT

(
xk

)
R−1

[
y − h

(
xk

)]
(4.4)

where:

– k is the iteration index

76 Chapter 4. Power state estimation

– xk is the solution vector at iteration k

– ∆xk = xk+1 − xk

– H(x) =
[
∂h(x)
∂x

]
which is m × n matrix called the measurement Jacobian.

– G
(
xk

)
= HT

(
xk

)
R−1H

(
xk

)
which is n × n sparse matrix called the gain matrix.

Based on the above, we note the following:

– Network topology and parameters need to be known in order to calculate the mea-
surement function h(x). First, various components (e.g. transmission lines, transform-
ers...etc.) of the network are properly modelled in similar fashion to power flow analysis.
Then power flow equations that relate all states with available observed measurements
are obtained.

– It is necessary to calculate the measurement Jacobian and gain matrices for every itera-
tion. This increases computational complexity and estimation time.

– In practice, not all measurements are obtained simultaneously, so for real-time estima-
tion, the availability of time-tagged measurements is necessary[53].

– Convergence of Gauss-Newton algorithm is not guaranteed. Ill-conditioning may occur
for different reasons such as widely different weighting factors and others [103], [53].

– Assumptions are made about the statistical distribution of error.

A DC approximation of the system described in eq. 4.1 is obtained by assuming that all
voltage magnitudes are known to be equal to 1 per unit and neglecting all shunt elements and
branch resistances. Consider N bus system, the DC approximated model is expressed as:

y = Hx + e (4.5)

where:

– y ∈ Rm is the vector of observed measurements and m is the number of measurements. .

– H is m × N measurement matrix relating states to measurements.

– x ∈ RN is the vector of bus phase angles. One of the buses is typically considered as a
reference with its phase angle (i.e. state) set to 0.

– e ∈ Rm is the vector of measurement errors.

4.1. Background 77

Let bus indices i, j ∈ ℵ = {1, 2, . . . ,N}, then a branch i j may represent a transmission line or
transformer with branch reactance Xi j in per unit.

In DC approximation, observed measurements are restricted to selected real power flows
and power injections. Power flow from bus i to bus j is approximated by [80]:

yi j =
1

Xi j
[xi − x j] + e (4.6)

where xi is phase angle at bus i and x j is phase angle at bus j while e is the measurement error
associated with the measured power injection yi j. Further, power injection at bus i is the sum
of power flows in the set of branches connected to that bus and denoted as ℵi ⊆ ℵ. Hence, the
measured power injection at i can be written as:

yi =
∑
j∈ℵi

1
Xi j

[xi − x j] + e (4.7)

Note that e in eq. 4.7 is the error associated with measuring the power injection which is not the
same as the error associated with measuring the power flow given in eq. 4.6. The measurement
matrix H can be calculated form both equations 4.6 and 4.7.

A closed form solution of equation for equation 4.5 can be expressed as:

x̂ = G−1HT R−1y (4.8)

where G = HT R−1H and R is defined earlier.

4.1.2 Bad data detection

Bad data detection (BDD) is an important aspect of any SSE. BDD refers to the determination
of the measurement vector that includes any bad data. When bad data is detected, a flag is
raised. On the other hand, bad or tampered data identification (TDI) refers to the procedure
used to find the specific measurements that were compromised.

Chi-squares test is used for BDD. This arises from the assumption that measurement errors
are normally distributed. Hence, from equation 4.2, J(x) will have χ2 distribution with at most
(m − n) degrees of freedom where m is the number of measurements and n is the number of
states. Hence, a procedure to detect data would follow the following steps [80]:

– Once states are estimated solve for J in 4.2

– Consider certain detection confidence (e.g. 95%), look up the value from the Chi-squares
distribution with (m − n) degrees of freedom.

78 Chapter 4. Power state estimation

– If the value of J is larger than the value obtained from the Chi-squares distribution, then
bad data is detected and a flag is raised.

A more accurate procedure to detect bad data is by calculating the normalized residuals.
Recall that the measurement errors are independent and normally distributed, i.e. e ∼ N(0,R)
where R is a diagonal measurement error covariance matrix. Consider the linear formulation,
the estimated measurement values ỹ can be found by multiplying the estimated states by the
measurement matrix as per equation 4.10 below.

ỹ = Hx̂ (4.9)

Substituting equation 4.8 in equation 4.10, we obtain:

ỹ = Ky (4.10)

where K = HG−1HT R−1. Th measurement residuals are defined as:

r = y − ỹ = (I − K)y (4.11)

It is proven that the matrix K has the property that (I − K).H = 0 [80], hence from equations
4.11 and 4.5, we obtain:

r = (I − K)e = S e (4.12)

S is called the residual sensitivity matrix and it not symmetric unless all diagonal entries of R

are equal. Further, S has the property that S RS T = S R [80]. Knowing that e ∼ N(0,R) and
from equation 4.12, we can find the mean and covariance of residuals as:

E(r) = S .E(e) = 0 (4.13)

Cov(r) = Ω = E
[
rrT

]
= S · E

[
eeT

]
· S T = S RS T = S R

(4.14)

The residual covariance matrix Ω is very important. The normalized residual for measure-
ment i can be calculated by dividing the absolute value of the measurement’s residual by the
corresponding diagonal entry of the residual covariance matrix. i.e. rN

i = |ri|/
√

Ωii. The mea-
surement with the largest rN

i is simply compared against a threshold to decide the presence
of any bad data. If the normalized residual is larger than the threshold, the corresponding
measurement is identified as being compromised and eliminated. State estimation is repeated,

4.1. Background 79

normalized residuals are calculated for all measurements, the tampered measurement with the
largest normalized residual exceeding the threshold is identified and eliminated and the pro-
cess is repeated until no measurement has a normalized residual larger than the threshold. This
process achieves both BDD and TDI.

4.1.3 Cycle GAN

The concept of conditional GAN discussed in 2.1.2 is further extended by [104] to image-to-
image translation where the GAN is conditioned on input image rather than a mere label. A
naive alternative to accomplish the translation would be by minimizing a certain measure of
distance between prediction and ground truth. However, finding the loss function that satisfies
the desired output requires expert knowledge. For instance, generating images by minimizing
the Euclidean distance results in blurred images. Instead, a min-max game using GAN allows
learning the appropriate loss function to satisfy the goal. In such cases, blurred images will
not be tolerated as they will be easily identified by the discriminator as fake images [104].
A typical application includes converting a specific photo into paint, or a B&W image to a
coloured one.

One limitation of image-to-image translation is the necessity to have paired training sam-
ples. For instance, if photos need to be translated into paints of Claude Monet, then for every
single photo in the training dataset a corresponding paint by Monet has to be produced. Clearly,
this is impossible. Cycle GAN, proposed by [105], provides a solution for that by allowing
training using unpaired sets of samples.

The cycle GAN includes two generators and two discriminators and incorporates cycle
consistency loss in addition to the adversarial loss usually incorporated in GANs. Mapping is
accomplished in both forward and reverse directions. In figure 4.1, there are two domains: x

and y. For instance, domain y consists of random photos of nature and domain x consists of
random paints by Claude Monet. The cycle GAN is trained to covert any new photo into paint
of Monet. yreal consists of a set of real photos used for training while xreal consists of a set
of real paints of Monet. The provided training samples of photos and paints are not paired.
The forward generator G is trained to convert photos to paints while the backward generator F

learns to convert paints to photos. In other words G : yreal → x f ake and F : xreal → y f ake. The
generator G is trained by playing a min-max game with its adversary Dx while the generator
F plays the min-max game with Dy. This follows the same logic discussed earlier in 2.1.2.
To allow for unpaired training samples, the concept of cycling is introduced. In this case,
the synthetic (i.e. fake) samples generated by G are cycled by F and the synthetic samples
generated by G are cycled by G. In other words, F : x f ake → ycycled and G : y f ake → xcycled.

80 Chapter 4. Power state estimation

Accordingly, we define the following objective functions for cycle GAN.

Figure 4.1: Main blocks of a cycle GAN.

Adversarial loss between state generator G and state discriminator DX:

min
G

max
DX
LGAN (G,DX,Y, X) = Ex∼pdata (x)

[
log DX(x)

]
+Ey∼pdata (y)

[
log (1 − DX(G(y))

]
(4.15)

Adversarial loss between measurement generator F and measurement discriminator DY :

min
F

max
DY
LGAN (F,DY , X,Y) = Ey∼pdata (y)

[
log DY(y)

]
+Ex∼pdata (x)

[
log (1 − DY(F(x))]

(4.16)

Cycle-consistency loss for both G and F:

min
G,F
Lcyc(G, F) = Ey∼pdata (y)

[
‖F(G(y)) − y‖1

]
+Ex∼pdata (x) [‖G(F(x)) − x‖1] (4.17)

4.1.4 Embedding

One of the most common techniques to deal with a categorical variable is to encode it using
one-hot-encoding, which is a unit vector representation of labels or classes as explained earlier
in section 2.3. For example, for a set of three classes, one class is represented by the unit
vector [0 0 1], while the other class is represented by [0 1 0] and so forth. When the number of
classes becomes large, one-hot-encoding causes a substantial increase in data dimensionality
and becomes infeasible. Another drawback of one-hot-encoding is the necessity to know all

4.2. Problem definition 81

classes a priori, so no new classes are allowed to appear in the test set [106]. Embedding is
used to overcome these problems. Embedding is widely used in the domain of natural language
processing (NLP).

In embedding, each class is mapped to a distinct vector. The vector’s components are learnt
by the neural network. By minimizing the loss, the learning process maps the space of classes
into a vector space that reflects similarity among classes. For instance, in NLP, consider a
sequence of s words that are drawn from a repository of w words. Each word needs to be
mapped to a vector of length v. In this case, the input of the embedding layer is the number of
classes w, the dimension of the target vector representation v and the input length s. The output
of the embedding layer is a matrix of dimension s × v. Vector elements are learnt during the
training process.

4.2 Problem definition

Consider (n+1)/2 bus system, we use the traditional estimator given in equation 4.4 to estimate
states x̂ ∈ Rn from the observed set of measurements y ∈ Rm where m > n. The iteration index
k is set to 0 and the vector xk is initialized, then at each subsequent and until convergence, the
following needs to be calculated:

– The measurement function h((x)k) This is an m number of functions with n independent
variables each.

– Estimate the m × n Jacobian H(x) =
[
∂h(x)
∂x

]
– Estimate the n × n gain matrix G

(
xk

)
= HT

(
xk

)
R−1H

(
xk

)
. Typically, decomposition

techniques are used for that purpose [80].

The set of measurement functions are dictated by the set of corresponding power equations.
The parameters of the power grid shall be known in order to derive the measurement functions
and the measurement Jacobian. The calculation of matrices at every iteration is computation-
ally expensive. Typically, the G matrix is less sparse than the bus admittance matrix and as such
power estimation problem has higher computational complexity than power flow analysis. The
gain matrix may even become singular in some cases e.g. in the case of a large proportion of
injection measurements, large weighting factors and others [80]. Since power state estimation
shall be carried out online for monitoring purposes, several techniques are proposed to reduce
the computational complexity. Given the high computational complexity involved in traditional
state estimators, we propose a data-driven framework to shift the burden of iteration and opti-
mization to offline training. Once trained, online state estimation becomes a one-step matrix

82 Chapter 4. Power state estimation

multiplication process. However, data-driven models need historical datasets for training and
testing. Accordingly, we define our problem as follows:

– Obtain dataset for training and testing. The dataset shall include snapshots (i.e. load
scenarios) of historical measurements and historical states. Measurements and states are
not necessarily paired. In other words, for each set of observed measurements at a given
load scenario i, the obtained set of states belong to the same or different load scenario j.
For experimental purposes, we generate these load scenarios along with the associated
measurements and states using load flow calculations at various load settings.

– Develop a data-driven generative framework that, once trained, will estimate states given
the current set of observed measurements. The system is assumed to be fully observable.
Observability is beyond the scope of this research.

– Devise a method to evaluate the estimation accuracy of the proposed framework.

– The developed framework shall be capable of detecting bad measurements and identify-
ing the specific tampered measurements.

The hyperparameters of the developed framework shall be optimized for the experimented
test case. Besides, any necessary adjustment of the vanilla objective functions shall be ad-
dressed.

4.3 Proposed framework

4.3.1 Vanilla cycle GAN

Inspired by the work done by [105] related to image processing, we apply vanilla GAN to the
state estimation problem. Figure 4.2 shows the main blocks of the proposed cycle GAN. Once
trained, the forward generator neural network G is used to estimate states from the observed
measurements at any time instance. The backward generator neural network (F) is used to gen-
erate cycled measurements from the estimated states. The cycled measurements are utilized to
identify tampered measurements as will be discussed later. Both discriminators (Dx) and (Dy)
are neural networks that are necessary for the training process. Define:

• xi: Sample vector of historical real states recorded at arbitrary load scenario i where
xi ∈ R

n and n is the number of states.

4.3. Proposed framework 83

Figure 4.2: Cycle GAN setup for state estimation. Load scenario indices i and j are omitted
for clarity.

• y j: Sample vector of historical real measurements observed at arbitrary load scenario j

where y j ∈ R
m and m is the number of measurements.

• G: State estimator such that G : Rm → Rn.

• x̂ j: Estimated states vector where x̂ j = G(y j).

• F: Measurement estimator such that F : Rn → Rm.

• ŷi: Estimated measurements vector where ŷi = F(xi).

• Dx: Discriminator that aims to distinguish any real states sample x from any estimated
states sample x̂. Dx plays a min-max game with G such that Dx : Rn → R. The scalar
output of Dx represents a probability.

• Dy: Discriminator that aims to distinguish any real measurements sample y from any

estimated measurement sample ŷ. Dy plays a min-max game with F such that Dy :
Rm → R. The scalar output of Dy represents a probability.

• x̃i: Cycled states vector where x̃i = G(ŷi).

• ỹ j: Cycled measurements vector where ỹ j = F(x̂ j).

In the above model, observe the following:

• A states sample xi and a measurements sample y j are not necessarily paired i.e. i is not
necessarily equal to j. This eliminates the need to obtain time-tagged historical readings
for training purposes. However, historical readings should reflect the healthy operation
of the power grid.

84 Chapter 4. Power state estimation

• Both discriminators need to distinguish whether their input samples are real or fake (i.e.
estimated) regardless of the load scenario index.

• It is always true that the load scenario index of a cycled sample matches that of the input
sample. This allows for defining an additional loss function, namely cycle consistency
loss.

Below, we fully define the proposed training scheme by first defining the necessary losses,
followed by the objective function and finally we define the overall optimization problem that
is used in training the neural networks shown in the proposed framework (figure 4.2).

– Adversarial Loss
LGAN(G,Dx) = Ex∼pdata (x)

[
log Dx(x)

]
+ Ey∼pdata (y)

[
log (1 − Dx(G(y))

] (4.18)

LGAN(F,Dy) = Ey∼pdata (y)
[
log Dy(y)

]
+ Ex∼pdata (x)

[
log

(
1 − Dy(F(x))

] (4.19)

For measurement distribution y ∼ pdata (y), G tries to estimate states G(y) that are sim-
ilar to real states x ∼ pdata (x), while Dx tries to distinguish between real states x and
estimated states G(y). Hence, G is optimized to minimize adversarial loss while Dx is
optimized to maximize that loss, i.e. the distinction between real and estimated states.
The same rationale applies to F and its adversary Dy.

– Cycle Consistency Loss

Lcyc(G, F) = Ey∼pdata (y)
[
‖F(G(y)) − y‖1

]
+ Ex∼pdata (x) [‖G(F(x)) − x‖1]

(4.20)

While adversarial loss learns back and forth mapping functions between measurements
and states, there is no guarantee that a set of measurements yi at a certain load scenario i

will map to the corresponding states xi. This is ensured by introducing the cycle consis-
tency loss for both forward and backward mapping functions G and F. G is optimized by
minimizing the distance between real measurements y and their cycled version F(G(y)).
The same rationale applies to F.

– Objective Function

L
(
G, F,Dx,Dy

)
= LGAN (G,Dx) +LGAN (F,Dy)

+ λLcyc (G, F)
(4.21)

4.3. Proposed framework 85

where λ is a hyperparameter that is used to control the relative importance of each loss.

– Optimization Problem
min
G,F

max
Dx,Dy

L
(
G, F,Dx,Dy

)
(4.22)

4.3.2 Grid-aware cycle GAN

Typically, the parameters of the power grid (e.g. reactances of transmission lines..etc.) are
readily available. Hence, we propose and test a novel grid-aware cycle GAN to estimate state
and identify bad measurements. Recall that a DC approximation of the system as described
in eq. 4.5 is obtained by assuming that all voltage magnitudes are known to be equal to 1 per
unit and neglecting all shunt elements and branch resistances. To stress that the measurement
matrix H is associated with DC formulation, we will denote H in equation 4.5 as HDC.

Equations 4.6 and 4.7 can be used to easily construct HDC. For instance, if the kth mea-
surement corresponds to a power flow measurement in a transmission line extending from
the ith bus to the jth bus and with a reactance of Xi j, the HDC entries are updated as follows:
HDC(k, i) ← 1/Xi j and HDC(k, j) ← −1/Xi j. If the ith measurement corresponds to a power
injection, then ith row, HDC(i, :), is updated with the sum of all reactances associated with the
power flows into that bus, i.e. HDC(i, :) ← −

∑
j∈ℵi

HDC(j, :) where ℵi is the set of branches
connected to the ith bus (considering a convention of positive power flowing into the bus).

Once the HDC matrix is constructed, we drop the column that corresponds to its reference
bus. We use HDC in the cycle GAN by defining additional loss function that captures the
physical relationship between the states and measurements as follows:

LHDC(G) = Ey∼pdata (y)
[
‖HT

DC · y −Gangles(y)‖1
]

(4.23)

where Gangles is the output of G after dropping all states corresponding to voltage magni-
tudes. Clearly, G is optimized to minimize the distance given in 4.23.

In theory, since HDC is a tall rectangular matrix, getting an estimation of x typically requires
the computation of the pseudo-inverse of HDC which is (HT

DCHDC)−1HT
DC. However, if HT

DCHDC

is ill-conditioned, then this inverse cannot be computed and this is the case in practice. To
avoid this issue, the transpose operator is used instead (i.e. x ≈ HT

DCy). Rationale based on
singular value decomposition (SVD) is provided in the following to justify why the transpose
operation captures important attributes pertaining to the pseudo-inverse. Suppose that the SVD
of HDC is:

HDC = UΣVT (4.24)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices that are the left and right singular

86 Chapter 4. Power state estimation

vectors of HDC and Σ is the diagonal matrix composed of the singular values of HDC. The
linear mapping HDC can be interpreted as a series of three transformations where the first
involves a rotation/ reflection defined by U, then scaling with Σ and then finally a rotation/

reflection based on VT . It is important to note that the transpose of an orthogonal matrix is
the same as the inverse of the matrix. For the transpose of HDC, the SVD is now VΣT UT

where the first transformation is the inverse rotation/reflection defined by V (this is the inverse
of the last rotation/reflection of the forward mapping). Then, the scaling operation defined
by ΣT follows. The final rotation/reflection UT is the inverse of the first rotation/reflection
of the forward mapping. It is evident now that the transpose operation preserves directional
attributes of the inverse mapping from grid measurements to states as the transpose and inverse
operations differ by the scaling element Σ.

Hence, our choice of the grid-aware loss component seeks to preserve the directional at-
tributes pertaining to the mapping from grid measurements to states. As the transpose operator
is used, it is not affected by ill-conditioning. Furthermore, HDC matrix is simple to compute
and needs to be computed only once. The proposed machine learning model will learn the re-
maining non-linearities that are not captured by HDC via the adversarial and cycle consistency
loss components.

The objective function given in 4.21 is replaced by:

L (G, F,DX ,DY) = LGAN (G,DX)

+LGAN (F,DY) + λLcyc (G, F) +LHDC (G)
(4.25)

4.3.3 Evaluating cycle GAN for state estimation

We propose a benchmark multi-layer perceptron (MLP) neural network (figure 4.3) to evaluate
the performance of the cycle GAN as a state estimator. The MLP is trained to map the input
measurements to the corresponding outputs states. Since measurements dataset represent dif-
ferent load scenarios, it is necessary to identify measurements and states in pairs, otherwise, an
input measurement vector will be mapped to a state vector that is associated with another load
scenario.

The unique ID that identifies each load scenario is a categorical variable. We simulate a
large number of load scenarios. Further, some of the simulated load scenarios in the test set
may not be encountered in the train set. Accordingly, instead of using one-hot-encoding, we
use learned embedding where each class is mapped to a distinct vector as discussed in 4.1.4.
The vector representation is further combined with its corresponding input measurements us-
ing point-wise multiplication. As such, it necessary that the vector representation have the

4.3. Proposed framework 87

same dimension as the measurement vector. The output of the MLP will be the complete states
vector.

Figure 4.3: A benchmark MLP is used to evaluate the cycle GAN accuracy for estimating
states. Unlike cycle GAN, labelled input data is used and predicted states are measured against
the paired ground truth states.

Let the number of load scenarios be T ∈ Z and each load scenario is identified by a unique
ID t ∈ Z and ∀t : t ≤ T . The input of the benchmark MLP is both t and its corresponding
vector of measurements yt ∈ R

m . The benchmark MLP (figure 4.3) embeds t as vector zt ∈ R
m.

Then the element-wise product zt � yt is passed to the subsequent fully connected layers. The
output x̂t ∈ R

n is the corresponding estimated states. Both m and n are defined earlier in 4.3.1.
Let the respective ground truth states be: xt ∈ R

n, the MLP is optimized by minimizing the
mean squared-error E[xt − x̂t]2.

4.3.4 Tampered data identification (TDI)

The proposed cycle GAN can be used for identifying tampered measurements. Figure 4.4
shows the cycle GAN in inference mode. For measurement input vector yi corresponding to
load scenario i, a pre-trained G estimates the state vector x̂i = G(yi). The estimated state
vector is further processed by F to generate the corresponding cycled measurement vector
ỹi = F(x̂i). The residual vector ri =| yi − ỹi | is calculated. Any measurement in ri is identified
as tampered measurement if its residual exceeds a threshold. The value of the threshold decides
the sensitivity of the detector.

Figure 4.4: Proposed cycle GAN in inference mode used fr tampered data identification

88 Chapter 4. Power state estimation

4.4 Experimental studies

IEEE-118 case study [107], [108] is used to conduct the experiment. Pandapower [109] and
Google’s Tensorflow [110] are used to construct necessary modules. First, different load sce-
narios are generated. Power flow analysis is conducted and the resulting dataset is aggregated
in the proper format. Second, cycle GAN is constructed and trained. Further, a benchmark
MLP that maps measurements to states is constructed to evaluate the performance of the cycle
GAN. Finally, scenarios with tampered measurements are generated and applied to the trained
cycle GAN. The following subsections describe each module in detail.

4.4.1 Generating load scenarios

As illustrated in figure 4.5, loads in IEEE-118 case study are randomly varied according to
the uniform distribution. A total of 6000 load scenarios are generated. Power flow analysis
is performed for each load scenario to obtain the grid’s electrical quantities such as complex
power flows, power injections and voltages. A total of 759 measurements are selected at vari-
ous locations to resemble observed measurements. Gaussian noise that represents the error in
measuring instruments is added to each of the selected measurements ending up with a total of
120,000 samples of noisy measurement vectors. The measurements comprise voltage magni-
tudes, active and reactive power flows and power injections. The generated measurement-state
dataset is used for training and testing the proposed cycle GAN estimator in addition to the
benchmark MLP.

To compare computational complexity, WLS method is used to estimate the states for each
load scenario using Pandapower’s engine for power state estimation. For each measurement,
the variance associated with the measuring instrument is fed to WLS algorithm. It is imperative
that WLS assumes a Gaussian distribution for measurement error. The same variance is used
when generating the noisy scenarios indicated above. We record both estimation time and the
number of load scenarios that failed to converge using WLS.

Each load scenario has a unique ID (e.g. timestamp) which is used for training the bench-
mark MLP. Contrarily, the cycle GAN does not need a paired measurement-state dataset.

4.4.2 Training cycle GAN

The dataset generated in 4.4.1 includes both measurements and corresponding states. The
dataset is divided into training and testing sets. The unique ID is not used as an input to the
cycle GAN. However, we keep track of the unique ID for each training sample in order to
calculate MSE against the ground-truth states. Measurements and states used for training are

4.4. Experimental studies 89

Figure 4.5: Constructing Training and Testing Datasets for cycle GAN

separately shuffled. Tables 4.1 shows the optimized architecture of the cycle GAN. The same
architecture is used to test both vanilla and grids-aware loss functions as given in equations
4.21 and 4.25 respectively.

Figure 4.6 shows the adversarial losses for both forward and backward generators (G, F)
and their corresponding discriminators (Dy,Dx) while training the vanilla cycle GAN with ob-
jective function given in eq. 4.21. Figure 4.7 shows the losses while training the grid-aware
cycle GAN with objective function given in eq. 4.25.

4.4.3 Benchmarking

A benchmark MLP is constructed to evaluate the accuracy of the cycle GAN. The dataset
generated in 4.4.1 is divided into train and testing datasets. Each unique ID representing a load
scenario is encoded by mapping it to a vector of continuous numbers using embedding. The
embedding shall have the same dimension of the measurement vector to allow for point-wise
multiplication. Table 4.2 shows the optimized architecture of network.

For a labelled input of measurements, the MLP is optimized by minimizing the mean

squared-error between the predicted states and the corresponding ground truth states that are
identified by the ingested label. Figure 4.8 shows the progression of loss while training the
benchmark MLP.

After training, the test set is ingested to all three networks, i.e. the benchmark MLP, the

90 Chapter 4. Power state estimation

State Generator - G

Nodes

Input: 759

L1:512, L2:1024, L3:2048, L4:1024, L5:512

Output: 235

Activation relu, relu, relu, relu, relu, tanh

State Discriminator - Dx

Nodes

Input: 235

L1:512, L2:1024, L3:256, L4:64

Output: 1

Activation relu, relu, relu, relu, sigmoid

Measurement Generator - F

Nodes

Input: 235

L1:512, L2:1024, L3:2048, L4:1024, L5:512

Output: 759

Activation relu, relu, relu, relu, relu, tanh

Measurement Discriminator - Dy

Nodes

Input: 759

L1:512, L2:1024, L3:256, L4:64

Output: 1

Activation relu, relu, relu, relu, sigmoid

Table 4.1: Cycle GAN Architecture

Nodes

Input1

(load scenario unique ID): 1
Input2

(measurements): 759
L1 (Embedding):759

L2 (pointwise multiplication): 759

L3:512, L4:1024, L5:2048, L6:1024, L7:512

Output: 235

Activation relu, relu, relu, relu, relu, tanh

Table 4.2: Benchmark MLP Architecture

vanilla cycle GAN and the grid-aware cycle GAN and the mean squared error is calculated.
Table 4.3 summarizes results. Clearly, the grid-aware cycle GAN exhibits remarkable accuracy
in estimating the power states. Recall that the benchmark MLP needs a labelled dataset during

4.4. Experimental studies 91

(a) Losses for estimating states. (b) Losses for recycling measurements.

Figure 4.6: Adversarial losses for vanilla cycle GAN. The forward generator (G) and its adver-
sary Dy are trained to estimate states, while the backward generator (F) and its adversary (Dx)
are trained to cycle measurements.

(a) Losses for estimating states. (b) Losses for recycling measurements.

Figure 4.7: Adversarial losses for grid-aware cycle GAN.

training. Embedding was used to label the 6000 scenarios. No labelled data is needed for
training the cycle GAN. Further, MLP can not be used for BDD or TDI. All in all, using MLP
as a state estimator is not practical and its function is restricted to benchmarking the estimation
accuracy in the proposed cycle GAN.

Benchmark MLP Vanilla cycle GAN Grid-aware cycle GAN
0.00331 0.00550 0.00321

Table 4.3: Mean squared-error for various models where the MLP is used only for benchmark-
ing purposes.

92 Chapter 4. Power state estimation

Figure 4.8: Loss of benchmark MLP for both train and test datasets

4.4.4 Identifying bad measurements

We define three attack scenarios and apply them to both vanilla and grid-aware cycle GANs.
The attack scenarios are defined as follows:

– Attack 1: In this attack, only one measurement is tampered. The measurement of active
power flow from bus 106 to bus 105 is tampered by increasing its authentic value by
three times its authentic value.

– Attack 2: In this attack, three measurements are tampered. These are active power flow
from bus 95 to bus 81, active power flow from bus 106 to bus 105 and active power flow
from bus 53 to bus 48. The measurements are tampered by increasing their authentic
values by 3, 15 and 0.01 times their authentic values respectively.

– Attack 3: In this attack, a linear combination of the columns of HDC is constructed. This
is known as false data injection (FDI) as stated by [57]. It is proven that FDI bypasses
the traditional state estimator in its linear formulation.

We generate 200 random load scenarios with tampered measurements pertaining to each
attack scenario. The generated tampered scenarios are processed by the optimized forward
generator (G). The corresponding outputs (i.e. estimated states) are processed by the back-
ward generator (F) to obtain the cycled measurements. The tampered measurements are then
identified by the trained cycle GAN as explained in 4.3.4.

As explained earlier in 4.3.4, the residual for each measurement is calculated from both the
tampered measurement input vector and the cycled measurement vector. This applies to any

4.4. Experimental studies 93

load scenario. All measurements with residuals exceeding a selected threshold are identified as
tampered. The threshold impacts the identification sensitivity, so a high threshold may fail to
capture tampered measurements, while a lower threshold may incorrectly classify an authentic
measurement as being tampered.

Typically, any observed measurement may be either tampered (positive) or authentic (neg-
ative). If a tampered measurement is correctly identified by the cycle GAN as being tampered,
it is counted as a true positive. If the tampered measurement is incorrectly identified as being
authentic, it is counted as a false positive. This can be extended to the other classes ending up
with four possibilities, i.e. true positive (TP), true negative (TN), false positive (FP) and false
negative (FN). Hence, the quality metrics discussed in 3.1.3 are used to evaluate the perfor-
mance of the cycle GAN to identify bad measurements.

Table 4.4 summarizes the results for both vanilla and grid-aware cycle GANs against each
attack scenario. Both cycle GANs achieve remarkable results when identifying tampered mea-
surements. The results are very close. In terms of both accuracy and TDI, the grid-aware cycle
GAN is a favourable choice. Note that, unlike traditional state estimators, the proposed frame-
work can easily detect FDI. The second attack, where three measurements were tampered and
one of them with a very small factor, is the most challenging scenario to be detected in terms
of F1 score.

Attack
Scenario

Loss
Type

Accuracy F1

1 Vanilla 0.9997 0.8270

2 Vanilla 0.9989 0.7964

3 Vanilla 0.9722 0.9636

1 Grid-aware 0.9997 0.8270

2 Grid-aware 0.9989 0.7976

3 Grid-aware 0.9719 0.9633

Table 4.4: Accuracy and F1 scores for various types of losses against different attacks.

As indicated earlier, the threshold plays an important role in TDI. If historical data about
various attacks is available or such data can be obtained by simulation, a reasonable value of
the threshold can be determined. For instance. for the grid-aware cycle GAN, we plotted the
evaluation metrics against possible threshold values. The value that maximizes the metric of
interest (e.g. F1) is selected (figure 4.9).

94 Chapter 4. Power state estimation

Figure 4.9: F1 and Accuracy scores against threshold in grid-aware cycle GAN.

4.5 Summary

Data-driven models are recently employed to tackle ’static power state estimation’ and ’bad
data detection’ as two separate problems. In this chapter, we proposed a novel data-driven
generative framework to handle both power state estimation and bad data identification. At
the core of the proposed framework is the cycle GAN. Cycle GAN is a generative model the
eliminates the need for paired training datasets. We improved the accuracy of the model by
incorporating a grid-aware term in the objective function.

The experiment is designed by generating load scenarios using load flow analysis. The
load scenarios are generated to reflect a normal operation of the power grid. A benchmark net-
work is constructed to evaluate the estimation performance. The proposed framework recorded
remarkable estimation accuracy.

Once the model is trained, measurements are deliberately tampered and ingested into the
pre-trained network. Measurements are cycled and residuals are calculated to identify the tam-
pered measurements. With a proper setting of a threshold, the proposed frameworks achieved
high accuracy and F1-score.

Chapter 5

Conclusions

The electrical power grid has grown into a complex smart grid associated with digital technol-
ogy, two-way communication, distributed generation and self-monitoring. It is even expected
to grow further into a neural grid with ubiquitous connectivity accompanied by cloud-based
artificial intelligence. With this high level of connectivity and complexity, physics-based mod-
els become inadequate. Probabilistic generative models stand as inevitable replacements of
rule-based models. Yet, generative models are flexible enough to incorporate grid-aware ob-
jective functions. While discriminative models are limited to discriminating the target value
(i.e. label) for a given observation, generative models can learn the underlying distribution of
observations even if they are conditioned on targets (i.e. conditions). Generative models in our
research included conditional GAN, kernel density estimator (KDE), hidden Markov model
(HMM) and finally cycle GAN.

5.1 Summary

In this thesis, we introduced various types of generative models in both areas of power trans-
mission and power demand. While simulating residential electrical loads, both conditional
generative adversarial (GAN) networks and kernel density estimators (KDE) were used. Con-
ditional GANs were used to learn the distribution associated with the power waveform of each
experimented residential load. Instead of building four GANs for the four experimented loads,
only one conditional GAN was used to learn the underlying distribution conditioned on the
corresponding load. In other words, if a random variable x represents any load’s waveform,
then for each load l, the conditional GAN (CGAN-Patterns in figure 2.11) learnt the distri-
bution p(x|l). Once learnt, we managed to sample from that distribution to obtain synthetic
patterns for a given load. Similarly, the synthetic habits were generated (using CGAN-habits
in figure 2.11) after converting the timestamps associated with patterns to engineered features.

95

96 Chapter 5. Conclusions

In addition, for each load, a kernel density estimator was construed. The performance of each
model was evaluated using maximum mean discrepancy. In practice, an inverted form of the
vanilla objective function was proposed to improve stability.

For load disaggregation (i.e. NILM), HMM’s model was constructed by estimating the
transition and emission distributions using the proposed hybrid training algorithm. In the algo-
rithm, transition probabilities were estimated by simply counting the on-off transitions in the
training sequence for each load. Emission distribution is approximated using k-means cluster-
ing for each load. Individual loads were combined into a factorial HMM model for the aggre-
gate signal (i.e. smart meter’s active power measurements). The aggregate signal is converted
into a discrete sequence of labels based on the centroids produced by the hybrid algorithm.
Viterbi algorithm is used to disaggregate the input sequence of labels into the combined states
which are then converted to the individual states. The proposed NILM model may be easily
adopted by electrical utilities and integrated into their demand-side programs that enable their
customers to cut back on their energy costs. However, it is imperative that a larger training
dataset will result in a better model. A larger dataset may include more loads with their real
power consumption being recorded for longer periods of time.

For state estimation, a framework mainly based on cycle GAN is used to map the set of re-
dundant measurements into the hidden states. The cycle GAN allowed for an unpaired training
set of measurements and states. Different load scenarios representing the normal operation of
the power grid are generated using load flow analysis. These scenarios are split into training
and testing datasets. To improve accuracy, an additional grid-aware loss is introduced. Further,
the cycle GAN successfully detected tampered measurements, thanks to the backward GAN
(F in figure 4.2) that produced the cycled measurements. By comparing the observed measure-
ments with the cycled measurements, individual residuals are calculated. If a residual exceeds
the threshold, the respective measurement is considered tampered. To evaluate the estimation
performance, a benchmark neural network is constructed and the mean squared error of the cy-
cle GAN is compared with that of the benchmark network. Bad data identification is evaluated
using F1 score besides accuracy.

In NILM problem, we used Hidden Markov Models. In the area of power transmission, we
fully exploited cycle GAN to estimate power states and identify bad data.

5.2 Contributions

In each researched topic, several novel contributions are made. The contributions of chapter 2
are summarized as follows:

1. We developed a flexible framework to generate synthetic load patterns and consumers’

5.2. Contributions 97

usage habits in a household. By utilizing a conditional generative adversarial network
(GAN), we eliminated the need to build a model for each specific load. We open-sourced
our code1 for researchers and industry.

2. We utilized a signal processing technique, namely, matched filter, in pre-processing the
available public time series and converting it to two sets of training examples represent-
ing patterns and habits.

3. We stabilized the training process by inverting the existing loss function that is used in
vanilla GAN.

4. We conducted comparative studies for learning habits between two generative models,
namely, conditional GAN and Kernel Density Estimators.

In chapter 3, we applied hidden Markov model (HMM) to the NILM problem. While HMM
is a commonly used generative method, assumptions are typically made regarding the proba-
bility distribution of the observed sequence of power samples (i.e. emissions). We introduced
a novel hybrid framework that utilizes k-means clustering to eliminate the assumptions made
about the probability distribution of emissions.

The novel contributions of chapter 4 are summarized as follows:

1. We developed a semi-supervised generative framework using cycle GAN to estimate
power states from a redundant set of measurements. Unlike other data-driven solutions,
ours does not require paired datasets of measurements and states. The only requirement
is to ensure that the training data is acquired during the grid’s normal operation.

2. The developed framework naturally supports tampered data identification in one inte-
grated package. This is a major contribution over existing discriminative models. Unlike
existing solutions, our model eliminates the need for training using tampered data, which
is usually rare and difficult to predict. Further, our model identifies the exact tampered
measurement rather than just raising a flag that bad data is detected.

3. We optimized our model and introduced a novel grid-aware loss to enhance estimation
accuracy.

4. We developed a benchmark neural network to evaluate the accuracy of the proposed
framework. The benchmark neural network employs label embedding to identify a large
number of load scenarios in the mapping process. The embedding concept is widely
applied in the literature of natural language processing and is successfully applied to our
application.

1Code is available at https://github.com/skababji/ElecLoads

https://github.com/skababji/ElecLoads

98 Chapter 5. Conclusions

5.3 Future works

For residential load simulation, our work can be extended as follows:

– Automate the process of extracting the load’s template from the raw input time series.

– In addition to maximum mean discrepancy, incorporate further metrics to measure the
distance between the real and learnt distributions. Evaluation of GANs remains a topic
that is widely researched in various disciplines. While some measures are well-established
in the field of image processing, further research is needed in other fields.

– The proposed framework allows for different sampling rates and, hence, additional public
datasets may be used for training. The additional training datasets may include different
types of loads as well as different levels of occupancy and usage habits. This improves
the model’s versatility and expands its usability.

– The modelled habits in the framework are functions of occupants’ availabilities, procliv-
ities (i.e. tendencies to operate a load) and loads’ internal cycles. Both availability and
proclivity are impacted by external factors such as the weather condition, the holiday
season, the region..etc. Accordingly, the proposed model for simulating habits may be
improved by adding more features. For instance, using the time stamp provided with
the training dataset, the corresponding historical temperature may be fetched from ser-
vice providers (e.g. https://www.weatherstats.ca/) and added as a feature to train
habits.

For Non-intrusive load monitoring, our work can be extended as follows:

– In our proposed hybrid training model, conduct a comparative study if k-means cluster-
ing is replaced by other clustering techniques such as Gaussian mixture models.

– The Viterbi algorithm in the proposed framework has high computational complexity.
This is greatly impacted by the size of the aggregate model matrices (figure 3.4). In
algorithm 2, the first row of the emission matrix for each load is highly sparse. This can
be researched further to reduce the overall disaggregation complexity.

– The model may be improved by incorporating real-time feedback from the occupants.
For instance, when the model incorrectly identifies a load to be in the ’on’ state, an oc-
cupant may send an error message and the model will adjust its parameters accordingly.

For state estimations, our research may be extended to several important areas. This can be
summarized as follows:

https://www.weatherstats.ca/

5.3. Future works 99

– The proposed framework needs to be investigated for its applicability to the distribution
network.

– The sensitivity of residuals to various types of errors and attacks needs to be thoroughly
studied.

– The state estimation performance of the proposed framework needs to be thoroughly in-
vestigated while varying the number, types and location of the measuring instruments.
The impact of observability needs to be researched and compared with traditional esti-
mation methods.

Bibliography

[1] G. Fadaie, “The influence of classification on world view and epistemology,” in I n SITE
2008: Informing Science+ IT Education Conference, vol. 8. Citeseer, 2008.

[2] S. J. Gershman, “The generative adversarial brain,” Frontiers in Artificial Intelligence,
vol. 2, p. 18, 2019.

[3] A. Gopstein, C. Nguyen, C. O’Fallon, N. Hastings, and D. Wollman, “Nist framework
and roadmap for smart grid interoperability standards, release 4.0,” 2021-02-18 2021.

[4] S. E. Kababji and P. Srikantha, “A data-driven approach for generating synthetic load
patterns and usage habits,” IEEE Transactions on Smart Grid, vol. 11, no. 6, pp. 4984–
4995, 11 2020.

[5] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep
convolutional generative adversarial networks,” 2016.

[6] E. Wallner, “Turning Design Mockups Into Code With Deep Learning,”
FloydHub Blog, May 2020. [Online]. Available: https://blog.floydhub.com/

turning-design-mockups-into-code-with-deep-learning

[7] G. Insights, “From Smart Grid to Neural Grid,” Jun 2021, [Online; ac-
cessed 27. Jun. 2021]. [Online]. Available: https://guidehouseinsights.com/reports/
from-smart-grid-to-neural-grid

[8] A. Géron, “Hands-on machine learning with scikit-learn and tensorflow: Concepts,”
Tools, and Techniques to build intelligent systems, 2017.

[9] S. Zainul, “Rule-Based V/s AI-Based: Approaches to Building AI - Applozic Blog,”
Applozic Blog, Feb 2020, [Online; accessed 18. Aug. 2021]. [Online]. Available:
https://www.applozic.com/blog/rule-based-v-s-ai-based-approaches-to-building-ai

[10] “Web API Reference | Spotify for Developers,” Jun 2021, [Online; accessed 28.
Jun. 2021]. [Online]. Available: https://developer.spotify.com/documentation/web-api/
reference/#endpoint-get-audio-features

[11] E. Hossain, I. Khan, F. Un-Noor, S. Sikander, and M. S. Sunny, “Application of big data
and machine learning in smart grid, and associated security concerns: A review,” IEEE
Access, vol. PP, pp. 1–1, 01 2019.

100

https://blog.floydhub.com/turning-design-mockups-into-code-with-deep-learning
https://blog.floydhub.com/turning-design-mockups-into-code-with-deep-learning
https://guidehouseinsights.com/reports/from-smart-grid-to-neural-grid
https://guidehouseinsights.com/reports/from-smart-grid-to-neural-grid
https://www.applozic.com/blog/rule-based-v-s-ai-based-approaches-to-building-ai
https://developer.spotify.com/documentation/web-api/reference/#endpoint-get-audio-features
https://developer.spotify.com/documentation/web-api/reference/#endpoint-get-audio-features

BIBLIOGRAPHY 101

[12] D. Sidorov, F. Liu, and Y. Sun, “Machine learning for energy systems,” Energies, vol. 13,
p. 4708, 09 2020.

[13] K. Günel and A. R. Ekti, “Exploiting machine learning applications for smart grids,” in
2019 16th International Multi-Conference on Systems, Signals Devices (SSD), 2019, pp.
679–685.

[14] A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, and D. Zhao, “Load modeling—a
review,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 5986–5999, May 2017.

[15] C. F. Walker, “A RESIDENTIAL ELECTRICAL LOAD MODEL,” Ph.D. dissertation,
University of New Hampshire, 1982. [Online]. Available: https://scholars.unh.edu/

dissertation/1350

[16] J. M. G. López, E. Pouresmaeil, C. A. Cañizares, K. Bhattacharya, A. Mosaddegh, and
B. V. Solanki, “Smart Residential Load Simulator for Energy Management in Smart
Grids,” IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1443–1452, Feb 2019.

[17] R. Stamminger, G. Broil, C. Pakula, H. Jungbecker, M. Braun, I. Rüdenauer, and
C. Wendker, “Synergy potential of smart appliances,” Report of the Smart-A project,
pp. 1949–3053, Nov 2008.

[18] W. Guo and T. Ullah, “Deployment of a load simulator in simulating residential house-
hold appliances,” in 2015 IEEE 12th International Conference on Networking, Sensing
and Control. IEEE, 2015, pp. 570–575.

[19] M. Trčka and J. L. Hensen, “Overview of hvac system simulation,” Automation in Con-
struction, vol. 19, no. 2, pp. 93–99, 2010.

[20] J. Jeyakumar and D. Devaraj, “Load profile generation for dr program,” in 2019 IEEE
International Conference on Intelligent Techniques in Control, Optimization and Signal
Processing (INCOS). IEEE, 04 2019, pp. 1–5.

[21] M. Ouassaid, M. Maaroufi et al., “Smart home appliances modeling and simulation for
energy consumption profile development: Application to moroccan real environment
case study,” in 2016 International Renewable and Sustainable Energy Conference (IR-
SEC). IEEE, 2016, pp. 1050–1055.

[22] G. Valverde, A. Saric, and V. Terzija, “Probabilistic load flow with non-gaussian corre-
lated random variables using gaussian mixture models,” IET generation, transmission &

distribution, vol. 6, no. 7, pp. 701–709, Jul 2012.

[23] W. Labeeuw and G. Deconinck, “Residential electrical load model based on mixture
model clustering and markov models,” IEEE Transactions on Industrial Informatics,
vol. 9, no. 3, pp. 1561–1569, Jan 2013.

[24] A. Keyhani, W. Lu, and G. T. Heydt, “Composite neural network load models for power
system stability analysis,” in IEEE PES Power Systems Conference and Exposition,
2004. IEEE, Oct 2004, pp. 1159–1163.

https://scholars.unh.edu/dissertation/1350
https://scholars.unh.edu/dissertation/1350

102 BIBLIOGRAPHY

[25] A. Al-Wakeel, J. Wu, and N. Jenkins, “k-means based load estimation of domestic smart
meter measurements,” Applied Energy, Jun 2016.

[26] K.-J. Park and S.-Y. Son, “A novel load image profile-based electricity load clustering
methodology,” IEEE Access, vol. 7, pp. 59 048–59 058, May 2019.

[27] C. Zhang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “Generative adversarial
network for synthetic time series data generation in smart grids,” in 2018 IEEE Interna-
tional Conference on Communications, Control, and Computing Technologies for Smart
Grids (SmartGridComm). IEEE, 2018, pp. 1–6.

[28] Y. Gu, Q. Chen, K. Liu, L. Xie, and C. Kang, “Gan-based model for residential load
generation considering typical consumption patterns,” in 2019 IEEE Power & Energy
Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 2019, pp. 1–5.

[29] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural in-
formation processing systems, 2014, pp. 2672–2680.

[30] D. Mwiti, “Introduction to Generative Adversarial Networks (GANs): Types,
and Applications, and Implementation,” May 2019. [Online]. Available: https:
//heartbeat.fritz.ai/introduction-to-generative-adversarial-networks-gans-35ef44f21193

[31] K. Shmelkov, C. Schmid, and K. Alahari, “How good is my gan?” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 213–229.

[32] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel two-
sample test,” Journal of Machine Learning Research, vol. 13, no. Mar, pp. 723–773,
2012.

[33] M. E. Berges, E. Goldman, H. S. Matthews, and L. Soibelman, “Enhancing electricity
audits in residential buildings with nonintrusive load monitoring,” Jour. of Ind. Eco.,
vol. 14, no. 5, pp. 844–858, 2010.

[34] (2017, Dec) Datasets | NILM wiki. [Online]. [Online]. Available: http://wiki.nilm.eu/

datasets.html

[35] J. R. Herrero, Á. L. Murciego, A. L. Barriuso, D. H. de la Iglesia, G. V. González,
J. M. C. Rodrı́guez, and R. Carreira, “Non intrusive load monitoring (nilm): A state
of the art,” in International Conference on Practical Applications of Agents and Multi-
Agent Systems. Springer, 2017, pp. 125–138.

[36] Z. Wang and G. Zheng, “Residential appliances identification and monitoring by a non-
intrusive method,” IEEE transactions on Smart Grid, vol. 3, no. 1, pp. 80–92, 2012.

[37] T. Zia, D. Bruckner, and A. Zaidi, “A hidden markov model based procedure for iden-
tifying household electric loads,” in IECON 2011-37th Annual Conference on IEEE
Industrial Electronics Society. IEEE, 2011, pp. 3218–3223.

https://heartbeat.fritz.ai/introduction-to-generative-adversarial-networks-gans-35ef44f21193
https://heartbeat.fritz.ai/introduction-to-generative-adversarial-networks-gans-35ef44f21193
http://wiki.nilm.eu/datasets.html
http://wiki.nilm.eu/datasets.html

BIBLIOGRAPHY 103

[38] K. Basu, A. Hably, V. Debusschere, S. Bacha, G. J. Driven, and A. Ovalle, “A compar-
ative study of low sampling non intrusive load dis-aggregation,” in IECON 2016-42nd
Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2016, pp. 5137–
5142.

[39] S. Makonin, F. Popowich, I. V. Bajic, B. Gill, and L. Bartram, “Exploiting hmm sparsity
to perform online real-time nonintrusive load monitoring,” IEEE Trans. on Sm. Grid,
vol. 7, no. 6, pp. 2575–2586, 2016.

[40] J. Z. Kolter and T. Jaakkola, “Unsupervised disaggregation of low frequency power
measurements,” SIAM International Conference on Data Mining, pp. 747–758, 2011.

[41] J. Cho, Z. Hu, and M. Sartipi, “Non-intrusive a/c load disaggregation using deep learn-
ing,” 04 2018, pp. 1–5.

[42] L. Mauch and B. Yang, “A novel dnn-hmm-based approach for extracting single loads
from aggregate power signals,” in Acoustics, Speech and Signal Processing (ICASSP),
2016 IEEE International Conference on. IEEE, 2016, pp. 2384–2388.

[43] (2021, Jun) Redd. [Online; accessed 23. Jun. 2021]. [Online]. Available: http:
//redd.csail.mit.edu

[44] M. Z. A. Bhotto, S. Makonin, and I. V. Bajić, “Load disaggregation based on aided linear
integer programming,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 64, no. 7, pp. 792–796, 2017.

[45] J. Kelly and W. Knottenbelt, “Neural nilm: Deep neural networks applied to energy
disaggregation,” in Proceedings of the 2nd ACM International Conference on Embedded
Systems for Energy-Efficient Built Environments. ACM, 2015, pp. 55–64.

[46] J. Kim, T.-T.-H. Le, and H. Kim, “Nonintrusive load monitoring based on advanced
deep learning and novel signature,” Computational intelligence and neuroscience, vol.
2017, 2017.

[47] J. Wang, S. El Kababji, C. Graham, and P. Srikantha, “Ensemble-based deep learning
model for non-intrusive load monitoring,” in 2019 IEEE Electrical Power and Energy
Conference (EPEC), 2019, pp. 1–6.

[48] S. M. Tabatabaei, S. Dick, and W. Xu, “Toward non-intrusive load monitoring via multi-
label classification,” IEEE Transactions on Smart Grid, vol. 8, no. 1, pp. 26–40, 2017.

[49] G. Wang, G. B. Giannakis, J. Chen, and J. Sun, “Distribution system state estimation:
An overview of recent developments,” Frontiers of Information Technology & Electronic
Engineering, vol. 20, no. 1, pp. 4–17, Jan 2019.

[50] T. Dy Liacco, “The role of state estimation in power system operation,” IFAC
Proceedings Volumes, vol. 15, no. 4, pp. 1531–1533, 1982, 6th IFAC Symposium on
Identification and System Parameter Estimation, Washington USA, 7-11 June. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1474667017632166

http://redd.csail.mit.edu
http://redd.csail.mit.edu
https://www.sciencedirect.com/science/article/pii/S1474667017632166

104 BIBLIOGRAPHY

[51] A. Abur and A. G. Exposito, Power system state estimation: theory and implementation.
CRC press, 2004, ch. 3.

[52] R. E. Larson, W. F. Tinney, and J. Peschon, “State estimation in power systems part
i: Theory and feasibility,” IEEE Transactions on Power Apparatus and Systems, vol.
PAS-89, no. 3, pp. 345–352, 1970.

[53] A. Monticelli, “Electric power system state estimation,” Proceedings of the IEEE,
vol. 88, no. 2, pp. 262–282, 03 2000.

[54] A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, Power generation, operation, and
control. John Wiley & Sons, 2013, ch. 12.

[55] F. C. Schweppe and D. B. Rom, “Power system static-state estimation, part ii: Approxi-
mate model,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-89, no. 1,
pp. 125–130, 1970.

[56] D. Van Hertem, J. Verboomen, K. Purchala, R. Belmans, and W. L. Kling, “Usefulness
of dc power flow for active power flow analysis with flow controlling devices,” in The
8th IEE International Conference on AC and DC Power Transmission, 2006, pp. 58–62.

[57] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state estimation in
electric power grids,” ACM Transactions on Information and System Security (TISSEC),
vol. 14, no. 1, pp. 1–33, 2011.

[58] O. Ivanov and M. Garvrilaş, “State estimation for power systems with multilayer percep-
tron neural networks,” in 11th Symposium on Neural Network Applications in Electrical
Engineering. IEEE, 2012, pp. 243–246.

[59] O. Ivanov and M. Gavrilaş, “State estimation with neural networks and pmu voltage
measurements,” in 2014 International Conference and Exposition on Electrical and
Power Engineering (EPE). IEEE, 2014, pp. 983–988.

[60] H. Mosbah and M. El-Hawary, “Multilayer artificial neural networks for real time
power system state estimation,” in 2015 IEEE Electrical Power and Energy Conference
(EPEC), 10 2015, pp. 344–351.

[61] L. Zhang, G. Wang, and G. B. Giannakis, “Real-time power system state estimation and
forecasting via deep unrolled neural networks,” IEEE Transactions on Signal Process-
ing, vol. 67, no. 15, pp. 4069–4077, Jul 2019.

[62] G. Wang, G. B. Giannakis, and J. Chen, “Robust and scalable power system state esti-
mation via composite optimization,” IEEE Transactions on Smart Grid, vol. 10, no. 6,
pp. 6137–6147, 08 2019.

[63] L. Zhang, G. Wang, and G. B. Giannakis, “Distribution system state estimation via data-
driven and physics-aware deep neural networks,” in 2019 IEEE Data Science Workshop
(DSW), 2019, pp. 258–262.

BIBLIOGRAPHY 105

[64] A. S. Zamzam and N. D. Sidiropoulos, “Physics-aware neural networks for distribution
system state estimation,” IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4347–
4356, 2020.

[65] F. Aeiad, W. Gao, and J. Momoh, “Bad data detection for smart grid state estimation,”
in 2016 North American Power Symposium (NAPS), 2016, pp. 1–6.

[66] M. Esmalifalak, L. Liu, N. Nguyen, R. Zheng, and Z. Han, “Detecting stealthy false data
injection using machine learning in smart grid,” IEEE Systems Journal, vol. 11, no. 3,
pp. 1644–1652, 2017.

[67] M. Ozay, I. Esnaola, F. T. Yarman Vural, S. R. Kulkarni, and H. V. Poor, “Machine
learning methods for attack detection in the smart grid,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 27, no. 8, pp. 1773–1786, 2016.

[68] R. D. Trevizan, C. Ruben, K. Nagaraj, L. L. Ibukun, A. C. Starke, A. S. Bretas, J. Mc-
Nair, and A. Zare, “Data-driven physics-based solution for false data injection diagnosis
in smart grids,” in 2019 IEEE Power Energy Society General Meeting (PESGM), 2019,
pp. 1–5.

[69] L. YAVUZ, A. SORAN, A. ÖNEN, and S. M. MUYEEN, “Machine learning algorithms
against hacking attack and detection success comparison,” in 2020 2nd International
Conference on Smart Power Internet Energy Systems (SPIES), 2020, pp. 258–262.

[70] Y. Zhang, J. Wang, and B. Chen, “Detecting false data injection attacks in smart grids:
A semi-supervised deep learning approach,” IEEE Transactions on Smart Grid, vol. 12,
no. 1, pp. 623–634, 2021.

[71] W. Qiu, Q. Tang, K. Zhu, W. Wang, Y. Liu, and W. Yao, “Detection of synchropha-
sor false data injection attack using feature interactive network,” IEEE Transactions on
Smart Grid, vol. 12, no. 1, pp. 659–670, 2021.

[72] L. Wu, S. You, X. Zhang, Y. Cui, Y. Liu, and Y. Liu, “Statistical analysis of the
fnet/grideye-detected inter-area oscillations in eastern interconnection (ei),” in 2017
IEEE Power Energy Society General Meeting, 2017, pp. 1–5.

[73] T. Wu, W. Xue, H. Wang, C. Chung, G. Wang, J. Peng, and Q. Yang, “Extreme learning
machine-based state reconstruction for automatic attack filtering in cyber physical power
system,” IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 1892–1904,
2020.

[74] “London hydro unveils trickl app,” CFRL, Mar 2018. [Online]. Available:
https://www.cfrlradio.com/syn/202/71446/london-hydro-unveils-trickl-app/

[75] S. E. Kababji and P. Srikantha, “Power Appliance Disaggregation Framework Via Hy-
brid Hidden Markov Model,” 2018 IEEE Canadian Conference on Electrical & Com-
puter Engineering (CCECE), pp. 1–5, May 2018.

https://www.cfrlradio.com/syn/202/71446/london-hydro-unveils-trickl-app/

106 BIBLIOGRAPHY

[76] N. Batra, J. Kelly, O. Parson, H. Dutta, W. Knottenbelt, A. Rogers, A. Singh, and M. Sri-
vastava, “Nilmtk: an open source toolkit for non-intrusive load monitoring,” in Proceed-
ings of the 5th international conference on Future energy systems. ACM, 2014, pp.
265–276.

[77] F. Nuha and A. Afiahayati, “Training dataset reduction on generative adversarial net-
work,” Procedia computer science, vol. 144, pp. 133–139, 01 2018.

[78] C. Dilmegani, “The Ultimate Guide to Synthetic Data in 2021,” AIMultiple,
Aug 2021, [Online; accessed 17. Aug. 2021]. [Online]. Available: https:
//research.aimultiple.com/synthetic-data

[79] “Ieee standard for scada and automation systems,” IEEE Std C37.1-2007 (Revision of
IEEE Std C37.1-1994), pp. 1–143, 2008.

[80] A. Abur and A. G. Exposito, Power system state estimation: theory and implementation.
CRC press, 2004, ch. 2,5.

[81] Y.-F. Huang, S. Werner, J. Huang, N. Kashyap, and V. Gupta, “State estimation in elec-
tric power grids: Meeting new challenges presented by the requirements of the future
grid,” Signal Processing Magazine, IEEE, vol. 29, pp. 33–43, 09 2012.

[82] R. A. M. van Amerongen, “On convergence analysis and convergence enhancement
of power system least-squares state estimators,” IEEE Transactions on Power Systems,
vol. 10, no. 4, pp. 2038–2044, 1995.

[83] A. Monticelli, “Electric power system state estimation,” Proceedings of the IEEE,
vol. 88, no. 2, pp. 262–282, 2000.

[84] A. Meliopoulos, B. Fardanesh, and S. Zelingher, “Power system state estimation: Mod-
eling error effects and impact on system operation.” 01 2001.

[85] A. Burkov, The Hundred-Page Machine Learning Book. Andriy Burkov, 2019.
[Online]. Available: https://books.google.ca/books?id=0jbxwQEACAAJ

[86] D. Foster, Generative Deep Learning: Teaching Machines to Paint, Write,
Compose, and Play. O’Reilly Media, Incorporated, 2019. [Online]. Available:
https://books.google.ca/books?id=BQFhwQEACAAJ

[87] D. Mwiti, “Introduction to Generative Adversarial Networks (GANs): Types, and
Applications, and Implementation,” Medium, Apr 2021. [Online]. Available: https:
//heartbeat.fritz.ai/introduction-to-generative-adversarial-networks-gans-35ef44f21193

[88] D. MacKay, D. Kay, and C. U. Press, Information Theory, Inference and
Learning Algorithms. Cambridge University Press, 2003. [Online]. Available:
https://books.google.ca/books?id=AKuMj4PN EMC

[89] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint
arXiv:1411.1784, 2014.

https://research.aimultiple.com/synthetic-data
https://research.aimultiple.com/synthetic-data
https://books.google.ca/books?id=0jbxwQEACAAJ
https://books.google.ca/books?id=BQFhwQEACAAJ
https://heartbeat.fritz.ai/introduction-to-generative-adversarial-networks-gans-35ef44f21193
https://heartbeat.fritz.ai/introduction-to-generative-adversarial-networks-gans-35ef44f21193
https://books.google.ca/books?id=AKuMj4PN_EMC

BIBLIOGRAPHY 107

[90] Y. Qin, N. Mitra, and P. Wonka, “Do GAN Loss Functions Really Matter?” arXiv, Nov
2018. [Online]. Available: https://arxiv.org/abs/1811.09567

[91] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,”
in International conference on machine learning. PMLR, 2017, pp. 214–223.

[92] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least squares gen-
erative adversarial networks,” in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 2794–2802.

[93] Y. Yazici, C.-S. Foo, S. Winkler, K.-H. Yap, and V. Chandrasekhar, “Empirical analysis
of overfitting and mode drop in gan training,” in 2020 IEEE International Conference
on Image Processing (ICIP). IEEE, 2020, pp. 1651–1655.

[94] E. Alpaydin, Introduction to machine learning, 3rd ed. MIT press, 2014.

[95] A. Tsybakov, Introduction to Nonparametric Estimation, ser. Springer Series in
Statistics. Springer New York, 2008. [Online]. Available: https://books.google.ca/

books?id=mwB8rUBsbqoC

[96] C. Euler, C. T. Lin, B. Juarez, and M. Flores, “Real-time activity classification by
matched filtering using body-worn accelerometers,” in 2016 15th IEEE International
Conference on Machine Learning and Applications (ICMLA), 2016, pp. 1059–1062.

[97] M. Elgenedy, M. Sayed, M. Mokhtar, M. Abdallah, and N. Al-Dhahir, “Interference mit-
igation techniques for narrowband powerline smart grid communications,” in 2015 IEEE
International Conference on Smart Grid Communications (SmartGridComm), 2015, pp.
368–373.

[98] D. Erdogmus, R. Agrawal, and J. C. Principe, “A mutual information extension to the
matched filter,” Signal Processing, vol. 85, no. 5, pp. 927–935, 2005.

[99] H. K. Iqbal, F. H. Malik, A. Muhammad, M. A. Qureshi, M. N. Abbasi, and A. R.
Chishti, “A critical review of state-of-the-art non-intrusive load monitoring datasets,”
Electric Power Systems Research, vol. 192, p. 106921, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378779620307197

[100] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, 3rd ed. Morgan
Kaufmann, 2012.

[101] M. Zeifman, “Disaggregation of home energy display data using probabilistic ap-
proach,” IEEE Transactions on Consumer Electronics, vol. 58, no. 1, pp. 23–31, 2012.

[102] J. Zhao, A. Gómez-Expósito, M. Netto, L. Mili, A. Abur, V. Terzija, I. Kamwa, B. Pal,
A. K. Singh, J. Qi, Z. Huang, and A. P. S. Meliopoulos, “Power system dynamic state es-
timation: Motivations, definitions, methodologies, and future work,” IEEE Transactions
on Power Systems, vol. 34, no. 4, pp. 3188–3198, 2019.

https://arxiv.org/abs/1811.09567
https://books.google.ca/books?id=mwB8rUBsbqoC
https://books.google.ca/books?id=mwB8rUBsbqoC
https://www.sciencedirect.com/science/article/pii/S0378779620307197

108 BIBLIOGRAPHY

[103] R. Amerongen, “On convergence analysis and convergence enhancement of power sys-
tem least-squares state estimators,” Power Systems, IEEE Transactions on, vol. 10, pp.
2038 – 2044, 12 1995.

[104] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with condi-
tional adversarial networks,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 07 2017, pp. 5967–5976.

[105] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation us-
ing cycle-consistent adversarial networks,” in 2017 IEEE International Conference on
Computer Vision (ICCV), 10 2017, pp. 2242–2251.

[106] P. Cerda and G. Varoquaux, “Encoding high-cardinality string categorical variables,”
IEEE Transactions on Knowledge and Data Engineering, pp. 1–1, 5 2020.

[107] (2021, May) Electric grid test cases. [Online; accessed 19. Jun. 2021]. [Online].
Available: https://electricgrids.engr.tamu.edu/electric-grid-test-cases

[108] “Power Systems Test Case Archive - UWEE,” Jan 2021, [Online; accessed 29. Jan.
2021]. [Online]. Available: https://labs.ece.uw.edu/pstca/index.html

[109] L. Thurner, A. Scheidler, F. Schäfer, J. Menke, J. Dollichon, F. Meier, S. Meinecke, and
M. Braun, “pandapower—an open-source python tool for convenient modeling, analy-
sis, and optimization of electric power systems,” IEEE Transactions on Power Systems,
vol. 33, no. 6, pp. 6510–6521, 11 2018.

[110] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

[111] S. Makonin, F. Popowich, L. Bartram, B. Gill, and I. V. Bajić, “Ampds: A public dataset
for load disaggregation and eco-feedback research,” in 2013 IEEE Electrical Power &

Energy Conference. IEEE, 2013, pp. 1–6.

[112] S. Makonin, B. Ellert, I. V. Bajic, and F. Popowich, “Electricity, water, and natural gas
consumption of a residential house in Canada from 2012 to 2014,” Scientific Data, vol. 3,
no. 160037, pp. 1–12, 2016.

[113] S. Makonin, “RAE: The Rainforest Automation Energy Dataset,” 2017. [Online].
Available: https://doi.org/10.7910/DVN/ZJW4LC

https://electricgrids.engr.tamu.edu/electric-grid-test-cases
https://labs.ece.uw.edu/pstca/index.html
http://tensorflow.org/
https://doi.org/10.7910/DVN/ZJW4LC

Appendix A

Public datasets

AMPd dataset

The Almanac of Minutely Power dataset (AMPds) is presented by [111, 112] and is available
on-line at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.
7910/DVN/FIE0S4.

The dataset consists of series of time-stamped real power measurements for each individual
load. The measurements are physically recorded throughout two years (from April 2012 to
March 2014) at a sampling rate of 1 sample per minute. In addition to real power, voltage,
current, frequency power factor and other electrical quantities are recorded. The aggregate
consumption recorded by the smart meter is monitored and saved at the same sampling rate.
The aggregate consumption is denoted WHE and named ’Whole-House meter’.

The monitored individual loads are given unique IDs. Occasionally, a branch circuit rather
than an individual load is monitored. However, the following loads were individually moni-
tored

CDE- Clothes Dryer

CWE- Clothes Washer

DWE- Dishwasher

FGE- Kitchen Fridge

FRE- HVAC/Furnace

HPE- Heat Pump

HTP- Instant Hot Water Unit

WOE- Wall oven

109

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FIE0S4
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FIE0S4

110 Chapter A. Public datasets

RAE dataset

The Rainforest Automation Energy (RAE) dataset is presented by [113]. The data is available
on-line at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.
7910/DVN/ZJW4LC.

Measurements are physically acquired using sub-meters at a rate of 1Hz for two houses,
both located in Burnaby, BC, Canada. For the first house, data is acquired in February and
March 2016. Individual loads monitored included clothes dryer, Kitchen dishwasher, heat
pump and others. For the second house, data is acquired in September and October 2017. The
second house includes similar loads to the first one.

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.7910/DVN/ZJW4LC
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi%3A10.7910/DVN/ZJW4LC

Curriculum Vitae

Name: Samer El Kababji

Education and 2017-2018 M.Eng. Electrical & Computer Eng.

Degrees: Western University

1992-1995 M.Sc. Industrial Eng.

1986-1991 B.Sc. Electrical Eng.

The University of Jordan

Awards 2019, 2020 Ontario Graduate Scholarship

2019, 2021 Outstanding Graduate Symposium Presentation

Publications:

– S. El Kababji and P. Srikantha, ”Power Appliance Disaggregation Framework Via Hybrid
Hidden Markov Model,” 2018 IEEE Canadian Conference on Electrical & Computer
Engineering (CCECE), 2018, pp. 1-5, doi: 10.1109/CCECE.2018.8447822.

– J. Wang, S. El Kababji, C. Graham and P. Srikantha, ”Ensemble-Based Deep Learning
Model for Non-Intrusive Load Monitoring,” 2019 IEEE Electrical Power and Energy
Conference (EPEC), 2019, pp. 1-6, doi: 10.1109/EPEC47565.2019.9074816.

– S. E. Kababji and P. Srikantha, ”A Data-Driven Approach for Generating Synthetic Load
Patterns and Usage Habits,” in IEEE Transactions on Smart Grid, vol. 11, no. 6, pp.
4984-4995, Nov. 2020, doi: 10.1109/TSG.2020.3007984.

111

112 Chapter A. Public datasets

Open source codes:

Generating Patterns and Habits of Electrical Loads using GANs
https://github.com/skababji/ElecLoads

In preparation:

Subject: A modified cycle GAN for bad data detection and identification
Target journal: IEEE Transactions on Smart Grid

Work experience:

– JAN 2021 - APR 2021 Intern
Filament AI

– SEP 2019 - APR 2020 Teaching Assistant
Western University

– 2015 - 2017 Founder
Smartegrators Ltd

– 2013 - 2015 General Manager
Specialised Gulf Welding Co.

– 2005 - 2013 Country Manager
Illinois Tool Works

– 2001 - 2003 Assistant General Manager
Mona Trading

– 1997 - 2001 Marketing Manager
EDGO Group

– 1994 - 1997 Maintenance Manager
Alnejma Bulk Pharmaceutical Co.

– 1992 - 1994 Maintenance Eng.
Arab Drip Irrigation Systems

https://github.com/skababji/ElecLoads

	Generative Learning in Smart Grid
	Recommended Citation

	Abstract
	Summary for Lay Audience
	Dedication
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Machine learning in smart grid
	Generative vs. discriminative models
	State-of-the-art
	Residential load simulation
	Non-intrusive load monitoring
	Power system state estimation

	Research motivations
	Residential load simulation
	Non-intrusive load monitoring
	Power system state estimation

	Research objectives
	Thesis outline

	Residential load simulation
	Background
	Neural networks
	Generative adversarial networks
	Maximum-mean discrepancy
	Kernel density estimator
	Matched-filter
	Cross validation

	Problem definition
	Proposed framework
	Experimental studies
	Preprocessing
	Generating patterns
	Generating habits

	Summary

	Non-intrusive load monitoring
	Background
	Hidden Markov model
	k-means clustering
	Quality metrics

	Problem definition
	Proposed framework
	Experimental studies
	Summary

	Power state estimation
	Background
	Power state estimation
	Bad data detection
	Cycle GAN
	Embedding

	Problem definition
	Proposed framework
	Vanilla cycle GAN
	Grid-aware cycle GAN
	Evaluating cycle GAN for state estimation
	Tampered data identification (TDI)

	Experimental studies
	Generating load scenarios
	Training cycle GAN
	Benchmarking
	Identifying bad measurements

	Summary

	Conclusions
	Summary
	Contributions
	Future works

	Bibliography
	Public datasets
	Curriculum Vitae

